Articles | Volume 15, issue 4
https://doi.org/10.5194/acp-15-1769-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-15-1769-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Strong atmospheric new particle formation in winter in urban Shanghai, China
S. Xiao
Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
Fudan Tyndall Centre, Fudan University, Shanghai 200433, China
M. Y. Wang
Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
Fudan Tyndall Centre, Fudan University, Shanghai 200433, China
L. Yao
Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
Fudan Tyndall Centre, Fudan University, Shanghai 200433, China
M. Kulmala
Department of Physics, University of Helsinki, 00014 Helsinki, Finland
B. Zhou
Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
Fudan Tyndall Centre, Fudan University, Shanghai 200433, China
Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
Fudan Tyndall Centre, Fudan University, Shanghai 200433, China
J. M. Chen
Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
Fudan Tyndall Centre, Fudan University, Shanghai 200433, China
D. F. Wang
Shanghai Environmental Monitoring Center, Shanghai 200030, China
Shanghai Environmental Monitoring Center, Shanghai 200030, China
D. R. Worsnop
Aerodyne Research, Billerica, MA 01821, USA
Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
Fudan Tyndall Centre, Fudan University, Shanghai 200433, China
Related authors
No articles found.
Zhaojin An, Rujing Yin, Xinyan Zhao, Xiaoxiao Li, Yuyang Li, Yi Yuan, Junchen Guo, Yiqi Zhao, Xue Li, Dandan Li, Yaowei Li, Dongbin Wang, Chao Yan, Kebin He, Douglas R. Worsnop, Frank N. Keutsch, and Jingkun Jiang
Atmos. Chem. Phys., 24, 13793–13810, https://doi.org/10.5194/acp-24-13793-2024, https://doi.org/10.5194/acp-24-13793-2024, 2024
Short summary
Short summary
Online Vocus-PTR measurements show the compositions and seasonal variations in organic vapors in urban Beijing. With enhanced sensitivity and mass resolution, various species at a level of sub-parts per trillion (ppt) and organics with multiple oxygens (≥ 3) were observed. The fast photooxidation process in summer leads to an increase in both concentration and proportion of organics with multiple oxygens, while, in other seasons, the variations in them could be influenced by mixed sources.
Qun He, Zhaowen Wang, Houfeng Liu, Pengju Xu, Rongbao Duan, Caihong Xu, Jianmin Chen, and Min Wei
Atmos. Chem. Phys., 24, 12775–12792, https://doi.org/10.5194/acp-24-12775-2024, https://doi.org/10.5194/acp-24-12775-2024, 2024
Short summary
Short summary
Coastal environments provide an ideal setting for investigating the intermixing of terrestrial and marine aerosols. Terrestrial air mass constituted a larger number of microbes from anthropogenic and soil emissions, whereas saprophytic and gut microbes were predominant in marine samples. Mixed air masses indicated a fusion of marine and terrestrial aerosols, characterized by alterations in the ratio of pathogenic and saprophytic microbes when compared to either terrestrial or marine samples.
Matthew Boyer, Diego Aliaga, Lauriane L. J. Quéléver, Silvia Bucci, Hélène Angot, Lubna Dada, Benjamin Heutte, Lisa Beck, Marina Duetsch, Andreas Stohl, Ivo Beck, Tiia Laurila, Nina Sarnela, Roseline C. Thakur, Branka Miljevic, Markku Kulmala, Tuukka Petäjä, Mikko Sipilä, Julia Schmale, and Tuija Jokinen
Atmos. Chem. Phys., 24, 12595–12621, https://doi.org/10.5194/acp-24-12595-2024, https://doi.org/10.5194/acp-24-12595-2024, 2024
Short summary
Short summary
We analyze the seasonal cycle and sources of gases that are relevant for the formation of aerosol particles in the central Arctic. Since theses gases can form new particles, they can influence Arctic climate. We show that the sources of these gases are associated with changes in the Arctic environment during the year, especially with respect to sea ice. Therefore, the concentration of these gases will likely change in the future as the Arctic continues to warm.
Xiaoyi Zhang, Wanyun Xu, Weili Lin, Gen Zhang, Jinjian Geng, Li Zhou, Huarong Zhao, Sanxue Ren, Guangsheng Zhou, Jianmin Chen, and Xiaobin Xu
Atmos. Chem. Phys., 24, 12323–12340, https://doi.org/10.5194/acp-24-12323-2024, https://doi.org/10.5194/acp-24-12323-2024, 2024
Short summary
Short summary
Ozone (O3) deposition is a key process that removes surface O3, affecting air quality, ecosystems and climate change. We conducted O3 deposition measurement over a wheat canopy using a newly relaxed eddy accumulation flux system. Large variabilities in O3 deposition were detected, mainly determined by crop growth and modulated by various environmental factors. More O3 deposition observations over different surfaces are needed for exploring deposition mechanisms and model optimization.
Sander Mirme, Rima Balbaaki, Hanna Elina Manninen, Paap Koemets, Eva Sommer, Birte Rörup, Yusheng Wu, Joao Almeida, Sebastian Ehrhart, Stefan Karl Weber, Joschka Pfeifer, Juha Kangasluoma, Markku Kulmala, and Jasper Kirkby
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-138, https://doi.org/10.5194/amt-2024-138, 2024
Preprint under review for AMT
Short summary
Short summary
The manuscript describes the design and performance of the Cluster Ion Counter (CIC, Airel OÜ), a device which simultaneously measures the number concentrations of positively- and negatively-charged ions and particles below 5 nm mobility diameter. The presented measurements and operational experience demonstrate that the CIC provides precise and robust long-term measurements of small ion concentrations of both polarities, with low noise, fast time response and excellent reliability.
Neha Deot, Vijay Punjaji Kanawade, Alkistis Papetta, Rima Baalbaki, Michael Pikridas, Franco Marenco, Markku Kulmala, Jean Sciare, Katrianne Lehtipalo, and Tuija Jokinen
Aerosol Research Discuss., https://doi.org/10.5194/ar-2024-31, https://doi.org/10.5194/ar-2024-31, 2024
Preprint under review for AR
Short summary
Short summary
We studied how nanoparticles form in the atmosphere at two different altitudes in Cyprus, focusing on how meteorology impacts this process. Using data from two sites, we found that air from lower regions carries particles up to higher areas, affecting air quality and potentially climate. Our findings help improve understanding of how particles form and grow in the air, which is important for predicting changes in climate and air pollution in the future.
Franziska Vogel, Michael P. Adams, Larissa Lacher, Polly B. Foster, Grace C. E. Porter, Barbara Bertozzi, Kristina Höhler, Julia Schneider, Tobias Schorr, Nsikanabasi S. Umo, Jens Nadolny, Zoé Brasseur, Paavo Heikkilä, Erik S. Thomson, Nicole Büttner, Martin I. Daily, Romy Fösig, Alexander D. Harrison, Jorma Keskinen, Ulrike Proske, Jonathan Duplissy, Markku Kulmala, Tuukka Petäjä, Ottmar Möhler, and Benjamin J. Murray
Atmos. Chem. Phys., 24, 11737–11757, https://doi.org/10.5194/acp-24-11737-2024, https://doi.org/10.5194/acp-24-11737-2024, 2024
Short summary
Short summary
Primary ice formation in clouds strongly influences their properties; hence, it is important to understand the sources of ice-nucleating particles (INPs) and their variability. We present 2 months of INP measurements in a Finnish boreal forest using a new semi-autonomous INP counting device based on gas expansion. These results show strong variability in INP concentrations, and we present a case that the INPs we observe are, at least some of the time, of biological origin.
Valter Mickwitz, Otso Peräkylä, Frans Graeffe, Douglas Worsnop, and Mikael Ehn
EGUsphere, https://doi.org/10.5194/egusphere-2024-3047, https://doi.org/10.5194/egusphere-2024-3047, 2024
Short summary
Short summary
This work presents and evaluates an algorithm that automatically conducts the steps of fitting peaks and identifying formulas, necessary but time consuming steps for most applications of mass spectrometry within atmospheric science. The aim of the algorithm is to save researchers working on these tasks significant amounts of time, and allow them to proceed with their analysis. The work demonstrates that this algorithm can achieve the goal of speeding up analysis, and provide accurate formulas.
Markku Kulmala, Santeri Tuovinen, Sander Mirme, Paap Koemets, Lauri Ahonen, Yongchun Liu, Heikki Junninen, Tuukka Petäjä, and Veli-Matti Kerminen
Aerosol Research, 2, 291–301, https://doi.org/10.5194/ar-2-291-2024, https://doi.org/10.5194/ar-2-291-2024, 2024
Short summary
Short summary
With the recently developed CIC (Cluster Ion Counter) instrument, we can observe dynamics of small air ions and intermediate air ions. Furthermore, we can observe condensation sink and formation and growth rates for intermediated ions.
Zoé Brasseur, Julia Schneider, Janne Lampilahti, Ville Vakkari, Victoria A. Sinclair, Christina J. Williamson, Carlton Xavier, Dmitri Moisseev, Markus Hartmann, Pyry Poutanen, Markus Lampimäki, Markku Kulmala, Tuukka Petäjä, Katrianne Lehtipalo, Erik S. Thomson, Kristina Höhler, Ottmar Möhler, and Jonathan Duplissy
Atmos. Chem. Phys., 24, 11305–11332, https://doi.org/10.5194/acp-24-11305-2024, https://doi.org/10.5194/acp-24-11305-2024, 2024
Short summary
Short summary
Ice-nucleating particles (INPs) strongly influence the formation of clouds by initiating the formation of ice crystals. However, very little is known about the vertical distribution of INPs in the atmosphere. Here, we present aircraft measurements of INP concentrations above the Finnish boreal forest. Results show that near-surface INPs are efficiently transported and mixed within the boundary layer and occasionally reach the free troposphere.
Jia Sun, Markus Hermann, Kay Weinhold, Maik Merkel, Wolfram Birmili, Yifan Yang, Thomas Tuch, Harald Flentje, Björn Briel, Ludwig Ries, Cedric Couret, Michael Elsasser, Ralf Sohmer, Klaus Wirtz, Frank Meinhardt, Maik Schütze, Olaf Bath, Bryan Hellack, Veli-Matti Kerminen, Markku Kulmala, Nan Ma, and Alfred Wiedensohler
Atmos. Chem. Phys., 24, 10667–10687, https://doi.org/10.5194/acp-24-10667-2024, https://doi.org/10.5194/acp-24-10667-2024, 2024
Short summary
Short summary
We investigated the characteristics of new particle formation (NPF) for various environments from urban background to high Alpine and the impacts of NPF on cloud condensation nuclei and aerosol radiative forcing. NPF features differ between site categories, implying the crucial role of local environmental factors such as the degree of emissions and meteorological conditions. The results also underscore the importance of local environments when assessing the impact of NPF on climate in models.
Tianle Pan, Andrew T. Lambe, Weiwei Hu, Yicong He, Minghao Hu, Huaishan Zhou, Xinming Wang, Qingqing Hu, Hui Chen, Yue Zhao, Yuanlong Huang, Doug R. Worsnop, Zhe Peng, Melissa A. Morris, Douglas A. Day, Pedro Campuzano-Jost, Jose-Luis Jimenez, and Shantanu H. Jathar
Atmos. Meas. Tech., 17, 4915–4939, https://doi.org/10.5194/amt-17-4915-2024, https://doi.org/10.5194/amt-17-4915-2024, 2024
Short summary
Short summary
This study systematically characterizes the temperature enhancement in the lamp-enclosed oxidation flow reactor (OFR). The enhancement varied multiple dimensional factors, emphasizing the complexity of temperature inside of OFR. The effects of temperature on the flow field and gas- or particle-phase reaction inside OFR were also evaluated with experiments and model simulations. Finally, multiple mitigation strategies were demonstrated to minimize this temperature increase.
Yiliang Liu, Arttu Yli-Kujala, Fabian Schmidt-Ott, Sebastian Holm, Lauri Ahonen, Tommy Chan, Joonas Enroth, Joonas Vanhanen, Runlong Cai, Tuukka Petäjä, Markku Kulmala, Yang Chen, and Juha Kangasluoma
EGUsphere, https://doi.org/10.5194/egusphere-2024-2603, https://doi.org/10.5194/egusphere-2024-2603, 2024
Short summary
Short summary
Accurate measurement of nanoparticles is crucial for understanding their impact on new particle formation and climate change. In our study, we calibrated the Particle Size Magnifier version 2.0, a novel instrument designed for nanoparticle analysis, using both lab-generated and atmospheric particles. Significant differences were observed in the calibration results, with direct calibration using atmospheric particles enhancing measurement accuracy.
Shuai Wang, Mengyuan Zhang, Hui Zhao, Peng Wang, Sri Harsha Kota, Qingyan Fu, Cong Liu, and Hongliang Zhang
Earth Syst. Sci. Data, 16, 3565–3577, https://doi.org/10.5194/essd-16-3565-2024, https://doi.org/10.5194/essd-16-3565-2024, 2024
Short summary
Short summary
Long-term, open-source, gap-free daily ground-level PM2.5 and PM10 datasets for India (LongPMInd) were reconstructed using a robust machine learning model to support health assessment and air quality management.
Yusheng Zhang, Feixue Zheng, Zemin Feng, Chaofan Lian, Weigang Wang, Xiaolong Fan, Wei Ma, Zhuohui Lin, Chang Li, Gen Zhang, Chao Yan, Ying Zhang, Veli-Matti Kerminen, Federico Bianch, Tuukka Petäjä, Juha Kangasluoma, Markku Kulmala, and Yongchun Liu
Atmos. Chem. Phys., 24, 8569–8587, https://doi.org/10.5194/acp-24-8569-2024, https://doi.org/10.5194/acp-24-8569-2024, 2024
Short summary
Short summary
The nitrous acid (HONO) budget was validated during a COVID-19 lockdown event. The main conclusions are (1) HONO concentrations showed a significant decrease from 0.97 to 0.53 ppb during lockdown; (2) vehicle emissions accounted for 53 % of nighttime sources, with the heterogeneous conversion of NO2 on ground surfaces more important than aerosol; and (3) the dominant daytime source shifted from the homogenous reaction between NO and OH (51 %) to nitrate photolysis (53 %) during lockdown.
Zijun Zhang, Weiqi Xu, Yi Zhang, Wei Zhou, Xiangyu Xu, Aodong Du, Yinzhou Zhang, Hongqin Qiao, Ye Kuang, Xiaole Pan, Zifa Wang, Xueling Cheng, Lanzhong Liu, Qingyan Fu, Douglas R. Worsnop, Jie Li, and Yele Sun
Atmos. Chem. Phys., 24, 8473–8488, https://doi.org/10.5194/acp-24-8473-2024, https://doi.org/10.5194/acp-24-8473-2024, 2024
Short summary
Short summary
We investigated aerosol composition and sources and the interaction between secondary organic aerosol (SOA) and clouds at a regional mountain site in southeastern China. Clouds efficiently scavenge more oxidized SOA; however, cloud evaporation leads to the production of less oxidized SOA. The unexpectedly high presence of nitrate in aerosol particles indicates that nitrate formed in polluted areas has undergone interactions with clouds, significantly influencing the regional background site.
Muhammed Irfan, Thomas Kühn, Taina Yli-Juuti, Anton Laakso, Eemeli Holopainen, Douglas R. Worsnop, Annele Virtanen, and Harri Kokkola
Atmos. Chem. Phys., 24, 8489–8506, https://doi.org/10.5194/acp-24-8489-2024, https://doi.org/10.5194/acp-24-8489-2024, 2024
Short summary
Short summary
The study examines how the volatility of semi-volatile organic compounds affects secondary organic aerosol (SOA) formation and climate. Our simulations show that uncertainties in these volatilities influence aerosol mass and climate impacts. Accurate representation of these compounds in climate models is crucial for predicting global climate patterns.
Piaopiao Ke, Anna Lintunen, Pasi Kolari, Annalea Lohila, Santeri Tuovinen, Janne Lampilahti, Roseline Thakur, Maija Peltola, Otso Peräkylä, Tuomo Nieminen, Ekaterina Ezhova, Mari Pihlatie, Asta Laasonen, Markku Koskinen, Helena Rautakoski, Laura Heimsch, Tom Kokkonen, Aki Vähä, Ivan Mammarella, Steffen Noe, Jaana Bäck, Veli-Matti Kerminen, and Markku Kulmala
EGUsphere, https://doi.org/10.5194/egusphere-2024-1967, https://doi.org/10.5194/egusphere-2024-1967, 2024
Short summary
Short summary
Our research explores diverse ecosystems’ role in climate cooling via the concept of CarbonSink+ Potential. We measured CO2 uptake and loaal aerosol production in forests, farms, peatlands, urban gardens, and coastal areas across Finland and Estonia. The long-term data reveal that while forests are vital regarding CarbonSink+ Potential, farms and urban gardens also play significant roles. These insights can help optimize management policy of natural resource to mitigate global warming.
Jian Zhu, Shanshan Wang, Chuanqi Gu, Zhiwen Jiang, Sanbao Zhang, Ruibin Xue, Yuhao Yan, and Bin Zhou
Atmos. Chem. Phys., 24, 8383–8395, https://doi.org/10.5194/acp-24-8383-2024, https://doi.org/10.5194/acp-24-8383-2024, 2024
Short summary
Short summary
In 2022, Shanghai implemented city-wide static management measures during the high-ozone season in April and May, providing a chance to study ozone pollution control. Despite significant emissions reductions, ozone levels increased by 23 %. Statistically, the number of days with higher ozone diurnal variation types increased during the lockdown period. The uneven decline in VOC and NO2 emissions led to heightened photochemical processes, resulting in the observed ozone level rise.
Yuwei Wang, Chuang Li, Ying Zhang, Yueyang Li, Gan Yang, Xueyan Yang, Yizhen Wu, Lei Yao, Hefeng Zhang, and Lin Wang
Atmos. Chem. Phys., 24, 7961–7981, https://doi.org/10.5194/acp-24-7961-2024, https://doi.org/10.5194/acp-24-7961-2024, 2024
Short summary
Short summary
The formation and evolution mechanisms of aromatics-derived highly oxygenated organic molecules (HOMs) are essential to understand the formation of secondary organic aerosol pollution. Our conclusion highlights an underappreciated formation pathway of aromatics-derived HOMs and elucidates detailed formation mechanisms of certain HOMs, which advances our understanding of HOMs and potentially explains the existing gap between model prediction and ambient measurement of the HOMs' concentrations.
Shao Shi, Jinghao Zhai, Xin Yang, Yechun Ruan, Yuanlong Huang, Xujian Chen, Antai Zhang, Jianhuai Ye, Guomao Zheng, Baohua Cai, Yaling Zeng, Yixiang Wang, Chunbo Xing, Yujie Zhang, Tzung-May Fu, Lei Zhu, Huizhong Shen, and Chen Wang
Atmos. Chem. Phys., 24, 7001–7012, https://doi.org/10.5194/acp-24-7001-2024, https://doi.org/10.5194/acp-24-7001-2024, 2024
Short summary
Short summary
The determination of ions in the mass spectra of individual particles remains uncertain. We have developed a standard-free mass calibration algorithm applicable to more than 98 % of ambient particles. With our algorithm, ions with ~ 0.05 Th mass difference could be determined. Therefore, many more atmospheric species could be determined and involved in the source apportionment of aerosols, the study of chemical reaction mechanisms, and the analysis of single-particle mixing states.
Diego Aliaga, Victoria A. Sinclair, Radovan Krejci, Marcos Andrade, Paulo Artaxo, Luis Blacutt, Runlong Cai, Samara Carbone, Yvette Gramlich, Liine Heikkinen, Dominic Heslin-Rees, Wei Huang, Veli-Matti Kerminen, Alkuin Maximilian Koenig, Markku Kulmala, Paolo Laj, Valeria Mardoñez-Balderrama, Claudia Mohr, Isabel Moreno, Pauli Paasonen, Wiebke Scholz, Karine Sellegri, Laura Ticona, Gaëlle Uzu, Fernando Velarde, Alfred Wiedensohler, Doug Worsnop, Cheng Wu, Chen Xuemeng, Qiaozhi Zha, and Federico Bianchi
Aerosol Research Discuss., https://doi.org/10.5194/ar-2024-15, https://doi.org/10.5194/ar-2024-15, 2024
Revised manuscript accepted for AR
Short summary
Short summary
This study examines new particle formation (NPF) in the Bolivian Andes at Chacaltaya mountain (CHC) and the urban El Alto-La Paz area (EAC). Days are clustered into four categories based on NPF intensity. Differences in particle size, precursor gases, and pollution levels are found. High NPF intensities increased Aitken mode particle concentrations at both sites, while volcanic influence selectively diminished NPF intensity at CHC but not EAC. This study highlights NPF dynamics in the Andes.
Santeri Tuovinen, Janne Lampilahti, Veli-Matti Kerminen, and Markku Kulmala
Aerosol Research, 2, 93–105, https://doi.org/10.5194/ar-2-93-2024, https://doi.org/10.5194/ar-2-93-2024, 2024
Short summary
Short summary
Atmospheric intermediate ions can be used to study atmospheric new particle formation (NPF). Here we aimed to find the optimal ion diameter for this purpose on a local scale. To fulfill our aim, we used ion size number distribution data from the SMEAR II measurement station, Hyytiälä, Finland. We found that concentrations of ions between 2.0–2.3 nm are the best suited for characterization of local intermediate ion formation and could be used to detect and evaluate the strength of local NPF.
Shuai Wang, Mengyuan Zhang, Yueqi Gao, Peng Wang, Qingyan Fu, and Hongliang Zhang
Geosci. Model Dev., 17, 3617–3629, https://doi.org/10.5194/gmd-17-3617-2024, https://doi.org/10.5194/gmd-17-3617-2024, 2024
Short summary
Short summary
Numerical models are widely used in air pollution modeling but suffer from significant biases. The machine learning model designed in this study shows high efficiency in identifying such biases. Meteorology (relative humidity and cloud cover), chemical composition (secondary organic components and dust aerosols), and emission sources (residential activities) are diagnosed as the main drivers of bias in modeling PM2.5, a typical air pollutant. The results will help to improve numerical models.
Bjorn Stevens, Stefan Adami, Tariq Ali, Hartwig Anzt, Zafer Aslan, Sabine Attinger, Jaana Bäck, Johanna Baehr, Peter Bauer, Natacha Bernier, Bob Bishop, Hendryk Bockelmann, Sandrine Bony, Guy Brasseur, David N. Bresch, Sean Breyer, Gilbert Brunet, Pier Luigi Buttigieg, Junji Cao, Christelle Castet, Yafang Cheng, Ayantika Dey Choudhury, Deborah Coen, Susanne Crewell, Atish Dabholkar, Qing Dai, Francisco Doblas-Reyes, Dale Durran, Ayoub El Gaidi, Charlie Ewen, Eleftheria Exarchou, Veronika Eyring, Florencia Falkinhoff, David Farrell, Piers M. Forster, Ariane Frassoni, Claudia Frauen, Oliver Fuhrer, Shahzad Gani, Edwin Gerber, Debra Goldfarb, Jens Grieger, Nicolas Gruber, Wilco Hazeleger, Rolf Herken, Chris Hewitt, Torsten Hoefler, Huang-Hsiung Hsu, Daniela Jacob, Alexandra Jahn, Christian Jakob, Thomas Jung, Christopher Kadow, In-Sik Kang, Sarah Kang, Karthik Kashinath, Katharina Kleinen-von Königslöw, Daniel Klocke, Uta Kloenne, Milan Klöwer, Chihiro Kodama, Stefan Kollet, Tobias Kölling, Jenni Kontkanen, Steve Kopp, Michal Koran, Markku Kulmala, Hanna Lappalainen, Fakhria Latifi, Bryan Lawrence, June Yi Lee, Quentin Lejeun, Christian Lessig, Chao Li, Thomas Lippert, Jürg Luterbacher, Pekka Manninen, Jochem Marotzke, Satoshi Matsouoka, Charlotte Merchant, Peter Messmer, Gero Michel, Kristel Michielsen, Tomoki Miyakawa, Jens Müller, Ramsha Munir, Sandeep Narayanasetti, Ousmane Ndiaye, Carlos Nobre, Achim Oberg, Riko Oki, Tuba Özkan-Haller, Tim Palmer, Stan Posey, Andreas Prein, Odessa Primus, Mike Pritchard, Julie Pullen, Dian Putrasahan, Johannes Quaas, Krishnan Raghavan, Venkatachalam Ramaswamy, Markus Rapp, Florian Rauser, Markus Reichstein, Aromar Revi, Sonakshi Saluja, Masaki Satoh, Vera Schemann, Sebastian Schemm, Christina Schnadt Poberaj, Thomas Schulthess, Cath Senior, Jagadish Shukla, Manmeet Singh, Julia Slingo, Adam Sobel, Silvina Solman, Jenna Spitzer, Philip Stier, Thomas Stocker, Sarah Strock, Hang Su, Petteri Taalas, John Taylor, Susann Tegtmeier, Georg Teutsch, Adrian Tompkins, Uwe Ulbrich, Pier-Luigi Vidale, Chien-Ming Wu, Hao Xu, Najibullah Zaki, Laure Zanna, Tianjun Zhou, and Florian Ziemen
Earth Syst. Sci. Data, 16, 2113–2122, https://doi.org/10.5194/essd-16-2113-2024, https://doi.org/10.5194/essd-16-2113-2024, 2024
Short summary
Short summary
To manage Earth in the Anthropocene, new tools, new institutions, and new forms of international cooperation will be required. Earth Virtualization Engines is proposed as an international federation of centers of excellence to empower all people to respond to the immense and urgent challenges posed by climate change.
Fangbing Li, Dan Dan Huang, Linhui Tian, Bin Yuan, Wen Tan, Liang Zhu, Penglin Ye, Douglas Worsnop, Ka In Hoi, Kai Meng Mok, and Yong Jie Li
Atmos. Meas. Tech., 17, 2415–2427, https://doi.org/10.5194/amt-17-2415-2024, https://doi.org/10.5194/amt-17-2415-2024, 2024
Short summary
Short summary
The responses of protonated, adduct, and fragmented ions of 21 volatile organic compounds (VOCs) were investigated with varying instrument settings and relative humidity (RH) in a Vocus proton-transfer-reaction mass spectrometer (PTR-MS). The protonated ions of most VOCs studied show < 15 % variation in sensitivity, except for some long-chain aldehydes. The relationship between sensitivity and PTR rate constant is complicated by the influences from ion transmission and protonated ion fraction.
Mahen Konwar, Benjamin Werden, Edward C. Fortner, Sudarsan Bera, Mercy Varghese, Subharthi Chowdhuri, Kurt Hibert, Philip Croteau, John Jayne, Manjula Canagaratna, Neelam Malap, Sandeep Jayakumar, Shivsai A. Dixit, Palani Murugavel, Duncan Axisa, Darrel Baumgardner, Peter F. DeCarlo, Doug R. Worsnop, and Thara Prabhakaran
Atmos. Meas. Tech., 17, 2387–2400, https://doi.org/10.5194/amt-17-2387-2024, https://doi.org/10.5194/amt-17-2387-2024, 2024
Short summary
Short summary
In a warm cloud seeding experiment hygroscopic particles are released to alter cloud processes to induce early raindrops. During the Cloud–Aerosol Interaction and Precipitation Enhancement Experiment, airborne mini aerosol mass spectrometers analyse the particles on which clouds form. The seeded clouds showed higher concentrations of chlorine and potassium, the oxidizing agents of flares. Small cloud droplet concentrations increased, and seeding particles were detected in deep cloud depths.
Markku Kulmala, Diego Aliaga, Santeri Tuovinen, Runlong Cai, Heikki Junninen, Chao Yan, Federico Bianchi, Yafang Cheng, Aijun Ding, Douglas R. Worsnop, Tuukka Petäjä, Katrianne Lehtipalo, Pauli Paasonen, and Veli-Matti Kerminen
Aerosol Research, 2, 49–58, https://doi.org/10.5194/ar-2-49-2024, https://doi.org/10.5194/ar-2-49-2024, 2024
Short summary
Short summary
Atmospheric new particle formation (NPF), together with secondary production of particulate matter in the atmosphere, dominates aerosol particle number concentrations and submicron particle mass loads in many environments globally. In this opinion paper, we describe the paradigm shift to understand NPF in a continuous way instead of using traditional binary event–non-event analysis.
Otso Peräkylä, Erkka Rinne, Ekaterina Ezhova, Anna Lintunen, Annalea Lohila, Juho Aalto, Mika Aurela, Pasi Kolari, and Markku Kulmala
EGUsphere, https://doi.org/10.5194/egusphere-2024-712, https://doi.org/10.5194/egusphere-2024-712, 2024
Short summary
Short summary
Forests are seen as beneficial for climate. Yet, in areas with snow, trees break up the white snow surface, and absorb more sunlight than open areas. This has a warming effect, negating some of the climate benefit of trees. We studied two pairs of an open peatland and a forest in Finland. We found that the later the snow melts, the larger the difference in absorbed sunlight between forests and peatlands. This has implications for the future, as snow cover duration is affected by global warming.
Jian Zhao, Valter Mickwitz, Yuanyuan Luo, Ella Häkkinen, Frans Graeffe, Jiangyi Zhang, Hilkka Timonen, Manjula Canagaratna, Jordan E. Krechmer, Qi Zhang, Markku Kulmala, Juha Kangasluoma, Douglas Worsnop, and Mikael Ehn
Atmos. Meas. Tech., 17, 1527–1543, https://doi.org/10.5194/amt-17-1527-2024, https://doi.org/10.5194/amt-17-1527-2024, 2024
Short summary
Short summary
Organic aerosol constitutes a significant portion of atmospheric fine particles but is less characterized due to its vast number of constituents. Recently, we developed a system for online measurements of particle-phase highly oxygenated organic molecules (HOMs). In this work, we systematically characterized the system, developed a new unit to enhance its performance, and demonstrated the essential role of thermograms in inferring volatility and quantifying HOMs in organic aerosols.
Jiangyi Zhang, Jian Zhao, Yuanyuan Luo, Valter Mickwitz, Douglas Worsnop, and Mikael Ehn
Atmos. Chem. Phys., 24, 2885–2911, https://doi.org/10.5194/acp-24-2885-2024, https://doi.org/10.5194/acp-24-2885-2024, 2024
Short summary
Short summary
Due to the intrinsic connection between the formation pathways of O3 and HOMs, the ratio of HOM dimers or non-nitrate monomers to HOM organic nitrates could be used to determine O3 formation regimes. Owing to the fast formation and short lifetimes of HOMs, HOM-based indicating ratios can describe O3 formation in real time. Despite the success of our approach in this simple laboratory system, applicability to the much more complex atmosphere remains to be determined.
Shiyi Lai, Ximeng Qi, Xin Huang, Sijia Lou, Xuguang Chi, Liangduo Chen, Chong Liu, Yuliang Liu, Chao Yan, Mengmeng Li, Tengyu Liu, Wei Nie, Veli-Matti Kerminen, Tuukka Petäjä, Markku Kulmala, and Aijun Ding
Atmos. Chem. Phys., 24, 2535–2553, https://doi.org/10.5194/acp-24-2535-2024, https://doi.org/10.5194/acp-24-2535-2024, 2024
Short summary
Short summary
By combining in situ measurements and chemical transport modeling, this study investigates new particle formation (NPF) on the southeastern Tibetan Plateau. We found that the NPF was driven by the presence of biogenic gases and the transport of anthropogenic precursors. The NPF was vertically heterogeneous and shaped by the vertical mixing. This study highlights the importance of anthropogenic–biogenic interactions and meteorological dynamics in NPF in this climate-sensitive region.
Jing Cai, Juha Sulo, Yifang Gu, Sebastian Holm, Runlong Cai, Steven Thomas, Almuth Neuberger, Fredrik Mattsson, Marco Paglione, Stefano Decesari, Matteo Rinaldi, Rujing Yin, Diego Aliaga, Wei Huang, Yuanyuan Li, Yvette Gramlich, Giancarlo Ciarelli, Lauriane Quéléver, Nina Sarnela, Katrianne Lehtipalo, Nora Zannoni, Cheng Wu, Wei Nie, Juha Kangasluoma, Claudia Mohr, Markku Kulmala, Qiaozhi Zha, Dominik Stolzenburg, and Federico Bianchi
Atmos. Chem. Phys., 24, 2423–2441, https://doi.org/10.5194/acp-24-2423-2024, https://doi.org/10.5194/acp-24-2423-2024, 2024
Short summary
Short summary
By combining field measurements, simulations and recent chamber experiments, we investigate new particle formation (NPF) and growth in the Po Valley, where both haze and frequent NPF occur. Our results show that sulfuric acid, ammonia and amines are the dominant NPF precursors there. A high NPF rate and a lower condensation sink lead to a greater survival probability for newly formed particles, highlighting the importance of gas-to-particle conversion for aerosol concentrations.
Anton Rusanen, Anton Björklund, Manousos I. Manousakas, Jianhui Jiang, Markku T. Kulmala, Kai Puolamäki, and Kaspar R. Daellenbach
Atmos. Meas. Tech., 17, 1251–1277, https://doi.org/10.5194/amt-17-1251-2024, https://doi.org/10.5194/amt-17-1251-2024, 2024
Short summary
Short summary
We present a Bayesian non-negative matrix factorization model that performs better on our test datasets than currently widely used models. Its advantages are better use of time information and providing a direct error estimation. We believe this could lead to better estimates of emission sources from measurements.
Juha Sulo, Joonas Enroth, Aki Pajunoja, Joonas Vanhanen, Katrianne Lehtipalo, Tuukka Petäjä, and Markku Kulmala
Aerosol Research, 2, 13–20, https://doi.org/10.5194/ar-2-13-2024, https://doi.org/10.5194/ar-2-13-2024, 2024
Short summary
Short summary
We present a novel version of an aerosol number size distribution instrument, showcasing its capability to measure particle number concentration and particle number size distribution between 1 and 12 nm. Our results show that the instrument agrees well with existing instrumentation and allows for both the accurate measurement of the smallest particles and overlap with more conventional aerosol number size distribution instruments.
Ying Zhang, Duzitian Li, Xu-Cheng He, Wei Nie, Chenjuan Deng, Runlong Cai, Yuliang Liu, Yishuo Guo, Chong Liu, Yiran Li, Liangduo Chen, Yuanyuan Li, Chenjie Hua, Tingyu Liu, Zongcheng Wang, Jiali Xie, Lei Wang, Tuukka Petäjä, Federico Bianchi, Ximeng Qi, Xuguang Chi, Pauli Paasonen, Yongchun Liu, Chao Yan, Jingkun Jiang, Aijun Ding, and Markku Kulmala
Atmos. Chem. Phys., 24, 1873–1893, https://doi.org/10.5194/acp-24-1873-2024, https://doi.org/10.5194/acp-24-1873-2024, 2024
Short summary
Short summary
This study conducts a long-term observation of gaseous iodine oxoacids in two Chinese megacities, revealing their ubiquitous presence with peak concentrations (up to 0.1 pptv) in summer. Our analysis suggests a mix of terrestrial and marine sources for iodine. Additionally, iodic acid is identified as a notable contributor to sub-3 nm particle growth and particle survival probability.
Diego Aliaga, Santeri Tuovinen, Tinghan Zhang, Janne Lampilahti, Xinyang Li, Lauri Ahonen, Tom Kokkonen, Tuomo Nieminen, Simo Hakala, Pauli Paasonen, Federico Bianchi, Doug Worsnop, Veli-Matti Kerminen, and Markku Kulmala
Aerosol Research, 1, 81–92, https://doi.org/10.5194/ar-1-81-2023, https://doi.org/10.5194/ar-1-81-2023, 2023
Short summary
Short summary
We introduce a novel method for evaluating days when small particles are formed in the atmosphere. Instead of the traditional binary division between event and non-event days, our method, known as "nano ranking analysis", provides a continuous, non-categorical metric for each day. By utilizing data from Hyytiälä, Finland, we show that our approach effectively quantifies these events. This innovative method paves the way for a deeper understanding of the factors influencing particle formation.
Ekaterina Ezhova, Topi Laanti, Anna Lintunen, Pasi Kolari, Tuomo Nieminen, Ivan Mammarella, Keijo Heljanko, and Markku Kulmala
EGUsphere, https://doi.org/10.5194/egusphere-2023-2559, https://doi.org/10.5194/egusphere-2023-2559, 2023
Short summary
Short summary
ML models are gaining popularity in biogeosciences. They are applied as gapfilling methods and used to upscale carbon fluxes to larger areas based on local measurements. In this study, we use Explainable ML methods to elucidate performance of machine learning models for carbon dioxide fluxes in boreal forest. We show that statistically equal models treat input variables differently. Explainable ML can help scientists to make informed solutions when applying ML models in their research.
Markku Kulmala, Anna Lintunen, Hanna Lappalainen, Annele Virtanen, Chao Yan, Ekaterina Ezhova, Tuomo Nieminen, Ilona Riipinen, Risto Makkonen, Johanna Tamminen, Anu-Maija Sundström, Antti Arola, Armin Hansel, Kari Lehtinen, Timo Vesala, Tuukka Petäjä, Jaana Bäck, Tom Kokkonen, and Veli-Matti Kerminen
Atmos. Chem. Phys., 23, 14949–14971, https://doi.org/10.5194/acp-23-14949-2023, https://doi.org/10.5194/acp-23-14949-2023, 2023
Short summary
Short summary
To be able to meet global grand challenges, we need comprehensive open data with proper metadata. In this opinion paper, we describe the SMEAR (Station for Measuring Earth surface – Atmosphere Relations) concept and include several examples (cases), such as new particle formation and growth, feedback loops and the effect of COVID-19, and what has been learned from these investigations. The future needs and the potential of comprehensive observations of the environment are summarized.
Putian Zhou, Zhengyao Lu, Jukka-Pekka Keskinen, Qiong Zhang, Juha Lento, Jianpu Bian, Twan van Noije, Philippe Le Sager, Veli-Matti Kerminen, Markku Kulmala, Michael Boy, and Risto Makkonen
Clim. Past, 19, 2445–2462, https://doi.org/10.5194/cp-19-2445-2023, https://doi.org/10.5194/cp-19-2445-2023, 2023
Short summary
Short summary
A Green Sahara with enhanced rainfall and larger vegetation cover existed in northern Africa about 6000 years ago. Biosphere–atmosphere interactions are found to be critical to explaining this wet period. Based on modeled vegetation reconstruction data, we simulated dust emissions and aerosol formation, which are key factors in biosphere–atmosphere interactions. Our results also provide a benchmark of aerosol climatology for future paleo-climate simulation experiments.
Xiaoxiao Li, Yijing Chen, Yuyang Li, Runlong Cai, Yiran Li, Chenjuan Deng, Jin Wu, Chao Yan, Hairong Cheng, Yongchun Liu, Markku Kulmala, Jiming Hao, James N. Smith, and Jingkun Jiang
Atmos. Chem. Phys., 23, 14801–14812, https://doi.org/10.5194/acp-23-14801-2023, https://doi.org/10.5194/acp-23-14801-2023, 2023
Short summary
Short summary
Near-continuous measurements show the composition, sources, and seasonal variations of ultrafine particles (UFPs) in urban Beijing. Vehicle and cooking emissions and new particle formation are the main sources of UFPs, and aqueous/heterogeneous processes increase UFP mode diameters. UFPs are the highest in winter due to the highest primary particle emission rates and new particle formation rates, and CHO fractions are the highest in summer due to the strongest photooxidation.
Song Gao, Yong Yang, Xiao Tong, Linyuan Zhang, Yusen Duan, Guigang Tang, Qiang Wang, Changqing Lin, Qingyan Fu, Lipeng Liu, and Lingning Meng
Atmos. Meas. Tech., 16, 5709–5723, https://doi.org/10.5194/amt-16-5709-2023, https://doi.org/10.5194/amt-16-5709-2023, 2023
Short summary
Short summary
We optimized and conducted an experimental program for the real-time monitoring of non-methane hydrocarbon instruments using the direct method. Changing the enrichment and specially designed columns further improved the test effect. The results correct the measurement errors that have prevailed for many years and can lay a foundation for the evaluation of volatile organic compounds in the regional ambient air and provide direction for the measurement of low-concentration ambient air pollutants.
Da Lu, Hao Li, Mengke Tian, Guochen Wang, Xiaofei Qin, Na Zhao, Juntao Huo, Fan Yang, Yanfen Lin, Jia Chen, Qingyan Fu, Yusen Duan, Xinyi Dong, Congrui Deng, Sabur F. Abdullaev, and Kan Huang
Atmos. Chem. Phys., 23, 13853–13868, https://doi.org/10.5194/acp-23-13853-2023, https://doi.org/10.5194/acp-23-13853-2023, 2023
Short summary
Short summary
Environmental conditions during dust are usually not favorable for secondary aerosol formation. However in this study, an unusual dust event was captured in a Chinese mega-city and showed “anomalous” meteorology and a special dust backflow transport pathway. The underlying formation mechanisms of secondary aerosols are probed in the context of this special dust event. This study shows significant implications for the varying dust aerosol chemistry in the future changing climate.
Andrew T. Lambe, Bin Bai, Masayuki Takeuchi, Nicole Orwat, Paul M. Zimmerman, Mitchell W. Alton, Nga L. Ng, Andrew Freedman, Megan S. Claflin, Drew R. Gentner, Douglas R. Worsnop, and Pengfei Liu
Atmos. Chem. Phys., 23, 13869–13882, https://doi.org/10.5194/acp-23-13869-2023, https://doi.org/10.5194/acp-23-13869-2023, 2023
Short summary
Short summary
We developed a new method to generate nitrate radicals (NO3) for atmospheric chemistry applications that works by irradiating mixtures containing ceric ammonium nitrate with a UV light at room temperature. It has several advantages over traditional NO3 sources. We characterized its performance over a range of mixture and reactor conditions as well as other irradiation products. Proof of concept was demonstrated by generating and characterizing oxidation products of the β-pinene + NO3 reaction.
Qianqian Gao, Shengqiang Zhu, Kaili Zhou, Jinghao Zhai, Shaodong Chen, Qihuang Wang, Shurong Wang, Jin Han, Xiaohui Lu, Hong Chen, Liwu Zhang, Lin Wang, Zimeng Wang, Xin Yang, Qi Ying, Hongliang Zhang, Jianmin Chen, and Xiaofei Wang
Atmos. Chem. Phys., 23, 13049–13060, https://doi.org/10.5194/acp-23-13049-2023, https://doi.org/10.5194/acp-23-13049-2023, 2023
Short summary
Short summary
Dust is a major source of atmospheric aerosols. Its chemical composition is often assumed to be similar to the parent soil. However, this assumption has not been rigorously verified. Dust aerosols are mainly generated by wind erosion, which may have some chemical selectivity. Mn, Cd and Pb were found to be highly enriched in fine-dust (PM2.5) aerosols. In addition, estimation of heavy metal emissions from dust generation by air quality models may have errors without using proper dust profiles.
Magdalena Okuljar, Olga Garmash, Miska Olin, Joni Kalliokoski, Hilkka Timonen, Jarkko V. Niemi, Pauli Paasonen, Jenni Kontkanen, Yanjun Zhang, Heidi Hellén, Heino Kuuluvainen, Minna Aurela, Hanna E. Manninen, Mikko Sipilä, Topi Rönkkö, Tuukka Petäjä, Markku Kulmala, Miikka Dal Maso, and Mikael Ehn
Atmos. Chem. Phys., 23, 12965–12983, https://doi.org/10.5194/acp-23-12965-2023, https://doi.org/10.5194/acp-23-12965-2023, 2023
Short summary
Short summary
Highly oxygenated organic molecules (HOMs) form secondary organic aerosol that affects air quality and health. In this study, we demonstrate that in a moderately polluted city with abundant vegetation, the composition of HOMs is largely controlled by the effect of NOx on the biogenic volatile organic compound oxidation. Comparing the results from two nearby stations, we show that HOM composition and formation pathways can change considerably within small distances in urban environments.
Xu-Cheng He, Jiali Shen, Siddharth Iyer, Paxton Juuti, Jiangyi Zhang, Mrisha Koirala, Mikko M. Kytökari, Douglas R. Worsnop, Matti Rissanen, Markku Kulmala, Norbert M. Maier, Jyri Mikkilä, Mikko Sipilä, and Juha Kangasluoma
Atmos. Meas. Tech., 16, 4461–4487, https://doi.org/10.5194/amt-16-4461-2023, https://doi.org/10.5194/amt-16-4461-2023, 2023
Short summary
Short summary
In this study, the upgraded multi-scheme chemical ionisation inlet 2 is presented. Sulfuric acid, hypoiodous acid, iodine, sulfur dioxide, and hydroperoxyl radicals are calibrated, and the improved ion optics allow us to detect sulfuric acid and iodine-containing molecules at as low as a few parts per quadrillion by volume. Additionally, we confirm the reliable detection of iodic acid using both the nitrate and bromide chemical ionisation methods under atmospherically relevant conditions.
Meng Wang, Yusen Duan, Zhuozhi Zhang, Qi Yuan, Xinwei Li, Shuwen Han, Juntao Huo, Jia Chen, Yanfen Lin, Qingyan Fu, Tao Wang, Junji Cao, and Shun-cheng Lee
Atmos. Chem. Phys., 23, 10313–10324, https://doi.org/10.5194/acp-23-10313-2023, https://doi.org/10.5194/acp-23-10313-2023, 2023
Short summary
Short summary
Hourly elemental carbon (EC) and NOx were continuously measured for 5 years (2016–2020) at a sampling site near a highway in western Shanghai. We use a machine learning model to rebuild the measured EC and NOx, and a business-as-usual (BAU) scenario was assumed in 2020 and compared with the measured EC and NOx.
Simo Hakala, Ville Vakkari, Heikki Lihavainen, Antti-Pekka Hyvärinen, Kimmo Neitola, Jenni Kontkanen, Veli-Matti Kerminen, Markku Kulmala, Tuukka Petäjä, Tareq Hussein, Mamdouh I. Khoder, Mansour A. Alghamdi, and Pauli Paasonen
Atmos. Chem. Phys., 23, 9287–9321, https://doi.org/10.5194/acp-23-9287-2023, https://doi.org/10.5194/acp-23-9287-2023, 2023
Short summary
Short summary
Things are not always as they first seem in ambient aerosol measurements. Observations of decreasing particle sizes are often interpreted as resulting from particle evaporation. We show that such observations can counterintuitively be explained by particles that are constantly growing in size. This requires one to account for the previous movements of the observed air. Our explanation implies a larger number of larger particles, meaning more significant effects of aerosols on climate and health.
Dimitri Castarède, Zoé Brasseur, Yusheng Wu, Zamin A. Kanji, Markus Hartmann, Lauri Ahonen, Merete Bilde, Markku Kulmala, Tuukka Petäjä, Jan B. C. Pettersson, Berko Sierau, Olaf Stetzer, Frank Stratmann, Birgitta Svenningsson, Erik Swietlicki, Quynh Thu Nguyen, Jonathan Duplissy, and Erik S. Thomson
Atmos. Meas. Tech., 16, 3881–3899, https://doi.org/10.5194/amt-16-3881-2023, https://doi.org/10.5194/amt-16-3881-2023, 2023
Short summary
Short summary
Clouds play a key role in Earth’s climate by influencing the surface energy budget. Certain types of atmospheric aerosols, called ice-nucleating particles (INPs), induce the formation of ice in clouds and, thus, often initiate precipitation formation. The Portable Ice Nucleation Chamber 2 (PINCii) is a new instrument developed to study ice formation and to conduct ambient measurements of INPs, allowing us to investigate the sources and properties of the atmospheric aerosols that can act as INPs.
Sophie L. Haslett, David M. Bell, Varun Kumar, Jay G. Slowik, Dongyu S. Wang, Suneeti Mishra, Neeraj Rastogi, Atinderpal Singh, Dilip Ganguly, Joel Thornton, Feixue Zheng, Yuanyuan Li, Wei Nie, Yongchun Liu, Wei Ma, Chao Yan, Markku Kulmala, Kaspar R. Daellenbach, David Hadden, Urs Baltensperger, Andre S. H. Prevot, Sachchida N. Tripathi, and Claudia Mohr
Atmos. Chem. Phys., 23, 9023–9036, https://doi.org/10.5194/acp-23-9023-2023, https://doi.org/10.5194/acp-23-9023-2023, 2023
Short summary
Short summary
In Delhi, some aspects of daytime and nighttime atmospheric chemistry are inverted, and parodoxically, vehicle emissions may be limiting other forms of particle production. This is because the nighttime emissions of nitrogen oxide (NO) by traffic and biomass burning prevent some chemical processes that would otherwise create even more particles and worsen the urban haze.
Yuyang Li, Jiewen Shen, Bin Zhao, Runlong Cai, Shuxiao Wang, Yang Gao, Manish Shrivastava, Da Gao, Jun Zheng, Markku Kulmala, and Jingkun Jiang
Atmos. Chem. Phys., 23, 8789–8804, https://doi.org/10.5194/acp-23-8789-2023, https://doi.org/10.5194/acp-23-8789-2023, 2023
Short summary
Short summary
We set up a new parameterization for 1.4 nm particle formation rates from sulfuric acid–dimethylamine (SA–DMA) nucleation, fully including the effects of coagulation scavenging and cluster stability. Incorporating the new parameterization into 3-D chemical transport models, we achieved better consistencies between simulation results and observation data. This new parameterization provides new insights into atmospheric nucleation simulations and its effects on atmospheric pollution or health.
Jianyan Lu, Sunling Gong, Jian Zhang, Jianmin Chen, Lei Zhang, and Chunhong Zhou
Atmos. Chem. Phys., 23, 8021–8037, https://doi.org/10.5194/acp-23-8021-2023, https://doi.org/10.5194/acp-23-8021-2023, 2023
Short summary
Short summary
WRF/CUACE was used to assess the cloud chemistry contribution in China. Firstly, the CUACE cloud chemistry scheme was found to reproduce well the cloud processing and consumption of H2O2, O3, and SO2, as well as the increase of sulfate. Secondly, during cloud availability in December under a heavy pollution episode, sulfate production increased 60–95 % and SO2 was reduced by over 80 %. This study provides a way to analyze the phenomenon of overestimation of SO2 in many chemical transport models.
Guangdong Niu, Ximeng Qi, Liangduo Chen, Lian Xue, Shiyi Lai, Xin Huang, Jiaping Wang, Xuguang Chi, Wei Nie, Veli-Matti Kerminen, Tuukka Petäjä, Markku Kulmala, and Aijun Ding
Atmos. Chem. Phys., 23, 7521–7534, https://doi.org/10.5194/acp-23-7521-2023, https://doi.org/10.5194/acp-23-7521-2023, 2023
Short summary
Short summary
The reported below-cloud wet-scavenging coefficients (BWSCs) are much higher than theoretical data, but the reason remains unclear. Based on long-term observation, we find that air mass changing during rainfall events causes the overestimation of BWSCs. Thus, the discrepancy in BWSCs between observation and theory is not as large as currently believed. To obtain reasonable BWSCs and parameterizations from field observations, the effect of air mass changes needs to be considered.
Jonas Elm, Aladár Czitrovszky, Andreas Held, Annele Virtanen, Astrid Kiendler-Scharr, Benjamin J. Murray, Daniel McCluskey, Daniele Contini, David Broday, Eirini Goudeli, Hilkka Timonen, Joan Rosell-Llompart, Jose L. Castillo, Evangelia Diapouli, Mar Viana, Maria E. Messing, Markku Kulmala, Naděžda Zíková, and Sebastian H. Schmitt
Aerosol Research, 1, 13–16, https://doi.org/10.5194/ar-1-13-2023, https://doi.org/10.5194/ar-1-13-2023, 2023
Santeri Tuovinen, Janne Lampilahti, Veli-Matti Kerminen, and Markku Kulmala
EGUsphere, https://doi.org/10.5194/egusphere-2023-1108, https://doi.org/10.5194/egusphere-2023-1108, 2023
Preprint archived
Short summary
Short summary
Atmospheric ions can be used to characterize and detect atmospheric new particle formation. In this study we aimed to find the optimal ion diameter for this purpose within a local scale. To fulfill our aim, we used ion size number distribution data from SMEAR II measurement station, Hyytiälä, Finland. We found that negative ions between 2.0–2.3 nm are the best suited for characterization of local NPF, with minimized influence of transported ions.
Chenxi Li, Yuyang Li, Xiaoxiao Li, Runlong Cai, Yaxin Fan, Xiaohui Qiao, Rujing Yin, Chao Yan, Yishuo Guo, Yongchun Liu, Jun Zheng, Veli-Matti Kerminen, Markku Kulmala, Huayun Xiao, and Jingkun Jiang
Atmos. Chem. Phys., 23, 6879–6896, https://doi.org/10.5194/acp-23-6879-2023, https://doi.org/10.5194/acp-23-6879-2023, 2023
Short summary
Short summary
New particle formation and growth in polluted environments are not fully understood despite intensive research. We applied a cluster dynamics–multicomponent sectional model to simulate the new particle formation events observed in Beijing, China. The simulation approximately captures how the events evolve. Further diagnosis shows that the oxygenated organic molecules may have been under-detected, and modulating their abundance leads to significantly improved simulation–observation agreement.
Joschka Pfeifer, Naser G. A. Mahfouz, Benjamin C. Schulze, Serge Mathot, Dominik Stolzenburg, Rima Baalbaki, Zoé Brasseur, Lucia Caudillo, Lubna Dada, Manuel Granzin, Xu-Cheng He, Houssni Lamkaddam, Brandon Lopez, Vladimir Makhmutov, Ruby Marten, Bernhard Mentler, Tatjana Müller, Antti Onnela, Maxim Philippov, Ana A. Piedehierro, Birte Rörup, Meredith Schervish, Ping Tian, Nsikanabasi S. Umo, Dongyu S. Wang, Mingyi Wang, Stefan K. Weber, André Welti, Yusheng Wu, Marcel Zauner-Wieczorek, Antonio Amorim, Imad El Haddad, Markku Kulmala, Katrianne Lehtipalo, Tuukka Petäjä, António Tomé, Sander Mirme, Hanna E. Manninen, Neil M. Donahue, Richard C. Flagan, Andreas Kürten, Joachim Curtius, and Jasper Kirkby
Atmos. Chem. Phys., 23, 6703–6718, https://doi.org/10.5194/acp-23-6703-2023, https://doi.org/10.5194/acp-23-6703-2023, 2023
Short summary
Short summary
Attachment rate coefficients between ions and charged aerosol particles determine their lifetimes and may also influence cloud dynamics and aerosol processing. Here we present novel experiments that measure ion–aerosol attachment rate coefficients for multiply charged aerosol particles under atmospheric conditions in the CERN CLOUD chamber. Our results provide experimental discrimination between various theoretical models.
Yishuo Guo, Chenjuan Deng, Aino Ovaska, Feixue Zheng, Chenjie Hua, Junlei Zhan, Yiran Li, Jin Wu, Zongcheng Wang, Jiali Xie, Ying Zhang, Tingyu Liu, Yusheng Zhang, Boying Song, Wei Ma, Yongchun Liu, Chao Yan, Jingkun Jiang, Veli-Matti Kerminen, Men Xia, Tuomo Nieminen, Wei Du, Tom Kokkonen, and Markku Kulmala
Atmos. Chem. Phys., 23, 6663–6690, https://doi.org/10.5194/acp-23-6663-2023, https://doi.org/10.5194/acp-23-6663-2023, 2023
Short summary
Short summary
Using the comprehensive datasets, we investigated the long-term variations of air pollutants during winter in Beijing from 2019 to 2022 and analyzed the characteristics of atmospheric pollution cocktail during different short-term special events (e.g., Beijing Winter Olympics, COVID lockdown and Chinese New Year) associated with substantial emission reductions. Our results are useful in planning more targeted and sustainable long-term pollution control plans.
Lucía Caudillo, Mihnea Surdu, Brandon Lopez, Mingyi Wang, Markus Thoma, Steffen Bräkling, Angela Buchholz, Mario Simon, Andrea C. Wagner, Tatjana Müller, Manuel Granzin, Martin Heinritzi, Antonio Amorim, David M. Bell, Zoé Brasseur, Lubna Dada, Jonathan Duplissy, Henning Finkenzeller, Xu-Cheng He, Houssni Lamkaddam, Naser G. A. Mahfouz, Vladimir Makhmutov, Hanna E. Manninen, Guillaume Marie, Ruby Marten, Roy L. Mauldin, Bernhard Mentler, Antti Onnela, Tuukka Petäjä, Joschka Pfeifer, Maxim Philippov, Ana A. Piedehierro, Birte Rörup, Wiebke Scholz, Jiali Shen, Dominik Stolzenburg, Christian Tauber, Ping Tian, António Tomé, Nsikanabasi Silas Umo, Dongyu S. Wang, Yonghong Wang, Stefan K. Weber, André Welti, Marcel Zauner-Wieczorek, Urs Baltensperger, Richard C. Flagan, Armin Hansel, Jasper Kirkby, Markku Kulmala, Katrianne Lehtipalo, Douglas R. Worsnop, Imad El Haddad, Neil M. Donahue, Alexander L. Vogel, Andreas Kürten, and Joachim Curtius
Atmos. Chem. Phys., 23, 6613–6631, https://doi.org/10.5194/acp-23-6613-2023, https://doi.org/10.5194/acp-23-6613-2023, 2023
Short summary
Short summary
In this study, we present an intercomparison of four different techniques for measuring the chemical composition of nanoparticles. The intercomparison was performed based on the observed chemical composition, calculated volatility, and analysis of the thermograms. We found that the methods generally agree on the most important compounds that are found in the nanoparticles. However, they do see different parts of the organic spectrum. We suggest potential explanations for these differences.
Anton Rusanen, Kristo Hõrrak, Lauri R. Ahonen, Tuomo Nieminen, Pasi P. Aalto, Pasi Kolari, Markku Kulmala, Tuukka Petäjä, and Heikki Junninen
Atmos. Meas. Tech., 16, 2781–2793, https://doi.org/10.5194/amt-16-2781-2023, https://doi.org/10.5194/amt-16-2781-2023, 2023
Short summary
Short summary
We present a framework for setting up SMEAR (Station for Measuring Ecosystem–Atmosphere Relations) type measurement station data flows. This framework, called SMEARcore, consists of modular open-source software components that can be chosen to suit various station configurations. The benefits of using this framework are automation of routine operations and real-time monitoring of measurement results.
Daniel John Katz, Aroob Abdelhamid, Harald Stark, Manjula R. Canagaratna, Douglas R. Worsnop, and Eleanor C. Browne
Atmos. Chem. Phys., 23, 5567–5585, https://doi.org/10.5194/acp-23-5567-2023, https://doi.org/10.5194/acp-23-5567-2023, 2023
Short summary
Short summary
Ambient ion chemical composition measurements provide insight into trace gases that are precursors for the formation and growth of new aerosol particles. We use a new data analysis approach to increase the chemical information from these measurements. We analyze results from an agricultural region, a little studied land use type that is ~41 % of global land use, and find that the composition of gases important for aerosol formation and growth differs significantly from that in other ecosystems.
Rujing Yin, Xiaoxiao Li, Chao Yan, Runlong Cai, Ying Zhou, Juha Kangasluoma, Nina Sarnela, Janne Lampilahti, Tuukka Petäjä, Veli-Matti Kerminen, Federico Bianchi, Markku Kulmala, and Jingkun Jiang
Atmos. Chem. Phys., 23, 5279–5296, https://doi.org/10.5194/acp-23-5279-2023, https://doi.org/10.5194/acp-23-5279-2023, 2023
Short summary
Short summary
Atmospheric cluster ions are important constituents in the atmosphere. However, the quantitative research on their compositions is still limited, especially in urban environments. Here we demonstrate the feasibility of an in situ quantification method of cluster ions measured by a high-resolution mass spectrometer and reveal their governing factors, sources, and sinks in urban Beijing through quantitative analysis of cluster ions, reagent ions, neutral molecules, and condensation sink.
Qiaozhi Zha, Wei Huang, Diego Aliaga, Otso Peräkylä, Liine Heikkinen, Alkuin Maximilian Koenig, Cheng Wu, Joonas Enroth, Yvette Gramlich, Jing Cai, Samara Carbone, Armin Hansel, Tuukka Petäjä, Markku Kulmala, Douglas Worsnop, Victoria Sinclair, Radovan Krejci, Marcos Andrade, Claudia Mohr, and Federico Bianchi
Atmos. Chem. Phys., 23, 4559–4576, https://doi.org/10.5194/acp-23-4559-2023, https://doi.org/10.5194/acp-23-4559-2023, 2023
Short summary
Short summary
We investigate the chemical composition of atmospheric cluster ions from January to May 2018 at the high-altitude research station Chacaltaya (5240 m a.s.l.) in the Bolivian Andes. With state-of-the-art mass spectrometers and air mass history analysis, the measured cluster ions exhibited distinct diurnal and seasonal patterns, some of which contributed to new particle formation. Our study will improve the understanding of atmospheric ions and their role in high-altitude new particle formation.
Jinlong Ma, Shengqiang Zhu, Siyu Wang, Peng Wang, Jianmin Chen, and Hongliang Zhang
Atmos. Chem. Phys., 23, 4311–4325, https://doi.org/10.5194/acp-23-4311-2023, https://doi.org/10.5194/acp-23-4311-2023, 2023
Short summary
Short summary
An updated version of the CMAQ model with biogenic volatile organic compound (BVOC) emissions from MEGAN was applied to study the impacts of different land cover inputs on O3 and secondary organic aerosol (SOA) in China. The estimated BVOC emissions ranged from 25.42 to 37.39 Tg using different leaf area index (LAI) and land cover (LC) inputs. Those differences further induced differences of 4.8–6.9 ppb in O3 concentrations and differences of 5.3–8.4 µg m−3 in SOA concentrations in China.
Meri Räty, Larisa Sogacheva, Helmi-Marja Keskinen, Veli-Matti Kerminen, Tuomo Nieminen, Tuukka Petäjä, Ekaterina Ezhova, and Markku Kulmala
Atmos. Chem. Phys., 23, 3779–3798, https://doi.org/10.5194/acp-23-3779-2023, https://doi.org/10.5194/acp-23-3779-2023, 2023
Short summary
Short summary
We utilised back trajectories to identify the source region of air masses arriving in Hyytiälä, Finland, and their travel time over forests. Combined with atmospheric observations, they revealed how air mass transport over the Fennoscandian boreal forest during the growing season produced an accumulation of cloud condensation nuclei and humidity, promoting cloudiness and precipitation. By 55 h of transport, air masses appeared to reach a balanced state with the forest environment.
Ella Häkkinen, Jian Zhao, Frans Graeffe, Nicolas Fauré, Jordan E. Krechmer, Douglas Worsnop, Hilkka Timonen, Mikael Ehn, and Juha Kangasluoma
Atmos. Meas. Tech., 16, 1705–1721, https://doi.org/10.5194/amt-16-1705-2023, https://doi.org/10.5194/amt-16-1705-2023, 2023
Short summary
Short summary
Highly oxygenated compounds contribute to the formation and growth of atmospheric organic aerosol and thus impact the global climate. Knowledge of their transformations and fate after condensing into the particle phase has been limited by the lack of suitable detection techniques. Here, we present an online method for measuring highly oxygenated compounds from organic aerosol. We evaluate the performance of the method and demonstrate that the method is applicable to different organic species.
Lei Shu, Lei Zhu, Juseon Bak, Peter Zoogman, Han Han, Song Liu, Xicheng Li, Shuai Sun, Juan Li, Yuyang Chen, Dongchuan Pu, Xiaoxing Zuo, Weitao Fu, Xin Yang, and Tzung-May Fu
Atmos. Chem. Phys., 23, 3731–3748, https://doi.org/10.5194/acp-23-3731-2023, https://doi.org/10.5194/acp-23-3731-2023, 2023
Short summary
Short summary
We quantify the benefit of multisource observations (GEMS, LEO satellite, and surface) on ozone simulations in Asia. Data assimilation improves the monitoring of exceedance, spatial pattern, and diurnal variation of surface ozone, with the regional mean bias reduced from −2.1 to −0.2 ppbv. Data assimilation also better represents ozone vertical distributions in the middle to upper troposphere at low latitudes. Our results offer a valuable reference for future ozone simulations.
Jian Zhao, Ella Häkkinen, Frans Graeffe, Jordan E. Krechmer, Manjula R. Canagaratna, Douglas R. Worsnop, Juha Kangasluoma, and Mikael Ehn
Atmos. Chem. Phys., 23, 3707–3730, https://doi.org/10.5194/acp-23-3707-2023, https://doi.org/10.5194/acp-23-3707-2023, 2023
Short summary
Short summary
Based on the combined measurements of gas- and particle-phase highly oxygenated organic molecules (HOMs) from α-pinene ozonolysis, enhancement of dimers in particles was observed. We conducted experiments wherein the dimer to monomer (D / M) ratios of HOMs in the gas phase were modified (adding CO / NO) to investigate the effects of the corresponding D / M ratios in the particles. These results are important for a better understanding of secondary organic aerosol formation in the atmosphere.
Yiqun Lu, Yingge Ma, Dan Dan Huang, Shengrong Lou, Sheng'ao Jing, Yaqin Gao, Hongli Wang, Yanjun Zhang, Hui Chen, Yunhua Chang, Naiqiang Yan, Jianmin Chen, Christian George, Matthieu Riva, and Cheng Huang
Atmos. Chem. Phys., 23, 3233–3245, https://doi.org/10.5194/acp-23-3233-2023, https://doi.org/10.5194/acp-23-3233-2023, 2023
Short summary
Short summary
N-containing oxygenated organic molecules have been identified as important precursors of aerosol particles. We used an ultra-high-resolution mass spectrometer coupled with an online sample inlet to accurately measure their molecular composition, concentration level and variation patterns. We show their formation process and influencing factors in a Chinese megacity involving various volatile organic compound precursors and atmospheric oxidants, and we highlight the influence of PM2.5 episodes.
Jing Cai, Kaspar R. Daellenbach, Cheng Wu, Yan Zheng, Feixue Zheng, Wei Du, Sophie L. Haslett, Qi Chen, Markku Kulmala, and Claudia Mohr
Atmos. Meas. Tech., 16, 1147–1165, https://doi.org/10.5194/amt-16-1147-2023, https://doi.org/10.5194/amt-16-1147-2023, 2023
Short summary
Short summary
We introduce the offline application of FIGAERO-CIMS by analyzing Teflon and quartz filter samples that were collected at a typical urban site in Beijing with the deposition time varying from 30 min to 24 h. This method provides a feasible, simple, and quantitative way to investigate the molecular composition and volatility of OA compounds by using FIGAERO-CIMS to analyze offline samples.
Yizhen Wu, Juntao Huo, Gan Yang, Yuwei Wang, Lihong Wang, Shijian Wu, Lei Yao, Qingyan Fu, and Lin Wang
Atmos. Chem. Phys., 23, 2997–3014, https://doi.org/10.5194/acp-23-2997-2023, https://doi.org/10.5194/acp-23-2997-2023, 2023
Short summary
Short summary
Based on a field campaign in a suburban area of Shanghai during summer 2021, we calculated formaldehyde (HCHO) production rates from 24 volatile organic compounds (VOCs). In addition, HCHO photolysis, reactions with OH radicals, and dry deposition were considered for the estimation of HCHO loss rates. Our results reveal the key precursors of HCHO and suggest that HCHO wet deposition may be an important loss term on cloudy and rainy days, which needs to be further investigated.
Yu Han, Tao Wang, Rui Li, Hongbo Fu, Yusen Duan, Song Gao, Liwu Zhang, and Jianmin Chen
Atmos. Chem. Phys., 23, 2877–2900, https://doi.org/10.5194/acp-23-2877-2023, https://doi.org/10.5194/acp-23-2877-2023, 2023
Short summary
Short summary
Limited knowledge is available on volatile organic compound (VOC) multi-site research of different land-use types at city level. This study performed a concurrent multi-site observation campaign on the three typical land-use types of Shanghai, East China. The results showed that concentrations, sources and ozone and secondary organic aerosol formation potentials of VOCs varied with the land-use types.
Matti Kämäräinen, Juha-Pekka Tuovinen, Markku Kulmala, Ivan Mammarella, Juha Aalto, Henriikka Vekuri, Annalea Lohila, and Anna Lintunen
Biogeosciences, 20, 897–909, https://doi.org/10.5194/bg-20-897-2023, https://doi.org/10.5194/bg-20-897-2023, 2023
Short summary
Short summary
In this study, we introduce a new method for modeling the exchange of carbon between the atmosphere and a study site located in a boreal forest in southern Finland. Our method yields more accurate results than previous approaches in this context. Accurately estimating carbon exchange is crucial for gaining a better understanding of the role of forests in regulating atmospheric carbon and addressing climate change.
Lejish Vettikkat, Pasi Miettinen, Angela Buchholz, Pekka Rantala, Hao Yu, Simon Schallhart, Tuukka Petäjä, Roger Seco, Elisa Männistö, Markku Kulmala, Eeva-Stiina Tuittila, Alex B. Guenther, and Siegfried Schobesberger
Atmos. Chem. Phys., 23, 2683–2698, https://doi.org/10.5194/acp-23-2683-2023, https://doi.org/10.5194/acp-23-2683-2023, 2023
Short summary
Short summary
Wetlands cover a substantial fraction of the land mass in the northern latitudes, from northern Europe to Siberia and Canada. Yet, their isoprene and terpene emissions remain understudied. Here, we used a state-of-the-art measurement technique to quantify ecosystem-scale emissions from a boreal wetland during an unusually warm spring/summer. We found that the emissions from this wetland were (a) higher and (b) even more strongly dependent on temperature than commonly thought.
Changqin Yin, Jianming Xu, Wei Gao, Liang Pan, Yixuan Gu, Qingyan Fu, and Fan Yang
Atmos. Chem. Phys., 23, 1329–1343, https://doi.org/10.5194/acp-23-1329-2023, https://doi.org/10.5194/acp-23-1329-2023, 2023
Short summary
Short summary
The particle matter (PM2.5) at the top of the 632 m high Shanghai Tower was found to be higher than the surface from June to October due to unexpected larger PM2.5 levels during early to middle afternoon at Shanghai Tower. We suppose the significant chemical production of secondary species existed in the mid-upper planetary boundary layer. We found a high nitrate concentration at the tower site for both daytime and nighttime in winter, implying efficient gas-phase and heterogeneous formation.
Wiebke Scholz, Jiali Shen, Diego Aliaga, Cheng Wu, Samara Carbone, Isabel Moreno, Qiaozhi Zha, Wei Huang, Liine Heikkinen, Jean Luc Jaffrezo, Gaelle Uzu, Eva Partoll, Markus Leiminger, Fernando Velarde, Paolo Laj, Patrick Ginot, Paolo Artaxo, Alfred Wiedensohler, Markku Kulmala, Claudia Mohr, Marcos Andrade, Victoria Sinclair, Federico Bianchi, and Armin Hansel
Atmos. Chem. Phys., 23, 895–920, https://doi.org/10.5194/acp-23-895-2023, https://doi.org/10.5194/acp-23-895-2023, 2023
Short summary
Short summary
Dimethyl sulfide (DMS), emitted from the ocean, is the most abundant biogenic sulfur emission into the atmosphere. OH radicals, among others, can oxidize DMS to sulfuric and methanesulfonic acid, which are relevant for aerosol formation. We quantified DMS and nearly all DMS oxidation products with novel mass spectrometric instruments for gas and particle phase at the high mountain station Chacaltaya (5240 m a.s.l.) in the Bolivian Andes in free tropospheric air after long-range transport.
Matthew Boyer, Diego Aliaga, Jakob Boyd Pernov, Hélène Angot, Lauriane L. J. Quéléver, Lubna Dada, Benjamin Heutte, Manuel Dall'Osto, David C. S. Beddows, Zoé Brasseur, Ivo Beck, Silvia Bucci, Marina Duetsch, Andreas Stohl, Tiia Laurila, Eija Asmi, Andreas Massling, Daniel Charles Thomas, Jakob Klenø Nøjgaard, Tak Chan, Sangeeta Sharma, Peter Tunved, Radovan Krejci, Hans Christen Hansson, Federico Bianchi, Katrianne Lehtipalo, Alfred Wiedensohler, Kay Weinhold, Markku Kulmala, Tuukka Petäjä, Mikko Sipilä, Julia Schmale, and Tuija Jokinen
Atmos. Chem. Phys., 23, 389–415, https://doi.org/10.5194/acp-23-389-2023, https://doi.org/10.5194/acp-23-389-2023, 2023
Short summary
Short summary
The Arctic is a unique environment that is warming faster than other locations on Earth. We evaluate measurements of aerosol particles, which can influence climate, over the central Arctic Ocean for a full year and compare the data to land-based measurement stations across the Arctic. Our measurements show that the central Arctic has similarities to but also distinct differences from the stations further south. We note that this may change as the Arctic warms and sea ice continues to decline.
Xiaofei Qin, Shengqian Zhou, Hao Li, Guochen Wang, Cheng Chen, Chengfeng Liu, Xiaohao Wang, Juntao Huo, Yanfen Lin, Jia Chen, Qingyan Fu, Yusen Duan, Kan Huang, and Congrui Deng
Atmos. Chem. Phys., 22, 15851–15865, https://doi.org/10.5194/acp-22-15851-2022, https://doi.org/10.5194/acp-22-15851-2022, 2022
Short summary
Short summary
Using artificial neural network modeling and an explainable analysis approach, natural surface emissions (NSEs) were identified as a main driver of gaseous elemental mercury (GEM) variations during the COVID-19 lockdown. A sharp drop in GEM concentrations due to a significant reduction in anthropogenic emissions may disrupt the surface–air exchange balance of Hg, leading to increases in NSEs. This implies that NSEs may pose challenges to the future control of Hg pollution.
Juha Sulo, Janne Lampilahti, Xuemeng Chen, Jenni Kontkanen, Tuomo Nieminen, Veli-Matti Kerminen, Tuukka Petäjä, Markku Kulmala, and Katrianne Lehtipalo
Atmos. Chem. Phys., 22, 15223–15242, https://doi.org/10.5194/acp-22-15223-2022, https://doi.org/10.5194/acp-22-15223-2022, 2022
Short summary
Short summary
We measured atmospheric ion concentrations continuously in a boreal forest between 2005 and 2021 and observed an increasing interannual trend. The increase in cluster ion concentrations can be largely explained by an overall decreasing level of anthropogenic aerosols in the boreal forest. This suggests that the role of ions in atmospheric new particle formation may be more important in the future.
Santeri Tuovinen, Runlong Cai, Veli-Matti Kerminen, Jingkun Jiang, Chao Yan, Markku Kulmala, and Jenni Kontkanen
Atmos. Chem. Phys., 22, 15071–15091, https://doi.org/10.5194/acp-22-15071-2022, https://doi.org/10.5194/acp-22-15071-2022, 2022
Short summary
Short summary
We compare observed survival probabilities of atmospheric particles from Beijing, China, with survival probabilities based on analytical formulae and model simulations. We find observed survival probabilities under polluted conditions at smaller sizes to be higher, while at larger sizes they are lower than or similar to theoretical survival probabilities. Uncertainties in condensation sink and growth rate are unlikely to explain higher-than-predicted survival probabilities at smaller sizes.
Matti Räsänen, Mika Aurela, Ville Vakkari, Johan P. Beukes, Juha-Pekka Tuovinen, Pieter G. Van Zyl, Miroslav Josipovic, Stefan J. Siebert, Tuomas Laurila, Markku Kulmala, Lauri Laakso, Janne Rinne, Ram Oren, and Gabriel Katul
Hydrol. Earth Syst. Sci., 26, 5773–5791, https://doi.org/10.5194/hess-26-5773-2022, https://doi.org/10.5194/hess-26-5773-2022, 2022
Short summary
Short summary
The productivity of semiarid grazed grasslands is linked to the variation in rainfall and transpiration. By combining carbon dioxide and water flux measurements, we show that the annual transpiration is nearly constant during wet years while grasses react quickly to dry spells and drought, which reduce transpiration. The planning of annual grazing strategies could consider the early-season rainfall frequency that was linked to the portion of annual transpiration.
Runlong Cai, Chenjuan Deng, Dominik Stolzenburg, Chenxi Li, Junchen Guo, Veli-Matti Kerminen, Jingkun Jiang, Markku Kulmala, and Juha Kangasluoma
Atmos. Chem. Phys., 22, 14571–14587, https://doi.org/10.5194/acp-22-14571-2022, https://doi.org/10.5194/acp-22-14571-2022, 2022
Short summary
Short summary
The survival probability of new particles is the key parameter governing their influences on the atmosphere and climate, yet the knowledge of particle survival in the atmosphere is rather limited. We propose methods to compute the size-resolved particle survival probability and validate them using simulations and measurements from diverse environments. Using these methods, we could explain particle survival from the cluster size to the cloud condensation nuclei size.
Jian-yan Lu, Sunling Gong, Chun-hong Zhou, Jian Zhang, Jian-min Chen, and Lei Zhang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-716, https://doi.org/10.5194/acp-2022-716, 2022
Revised manuscript not accepted
Short summary
Short summary
A regional online chemical weather model WRF/ CUACE was used to assess the contributions of cloud chemistry to the SO2 and sulfate levels in typical regions in China. The cloud chemistry scheme in CUACE was evaluated, and well reproduces the cloud chemistry processes. During cloud availability in a heavy pollution episode, the sulfate production increases 40–80 % and SO2 reduces over 80 %. This study provides a way to analyze the over-estimate phenomenon of SO2 in many chemical transport models.
Tao Wang, Yangyang Liu, Hanyun Cheng, Zhenzhen Wang, Hongbo Fu, Jianmin Chen, and Liwu Zhang
Atmos. Chem. Phys., 22, 13467–13493, https://doi.org/10.5194/acp-22-13467-2022, https://doi.org/10.5194/acp-22-13467-2022, 2022
Short summary
Short summary
This study compared the gas-phase, aqueous-phase, and heterogeneous SO2 oxidation pathways by combining laboratory work with a modelling study. The heterogeneous oxidation, particularly that induced by the dust surface drivers, presents positive implications for the removal of airborne SO2 and formation of sulfate aerosols. This work highlighted the atmospheric significance of heterogeneous oxidation and suggested a comparison model to evaluate the following heterogeneous laboratory research.
Chenjuan Deng, Yiran Li, Chao Yan, Jin Wu, Runlong Cai, Dongbin Wang, Yongchun Liu, Juha Kangasluoma, Veli-Matti Kerminen, Markku Kulmala, and Jingkun Jiang
Atmos. Chem. Phys., 22, 13569–13580, https://doi.org/10.5194/acp-22-13569-2022, https://doi.org/10.5194/acp-22-13569-2022, 2022
Short summary
Short summary
The size distributions of urban atmospheric particles convey important information on their origins and impacts. This study investigates the characteristics of typical particle size distributions and key gaseous precursors in the long term in urban Beijing. A fitting function is proposed to represent and help interpret size distribution including particles and gaseous precursors. In addition to NPF (new particle formation) as the major source, vehicles can emit sub-3 nm particles as well
Loïc Gonzalez Carracedo, Katrianne Lehtipalo, Lauri R. Ahonen, Nina Sarnela, Sebastian Holm, Juha Kangasluoma, Markku Kulmala, Paul M. Winkler, and Dominik Stolzenburg
Atmos. Chem. Phys., 22, 13153–13166, https://doi.org/10.5194/acp-22-13153-2022, https://doi.org/10.5194/acp-22-13153-2022, 2022
Short summary
Short summary
Fast nanoparticle growth is essential for the survival of new aerosol particles in the atmosphere and hence their contribution to the climate. We show that using naturally charged ions for growth calculations can cause a significant error. During the diurnal cycle, the importance of ion-induced and neutral nucleation varies, causing the ion population to have a slower measurable apparent growth. Results suggest that data from ion spectrometers need to be considered with great care below 3 nm.
Ville Leinonen, Harri Kokkola, Taina Yli-Juuti, Tero Mielonen, Thomas Kühn, Tuomo Nieminen, Simo Heikkinen, Tuuli Miinalainen, Tommi Bergman, Ken Carslaw, Stefano Decesari, Markus Fiebig, Tareq Hussein, Niku Kivekäs, Radovan Krejci, Markku Kulmala, Ari Leskinen, Andreas Massling, Nikos Mihalopoulos, Jane P. Mulcahy, Steffen M. Noe, Twan van Noije, Fiona M. O'Connor, Colin O'Dowd, Dirk Olivie, Jakob B. Pernov, Tuukka Petäjä, Øyvind Seland, Michael Schulz, Catherine E. Scott, Henrik Skov, Erik Swietlicki, Thomas Tuch, Alfred Wiedensohler, Annele Virtanen, and Santtu Mikkonen
Atmos. Chem. Phys., 22, 12873–12905, https://doi.org/10.5194/acp-22-12873-2022, https://doi.org/10.5194/acp-22-12873-2022, 2022
Short summary
Short summary
We provide the first extensive comparison of detailed aerosol size distribution trends between in situ observations from Europe and five different earth system models. We investigated aerosol modes (nucleation, Aitken, and accumulation) separately and were able to show the differences between measured and modeled trends and especially their seasonal patterns. The differences in model results are likely due to complex effects of several processes instead of certain specific model features.
Meng Wang, Yusen Duan, Wei Xu, Qiyuan Wang, Zhuozhi Zhang, Qi Yuan, Xinwei Li, Shuwen Han, Haijie Tong, Juntao Huo, Jia Chen, Shan Gao, Zhongbiao Wu, Long Cui, Yu Huang, Guangli Xiu, Junji Cao, Qingyan Fu, and Shun-cheng Lee
Atmos. Chem. Phys., 22, 12789–12802, https://doi.org/10.5194/acp-22-12789-2022, https://doi.org/10.5194/acp-22-12789-2022, 2022
Short summary
Short summary
In this study, we report the long-term measurement of organic carbon (OC) and elementary carbon (EC) in PM2.5 with hourly time resolution conducted at a regional site in Shanghai from 2016 to 2020. The results from this study provide critical information about the long-term trend of carbonaceous aerosol, in particular secondary OC, in one of the largest megacities in the world and are helpful for developing pollution control measures from a long-term planning perspective.
Chao Yan, Yicheng Shen, Dominik Stolzenburg, Lubna Dada, Ximeng Qi, Simo Hakala, Anu-Maija Sundström, Yishuo Guo, Antti Lipponen, Tom V. Kokkonen, Jenni Kontkanen, Runlong Cai, Jing Cai, Tommy Chan, Liangduo Chen, Biwu Chu, Chenjuan Deng, Wei Du, Xiaolong Fan, Xu-Cheng He, Juha Kangasluoma, Joni Kujansuu, Mona Kurppa, Chang Li, Yiran Li, Zhuohui Lin, Yiliang Liu, Yuliang Liu, Yiqun Lu, Wei Nie, Jouni Pulliainen, Xiaohui Qiao, Yonghong Wang, Yifan Wen, Ye Wu, Gan Yang, Lei Yao, Rujing Yin, Gen Zhang, Shaojun Zhang, Feixue Zheng, Ying Zhou, Antti Arola, Johanna Tamminen, Pauli Paasonen, Yele Sun, Lin Wang, Neil M. Donahue, Yongchun Liu, Federico Bianchi, Kaspar R. Daellenbach, Douglas R. Worsnop, Veli-Matti Kerminen, Tuukka Petäjä, Aijun Ding, Jingkun Jiang, and Markku Kulmala
Atmos. Chem. Phys., 22, 12207–12220, https://doi.org/10.5194/acp-22-12207-2022, https://doi.org/10.5194/acp-22-12207-2022, 2022
Short summary
Short summary
Atmospheric new particle formation (NPF) is a dominant source of atmospheric ultrafine particles. In urban environments, traffic emissions are a major source of primary pollutants, but their contribution to NPF remains under debate. During the COVID-19 lockdown, traffic emissions were significantly reduced, providing a unique chance to examine their relevance to NPF. Based on our comprehensive measurements, we demonstrate that traffic emissions alone are not able to explain the NPF in Beijing.
Outi Meinander, Pavla Dagsson-Waldhauserova, Pavel Amosov, Elena Aseyeva, Cliff Atkins, Alexander Baklanov, Clarissa Baldo, Sarah L. Barr, Barbara Barzycka, Liane G. Benning, Bojan Cvetkovic, Polina Enchilik, Denis Frolov, Santiago Gassó, Konrad Kandler, Nikolay Kasimov, Jan Kavan, James King, Tatyana Koroleva, Viktoria Krupskaya, Markku Kulmala, Monika Kusiak, Hanna K. Lappalainen, Michał Laska, Jerome Lasne, Marek Lewandowski, Bartłomiej Luks, James B. McQuaid, Beatrice Moroni, Benjamin Murray, Ottmar Möhler, Adam Nawrot, Slobodan Nickovic, Norman T. O’Neill, Goran Pejanovic, Olga Popovicheva, Keyvan Ranjbar, Manolis Romanias, Olga Samonova, Alberto Sanchez-Marroquin, Kerstin Schepanski, Ivan Semenkov, Anna Sharapova, Elena Shevnina, Zongbo Shi, Mikhail Sofiev, Frédéric Thevenet, Throstur Thorsteinsson, Mikhail Timofeev, Nsikanabasi Silas Umo, Andreas Uppstu, Darya Urupina, György Varga, Tomasz Werner, Olafur Arnalds, and Ana Vukovic Vimic
Atmos. Chem. Phys., 22, 11889–11930, https://doi.org/10.5194/acp-22-11889-2022, https://doi.org/10.5194/acp-22-11889-2022, 2022
Short summary
Short summary
High-latitude dust (HLD) is a short-lived climate forcer, air pollutant, and nutrient source. Our results suggest a northern HLD belt at 50–58° N in Eurasia and 50–55° N in Canada and at >60° N in Eurasia and >58° N in Canada. Our addition to the previously identified global dust belt (GDB) provides crucially needed information on the extent of active HLD sources with both direct and indirect impacts on climate and environment in remote regions, which are often poorly understood and predicted.
Runlong Cai, Ella Häkkinen, Chao Yan, Jingkun Jiang, Markku Kulmala, and Juha Kangasluoma
Atmos. Chem. Phys., 22, 11529–11541, https://doi.org/10.5194/acp-22-11529-2022, https://doi.org/10.5194/acp-22-11529-2022, 2022
Short summary
Short summary
The influences of new particle formation on the climate and air quality are governed by particle survival, which has been under debate due to uncertainties in the coagulation sink. Here we measure the coagulation coefficient of sub-10 nm particles and demonstrate that collisions between the freshly nucleated and background particles can effectively lead to coagulation. We further show that the effective coagulation sink is consistent with the new particle formation measured in urban Beijing.
Benjamin Foreback, Lubna Dada, Kaspar R. Daellenbach, Chao Yan, Lili Wang, Biwu Chu, Ying Zhou, Tom V. Kokkonen, Mona Kurppa, Rosaria E. Pileci, Yonghong Wang, Tommy Chan, Juha Kangasluoma, Lin Zhuohui, Yishou Guo, Chang Li, Rima Baalbaki, Joni Kujansuu, Xiaolong Fan, Zemin Feng, Pekka Rantala, Shahzad Gani, Federico Bianchi, Veli-Matti Kerminen, Tuukka Petäjä, Markku Kulmala, Yongchun Liu, and Pauli Paasonen
Atmos. Chem. Phys., 22, 11089–11104, https://doi.org/10.5194/acp-22-11089-2022, https://doi.org/10.5194/acp-22-11089-2022, 2022
Short summary
Short summary
This study analyzed air quality in Beijing during the Chinese New Year over 7 years, including data from a new in-depth measurement station. This is one of few studies to look at long-term impacts, including the outcome of firework restrictions starting in 2018. Results show that firework pollution has gone down since 2016, indicating a positive result from the restrictions. Results of this study may be useful in making future decisions about the use of fireworks to improve air quality.
Yishuo Guo, Chao Yan, Yuliang Liu, Xiaohui Qiao, Feixue Zheng, Ying Zhang, Ying Zhou, Chang Li, Xiaolong Fan, Zhuohui Lin, Zemin Feng, Yusheng Zhang, Penggang Zheng, Linhui Tian, Wei Nie, Zhe Wang, Dandan Huang, Kaspar R. Daellenbach, Lei Yao, Lubna Dada, Federico Bianchi, Jingkun Jiang, Yongchun Liu, Veli-Matti Kerminen, and Markku Kulmala
Atmos. Chem. Phys., 22, 10077–10097, https://doi.org/10.5194/acp-22-10077-2022, https://doi.org/10.5194/acp-22-10077-2022, 2022
Short summary
Short summary
Gaseous oxygenated organic molecules (OOMs) are able to form atmospheric aerosols, which will impact on human health and climate change. Here, we find that OOMs in urban Beijing are dominated by anthropogenic sources, i.e. aromatic (29 %–41 %) and aliphatic (26 %–41 %) OOMs. They are also the main contributors to the condensational growth of secondary organic aerosols (SOAs). Therefore, the restriction on anthropogenic VOCs is crucial for the reduction of SOAs and haze formation.
Carlton Xavier, Metin Baykara, Robin Wollesen de Jonge, Barbara Altstädter, Petri Clusius, Ville Vakkari, Roseline Thakur, Lisa Beck, Silvia Becagli, Mirko Severi, Rita Traversi, Radovan Krejci, Peter Tunved, Mauro Mazzola, Birgit Wehner, Mikko Sipilä, Markku Kulmala, Michael Boy, and Pontus Roldin
Atmos. Chem. Phys., 22, 10023–10043, https://doi.org/10.5194/acp-22-10023-2022, https://doi.org/10.5194/acp-22-10023-2022, 2022
Short summary
Short summary
The focus of this work is to study and improve our understanding of processes involved in the formation and growth of new particles in a remote Arctic marine environment. We run the 1D model ADCHEM along air mass trajectories arriving at Ny-Ålesund in May 2018. The model finds that ion-mediated H2SO4–NH3 nucleation can explain the observed new particle formation at Ny-Ålesund. The growth of particles is driven via H2SO4 condensation and formation of methane sulfonic acid in the aqueous phase.
Siman Ren, Lei Yao, Yuwei Wang, Gan Yang, Yiliang Liu, Yueyang Li, Yiqun Lu, Lihong Wang, and Lin Wang
Atmos. Chem. Phys., 22, 9283–9297, https://doi.org/10.5194/acp-22-9283-2022, https://doi.org/10.5194/acp-22-9283-2022, 2022
Short summary
Short summary
We improved the empirical functions between volatility and chemical formulas of organic aerosols based on lab experiments and field observations. It was found that organic compounds in ambient aerosols can be divided into two groups according to their O / C ratios and that there should be specialized volatility parameterizations for different O / C organic compounds.
Lisa J. Beck, Siegfried Schobesberger, Heikki Junninen, Janne Lampilahti, Antti Manninen, Lubna Dada, Katri Leino, Xu-Cheng He, Iida Pullinen, Lauriane L. J. Quéléver, Anna Franck, Pyry Poutanen, Daniela Wimmer, Frans Korhonen, Mikko Sipilä, Mikael Ehn, Douglas R. Worsnop, Veli-Matti Kerminen, Tuukka Petäjä, Markku Kulmala, and Jonathan Duplissy
Atmos. Chem. Phys., 22, 8547–8577, https://doi.org/10.5194/acp-22-8547-2022, https://doi.org/10.5194/acp-22-8547-2022, 2022
Short summary
Short summary
The presented article introduces an overview of atmospheric ions and their composition above the boreal forest. We provide the results of an extensive airborne measurement campaign with an air ion mass spectrometer and particle measurements, showing their diurnal evolution within the boundary layer and free troposphere. In addition, we compare the airborne dataset with the co-located data from the ground at SMEAR II station, Finland.
Lauriane L. J. Quéléver, Lubna Dada, Eija Asmi, Janne Lampilahti, Tommy Chan, Jonathan E. Ferrara, Gustavo E. Copes, German Pérez-Fogwill, Luis Barreira, Minna Aurela, Douglas R. Worsnop, Tuija Jokinen, and Mikko Sipilä
Atmos. Chem. Phys., 22, 8417–8437, https://doi.org/10.5194/acp-22-8417-2022, https://doi.org/10.5194/acp-22-8417-2022, 2022
Short summary
Short summary
Understanding how aerosols form is crucial for correctly modeling the climate and improving future predictions. This work provides extensive analysis of aerosol particles and their precursors at Marambio Station, Antarctic Peninsula. We show that sulfuric acid, ammonia, and dimethylamine are key contributors to the frequent new particle formation events observed at the site. We discuss nucleation mechanisms and highlight the need for targeted measurement to fully understand these processes.
Miska Olin, Magdalena Okuljar, Matti P. Rissanen, Joni Kalliokoski, Jiali Shen, Lubna Dada, Markus Lampimäki, Yusheng Wu, Annalea Lohila, Jonathan Duplissy, Mikko Sipilä, Tuukka Petäjä, Markku Kulmala, and Miikka Dal Maso
Atmos. Chem. Phys., 22, 8097–8115, https://doi.org/10.5194/acp-22-8097-2022, https://doi.org/10.5194/acp-22-8097-2022, 2022
Short summary
Short summary
Atmospheric new particle formation is an important source of the total particle number concentration in the atmosphere. Several parameters for predicting new particle formation events have been suggested before, but the results have been inconclusive. This study proposes an another predicting parameter, related to a specific type of highly oxidized organic molecules, especially for similar locations to the measurement site in this study, which was a coastal agricultural site in Finland.
Roseline C. Thakur, Lubna Dada, Lisa J. Beck, Lauriane L. J. Quéléver, Tommy Chan, Marjan Marbouti, Xu-Cheng He, Carlton Xavier, Juha Sulo, Janne Lampilahti, Markus Lampimäki, Yee Jun Tham, Nina Sarnela, Katrianne Lehtipalo, Alf Norkko, Markku Kulmala, Mikko Sipilä, and Tuija Jokinen
Atmos. Chem. Phys., 22, 6365–6391, https://doi.org/10.5194/acp-22-6365-2022, https://doi.org/10.5194/acp-22-6365-2022, 2022
Short summary
Short summary
Every year intense cyanobacterial and macroalgal blooms occur in the Baltic Sea and in the coastal areas surrounding Helsinki, yet no studies have addressed the impact of biogenic emissions from these blooms on gas vapor concentrations, which in turn could influence new particle formation. This is the first study of its kind to address the chemistry driving new particle formation (NPF) during a bloom period in this region, highlighting the role of biogenic sulfuric acid and iodic acid.
Zoé Brasseur, Dimitri Castarède, Erik S. Thomson, Michael P. Adams, Saskia Drossaart van Dusseldorp, Paavo Heikkilä, Kimmo Korhonen, Janne Lampilahti, Mikhail Paramonov, Julia Schneider, Franziska Vogel, Yusheng Wu, Jonathan P. D. Abbatt, Nina S. Atanasova, Dennis H. Bamford, Barbara Bertozzi, Matthew Boyer, David Brus, Martin I. Daily, Romy Fösig, Ellen Gute, Alexander D. Harrison, Paula Hietala, Kristina Höhler, Zamin A. Kanji, Jorma Keskinen, Larissa Lacher, Markus Lampimäki, Janne Levula, Antti Manninen, Jens Nadolny, Maija Peltola, Grace C. E. Porter, Pyry Poutanen, Ulrike Proske, Tobias Schorr, Nsikanabasi Silas Umo, János Stenszky, Annele Virtanen, Dmitri Moisseev, Markku Kulmala, Benjamin J. Murray, Tuukka Petäjä, Ottmar Möhler, and Jonathan Duplissy
Atmos. Chem. Phys., 22, 5117–5145, https://doi.org/10.5194/acp-22-5117-2022, https://doi.org/10.5194/acp-22-5117-2022, 2022
Short summary
Short summary
The present measurement report introduces the ice nucleation campaign organized in Hyytiälä, Finland, in 2018 (HyICE-2018). We provide an overview of the campaign settings, and we describe the measurement infrastructure and operating procedures used. In addition, we use results from ice nucleation instrument inter-comparison to show that the suite of these instruments deployed during the campaign reports consistent results.
Wei Ma, Zemin Feng, Junlei Zhan, Yongchun Liu, Pengfei Liu, Chengtang Liu, Qingxin Ma, Kang Yang, Yafei Wang, Hong He, Markku Kulmala, Yujing Mu, and Junfeng Liu
Atmos. Chem. Phys., 22, 4841–4851, https://doi.org/10.5194/acp-22-4841-2022, https://doi.org/10.5194/acp-22-4841-2022, 2022
Short summary
Short summary
The influence of photochemical loss of volatile organic compounds (VOCS) on O3 formation is investigated using an observation-based model. The sensitivity regime of ozone formation might be misdiagnosed due to the photochemical loss of VOCs in the atmosphere. The contribution of local photochemistry is underestimated regarding O3 pollution when one does not consider the photochemical loss of VOCs.
Joel Kuula, Hilkka Timonen, Jarkko V. Niemi, Hanna E. Manninen, Topi Rönkkö, Tareq Hussein, Pak Lun Fung, Sasu Tarkoma, Mikko Laakso, Erkka Saukko, Aino Ovaska, Markku Kulmala, Ari Karppinen, Lasse Johansson, and Tuukka Petäjä
Atmos. Chem. Phys., 22, 4801–4808, https://doi.org/10.5194/acp-22-4801-2022, https://doi.org/10.5194/acp-22-4801-2022, 2022
Short summary
Short summary
Modern and up-to-date policies and air quality management strategies are instrumental in tackling global air pollution. As the European Union is preparing to revise Ambient Air Quality Directive 2008/50/EC, this paper initiates discussion on selected features of the directive that we believe would benefit from a reassessment. The scientific community has the most recent and deepest understanding of air pollution; thus, its contribution is essential.
Hanna K. Lappalainen, Tuukka Petäjä, Timo Vihma, Jouni Räisänen, Alexander Baklanov, Sergey Chalov, Igor Esau, Ekaterina Ezhova, Matti Leppäranta, Dmitry Pozdnyakov, Jukka Pumpanen, Meinrat O. Andreae, Mikhail Arshinov, Eija Asmi, Jianhui Bai, Igor Bashmachnikov, Boris Belan, Federico Bianchi, Boris Biskaborn, Michael Boy, Jaana Bäck, Bin Cheng, Natalia Chubarova, Jonathan Duplissy, Egor Dyukarev, Konstantinos Eleftheriadis, Martin Forsius, Martin Heimann, Sirkku Juhola, Vladimir Konovalov, Igor Konovalov, Pavel Konstantinov, Kajar Köster, Elena Lapshina, Anna Lintunen, Alexander Mahura, Risto Makkonen, Svetlana Malkhazova, Ivan Mammarella, Stefano Mammola, Stephany Buenrostro Mazon, Outi Meinander, Eugene Mikhailov, Victoria Miles, Stanislav Myslenkov, Dmitry Orlov, Jean-Daniel Paris, Roberta Pirazzini, Olga Popovicheva, Jouni Pulliainen, Kimmo Rautiainen, Torsten Sachs, Vladimir Shevchenko, Andrey Skorokhod, Andreas Stohl, Elli Suhonen, Erik S. Thomson, Marina Tsidilina, Veli-Pekka Tynkkynen, Petteri Uotila, Aki Virkkula, Nadezhda Voropay, Tobias Wolf, Sayaka Yasunaka, Jiahua Zhang, Yubao Qiu, Aijun Ding, Huadong Guo, Valery Bondur, Nikolay Kasimov, Sergej Zilitinkevich, Veli-Matti Kerminen, and Markku Kulmala
Atmos. Chem. Phys., 22, 4413–4469, https://doi.org/10.5194/acp-22-4413-2022, https://doi.org/10.5194/acp-22-4413-2022, 2022
Short summary
Short summary
We summarize results during the last 5 years in the northern Eurasian region, especially from Russia, and introduce recent observations of the air quality in the urban environments in China. Although the scientific knowledge in these regions has increased, there are still gaps in our understanding of large-scale climate–Earth surface interactions and feedbacks. This arises from limitations in research infrastructures and integrative data analyses, hindering a comprehensive system analysis.
Han Zang, Yue Zhao, Juntao Huo, Qianbiao Zhao, Qingyan Fu, Yusen Duan, Jingyuan Shao, Cheng Huang, Jingyu An, Likun Xue, Ziyue Li, Chenxi Li, and Huayun Xiao
Atmos. Chem. Phys., 22, 4355–4374, https://doi.org/10.5194/acp-22-4355-2022, https://doi.org/10.5194/acp-22-4355-2022, 2022
Short summary
Short summary
Particulate nitrate plays an important role in wintertime haze pollution in eastern China, yet quantitative constraints on detailed nitrate formation mechanisms remain limited. Here we quantified the contributions of the heterogeneous N2O5 hydrolysis (66 %) and gas-phase OH + NO2 reaction (32 %) to nitrate formation in this region and identified the atmospheric oxidation capacity (i.e., availability of O3 and OH radicals) as the driving factor of nitrate formation from both processes.
Lisa J. Beck, Siegfried Schobesberger, Mikko Sipilä, Veli-Matti Kerminen, and Markku Kulmala
Atmos. Meas. Tech., 15, 1957–1965, https://doi.org/10.5194/amt-15-1957-2022, https://doi.org/10.5194/amt-15-1957-2022, 2022
Short summary
Short summary
Sulfuric acid is known to be a main compound in atmospheric new particle formation. Yet, its concentration is very low, which leads to challenges in detecting it. In our study, we derive the sulfuric acid concentration from measurements of ambient ions with a mass spectrometer. Our validation shows that the theoretical approach using the bisulfate ion and its clusters with H2SO4 captures the sulfuric acid concentration very well during daytime.
Jingwei Zhang, Chaofan Lian, Weigang Wang, Maofa Ge, Yitian Guo, Haiyan Ran, Yusheng Zhang, Feixue Zheng, Xiaolong Fan, Chao Yan, Kaspar R. Daellenbach, Yongchun Liu, Markku Kulmala, and Junling An
Atmos. Chem. Phys., 22, 3275–3302, https://doi.org/10.5194/acp-22-3275-2022, https://doi.org/10.5194/acp-22-3275-2022, 2022
Short summary
Short summary
This study added six potential HONO sources to the WRF-Chem model, evaluated their impact on HONO and O3 concentrations, including surface and vertical concentrations. The simulations extend our knowledge on atmospheric HONO sources, especially for nitrate photolysis. The study also explains the HONO difference in O3 formation on clean and hazy days, and reveals key potential HONO sources to O3 enhancements in haze-aggravating processes with a co-occurrence of high PM2.5 and O3 concentrations.
Marjan Marbouti, Sehyun Jang, Silvia Becagli, Gabriel Navarro, Rita Traversi, Kitack Lee, Tuomo Nieminen, Lisa J. Beck, Markku Kulmala, Veli-Matti Kerminen, and Mikko Sipilä
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-52, https://doi.org/10.5194/acp-2022-52, 2022
Publication in ACP not foreseen
Short summary
Short summary
This research was done to understand and investigate the roles of Chl-a, PP and sea ice extent in controlling and producing the in-situ measured MSA, SA, HIO3, HOM and aerosol concentrations over the Greenland and Barents Seas. Our results provide strong support to the hypothesis that MSA, SA and small-particle concentrations in the Svalbard area are directly linked to ocean biological activity and sea ice melting during springtime.
Chaoyang Xue, Can Ye, Jörg Kleffmann, Chenglong Zhang, Valéry Catoire, Fengxia Bao, Abdelwahid Mellouki, Likun Xue, Jianmin Chen, Keding Lu, Yong Zhao, Hengde Liu, Zhaoxin Guo, and Yujing Mu
Atmos. Chem. Phys., 22, 3149–3167, https://doi.org/10.5194/acp-22-3149-2022, https://doi.org/10.5194/acp-22-3149-2022, 2022
Short summary
Short summary
Summertime measurements of nitrous acid (HONO) and related parameters were conducted at the foot and the summit of Mt. Tai (1534 m above sea level). We proposed a rapid vertical air mass exchange between the foot and the summit level, which enhances the role of HONO in the oxidizing capacity of the upper boundary layer. Kinetics for aerosol-derived HONO sources were constrained. HONO formation from different paths was quantified and discussed.
Timo Vesala, Kukka-Maaria Kohonen, Linda M. J. Kooijmans, Arnaud P. Praplan, Lenka Foltýnová, Pasi Kolari, Markku Kulmala, Jaana Bäck, David Nelson, Dan Yakir, Mark Zahniser, and Ivan Mammarella
Atmos. Chem. Phys., 22, 2569–2584, https://doi.org/10.5194/acp-22-2569-2022, https://doi.org/10.5194/acp-22-2569-2022, 2022
Short summary
Short summary
Carbonyl sulfide (COS) provides new insights into carbon cycle research. We present an easy-to-use flux parameterization and the longest existing time series of forest–atmosphere COS exchange measurements, which allow us to study both seasonal and interannual variability. We observed only uptake of COS by the forest on an annual basis, with 37 % variability between years. Upscaling the boreal COS uptake using a biosphere model indicates a significant missing COS sink at high latitudes.
Tuija Jokinen, Katrianne Lehtipalo, Roseline Cutting Thakur, Ilona Ylivinkka, Kimmo Neitola, Nina Sarnela, Totti Laitinen, Markku Kulmala, Tuukka Petäjä, and Mikko Sipilä
Atmos. Chem. Phys., 22, 2237–2254, https://doi.org/10.5194/acp-22-2237-2022, https://doi.org/10.5194/acp-22-2237-2022, 2022
Short summary
Short summary
New particle formation is an important source of cloud condensation nuclei; however, long-term measurements of aerosol-forming vapors are close to nonexistent in the Arctic. Here, we report 7 months of CI-APi-TOF measurements of sulfuric acid, iodic acid, methane sulfonic acid and the sum of highly oxygenated organic molecules from the SMEAR I station in the Finnish subarctic. The results help us to understand atmospheric chemical processes and aerosol formation in this rapidly changing area.
Pak Lun Fung, Martha A. Zaidan, Jarkko V. Niemi, Erkka Saukko, Hilkka Timonen, Anu Kousa, Joel Kuula, Topi Rönkkö, Ari Karppinen, Sasu Tarkoma, Markku Kulmala, Tuukka Petäjä, and Tareq Hussein
Atmos. Chem. Phys., 22, 1861–1882, https://doi.org/10.5194/acp-22-1861-2022, https://doi.org/10.5194/acp-22-1861-2022, 2022
Short summary
Short summary
We developed an input-adaptive mixed-effects model, which was automatised to select the best combination of input variables, including up to three fixed effect variables and three time indictors as random effect variables. We tested the model to estimate lung-deposited surface area (LDSA), which correlates well with human health. The results show the inclusion of time indicators improved the sensitivity and the accuracy of the model so that it could serve as a network of virtual sensors.
Jing Cai, Cheng Wu, Jiandong Wang, Wei Du, Feixue Zheng, Simo Hakala, Xiaolong Fan, Biwu Chu, Lei Yao, Zemin Feng, Yongchun Liu, Yele Sun, Jun Zheng, Chao Yan, Federico Bianchi, Markku Kulmala, Claudia Mohr, and Kaspar R. Daellenbach
Atmos. Chem. Phys., 22, 1251–1269, https://doi.org/10.5194/acp-22-1251-2022, https://doi.org/10.5194/acp-22-1251-2022, 2022
Short summary
Short summary
This study investigates the connection between organic aerosol (OA) molecular composition and particle absorptive properties in autumn in Beijing. We find that the molecular properties of OA compounds in different episodes influence particle light absorption properties differently: the light absorption enhancement of black carbon and light absorption coefficient of brown carbon were mostly related to more oxygenated OA (low C number and four O atoms) and aromatics/nitro-aromatics, respectively.
Peifeng Su, Jorma Joutsensaari, Lubna Dada, Martha Arbayani Zaidan, Tuomo Nieminen, Xinyang Li, Yusheng Wu, Stefano Decesari, Sasu Tarkoma, Tuukka Petäjä, Markku Kulmala, and Petri Pellikka
Atmos. Chem. Phys., 22, 1293–1309, https://doi.org/10.5194/acp-22-1293-2022, https://doi.org/10.5194/acp-22-1293-2022, 2022
Short summary
Short summary
We regarded the banana shapes in the surface plots as a special kind of object (similar to cats) and applied an instance segmentation technique to automatically identify the new particle formation (NPF) events (especially the strongest ones), in addition to their growth rates, start times, and end times. The automatic method generalized well on datasets collected in different sites, which is useful for long-term data series analysis and obtaining statistical properties of NPF events.
Arto Heitto, Kari Lehtinen, Tuukka Petäjä, Felipe Lopez-Hilfiker, Joel A. Thornton, Markku Kulmala, and Taina Yli-Juuti
Atmos. Chem. Phys., 22, 155–171, https://doi.org/10.5194/acp-22-155-2022, https://doi.org/10.5194/acp-22-155-2022, 2022
Short summary
Short summary
For atmospheric aerosol particles to take part in cloud formation, they need to be at least a few tens of nanometers in diameter. By using a particle condensation model, we investigated how two types of chemical reactions, oligomerization and decomposition, of organic molecules inside the particle may affect the growth of secondary aerosol particles to these sizes. We show that the effect is potentially significant, which highlights the importance of increasing understanding of these processes.
Lukas Fischer, Martin Breitenlechner, Eva Canaval, Wiebke Scholz, Marcus Striednig, Martin Graus, Thomas G. Karl, Tuukka Petäjä, Markku Kulmala, and Armin Hansel
Atmos. Meas. Tech., 14, 8019–8039, https://doi.org/10.5194/amt-14-8019-2021, https://doi.org/10.5194/amt-14-8019-2021, 2021
Short summary
Short summary
Ecosystems emit biogenic volatile organic compounds (BVOCs), which are then oxidized in the atmosphere, contributing to ozone and secondary aerosol formation. While flux measurements of BVOCs are state of the art, flux measurements of the less volatile oxidation products are difficult to achieve due to inlet losses. Here we present first flux measurements, utilizing a novel PTR3 instrument in combination with a specially designed wall-less inlet we put on top of the Hyytiälä tower in Finland.
Ying Zhou, Simo Hakala, Chao Yan, Yang Gao, Xiaohong Yao, Biwu Chu, Tommy Chan, Juha Kangasluoma, Shahzad Gani, Jenni Kontkanen, Pauli Paasonen, Yongchun Liu, Tuukka Petäjä, Markku Kulmala, and Lubna Dada
Atmos. Chem. Phys., 21, 17885–17906, https://doi.org/10.5194/acp-21-17885-2021, https://doi.org/10.5194/acp-21-17885-2021, 2021
Short summary
Short summary
We characterized the connection between new particle formation (NPF) events in terms of frequency, intensity and growth at a near-highway location in central Beijing and at a background mountain site 80 km away. Due to the substantial contribution of NPF to the global aerosol budget, identifying the conditions that promote the occurrence of regional NPF events could help understand their contribution on a large scale and would improve their implementation in global models.
Mikko Sipilä, Nina Sarnela, Kimmo Neitola, Totti Laitinen, Deniz Kemppainen, Lisa Beck, Ella-Maria Duplissy, Salla Kuittinen, Tuuli Lehmusjärvi, Janne Lampilahti, Veli-Matti Kerminen, Katrianne Lehtipalo, Pasi P. Aalto, Petri Keronen, Erkki Siivola, Pekka A. Rantala, Douglas R. Worsnop, Markku Kulmala, Tuija Jokinen, and Tuukka Petäjä
Atmos. Chem. Phys., 21, 17559–17576, https://doi.org/10.5194/acp-21-17559-2021, https://doi.org/10.5194/acp-21-17559-2021, 2021
Short summary
Short summary
Metallurgical industry in Kola peninsula is a large source of air pollution in the (sub-)Arctic domain. Sulfur dioxide emissions from the ore smelters are transported across large areas. We investigated sulfur dioxide and its transformation to sulfuric acid aerosol particles during winter months in Finnish Lapland, close to Kola industrial areas. We observed intense formation of new aerosol particles despite the low solar radiation intensity, often required for new particle formation elsewhere.
Ditte Taipale, Veli-Matti Kerminen, Mikael Ehn, Markku Kulmala, and Ülo Niinemets
Atmos. Chem. Phys., 21, 17389–17431, https://doi.org/10.5194/acp-21-17389-2021, https://doi.org/10.5194/acp-21-17389-2021, 2021
Short summary
Short summary
Larval feeding and fungal infections of leaves can greatly change the emission of volatile compounds from plants and thereby influence aerosol processes in the air. We developed a model that considers the dynamics of larvae and fungi and the dependency of the emission on the severity of stress. We show that the infections can be highly atmospherically relevant during long periods of time and at times more important to consider than the parameters that are currently used in emission models.
Clémence Rose, Martine Collaud Coen, Elisabeth Andrews, Yong Lin, Isaline Bossert, Cathrine Lund Myhre, Thomas Tuch, Alfred Wiedensohler, Markus Fiebig, Pasi Aalto, Andrés Alastuey, Elisabeth Alonso-Blanco, Marcos Andrade, Begoña Artíñano, Todor Arsov, Urs Baltensperger, Susanne Bastian, Olaf Bath, Johan Paul Beukes, Benjamin T. Brem, Nicolas Bukowiecki, Juan Andrés Casquero-Vera, Sébastien Conil, Konstantinos Eleftheriadis, Olivier Favez, Harald Flentje, Maria I. Gini, Francisco Javier Gómez-Moreno, Martin Gysel-Beer, Anna Gannet Hallar, Ivo Kalapov, Nikos Kalivitis, Anne Kasper-Giebl, Melita Keywood, Jeong Eun Kim, Sang-Woo Kim, Adam Kristensson, Markku Kulmala, Heikki Lihavainen, Neng-Huei Lin, Hassan Lyamani, Angela Marinoni, Sebastiao Martins Dos Santos, Olga L. Mayol-Bracero, Frank Meinhardt, Maik Merkel, Jean-Marc Metzger, Nikolaos Mihalopoulos, Jakub Ondracek, Marco Pandolfi, Noemi Pérez, Tuukka Petäjä, Jean-Eudes Petit, David Picard, Jean-Marc Pichon, Veronique Pont, Jean-Philippe Putaud, Fabienne Reisen, Karine Sellegri, Sangeeta Sharma, Gerhard Schauer, Patrick Sheridan, James Patrick Sherman, Andreas Schwerin, Ralf Sohmer, Mar Sorribas, Junying Sun, Pierre Tulet, Ville Vakkari, Pieter Gideon van Zyl, Fernando Velarde, Paolo Villani, Stergios Vratolis, Zdenek Wagner, Sheng-Hsiang Wang, Kay Weinhold, Rolf Weller, Margarita Yela, Vladimir Zdimal, and Paolo Laj
Atmos. Chem. Phys., 21, 17185–17223, https://doi.org/10.5194/acp-21-17185-2021, https://doi.org/10.5194/acp-21-17185-2021, 2021
Short summary
Short summary
Aerosol particles are a complex component of the atmospheric system the effects of which are among the most uncertain in climate change projections. Using data collected at 62 stations, this study provides the most up-to-date picture of the spatial distribution of particle number concentration and size distribution worldwide, with the aim of contributing to better representation of aerosols and their interactions with clouds in models and, therefore, better evaluation of their impact on climate.
Lucía Caudillo, Birte Rörup, Martin Heinritzi, Guillaume Marie, Mario Simon, Andrea C. Wagner, Tatjana Müller, Manuel Granzin, Antonio Amorim, Farnoush Ataei, Rima Baalbaki, Barbara Bertozzi, Zoé Brasseur, Randall Chiu, Biwu Chu, Lubna Dada, Jonathan Duplissy, Henning Finkenzeller, Loïc Gonzalez Carracedo, Xu-Cheng He, Victoria Hofbauer, Weimeng Kong, Houssni Lamkaddam, Chuan P. Lee, Brandon Lopez, Naser G. A. Mahfouz, Vladimir Makhmutov, Hanna E. Manninen, Ruby Marten, Dario Massabò, Roy L. Mauldin, Bernhard Mentler, Ugo Molteni, Antti Onnela, Joschka Pfeifer, Maxim Philippov, Ana A. Piedehierro, Meredith Schervish, Wiebke Scholz, Benjamin Schulze, Jiali Shen, Dominik Stolzenburg, Yuri Stozhkov, Mihnea Surdu, Christian Tauber, Yee Jun Tham, Ping Tian, António Tomé, Steffen Vogt, Mingyi Wang, Dongyu S. Wang, Stefan K. Weber, André Welti, Wang Yonghong, Wu Yusheng, Marcel Zauner-Wieczorek, Urs Baltensperger, Imad El Haddad, Richard C. Flagan, Armin Hansel, Kristina Höhler, Jasper Kirkby, Markku Kulmala, Katrianne Lehtipalo, Ottmar Möhler, Harald Saathoff, Rainer Volkamer, Paul M. Winkler, Neil M. Donahue, Andreas Kürten, and Joachim Curtius
Atmos. Chem. Phys., 21, 17099–17114, https://doi.org/10.5194/acp-21-17099-2021, https://doi.org/10.5194/acp-21-17099-2021, 2021
Short summary
Short summary
We performed experiments in the CLOUD chamber at CERN at low temperatures to simulate new particle formation in the upper free troposphere (at −30 ºC and −50 ºC). We measured the particle and gas phase and found that most of the compounds present in the gas phase are detected as well in the particle phase. The major compounds in the particles are C8–10 and C18–20. Specifically, we showed that C5 and C15 compounds are detected in a mixed system with isoprene and α-pinene at −30 ºC, 20 % RH.
Wei Sun, Yuzhen Fu, Guohua Zhang, Yuxiang Yang, Feng Jiang, Xiufeng Lian, Bin Jiang, Yuhong Liao, Xinhui Bi, Duohong Chen, Jianmin Chen, Xinming Wang, Jie Ou, Ping'an Peng, and Guoying Sheng
Atmos. Chem. Phys., 21, 16631–16644, https://doi.org/10.5194/acp-21-16631-2021, https://doi.org/10.5194/acp-21-16631-2021, 2021
Short summary
Short summary
We sampled cloud water at a remote mountain site and investigated the molecular characteristics. CHON and CHO are dominant in cloud water. No statistical difference in the oxidation state is observed between cloud water and interstitial PM2.5. Most of the formulas are aliphatic and olefinic species. CHON, with aromatic structures and organosulfates, are abundant, especially in nighttime samples. The in-cloud and multi-phase dark reactions likely contribute significantly.
Men Xia, Xiang Peng, Weihao Wang, Chuan Yu, Zhe Wang, Yee Jun Tham, Jianmin Chen, Hui Chen, Yujing Mu, Chenglong Zhang, Pengfei Liu, Likun Xue, Xinfeng Wang, Jian Gao, Hong Li, and Tao Wang
Atmos. Chem. Phys., 21, 15985–16000, https://doi.org/10.5194/acp-21-15985-2021, https://doi.org/10.5194/acp-21-15985-2021, 2021
Short summary
Short summary
ClNO2 is an important precursor of chlorine radical that affects photochemistry. However, its production and impact are not well understood. Our study presents field observations of ClNO2 at three sites in northern China. These observations provide new insights into nighttime processes that produce ClNO2 and the significant impact of ClNO2 on secondary pollutions during daytime. The results improve the understanding of photochemical pollution in the lower part of the atmosphere.
Chenyang Bi, Jordan E. Krechmer, Graham O. Frazier, Wen Xu, Andrew T. Lambe, Megan S. Claflin, Brian M. Lerner, John T. Jayne, Douglas R. Worsnop, Manjula R. Canagaratna, and Gabriel Isaacman-VanWertz
Atmos. Meas. Tech., 14, 6835–6850, https://doi.org/10.5194/amt-14-6835-2021, https://doi.org/10.5194/amt-14-6835-2021, 2021
Short summary
Short summary
Iodide-adduct chemical ionization mass spectrometry (I-CIMS) has been widely used to analyze airborne organics. In this study, I-CIMS sensitivities of isomers within a formula are found to generally vary by 1 and up to 2 orders of magnitude. Comparisons between measured and predicted moles, obtained using a voltage-scanning calibration approach, show that predictions for individual compounds or formulas might carry high uncertainty, yet the summed moles of analytes agree reasonably well.
Danran Li, Shanshan Wang, Ruibin Xue, Jian Zhu, Sanbao Zhang, Zhibin Sun, and Bin Zhou
Atmos. Chem. Phys., 21, 15447–15460, https://doi.org/10.5194/acp-21-15447-2021, https://doi.org/10.5194/acp-21-15447-2021, 2021
Short summary
Short summary
Satellite-observed HCHO / NO2 ratios are usually used to infer the O3 formation sensitivity regime. However, it only provides the one ratio around overpass time per day. In order to better characterize the O3 formation during the daytime, we proposed to introduce the surface-observed hourly O3 concentration increment and HCHO / NO2 to correct the satellited-observed HCHO / NO2. Moreover, the temporal and spatial variations of HCHO VCDs and the influencing factors in Shanghai were investigated.
Krista Luoma, Aki Virkkula, Pasi Aalto, Katrianne Lehtipalo, Tuukka Petäjä, and Markku Kulmala
Atmos. Meas. Tech., 14, 6419–6441, https://doi.org/10.5194/amt-14-6419-2021, https://doi.org/10.5194/amt-14-6419-2021, 2021
Short summary
Short summary
The study presents a comparison of three absorption photometers that measured ambient aerosol particles at a boreal forest site. The study aims to better understand problems related to filter-based measurements. Results show how different correction algorithms, which are used to produce the data, affect the derived optical properties of aerosol particles.
Yuliang Liu, Wei Nie, Yuanyuan Li, Dafeng Ge, Chong Liu, Zhengning Xu, Liangduo Chen, Tianyi Wang, Lei Wang, Peng Sun, Ximeng Qi, Jiaping Wang, Zheng Xu, Jian Yuan, Chao Yan, Yanjun Zhang, Dandan Huang, Zhe Wang, Neil M. Donahue, Douglas Worsnop, Xuguang Chi, Mikael Ehn, and Aijun Ding
Atmos. Chem. Phys., 21, 14789–14814, https://doi.org/10.5194/acp-21-14789-2021, https://doi.org/10.5194/acp-21-14789-2021, 2021
Short summary
Short summary
Oxygenated organic molecules (OOMs) are crucial intermediates linking volatile organic compounds to secondary organic aerosols. Using nitrate time-of-flight chemical ionization mass spectrometry in eastern China, we performed positive matrix factorization (PMF) on binned OOM mass spectra. We reconstructed over 1000 molecules from 14 derived PMF factors and identified about 72 % of the observed OOMs as organic nitrates, highlighting the decisive role of NOx in OOM formation in populated areas.
Mao Xiao, Christopher R. Hoyle, Lubna Dada, Dominik Stolzenburg, Andreas Kürten, Mingyi Wang, Houssni Lamkaddam, Olga Garmash, Bernhard Mentler, Ugo Molteni, Andrea Baccarini, Mario Simon, Xu-Cheng He, Katrianne Lehtipalo, Lauri R. Ahonen, Rima Baalbaki, Paulus S. Bauer, Lisa Beck, David Bell, Federico Bianchi, Sophia Brilke, Dexian Chen, Randall Chiu, António Dias, Jonathan Duplissy, Henning Finkenzeller, Hamish Gordon, Victoria Hofbauer, Changhyuk Kim, Theodore K. Koenig, Janne Lampilahti, Chuan Ping Lee, Zijun Li, Huajun Mai, Vladimir Makhmutov, Hanna E. Manninen, Ruby Marten, Serge Mathot, Roy L. Mauldin, Wei Nie, Antti Onnela, Eva Partoll, Tuukka Petäjä, Joschka Pfeifer, Veronika Pospisilova, Lauriane L. J. Quéléver, Matti Rissanen, Siegfried Schobesberger, Simone Schuchmann, Yuri Stozhkov, Christian Tauber, Yee Jun Tham, António Tomé, Miguel Vazquez-Pufleau, Andrea C. Wagner, Robert Wagner, Yonghong Wang, Lena Weitz, Daniela Wimmer, Yusheng Wu, Chao Yan, Penglin Ye, Qing Ye, Qiaozhi Zha, Xueqin Zhou, Antonio Amorim, Ken Carslaw, Joachim Curtius, Armin Hansel, Rainer Volkamer, Paul M. Winkler, Richard C. Flagan, Markku Kulmala, Douglas R. Worsnop, Jasper Kirkby, Neil M. Donahue, Urs Baltensperger, Imad El Haddad, and Josef Dommen
Atmos. Chem. Phys., 21, 14275–14291, https://doi.org/10.5194/acp-21-14275-2021, https://doi.org/10.5194/acp-21-14275-2021, 2021
Short summary
Short summary
Experiments at CLOUD show that in polluted environments new particle formation (NPF) is largely driven by the formation of sulfuric acid–base clusters, stabilized by amines, high ammonia concentrations or lower temperatures. While oxidation products of aromatics can nucleate, they play a minor role in urban NPF. Our experiments span 4 orders of magnitude variation of observed NPF rates in ambient conditions. We provide a framework based on NPF and growth rates to interpret ambient observations.
Yongchun Liu, Zemin Feng, Feixue Zheng, Xiaolei Bao, Pengfei Liu, Yanli Ge, Yan Zhao, Tao Jiang, Yunwen Liao, Yusheng Zhang, Xiaolong Fan, Chao Yan, Biwu Chu, Yonghong Wang, Wei Du, Jing Cai, Federico Bianchi, Tuukka Petäjä, Yujing Mu, Hong He, and Markku Kulmala
Atmos. Chem. Phys., 21, 13269–13286, https://doi.org/10.5194/acp-21-13269-2021, https://doi.org/10.5194/acp-21-13269-2021, 2021
Short summary
Short summary
The mechanisms and kinetics of particulate sulfate formation in the atmosphere are still open questions although they have been extensively discussed. We found that uptake of SO2 is the rate-determining step for the conversion of SO2 to particulate sulfate. NH4NO3 plays an important role in AWC, the phase state of aerosol particles, and subsequently the uptake kinetics of SO2 under high-RH conditions. This work is a good example of the feedback between aerosol physics and aerosol chemistry.
Helmi Uusitalo, Jenni Kontkanen, Ilona Ylivinkka, Ekaterina Ezhova, Anastasiia Demakova, Mikhail Arshinov, Boris Denisovich Belan, Denis Davydov, Nan Ma, Tuukka Petäjä, Alfred Wiedensohler, Markku Kulmala, and Tuomo Nieminen
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-530, https://doi.org/10.5194/acp-2021-530, 2021
Publication in ACP not foreseen
Short summary
Short summary
Characteristics of formation of atmospheric aerosol at four boreal forest sites in Finland and Russian Siberia was analyzed. Our results provide information on the governing processes of atmospheric aerosol formation in the boreal forest area, which a substantial part of the continental biosphere. Aerosol formation was occurring less frequently at Siberian than in Finnish sites, which was affected by the lower particle growth rates and higher loss rates in Siberia.
Nahid Atashi, Dariush Rahimi, Victoria A. Sinclair, Martha A. Zaidan, Anton Rusanen, Henri Vuollekoski, Markku Kulmala, Timo Vesala, and Tareq Hussein
Hydrol. Earth Syst. Sci., 25, 4719–4740, https://doi.org/10.5194/hess-25-4719-2021, https://doi.org/10.5194/hess-25-4719-2021, 2021
Short summary
Short summary
Dew formation potential during a long-term period (1979–2018) was assessed in Iran to identify dew formation zones and to investigate the impacts of long-term variation in meteorological parameters on dew formation. Six dew formation zones were identified based on cluster analysis of the time series of the simulated dew yield. The distribution of dew formation zones in Iran was closely aligned with topography and sources of moisture. The dew formation trend was significantly negative.
Janne Lampilahti, Hanna E. Manninen, Tuomo Nieminen, Sander Mirme, Mikael Ehn, Iida Pullinen, Katri Leino, Siegfried Schobesberger, Juha Kangasluoma, Jenni Kontkanen, Emma Järvinen, Riikka Väänänen, Taina Yli-Juuti, Radovan Krejci, Katrianne Lehtipalo, Janne Levula, Aadu Mirme, Stefano Decesari, Ralf Tillmann, Douglas R. Worsnop, Franz Rohrer, Astrid Kiendler-Scharr, Tuukka Petäjä, Veli-Matti Kerminen, Thomas F. Mentel, and Markku Kulmala
Atmos. Chem. Phys., 21, 12649–12663, https://doi.org/10.5194/acp-21-12649-2021, https://doi.org/10.5194/acp-21-12649-2021, 2021
Short summary
Short summary
We studied aerosol particle formation and growth in different parts of the planetary boundary layer at two different locations (Po Valley, Italy, and Hyytiälä, Finland). The observations consist of airborne measurements on board an instrumented Zeppelin and a small airplane combined with comprehensive ground-based measurements.
Letizia Abis, Carmen Kalalian, Bastien Lunardelli, Tao Wang, Liwu Zhang, Jianmin Chen, Sébastien Perrier, Benjamin Loubet, Raluca Ciuraru, and Christian George
Atmos. Chem. Phys., 21, 12613–12629, https://doi.org/10.5194/acp-21-12613-2021, https://doi.org/10.5194/acp-21-12613-2021, 2021
Short summary
Short summary
Biogenic volatile organic compound (BVOC) emissions from rapeseed leaf litter have been investigated by means of a controlled atmospheric simulation chamber. The diversity of emitted VOCs increased also in the presence of UV light irradiation. SOA formation was observed when leaf litter was exposed to both UV light and ozone, indicating a potential contribution to particle formation or growth at local scales.
Zhuohui Lin, Yonghong Wang, Feixue Zheng, Ying Zhou, Yishuo Guo, Zemin Feng, Chang Li, Yusheng Zhang, Simo Hakala, Tommy Chan, Chao Yan, Kaspar R. Daellenbach, Biwu Chu, Lubna Dada, Juha Kangasluoma, Lei Yao, Xiaolong Fan, Wei Du, Jing Cai, Runlong Cai, Tom V. Kokkonen, Putian Zhou, Lili Wang, Tuukka Petäjä, Federico Bianchi, Veli-Matti Kerminen, Yongchun Liu, and Markku Kulmala
Atmos. Chem. Phys., 21, 12173–12187, https://doi.org/10.5194/acp-21-12173-2021, https://doi.org/10.5194/acp-21-12173-2021, 2021
Short summary
Short summary
We find that ammonium nitrate and aerosol water content contributed most during low mixing layer height conditions; this may further trigger enhanced formation of sulfate and organic aerosol via heterogeneous reactions. The results of this study contribute towards a more detailed understanding of the aerosol–chemistry–radiation–boundary layer feedback that is likely to be responsible for explosive aerosol mass growth events in urban Beijing.
Zhenzhen Wang, Di Wu, Zhuoyu Li, Xiaona Shang, Qing Li, Xiang Li, Renjie Chen, Haidong Kan, Huiling Ouyang, Xu Tang, and Jianmin Chen
Atmos. Chem. Phys., 21, 12227–12241, https://doi.org/10.5194/acp-21-12227-2021, https://doi.org/10.5194/acp-21-12227-2021, 2021
Short summary
Short summary
This study firstly investigates the composition of sugars in the fine fraction of aerosol over three sites in southwest China. The result suggested no significant reduction in biomass burning emissions in southwest Yunnan Province to some extent. The result shown sheds light on the contributions of biomass burning and the characteristics of biogenic saccharides in these regions, which could be further applied to regional source apportionment models and global climate models.
Xiaolong Fan, Jing Cai, Chao Yan, Jian Zhao, Yishuo Guo, Chang Li, Kaspar R. Dällenbach, Feixue Zheng, Zhuohui Lin, Biwu Chu, Yonghong Wang, Lubna Dada, Qiaozhi Zha, Wei Du, Jenni Kontkanen, Theo Kurtén, Siddhart Iyer, Joni T. Kujansuu, Tuukka Petäjä, Douglas R. Worsnop, Veli-Matti Kerminen, Yongchun Liu, Federico Bianchi, Yee Jun Tham, Lei Yao, and Markku Kulmala
Atmos. Chem. Phys., 21, 11437–11452, https://doi.org/10.5194/acp-21-11437-2021, https://doi.org/10.5194/acp-21-11437-2021, 2021
Short summary
Short summary
We observed significant concentrations of gaseous HBr and HCl throughout the winter and springtime in urban Beijing, China. Our results indicate that gaseous HCl and HBr are most likely originated from anthropogenic emissions such as burning activities, and the gas–aerosol partitioning may play a crucial role in contributing to the gaseous HCl and HBr. These observations suggest that there is an important recycling pathway of halogen species in inland megacities.
Haijie Tong, Fobang Liu, Alexander Filippi, Jake Wilson, Andrea M. Arangio, Yun Zhang, Siyao Yue, Steven Lelieveld, Fangxia Shen, Helmi-Marja K. Keskinen, Jing Li, Haoxuan Chen, Ting Zhang, Thorsten Hoffmann, Pingqing Fu, William H. Brune, Tuukka Petäjä, Markku Kulmala, Maosheng Yao, Thomas Berkemeier, Manabu Shiraiwa, and Ulrich Pöschl
Atmos. Chem. Phys., 21, 10439–10455, https://doi.org/10.5194/acp-21-10439-2021, https://doi.org/10.5194/acp-21-10439-2021, 2021
Short summary
Short summary
We measured radical yields of aqueous PM2.5 extracts and found lower yields at higher concentrations of PM2.5. Abundances of water-soluble transition metals and aromatics in PM2.5 were positively correlated with the relative fraction of •OH but negatively correlated with the relative fraction of C-centered radicals among detected radicals. Composition-dependent reactive species yields may explain differences in the reactivity and health effects of PM2.5 in clean versus polluted air.
Liine Heikkinen, Mikko Äijälä, Kaspar R. Daellenbach, Gang Chen, Olga Garmash, Diego Aliaga, Frans Graeffe, Meri Räty, Krista Luoma, Pasi Aalto, Markku Kulmala, Tuukka Petäjä, Douglas Worsnop, and Mikael Ehn
Atmos. Chem. Phys., 21, 10081–10109, https://doi.org/10.5194/acp-21-10081-2021, https://doi.org/10.5194/acp-21-10081-2021, 2021
Short summary
Short summary
In many locations worldwide aerosol particles have been shown to be made up of organic aerosol (OA). The boreal forest is a region where aerosol particles possess a high OA mass fraction. Here, we studied OA composition using the longest time series of OA composition ever obtained from a boreal environment. For this purpose, we tested a new analysis framework and discovered that most of the OA was highly oxidized, with strong seasonal behaviour reflecting different sources in summer and winter.
Rima Baalbaki, Michael Pikridas, Tuija Jokinen, Tiia Laurila, Lubna Dada, Spyros Bezantakos, Lauri Ahonen, Kimmo Neitola, Anne Maisser, Elie Bimenyimana, Aliki Christodoulou, Florin Unga, Chrysanthos Savvides, Katrianne Lehtipalo, Juha Kangasluoma, George Biskos, Tuukka Petäjä, Veli-Matti Kerminen, Jean Sciare, and Markku Kulmala
Atmos. Chem. Phys., 21, 9223–9251, https://doi.org/10.5194/acp-21-9223-2021, https://doi.org/10.5194/acp-21-9223-2021, 2021
Short summary
Short summary
This study investigates new particle formation (NPF) in the less represented region of the Mediterranean basin using 1-year measurements of aerosol particles down to ~ 1 nm in diameter. We report a high frequency of NPF and give examples of interesting NPF features. We quantify the strength of NPF events by calculating formation rates and growth rates. We further unveil the atmospheric conditions and variables considered important for the intra-monthly and inter-monthly occurrence of NPF.
Wei Huang, Haiyan Li, Nina Sarnela, Liine Heikkinen, Yee Jun Tham, Jyri Mikkilä, Steven J. Thomas, Neil M. Donahue, Markku Kulmala, and Federico Bianchi
Atmos. Chem. Phys., 21, 8961–8977, https://doi.org/10.5194/acp-21-8961-2021, https://doi.org/10.5194/acp-21-8961-2021, 2021
Short summary
Short summary
We show full characterization of gaseous organic compounds in a boreal forest. Molecular composition and volatility of gaseous organic compounds with different oxidation extents (from volatile organic compounds to highly oxygenated organic molecules) were investigated and discussed. We provide a more comprehensive understanding of atmospheric organic compounds in this boreal forest and new insights into interpreting ambient measurements or testing and improving parameterizations in models.
Rui Li, Yilong Zhao, Hongbo Fu, Jianmin Chen, Meng Peng, and Chunying Wang
Atmos. Chem. Phys., 21, 8677–8692, https://doi.org/10.5194/acp-21-8677-2021, https://doi.org/10.5194/acp-21-8677-2021, 2021
Short summary
Short summary
Based on a random forest model, the strict lockdown measures significantly decreased primary components such as Cr (−67 %) and Fe (−61 %) in PM2.5 (p < 0.01), whereas the higher relative humidity (RH) and NH3 level and the lower air temperature (T) remarkably enhanced the production of secondary aerosol including SO42− (29 %), NO3− (29 %), and NH4+ (21 %) (p < 0.05). The natural experiment suggested that the NH3 emission should be strictly controlled.
Mingyi Wang, Xu-Cheng He, Henning Finkenzeller, Siddharth Iyer, Dexian Chen, Jiali Shen, Mario Simon, Victoria Hofbauer, Jasper Kirkby, Joachim Curtius, Norbert Maier, Theo Kurtén, Douglas R. Worsnop, Markku Kulmala, Matti Rissanen, Rainer Volkamer, Yee Jun Tham, Neil M. Donahue, and Mikko Sipilä
Atmos. Meas. Tech., 14, 4187–4202, https://doi.org/10.5194/amt-14-4187-2021, https://doi.org/10.5194/amt-14-4187-2021, 2021
Short summary
Short summary
Atmospheric iodine species are often short-lived with low abundance and have thus been challenging to measure. We show that the bromide chemical ionization mass spectrometry, compatible with both the atmospheric pressure and reduced pressure interfaces, can simultaneously detect various gas-phase iodine species. Combining calibration experiments and quantum chemical calculations, we quantify detection sensitivities to HOI, HIO3, I2, and H2SO4, giving detection limits down to < 106 molec. cm-3.
Chenshuo Ye, Bin Yuan, Yi Lin, Zelong Wang, Weiwei Hu, Tiange Li, Wei Chen, Caihong Wu, Chaomin Wang, Shan Huang, Jipeng Qi, Baolin Wang, Chen Wang, Wei Song, Xinming Wang, E Zheng, Jordan E. Krechmer, Penglin Ye, Zhanyi Zhang, Xuemei Wang, Douglas R. Worsnop, and Min Shao
Atmos. Chem. Phys., 21, 8455–8478, https://doi.org/10.5194/acp-21-8455-2021, https://doi.org/10.5194/acp-21-8455-2021, 2021
Short summary
Short summary
We performed measurements of gaseous and particulate organic compounds using a state-of-the-art online mass spectrometer in urban air. Using the dataset, we provide a holistic chemical characterization of oxygenated organic compounds in the polluted urban atmosphere, which can serve as a reference for the future field measurements of organic compounds in cities.
Markku Kulmala, Tom V. Kokkonen, Juha Pekkanen, Sami Paatero, Tuukka Petäjä, Veli-Matti Kerminen, and Aijun Ding
Atmos. Chem. Phys., 21, 8313–8322, https://doi.org/10.5194/acp-21-8313-2021, https://doi.org/10.5194/acp-21-8313-2021, 2021
Short summary
Short summary
The eastern part of China as a whole is practically a gigacity with 650 million inhabitants. The gigacity, with its emissions, processes in the pollution cocktail and numerous feedbacks and interactions, has a crucial and big impact on regional air quality and on global climate. A large-scale research and innovation program is needed to meet the interlinked grand challenges in this gigacity and to serve as a platform for finding pathways for sustainable development of the globe.
Chenyang Bi, Jordan E. Krechmer, Graham O. Frazier, Wen Xu, Andrew T. Lambe, Megan S. Claflin, Brian M. Lerner, John T. Jayne, Douglas R. Worsnop, Manjula R. Canagaratna, and Gabriel Isaacman-VanWertz
Atmos. Meas. Tech., 14, 3895–3907, https://doi.org/10.5194/amt-14-3895-2021, https://doi.org/10.5194/amt-14-3895-2021, 2021
Short summary
Short summary
Measurement techniques that can achieve molecular characterizations are necessary to understand the differences of fate and transport within isomers produced in the atmospheric oxidation process. In this work, we develop an instrument to conduct isomer-resolved measurements of particle-phase organics. We assess the number of isomers per chemical formula in atmospherically relevant samples and examine the feasibility of extending the use of an existing instrument to a broader range of analytes.
Janne Lampilahti, Katri Leino, Antti Manninen, Pyry Poutanen, Anna Franck, Maija Peltola, Paula Hietala, Lisa Beck, Lubna Dada, Lauriane Quéléver, Ronja Öhrnberg, Ying Zhou, Madeleine Ekblom, Ville Vakkari, Sergej Zilitinkevich, Veli-Matti Kerminen, Tuukka Petäjä, and Markku Kulmala
Atmos. Chem. Phys., 21, 7901–7915, https://doi.org/10.5194/acp-21-7901-2021, https://doi.org/10.5194/acp-21-7901-2021, 2021
Short summary
Short summary
Using airborne measurements we observed increased number concentrations of sub-25 nm particles in the upper residual layer. These particles may be entrained into the well-mixed boundary layer and observed at the surface. We attribute our observations to new particle formation in the topmost part of the residual layer.
Weiqi Xu, Masayuki Takeuchi, Chun Chen, Yanmei Qiu, Conghui Xie, Wanyun Xu, Nan Ma, Douglas R. Worsnop, Nga Lee Ng, and Yele Sun
Atmos. Meas. Tech., 14, 3693–3705, https://doi.org/10.5194/amt-14-3693-2021, https://doi.org/10.5194/amt-14-3693-2021, 2021
Short summary
Short summary
Here we developed a method for estimation of particulate organic nitrates (pON) from the measurements of a high-resolution aerosol mass spectrometer coupled with a thermodenuder based on the volatility differences between inorganic nitrate and pON. The results generally had improvements in reducing negative values due to the influences of a high concentration of inorganic nitrate and a constant ratio of NO+ to NO2+ of organic nitrates (RON).
Jinlong Ma, Juanyong Shen, Peng Wang, Shengqiang Zhu, Yu Wang, Pengfei Wang, Gehui Wang, Jianmin Chen, and Hongliang Zhang
Atmos. Chem. Phys., 21, 7343–7355, https://doi.org/10.5194/acp-21-7343-2021, https://doi.org/10.5194/acp-21-7343-2021, 2021
Short summary
Short summary
Due to the reduced anthropogenic emissions during the COVID-19 lockdown, mainly from the transportation and industrial sectors, PM2.5 decreased significantly in the whole Yangtze River Delta (YRD) and its major cities. However, the contributions and relative importance of different source sectors and regions changed differently, indicating that control strategies should be adjusted accordingly for further pollution control.
Kun Zhang, Ling Huang, Qing Li, Juntao Huo, Yusen Duan, Yuhang Wang, Elly Yaluk, Yangjun Wang, Qingyan Fu, and Li Li
Atmos. Chem. Phys., 21, 5905–5917, https://doi.org/10.5194/acp-21-5905-2021, https://doi.org/10.5194/acp-21-5905-2021, 2021
Short summary
Short summary
Recently, high O3 concentrations were frequently observed in rural areas of the Yangtze River Delta (YRD) region under stagnant conditions. Using an online measurement and observation-based model, we investigated the budget of ROx radicals and the influence of isoprene chemistry on O3 formation. Our results underline that isoprene chemistry in the rural atmosphere becomes important with the participation of anthropogenic NOx.
Yishuo Guo, Chao Yan, Chang Li, Wei Ma, Zemin Feng, Ying Zhou, Zhuohui Lin, Lubna Dada, Dominik Stolzenburg, Rujing Yin, Jenni Kontkanen, Kaspar R. Daellenbach, Juha Kangasluoma, Lei Yao, Biwu Chu, Yonghong Wang, Runlong Cai, Federico Bianchi, Yongchun Liu, and Markku Kulmala
Atmos. Chem. Phys., 21, 5499–5511, https://doi.org/10.5194/acp-21-5499-2021, https://doi.org/10.5194/acp-21-5499-2021, 2021
Short summary
Short summary
Fog, cloud and haze are very common natural phenomena. Sulfuric acid (SA) is one of the key compounds forming those suspended particles, technically called aerosols, through gas-to-particle conversion. Therefore, the concentration level, source and sink of SA is very important. Our results show that ozonolysis of alkenes plays a major role in nighttime SA formation under unpolluted conditions in urban Beijing, and nighttime cluster mode particles are probably driven by SA in urban environments.
Weiqi Xu, Chun Chen, Yanmei Qiu, Ying Li, Zhiqiang Zhang, Eleni Karnezi, Spyros N. Pandis, Conghui Xie, Zhijie Li, Jiaxing Sun, Nan Ma, Wanyun Xu, Pingqing Fu, Zifa Wang, Jiang Zhu, Douglas R. Worsnop, Nga Lee Ng, and Yele Sun
Atmos. Chem. Phys., 21, 5463–5476, https://doi.org/10.5194/acp-21-5463-2021, https://doi.org/10.5194/acp-21-5463-2021, 2021
Short summary
Short summary
Here aerosol volatility and viscosity at a rural site (Gucheng) and an urban site (Beijing) in the North China Plain (NCP) were investigated in summer and winter. Our results showed that organic aerosol (OA) in winter in the NCP is more volatile than that in summer due to enhanced primary emissions from coal combustion and biomass burning. We also found that OA existed mainly as a solid in winter in Beijing but as semisolids in Beijing in summer and Gucheng in winter.
Song Gao, Shanshan Wang, Chuanqi Gu, Jian Zhu, Ruifeng Zhang, Yanlin Guo, Yuhao Yan, and Bin Zhou
Atmos. Meas. Tech., 14, 2649–2657, https://doi.org/10.5194/amt-14-2649-2021, https://doi.org/10.5194/amt-14-2649-2021, 2021
Clémence Rose, Matti P. Rissanen, Siddharth Iyer, Jonathan Duplissy, Chao Yan, John B. Nowak, Aurélie Colomb, Régis Dupuy, Xu-Cheng He, Janne Lampilahti, Yee Jun Tham, Daniela Wimmer, Jean-Marc Metzger, Pierre Tulet, Jérôme Brioude, Céline Planche, Markku Kulmala, and Karine Sellegri
Atmos. Chem. Phys., 21, 4541–4560, https://doi.org/10.5194/acp-21-4541-2021, https://doi.org/10.5194/acp-21-4541-2021, 2021
Short summary
Short summary
Sulfuric acid (H2SO4) is commonly accepted as a key precursor for atmospheric new particle formation. However, direct measurements of [H2SO4] remain challenging, motivating the development of proxies. Using data collected in two different volcanic plumes, we show, under these specific conditions, the good performance of a proxy from the literature and also highlight the benefit of the newly developed proxies for the prediction of the highest [H2SO4] values.
Haiyan Li, Manjula R. Canagaratna, Matthieu Riva, Pekka Rantala, Yanjun Zhang, Steven Thomas, Liine Heikkinen, Pierre-Marie Flaud, Eric Villenave, Emilie Perraudin, Douglas Worsnop, Markku Kulmala, Mikael Ehn, and Federico Bianchi
Atmos. Chem. Phys., 21, 4123–4147, https://doi.org/10.5194/acp-21-4123-2021, https://doi.org/10.5194/acp-21-4123-2021, 2021
Short summary
Short summary
For the first time, we performed binPMF analysis on the complex mass spectra acquired with the Vocus PTR-TOF in two European pine forests and identified various primary emission sources and secondary oxidation processes of atmospheric organic vapors, i.e., terpenes and their oxidation products, with varying oxidation degrees. Further insights were gained regarding monoterpene and sesquiterpene reactions based on the interpretation results.
Julia Schneider, Kristina Höhler, Paavo Heikkilä, Jorma Keskinen, Barbara Bertozzi, Pia Bogert, Tobias Schorr, Nsikanabasi Silas Umo, Franziska Vogel, Zoé Brasseur, Yusheng Wu, Simo Hakala, Jonathan Duplissy, Dmitri Moisseev, Markku Kulmala, Michael P. Adams, Benjamin J. Murray, Kimmo Korhonen, Liqing Hao, Erik S. Thomson, Dimitri Castarède, Thomas Leisner, Tuukka Petäjä, and Ottmar Möhler
Atmos. Chem. Phys., 21, 3899–3918, https://doi.org/10.5194/acp-21-3899-2021, https://doi.org/10.5194/acp-21-3899-2021, 2021
Short summary
Short summary
By triggering the formation of ice crystals, ice-nucleating particles (INP) strongly influence cloud formation. Continuous, long-term measurements are needed to characterize the atmospheric INP variability. Here, a first long-term time series of INP spectra measured in the boreal forest for more than 1 year is presented, showing a clear seasonal cycle. It is shown that the seasonal dependency of INP concentrations and prevalent INP types is driven by the abundance of biogenic aerosol.
Imre Salma, Wanda Thén, Pasi Aalto, Veli-Matti Kerminen, Anikó Kern, Zoltán Barcza, Tuukka Petäjä, and Markku Kulmala
Atmos. Chem. Phys., 21, 2861–2880, https://doi.org/10.5194/acp-21-2861-2021, https://doi.org/10.5194/acp-21-2861-2021, 2021
Short summary
Short summary
The distribution of the monthly mean nucleation frequency possessed a characteristic pattern. Its shape was compared to those of environmental variables, including vegetation-derived properties. The spring maximum in the occurrence frequency often overlapped with the positive T anomaly. The link between the heat stress and the occurrence minimum in summer could not be proven, whereas an association between the occurrence frequency and vegetation growth dynamics was clearly identified in spring.
Runlong Cai, Chao Yan, Dongsen Yang, Rujing Yin, Yiqun Lu, Chenjuan Deng, Yueyun Fu, Jiaxin Ruan, Xiaoxiao Li, Jenni Kontkanen, Qiang Zhang, Juha Kangasluoma, Yan Ma, Jiming Hao, Douglas R. Worsnop, Federico Bianchi, Pauli Paasonen, Veli-Matti Kerminen, Yongchun Liu, Lin Wang, Jun Zheng, Markku Kulmala, and Jingkun Jiang
Atmos. Chem. Phys., 21, 2457–2468, https://doi.org/10.5194/acp-21-2457-2021, https://doi.org/10.5194/acp-21-2457-2021, 2021
Short summary
Short summary
Based on long-term measurements, we discovered that the collision of H2SO4–amine clusters is the governing mechanism that initializes fast new particle formation in the polluted atmospheric environment of urban Beijing. The mechanism and the governing factors for H2SO4–amine nucleation in the polluted atmosphere are quantitatively investigated in this study.
Runlong Cai, Chenxi Li, Xu-Cheng He, Chenjuan Deng, Yiqun Lu, Rujing Yin, Chao Yan, Lin Wang, Jingkun Jiang, Markku Kulmala, and Juha Kangasluoma
Atmos. Chem. Phys., 21, 2287–2304, https://doi.org/10.5194/acp-21-2287-2021, https://doi.org/10.5194/acp-21-2287-2021, 2021
Short summary
Short summary
Growth rate determines the survival probability of atmospheric new particles and hence their impacts. We clarify the impacts of coagulation on the values retrieved by the appearance time method, which is widely used for growth rate evaluation. A new formula with coagulation correction is proposed based on derivation and tested using both models and atmospheric data. We show that the sub-3 nm particle growth rate in polluted environments may be overestimated without the coagulation correction.
Xiaona Shang, Ling Li, Xinlian Zhang, Huihui Kang, Guodong Sui, Gehui Wang, Xingnan Ye, Hang Xiao, and Jianmin Chen
Atmos. Meas. Tech., 14, 1037–1045, https://doi.org/10.5194/amt-14-1037-2021, https://doi.org/10.5194/amt-14-1037-2021, 2021
Short summary
Short summary
Oxidative stress can be used to evaluate not only adverse health effects but also adverse ecological effects. However, little research uses eco-toxicological assay to assess the risks posed by particle matter to non-human biomes. One important reason might be that the concentration of toxic components of atmospheric particles is far below the high detection limit of eco-toxic measurement. To solve the rapid detection problem, we extended a VACES for ecotoxicity aerosol measurement.
Yujiao Zhu, Likun Xue, Jian Gao, Jianmin Chen, Hongyong Li, Yong Zhao, Zhaoxin Guo, Tianshu Chen, Liang Wen, Penggang Zheng, Ye Shan, Xinfeng Wang, Tao Wang, Xiaohong Yao, and Wenxing Wang
Atmos. Chem. Phys., 21, 1305–1323, https://doi.org/10.5194/acp-21-1305-2021, https://doi.org/10.5194/acp-21-1305-2021, 2021
Short summary
Short summary
This work investigates the long-term changes in new particle formation (NPF) events under reduced SO2 emissions at the summit of Mt. Tai during seven campaigns from 2007 to 2018. We found the NPF intensity increased 2- to 3-fold in 2018 compared to 2007. In contrast, the probability of new particles growing to CCN size largely decreased. Changes to biogenic VOCs and anthropogenic emissions are proposed to explain the distinct NPF characteristics.
Juha Sulo, Nina Sarnela, Jenni Kontkanen, Lauri Ahonen, Pauli Paasonen, Tiia Laurila, Tuija Jokinen, Juha Kangasluoma, Heikki Junninen, Mikko Sipilä, Tuukka Petäjä, Markku Kulmala, and Katrianne Lehtipalo
Atmos. Chem. Phys., 21, 695–715, https://doi.org/10.5194/acp-21-695-2021, https://doi.org/10.5194/acp-21-695-2021, 2021
Short summary
Short summary
In this study, we analyzed over 5 years of sub-3 nm particle concentrations and their precursor vapors, identifying atmoshperic vapors important to the formation of these particles in the boreal forest. We also observed seasonal differences in both particle and precursor vapor concentrations and the formation pathways of these particles. Our results confirm the importance of organic vapors in atmospheric aerosol formation and highlight key seasonal differences that require further study.
Arttu Ylisirniö, Luis M. F. Barreira, Iida Pullinen, Angela Buchholz, John Jayne, Jordan E. Krechmer, Douglas R. Worsnop, Annele Virtanen, and Siegfried Schobesberger
Atmos. Meas. Tech., 14, 355–367, https://doi.org/10.5194/amt-14-355-2021, https://doi.org/10.5194/amt-14-355-2021, 2021
Short summary
Short summary
FIGAERO-ToF-CIMS enables online volatility measurements of chemical compounds in ambient aerosols. Previously published volatility calibration results however differ from each other significantly. In this study we investigate the reason for this discrepancy. We found a major source of error in the widely used syringe deposition method and propose a new method for volatility calibration by using atomized calibration compounds.
Oleg Sizov, Ekaterina Ezhova, Petr Tsymbarovich, Andrey Soromotin, Nikolay Prihod'ko, Tuukka Petäjä, Sergej Zilitinkevich, Markku Kulmala, Jaana Bäck, and Kajar Köster
Biogeosciences, 18, 207–228, https://doi.org/10.5194/bg-18-207-2021, https://doi.org/10.5194/bg-18-207-2021, 2021
Short summary
Short summary
In changing climate, tundra is expected to turn into shrubs and trees, diminishing reindeer pasture and increasing risks of tick-borne diseases. However, this transition may require a disturbance. Fires in Siberia are increasingly widespread. We studied wildfire dynamics and tundra–forest transition over 60 years in northwest Siberia near the Arctic Circle. Based on satellite data analysis, we found that transition occurs in 40 %–85 % of burned tundra compared to 5 %–15 % in non-disturbed areas.
Megan S. Claflin, Demetrios Pagonis, Zachary Finewax, Anne V. Handschy, Douglas A. Day, Wyatt L. Brown, John T. Jayne, Douglas R. Worsnop, Jose L. Jimenez, Paul J. Ziemann, Joost de Gouw, and Brian M. Lerner
Atmos. Meas. Tech., 14, 133–152, https://doi.org/10.5194/amt-14-133-2021, https://doi.org/10.5194/amt-14-133-2021, 2021
Short summary
Short summary
We have developed a field-deployable gas chromatograph with thermal desorption preconcentration and detector switching between two high-resolution mass spectrometers for in situ measurements of volatile organic compounds (VOCs). This system combines chromatography with both proton transfer and electron ionization to offer fast time response and continuous molecular speciation. This technique was applied during the 2018 ATHLETIC campaign to characterize VOC emissions in an indoor environment.
Helmi-Marja Keskinen, Ilona Ylivinkka, Liine Heikkinen, Pasi P. Aalto, Tuomo Nieminen, Katrianne Lehtipalo, Juho Aalto, Janne Levula, Jutta Kesti, Lauri R. Ahonen, Ekaterina Ezhova, Markku Kulmala, and Tuukka Petäjä
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-447, https://doi.org/10.5194/amt-2020-447, 2020
Publication in AMT not foreseen
Short summary
Short summary
Long-term (2005–2017) aerosol particulate matter (PM) concentration measurements at Finland at Station for Measuring Ecosystem-Atmosphere Relations (SMEAR II, Hyytiälä) have been measured with three different measurement equipment. The comparison revealed an equivalence among the three methods. Mass concentrations were generally highest in summer. The descending trend was visible here in spring, summer and winter. This might have resulted at least partly from air quality legislation.
Liqing Hao, Eetu Kari, Ari Leskinen, Douglas R. Worsnop, and Annele Virtanen
Atmos. Chem. Phys., 20, 14393–14405, https://doi.org/10.5194/acp-20-14393-2020, https://doi.org/10.5194/acp-20-14393-2020, 2020
Short summary
Short summary
Our work presents the observational results of secondary organic aerosol (SOA) formation in the presence of ammonia. The particle-phase ammonium was continuously produced even after SOA formation had ceased. The gas-phase organic acids were observed to contribute to the formed particle-phase ammonium salts. This study suggests that the presence of ammonia may change the mass and chemical composition of large-size SOA particles and can potentially alter the aerosol impact on climate change.
Jingsha Xu, Shaojie Song, Roy M. Harrison, Congbo Song, Lianfang Wei, Qiang Zhang, Yele Sun, Lu Lei, Chao Zhang, Xiaohong Yao, Dihui Chen, Weijun Li, Miaomiao Wu, Hezhong Tian, Lining Luo, Shengrui Tong, Weiran Li, Junling Wang, Guoliang Shi, Yanqi Huangfu, Yingze Tian, Baozhu Ge, Shaoli Su, Chao Peng, Yang Chen, Fumo Yang, Aleksandra Mihajlidi-Zelić, Dragana Đorđević, Stefan J. Swift, Imogen Andrews, Jacqueline F. Hamilton, Ye Sun, Agung Kramawijaya, Jinxiu Han, Supattarachai Saksakulkrai, Clarissa Baldo, Siqi Hou, Feixue Zheng, Kaspar R. Daellenbach, Chao Yan, Yongchun Liu, Markku Kulmala, Pingqing Fu, and Zongbo Shi
Atmos. Meas. Tech., 13, 6325–6341, https://doi.org/10.5194/amt-13-6325-2020, https://doi.org/10.5194/amt-13-6325-2020, 2020
Short summary
Short summary
An interlaboratory comparison was conducted for the first time to examine differences in water-soluble inorganic ions (WSIIs) measured by 10 labs using ion chromatography (IC) and by two online aerosol chemical speciation monitor (ACSM) methods. Major ions including SO42−, NO3− and NH4+ agreed well in 10 IC labs and correlated well with ACSM data. WSII interlab variability strongly affected aerosol acidity results based on ion balance, but aerosol pH computed by ISORROPIA II was very similar.
Jiarong Li, Chao Zhu, Hui Chen, Defeng Zhao, Likun Xue, Xinfeng Wang, Hongyong Li, Pengfei Liu, Junfeng Liu, Chenglong Zhang, Yujing Mu, Wenjin Zhang, Luming Zhang, Hartmut Herrmann, Kai Li, Min Liu, and Jianmin Chen
Atmos. Chem. Phys., 20, 13735–13751, https://doi.org/10.5194/acp-20-13735-2020, https://doi.org/10.5194/acp-20-13735-2020, 2020
Short summary
Short summary
Based on a field study at Mt. Tai, China, the simultaneous variations of cloud microphysics, aerosol microphysics and their potential interactions during cloud life cycles were discussed. Results demonstrated that clouds on clean days were more susceptible to the concentrations of particle number, while clouds formed on polluted days might be more sensitive to meteorological parameters. Particles larger than 150 nm played important roles in forming cloud droplets with sizes of 5–10 μm.
Yongchun Liu, Yusheng Zhang, Chaofan Lian, Chao Yan, Zeming Feng, Feixue Zheng, Xiaolong Fan, Yan Chen, Weigang Wang, Biwu Chu, Yonghong Wang, Jing Cai, Wei Du, Kaspar R. Daellenbach, Juha Kangasluoma, Federico Bianchi, Joni Kujansuu, Tuukka Petäjä, Xuefei Wang, Bo Hu, Yuesi Wang, Maofa Ge, Hong He, and Markku Kulmala
Atmos. Chem. Phys., 20, 13023–13040, https://doi.org/10.5194/acp-20-13023-2020, https://doi.org/10.5194/acp-20-13023-2020, 2020
Short summary
Short summary
Understanding of the chemical and physical processes leading to atmospheric aerosol particle formation is crucial to devising effective mitigation strategies to protect the public and reduce uncertainties in climate predictions. We found that the photolysis of nitrous acid could promote the formation of organic and nitrate aerosol and that traffic-related emission is a major contributor to ambient nitrous acid on haze days in wintertime in Beijing.
Jing Cai, Biwu Chu, Lei Yao, Chao Yan, Liine M. Heikkinen, Feixue Zheng, Chang Li, Xiaolong Fan, Shaojun Zhang, Daoyuan Yang, Yonghong Wang, Tom V. Kokkonen, Tommy Chan, Ying Zhou, Lubna Dada, Yongchun Liu, Hong He, Pauli Paasonen, Joni T. Kujansuu, Tuukka Petäjä, Claudia Mohr, Juha Kangasluoma, Federico Bianchi, Yele Sun, Philip L. Croteau, Douglas R. Worsnop, Veli-Matti Kerminen, Wei Du, Markku Kulmala, and Kaspar R. Daellenbach
Atmos. Chem. Phys., 20, 12721–12740, https://doi.org/10.5194/acp-20-12721-2020, https://doi.org/10.5194/acp-20-12721-2020, 2020
Short summary
Short summary
By applying both OA PMF and size PMF at the same urban measurement site in Beijing, similar particle source types, including vehicular emissions, cooking emissions and secondary formation-related sources, were resolved by both frameworks and agreed well. It is also found that in the absence of new particle formation, vehicular and cooking emissions dominate the particle number concentration, while secondary particulate matter governed PM2.5 mass during spring and summer in Beijing.
Rui Li, Qiongqiong Wang, Xiao He, Shuhui Zhu, Kun Zhang, Yusen Duan, Qingyan Fu, Liping Qiao, Yangjun Wang, Ling Huang, Li Li, and Jian Zhen Yu
Atmos. Chem. Phys., 20, 12047–12061, https://doi.org/10.5194/acp-20-12047-2020, https://doi.org/10.5194/acp-20-12047-2020, 2020
Ilona Ylivinkka, Santeri Kaupinmäki, Meri Virman, Maija Peltola, Ditte Taipale, Tuukka Petäjä, Veli-Matti Kerminen, Markku Kulmala, and Ekaterina Ezhova
Atmos. Meas. Tech., 13, 5595–5619, https://doi.org/10.5194/amt-13-5595-2020, https://doi.org/10.5194/amt-13-5595-2020, 2020
Short summary
Short summary
In this study, we developed a new algorithm for cloud classification using solar radiation and cloud base height measurements. Our objective was to develop a simple and inexpensive but effective algorithm for the needs of studies related to ecosystem and atmosphere interactions. In the present study, we used the algorithm for obtaining cloud statistics at a measurement station in southern Finland, and we discuss the advantages and shortcomings of the algorithm.
Janne Lampilahti, Hanna Elina Manninen, Katri Leino, Riikka Väänänen, Antti Manninen, Stephany Buenrostro Mazon, Tuomo Nieminen, Matti Leskinen, Joonas Enroth, Marja Bister, Sergej Zilitinkevich, Juha Kangasluoma, Heikki Järvinen, Veli-Matti Kerminen, Tuukka Petäjä, and Markku Kulmala
Atmos. Chem. Phys., 20, 11841–11854, https://doi.org/10.5194/acp-20-11841-2020, https://doi.org/10.5194/acp-20-11841-2020, 2020
Short summary
Short summary
In this work, by using co-located airborne and ground-based measurements, we show that counter-rotating horizontal circulations in the planetary boundary layer (roll vortices) frequently enhance regional new particle formation or induce localized bursts of new particle formation. These observations can be explained by the ability of the rolls to efficiently lift low-volatile vapors emitted from the surface to the top of the boundary layer where new particle formation is more favorable.
Martin Heinritzi, Lubna Dada, Mario Simon, Dominik Stolzenburg, Andrea C. Wagner, Lukas Fischer, Lauri R. Ahonen, Stavros Amanatidis, Rima Baalbaki, Andrea Baccarini, Paulus S. Bauer, Bernhard Baumgartner, Federico Bianchi, Sophia Brilke, Dexian Chen, Randall Chiu, Antonio Dias, Josef Dommen, Jonathan Duplissy, Henning Finkenzeller, Carla Frege, Claudia Fuchs, Olga Garmash, Hamish Gordon, Manuel Granzin, Imad El Haddad, Xucheng He, Johanna Helm, Victoria Hofbauer, Christopher R. Hoyle, Juha Kangasluoma, Timo Keber, Changhyuk Kim, Andreas Kürten, Houssni Lamkaddam, Tiia M. Laurila, Janne Lampilahti, Chuan Ping Lee, Katrianne Lehtipalo, Markus Leiminger, Huajun Mai, Vladimir Makhmutov, Hanna Elina Manninen, Ruby Marten, Serge Mathot, Roy Lee Mauldin, Bernhard Mentler, Ugo Molteni, Tatjana Müller, Wei Nie, Tuomo Nieminen, Antti Onnela, Eva Partoll, Monica Passananti, Tuukka Petäjä, Joschka Pfeifer, Veronika Pospisilova, Lauriane L. J. Quéléver, Matti P. Rissanen, Clémence Rose, Siegfried Schobesberger, Wiebke Scholz, Kay Scholze, Mikko Sipilä, Gerhard Steiner, Yuri Stozhkov, Christian Tauber, Yee Jun Tham, Miguel Vazquez-Pufleau, Annele Virtanen, Alexander L. Vogel, Rainer Volkamer, Robert Wagner, Mingyi Wang, Lena Weitz, Daniela Wimmer, Mao Xiao, Chao Yan, Penglin Ye, Qiaozhi Zha, Xueqin Zhou, Antonio Amorim, Urs Baltensperger, Armin Hansel, Markku Kulmala, António Tomé, Paul M. Winkler, Douglas R. Worsnop, Neil M. Donahue, Jasper Kirkby, and Joachim Curtius
Atmos. Chem. Phys., 20, 11809–11821, https://doi.org/10.5194/acp-20-11809-2020, https://doi.org/10.5194/acp-20-11809-2020, 2020
Short summary
Short summary
With experiments performed at CLOUD, we show how isoprene interferes in monoterpene oxidation via RO2 termination at atmospherically relevant concentrations. This interference shifts the distribution of highly oxygenated organic molecules (HOMs) away from C20 class dimers towards C15 class dimers, which subsequently reduces both biogenic nucleation and early growth rates. Our results may help to understand the absence of new-particle formation in isoprene-rich environments.
Lubna Dada, Ilona Ylivinkka, Rima Baalbaki, Chang Li, Yishuo Guo, Chao Yan, Lei Yao, Nina Sarnela, Tuija Jokinen, Kaspar R. Daellenbach, Rujing Yin, Chenjuan Deng, Biwu Chu, Tuomo Nieminen, Yonghong Wang, Zhuohui Lin, Roseline C. Thakur, Jenni Kontkanen, Dominik Stolzenburg, Mikko Sipilä, Tareq Hussein, Pauli Paasonen, Federico Bianchi, Imre Salma, Tamás Weidinger, Michael Pikridas, Jean Sciare, Jingkun Jiang, Yongchun Liu, Tuukka Petäjä, Veli-Matti Kerminen, and Markku Kulmala
Atmos. Chem. Phys., 20, 11747–11766, https://doi.org/10.5194/acp-20-11747-2020, https://doi.org/10.5194/acp-20-11747-2020, 2020
Short summary
Short summary
We rely on sulfuric acid measurements in four contrasting environments, Hyytiälä, Finland; Agia Marina, Cyprus; Budapest, Hungary; and Beijing, China, representing semi-pristine boreal forest, rural environment in the Mediterranean area, urban environment, and heavily polluted megacity, respectively, in order to define the sources and sinks of sulfuric acid in these environments and to derive a new sulfuric acid proxy to be utilized in locations and during periods when it is not measured.
Jenni Kontkanen, Chenjuan Deng, Yueyun Fu, Lubna Dada, Ying Zhou, Jing Cai, Kaspar R. Daellenbach, Simo Hakala, Tom V. Kokkonen, Zhuohui Lin, Yongchun Liu, Yonghong Wang, Chao Yan, Tuukka Petäjä, Jingkun Jiang, Markku Kulmala, and Pauli Paasonen
Atmos. Chem. Phys., 20, 11329–11348, https://doi.org/10.5194/acp-20-11329-2020, https://doi.org/10.5194/acp-20-11329-2020, 2020
Short summary
Short summary
To estimate the impacts of atmospheric aerosol particles on air quality, knowledge of size distributions of particles emitted from anthropogenic sources is needed. We introduce a new method for determining size-resolved particle number emissions from measured particle size distributions. We apply our method to data measured in Beijing, China. We find that particle number emissions at our site are dominated by emissions of particles smaller than 30 nm, originating mainly from traffic.
Archit Mehra, Jordan E. Krechmer, Andrew Lambe, Chinmoy Sarkar, Leah Williams, Farzaneh Khalaj, Alex Guenther, John Jayne, Hugh Coe, Douglas Worsnop, Celia Faiola, and Manjula Canagaratna
Atmos. Chem. Phys., 20, 10953–10965, https://doi.org/10.5194/acp-20-10953-2020, https://doi.org/10.5194/acp-20-10953-2020, 2020
Short summary
Short summary
Emissions of volatile organic compounds (VOCs) from plants are important for tropospheric ozone and secondary organic aerosol (SOA) formation. Real plant emissions are much more diverse than the few proxies widely used for studies of plant SOA. Here we present the first study of SOA from Californian sage plants and the oxygenated monoterpenes representing their major emissions. We identify SOA products and show the importance of the formation of highly oxygenated organic molecules and oligomers.
Xiaofei Qin, Leiming Zhang, Guochen Wang, Xiaohao Wang, Qingyan Fu, Jian Xu, Hao Li, Jia Chen, Qianbiao Zhao, Yanfen Lin, Juntao Huo, Fengwen Wang, Kan Huang, and Congrui Deng
Atmos. Chem. Phys., 20, 10985–10996, https://doi.org/10.5194/acp-20-10985-2020, https://doi.org/10.5194/acp-20-10985-2020, 2020
Short summary
Short summary
The uncertainties in mercury emissions are much larger from natural sources than anthropogenic sources. A method was developed to quantify the contributions of natural surface emissions to ambient GEM based on PMF modeling. The annual GEM concentration in eastern China showed a decreasing trend from 2015 to 2018, while the relative contribution of natural surface emissions increased significantly from 41 % in 2015 to 57 % in 2018, gradually surpassing those from anthropogenic sources.
Tommy Chan, Runlong Cai, Lauri R. Ahonen, Yiliang Liu, Ying Zhou, Joonas Vanhanen, Lubna Dada, Yan Chao, Yongchun Liu, Lin Wang, Markku Kulmala, and Juha Kangasluoma
Atmos. Meas. Tech., 13, 4885–4898, https://doi.org/10.5194/amt-13-4885-2020, https://doi.org/10.5194/amt-13-4885-2020, 2020
Short summary
Short summary
Using a particle size magnifier (PSM; Airmodus, Finland), we determined the particle size distribution using four inversion methods and compared each method to the others to establish their strengths and weaknesses. Furthermore, we provided a step-by-step procedure on how to invert measured data using the PSM. Finally, we provided recommendations, code and data related to the data inversion. This is an important paper, as no operating procedure exists regarding how to process measured PSM data.
Lu Chen, Lingdong Kong, Songying Tong, Kejing Yang, Shengyan Jin, Chao Wang, and Lin Wang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-806, https://doi.org/10.5194/acp-2020-806, 2020
Revised manuscript not accepted
Short summary
Short summary
The role of nitrate aerosol in atmospheric SO2 oxidation remains unclear. We investigated the effects of nitrate on the aqueous phase oxidation of bisulfite under different conditions. We found the important roles of nitrate photolysis, pH, ammonium and O2 in the oxidation of bisulfite to sulfate, the generation of H2O2, and the synergism with halogen chemistry. These results provide a new insight into the heterogeneous aqueous phase oxidation of SO2 in cloud and fog droplets and haze particles.
Archit Mehra, Yuwei Wang, Jordan E. Krechmer, Andrew Lambe, Francesca Majluf, Melissa A. Morris, Michael Priestley, Thomas J. Bannan, Daniel J. Bryant, Kelly L. Pereira, Jacqueline F. Hamilton, Andrew R. Rickard, Mike J. Newland, Harald Stark, Philip Croteau, John T. Jayne, Douglas R. Worsnop, Manjula R. Canagaratna, Lin Wang, and Hugh Coe
Atmos. Chem. Phys., 20, 9783–9803, https://doi.org/10.5194/acp-20-9783-2020, https://doi.org/10.5194/acp-20-9783-2020, 2020
Short summary
Short summary
Aromatic volatile organic compounds (VOCs) emitted from anthropogenic activity are important for tropospheric ozone and secondary organic aerosol (SOA) formation. Here we present a detailed chemical characterisation of SOA from four C9-aromatic isomers and a polycyclic aromatic hydrocarbon (PAH). We identify and compare their oxidation products in the gas and particle phases, showing the different relative importance of oxidation pathways and proportions of highly oxygenated organic molecules.
Paolo Laj, Alessandro Bigi, Clémence Rose, Elisabeth Andrews, Cathrine Lund Myhre, Martine Collaud Coen, Yong Lin, Alfred Wiedensohler, Michael Schulz, John A. Ogren, Markus Fiebig, Jonas Gliß, Augustin Mortier, Marco Pandolfi, Tuukka Petäja, Sang-Woo Kim, Wenche Aas, Jean-Philippe Putaud, Olga Mayol-Bracero, Melita Keywood, Lorenzo Labrador, Pasi Aalto, Erik Ahlberg, Lucas Alados Arboledas, Andrés Alastuey, Marcos Andrade, Begoña Artíñano, Stina Ausmeel, Todor Arsov, Eija Asmi, John Backman, Urs Baltensperger, Susanne Bastian, Olaf Bath, Johan Paul Beukes, Benjamin T. Brem, Nicolas Bukowiecki, Sébastien Conil, Cedric Couret, Derek Day, Wan Dayantolis, Anna Degorska, Konstantinos Eleftheriadis, Prodromos Fetfatzis, Olivier Favez, Harald Flentje, Maria I. Gini, Asta Gregorič, Martin Gysel-Beer, A. Gannet Hallar, Jenny Hand, Andras Hoffer, Christoph Hueglin, Rakesh K. Hooda, Antti Hyvärinen, Ivo Kalapov, Nikos Kalivitis, Anne Kasper-Giebl, Jeong Eun Kim, Giorgos Kouvarakis, Irena Kranjc, Radovan Krejci, Markku Kulmala, Casper Labuschagne, Hae-Jung Lee, Heikki Lihavainen, Neng-Huei Lin, Gunter Löschau, Krista Luoma, Angela Marinoni, Sebastiao Martins Dos Santos, Frank Meinhardt, Maik Merkel, Jean-Marc Metzger, Nikolaos Mihalopoulos, Nhat Anh Nguyen, Jakub Ondracek, Noemi Pérez, Maria Rita Perrone, Jean-Eudes Petit, David Picard, Jean-Marc Pichon, Veronique Pont, Natalia Prats, Anthony Prenni, Fabienne Reisen, Salvatore Romano, Karine Sellegri, Sangeeta Sharma, Gerhard Schauer, Patrick Sheridan, James Patrick Sherman, Maik Schütze, Andreas Schwerin, Ralf Sohmer, Mar Sorribas, Martin Steinbacher, Junying Sun, Gloria Titos, Barbara Toczko, Thomas Tuch, Pierre Tulet, Peter Tunved, Ville Vakkari, Fernando Velarde, Patricio Velasquez, Paolo Villani, Sterios Vratolis, Sheng-Hsiang Wang, Kay Weinhold, Rolf Weller, Margarita Yela, Jesus Yus-Diez, Vladimir Zdimal, Paul Zieger, and Nadezda Zikova
Atmos. Meas. Tech., 13, 4353–4392, https://doi.org/10.5194/amt-13-4353-2020, https://doi.org/10.5194/amt-13-4353-2020, 2020
Short summary
Short summary
The paper establishes the fiducial reference of the GAW aerosol network providing the fully characterized value chain to the provision of four climate-relevant aerosol properties from ground-based sites. Data from almost 90 stations worldwide are reported for a reference year, 2017, providing a unique and very robust view of the variability of these variables worldwide. Current gaps in the GAW network are analysed and requirements for the Global Climate Monitoring System are proposed.
Yuwei Wang, Archit Mehra, Jordan E. Krechmer, Gan Yang, Xiaoyu Hu, Yiqun Lu, Andrew Lambe, Manjula Canagaratna, Jianmin Chen, Douglas Worsnop, Hugh Coe, and Lin Wang
Atmos. Chem. Phys., 20, 9563–9579, https://doi.org/10.5194/acp-20-9563-2020, https://doi.org/10.5194/acp-20-9563-2020, 2020
Short summary
Short summary
A series of OH-initiated oxidation experiments of trimethylbenzene were investigated in the absence and presence of NOx. Many C9 products with 1–11 oxygen atoms and C18 products presumably formed from dimerization of C9 peroxy radicals were observed, hinting at the extensive existence of autoxidation and accretion reaction pathways. The presence of NOx would suppress the formation of highly oxygenated C18 molecules and enhance the formation of organonitrates and even dinitrate compounds.
Mario Simon, Lubna Dada, Martin Heinritzi, Wiebke Scholz, Dominik Stolzenburg, Lukas Fischer, Andrea C. Wagner, Andreas Kürten, Birte Rörup, Xu-Cheng He, João Almeida, Rima Baalbaki, Andrea Baccarini, Paulus S. Bauer, Lisa Beck, Anton Bergen, Federico Bianchi, Steffen Bräkling, Sophia Brilke, Lucia Caudillo, Dexian Chen, Biwu Chu, António Dias, Danielle C. Draper, Jonathan Duplissy, Imad El-Haddad, Henning Finkenzeller, Carla Frege, Loic Gonzalez-Carracedo, Hamish Gordon, Manuel Granzin, Jani Hakala, Victoria Hofbauer, Christopher R. Hoyle, Changhyuk Kim, Weimeng Kong, Houssni Lamkaddam, Chuan P. Lee, Katrianne Lehtipalo, Markus Leiminger, Huajun Mai, Hanna E. Manninen, Guillaume Marie, Ruby Marten, Bernhard Mentler, Ugo Molteni, Leonid Nichman, Wei Nie, Andrea Ojdanic, Antti Onnela, Eva Partoll, Tuukka Petäjä, Joschka Pfeifer, Maxim Philippov, Lauriane L. J. Quéléver, Ananth Ranjithkumar, Matti P. Rissanen, Simon Schallhart, Siegfried Schobesberger, Simone Schuchmann, Jiali Shen, Mikko Sipilä, Gerhard Steiner, Yuri Stozhkov, Christian Tauber, Yee J. Tham, António R. Tomé, Miguel Vazquez-Pufleau, Alexander L. Vogel, Robert Wagner, Mingyi Wang, Dongyu S. Wang, Yonghong Wang, Stefan K. Weber, Yusheng Wu, Mao Xiao, Chao Yan, Penglin Ye, Qing Ye, Marcel Zauner-Wieczorek, Xueqin Zhou, Urs Baltensperger, Josef Dommen, Richard C. Flagan, Armin Hansel, Markku Kulmala, Rainer Volkamer, Paul M. Winkler, Douglas R. Worsnop, Neil M. Donahue, Jasper Kirkby, and Joachim Curtius
Atmos. Chem. Phys., 20, 9183–9207, https://doi.org/10.5194/acp-20-9183-2020, https://doi.org/10.5194/acp-20-9183-2020, 2020
Short summary
Short summary
Highly oxygenated organic compounds (HOMs) have been identified as key vapors involved in atmospheric new-particle formation (NPF). The molecular distribution, HOM yield, and NPF from α-pinene oxidation experiments were measured at the CLOUD chamber over a wide tropospheric-temperature range. This study shows on a molecular scale that despite the sharp reduction in HOM yield at lower temperatures, the reduced volatility counteracts this effect and leads to an overall increase in the NPF rate.
Shengqiang Zhu, Lei Li, Shurong Wang, Mei Li, Yaxi Liu, Xiaohui Lu, Hong Chen, Lin Wang, Jianmin Chen, Zhen Zhou, Xin Yang, and Xiaofei Wang
Atmos. Meas. Tech., 13, 4111–4121, https://doi.org/10.5194/amt-13-4111-2020, https://doi.org/10.5194/amt-13-4111-2020, 2020
Short summary
Short summary
Single-particle aerosol mass spectrometry (SPAMS) is widely used to detect chemical compositions and sizes of individual aerosol particles. However, it has a major issue: the mass accuracy of high-resolution SPAMS is relatively low. Here we developed an automatic linear calibration method to greatly improve the mass accuracy of SPAMS spectra so that the elemental compositions of organic peaks, such as Cx, CxHy, CxHyOz and CxHyNO peaks, can be directly identified just based on their m / z values.
Yuan Yang, Yonghong Wang, Putian Zhou, Dan Yao, Dongsheng Ji, Jie Sun, Yinghong Wang, Shuman Zhao, Wei Huang, Shuanghong Yang, Dean Chen, Wenkang Gao, Zirui Liu, Bo Hu, Renjian Zhang, Limin Zeng, Maofa Ge, Tuukka Petäjä, Veli-Matti Kerminen, Markku Kulmala, and Yuesi Wang
Atmos. Chem. Phys., 20, 8181–8200, https://doi.org/10.5194/acp-20-8181-2020, https://doi.org/10.5194/acp-20-8181-2020, 2020
Angela Buchholz, Arttu Ylisirniö, Wei Huang, Claudia Mohr, Manjula Canagaratna, Douglas R. Worsnop, Siegfried Schobesberger, and Annele Virtanen
Atmos. Chem. Phys., 20, 7693–7716, https://doi.org/10.5194/acp-20-7693-2020, https://doi.org/10.5194/acp-20-7693-2020, 2020
Short summary
Short summary
To understand the role of aerosol particles in the atmosphere, it is necessary to know their detailed chemical composition and physical properties, especially volatility. The thermal desorption data from FIGAERO–CIMS provides both but are difficult to analyse. With positive matrix factorisation, we can separate instrument background from the real signal. Compounds can be classified by their apparent volatility, and the contribution of thermal decomposition in the instrument can be identified.
Dominik Stolzenburg, Mario Simon, Ananth Ranjithkumar, Andreas Kürten, Katrianne Lehtipalo, Hamish Gordon, Sebastian Ehrhart, Henning Finkenzeller, Lukas Pichelstorfer, Tuomo Nieminen, Xu-Cheng He, Sophia Brilke, Mao Xiao, António Amorim, Rima Baalbaki, Andrea Baccarini, Lisa Beck, Steffen Bräkling, Lucía Caudillo Murillo, Dexian Chen, Biwu Chu, Lubna Dada, António Dias, Josef Dommen, Jonathan Duplissy, Imad El Haddad, Lukas Fischer, Loic Gonzalez Carracedo, Martin Heinritzi, Changhyuk Kim, Theodore K. Koenig, Weimeng Kong, Houssni Lamkaddam, Chuan Ping Lee, Markus Leiminger, Zijun Li, Vladimir Makhmutov, Hanna E. Manninen, Guillaume Marie, Ruby Marten, Tatjana Müller, Wei Nie, Eva Partoll, Tuukka Petäjä, Joschka Pfeifer, Maxim Philippov, Matti P. Rissanen, Birte Rörup, Siegfried Schobesberger, Simone Schuchmann, Jiali Shen, Mikko Sipilä, Gerhard Steiner, Yuri Stozhkov, Christian Tauber, Yee Jun Tham, António Tomé, Miguel Vazquez-Pufleau, Andrea C. Wagner, Mingyi Wang, Yonghong Wang, Stefan K. Weber, Daniela Wimmer, Peter J. Wlasits, Yusheng Wu, Qing Ye, Marcel Zauner-Wieczorek, Urs Baltensperger, Kenneth S. Carslaw, Joachim Curtius, Neil M. Donahue, Richard C. Flagan, Armin Hansel, Markku Kulmala, Jos Lelieveld, Rainer Volkamer, Jasper Kirkby, and Paul M. Winkler
Atmos. Chem. Phys., 20, 7359–7372, https://doi.org/10.5194/acp-20-7359-2020, https://doi.org/10.5194/acp-20-7359-2020, 2020
Short summary
Short summary
Sulfuric acid is a major atmospheric vapour for aerosol formation. If new particles grow fast enough, they can act as cloud droplet seeds or affect air quality. In a controlled laboratory set-up, we demonstrate that van der Waals forces enhance growth from sulfuric acid. We disentangle the effects of ammonia, ions and particle hydration, presenting a complete picture of sulfuric acid growth from molecular clusters onwards. In a climate model, we show its influence on the global aerosol budget.
Jian Xu, Jia Chen, Na Zhao, Guochen Wang, Guangyuan Yu, Hao Li, Juntao Huo, Yanfen Lin, Qingyan Fu, Hongyu Guo, Congrui Deng, Shan-Hu Lee, Jianmin Chen, and Kan Huang
Atmos. Chem. Phys., 20, 7259–7269, https://doi.org/10.5194/acp-20-7259-2020, https://doi.org/10.5194/acp-20-7259-2020, 2020
Short summary
Short summary
This study provided evidence that gas-particle partitioning of ammonia, as opposed to ammonia concentration, plays a critical role in the haze formation. A reduction in ammonia emissions alone may not reduce air pollution effectively, at least at rural agricultural sites in China.
Weiqi Xu, Yao He, Yanmei Qiu, Chun Chen, Conghui Xie, Lu Lei, Zhijie Li, Jiaxing Sun, Junyao Li, Pingqing Fu, Zifa Wang, Douglas R. Worsnop, and Yele Sun
Atmos. Meas. Tech., 13, 3205–3219, https://doi.org/10.5194/amt-13-3205-2020, https://doi.org/10.5194/amt-13-3205-2020, 2020
Short summary
Short summary
We characterized mass spectral features of organic aerosol (OA) and water-soluble OA (WSOA) from 21 cooking, crop straw, wood, and coal burning experiments using aerosol mass spectrometers with standard and capture vaporizers, and we demonstrated the applications of source spectral profiles in improving source apportionment of ambient OA at a highly polluted rural site in the North China Plain in winter.
Manuela van Pinxteren, Khanneh Wadinga Fomba, Nadja Triesch, Christian Stolle, Oliver Wurl, Enno Bahlmann, Xianda Gong, Jens Voigtländer, Heike Wex, Tiera-Brandy Robinson, Stefan Barthel, Sebastian Zeppenfeld, Erik Hans Hoffmann, Marie Roveretto, Chunlin Li, Benoit Grosselin, Veronique Daële, Fabian Senf, Dominik van Pinxteren, Malena Manzi, Nicolás Zabalegui, Sanja Frka, Blaženka Gašparović, Ryan Pereira, Tao Li, Liang Wen, Jiarong Li, Chao Zhu, Hui Chen, Jianmin Chen, Björn Fiedler, Wolf von Tümpling, Katie Alana Read, Shalini Punjabi, Alastair Charles Lewis, James Roland Hopkins, Lucy Jane Carpenter, Ilka Peeken, Tim Rixen, Detlef Schulz-Bull, María Eugenia Monge, Abdelwahid Mellouki, Christian George, Frank Stratmann, and Hartmut Herrmann
Atmos. Chem. Phys., 20, 6921–6951, https://doi.org/10.5194/acp-20-6921-2020, https://doi.org/10.5194/acp-20-6921-2020, 2020
Short summary
Short summary
An introduction to a comprehensive field campaign performed at the Cape Verde Atmospheric Observatory regarding ocean–atmosphere interactions is given. Chemical, physical, biological and meteorological techniques were applied, and measurements of bulk water, the sea surface microlayer, cloud water and ambient aerosol particles took place. Oceanic compounds were found to be transferred to atmospheric aerosol and to the cloud level; however, sea spray contributions to CCN and INPs were limited.
Xinning Wang, Xingnan Ye, Jianmin Chen, Xiaofei Wang, Xin Yang, Tzung-May Fu, Lei Zhu, and Chongxuan Liu
Atmos. Chem. Phys., 20, 6273–6290, https://doi.org/10.5194/acp-20-6273-2020, https://doi.org/10.5194/acp-20-6273-2020, 2020
Short summary
Short summary
Hygroscopicity plays several key roles in determining aerosol optical properties and aging processes in the atmosphere. However, it is quite difficult to study aerosol hygroscopicity at the single-particle level. In this study, we built a comprehensive database linking hygroscopicities and mass spectra of individual particles. Based on the measured hygroscopicity–composition relations, we developed a statistical method to estimate ambient particle hygroscopicity just from their mass spectra.
Yanjun Zhang, Otso Peräkylä, Chao Yan, Liine Heikkinen, Mikko Äijälä, Kaspar R. Daellenbach, Qiaozhi Zha, Matthieu Riva, Olga Garmash, Heikki Junninen, Pentti Paatero, Douglas Worsnop, and Mikael Ehn
Atmos. Chem. Phys., 20, 5945–5961, https://doi.org/10.5194/acp-20-5945-2020, https://doi.org/10.5194/acp-20-5945-2020, 2020
Short summary
Short summary
By utilizing a new analysis approach, we investigated atmospheric oxidation of biogenic volatile emissions in a Finnish forest, measured by chemical ionization mass spectrometry. We identified several new compound groups, including low-volatility accretion products and their formation pathways. Results from this study are important for understanding atmospheric aerosol formation, as well as providing new perspectives on future lab studies and data analysis of short-lived species.
Yan Zheng, Xi Cheng, Keren Liao, Yaowei Li, Yong Jie Li, Ru-Jin Huang, Weiwei Hu, Ying Liu, Tong Zhu, Shiyi Chen, Limin Zeng, Douglas R. Worsnop, and Qi Chen
Atmos. Meas. Tech., 13, 2457–2472, https://doi.org/10.5194/amt-13-2457-2020, https://doi.org/10.5194/amt-13-2457-2020, 2020
Short summary
Short summary
This paper provides important information to help researchers to understand the mass quantification and source apportionment by Aerodyne aerosol mass spectrometers.
Arttu Ylisirniö, Angela Buchholz, Claudia Mohr, Zijun Li, Luis Barreira, Andrew Lambe, Celia Faiola, Eetu Kari, Taina Yli-Juuti, Sergey A. Nizkorodov, Douglas R. Worsnop, Annele Virtanen, and Siegfried Schobesberger
Atmos. Chem. Phys., 20, 5629–5644, https://doi.org/10.5194/acp-20-5629-2020, https://doi.org/10.5194/acp-20-5629-2020, 2020
Short summary
Short summary
We studied the chemical composition and volatility of secondary organic aerosol (SOA) particles formed from emissions of Scots pines and compared those results to SOA formed from α-pinene and from a sesquiterpene mixture. We found that SOA formed from single precursors cannot capture the properties of SOA formed from real plant emissions.
Yuning Xie, Gehui Wang, Xinpei Wang, Jianmin Chen, Yubao Chen, Guiqian Tang, Lili Wang, Shuangshuang Ge, Guoyan Xue, Yuesi Wang, and Jian Gao
Atmos. Chem. Phys., 20, 5019–5033, https://doi.org/10.5194/acp-20-5019-2020, https://doi.org/10.5194/acp-20-5019-2020, 2020
Short summary
Short summary
As a result of strict emission control, nitrate-dominated PM2.5 in pollution episodes was observed in urban Beijing during the winter of 2017–2018. With the help of sufficient ammonia, particle pH could increase to near neutral (5.4) as particulate nitrate fraction increases. Further tests imply that airborne particle hygroscopicity would be enhanced at moderate RH in nitrate-dominated particles, and pH elevation will be accelerated when ammonia and particulate nitrate both increase.
Dean Chen, Putian Zhou, Tuomo Nieminen, Pontus Roldin, Ximeng Qi, Petri Clusius, Carlton Xavier, Lukas Pichelstorfer, Markku Kulmala, Pekka Rantala, Juho Aalto, Nina Sarnela, Pasi Kolari, Petri Keronen, Matti P. Rissanen, Metin Baykara, and Michael Boy
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-128, https://doi.org/10.5194/acp-2020-128, 2020
Preprint withdrawn
Short summary
Short summary
Atmospheric oxidants OH, O3 and NO3 dominate the atmospheric oxidation capacity, and sulfuric acid (H2SO4) is considered as a main driver for new particle formation events. We studied how the trends of these atmospheric oxidants and H2SO4 changed in southern Finland during the past 12 years and discussed how these trends related to decreasing emissions of air pollutants in Europe. Our results showed that OH increased by 1.56 % yr−1 at daytime and NO3 decreased by 3.92 % yr−1 at nighttime.
Jing Duan, Ru-Jin Huang, Yongjie Li, Qi Chen, Yan Zheng, Yang Chen, Chunshui Lin, Haiyan Ni, Meng Wang, Jurgita Ovadnevaite, Darius Ceburnis, Chunying Chen, Douglas R. Worsnop, Thorsten Hoffmann, Colin O'Dowd, and Junji Cao
Atmos. Chem. Phys., 20, 3793–3807, https://doi.org/10.5194/acp-20-3793-2020, https://doi.org/10.5194/acp-20-3793-2020, 2020
Short summary
Short summary
We characterized secondary aerosol formation in Beijing. Our results showed that relative humidity (RH) and Ox have opposite effects on sulfate and nitrate formation in summer and winter. The wintertime more-oxidized OOA (MO-OOA) showed a good correlation with aerosol liquid water content (ALWC). Meanwhile, the dependence of less-oxidized OOA (LO-OOA) and the mass ratio of LO-OOA to MO-OOA in Ox both degraded when RH > 60 %, suggesting that RH or ALWC may also affect LO-OOA formation.
Liine Heikkinen, Mikko Äijälä, Matthieu Riva, Krista Luoma, Kaspar Dällenbach, Juho Aalto, Pasi Aalto, Diego Aliaga, Minna Aurela, Helmi Keskinen, Ulla Makkonen, Pekka Rantala, Markku Kulmala, Tuukka Petäjä, Douglas Worsnop, and Mikael Ehn
Atmos. Chem. Phys., 20, 3151–3180, https://doi.org/10.5194/acp-20-3151-2020, https://doi.org/10.5194/acp-20-3151-2020, 2020
Short summary
Short summary
Atmospheric aerosols are solid or liquid particles suspended in the air. They are known as a health risk, but they also influence the Earth's climate. The composition of aerosols becomes important when predicting their effect on climate. We show both seasonal and year-to-year variability of aerosol chemical composition in the boreal forest of Finland. We observed a consistent bimodal seasonal trend: a biogenic summertime maximum and an anthropogenic wintertime maximum in the mass concentration.
Lu Lei, Conghui Xie, Dawei Wang, Yao He, Qingqing Wang, Wei Zhou, Wei Hu, Pingqing Fu, Yong Chen, Xiaole Pan, Zifa Wang, Douglas R. Worsnop, and Yele Sun
Atmos. Chem. Phys., 20, 2877–2890, https://doi.org/10.5194/acp-20-2877-2020, https://doi.org/10.5194/acp-20-2877-2020, 2020
Short summary
Short summary
We characterized aerosol composition and sources near two steel plants in a coastal region in fall and spring seasons. Our results showed substantially different aerosol composition and sources between the two seasons. We observed significant impacts of steel plant emissions on aerosol chemistry nearby, and we found that aerosol particles emitted from the steel plants were dominated by ammonium sulfate/bisulfate; NOx/CO and NOx/SO2 were distinct from those in the absence of industrial plumes.
Can Wu, Gehui Wang, Jin Li, Jianjun Li, Cong Cao, Shuangshuang Ge, Yuning Xie, Jianmin Chen, Xingru Li, Guoyan Xue, Xinpei Wang, Zhuyu Zhao, and Fang Cao
Atmos. Chem. Phys., 20, 2017–2030, https://doi.org/10.5194/acp-20-2017-2020, https://doi.org/10.5194/acp-20-2017-2020, 2020
Short summary
Short summary
Brown carbon (BrC), as an important component of aerosol, has attracted wide attention in recent years, yet very limited information on size differences is available. This paper reveals that BrC presented a bimodal pattern and was mainly derived from biomass burning in an interior city of China. Our results are very helpful for readers to comprehensively understand the features of brown carbon in China.
Haiyan Li, Matthieu Riva, Pekka Rantala, Liine Heikkinen, Kaspar Daellenbach, Jordan E. Krechmer, Pierre-Marie Flaud, Douglas Worsnop, Markku Kulmala, Eric Villenave, Emilie Perraudin, Mikael Ehn, and Federico Bianchi
Atmos. Chem. Phys., 20, 1941–1959, https://doi.org/10.5194/acp-20-1941-2020, https://doi.org/10.5194/acp-20-1941-2020, 2020
Short summary
Short summary
We deployed the recently developed Vocus PTR-TOF in the French Landes forest during summertime to gain insights into terpene chemistry. In addition to isoprene, monoterpenes, sesquiterpenes, and the low-volatility diterpenes, various terpene reaction products are characterized. Through the analysis of terpene chemistry, we demonstrate the capability of the Vocus PTR-TOF for the detection of oxidized reaction products, highlighting its importance in investigating atmospheric oxidation processes.
Fan Zhang, Hai Guo, Yingjun Chen, Volker Matthias, Yan Zhang, Xin Yang, and Jianmin Chen
Atmos. Chem. Phys., 20, 1549–1564, https://doi.org/10.5194/acp-20-1549-2020, https://doi.org/10.5194/acp-20-1549-2020, 2020
Short summary
Short summary
Particulate matter (PM) emitted from ships has gained more attention in recent decades. Organic matter, elemental carbon, water-soluble ions and heavy metals in PM and particle numbers are the main points. However, studies of detailed chemical compositions in particles with different size ranges emitted from ships are in shortage. This study could bring new and detailed measurement data into the field of size-segregated particles from ships and be of great source emission interest.
Ditte Taipale, Juho Aalto, Pauliina Schiestl-Aalto, Markku Kulmala, and Jaana Bäck
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-502, https://doi.org/10.5194/bg-2019-502, 2020
Preprint withdrawn
Jian Zhu, Shanshan Wang, Hongli Wang, Shengao Jing, Shengrong Lou, Alfonso Saiz-Lopez, and Bin Zhou
Atmos. Chem. Phys., 20, 1217–1232, https://doi.org/10.5194/acp-20-1217-2020, https://doi.org/10.5194/acp-20-1217-2020, 2020
Short summary
Short summary
To investigate the summer ozone pollution, observationally constrained modelling was carried out to study atmospheric oxidation capacity (AOC), OH reactivity, OH chain length, and HOx budget for three different ozone concentration levels in Shanghai, China. It shows that AOC, dominated by reactions involving OH radical during the daytime, has a positive correlation with ozone levels. Some key VOCs species are very important for the OH reactivity and also the ozone formation potential.
Ying Zhou, Lubna Dada, Yiliang Liu, Yueyun Fu, Juha Kangasluoma, Tommy Chan, Chao Yan, Biwu Chu, Kaspar R. Daellenbach, Federico Bianchi, Tom V. Kokkonen, Yongchun Liu, Joni Kujansuu, Veli-Matti Kerminen, Tuukka Petäjä, Lin Wang, Jingkun Jiang, and Markku Kulmala
Atmos. Chem. Phys., 20, 1201–1216, https://doi.org/10.5194/acp-20-1201-2020, https://doi.org/10.5194/acp-20-1201-2020, 2020
Short summary
Short summary
In this study, we focus on explaining the concentration variations in the observed particle modes, by relating them to the potential aerosol sources and sinks, and on understanding the connections between these modes. Interestingly, even in the atmospheric cocktail in urban Beijing, secondary new particle formation (NPF) drives the particle number concentration, especially in the sub-3 nm range. We found that the total number concentration is ~ 4 times higher on NPF days than on haze days.
Marja Hemmilä, Ulla Makkonen, Aki Virkkula, Georgia Panagiotopoulou, Juho Aalto, Markku Kulmala, Tuukka Petäjä, Hannele Hakola, and Heidi Hellén
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-1157, https://doi.org/10.5194/acp-2019-1157, 2020
Publication in ACP not foreseen
Short summary
Short summary
Amines are atmospheric bases, which can affect to nucleation of aerosols. Lately, a computational study showed that guanidine could be even more effective to stabilize sulphuric acid clusters. In this paper we used a a dynamic flow-through chamber with an online ion chromatograph MARGA coupled with a mass spectrometer (MARGA-MS). We studied amine and guanidine emission from a boreal forest floor in Finland, and find out, that the boreal forest floor is a source of amines and guanidine.
Matti Räsänen, Mika Aurela, Ville Vakkari, Johan P. Beukes, Juha-Pekka Tuovinen, Pieter G. Van Zyl, Miroslav Josipovic, Stefan J. Siebert, Tuomas Laurila, Markku Kulmala, Lauri Laakso, Janne Rinne, Ram Oren, and Gabriel Katul
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-651, https://doi.org/10.5194/hess-2019-651, 2020
Revised manuscript not accepted
Short summary
Short summary
The annual ET is approximately equal to precipitation during six measured years for grazed savanna grassland. The computed annual transpiration was highly constrained when rainfall was near or above the long-term mean but was reduced during severe drought year. The developed methodologies can be used in a wide range of arid and semi-arid ecosystems.
Yonghong Wang, Miao Yu, Yuesi Wang, Guiqian Tang, Tao Song, Putian Zhou, Zirui Liu, Bo Hu, Dongsheng Ji, Lili Wang, Xiaowan Zhu, Chao Yan, Mikael Ehn, Wenkang Gao, Yuepeng Pan, Jinyuan Xin, Yang Sun, Veli-Matti Kerminen, Markku Kulmala, and Tuukka Petäjä
Atmos. Chem. Phys., 20, 45–53, https://doi.org/10.5194/acp-20-45-2020, https://doi.org/10.5194/acp-20-45-2020, 2020
Short summary
Short summary
We found a positive particle matter-mixing layer height feedback at three observation platforms at the 325 m Beijing meteorology tower, which is characterized by a shallower mixing layer height and a higher particle matter concentration. Measurements of solar radiation, aerosol chemical composition, meteorology parameters, trace gases and turbulent kinetic energy (TKE) could explain the feedback mechanism to some extent.
Yicheng Shen, Aki Virkkula, Aijun Ding, Krista Luoma, Helmi Keskinen, Pasi P. Aalto, Xuguang Chi, Ximeng Qi, Wei Nie, Xin Huang, Tuukka Petäjä, Markku Kulmala, and Veli-Matti Kerminen
Atmos. Chem. Phys., 19, 15483–15502, https://doi.org/10.5194/acp-19-15483-2019, https://doi.org/10.5194/acp-19-15483-2019, 2019
Short summary
Short summary
Long-term cloud condensation nuclei (CCN) number concentration (NCCN) data are scarce; there are a lot more data on aerosol optical properties (AOPs). It is therefore valuable to derive parameterizations for estimating NCCN from AOP measurements. With the new parameterization NCCN can be estimated from backscatter fraction, scattering Ångström exponent, and total light-scattering coefficient. The NCCN–AOP relationships depend on the geometric mean diameter and the width of the size distribution.
Alexander Zaytsev, Abigail R. Koss, Martin Breitenlechner, Jordan E. Krechmer, Kevin J. Nihill, Christopher Y. Lim, James C. Rowe, Joshua L. Cox, Joshua Moss, Joseph R. Roscioli, Manjula R. Canagaratna, Douglas R. Worsnop, Jesse H. Kroll, and Frank N. Keutsch
Atmos. Chem. Phys., 19, 15117–15129, https://doi.org/10.5194/acp-19-15117-2019, https://doi.org/10.5194/acp-19-15117-2019, 2019
Short summary
Short summary
Aromatic hydrocarbons contribute significantly to the production of tropospheric ozone and secondary organic aerosol (SOA). Here later-generation low-volatility oxygenated products from toluene and 1,2,4-TMB oxidation by OH are detected in the gas and particle phases. We show that these products, previously identified as highly oxygenated molecules (HOMs), are formed in more than one pathway with differing numbers of reaction steps with OH. They also make up a significant fraction of SOA.
Jingda Liu, Lili Wang, Mingge Li, Zhiheng Liao, Yang Sun, Tao Song, Wenkang Gao, Yonghong Wang, Yan Li, Dongsheng Ji, Bo Hu, Veli-Matti Kerminen, Yuesi Wang, and Markku Kulmala
Atmos. Chem. Phys., 19, 14477–14492, https://doi.org/10.5194/acp-19-14477-2019, https://doi.org/10.5194/acp-19-14477-2019, 2019
Short summary
Short summary
We analyzed the surface ozone variation characteristics and quantified the impact of synoptic and local meteorological factors on northern China during the warm season based on multi-city, in situ ozone and meteorological data, as well as meteorological reanalysis. The results of quantitative exploration on synoptic and local meteorological factors influencing both interannual and day-to-day ozone variations will provide the scientific basis for evaluating emission reduction measures.
Simonas Kecorius, Teresa Vogl, Pauli Paasonen, Janne Lampilahti, Daniel Rothenberg, Heike Wex, Sebastian Zeppenfeld, Manuela van Pinxteren, Markus Hartmann, Silvia Henning, Xianda Gong, Andre Welti, Markku Kulmala, Frank Stratmann, Hartmut Herrmann, and Alfred Wiedensohler
Atmos. Chem. Phys., 19, 14339–14364, https://doi.org/10.5194/acp-19-14339-2019, https://doi.org/10.5194/acp-19-14339-2019, 2019
Short summary
Short summary
Arctic sea-ice retreat, atmospheric new particle formation (NPF), and aerosol–cloud interaction may all be linked via a positive feedback mechanism. Understanding the sources of cloud condensation nuclei (CCN) is an important piece in the Arctic amplification puzzle. We show that Arctic newly formed particles do not have to grow beyond the Aitken mode to act as CCN. This is important, because NPF occurrence in the Arctic is expected to increase, making it a significant contributor to CCN budget.
Yuli Cheng, Shanshan Wang, Jian Zhu, Yanlin Guo, Ruifeng Zhang, Yiming Liu, Yan Zhang, Qi Yu, Weichun Ma, and Bin Zhou
Atmos. Chem. Phys., 19, 13611–13626, https://doi.org/10.5194/acp-19-13611-2019, https://doi.org/10.5194/acp-19-13611-2019, 2019
Short summary
Short summary
Owing to the gradual implementation of emission control zone (ECA) regulations, feasible technology for the surveillance of compliance with respect to fuel sulfur content is in high demand. We presented shore-based MAX-DOAS measurements of ship-emitted SO2 and NO2 under different traffic conditions. The results of this study indicate that this technique has high potential as a fast and accurate way to surveil ship emissions and fuel sulfur content.
Xuan Zhang, Haofei Zhang, Wen Xu, Xiaokang Wu, Geoffrey S. Tyndall, John J. Orlando, John T. Jayne, Douglas R. Worsnop, and Manjula R. Canagaratna
Atmos. Meas. Tech., 12, 5535–5545, https://doi.org/10.5194/amt-12-5535-2019, https://doi.org/10.5194/amt-12-5535-2019, 2019
Short summary
Short summary
We develop a new technique to characterize organic nitrates as intact molecules in atmospheric aerosols, and we apply this technique to identify hydroxy nitrates in secondary organic aerosols produced from the photochemical oxidation of isoprene.
Zhenzhen Wang, Tao Wang, Hongbo Fu, Liwu Zhang, Mingjin Tang, Christian George, Vicki H. Grassian, and Jianmin Chen
Atmos. Chem. Phys., 19, 12569–12585, https://doi.org/10.5194/acp-19-12569-2019, https://doi.org/10.5194/acp-19-12569-2019, 2019
Short summary
Short summary
This study confirmed that SO2 uptake on mineral particles could be greatly enhanced during cloud processing. The large pH fluctuations between the cloud-aerosol modes could significantly modify the microphysical properties of particles, and triggered the formation of reactive Fe particles to accelerate sulfate formation via a self-amplifying process. Results of this study could partly explain the missing source of sulfate and improve agreement between models and field observations.
Eleni Dovrou, Christopher Y. Lim, Manjula R. Canagaratna, Jesse H. Kroll, Douglas R. Worsnop, and Frank N. Keutsch
Atmos. Meas. Tech., 12, 5303–5315, https://doi.org/10.5194/amt-12-5303-2019, https://doi.org/10.5194/amt-12-5303-2019, 2019
Short summary
Short summary
Measurement techniques commonly used to analyze particulate matter composition can result in the possible misidentification of sulfur-containing species, especially for the case of sulfate and hydroxymethanesulfonate (HMS). The efficiency and limitations of these techniques, along with a method that enables further studies of the contribution of sulfur-containing species, S(IV) versus S(VI), to particulate matter under low-light atmospheric conditions, are described in this work.
Yunhua Chang, Yan-Lin Zhang, Jiarong Li, Chongguo Tian, Linlin Song, Xiaoyao Zhai, Wenqi Zhang, Tong Huang, Yu-Chi Lin, Chao Zhu, Yunting Fang, Moritz F. Lehmann, and Jianmin Chen
Atmos. Chem. Phys., 19, 12221–12234, https://doi.org/10.5194/acp-19-12221-2019, https://doi.org/10.5194/acp-19-12221-2019, 2019
Short summary
Short summary
The present work underscores the value of cloud water dissolved inorganic nitrogen isotopes as carriers of quantitative information on regional NOx and NH3 emissions. It sheds light on the origin and production pathways of nitrogenous species in clouds and emphasizes the importance of biomass-burning-derived nitrogenous species as cloud condensation nuclei in China’s troposphere. Moreover, it highlights the rapid evolution of NOx emissions in China.
Leonid Nichman, Martin Wolf, Paul Davidovits, Timothy B. Onasch, Yue Zhang, Doug R. Worsnop, Janarjan Bhandari, Claudio Mazzoleni, and Daniel J. Cziczo
Atmos. Chem. Phys., 19, 12175–12194, https://doi.org/10.5194/acp-19-12175-2019, https://doi.org/10.5194/acp-19-12175-2019, 2019
Short summary
Short summary
Previous studies showed widespread ice nucleation activity of soot. In this systematic study we investigated the factors that affect the heterogeneous ice nucleation activity of soot surrogates in the cirrus cloud regime. Our observations are consistent with an ice nucleation mechanism of pore condensation followed by freezing. The results show significant variations in ice nucleation activity as a function of size, morphology, and surface chemistry of the black-carbon-containing particles.
Xiaoxiao Li, Shaojie Song, Wei Zhou, Jiming Hao, Douglas R. Worsnop, and Jingkun Jiang
Atmos. Chem. Phys., 19, 12163–12174, https://doi.org/10.5194/acp-19-12163-2019, https://doi.org/10.5194/acp-19-12163-2019, 2019
Short summary
Short summary
Aerosol liquid water is ubiquitous in ambient aerosol. Using long-term aerosol chemical composition to model the aerosol water in Beijing, we found that water absorbed by organics contributes a significant fraction to the total aerosol water. We emphasize the hygroscopicity of organics is highly variable and should be taken into consideration in modelling. A positive feedback loop between organic hygroscopicity and aerosol water was found as one of the driving factors of severe haze in Beijing.
Krista Luoma, Aki Virkkula, Pasi Aalto, Tuukka Petäjä, and Markku Kulmala
Atmos. Chem. Phys., 19, 11363–11382, https://doi.org/10.5194/acp-19-11363-2019, https://doi.org/10.5194/acp-19-11363-2019, 2019
Short summary
Short summary
We present an over 10-year-long time series of aerosol optical properties (AOPs) measured at a rural boreal forest site. Knowledge of AOPs is needed in determining the direct effect of aerosol particles on climate. We observed decreasing trends in scattering and absorption and increasing trends in backscattering fraction and single-scattering albedo. Trends of single-scattering albedo and backscattering fraction increased the efficiency of aerosol particles to scatter radiation back into space.
Simo Hakala, Mansour A. Alghamdi, Pauli Paasonen, Ville Vakkari, Mamdouh I. Khoder, Kimmo Neitola, Lubna Dada, Ahmad S. Abdelmaksoud, Hisham Al-Jeelani, Ibrahim I. Shabbaj, Fahd M. Almehmadi, Anu-Maija Sundström, Heikki Lihavainen, Veli-Matti Kerminen, Jenni Kontkanen, Markku Kulmala, Tareq Hussein, and Antti-Pekka Hyvärinen
Atmos. Chem. Phys., 19, 10537–10555, https://doi.org/10.5194/acp-19-10537-2019, https://doi.org/10.5194/acp-19-10537-2019, 2019
Short summary
Short summary
Atmospheric aerosols have significant effects on human health and the climate. A large fraction of these aerosols originate from new particle formation, where atmospheric vapors form small nanosized particles that grow into larger sizes, thus becoming climatically relevant. We show that large amounts of fast-growing particles are formed frequently at a site located in western Saudi Arabia and that these particles are likely connected to strong nearby emissions from human activities.
Jing Duan, Ru-Jin Huang, Chunshui Lin, Wenting Dai, Meng Wang, Yifang Gu, Ying Wang, Haobin Zhong, Yan Zheng, Haiyan Ni, Uli Dusek, Yang Chen, Yongjie Li, Qi Chen, Douglas R. Worsnop, Colin D. O'Dowd, and Junji Cao
Atmos. Chem. Phys., 19, 10319–10334, https://doi.org/10.5194/acp-19-10319-2019, https://doi.org/10.5194/acp-19-10319-2019, 2019
Short summary
Short summary
We present the seasonal distinction of secondary aerosol formation in urban Beijing. Both photochemical oxidation and aqueous-phase processing played important roles in SOA (secondary organic aerosol) formation during all three seasons; while for sulfate formation, gas-phase photochemical oxidation was the major pathway in late summer, aqueous-phase reactions were more responsible during early winter, and both processes had contributions during autumn.
Weiqi Xu, Conghui Xie, Eleni Karnezi, Qi Zhang, Junfeng Wang, Spyros N. Pandis, Xinlei Ge, Jingwei Zhang, Junling An, Qingqing Wang, Jian Zhao, Wei Du, Yanmei Qiu, Wei Zhou, Yao He, Ying Li, Jie Li, Pingqing Fu, Zifa Wang, Douglas R. Worsnop, and Yele Sun
Atmos. Chem. Phys., 19, 10205–10216, https://doi.org/10.5194/acp-19-10205-2019, https://doi.org/10.5194/acp-19-10205-2019, 2019
Short summary
Short summary
We present the first aerosol volatility measurements in Beijing in summer using a thermodenuder coupled with aerosol mass spectrometers. Our results showed that organic aerosol (OA) comprised mainly semi-volatile organic compounds in summer, and the freshly oxidized secondary OA was the most volatile component. We also found quite different volatility distributions in black-carbon-containing primary and secondary OA, ambient OA, ambient secondary OA and the WRF-Chem model.
Jianming Xu, Xuexi Tie, Wei Gao, Yanfen Lin, and Qingyan Fu
Atmos. Chem. Phys., 19, 9017–9035, https://doi.org/10.5194/acp-19-9017-2019, https://doi.org/10.5194/acp-19-9017-2019, 2019
Short summary
Short summary
The PM2.5 in China has decreased significantly in recent years as a result of the implementation of the Chinese Clean Air Action Plan in 2013, while the O3 pollution is getting worse, especially in megacities. The work aims to better understand the elevated O3 pollution in the megacity of Shanghai, China, and its response to emission changes, which is important for developing an effective emission control strategy in the future.
Sanna Saarikoski, Leah R. Williams, Steven R. Spielman, Gregory S. Lewis, Arantzazu Eiguren-Fernandez, Minna Aurela, Susanne V. Hering, Kimmo Teinilä, Philip Croteau, John T. Jayne, Thorsten Hohaus, Douglas R. Worsnop, and Hilkka Timonen
Atmos. Meas. Tech., 12, 3907–3920, https://doi.org/10.5194/amt-12-3907-2019, https://doi.org/10.5194/amt-12-3907-2019, 2019
Short summary
Short summary
An air-to-air ultrafine particle concentrator (Aerosol Dynamics Inc. concentrator; ADIc) has been tailored for the low (~ 0.08 L min−1) inlet flow of aerosol mass spectrometers, and it provides a factor of 8–21 enrichment in the concentration of particles. The ADIc was evaluated in laboratory and field measurements. The results showed that the concentration factor depends primarily on the ratio between the sample flow and the output flow and is independent of particle size above about 10 nm.
Yanjun Zhang, Otso Peräkylä, Chao Yan, Liine Heikkinen, Mikko Äijälä, Kaspar R. Daellenbach, Qiaozhi Zha, Matthieu Riva, Olga Garmash, Heikki Junninen, Pentti Paatero, Douglas Worsnop, and Mikael Ehn
Atmos. Meas. Tech., 12, 3761–3776, https://doi.org/10.5194/amt-12-3761-2019, https://doi.org/10.5194/amt-12-3761-2019, 2019
Short summary
Short summary
Recent advancements in atmospheric mass spectrometry provide large amounts of new information but at the same time present considerable challenges for the data analysis, for example, in high-resolution peak identification and separation. To address these problems, this study presents a simple and novel method, which succeeds in analyzing both synthetic and ambient datasets. We believe it will become a powerful approach in the data analysis of mass spectra.
Xinning Wang, Yin Shen, Yanfen Lin, Jun Pan, Yan Zhang, Peter K. K. Louie, Mei Li, and Qingyan Fu
Atmos. Chem. Phys., 19, 6315–6330, https://doi.org/10.5194/acp-19-6315-2019, https://doi.org/10.5194/acp-19-6315-2019, 2019
Short summary
Short summary
Shipping emissions were measured online at Shanghai Port, and their impacts on local air quality at the port and in the surrounding area were quantitatively assessed. Ship emission plumes were readily detectable before they dissipated. We captured ship emission plumes using synchronized peaks of SO2 and vanadium particles. By measuring the pollutant concentrations during plumes and their occurrence frequency, we made quantitative estimations of ship emission impacts on port air quality.
Tao Wang, Yangyang Liu, Yue Deng, Hanyun Cheng, Yang Yang, Yiqing Feng, Muhammad Ali Tahir, Xiaozhong Fang, Xu Dong, Kejian Li, Saira Ajmal, Aziz-Ur-Rahim Bacha, Iqra Nabi, Hongbo Fu, Liwu Zhang, and Jianmin Chen
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-315, https://doi.org/10.5194/acp-2019-315, 2019
Revised manuscript not accepted
Short summary
Short summary
We studied the heterogeneous formation of nitrate and nitrite aerosols by in-situ laboratory tests and field observations. Sunlight becomes the protagonist under weak illumination, while a costar under strong irradiation, attributing to the balance between NO2 adsorption and the formation of photoinduced active species. Meanwhile, sunlight determines the association between atmospheric nitrate and nitrite. We hope this work offer more suggestions for modelling studies.
Junlan Feng, Yan Zhang, Shanshan Li, Jingbo Mao, Allison P. Patton, Yuyan Zhou, Weichun Ma, Cong Liu, Haidong Kan, Cheng Huang, Jingyu An, Li Li, Yin Shen, Qingyan Fu, Xinning Wang, Juan Liu, Shuxiao Wang, Dian Ding, Jie Cheng, Wangqi Ge, Hong Zhu, and Katherine Walker
Atmos. Chem. Phys., 19, 6167–6183, https://doi.org/10.5194/acp-19-6167-2019, https://doi.org/10.5194/acp-19-6167-2019, 2019
Short summary
Short summary
This study aims to estimate the emissions, air quality and population exposure impacts of shipping in 2015, prior to the implementation of the DECAs. It shows that ship emissions within 12 NM of the shore could account for over 55 % of the shipping impact on air pollution in the YRD in summer. Ships entering the Yangtze River and other inland waterways of Shanghai contribute 40–80 % of the ship-related air pollution and population exposure,which both have important implications regarding policy.
Xiaofei Qin, Xiaohao Wang, Yijie Shi, Guangyuan Yu, Na Zhao, Yanfen Lin, Qingyan Fu, Dongfang Wang, Zhouqing Xie, Congrui Deng, and Kan Huang
Atmos. Chem. Phys., 19, 5923–5940, https://doi.org/10.5194/acp-19-5923-2019, https://doi.org/10.5194/acp-19-5923-2019, 2019
Short summary
Short summary
The seasonal pattern of atmospheric mercury species over a regional transport intersection zone in east China indicated impacts from both natural re-emissions and anthropogenic emissions. Quasi-local sources were more important than long-range transport for mercury, opposite from particles. Shipping activities were especially outstanding emissions. Abnormally high GOM was ascribed to the high oxidant levels. The gas–particle partition inhibited the formation of GOM under high particle levels.
Yonghong Wang, Yuesi Wang, Lili Wang, Tuukka Petäjä, Qiaozhi Zha, Chongshui Gong, Sixuan Li, Yuepeng Pan, Bo Hu, Jinyuan Xin, and Markku Kulmala
Atmos. Chem. Phys., 19, 5881–5888, https://doi.org/10.5194/acp-19-5881-2019, https://doi.org/10.5194/acp-19-5881-2019, 2019
Short summary
Short summary
Satellite observations combined with in situ measurements demonstrate that increased inorganic aerosol fractions of NO2 and SO2 contribute to air pollution and frequently occurring haze in China from 1980 to 2010. Currently, the reduction of nitrate, sulfate and their precursor gases would contribute towards better visibility in China.
Matthieu Riva, Pekka Rantala, Jordan E. Krechmer, Otso Peräkylä, Yanjun Zhang, Liine Heikkinen, Olga Garmash, Chao Yan, Markku Kulmala, Douglas Worsnop, and Mikael Ehn
Atmos. Meas. Tech., 12, 2403–2421, https://doi.org/10.5194/amt-12-2403-2019, https://doi.org/10.5194/amt-12-2403-2019, 2019
Short summary
Short summary
The impact of aerosol particles on climate and air quality remains poorly understood due to multiple factors. One of the current limitations is the incomplete understanding of the contribution of oxygenated species, formed from the oxidation of volatile organic compounds (VOCs) to aerosol formation. Taking advantage of recent mass spectrometric developments, we have evaluated and compared the capability of multiple state-of-the-art mass spectrometers to detect a wide variety of oxygenated VOCs.
Katri Leino, Janne Lampilahti, Pyry Poutanen, Riikka Väänänen, Antti Manninen, Stephany Buenrostro Mazon, Lubna Dada, Anna Franck, Daniela Wimmer, Pasi P. Aalto, Lauri R. Ahonen, Joonas Enroth, Juha Kangasluoma, Petri Keronen, Frans Korhonen, Heikki Laakso, Teemu Matilainen, Erkki Siivola, Hanna E. Manninen, Katrianne Lehtipalo, Veli-Matti Kerminen, Tuukka Petäjä, and Markku Kulmala
Atmos. Chem. Phys., 19, 4127–4138, https://doi.org/10.5194/acp-19-4127-2019, https://doi.org/10.5194/acp-19-4127-2019, 2019
Short summary
Short summary
This study presents airborne observations of particles, starting from 1.5 nm in diameter, above the boreal forest from 100 m up to 2700 m. The aim was to study the extent of NPF and likely places for nucleation. We found that the highest concentrations of 1.5–3 nm particles were above the forest canopy top on NPF event mornings, and the concentration decreased with increasing altitude. This would indicate the importance of gaseous precursors from vegetation for NPF processes in this area.
Angela Buchholz, Andrew T. Lambe, Arttu Ylisirniö, Zijun Li, Olli-Pekka Tikkanen, Celia Faiola, Eetu Kari, Liqing Hao, Olli Luoma, Wei Huang, Claudia Mohr, Douglas R. Worsnop, Sergey A. Nizkorodov, Taina Yli-Juuti, Siegfried Schobesberger, and Annele Virtanen
Atmos. Chem. Phys., 19, 4061–4073, https://doi.org/10.5194/acp-19-4061-2019, https://doi.org/10.5194/acp-19-4061-2019, 2019
Short summary
Short summary
We studied the evaporation of α-pinene secondary organic aerosol particles in clean air to derive their volatility from the observed size changes. We found that the particles became more resilient to evaporation with increased oxidative age, possibly increasing their lifetime in the atmosphere. Also, increased relative humidity increased the particle evaporation. Mass spectrometry measurements of the particles at different stages of evaporation revealed some water-induced composition changes.
Mikko Äijälä, Kaspar R. Daellenbach, Francesco Canonaco, Liine Heikkinen, Heikki Junninen, Tuukka Petäjä, Markku Kulmala, André S. H. Prévôt, and Mikael Ehn
Atmos. Chem. Phys., 19, 3645–3672, https://doi.org/10.5194/acp-19-3645-2019, https://doi.org/10.5194/acp-19-3645-2019, 2019
Short summary
Short summary
Aerosol mass spectrometry produces large amounts of complex data, the analysis of which necessitates chemometrics – the application of advanced statistical and mathematical tools to chemical data. Here, we perform a data-driven analysis of multiple aerosol mass spectrometric data sets, to show that the traditional separation of organics and inorganics is not necessary. The resulting 7-component aerosol speciation explains 83 % to 96 % of observed variability at our boreal forest experiment site.
Zhaofeng Tan, Keding Lu, Meiqing Jiang, Rong Su, Hongli Wang, Shengrong Lou, Qingyan Fu, Chongzhi Zhai, Qinwen Tan, Dingli Yue, Duohong Chen, Zhanshan Wang, Shaodong Xie, Limin Zeng, and Yuanhang Zhang
Atmos. Chem. Phys., 19, 3493–3513, https://doi.org/10.5194/acp-19-3493-2019, https://doi.org/10.5194/acp-19-3493-2019, 2019
Short summary
Short summary
We evaluated the atmospheric oxidation capacity (AOC) in four Chinese megacities during photochemically polluted seasons. The chemical production of ozone and particle nitrate was diagnosed through a box model, which can be attributed to daytime radical chemistry. Our work highlights that the formation of both ozone and fine particles is largely driven by the atmospheric radical chemistry in China. Consequently, we suggest future pollution mitigation strategies should consider the role of AOC.
Rachel E. O'Brien, Kelsey J. Ridley, Manjula R. Canagaratna, John T. Jayne, Philip L. Croteau, Douglas R. Worsnop, Sri Hapsari Budisulistiorini, Jason D. Surratt, Christopher L. Follett, Daniel J. Repeta, and Jesse H. Kroll
Atmos. Meas. Tech., 12, 1659–1671, https://doi.org/10.5194/amt-12-1659-2019, https://doi.org/10.5194/amt-12-1659-2019, 2019
Short summary
Short summary
Analysis of the elemental composition of organic mixtures can provide insights into the sources and aging of environmental samples. Here we describe a method that allows characterization of this type of material using micrograms of material by a combination of a small-volume ultrasonic nebulizer and an aerosol mass spectrometer. This technique enables rapid analysis of complex organic mixtures using approximately an order of magnitude less sample than standard analyses.
Nikos Kalivitis, Veli-Matti Kerminen, Giorgos Kouvarakis, Iasonas Stavroulas, Evaggelia Tzitzikalaki, Panayiotis Kalkavouras, Nikos Daskalakis, Stelios Myriokefalitakis, Aikaterini Bougiatioti, Hanna E. Manninen, Pontus Roldin, Tuukka Petäjä, Michael Boy, Markku Kulmala, Maria Kanakidou, and Nikolaos Mihalopoulos
Atmos. Chem. Phys., 19, 2671–2686, https://doi.org/10.5194/acp-19-2671-2019, https://doi.org/10.5194/acp-19-2671-2019, 2019
Short summary
Short summary
New particle formation (NPF) is an important source of atmospheric aerosols. For the Mediterranean atmosphere, only few studies exist. In this study we present one of the longest series of NPF by analyzing 10 years of data from Crete, Greece. NPF took place on 27 % of the available days; it was more frequent in spring and less so in late summer. Model simulations showed that NPF in the subtropical environment may differ greatly from that in the boreal environment.
Ru-Jin Huang, Yichen Wang, Junji Cao, Chunshui Lin, Jing Duan, Qi Chen, Yongjie Li, Yifang Gu, Jin Yan, Wei Xu, Roman Fröhlich, Francesco Canonaco, Carlo Bozzetti, Jurgita Ovadnevaite, Darius Ceburnis, Manjula R. Canagaratna, John Jayne, Douglas R. Worsnop, Imad El-Haddad, André S. H. Prévôt, and Colin D. O'Dowd
Atmos. Chem. Phys., 19, 2283–2298, https://doi.org/10.5194/acp-19-2283-2019, https://doi.org/10.5194/acp-19-2283-2019, 2019
Short summary
Short summary
We found that in wintertime Shijiazhuang fine PM was mostly from primary emissions without sufficient atmospheric aging. In addition, secondary inorganic and organic aerosol dominated in pollution events under high-RH conditions, likely due to enhanced aqueous-phase chemistry, whereas primary organic aerosol dominated in pollution events under low-RH and stagnant conditions. Our results also highlighted the importance of meteorological conditions for PM pollution in this highly polluted city.
Michael Boy, Erik S. Thomson, Juan-C. Acosta Navarro, Olafur Arnalds, Ekaterina Batchvarova, Jaana Bäck, Frank Berninger, Merete Bilde, Zoé Brasseur, Pavla Dagsson-Waldhauserova, Dimitri Castarède, Maryam Dalirian, Gerrit de Leeuw, Monika Dragosics, Ella-Maria Duplissy, Jonathan Duplissy, Annica M. L. Ekman, Keyan Fang, Jean-Charles Gallet, Marianne Glasius, Sven-Erik Gryning, Henrik Grythe, Hans-Christen Hansson, Margareta Hansson, Elisabeth Isaksson, Trond Iversen, Ingibjorg Jonsdottir, Ville Kasurinen, Alf Kirkevåg, Atte Korhola, Radovan Krejci, Jon Egill Kristjansson, Hanna K. Lappalainen, Antti Lauri, Matti Leppäranta, Heikki Lihavainen, Risto Makkonen, Andreas Massling, Outi Meinander, E. Douglas Nilsson, Haraldur Olafsson, Jan B. C. Pettersson, Nønne L. Prisle, Ilona Riipinen, Pontus Roldin, Meri Ruppel, Matthew Salter, Maria Sand, Øyvind Seland, Heikki Seppä, Henrik Skov, Joana Soares, Andreas Stohl, Johan Ström, Jonas Svensson, Erik Swietlicki, Ksenia Tabakova, Throstur Thorsteinsson, Aki Virkkula, Gesa A. Weyhenmeyer, Yusheng Wu, Paul Zieger, and Markku Kulmala
Atmos. Chem. Phys., 19, 2015–2061, https://doi.org/10.5194/acp-19-2015-2019, https://doi.org/10.5194/acp-19-2015-2019, 2019
Short summary
Short summary
The Nordic Centre of Excellence CRAICC (Cryosphere–Atmosphere Interactions in a Changing Arctic Climate), funded by NordForsk in the years 2011–2016, is the largest joint Nordic research and innovation initiative to date and aimed to strengthen research and innovation regarding climate change issues in the Nordic region. The paper presents an overview of the main scientific topics investigated and provides a state-of-the-art comprehensive summary of what has been achieved in CRAICC.
Timo Vihma, Petteri Uotila, Stein Sandven, Dmitry Pozdnyakov, Alexander Makshtas, Alexander Pelyasov, Roberta Pirazzini, Finn Danielsen, Sergey Chalov, Hanna K. Lappalainen, Vladimir Ivanov, Ivan Frolov, Anna Albin, Bin Cheng, Sergey Dobrolyubov, Viktor Arkhipkin, Stanislav Myslenkov, Tuukka Petäjä, and Markku Kulmala
Atmos. Chem. Phys., 19, 1941–1970, https://doi.org/10.5194/acp-19-1941-2019, https://doi.org/10.5194/acp-19-1941-2019, 2019
Short summary
Short summary
The Arctic marine climate system, ecosystems, and socio-economic systems are changing rapidly. This calls for the establishment of a marine Arctic component of the Pan-Eurasian Experiment (MA-PEEX), for which we present a plan. The program will promote international collaboration; sustainable marine meteorological, sea ice, and oceanographic observations; advanced data management; and multidisciplinary research on the marine Arctic and its interaction with the Eurasian continent.
Yiqun Lu, Chao Yan, Yueyun Fu, Yan Chen, Yiliang Liu, Gan Yang, Yuwei Wang, Federico Bianchi, Biwu Chu, Ying Zhou, Rujing Yin, Rima Baalbaki, Olga Garmash, Chenjuan Deng, Weigang Wang, Yongchun Liu, Tuukka Petäjä, Veli-Matti Kerminen, Jingkun Jiang, Markku Kulmala, and Lin Wang
Atmos. Chem. Phys., 19, 1971–1983, https://doi.org/10.5194/acp-19-1971-2019, https://doi.org/10.5194/acp-19-1971-2019, 2019
Short summary
Short summary
Gaseous sulfuric acid is one of the key precursors for atmospheric new particle formation processes, but its measurement remains challenging. This work develops an estimation method for the gaseous sulfuric acid concentration in an urban environment in China using multiple atmospheric variables that are easier to measure. The consideration of the heterogeneous formation of HONO and the subsequent photo-production of OH radicals improves the performance of the estimation method.
Zhijian Li, Sergey A. Nizkorodov, Hong Chen, Xiaohui Lu, Xin Yang, and Jianmin Chen
Atmos. Chem. Phys., 19, 1343–1356, https://doi.org/10.5194/acp-19-1343-2019, https://doi.org/10.5194/acp-19-1343-2019, 2019
Short summary
Short summary
In this work, we found that acrolein, the smallest α,β-unsaturated aldehyde, has the potential to form light-absorbing heterocyclic secondary organic aerosol. In the gaseous phase, acrolein can react with gaseous ammonia, forming 3-picoline. In the liquid phase, the dissolved acrolein can react with ammonium to form higher molecular-weight pyridinium compounds. All the pyridinium compounds can increase the light absorptivity of aerosol particles.
Shaojie Song, Meng Gao, Weiqi Xu, Yele Sun, Douglas R. Worsnop, John T. Jayne, Yuzhong Zhang, Lei Zhu, Mei Li, Zhen Zhou, Chunlei Cheng, Yibing Lv, Ying Wang, Wei Peng, Xiaobin Xu, Nan Lin, Yuxuan Wang, Shuxiao Wang, J. William Munger, Daniel J. Jacob, and Michael B. McElroy
Atmos. Chem. Phys., 19, 1357–1371, https://doi.org/10.5194/acp-19-1357-2019, https://doi.org/10.5194/acp-19-1357-2019, 2019
Short summary
Short summary
Chemistry responsible for sulfate production in northern China winter haze remains mysterious. We propose a potentially key pathway through the reaction of formaldehyde and sulfur dioxide that has not been accounted for in previous studies. The special atmospheric conditions favor the formation and existence of their complex, hydroxymethanesulfonate (HMS).
Andrew T. Lambe, Jordan E. Krechmer, Zhe Peng, Jason R. Casar, Anthony J. Carrasquillo, Jonathan D. Raff, Jose L. Jimenez, and Douglas R. Worsnop
Atmos. Meas. Tech., 12, 299–311, https://doi.org/10.5194/amt-12-299-2019, https://doi.org/10.5194/amt-12-299-2019, 2019
Short summary
Short summary
This paper is an evaluation of methods used to generate OH radicals under conditions with high concentrations of NO and NO2 to simulate oxidation chemistry in polluted urban atmospheres over equivalent atmospheric timescales of ~ 1 day.
Biwu Chu, Veli-Matti Kerminen, Federico Bianchi, Chao Yan, Tuukka Petäjä, and Markku Kulmala
Atmos. Chem. Phys., 19, 115–138, https://doi.org/10.5194/acp-19-115-2019, https://doi.org/10.5194/acp-19-115-2019, 2019
Short summary
Short summary
The characteristics of new particle formation (NPF) in China, including frequency, formation rate, and particle growth rate, were summarized comprehensively and were compared among observations in different environments. The interactions between air pollution and NPF are discussed, as well as the possible reasons for more frequent NPF under heavy pollution conditions than in our current understanding. Significant and future research directions for NPF studies in China are also summarized.
Lubna Dada, Robert Chellapermal, Stephany Buenrostro Mazon, Pauli Paasonen, Janne Lampilahti, Hanna E. Manninen, Heikki Junninen, Tuukka Petäjä, Veli-Matti Kerminen, and Markku Kulmala
Atmos. Chem. Phys., 18, 17883–17893, https://doi.org/10.5194/acp-18-17883-2018, https://doi.org/10.5194/acp-18-17883-2018, 2018
Short summary
Short summary
Our paper provides an automatic method to classify new particle formation events into four classes based on the accompanying air ion concentrations. The method is applied to 10 years of data measured within the SMEAR II station and was capable of eliminating the undefined class as well as defining the start, peak and end times of a regional event by monitoring the initial steps of cluster formation. Our method can be modified and applied to different locations where particle formation occurs.
Ekaterina Ezhova, Ilona Ylivinkka, Joel Kuusk, Kaupo Komsaare, Marko Vana, Alisa Krasnova, Steffen Noe, Mikhail Arshinov, Boris Belan, Sung-Bin Park, Jošt Valentin Lavrič, Martin Heimann, Tuukka Petäjä, Timo Vesala, Ivan Mammarella, Pasi Kolari, Jaana Bäck, Üllar Rannik, Veli-Matti Kerminen, and Markku Kulmala
Atmos. Chem. Phys., 18, 17863–17881, https://doi.org/10.5194/acp-18-17863-2018, https://doi.org/10.5194/acp-18-17863-2018, 2018
Short summary
Short summary
Understanding the connections between aerosols, solar radiation and photosynthesis in terrestrial ecosystems is important for estimates of the CO2 balance in the atmosphere. Atmospheric aerosols and clouds influence solar radiation. In this study, we quantify the aerosol effect on solar radiation in boreal forests and study forest ecosystems response to this change in the radiation conditions. The analysis is based on atmospheric observations from several remote stations in Eurasian forests.
Liqing Hao, Olga Garmash, Mikael Ehn, Pasi Miettinen, Paola Massoli, Santtu Mikkonen, Tuija Jokinen, Pontus Roldin, Pasi Aalto, Taina Yli-Juuti, Jorma Joutsensaari, Tuukka Petäjä, Markku Kulmala, Kari E. J. Lehtinen, Douglas R. Worsnop, and Annele Virtanen
Atmos. Chem. Phys., 18, 17705–17716, https://doi.org/10.5194/acp-18-17705-2018, https://doi.org/10.5194/acp-18-17705-2018, 2018
Short summary
Short summary
An aerosol mass spectrometer was used to characterize aerosol chemical composition during new particle formation periods. The time profiles of mass concentrations and chemical composition of observed aerosol particles are subjected to joint effects of boundary layer dilution, atmospheric chemistry and aerosol mixing in different boundary layers. During the nighttime, the increase in organic aerosol mass correlated well with the increase in condensed highly oxygenated organic molecules' mass.
Qiaozhi Zha, Chao Yan, Heikki Junninen, Matthieu Riva, Nina Sarnela, Juho Aalto, Lauriane Quéléver, Simon Schallhart, Lubna Dada, Liine Heikkinen, Otso Peräkylä, Jun Zou, Clémence Rose, Yonghong Wang, Ivan Mammarella, Gabriel Katul, Timo Vesala, Douglas R. Worsnop, Markku Kulmala, Tuukka Petäjä, Federico Bianchi, and Mikael Ehn
Atmos. Chem. Phys., 18, 17437–17450, https://doi.org/10.5194/acp-18-17437-2018, https://doi.org/10.5194/acp-18-17437-2018, 2018
Short summary
Short summary
Vertical measurements of highly oxygenated molecules (HOMs) below and above the forest canopy were performed for the first time in a boreal forest during September 2016. Our results highlight that near-ground HOM measurements may only be representative of a small fraction of the entire nocturnal boundary layer, which may sequentially influence the growth of newly formed particles and SOA formation close to ground surface, where the majority of measurements are conducted.
Cristina Carnerero, Noemí Pérez, Cristina Reche, Marina Ealo, Gloria Titos, Hong-Ku Lee, Hee-Ram Eun, Yong-Hee Park, Lubna Dada, Pauli Paasonen, Veli-Matti Kerminen, Enrique Mantilla, Miguel Escudero, Francisco J. Gómez-Moreno, Elisabeth Alonso-Blanco, Esther Coz, Alfonso Saiz-Lopez, Brice Temime-Roussel, Nicolas Marchand, David C. S. Beddows, Roy M. Harrison, Tuukka Petäjä, Markku Kulmala, Kang-Ho Ahn, Andrés Alastuey, and Xavier Querol
Atmos. Chem. Phys., 18, 16601–16618, https://doi.org/10.5194/acp-18-16601-2018, https://doi.org/10.5194/acp-18-16601-2018, 2018
Short summary
Short summary
The vertical distribution of new particle formation events was studied using tethered balloons carrying miniaturized instrumentation. Results show that new particle formation and growth occurs only in the lower layer of the atmosphere, where aerosols are mixed due to convection, especially when the atmosphere is clean. A comparison of urban and suburban surface stations was also made, suggesting that such events may have a significant impact on ultrafine particle concentrations in a wide area.
Runlong Cai, Indra Chandra, Dongsen Yang, Lei Yao, Yueyun Fu, Xiaoxiao Li, Yiqun Lu, Lun Luo, Jiming Hao, Yan Ma, Lin Wang, Jun Zheng, Takafumi Seto, and Jingkun Jiang
Atmos. Chem. Phys., 18, 16587–16599, https://doi.org/10.5194/acp-18-16587-2018, https://doi.org/10.5194/acp-18-16587-2018, 2018
Short summary
Short summary
Significant influences of transport on measured aerosol size distributions are commonly observed. We propose a method for estimating the contributions of transport to nanoparticles during new particle formation events. This method was used to analyze new particle formation events in Southeast Tibet, Fukue Island, and urban Beijing. The changes in the contributions of transport have a good correlation with the changes in wind speed and direction, indicating the feasibility of the method.
Tracey Leah Laban, Pieter Gideon van Zyl, Johan Paul Beukes, Ville Vakkari, Kerneels Jaars, Nadine Borduas-Dedekind, Miroslav Josipovic, Anne Mee Thompson, Markku Kulmala, and Lauri Laakso
Atmos. Chem. Phys., 18, 15491–15514, https://doi.org/10.5194/acp-18-15491-2018, https://doi.org/10.5194/acp-18-15491-2018, 2018
Short summary
Short summary
Surface O3 was measured at four sites in the north-eastern interior of South Africa, which revealed that O3 is a regional problem in continental South Africa, with elevated O3 levels found at rural background and industrial sites. Increased O3 concentrations were associated with high CO levels predominantly related to regional biomass burning, while the O3 production regime was established to be predominantly VOC limited. Increased O3 is associated with strong seasonality of precursor sources.
Kangning Li, Xingnan Ye, Hongwei Pang, Xiaohui Lu, Hong Chen, Xiaofei Wang, Xin Yang, Jianmin Chen, and Yingjun Chen
Atmos. Chem. Phys., 18, 15201–15218, https://doi.org/10.5194/acp-18-15201-2018, https://doi.org/10.5194/acp-18-15201-2018, 2018
Short summary
Short summary
Temporal variation in the hygroscopicity and its correlation with the mixing state of ambient BC particles were studied using a HTDMA–SP2 system. Secondary organic carbon formation and condensation of nitrates were mainly responsible for the changes of hygroscopicity of BC particles during daytime and nighttime, respectively. Different atmospheric aging processes led to the change of BC particles' mixing states, which play a fundamental role in determining their hygroscopicity.
Tuomo Nieminen, Veli-Matti Kerminen, Tuukka Petäjä, Pasi P. Aalto, Mikhail Arshinov, Eija Asmi, Urs Baltensperger, David C. S. Beddows, Johan Paul Beukes, Don Collins, Aijun Ding, Roy M. Harrison, Bas Henzing, Rakesh Hooda, Min Hu, Urmas Hõrrak, Niku Kivekäs, Kaupo Komsaare, Radovan Krejci, Adam Kristensson, Lauri Laakso, Ari Laaksonen, W. Richard Leaitch, Heikki Lihavainen, Nikolaos Mihalopoulos, Zoltán Németh, Wei Nie, Colin O'Dowd, Imre Salma, Karine Sellegri, Birgitta Svenningsson, Erik Swietlicki, Peter Tunved, Vidmantas Ulevicius, Ville Vakkari, Marko Vana, Alfred Wiedensohler, Zhijun Wu, Annele Virtanen, and Markku Kulmala
Atmos. Chem. Phys., 18, 14737–14756, https://doi.org/10.5194/acp-18-14737-2018, https://doi.org/10.5194/acp-18-14737-2018, 2018
Short summary
Short summary
Atmospheric aerosols have diverse effects on air quality, human health, and global climate. One important source of aerosols is their formation via nucleation and growth in the atmosphere. We have analyzed long-term observations of regional new particle formation events around the globe and provide a comprehensive view on the characteristics of this phenomenon in diverse environments. The results are useful in developing more realistic representation of atmospheric aerosols in global models.
Lei Liu, Jian Zhang, Liang Xu, Qi Yuan, Dao Huang, Jianmin Chen, Zongbo Shi, Yele Sun, Pingqing Fu, Zifa Wang, Daizhou Zhang, and Weijun Li
Atmos. Chem. Phys., 18, 14681–14693, https://doi.org/10.5194/acp-18-14681-2018, https://doi.org/10.5194/acp-18-14681-2018, 2018
Short summary
Short summary
Using transmission electron microscopy, we studied individual cloud droplet residual and interstitial particles collected in cloud events at Mt. Tai in the polluted North China region. We found that individual cloud droplets were an extremely complicated mixture containing abundant refractory soot (i.e., black carbon), fly ash, and metals. The complicated cloud droplets have not been reported in clean continental or marine air before.
Zhong Li, Chunlin Li, Xingnan Ye, Hongbo Fu, Lin Wang, Xin Yang, Xinke Wang, Zhuohui Zhao, Haidong Kan, Abdelwahid Mellouki, and Jianmin Chen
Atmos. Chem. Phys., 18, 14445–14464, https://doi.org/10.5194/acp-18-14445-2018, https://doi.org/10.5194/acp-18-14445-2018, 2018
Short summary
Short summary
Air quality over the Yangtze River is important as it may significantly influence aquatic ecosystems, public health, and coastal areas. A comprehensive 15-day cruise campaign, TEMP, was performed in the mid–lower reaches of the Yangtze River in winter of 2015. Based on the filter samples, the chemical composition of PM2.5 greatly varied or fluctuated.
Juan Hong, Hanbing Xu, Haobo Tan, Changqing Yin, Liqing Hao, Fei Li, Mingfu Cai, Xuejiao Deng, Nan Wang, Hang Su, Yafang Cheng, Lin Wang, Tuukka Petäjä, and Veli-Matti Kerminen
Atmos. Chem. Phys., 18, 14079–14094, https://doi.org/10.5194/acp-18-14079-2018, https://doi.org/10.5194/acp-18-14079-2018, 2018
Short summary
Short summary
In this manuscript, we provide the results of the hygroscopicity of a more anthropogenically influenced aerosol in a suburban site in China. Organic material in the current type of aerosols showed moderate hygroscopicity, and it appeared to be less sensitive towards the variation of its oxidation level, which suggests different characteristics of the oxidation products in secondary organic aerosols (SOA) under the suburban/urban atmosphere in China when compared to other background environments.
Heidi Hellén, Arnaud P. Praplan, Toni Tykkä, Ilona Ylivinkka, Ville Vakkari, Jaana Bäck, Tuukka Petäjä, Markku Kulmala, and Hannele Hakola
Atmos. Chem. Phys., 18, 13839–13863, https://doi.org/10.5194/acp-18-13839-2018, https://doi.org/10.5194/acp-18-13839-2018, 2018
Short summary
Short summary
Exceptionally large ambient air concentration datasets of VOCs were measured in a boreal forest. For the first time concentration of the main sesquiterpene (β-caryophyllene) emitted by the local trees was also measured. Sesquiterpenes were found to have a major impact on local atmospheric chemistry, even though their concentrations were 30 times lower than the monoterpene concentrations. In addition, sesquiterpenes are expected to have a high impact on local secondary organic aerosol production.
David Patoulias, Christos Fountoukis, Ilona Riipinen, Ari Asmi, Markku Kulmala, and Spyros N. Pandis
Atmos. Chem. Phys., 18, 13639–13654, https://doi.org/10.5194/acp-18-13639-2018, https://doi.org/10.5194/acp-18-13639-2018, 2018
Short summary
Short summary
PMCAMx-UF, a 3-D chemical transport model focusing on the simulation of ultrafine particles, has been extended with the addition of the volatility basis set (VBS) approach for the simulation of organic aerosol. The model was applied in Europe and its predictions were evaluated against field observations collected during the PEGASOS 2012 campaign. The condensation of organics led to an increase (50–120 %) in the larger particles but the total number concentration decreased by 10–30 %.
Jenni Kontkanen, Tinja Olenius, Markku Kulmala, and Ilona Riipinen
Atmos. Chem. Phys., 18, 13733–13754, https://doi.org/10.5194/acp-18-13733-2018, https://doi.org/10.5194/acp-18-13733-2018, 2018
Short summary
Short summary
New particle formation involving sulfuric acid, bases and organic compounds is an important source of atmospheric aerosol particles. We investigate the capability of nano-Köhler theory to describe this process by simulating the dynamics of atmospheric molecular clusters. We find that nano-Köhler-type behavior occurs in our simulations when the saturation ratio of the organic vapor and the ratio between organic and inorganic vapor concentrations are in a suitable range.
Ying Ji, Xiaofei Qin, Bo Wang, Jian Xu, Jiandong Shen, Jianmin Chen, Kan Huang, Congrui Deng, Renchang Yan, Kaier Xu, and Tian Zhang
Atmos. Chem. Phys., 18, 13581–13600, https://doi.org/10.5194/acp-18-13581-2018, https://doi.org/10.5194/acp-18-13581-2018, 2018
Short summary
Short summary
Large-scale joint emission control measures were carried out in the Yangtze River Delta during the Hangzhou G20 Summit in 2016. The extent of secondary inorganic aerosol formation was found to be significantly enhanced under transport conditions from northern China. However, the formation of secondary organic aerosols was also greatly suppressed due to the emission control measures. Overall, it was found that regional/long-range transport could have offset part of the emission control efforts.
Pertti Hari, Steffen Noe, Sigrid Dengel, Jan Elbers, Bert Gielen, Veli-Matti Kerminen, Bart Kruijt, Liisa Kulmala, Anders Lindroth, Ivan Mammarella, Tuukka Petäjä, Guy Schurgers, Anni Vanhatalo, Markku Kulmala, and Jaana Bäck
Atmos. Chem. Phys., 18, 13321–13328, https://doi.org/10.5194/acp-18-13321-2018, https://doi.org/10.5194/acp-18-13321-2018, 2018
Short summary
Short summary
The development of eddy-covariance measurements of ecosystem CO2 fluxes began a new era in the field studies of photosynthesis. The interpretation of the very variable CO2 fluxes in evergreen forests has been problematic especially in seasonal transition times. We apply two theoretical needle-level equations and show they can predict photosynthetic CO2 flux between the atmosphere and Scots pine forests. This has strong implications for the interpretation of the global change and boreal forests.
Daniela Wimmer, Stephany Buenrostro Mazon, Hanna Elina Manninen, Juha Kangasluoma, Alessandro Franchin, Tuomo Nieminen, John Backman, Jian Wang, Chongai Kuang, Radovan Krejci, Joel Brito, Fernando Goncalves Morais, Scot Turnbull Martin, Paulo Artaxo, Markku Kulmala, Veli-Matti Kerminen, and Tuukka Petäjä
Atmos. Chem. Phys., 18, 13245–13264, https://doi.org/10.5194/acp-18-13245-2018, https://doi.org/10.5194/acp-18-13245-2018, 2018
Short summary
Short summary
This work focuses on understanding the production of very small airborne particles in the undisturbed environment of the Amazon basin. Computer models have shown that up to 70 % of these tiny particles are responsible for cloud formation on a global scale. The processes behind the production of these very small particles have been studied intensely recently. Their appearance has been observed almost all over the world. We directly measure sub-3 nm aerosols for the first time in the Amazon basin.
Chao Yan, Lubna Dada, Clémence Rose, Tuija Jokinen, Wei Nie, Siegfried Schobesberger, Heikki Junninen, Katrianne Lehtipalo, Nina Sarnela, Ulla Makkonen, Olga Garmash, Yonghong Wang, Qiaozhi Zha, Pauli Paasonen, Federico Bianchi, Mikko Sipilä, Mikael Ehn, Tuukka Petäjä, Veli-Matti Kerminen, Douglas R. Worsnop, and Markku Kulmala
Atmos. Chem. Phys., 18, 13231–13243, https://doi.org/10.5194/acp-18-13231-2018, https://doi.org/10.5194/acp-18-13231-2018, 2018
Short summary
Short summary
Ions can play an important role in atmospheric new particle formation by stabilizing the embryonic clusters. Such a process is called ion-induced nucleation (IIN). We found two distinct IIN mechanisms – driven by H2SO4-NH3 clusters and by organic vapors, respectively. The concentration ratio of organic vapors to H2SO4 regulates via which pathway the IIN occur. As the organic vapor concentration is influenced by temperature, a seasonal variation in the main IIN mechanism can be expected.
Martha A. Zaidan, Ville Haapasilta, Rishi Relan, Pauli Paasonen, Veli-Matti Kerminen, Heikki Junninen, Markku Kulmala, and Adam S. Foster
Atmos. Chem. Phys., 18, 12699–12714, https://doi.org/10.5194/acp-18-12699-2018, https://doi.org/10.5194/acp-18-12699-2018, 2018
Short summary
Short summary
This article promotes the use of the mutual information method for finding any non-linear associations among atmospheric variables. We demonstrate that the same results from previous studies are obtained by this method, which operates without supervision and without the need of understanding the physics deeply. This suggests that the method is suitable to be implemented widely in the atmospheric field to discover other interesting phenomena and their relevant variables.
Pauli Paasonen, Maija Peltola, Jenni Kontkanen, Heikki Junninen, Veli-Matti Kerminen, and Markku Kulmala
Atmos. Chem. Phys., 18, 12085–12103, https://doi.org/10.5194/acp-18-12085-2018, https://doi.org/10.5194/acp-18-12085-2018, 2018
Short summary
Short summary
We determine aerosol growth rates in diameter ranges from below 10 to over 300 nm from long-term data with a novel automatic method. We show that aerosol growth rate in boreal forest increases with increasing particle diameter from 10 nm to cloud condensation nuclei (CCN) sizes and that the growth rate of sub-CCN particles is not suppressed by increasing condensation sink. Our findings suggest that aerosol growth to CCN sizes is a faster and less self-regulated process than previously estimated.
Ximeng Qi, Aijun Ding, Pontus Roldin, Zhengning Xu, Putian Zhou, Nina Sarnela, Wei Nie, Xin Huang, Anton Rusanen, Mikael Ehn, Matti P. Rissanen, Tuukka Petäjä, Markku Kulmala, and Michael Boy
Atmos. Chem. Phys., 18, 11779–11791, https://doi.org/10.5194/acp-18-11779-2018, https://doi.org/10.5194/acp-18-11779-2018, 2018
Short summary
Short summary
In this study we simulate the HOM concentrations and discuss their roles in NPF at a remote boreal forest site in Finland and a suburban site in eastern China. We found that sulfuric acid and HOM organonitrate concentrations in the gas phase are significantly higher but other HOM monomers and dimers from monoterpene oxidation are lower in eastern China. This study highlights the need for molecular-scale measurements in improving the understanding of NPF mechanisms in polluted areas.
Wei Zhou, Jian Zhao, Bin Ouyang, Archit Mehra, Weiqi Xu, Yuying Wang, Thomas J. Bannan, Stephen D. Worrall, Michael Priestley, Asan Bacak, Qi Chen, Conghui Xie, Qingqing Wang, Junfeng Wang, Wei Du, Yingjie Zhang, Xinlei Ge, Penglin Ye, James D. Lee, Pingqing Fu, Zifa Wang, Douglas Worsnop, Roderic Jones, Carl J. Percival, Hugh Coe, and Yele Sun
Atmos. Chem. Phys., 18, 11581–11597, https://doi.org/10.5194/acp-18-11581-2018, https://doi.org/10.5194/acp-18-11581-2018, 2018
Short summary
Short summary
We present measurements of gas-phase N2O5 and ClNO2 by ToF-CIMS during summer in urban Beijing as part of the APHH campaign. High reactivity of N2O5 indicative of active nocturnal chemistry was observed. The lifetime of N2O5 as a function of aerosol surface area and relative humidity was characterized, and N2O5 uptake coefficients were estimated. We also found that the N2O5 loss in this study is mainly attributed to its indirect loss via reactions of NO3 with VOCs and NO.
Yanhong Zhu, Lingxiao Yang, Jianmin Chen, Kimitaka Kawamura, Mamiko Sato, Andreas Tilgner, Dominik van Pinxteren, Ying Chen, Likun Xue, Xinfeng Wang, Isobel J. Simpson, Hartmut Herrmann, Donald R. Blake, and Wenxing Wang
Atmos. Chem. Phys., 18, 10741–10758, https://doi.org/10.5194/acp-18-10741-2018, https://doi.org/10.5194/acp-18-10741-2018, 2018
Short summary
Short summary
Molecular distributions of dicarboxylic acids, oxocarboxylic acids and α-dicarbonyls in the free troposphere are identified, and their concentration variations between 2014 and 2006 are presented. High nighttime concentrations were probably due to precursor emissions and aqueous-phase oxidation. Biomass burning was significant, but its tracer levoglucosan in 2014 was 5 times lower than 2006 concentrations. Finally, regional emission from anthropogenic activities was identified as a major source.
Anna Nikandrova, Ksenia Tabakova, Antti Manninen, Riikka Väänänen, Tuukka Petäjä, Markku Kulmala, Veli-Matti Kerminen, and Ewan O'Connor
Atmos. Chem. Phys., 18, 10575–10591, https://doi.org/10.5194/acp-18-10575-2018, https://doi.org/10.5194/acp-18-10575-2018, 2018
Short summary
Short summary
We investigated temporal and vertical aerosol properties in a rural environment during BAECC (Biogenic Aerosols – Effects on Cloud and Climate) campaign. Differences were observed in aerosol number size distribution, variability and mixing in the layers between two case studies: clear-sky and partly cloudy case. We also conclude that care should be taken in selecting appropriate arrival heights of backward trajectories, since the modelled and observed layer heights did not always coincide.
Luciana Varanda Rizzo, Pontus Roldin, Joel Brito, John Backman, Erik Swietlicki, Radovan Krejci, Peter Tunved, Tukka Petäjä, Markku Kulmala, and Paulo Artaxo
Atmos. Chem. Phys., 18, 10255–10274, https://doi.org/10.5194/acp-18-10255-2018, https://doi.org/10.5194/acp-18-10255-2018, 2018
Short summary
Short summary
Aerosols are tiny particles suspended in the air that can interact with sunlight and form clouds, which in turn affect the climate. They can also recycle nutrients in forest environments. Aerosols are naturally emitted at the surface in the Amazon forest, in addition to being brought down from above the boundary layer by intense air movements. In this work, we describe how the particle size number concentrations of aerosols change over hours, days and seasons in a multi-year study in Amazonia.
Filippo Xausa, Pauli Paasonen, Risto Makkonen, Mikhail Arshinov, Aijun Ding, Hugo Denier Van Der Gon, Veli-Matti Kerminen, and Markku Kulmala
Atmos. Chem. Phys., 18, 10039–10054, https://doi.org/10.5194/acp-18-10039-2018, https://doi.org/10.5194/acp-18-10039-2018, 2018
Short summary
Short summary
Our project describes the feasibility of implementing particle number emissions taken from the GAINS model in global climate modeling through a simulation with the ECHAM-HAM global climate model. The results from the simulations have important implications regarding modeled particle number concentrations and future climate effects. Our findings represent an important starting point for further simulations concerning climate effects derived from anthropogenic particle emissions on a global scale.
Yue Zhang, Shachi Katira, Andrew Lee, Andrew T. Lambe, Timothy B. Onasch, Wen Xu, William A. Brooks, Manjula R. Canagaratna, Andrew Freedman, John T. Jayne, Doug R. Worsnop, Paul Davidovits, David Chandler, and Charles E. Kolb
Atmos. Meas. Tech., 11, 3479–3490, https://doi.org/10.5194/amt-11-3479-2018, https://doi.org/10.5194/amt-11-3479-2018, 2018
Short summary
Short summary
We have adopted a new technique for measuring glass-forming properties of atmospherically relevant organic aerosols at submicron sizes and relatively low mass concentrations. Aerosol particles are deposited in the form of a thin film with interdigitated electrodes using electrostatic precipitation. Broadband dielectric spectroscopy is used to measure the kinetically controlled glass transition temperatures of glycerol and citric acid aerosols with three atmospheric relevant cooling rates.
Yele Sun, Weiqi Xu, Qi Zhang, Qi Jiang, Francesco Canonaco, André S. H. Prévôt, Pingqing Fu, Jie Li, John Jayne, Douglas R. Worsnop, and Zifa Wang
Atmos. Chem. Phys., 18, 8469–8489, https://doi.org/10.5194/acp-18-8469-2018, https://doi.org/10.5194/acp-18-8469-2018, 2018
Short summary
Short summary
We present a 2–year analysis of organic aerosol (OA) from highly time–resolved measurements by an aerosol chemical speciation monitor in the megacity of Beijing. The sources of OA were analyzed with the advanced factor analysis of a multilinear engine (ME-2). Our results showed very different seasonal patterns, relative humidity and temperature dependence, and sources regions among different OA factors. The sources and processes of OA factors, and their roles in haze pollution are elucidated.
Jingbo Mao, Fangqun Yu, Yan Zhang, Jingyu An, Lin Wang, Jun Zheng, Lei Yao, Gan Luo, Weichun Ma, Qi Yu, Cheng Huang, Li Li, and Limin Chen
Atmos. Chem. Phys., 18, 7933–7950, https://doi.org/10.5194/acp-18-7933-2018, https://doi.org/10.5194/acp-18-7933-2018, 2018
Short summary
Short summary
A few pptv of gaseous amines have been observed to affect particle nucleation and growth, and it is necessary to understand the sources and concentrations of atmospheric amines. This study presents the source-dependent amines to ammonia emission ratios and simulates methylamines concentrations in a polluted region in China with WRF-Chem. The performance of simulations based on source-dependent ratios is much better than those based on fixed ratios that have been assumed in all previous studies.
Marco Pandolfi, Lucas Alados-Arboledas, Andrés Alastuey, Marcos Andrade, Christo Angelov, Begoña Artiñano, John Backman, Urs Baltensperger, Paolo Bonasoni, Nicolas Bukowiecki, Martine Collaud Coen, Sébastien Conil, Esther Coz, Vincent Crenn, Vadimas Dudoitis, Marina Ealo, Kostas Eleftheriadis, Olivier Favez, Prodromos Fetfatzis, Markus Fiebig, Harald Flentje, Patrick Ginot, Martin Gysel, Bas Henzing, Andras Hoffer, Adela Holubova Smejkalova, Ivo Kalapov, Nikos Kalivitis, Giorgos Kouvarakis, Adam Kristensson, Markku Kulmala, Heikki Lihavainen, Chris Lunder, Krista Luoma, Hassan Lyamani, Angela Marinoni, Nikos Mihalopoulos, Marcel Moerman, José Nicolas, Colin O'Dowd, Tuukka Petäjä, Jean-Eudes Petit, Jean Marc Pichon, Nina Prokopciuk, Jean-Philippe Putaud, Sergio Rodríguez, Jean Sciare, Karine Sellegri, Erik Swietlicki, Gloria Titos, Thomas Tuch, Peter Tunved, Vidmantas Ulevicius, Aditya Vaishya, Milan Vana, Aki Virkkula, Stergios Vratolis, Ernest Weingartner, Alfred Wiedensohler, and Paolo Laj
Atmos. Chem. Phys., 18, 7877–7911, https://doi.org/10.5194/acp-18-7877-2018, https://doi.org/10.5194/acp-18-7877-2018, 2018
Short summary
Short summary
This investigation presents the variability in near-surface in situ aerosol particle light-scattering measurements obtained over the past decade at 28 measuring atmospheric observatories which are part of the ACTRIS Research Infrastructure, and most of them belong to the GAW network. This paper provides a comprehensive picture of the spatial and temporal variability of aerosol particles optical properties in Europe.
Vladimir Melnikov, Viktor Gennadinik, Markku Kulmala, Hanna K. Lappalainen, Tuukka Petäjä, and Sergej Zilitinkevich
Atmos. Chem. Phys., 18, 6535–6542, https://doi.org/10.5194/acp-18-6535-2018, https://doi.org/10.5194/acp-18-6535-2018, 2018
Short summary
Short summary
The cryosphere of the Earth overlaps with the atmosphere, hydrosphere and lithosphere over vast areas with temperatures below zero C and pronounced H2O phase changes. The cryosphere plays the role of a global thermostat; however, the processes related to the cryosphere attract insufficient attention from research communities. We call attention to crucial importance of cryogenic anomalies, which make the Earth atmosphere and the entire Earth system unique.
Marja Hemmilä, Heidi Hellén, Aki Virkkula, Ulla Makkonen, Arnaud P. Praplan, Jenni Kontkanen, Lauri Ahonen, Markku Kulmala, and Hannele Hakola
Atmos. Chem. Phys., 18, 6367–6380, https://doi.org/10.5194/acp-18-6367-2018, https://doi.org/10.5194/acp-18-6367-2018, 2018
Short summary
Short summary
We measured gas- and particle-phase amine and ammonia concentrations in a boreal forest site in 2015 with online ion chromatography coupled with mass spectrometry. We wanted to know how much and which kinds of amines there are, and how they behave and could affect nucleation. We observed seasonal and diurnal variations for different amines. Amines turned out to be a heterogeneous group of compounds. To our best knowledge, our amine measurements are the longest time series that has been made.
Yicheng Shen, Aki Virkkula, Aijun Ding, Jiaping Wang, Xuguang Chi, Wei Nie, Ximeng Qi, Xin Huang, Qiang Liu, Longfei Zheng, Zheng Xu, Tuukka Petäjä, Pasi P. Aalto, Congbin Fu, and Markku Kulmala
Atmos. Chem. Phys., 18, 5265–5292, https://doi.org/10.5194/acp-18-5265-2018, https://doi.org/10.5194/acp-18-5265-2018, 2018
Short summary
Short summary
Aerosol optical properties (AOPs) were measured at SORPES, a regional background station in Nanjing, China from June 2013 to May 2015. The aerosol was highly scattering. The single-scattering albedo in Nanjing appears to be slightly higher than at several other sites. The data do not suggest any significant contribution to absorption by brown carbon. The sources of high values are mainly in eastern China. During pollution episodes, pollutant concentrations increased gradually but decreased fast.
Joonas Enroth, Jyri Mikkilä, Zoltán Németh, Markku Kulmala, and Imre Salma
Atmos. Chem. Phys., 18, 4533–4548, https://doi.org/10.5194/acp-18-4533-2018, https://doi.org/10.5194/acp-18-4533-2018, 2018
Short summary
Short summary
The urban aerosol particles in central Budapest consist of two externally mixed classes – nearly hydrophobic and less volatile particles, which were assigned to vehicle emissions (large mass fractions of soot likely coated with water-insoluble organic compounds) – and of less hygroscopic and volatile particles (moderately transformed aged combustion particles composed of partly oxygenated organics and inorganic salts internally mixed).
Liwei Wang, Xinfeng Wang, Rongrong Gu, Hao Wang, Lan Yao, Liang Wen, Fanping Zhu, Weihao Wang, Likun Xue, Lingxiao Yang, Keding Lu, Jianmin Chen, Tao Wang, Yuanghang Zhang, and Wenxing Wang
Atmos. Chem. Phys., 18, 4349–4359, https://doi.org/10.5194/acp-18-4349-2018, https://doi.org/10.5194/acp-18-4349-2018, 2018
Short summary
Short summary
This study presents concentrations, variation characteristics, sources and secondary formations of nitrated phenols, a major component of brown carbon, in typical seasons at four sites in northern China. The results highlight the strong influences and contributions of anthropogenic activities, in particular coal combustion and the aging processes, to the atmospheric nitrated phenols in this region.
Wei Zhou, Qingqing Wang, Xiujuan Zhao, Weiqi Xu, Chen Chen, Wei Du, Jian Zhao, Francesco Canonaco, André S. H. Prévôt, Pingqing Fu, Zifa Wang, Douglas R. Worsnop, and Yele Sun
Atmos. Chem. Phys., 18, 3951–3968, https://doi.org/10.5194/acp-18-3951-2018, https://doi.org/10.5194/acp-18-3951-2018, 2018
Short summary
Short summary
We present a 3-month analysis of submicron aerosols that were measured at 260 m on a meteorological tower in Beijing, China. The sources of organic aerosol (OA) were analyzed by using a multi-linear engine (ME-2). Our results showed significant changes in both primary and secondary OA composition from the non-heating season to the heating season. We also observed a considerable contribution (10–13%) of cooking OA at 260 m and very different OA composition between ground level and 260 m.
Qiongzhen Wang, Xinyi Dong, Joshua S. Fu, Jian Xu, Congrui Deng, Yilun Jiang, Qingyan Fu, Yanfen Lin, Kan Huang, and Guoshun Zhuang
Atmos. Chem. Phys., 18, 3505–3521, https://doi.org/10.5194/acp-18-3505-2018, https://doi.org/10.5194/acp-18-3505-2018, 2018
Short summary
Short summary
A synergy of ground-based atmospheric chemistry observation, lidar, and numerical modeling was used to investigate a super dust event passing over Shanghai. The degree of dust that was modified by anthropogenic sources highly depended on the transport pathways. A community regional air quality model with improved dust scheme reproduced reasonable dust chemistry results. The chemical and optical properties of evolving dust are crucial for evaluating the climatic effects of dust.
Julia Schmale, Silvia Henning, Stefano Decesari, Bas Henzing, Helmi Keskinen, Karine Sellegri, Jurgita Ovadnevaite, Mira L. Pöhlker, Joel Brito, Aikaterini Bougiatioti, Adam Kristensson, Nikos Kalivitis, Iasonas Stavroulas, Samara Carbone, Anne Jefferson, Minsu Park, Patrick Schlag, Yoko Iwamoto, Pasi Aalto, Mikko Äijälä, Nicolas Bukowiecki, Mikael Ehn, Göran Frank, Roman Fröhlich, Arnoud Frumau, Erik Herrmann, Hartmut Herrmann, Rupert Holzinger, Gerard Kos, Markku Kulmala, Nikolaos Mihalopoulos, Athanasios Nenes, Colin O'Dowd, Tuukka Petäjä, David Picard, Christopher Pöhlker, Ulrich Pöschl, Laurent Poulain, André Stephan Henry Prévôt, Erik Swietlicki, Meinrat O. Andreae, Paulo Artaxo, Alfred Wiedensohler, John Ogren, Atsushi Matsuki, Seong Soo Yum, Frank Stratmann, Urs Baltensperger, and Martin Gysel
Atmos. Chem. Phys., 18, 2853–2881, https://doi.org/10.5194/acp-18-2853-2018, https://doi.org/10.5194/acp-18-2853-2018, 2018
Short summary
Short summary
Collocated long-term observations of cloud condensation nuclei (CCN) number concentrations, particle number size distributions and chemical composition from 12 sites are synthesized. Observations cover coastal environments, the Arctic, the Mediterranean, the boreal and rain forest, high alpine and continental background sites, and Monsoon-influenced areas. We interpret regional and seasonal variability. CCN concentrations are predicted with the κ–Köhler model and compared to the measurements.
Nina Sarnela, Tuija Jokinen, Jonathan Duplissy, Chao Yan, Tuomo Nieminen, Mikael Ehn, Siegfried Schobesberger, Martin Heinritzi, Sebastian Ehrhart, Katrianne Lehtipalo, Jasmin Tröstl, Mario Simon, Andreas Kürten, Markus Leiminger, Michael J. Lawler, Matti P. Rissanen, Federico Bianchi, Arnaud P. Praplan, Jani Hakala, Antonio Amorim, Marc Gonin, Armin Hansel, Jasper Kirkby, Josef Dommen, Joachim Curtius, James N. Smith, Tuukka Petäjä, Douglas R. Worsnop, Markku Kulmala, Neil M. Donahue, and Mikko Sipilä
Atmos. Chem. Phys., 18, 2363–2380, https://doi.org/10.5194/acp-18-2363-2018, https://doi.org/10.5194/acp-18-2363-2018, 2018
Short summary
Short summary
Atmospheric trace gases can form small molecular clusters, which can grow to larger sizes through the condensation of vapours. This process is called new particle formation. In this paper we studied the formation of sulfuric acid and highly oxygenated molecules, the key compounds in atmospheric new particle formation, in chamber experiments and introduced a way to simulate these ozonolysis products of α-pinene in a simple manner.
Ekaterina Ezhova, Veli-Matti Kerminen, Kari E. J. Lehtinen, and Markku Kulmala
Atmos. Chem. Phys., 18, 2431–2442, https://doi.org/10.5194/acp-18-2431-2018, https://doi.org/10.5194/acp-18-2431-2018, 2018
Short summary
Short summary
A condensation sink (CS) quantifies the rate of uptake of condensing vapours by pre-existing aerosol and can be used as well to quantify losses of monomers/clusters. An analytical solution of the condensation equation valid in a wide range of particle diameters is presented. We describe the dynamics of atmospheric CS, test the formulas against field observations and further use them to develop a simplified model of the coupled dynamics of aerosol and condensing vapours in the atmosphere.
Ganglin Lv, Xiao Sui, Jianmin Chen, Rohan Jayaratne, and Abdelwahid Mellouki
Atmos. Chem. Phys., 18, 2243–2258, https://doi.org/10.5194/acp-18-2243-2018, https://doi.org/10.5194/acp-18-2243-2018, 2018
Short summary
Short summary
We conducted an investigation of new particle formation (NPF) at the summit of Mt. Tai, eastern China, based on simultaneous measurements of particle size distribution, meteorological parameters, gaseous species, mass concentration, and chemical composition of PM2.5. The general characteristics, favorable conditions, and potential precursor species of NPF events are discussed. An in-depth study of NPF on Mt. Tai is important for understanding the effect of particles on air quality.
Luís Miguel Feijó Barreira, Geoffroy Duporté, Tuukka Rönkkö, Jevgeni Parshintsev, Kari Hartonen, Lydia Hyrsky, Enna Heikkinen, Matti Jussila, Markku Kulmala, and Marja-Liisa Riekkola
Atmos. Meas. Tech., 11, 881–893, https://doi.org/10.5194/amt-11-881-2018, https://doi.org/10.5194/amt-11-881-2018, 2018
Short summary
Short summary
Our results demonstrated the benefits and challenges of using new SPME Arrow over SPME fiber for the sampling of BVOCs emitted by terrestrial vegetation in the atmosphere. The new SPME Arrow system showed significant improvement on sampling capacity, with collected amounts being approximately 2 times higher for monoterpenes and 7–8 times higher for aldehydes than with SPME fiber. Higher extraction efficiencies were obtained with dynamic collection prior to equilibrium regime.
Johannes Größ, Amar Hamed, André Sonntag, Gerald Spindler, Hanna Elina Manninen, Tuomo Nieminen, Markku Kulmala, Urmas Hõrrak, Christian Plass-Dülmer, Alfred Wiedensohler, and Wolfram Birmili
Atmos. Chem. Phys., 18, 1835–1861, https://doi.org/10.5194/acp-18-1835-2018, https://doi.org/10.5194/acp-18-1835-2018, 2018
Short summary
Short summary
This paper revisits the atmospheric new particle formation (NPF) process in the polluted troposphere. Novel aspects include a new NPF classification, which aims at more objectivity, and a long-term analysis of neutral cluster and air ion spectrometer data. Intense NPF events were associated with enhanced sulfur dioxide concentrations and solar radiation, while no significant relationships were observed with the condensation sink, surface-measured turbulence parameters, or ammonia.
Simon Schallhart, Pekka Rantala, Maija K. Kajos, Juho Aalto, Ivan Mammarella, Taina M. Ruuskanen, and Markku Kulmala
Atmos. Chem. Phys., 18, 815–832, https://doi.org/10.5194/acp-18-815-2018, https://doi.org/10.5194/acp-18-815-2018, 2018
Short summary
Short summary
Emissions of volatile organic compounds (VOCs) have impact to air quality, human health and climate. We investigated the development of VOC exchange in a boreal forest between April and June 2013. VOC exchange and diversity increased towards summer, but over 75 % of the biogenic net exchange was driven by methanol, monoterpenes and acetone only. The boreal forest emitted less than 0.2 % carbon in form of VOCs in relation to the carbon uptake.
Andreas Kürten, Chenxi Li, Federico Bianchi, Joachim Curtius, António Dias, Neil M. Donahue, Jonathan Duplissy, Richard C. Flagan, Jani Hakala, Tuija Jokinen, Jasper Kirkby, Markku Kulmala, Ari Laaksonen, Katrianne Lehtipalo, Vladimir Makhmutov, Antti Onnela, Matti P. Rissanen, Mario Simon, Mikko Sipilä, Yuri Stozhkov, Jasmin Tröstl, Penglin Ye, and Peter H. McMurry
Atmos. Chem. Phys., 18, 845–863, https://doi.org/10.5194/acp-18-845-2018, https://doi.org/10.5194/acp-18-845-2018, 2018
Short summary
Short summary
A recent laboratory study (CLOUD) showed that new particles nucleate efficiently from sulfuric acid and dimethylamine (DMA). The reanalysis of previously published data reveals that the nucleation rates are even faster than previously assumed, i.e., nucleation can proceed at rates that are compatible with collision-controlled new particle formation for atmospheric conditions. This indicates that sulfuric acid–DMA nucleation is likely an important source of particles in the boundary layer.
Carla Frege, Ismael K. Ortega, Matti P. Rissanen, Arnaud P. Praplan, Gerhard Steiner, Martin Heinritzi, Lauri Ahonen, António Amorim, Anne-Kathrin Bernhammer, Federico Bianchi, Sophia Brilke, Martin Breitenlechner, Lubna Dada, António Dias, Jonathan Duplissy, Sebastian Ehrhart, Imad El-Haddad, Lukas Fischer, Claudia Fuchs, Olga Garmash, Marc Gonin, Armin Hansel, Christopher R. Hoyle, Tuija Jokinen, Heikki Junninen, Jasper Kirkby, Andreas Kürten, Katrianne Lehtipalo, Markus Leiminger, Roy Lee Mauldin, Ugo Molteni, Leonid Nichman, Tuukka Petäjä, Nina Sarnela, Siegfried Schobesberger, Mario Simon, Mikko Sipilä, Dominik Stolzenburg, António Tomé, Alexander L. Vogel, Andrea C. Wagner, Robert Wagner, Mao Xiao, Chao Yan, Penglin Ye, Joachim Curtius, Neil M. Donahue, Richard C. Flagan, Markku Kulmala, Douglas R. Worsnop, Paul M. Winkler, Josef Dommen, and Urs Baltensperger
Atmos. Chem. Phys., 18, 65–79, https://doi.org/10.5194/acp-18-65-2018, https://doi.org/10.5194/acp-18-65-2018, 2018
Short summary
Short summary
It was recently shown that biogenic highly oxygenated molecules (HOMs) form particles in the absence of sulfuric acid and ions enhance the nucleation rate. Here we compare the molecular composition of positive and negative HOM clusters at 25, 5 and −25 °C. At lower temperatures the HOM average oxygen-to-carbon ratio decreases indicating a reduction in the rate of autoxidation due to rather high activation energy. The experimental findings are supported by quantum chemical calculations.
Xuemeng Chen, Lauriane L. J. Quéléver, Pak L. Fung, Jutta Kesti, Matti P. Rissanen, Jaana Bäck, Petri Keronen, Heikki Junninen, Tuukka Petäjä, Veli-Matti Kerminen, and Markku Kulmala
Atmos. Chem. Phys., 18, 49–63, https://doi.org/10.5194/acp-18-49-2018, https://doi.org/10.5194/acp-18-49-2018, 2018
Short summary
Short summary
We analysed a 20-year-long dataset collected in a Finnish boreal forest at SMEAR II station to investigate the frequency and strength of ozone depletion events. We could identify a number of ozone depletion events that lasted for more than 3 h, mainly in the autumn and winter months. Their occurrence was likely related to the formation of a low mixing layer under the conditions of low temperatures, low wind speeds, high relative humidities and limited intensity of solar radiation.
Robert Wagner, Chao Yan, Katrianne Lehtipalo, Jonathan Duplissy, Tuomo Nieminen, Juha Kangasluoma, Lauri R. Ahonen, Lubna Dada, Jenni Kontkanen, Hanna E. Manninen, Antonio Dias, Antonio Amorim, Paulus S. Bauer, Anton Bergen, Anne-Kathrin Bernhammer, Federico Bianchi, Sophia Brilke, Stephany Buenrostro Mazon, Xuemeng Chen, Danielle C. Draper, Lukas Fischer, Carla Frege, Claudia Fuchs, Olga Garmash, Hamish Gordon, Jani Hakala, Liine Heikkinen, Martin Heinritzi, Victoria Hofbauer, Christopher R. Hoyle, Jasper Kirkby, Andreas Kürten, Alexander N. Kvashnin, Tiia Laurila, Michael J. Lawler, Huajun Mai, Vladimir Makhmutov, Roy L. Mauldin III, Ugo Molteni, Leonid Nichman, Wei Nie, Andrea Ojdanic, Antti Onnela, Felix Piel, Lauriane L. J. Quéléver, Matti P. Rissanen, Nina Sarnela, Simon Schallhart, Kamalika Sengupta, Mario Simon, Dominik Stolzenburg, Yuri Stozhkov, Jasmin Tröstl, Yrjö Viisanen, Alexander L. Vogel, Andrea C. Wagner, Mao Xiao, Penglin Ye, Urs Baltensperger, Joachim Curtius, Neil M. Donahue, Richard C. Flagan, Martin Gallagher, Armin Hansel, James N. Smith, António Tomé, Paul M. Winkler, Douglas Worsnop, Mikael Ehn, Mikko Sipilä, Veli-Matti Kerminen, Tuukka Petäjä, and Markku Kulmala
Atmos. Chem. Phys., 17, 15181–15197, https://doi.org/10.5194/acp-17-15181-2017, https://doi.org/10.5194/acp-17-15181-2017, 2017
Pertti Hari, Veli-Matti Kerminen, Liisa Kulmala, Markku Kulmala, Steffen Noe, Tuukka Petäjä, Anni Vanhatalo, and Jaana Bäck
Atmos. Chem. Phys., 17, 15045–15053, https://doi.org/10.5194/acp-17-15045-2017, https://doi.org/10.5194/acp-17-15045-2017, 2017
Short summary
Short summary
We developed a theory on the seasonal behaviour of photosynthesis in natural conditions and tested the theory with intensive measurements. Light, temperature, water vapor and CO2 concentration explained the daily variation in photosynthesis, and the physiological state of the photosynthetic machinery explained the annual pattern of photosynthesis. The theory explained about 95 % of the variance of photosynthesis measured with chambers in the field in northern Finland.
Yunjiang Zhang, Lili Tang, Philip L. Croteau, Olivier Favez, Yele Sun, Manjula R. Canagaratna, Zhuang Wang, Florian Couvidat, Alexandre Albinet, Hongliang Zhang, Jean Sciare, André S. H. Prévôt, John T. Jayne, and Douglas R. Worsnop
Atmos. Chem. Phys., 17, 14501–14517, https://doi.org/10.5194/acp-17-14501-2017, https://doi.org/10.5194/acp-17-14501-2017, 2017
Short summary
Short summary
We conducted the first field measurements of non-refractory fine aerosols (NR-PM2.5) in a megacity of eastern China using a PM2.5-ACSM along with a PM1-ACSM measurement. Inter-comparisons demonstrated that the NR-PM2.5 components can be characterized. Substantial mass fractions of aerosol species were observed in the size range of 1–2.5 μm, with sulfate and SOA being the two largest contributors. The impacts of aerosol water driven by secondary inorganic aerosols on SOA formation were explored.
Xuemeng Chen, Aki Virkkula, Veli-Matti Kerminen, Hanna E. Manninen, Maurizio Busetto, Christian Lanconelli, Angelo Lupi, Vito Vitale, Massimo Del Guasta, Paolo Grigioni, Riikka Väänänen, Ella-Maria Duplissy, Tuukka Petäjä, and Markku Kulmala
Atmos. Chem. Phys., 17, 13783–13800, https://doi.org/10.5194/acp-17-13783-2017, https://doi.org/10.5194/acp-17-13783-2017, 2017
Short summary
Short summary
An air ion spectrometer was deployed for characterizing air ions for the first time at the Concordia station at Dome C on the Antarctic Plateau. We observed different ion processes: new particle formation (NPF), wind-induced ion production, and ion formation related to cloud and/or fog formation. Insights into these phenomena are presented. Additionally, the analysis on the growth of NPF events showed a size dependency of growth rates (GRs), i.e. GRs increase with particle sizes.
Federico Bianchi, Olga Garmash, Xucheng He, Chao Yan, Siddharth Iyer, Ida Rosendahl, Zhengning Xu, Matti P. Rissanen, Matthieu Riva, Risto Taipale, Nina Sarnela, Tuukka Petäjä, Douglas R. Worsnop, Markku Kulmala, Mikael Ehn, and Heikki Junninen
Atmos. Chem. Phys., 17, 13819–13831, https://doi.org/10.5194/acp-17-13819-2017, https://doi.org/10.5194/acp-17-13819-2017, 2017
Short summary
Short summary
Naturally charged highly oxidised molecules (HOMs) were characterized using advanced mass spectrometers. Two different classes of compounds, clustered with the nitrate and bisulfate ions, were identified: HOMs containing only carbon, hydrogen and oxygen and nitrogen-containing HOMs or organonitrates (ONs). They exhibit strong diurnal variations where HOMs peak during night and ONs during day. Finally, large clusters containing up to 40 carbon atoms (four oxidized
α-pinene units) were observed.
Elham Baranizadeh, Tuomo Nieminen, Taina Yli-Juuti, Markku Kulmala, Tuukka Petäjä, Ari Leskinen, Mika Komppula, Ari Laaksonen, and Kari E. J. Lehtinen
Atmos. Chem. Phys., 17, 13361–13371, https://doi.org/10.5194/acp-17-13361-2017, https://doi.org/10.5194/acp-17-13361-2017, 2017
Short summary
Short summary
Extrapolation of the particle formation rates from one measured larger size (e.g., 7 nm) to smaller sizes (e.g., 3 nm) based on simplified growth-scavenging dynamics works fairly well to estimate mean daily formation rates, but it fails to predict the time evolution of the particle population. This points to the challenges in predicting atmospheric nucleation rates for locations where the particle growth and loss rates are size- and time-dependent.
Eben S. Cross, Leah R. Williams, David K. Lewis, Gregory R. Magoon, Timothy B. Onasch, Michael L. Kaminsky, Douglas R. Worsnop, and John T. Jayne
Atmos. Meas. Tech., 10, 3575–3588, https://doi.org/10.5194/amt-10-3575-2017, https://doi.org/10.5194/amt-10-3575-2017, 2017
Short summary
Short summary
Low-cost air quality sensor technologies offer new opportunities for fast and distributed measurements of air pollution, but a persistent characterization gap remains when it comes to evaluating sensor performance under realistic environmental sampling conditions. We present results from a newly developed integrated AQ-sensor system (ARISense) and demonstrate the utility of using high-dimensional model representation to improve the conversion of raw sensor signal to ambient concentration.
Caihong Xu, Min Wei, Jianmin Chen, Chao Zhu, Jiarong Li, Ganglin Lv, Xianmang Xu, Lulu Zheng, Guodong Sui, Weijun Li, Bing Chen, Wenxing Wang, Qingzhu Zhang, Aijun Ding, and Abdelwahid Mellouki
Atmos. Chem. Phys., 17, 11247–11260, https://doi.org/10.5194/acp-17-11247-2017, https://doi.org/10.5194/acp-17-11247-2017, 2017
Short summary
Short summary
Fungi are ubiquitous throughout the near-surface atmosphere, where they represent an important component of primary biological aerosol particles. The diversity and composition of the fungal communities varied over the different seasons between the fine (PM2.5) and submicron (PM1) particles at the summit of Mt. Tai located in the North China Plain, China. This work may serve as an important reference for the fungal contribution to primary biological aerosol particles.
Jiarong Li, Xinfeng Wang, Jianmin Chen, Chao Zhu, Weijun Li, Chengbao Li, Lu Liu, Caihong Xu, Liang Wen, Likun Xue, Wenxing Wang, Aijun Ding, and Hartmut Herrmann
Atmos. Chem. Phys., 17, 9885–9896, https://doi.org/10.5194/acp-17-9885-2017, https://doi.org/10.5194/acp-17-9885-2017, 2017
Short summary
Short summary
Cloud events at Mt. Tai were investigated for the chemical composition and size distribution of cloud droplets. An obvious rise in pH was found for elevated NH+4 during the last decade. Higher PM2.5 levels resulted in higher concentrations of water-soluble ions, smaller sizes and higher numbers of cloud droplets. The mechanism of cloud-droplet formation and the mass transfer between aerosol–gas–cloud phases were summarized to enrich the knowledge of cloud chemical and microphysical properties.
Weiwei Hu, Pedro Campuzano-Jost, Douglas A. Day, Philip Croteau, Manjula R. Canagaratna, John T. Jayne, Douglas R. Worsnop, and Jose L. Jimenez
Atmos. Meas. Tech., 10, 2897–2921, https://doi.org/10.5194/amt-10-2897-2017, https://doi.org/10.5194/amt-10-2897-2017, 2017
Short summary
Short summary
Aerosol mass spectrometers (AMS) from ARI are used widely to measure the non-refractory species in PM1. Recently, a new capture vapourizer (CV) has been designed to reduce the need for a bounce-related CE correction in the commonly used standard vapourizer (SV) installed in AMS. To test the CV, the fragments, CE and size distributions of four pure inorganic species in the CV-AMS are investigated in various laboratory experiments. Results from the co-located SV-AMS are also shown as a comparison.
Georgios Tsagkogeorgas, Pontus Roldin, Jonathan Duplissy, Linda Rondo, Jasmin Tröstl, Jay G. Slowik, Sebastian Ehrhart, Alessandro Franchin, Andreas Kürten, Antonio Amorim, Federico Bianchi, Jasper Kirkby, Tuukka Petäjä, Urs Baltensperger, Michael Boy, Joachim Curtius, Richard C. Flagan, Markku Kulmala, Neil M. Donahue, and Frank Stratmann
Atmos. Chem. Phys., 17, 8923–8938, https://doi.org/10.5194/acp-17-8923-2017, https://doi.org/10.5194/acp-17-8923-2017, 2017
Short summary
Short summary
The H2SO4 vapour pressure plays key role in Earth's and Venus' atmospheres. In regions where RH is low and stabilising bases are scarce, H2SO4 can evaporate from particles; however the H2SO4 vapour pressure at low RH is uncertain. To address this, we measured H2SO4 evaporation versus T and RH in the CLOUD chamber and constrained the equilibrium constants for dissociation and dehydration of H2SO4. This study is important for nucleation, particle growth and H2SO4 formation occurring in atmosphere.
Andrew Lambe, Paola Massoli, Xuan Zhang, Manjula Canagaratna, John Nowak, Conner Daube, Chao Yan, Wei Nie, Timothy Onasch, John Jayne, Charles Kolb, Paul Davidovits, Douglas Worsnop, and William Brune
Atmos. Meas. Tech., 10, 2283–2298, https://doi.org/10.5194/amt-10-2283-2017, https://doi.org/10.5194/amt-10-2283-2017, 2017
Short summary
Short summary
This work enables the study of NOx-influenced secondary organic aerosol formation chemistry in oxidation flow reactors to an extent that was not previously possible. The method uses reactions of exited oxygen O(1D) radicals (formed from ozone photolysis at 254 nm or nitrous oxide photolysis at 185 nm) with nitrous oxide (N2O) to produce NO. We demonstrate proof of concept using chemical ionization mass spectrometer measurements to detect gas-phase oxidation products of isoprene and α -pinene.
Jinghao Zhai, Xiaohui Lu, Ling Li, Qi Zhang, Ci Zhang, Hong Chen, Xin Yang, and Jianmin Chen
Atmos. Chem. Phys., 17, 7481–7493, https://doi.org/10.5194/acp-17-7481-2017, https://doi.org/10.5194/acp-17-7481-2017, 2017
Short summary
Short summary
The effective density, chemical composition, and optical properties of particles produced by burning rice straw were measured. Density distribution and single-particle mass spectrometry showed the size-dependent external mixing of black carbon, organic carbon, and potassium salts in biomass burning particles. Optical measurements indicated the significant presence of brown carbon in all particles. Though freshly emitted, light absorption enhancement was observed for particles larger than 200 nm.
Juha Kangasluoma, Susanne Hering, David Picard, Gregory Lewis, Joonas Enroth, Frans Korhonen, Markku Kulmala, Karine Sellegri, Michel Attoui, and Tuukka Petäjä
Atmos. Meas. Tech., 10, 2271–2281, https://doi.org/10.5194/amt-10-2271-2017, https://doi.org/10.5194/amt-10-2271-2017, 2017
Short summary
Short summary
The manuscript presents a characterization of three new particle counters able to detect airborne nanoparticles smaller than 3 nm in diameter. We explored some of the parameters affecting the smallest detectable particle size, such as sample flow relative humidity, the particle chemical composition and the electrical charging state. The characterization results help one to select a suitable particle counter for a given application.
Yuanyuan Xie, Xingnan Ye, Zhen Ma, Ye Tao, Ruyu Wang, Ci Zhang, Xin Yang, Jianmin Chen, and Hong Chen
Atmos. Chem. Phys., 17, 7277–7290, https://doi.org/10.5194/acp-17-7277-2017, https://doi.org/10.5194/acp-17-7277-2017, 2017
Short summary
Short summary
Urban air pollution is one of the greatest environmental concern in 21st century. In this paper, we trace temporal evolutions of aerosol hygroscopicity and effective density during a representative particulate matter episode, which provide a strong support on that severe haze pollution can be formed in highly polluted areas by the initial accumulation of gas-phase and particulate pollutants under stagnant meteorological conditions and subsequent rapid particle growth by secondary processes.
Lubna Dada, Pauli Paasonen, Tuomo Nieminen, Stephany Buenrostro Mazon, Jenni Kontkanen, Otso Peräkylä, Katrianne Lehtipalo, Tareq Hussein, Tuukka Petäjä, Veli-Matti Kerminen, Jaana Bäck, and Markku Kulmala
Atmos. Chem. Phys., 17, 6227–6241, https://doi.org/10.5194/acp-17-6227-2017, https://doi.org/10.5194/acp-17-6227-2017, 2017
Short summary
Short summary
We studied new particle formation under clear-sky conditions in the boreal forest in southern Finland. We compared varying conditions between new particle events and nonevents. We then formulated a threshold value that separates new particle events from nonevents and reached a probability distribution for the frequency of new particle formation. This study serves as the basis for scientists aiming to improve their understanding of new particle formation.
Kgaugelo Euphinia Chiloane, Johan Paul Beukes, Pieter Gideon van Zyl, Petra Maritz, Ville Vakkari, Miroslav Josipovic, Andrew Derick Venter, Kerneels Jaars, Petri Tiitta, Markku Kulmala, Alfred Wiedensohler, Catherine Liousse, Gabisile Vuyisile Mkhatshwa, Avishkar Ramandh, and Lauri Laakso
Atmos. Chem. Phys., 17, 6177–6196, https://doi.org/10.5194/acp-17-6177-2017, https://doi.org/10.5194/acp-17-6177-2017, 2017
Short summary
Short summary
This paper presents atmospheric black carbon (BC) data collected in South Africa (SA). In general, BC level were higher than in the developed world. At one site, five sources were identified, with household combustion as well as savannah and grassland fires the most significant sources during winter and spring, while coal-fired power stations, pyrometallurgical smelters and traffic contributed year round.
Eero Nikinmaa, Tuomo Kalliokoski, Kari Minkkinen, Jaana Bäck, Michael Boy, Yao Gao, Nina Janasik-Honkela, Janne I. Hukkinen, Maarit Kallio, Markku Kulmala, Nea Kuusinen, Annikki Mäkelä, Brent D. Matthies, Mikko Peltoniemi, Risto Sievänen, Ditte Taipale, Lauri Valsta, Anni Vanhatalo, Martin Welp, Luxi Zhou, Putian Zhou, and Frank Berninger
Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-141, https://doi.org/10.5194/bg-2017-141, 2017
Manuscript not accepted for further review
Short summary
Short summary
We estimated the impact of boreal forest management on climate, considering the effects of carbon, albedo, aerosols, and effects of industrial wood use. We made analyses both in current and warmer climate of 2050. The aerosol effect was comparable to that of carbon sequestration. Deciduous trees may have a large potential for mitigation due to their high albedo and aerosol effects. If the forests will be used more intensively and mainly for pulp and energy, the warming influence is clear.
Yuqin Liu, Gerrit de Leeuw, Veli-Matti Kerminen, Jiahua Zhang, Putian Zhou, Wei Nie, Ximeng Qi, Juan Hong, Yonghong Wang, Aijun Ding, Huadong Guo, Olaf Krüger, Markku Kulmala, and Tuukka Petäjä
Atmos. Chem. Phys., 17, 5623–5641, https://doi.org/10.5194/acp-17-5623-2017, https://doi.org/10.5194/acp-17-5623-2017, 2017
Short summary
Short summary
The aerosol effects on warm cloud parameters over the Yangtze River Delta are systematically examined using multi-sensor retrievals. This study shows that the COT–CDR and CWP–CDR relationships are not unique, but are affected by atmospheric aerosol loading. CDR and cloud fraction show different behaviours for low and high AOD. Aerosol–cloud interaction (ACI) is stronger for clouds mixed with smoke aerosol than for clouds mixed with dust. Meteorological conditions play an important role in ACI.
Hilkka Timonen, Panu Karjalainen, Erkka Saukko, Sanna Saarikoski, Päivi Aakko-Saksa, Pauli Simonen, Timo Murtonen, Miikka Dal Maso, Heino Kuuluvainen, Matthew Bloss, Erik Ahlberg, Birgitta Svenningsson, Joakim Pagels, William H. Brune, Jorma Keskinen, Douglas R. Worsnop, Risto Hillamo, and Topi Rönkkö
Atmos. Chem. Phys., 17, 5311–5329, https://doi.org/10.5194/acp-17-5311-2017, https://doi.org/10.5194/acp-17-5311-2017, 2017
Short summary
Short summary
The effect of fuel ethanol content (10–100 %) on primary emissions and the subsequent secondary aerosol formation was investigated for a Euro 5 flex-fuel gasoline vehicle. The emissions were characterized during the New European Driving Cycle (NEDC) using high time-resolution instruments. The chemical composition of the exhaust particulate matter was studied using a soot particle aerosol mass spectrometer (SP-AMS), and the secondary aerosol formation was studied with an oxidation chamber.
Min Wei, Caihong Xu, Jianmin Chen, Chao Zhu, Jiarong Li, and Ganglin Lv
Atmos. Chem. Phys., 17, 5253–5270, https://doi.org/10.5194/acp-17-5253-2017, https://doi.org/10.5194/acp-17-5253-2017, 2017
Short summary
Short summary
Bacterial communities in cloud water collected at the summit of Mt Tai from 24 July to 23 August 2014 were investigated. A highly diverse bacterial community was retrieved. Community function prediction suggested that pathways related to metabolism and disease infections were significantly correlated with the predominant genera. Potential pathogens were enriched in the polluted cloud samples, whereas the diverse ecological function groups were significant in the non-polluted samples.
Rui Li, Yunjie Hu, Ling Li, Hongbo Fu, and Jianmin Chen
Atmos. Chem. Phys., 17, 5079–5093, https://doi.org/10.5194/acp-17-5079-2017, https://doi.org/10.5194/acp-17-5079-2017, 2017
Short summary
Short summary
Five episodes were divided based on meteorological conditions and chemical composition. The clear episodes (EP-2 and EP-4) featured low light extinction with fewer pollutants, which are mostly externally mixed. In contrast, EP-1 and EP-5 were impacted by the industrial activities and biomass burning through the southern air mass, respectively. Soot at the fog period detected in EP-3 was mostly internally mixed with sulfates and nitrates.
Chunlin Li, Yunjie Hu, Fei Zhang, Jianmin Chen, Zhen Ma, Xingnan Ye, Xin Yang, Lin Wang, Xingfu Tang, Renhe Zhang, Mu Mu, Guihua Wang, Haidong Kan, Xinming Wang, and Abdelwahid Mellouki
Atmos. Chem. Phys., 17, 4957–4988, https://doi.org/10.5194/acp-17-4957-2017, https://doi.org/10.5194/acp-17-4957-2017, 2017
Short summary
Short summary
Detailed emission factors for smoke particulate species in PM2.5 and PM1.0 were derived from laboratory simulation of crop straw burning using aerosol chamber systems. Based on this, emissions for crop residue field burning in China were calculated and characterized with respect to five different burning scenarios. Moreover, health effects and health-related economic loss from smoke particle exposure were assessed; a practical emission control policy for agricultural field burning was proposed.
Juan Hong, Mikko Äijälä, Silja A. K. Häme, Liqing Hao, Jonathan Duplissy, Liine M. Heikkinen, Wei Nie, Jyri Mikkilä, Markku Kulmala, Nønne L. Prisle, Annele Virtanen, Mikael Ehn, Pauli Paasonen, Douglas R. Worsnop, Ilona Riipinen, Tuukka Petäjä, and Veli-Matti Kerminen
Atmos. Chem. Phys., 17, 4387–4399, https://doi.org/10.5194/acp-17-4387-2017, https://doi.org/10.5194/acp-17-4387-2017, 2017
Short summary
Short summary
Estimates of volatility of secondary organic aerosols was characterized in a boreal forest environment of Hyytiälä, southern Finland. This was done by interpreting field measurements using a volatility tandem differential mobility analyzer (VTDMA) with a kinetic evaporation model and by applying positive matrix factorization (PMF) to high-resolution aerosol mass spectrometer data. About 16 % of the variation can be explained by the linear regression between the results from these two methods.
Ellis Shipley Robinson, Timothy B. Onasch, Douglas Worsnop, and Neil M. Donahue
Atmos. Meas. Tech., 10, 1139–1154, https://doi.org/10.5194/amt-10-1139-2017, https://doi.org/10.5194/amt-10-1139-2017, 2017
Wei Nie, Juan Hong, Silja A. K. Häme, Aijun Ding, Yugen Li, Chao Yan, Liqing Hao, Jyri Mikkilä, Longfei Zheng, Yuning Xie, Caijun Zhu, Zheng Xu, Xuguang Chi, Xin Huang, Yang Zhou, Peng Lin, Annele Virtanen, Douglas R. Worsnop, Markku Kulmala, Mikael Ehn, Jianzhen Yu, Veli-Matti Kerminen, and Tuukka Petäjä
Atmos. Chem. Phys., 17, 3659–3672, https://doi.org/10.5194/acp-17-3659-2017, https://doi.org/10.5194/acp-17-3659-2017, 2017
Short summary
Short summary
HULIS are demonstrated to be important low-volatility, or even extremely low volatility, compounds in the organic aerosol phase. This sheds new light on the connection between atmospheric HULIS and ELVOCs. The interaction between HULIS and ammonium sulfate was found to decrease the volatility of the HULIS part in HULIS-AS mixed samples, indicating multiphase processes have the potential to lower the volatility of organic compounds in the aerosol phase.
Hannele Hakola, Virpi Tarvainen, Arnaud P. Praplan, Kerneels Jaars, Marja Hemmilä, Markku Kulmala, Jaana Bäck, and Heidi Hellén
Atmos. Chem. Phys., 17, 3357–3370, https://doi.org/10.5194/acp-17-3357-2017, https://doi.org/10.5194/acp-17-3357-2017, 2017
Short summary
Short summary
We present spring and summer VOC emission rate measurements from Norway spruce using an in situ gas chromatograph. Monoterpene and C4–C10 aldehyde emission rates reached maxima in July. SQT emissions increased at the end of July and in August SQT were the most abundant group. The MT emission pattern varied a lot from tree to tree and therefore emission fluxes on canopy level should be conducted for more representative measurements. However, leaf level measurements produce more reliable SQT data.
Antti-Jussi Kieloaho, Mari Pihlatie, Samuli Launiainen, Markku Kulmala, Marja-Liisa Riekkola, Jevgeni Parshintsev, Ivan Mammarella, Timo Vesala, and Jussi Heinonsalo
Biogeosciences, 14, 1075–1091, https://doi.org/10.5194/bg-14-1075-2017, https://doi.org/10.5194/bg-14-1075-2017, 2017
Short summary
Short summary
The alkylamines are important precursors in secondary aerosol formation in boreal forests. We quantified alkylamine concentrations in fungal species present in boreal forests in order to estimate soil as a source of atmospheric alkylamines. Based on our knowledge we estimated possible soil–atmosphere exchange of these compounds. The results shows that the boreal forest soil could act as a source of alkylamines depending on environmental conditions and studied compound.
Mikko Äijälä, Liine Heikkinen, Roman Fröhlich, Francesco Canonaco, André S. H. Prévôt, Heikki Junninen, Tuukka Petäjä, Markku Kulmala, Douglas Worsnop, and Mikael Ehn
Atmos. Chem. Phys., 17, 3165–3197, https://doi.org/10.5194/acp-17-3165-2017, https://doi.org/10.5194/acp-17-3165-2017, 2017
Short summary
Short summary
Mass spectrometric measurements commonly yield data on hundreds of variables over thousands of points in time. Refining and synthesising this “raw” data into chemical information necessitates the use of advanced, statistics-based data analysis techniques. Here we present an example of combining data dimensionality reduction (factorisation) with exploratory classification (clustering) and show that the results complement and broaden our current perspectives on aerosol chemical classification.
Carla Frege, Federico Bianchi, Ugo Molteni, Jasmin Tröstl, Heikki Junninen, Stephan Henne, Mikko Sipilä, Erik Herrmann, Michel J. Rossi, Markku Kulmala, Christopher R. Hoyle, Urs Baltensperger, and Josef Dommen
Atmos. Chem. Phys., 17, 2613–2629, https://doi.org/10.5194/acp-17-2613-2017, https://doi.org/10.5194/acp-17-2613-2017, 2017
Short summary
Short summary
We present measurements of the chemical composition of atmospheric ions at high altitude (3450 m a.s.l.) during a 9-month campaign. We detected remarkably high correlation between methanesulfonic acid (MSA) and SO5−. Halogenated species were also detected frequently at this continental location. New-particle formation events occurred via the condensation of highly oxygenated molecules (HOMs) at very low sulfuric acid concentration or, less frequently, due to ammonia–sulfuric acid clusters.
Jenni Kontkanen, Katrianne Lehtipalo, Lauri Ahonen, Juha Kangasluoma, Hanna E. Manninen, Jani Hakala, Clémence Rose, Karine Sellegri, Shan Xiao, Lin Wang, Ximeng Qi, Wei Nie, Aijun Ding, Huan Yu, Shanhu Lee, Veli-Matti Kerminen, Tuukka Petäjä, and Markku Kulmala
Atmos. Chem. Phys., 17, 2163–2187, https://doi.org/10.5194/acp-17-2163-2017, https://doi.org/10.5194/acp-17-2163-2017, 2017
Short summary
Short summary
The concentrations of ~1–3 nm particles were investigated at nine sites around the world. Sub-3 nm particle concentrations were highest at the sites with strong anthropogenic influence. Electrically neutral particles dominated sub-3 nm particle concentrations in polluted environments and in boreal forest during spring and summer. Sub-3 nm particle concentrations were observed to be determined by the availability of precursor vapors rather than the sink caused by preexisting aerosol particles.
Shurui Chen, Liang Xu, Yinxiao Zhang, Bing Chen, Xinfeng Wang, Xiaoye Zhang, Mei Zheng, Jianmin Chen, Wenxing Wang, Yele Sun, Pingqing Fu, Zifa Wang, and Weijun Li
Atmos. Chem. Phys., 17, 1259–1270, https://doi.org/10.5194/acp-17-1259-2017, https://doi.org/10.5194/acp-17-1259-2017, 2017
Short summary
Short summary
Many studies have focused on the unusually severe hazes instead of the more frequent light and moderate hazes (22–63 %) in winter in the North China Plain (NCP). The morphology, mixing state, and size of organic aerosols in the L & M hazes were characterized. We conclude that the direct emissions from residential coal stoves without any pollution controls in rural and urban outskirts contribute large amounts of primary OM particles to the regional L & M hazes in winter in the NCP.
Kerneels Jaars, Pieter G. van Zyl, Johan P. Beukes, Heidi Hellén, Ville Vakkari, Micky Josipovic, Andrew D. Venter, Matti Räsänen, Leandra Knoetze, Dirk P. Cilliers, Stefan J. Siebert, Markku Kulmala, Janne Rinne, Alex Guenther, Lauri Laakso, and Hannele Hakola
Atmos. Chem. Phys., 16, 15665–15688, https://doi.org/10.5194/acp-16-15665-2016, https://doi.org/10.5194/acp-16-15665-2016, 2016
Short summary
Short summary
Biogenic volatile organic compounds (BVOCs) – important in tropospheric ozone and secondary organic aerosol formation – were measured at a savannah grassland in South Africa. Results presented are the most extensive for this type of landscape. Compared to other parts of the world, monoterpene levels were similar, while very low isoprene levels led to significantly lower total BVOC levels. BVOC levels were an order of magnitude lower compared to anthropogenic VOC levels measured at Welgegund.
Chen Xu, Junyan Duan, Yanyu Wang, Yifan Wang, Hailin Zhu, Xiang Li, Lingdong Kong, Qianshan He, Tiantao Cheng, and Jianmin Chen
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2016-968, https://doi.org/10.5194/acp-2016-968, 2016
Revised manuscript not accepted
Short summary
Short summary
We intensively examined the influence of polluted aerosol on cloud and precipitation on different underlying surfaces and evaluated relationship between aerosol types and physical properties of clouds under different atmospheric conditions over the YRD. Aerosol plays an important role in cloud evolution in the low layers of troposphere (below 5 km) in the case of the stable atmosphere in wintertime.The results are helpful to in-depth understanding of aerosol indirect effects in Asian.
Lei Yao, Ming-Yi Wang, Xin-Ke Wang, Yi-Jun Liu, Hang-Fei Chen, Jun Zheng, Wei Nie, Ai-Jun Ding, Fu-Hai Geng, Dong-Fang Wang, Jian-Min Chen, Douglas R. Worsnop, and Lin Wang
Atmos. Chem. Phys., 16, 14527–14543, https://doi.org/10.5194/acp-16-14527-2016, https://doi.org/10.5194/acp-16-14527-2016, 2016
Short summary
Short summary
We present the development of a high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) method, utilizing protonated ethanol as reagent ions to simultaneously detect atmospheric gaseous amines (C1 to C6) and amides (C1 to C6). Deployment of this ethanol HR-ToF-CIMS has been demonstrated in a field campaign in urban Shanghai, China, detecting amines (from a few pptv to hundreds of pptv) and amides (from tens of pptv to a few ppbv).
Hanna K. Lappalainen, Veli-Matti Kerminen, Tuukka Petäjä, Theo Kurten, Aleksander Baklanov, Anatoly Shvidenko, Jaana Bäck, Timo Vihma, Pavel Alekseychik, Meinrat O. Andreae, Stephen R. Arnold, Mikhail Arshinov, Eija Asmi, Boris Belan, Leonid Bobylev, Sergey Chalov, Yafang Cheng, Natalia Chubarova, Gerrit de Leeuw, Aijun Ding, Sergey Dobrolyubov, Sergei Dubtsov, Egor Dyukarev, Nikolai Elansky, Kostas Eleftheriadis, Igor Esau, Nikolay Filatov, Mikhail Flint, Congbin Fu, Olga Glezer, Aleksander Gliko, Martin Heimann, Albert A. M. Holtslag, Urmas Hõrrak, Juha Janhunen, Sirkku Juhola, Leena Järvi, Heikki Järvinen, Anna Kanukhina, Pavel Konstantinov, Vladimir Kotlyakov, Antti-Jussi Kieloaho, Alexander S. Komarov, Joni Kujansuu, Ilmo Kukkonen, Ella-Maria Duplissy, Ari Laaksonen, Tuomas Laurila, Heikki Lihavainen, Alexander Lisitzin, Alexsander Mahura, Alexander Makshtas, Evgeny Mareev, Stephany Mazon, Dmitry Matishov, Vladimir Melnikov, Eugene Mikhailov, Dmitri Moisseev, Robert Nigmatulin, Steffen M. Noe, Anne Ojala, Mari Pihlatie, Olga Popovicheva, Jukka Pumpanen, Tatjana Regerand, Irina Repina, Aleksei Shcherbinin, Vladimir Shevchenko, Mikko Sipilä, Andrey Skorokhod, Dominick V. Spracklen, Hang Su, Dmitry A. Subetto, Junying Sun, Arkady Y. Terzhevik, Yuri Timofeyev, Yuliya Troitskaya, Veli-Pekka Tynkkynen, Viacheslav I. Kharuk, Nina Zaytseva, Jiahua Zhang, Yrjö Viisanen, Timo Vesala, Pertti Hari, Hans Christen Hansson, Gennady G. Matvienko, Nikolai S. Kasimov, Huadong Guo, Valery Bondur, Sergej Zilitinkevich, and Markku Kulmala
Atmos. Chem. Phys., 16, 14421–14461, https://doi.org/10.5194/acp-16-14421-2016, https://doi.org/10.5194/acp-16-14421-2016, 2016
Short summary
Short summary
After kick off in 2012, the Pan-Eurasian Experiment (PEEX) program has expanded fast and today the multi-disciplinary research community covers ca. 80 institutes and a network of ca. 500 scientists from Europe, Russia, and China. Here we introduce scientific topics relevant in this context. This is one of the first multi-disciplinary overviews crossing scientific boundaries, from atmospheric sciences to socio-economics and social sciences.
Laura Riuttanen, Marja Bister, Veli-Matti Kerminen, Viju O. John, Anu-Maija Sundström, Miikka Dal Maso, Jouni Räisänen, Victoria A. Sinclair, Risto Makkonen, Filippo Xausa, Gerrit de Leeuw, and Markku Kulmala
Atmos. Chem. Phys., 16, 14331–14342, https://doi.org/10.5194/acp-16-14331-2016, https://doi.org/10.5194/acp-16-14331-2016, 2016
Short summary
Short summary
Here we show observational evidence that aerosols increase upper tropospheric humidity (UTH) via changes in the microphysics of deep convection. Using remote sensing data over the ocean east of China in summer, we show that increased aerosol loads are associated with an UTH increase of 2.2 ± 1.5 in units of relative humidity. We show that humidification of aerosols or other meteorological covariation is very unlikely to be the cause for this result indicating relevance for the global climate.
Xuemeng Chen, Veli-Matti Kerminen, Jussi Paatero, Pauli Paasonen, Hanna E. Manninen, Tuomo Nieminen, Tuukka Petäjä, and Markku Kulmala
Atmos. Chem. Phys., 16, 14297–14315, https://doi.org/10.5194/acp-16-14297-2016, https://doi.org/10.5194/acp-16-14297-2016, 2016
Short summary
Short summary
Ionising radiation is responsible for air ion production. However, minor efforts have been invested in understanding the connection of observed air ions to ionising radiation in the lower atmosphere and underlying processes therein. In this work, we analysed 4 years of ambient data collected in a Finnish boreal forest and found that gamma radiation dominates air ion production in the lower atmosphere and demonstrated clear promotion effects of the ionising radiation on air ion production.
Petri Tiitta, Ari Leskinen, Liqing Hao, Pasi Yli-Pirilä, Miika Kortelainen, Julija Grigonyte, Jarkko Tissari, Heikki Lamberg, Anni Hartikainen, Kari Kuuspalo, Aki-Matti Kortelainen, Annele Virtanen, Kari E. J. Lehtinen, Mika Komppula, Simone Pieber, André S. H. Prévôt, Timothy B. Onasch, Douglas R. Worsnop, Hendryk Czech, Ralf Zimmermann, Jorma Jokiniemi, and Olli Sippula
Atmos. Chem. Phys., 16, 13251–13269, https://doi.org/10.5194/acp-16-13251-2016, https://doi.org/10.5194/acp-16-13251-2016, 2016
Short summary
Short summary
Real-time measurements of OA aging and SOA formation from logwood combustion were conducted under dark and UV oxidation. Substantial SOA formation was observed in all experiments, leading to twice the initial OA mass emphasizing the importance of the burning conditions for the aging processes. The results prove that emissions are subject to intensive chemical processing in the atmosphere; e.g. the most of the POA was found to become oxidized after the ozone addition, forming aged POA.
Jenni Kontkanen, Pauli Paasonen, Juho Aalto, Jaana Bäck, Pekka Rantala, Tuukka Petäjä, and Markku Kulmala
Atmos. Chem. Phys., 16, 13291–13307, https://doi.org/10.5194/acp-16-13291-2016, https://doi.org/10.5194/acp-16-13291-2016, 2016
Short summary
Short summary
We developed proxies for estimating the concentrations of monoterpenes and their oxidation products at a boreal forest site in Hyytiälä, Finland. The proxies for the monoterpene concentration include temperature-controlled emissions, dilution and different oxidation processes. The proxies were observed to capture the seasonal and diurnal variation of the monoterpene concentration reasonably well. Our proxies can be used in the analysis of new particle formation and growth in boreal environments.
Xuan Zhang, Jordan E. Krechmer, Michael Groessl, Wen Xu, Stephan Graf, Michael Cubison, John T. Jayne, Jose L. Jimenez, Douglas R. Worsnop, and Manjula R. Canagaratna
Atmos. Chem. Phys., 16, 12945–12959, https://doi.org/10.5194/acp-16-12945-2016, https://doi.org/10.5194/acp-16-12945-2016, 2016
Short summary
Short summary
We develop a novel two-dimensional space to probe the molecular composition of atmospheric organic aerosols.
Chao Yan, Wei Nie, Mikko Äijälä, Matti P. Rissanen, Manjula R. Canagaratna, Paola Massoli, Heikki Junninen, Tuija Jokinen, Nina Sarnela, Silja A. K. Häme, Siegfried Schobesberger, Francesco Canonaco, Lei Yao, André S. H. Prévôt, Tuukka Petäjä, Markku Kulmala, Mikko Sipilä, Douglas R. Worsnop, and Mikael Ehn
Atmos. Chem. Phys., 16, 12715–12731, https://doi.org/10.5194/acp-16-12715-2016, https://doi.org/10.5194/acp-16-12715-2016, 2016
Short summary
Short summary
Highly oxidized multifunctional compounds (HOMs) are known to have a significant contribution to secondary aerosol formation, yet their dominating formation pathways remain unclear in the atmosphere. We apply positive matrix factorization (PMF) on HOM data, and successfully retrieve factors representing different formation pathways. The results improve our understanding of HOM formation, and provide new perspectives on using PMF to study the variation of short-lived specie.
Yi Zhu, Jiping Zhang, Junxia Wang, Wenyuan Chen, Yiqun Han, Chunxiang Ye, Yingruo Li, Jun Liu, Limin Zeng, Yusheng Wu, Xinfeng Wang, Wenxing Wang, Jianmin Chen, and Tong Zhu
Atmos. Chem. Phys., 16, 12551–12565, https://doi.org/10.5194/acp-16-12551-2016, https://doi.org/10.5194/acp-16-12551-2016, 2016
Short summary
Short summary
With five repeated experiments using a mobile laboratory, we obtained the spatial distribution of major air pollutants over the surface of the North China Plain (NCP). All the pollutants were at high levels, with pollutant peak values in nearby major cities and along transport routes. With simulated wind fields, we identified the prevalent transport routes of air pollutants on different parts of the NCP, reflecting the transport of air pollution between megacities and surrounding regions.
Lei Sun, Likun Xue, Tao Wang, Jian Gao, Aijun Ding, Owen R. Cooper, Meiyun Lin, Pengju Xu, Zhe Wang, Xinfeng Wang, Liang Wen, Yanhong Zhu, Tianshu Chen, Lingxiao Yang, Yan Wang, Jianmin Chen, and Wenxing Wang
Atmos. Chem. Phys., 16, 10637–10650, https://doi.org/10.5194/acp-16-10637-2016, https://doi.org/10.5194/acp-16-10637-2016, 2016
Short summary
Short summary
We compiled the available observations of surface O3 at Mt. Tai – the highest mountain in the North China Plain, and found a significant increase of O3 concenrations from 2003 to 2015. The observed O3 increase was mainly due to the increase of O3 precursors, especially VOCs. Our analysis shows that controlling NOx alone, in the absence of VOC controls, is not sufficient to reduce regional O3 levels in North China in a short period.
Luís Miguel Feijó Barreira, Yu Xue, Geoffroy Duporté, Jevgeni Parshintsev, Kari Hartonen, Matti Jussila, Markku Kulmala, and Marja-Liisa Riekkola
Atmos. Meas. Tech., 9, 3661–3671, https://doi.org/10.5194/amt-9-3661-2016, https://doi.org/10.5194/amt-9-3661-2016, 2016
Short summary
Short summary
Volatile organic compounds play a key role in atmospheric chemistry and physics by influencing the climate. Trace concentrations need to be determined, even at remote locations, like forests. In this research, an easy and fast method using a portable device was developed for determination of relevant atmospheric compounds. Links between these compounds and meteorological factors were observed. Also, accumulation of volatiles in the snow was measured.
Hanna E. Manninen, Sander Mirme, Aadu Mirme, Tuukka Petäjä, and Markku Kulmala
Atmos. Meas. Tech., 9, 3577–3605, https://doi.org/10.5194/amt-9-3577-2016, https://doi.org/10.5194/amt-9-3577-2016, 2016
Short summary
Short summary
This paper reports a standard operation procedure (SOP) for a Neutral cluster and Air Ion Spectrometer (NAIS) to detect small clusters and nucleation mode particles. The NAIS measures number size distributions of charged and neutral aerosol particles. The SOP is needed to provide comparable results measured by NAIS users around the world. The work is based on discussions between the NAIS users (lead by University of Helsinki, Finland) and the NAIS manufacturer (Airel Ltd., Estonia).
Chunpeng Leng, Junyan Duan, Chen Xu, Hefeng Zhang, Yifan Wang, Yanyu Wang, Xiang Li, Lingdong Kong, Jun Tao, Renjian Zhang, Tiantao Cheng, Shuping Zha, and Xingna Yu
Atmos. Chem. Phys., 16, 9221–9234, https://doi.org/10.5194/acp-16-9221-2016, https://doi.org/10.5194/acp-16-9221-2016, 2016
Short summary
Short summary
Meteorological conditions, local anthropogenic emissions and aerosol properties played major roles in this historic winter haze weather formation. Aerosols the size of 600–1400 nm are mostly responsible for the impairment of atmospheric visibility. This study was performed by combining many on-line measurement techniques which were calibrated regularly to ensure reliability, and can act as a reference for forecasting and eliminating the occurrences of regional atmospheric pollutions in China.
Hilkka Timonen, Mike Cubison, Minna Aurela, David Brus, Heikki Lihavainen, Risto Hillamo, Manjula Canagaratna, Bettina Nekat, Rolf Weller, Douglas Worsnop, and Sanna Saarikoski
Atmos. Meas. Tech., 9, 3263–3281, https://doi.org/10.5194/amt-9-3263-2016, https://doi.org/10.5194/amt-9-3263-2016, 2016
Short summary
Short summary
The applicability, methods and limitations of constrained peak fitting on mass spectra of low mass resolving power (m∕Δm50 ∼ 500) recorded with a time-of-flight aerosol chemical speciation monitor (ToF-ACSM) are explored. Calibration measurements and ambient data are used to exemplify the methods that should be applied to maximise data quality and assess confidence in peak-fitting results.
Jordan E. Krechmer, Michael Groessl, Xuan Zhang, Heikki Junninen, Paola Massoli, Andrew T. Lambe, Joel R. Kimmel, Michael J. Cubison, Stephan Graf, Ying-Hsuan Lin, Sri H. Budisulistiorini, Haofei Zhang, Jason D. Surratt, Richard Knochenmuss, John T. Jayne, Douglas R. Worsnop, Jose-Luis Jimenez, and Manjula R. Canagaratna
Atmos. Meas. Tech., 9, 3245–3262, https://doi.org/10.5194/amt-9-3245-2016, https://doi.org/10.5194/amt-9-3245-2016, 2016
Imre Salma, Zoltán Németh, Veli-Matti Kerminen, Pasi Aalto, Tuomo Nieminen, Tamás Weidinger, Ágnes Molnár, Kornélia Imre, and Markku Kulmala
Atmos. Chem. Phys., 16, 8715–8728, https://doi.org/10.5194/acp-16-8715-2016, https://doi.org/10.5194/acp-16-8715-2016, 2016
Short summary
Short summary
We revealed that NPF seen in a central large city of the Carpathian Basin, Budapest, and its regional background occur in a consistent and spatially coherent way as a result of a joint atmospheric phenomenon taking place on large horizontal scales.
Riikka Väänänen, Radovan Krejci, Hanna E. Manninen, Antti Manninen, Janne Lampilahti, Stephany Buenrostro Mazon, Tuomo Nieminen, Taina Yli-Juuti, Jenni Kontkanen, Ari Asmi, Pasi P. Aalto, Petri Keronen, Toivo Pohja, Ewan O'Connor, Veli-Matti Kerminen, Tuukka Petäjä, and Markku Kulmala
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2016-556, https://doi.org/10.5194/acp-2016-556, 2016
Revised manuscript has not been submitted
Short summary
Short summary
A light aircraft was used as a platform to explore the horizontal and vertical variability of the aerosol particles over a boreal forest in Central Finland. This information is needed when data measured at ground level station is extrapolated and parameterized to represent the
conditions of the larger scale. The measurements showed that despite local fluctuations there was a good agreement between the on-ground and airborne measurements inside the planetary boundary layer.
Juha Kangasluoma, Alessandro Franchin, Jonahtan Duplissy, Lauri Ahonen, Frans Korhonen, Michel Attoui, Jyri Mikkilä, Katrianne Lehtipalo, Joonas Vanhanen, Markku Kulmala, and Tuukka Petäjä
Atmos. Meas. Tech., 9, 2977–2988, https://doi.org/10.5194/amt-9-2977-2016, https://doi.org/10.5194/amt-9-2977-2016, 2016
Short summary
Short summary
The paper describes technical aspects of using the Airmodus A11 nCNC at various inlet pressures and how temperature selection affects the performance of the instrument. We also present a sampling box to minimize the inlet losses and make use of the instrument more convenient.
Yele Sun, Wei Du, Pingqing Fu, Qingqing Wang, Jie Li, Xinlei Ge, Qi Zhang, Chunmao Zhu, Lujie Ren, Weiqi Xu, Jian Zhao, Tingting Han, Douglas R. Worsnop, and Zifa Wang
Atmos. Chem. Phys., 16, 8309–8329, https://doi.org/10.5194/acp-16-8309-2016, https://doi.org/10.5194/acp-16-8309-2016, 2016
Short summary
Short summary
We have a comprehensive characterization of the sources, variations and processes of submicron aerosols in Beijing in winter using HR-AMS and GC/MS measurements. The primary sources including traffic, cooking, biomass burning and coal combustion emissions, and secondary components were separated and quantified with PMF. Our results elucidated the important roles of primary emissions, particularly coal combustion, and aqueous-phase processing in the formation of severe air pollution in winter.
Alessandro Franchin, Andy Downard, Juha Kangasluoma, Tuomo Nieminen, Katrianne Lehtipalo, Gerhard Steiner, Hanna E. Manninen, Tuukka Petäjä, Richard C. Flagan, and Markku Kulmala
Atmos. Meas. Tech., 9, 2709–2720, https://doi.org/10.5194/amt-9-2709-2016, https://doi.org/10.5194/amt-9-2709-2016, 2016
Short summary
Short summary
High transmission efficiency is key for classifying and counting atmospheric aerosol below 10 nm. We developed a new high-transmission inlet for the Caltech nano-radial DMA (nRDMA) and successfully deployed the nRDMA, equipped with the new inlet, in chamber measurements, using a particle size magnifier (PSM) and a booster CPC as a counter. With this setup, we were able to measure size distributions of ions between 1.3 and 6 nm in mobility diameter.
Karoliina Ignatius, Thomas B. Kristensen, Emma Järvinen, Leonid Nichman, Claudia Fuchs, Hamish Gordon, Paul Herenz, Christopher R. Hoyle, Jonathan Duplissy, Sarvesh Garimella, Antonio Dias, Carla Frege, Niko Höppel, Jasmin Tröstl, Robert Wagner, Chao Yan, Antonio Amorim, Urs Baltensperger, Joachim Curtius, Neil M. Donahue, Martin W. Gallagher, Jasper Kirkby, Markku Kulmala, Ottmar Möhler, Harald Saathoff, Martin Schnaiter, Antonio Tomé, Annele Virtanen, Douglas Worsnop, and Frank Stratmann
Atmos. Chem. Phys., 16, 6495–6509, https://doi.org/10.5194/acp-16-6495-2016, https://doi.org/10.5194/acp-16-6495-2016, 2016
Short summary
Short summary
Viscous solid or semi-solid secondary organic aerosol (SOA) may influence cloud properties through ice nucleation in the atmosphere. Here, we observed heterogeneous ice nucleation of viscous α-pinene SOA at temperatures between −39 °C and −37.2 °C with ice saturation ratios significantly below the homogeneous freezing limit. Global modelling suggests that viscous biogenic SOA are present in regions where cirrus formation takes place and could contribute to the global ice nuclei budget.
Jenni Kontkanen, Tinja Olenius, Katrianne Lehtipalo, Hanna Vehkamäki, Markku Kulmala, and Kari E. J. Lehtinen
Atmos. Chem. Phys., 16, 5545–5560, https://doi.org/10.5194/acp-16-5545-2016, https://doi.org/10.5194/acp-16-5545-2016, 2016
Xianda Gong, Ci Zhang, Hong Chen, Sergey A. Nizkorodov, Jianmin Chen, and Xin Yang
Atmos. Chem. Phys., 16, 5399–5411, https://doi.org/10.5194/acp-16-5399-2016, https://doi.org/10.5194/acp-16-5399-2016, 2016
Short summary
Short summary
In this study, we used a Single Particle Aerosol Mass Spectrometer and a Single Particle Soot Photometer to investigate the chemical and physical properties of black carbon (BC) aerosols during a regional air pollution episode in urban Shanghai. BC containing particles were mainly attributed to biomass burning and traffic emissions. We observed a group of highly aged traffic emitted particles with a relatively small BC core (~ 60–80 nm) and a very thick absolute coating thickness (~ 130–300 nm).
Emma Järvinen, Karoliina Ignatius, Leonid Nichman, Thomas B. Kristensen, Claudia Fuchs, Christopher R. Hoyle, Niko Höppel, Joel C. Corbin, Jill Craven, Jonathan Duplissy, Sebastian Ehrhart, Imad El Haddad, Carla Frege, Hamish Gordon, Tuija Jokinen, Peter Kallinger, Jasper Kirkby, Alexei Kiselev, Karl-Heinz Naumann, Tuukka Petäjä, Tamara Pinterich, Andre S. H. Prevot, Harald Saathoff, Thea Schiebel, Kamalika Sengupta, Mario Simon, Jay G. Slowik, Jasmin Tröstl, Annele Virtanen, Paul Vochezer, Steffen Vogt, Andrea C. Wagner, Robert Wagner, Christina Williamson, Paul M. Winkler, Chao Yan, Urs Baltensperger, Neil M. Donahue, Rick C. Flagan, Martin Gallagher, Armin Hansel, Markku Kulmala, Frank Stratmann, Douglas R. Worsnop, Ottmar Möhler, Thomas Leisner, and Martin Schnaiter
Atmos. Chem. Phys., 16, 4423–4438, https://doi.org/10.5194/acp-16-4423-2016, https://doi.org/10.5194/acp-16-4423-2016, 2016
Yan Lyu, Tingting Xu, Xiang Li, Tiantao Cheng, Xin Yang, Xiaomin Sun, and Jianmin Chen
Atmos. Meas. Tech., 9, 1025–1037, https://doi.org/10.5194/amt-9-1025-2016, https://doi.org/10.5194/amt-9-1025-2016, 2016
Short summary
Short summary
This study presents the particle size distribution of PBDEs in the atmosphere of a megacity and evaluates the contribution of size-fractionated PBDEs' deposition in the human respiratory tract.
Yan Lv, Xiang Li, Ting Ting Xu, Tian Tao Cheng, Xin Yang, Jian Min Chen, Yoshiteru Iinuma, and Hartmut Herrmann
Atmos. Chem. Phys., 16, 2971–2983, https://doi.org/10.5194/acp-16-2971-2016, https://doi.org/10.5194/acp-16-2971-2016, 2016
Short summary
Short summary
The study focused on size-resolved PAHs in urban aerosols at a megacity Shanghai site. The results provide us with a mechanistic understanding of the particle size distribution of PAHs and their transport in the human respiratory system; this can help develop better source control strategies.
Xin Huang, Luxi Zhou, Aijun Ding, Ximeng Qi, Wei Nie, Minghuai Wang, Xuguang Chi, Tuukka Petäjä, Veli-Matti Kerminen, Pontus Roldin, Anton Rusanen, Markku Kulmala, and Michael Boy
Atmos. Chem. Phys., 16, 2477–2492, https://doi.org/10.5194/acp-16-2477-2016, https://doi.org/10.5194/acp-16-2477-2016, 2016
Short summary
Short summary
By combining a regional model and a box model, this study simulates new particle formation in Nanjing, China, when the air masses were affected by anthropogenic activities, biogenic emissions, or mixed ocean and continental sources. The simulations reveal that biogenic organic compounds play a vital role in growth of newly formed clusters. This novel combination of two models makes it possible to accomplish new particle formation simulation without direct measurements of all chemical species.
Xin Ke Wang, Stéphanie Rossignol, Ye Ma, Lei Yao, Ming Yi Wang, Jian Min Chen, Christian George, and Lin Wang
Atmos. Chem. Phys., 16, 2285–2298, https://doi.org/10.5194/acp-16-2285-2016, https://doi.org/10.5194/acp-16-2285-2016, 2016
Short summary
Short summary
PM2.5 filter samples have been collected in three megacities at the middle and lower reaches of the Yangtze River: Wuhan, Nanjing, and Shanghai. The samples were analyzed using ultra-high-performance liquid chromatography coupled with Orbitrap mass spectrometry, which allowed for detection of about 200 formulas of particulate organosulfates, including dozens of formulas of nitrooxy-organosulfates, with various numbers of isomers for each tentatively determined formula at each location.
M. Dal Maso, L. Liao, J. Wildt, A. Kiendler-Scharr, E. Kleist, R. Tillmann, M. Sipilä, J. Hakala, K. Lehtipalo, M. Ehn, V.-M. Kerminen, M. Kulmala, D. Worsnop, and T. Mentel
Atmos. Chem. Phys., 16, 1955–1970, https://doi.org/10.5194/acp-16-1955-2016, https://doi.org/10.5194/acp-16-1955-2016, 2016
Short summary
Short summary
In this paper, we present the first direct laboratory observations of nanoparticle formation from sulfuric acid and realistic BVOC precursor vapour mixtures performed at atmospherically relevant concentration levels. We found that the formation rate was proportional to the product of sulphuric acid and biogenic VOC emission strength, and that the formation rates were consistent with a mechanism in which nucleating BVOC oxidation products are rapidly formed and activate with sulfuric acid.
Jenni Kontkanen, Emma Järvinen, Hanna E. Manninen, Katrianne Lehtipalo, Juha Kangasluoma, Stefano Decesari, Gian Paolo Gobbi, Ari Laaksonen, Tuukka Petäjä, and Markku Kulmala
Atmos. Chem. Phys., 16, 1919–1935, https://doi.org/10.5194/acp-16-1919-2016, https://doi.org/10.5194/acp-16-1919-2016, 2016
C. R. Hoyle, C. Fuchs, E. Järvinen, H. Saathoff, A. Dias, I. El Haddad, M. Gysel, S. C. Coburn, J. Tröstl, A.-K. Bernhammer, F. Bianchi, M. Breitenlechner, J. C. Corbin, J. Craven, N. M. Donahue, J. Duplissy, S. Ehrhart, C. Frege, H. Gordon, N. Höppel, M. Heinritzi, T. B. Kristensen, U. Molteni, L. Nichman, T. Pinterich, A. S. H. Prévôt, M. Simon, J. G. Slowik, G. Steiner, A. Tomé, A. L. Vogel, R. Volkamer, A. C. Wagner, R. Wagner, A. S. Wexler, C. Williamson, P. M. Winkler, C. Yan, A. Amorim, J. Dommen, J. Curtius, M. W. Gallagher, R. C. Flagan, A. Hansel, J. Kirkby, M. Kulmala, O. Möhler, F. Stratmann, D. R. Worsnop, and U. Baltensperger
Atmos. Chem. Phys., 16, 1693–1712, https://doi.org/10.5194/acp-16-1693-2016, https://doi.org/10.5194/acp-16-1693-2016, 2016
Short summary
Short summary
A significant portion of sulphate, an important constituent of atmospheric aerosols, is formed via the aqueous phase oxidation of sulphur dioxide by ozone. The rate of this reaction has previously only been measured over a relatively small temperature range. Here, we use the state of the art CLOUD chamber at CERN to perform the first measurements of this reaction rate in super-cooled droplets, confirming that the existing extrapolation of the reaction rate to sub-zero temperatures is accurate.
L. Xu, L. R. Williams, D. E. Young, J. D. Allan, H. Coe, P. Massoli, E. Fortner, P. Chhabra, S. Herndon, W. A. Brooks, J. T. Jayne, D. R. Worsnop, A. C. Aiken, S. Liu, K. Gorkowski, M. K. Dubey, Z. L. Fleming, S. Visser, A. S. H. Prévôt, and N. L. Ng
Atmos. Chem. Phys., 16, 1139–1160, https://doi.org/10.5194/acp-16-1139-2016, https://doi.org/10.5194/acp-16-1139-2016, 2016
Short summary
Short summary
We investigate the spatial distribution of submicron aerosol in the greater London area as part of the Clean Air for London (ClearfLo) project in winter 2012. Although the concentrations of organic aerosol (OA) are similar between a rural and an urban site, the OA sources are different. We also examine the volatility of submicron aerosol at the rural site and find that the non-volatile organics have similar sources or have undergone similar chemical processing as refractory black carbon.
A. W. H. Chan, N. M. Kreisberg, T. Hohaus, P. Campuzano-Jost, Y. Zhao, D. A. Day, L. Kaser, T. Karl, A. Hansel, A. P. Teng, C. R. Ruehl, D. T. Sueper, J. T. Jayne, D. R. Worsnop, J. L. Jimenez, S. V. Hering, and A. H. Goldstein
Atmos. Chem. Phys., 16, 1187–1205, https://doi.org/10.5194/acp-16-1187-2016, https://doi.org/10.5194/acp-16-1187-2016, 2016
Short summary
Short summary
Using a novel instrument, we have made measurements of organic compounds that can exist as a gas or particle in the rural atmosphere. Through hourly measurements, we have identified the sources and atmospheric processes of these compounds, which are important for modeling the climate and health impact of these emissions.
P. Hari, T. Petäjä, J. Bäck, V.-M. Kerminen, H. K. Lappalainen, T. Vihma, T. Laurila, Y. Viisanen, T. Vesala, and M. Kulmala
Atmos. Chem. Phys., 16, 1017–1028, https://doi.org/10.5194/acp-16-1017-2016, https://doi.org/10.5194/acp-16-1017-2016, 2016
Short summary
Short summary
This manuscript introduces a conceptual design of a global, hierarchical observation network which provides tools and increased understanding to tackle the inter-connected environmental and societal challenges that we will face in the coming decades. Each ecosystem type on the globe has its own characteristic features that need to be taken into consideration. The hierarchical network is able to tackle problems related to large spatial scales, heterogeneity of ecosystems and their complexity.
T. Liu, X. Wang, Q. Hu, W. Deng, Y. Zhang, X. Ding, X. Fu, F. Bernard, Z. Zhang, S. Lü, Q. He, X. Bi, J. Chen, Y. Sun, J. Yu, P. Peng, G. Sheng, and J. Fu
Atmos. Chem. Phys., 16, 675–689, https://doi.org/10.5194/acp-16-675-2016, https://doi.org/10.5194/acp-16-675-2016, 2016
Short summary
Short summary
The formation of SOA and sulfate aerosols from the photooxidation of gasoline vehicle exhaust (GVE) when mixing with SO2 was investigated in a smog chamber. We found that the presence of GVE enhanced the conversion of SO2 to sulfate predominantly through reactions with stabilized Criegee intermediates. On the other hand, the elevated particle acidity enhanced the SOA production from GVE. This study indicated that SO2 and GVE could enhance each other in forming secondary aerosols.
J. Kim, L. Ahlm, T. Yli-Juuti, M. Lawler, H. Keskinen, J. Tröstl, S. Schobesberger, J. Duplissy, A. Amorim, F. Bianchi, N. M. Donahue, R. C. Flagan, J. Hakala, M. Heinritzi, T. Jokinen, A. Kürten, A. Laaksonen, K. Lehtipalo, P. Miettinen, T. Petäjä, M. P. Rissanen, L. Rondo, K. Sengupta, M. Simon, A. Tomé, C. Williamson, D. Wimmer, P. M. Winkler, S. Ehrhart, P. Ye, J. Kirkby, J. Curtius, U. Baltensperger, M. Kulmala, K. E. J. Lehtinen, J. N. Smith, I. Riipinen, and A. Virtanen
Atmos. Chem. Phys., 16, 293–304, https://doi.org/10.5194/acp-16-293-2016, https://doi.org/10.5194/acp-16-293-2016, 2016
Short summary
Short summary
The hygroscopicity of nucleated nanoparticles was measured in the presence of sulfuric acid, sulfuric acid-dimethylamine, and sulfuric acid-organics derived from α-pinene oxidation during CLOUD7 at CERN in 2012. The hygroscopicity parameter κ decreased with increasing particle size, indicating decreasing acidity of particles.
R. L. Mauldin III, M. P. Rissanen, T. Petäjä, and M. Kulmala
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2015-398, https://doi.org/10.5194/amt-2015-398, 2016
Revised manuscript under review for AMT
Short summary
Short summary
The manuscript describes a novel instrument for the measurement of OH, HO2+RO2, and other atmospheric species. The instrument described combines the chemical ionization techniques of nitrate CIMS, OH conversion to H2SO4, HO2+RO2 conversion to H2SO4, and high resolution time of flight mass spectroscopy into one system. By using one instrument to obtain spectra it is possible to compare spectra from the different modes and gain further chemical information towards peak identification.
V. N. Dos Santos, E. Herrmann, H. E. Manninen, T. Hussein, J. Hakala, T. Nieminen, P. P. Aalto, M. Merkel, A. Wiedensohler, M. Kulmala, T. Petäjä, and K. Hämeri
Atmos. Chem. Phys., 15, 13717–13737, https://doi.org/10.5194/acp-15-13717-2015, https://doi.org/10.5194/acp-15-13717-2015, 2015
Short summary
Short summary
Atmospheric charged particles, i.e. air ions, contribute to secondary aerosol formation and have an effect on global climate as potential cloud condensation nuclei. We aimed to evaluate air ion concentrations and characteristics during new particle formation (NPF) events in the megacity Paris, France. We analyzed frequency and seasonal variations of NPF events, diurnal and seasonal cycles of ions, and aerosol particles.
W. Q. Xu, Y. L. Sun, C. Chen, W. Du, T. T. Han, Q. Q. Wang, P. Q. Fu, Z. F. Wang, X. J. Zhao, L. B. Zhou, D. S. Ji, P. C. Wang, and D. R. Worsnop
Atmos. Chem. Phys., 15, 13681–13698, https://doi.org/10.5194/acp-15-13681-2015, https://doi.org/10.5194/acp-15-13681-2015, 2015
Short summary
Short summary
We have investigated the response of aerosol composition, size distributions, and oxidation properties to emission controls during the 2014 Asia- Pacific Economic Cooperation (APEC) summit in Beijing. Our results showed substantial changes of aerosol bulk composition during APEC with the most reductions in secondary aerosols in large accumulation modes, demonstrating that that emission controls over regional scales can substantially reduce secondary particulates.
D. M. Lienhard, A. J. Huisman, U. K. Krieger, Y. Rudich, C. Marcolli, B. P. Luo, D. L. Bones, J. P. Reid, A. T. Lambe, M. R. Canagaratna, P. Davidovits, T. B. Onasch, D. R. Worsnop, S. S. Steimer, T. Koop, and T. Peter
Atmos. Chem. Phys., 15, 13599–13613, https://doi.org/10.5194/acp-15-13599-2015, https://doi.org/10.5194/acp-15-13599-2015, 2015
Short summary
Short summary
New data of water diffusivity in secondary organic aerosol (SOA) material and organic/inorganic model mixtures is presented over an extensive temperature range. Our data suggest that water diffusion in SOA is sufficiently fast so that it is unlikely to have significant consequences on the direct climatic effect under tropospheric conditions. Glass formation in SOA is unlikely to restrict homogeneous ice nucleation.
M. Kulmala, H. K. Lappalainen, T. Petäjä, T. Kurten, V.-M. Kerminen, Y. Viisanen, P. Hari, S. Sorvari, J. Bäck, V. Bondur, N. Kasimov, V. Kotlyakov, G. Matvienko, A. Baklanov, H. D. Guo, A. Ding, H.-C. Hansson, and S. Zilitinkevich
Atmos. Chem. Phys., 15, 13085–13096, https://doi.org/10.5194/acp-15-13085-2015, https://doi.org/10.5194/acp-15-13085-2015, 2015
Short summary
Short summary
The Pan-European Experiment (PEEX) is introduced. PEEX is a multidisciplinary, multiscale and multicomponent research, research infrastructure and capacity-building program. This paper outlines the mission, vision and objectives of PEEX and introduces its main components, including the research agenda, research infrastructure, knowledge transfer and potential impacts on society. The paper also summarizes the main scientific questions that PEEX is going to tackle in the future.
C. E. Scott, D. V. Spracklen, J. R. Pierce, I. Riipinen, S. D. D'Andrea, A. Rap, K. S. Carslaw, P. M. Forster, P. Artaxo, M. Kulmala, L. V. Rizzo, E. Swietlicki, G. W. Mann, and K. J. Pringle
Atmos. Chem. Phys., 15, 12989–13001, https://doi.org/10.5194/acp-15-12989-2015, https://doi.org/10.5194/acp-15-12989-2015, 2015
Short summary
Short summary
To understand the radiative effects of biogenic secondary organic aerosol (SOA) it is necessary to consider the manner in which it is distributed across the existing aerosol size distribution. We explore the importance of the approach taken by global-scale models to do this, when calculating the direct radiative effect (DRE) & first aerosol indirect effect (AIE) due to biogenic SOA. This choice has little effect on the DRE, but a substantial impact on the magnitude and even sign of the first AIE
C. Chen, Y. L. Sun, W. Q. Xu, W. Du, L. B. Zhou, T. T. Han, Q. Q. Wang, P. Q. Fu, Z. F. Wang, Z. Q. Gao, Q. Zhang, and D. R. Worsnop
Atmos. Chem. Phys., 15, 12879–12895, https://doi.org/10.5194/acp-15-12879-2015, https://doi.org/10.5194/acp-15-12879-2015, 2015
Short summary
Short summary
A comprehensive characterization of submicron aerosol composition and sources at 260m in urban Beijing during APEC 2014 is presented. Aerosol species were shown to decrease substantially by 40–80% during APEC, whereas the bulk composition was relatively similar to the result of synergetic controls of secondary precursors. Our results elucidated that the good air quality during APEC was the combined result of emission controls and meteorological effects, with the former playing the dominant role.
S. Carbone, T. Onasch, S. Saarikoski, H. Timonen, K. Saarnio, D. Sueper, T. Rönkkö, L. Pirjola, A. Häyrinen, D. Worsnop, and R. Hillamo
Atmos. Meas. Tech., 8, 4803–4815, https://doi.org/10.5194/amt-8-4803-2015, https://doi.org/10.5194/amt-8-4803-2015, 2015
Short summary
Short summary
The purpose of this study was to develop a method for the quantification of trace metal content in black carbon aerosol in real time, such as combustion-related emissions, by using the SP-AMS. The properties of 13 different trace metals (Na, Al, Ca, V, Cr, Fe, Mn, Ni, Cu, Zn, Rb, Sr and Ba) were investigated in a controlled laboratory experiment. The results from the laboratory tests were applied to study fine particles in emissions of a heavy-fuel-oil-fired heating station.
T. Nieminen, T. Yli-Juuti, H. E. Manninen, T. Petäjä, V.-M. Kerminen, and M. Kulmala
Atmos. Chem. Phys., 15, 12385–12396, https://doi.org/10.5194/acp-15-12385-2015, https://doi.org/10.5194/acp-15-12385-2015, 2015
M. Paramonov, V.-M. Kerminen, M. Gysel, P. P. Aalto, M. O. Andreae, E. Asmi, U. Baltensperger, A. Bougiatioti, D. Brus, G. P. Frank, N. Good, S. S. Gunthe, L. Hao, M. Irwin, A. Jaatinen, Z. Jurányi, S. M. King, A. Kortelainen, A. Kristensson, H. Lihavainen, M. Kulmala, U. Lohmann, S. T. Martin, G. McFiggans, N. Mihalopoulos, A. Nenes, C. D. O'Dowd, J. Ovadnevaite, T. Petäjä, U. Pöschl, G. C. Roberts, D. Rose, B. Svenningsson, E. Swietlicki, E. Weingartner, J. Whitehead, A. Wiedensohler, C. Wittbom, and B. Sierau
Atmos. Chem. Phys., 15, 12211–12229, https://doi.org/10.5194/acp-15-12211-2015, https://doi.org/10.5194/acp-15-12211-2015, 2015
Short summary
Short summary
The research paper presents the first comprehensive overview of field measurements with the CCN Counter performed at a large number of locations around the world within the EUCAARI framework. The paper sheds light on the CCN number concentrations and activated fractions around the world and their dependence on the water vapour supersaturation ratio, the dependence of aerosol hygroscopicity on particle size, and seasonal and diurnal variation of CCN activation and hygroscopic properties.
J. C. Corbin, A. Othman, J. D. Allan, D. R. Worsnop, J. D. Haskins, B. Sierau, U. Lohmann, and A. A. Mensah
Atmos. Meas. Tech., 8, 4615–4636, https://doi.org/10.5194/amt-8-4615-2015, https://doi.org/10.5194/amt-8-4615-2015, 2015
Short summary
Short summary
Peak-integration uncertainties in the Aerodyne high-resolution aerosol mass spectrometer (AMS) are analyzed in detail using a combination of empirical data analysis and Monte Carlo approaches. The most general conclusion, applicable to any mass spectrometer, is that non-zero mass accuracy leads to a percentage error in constrained peak fits, even for well-resolved peaks. For overlapping peaks, this mass-accuracy effect may be viewed as a reduction in the effective m/z-calibration precision.
B. Wehner, F. Werner, F. Ditas, R. A. Shaw, M. Kulmala, and H. Siebert
Atmos. Chem. Phys., 15, 11701–11711, https://doi.org/10.5194/acp-15-11701-2015, https://doi.org/10.5194/acp-15-11701-2015, 2015
Short summary
Short summary
During the CARRIBA campaign on Barbados, 91 cases with increased aerosol particle number concentrations near clouds were detected from helicopter-borne measurements. Most of these cases are correlated with enhanced irradiance in the ultraviolet range. The events have a mean length of 100m, corresponding to a lifetime of 300s, meaning a growth of several nm/h. Such high values cannot be explained by sulfuric acid alone; thus extremely low volatility organic compounds are probably involved here.
A. Virkkula, X. Chi, A. Ding, Y. Shen, W. Nie, X. Qi, L. Zheng, X. Huang, Y. Xie, J. Wang, T. Petäjä, and M. Kulmala
Atmos. Meas. Tech., 8, 4415–4427, https://doi.org/10.5194/amt-8-4415-2015, https://doi.org/10.5194/amt-8-4415-2015, 2015
Short summary
Short summary
Aerosol optical properties were measured with a seven-wavelength aethalometer and a three-wavelength nephelometer in Nanjing, China, in September 2013–January 2015. The aethalometer compensation parameter k depended on the backscatter fraction, measured with an independent method, the integrating nephelometer. The compensation parameter decreased with increasing single-scattering albedo.
R. Fröhlich, M. J. Cubison, J. G. Slowik, N. Bukowiecki, F. Canonaco, P. L. Croteau, M. Gysel, S. Henne, E. Herrmann, J. T. Jayne, M. Steinbacher, D. R. Worsnop, U. Baltensperger, and A. S. H. Prévôt
Atmos. Chem. Phys., 15, 11373–11398, https://doi.org/10.5194/acp-15-11373-2015, https://doi.org/10.5194/acp-15-11373-2015, 2015
Short summary
Short summary
This manuscript presents the first long-term (14-month) and highly time-resolved (10 min) measurements of NR-PM1 aerosol chemical composition at a high-altitude site (JFJ, Switzerland, 3580m a.s.l.). The elevated location allowed the investigation of free tropospheric aerosol year round. Total and relative mass loadings, diurnal variations as well as seasonal variations are discussed together with geographical origin, organic aerosol sources and the influence of the planetary boundary layer.
M. Sipilä, N. Sarnela, T. Jokinen, H. Junninen, J. Hakala, M. P. Rissanen, A. Praplan, M. Simon, A. Kürten, F. Bianchi, J. Dommen, J. Curtius, T. Petäjä, and D. R. Worsnop
Atmos. Meas. Tech., 8, 4001–4011, https://doi.org/10.5194/amt-8-4001-2015, https://doi.org/10.5194/amt-8-4001-2015, 2015
Short summary
Short summary
Atmospheric concentrations of amines are poorly known mainly due to challenges related to their reliable high-sensitivity detection. We have created a method and instrument that is capable for detecting amines with lowest limit of detection of around 0.01 parts per trillion. Application of the instrument in the field study indicates that concentrations of dimethyl amine in a boreal forest site are below 0.03ppt, not enough to account for the observed new particle formation rates.
A. Kürten, S. Münch, L. Rondo, F. Bianchi, J. Duplissy, T. Jokinen, H. Junninen, N. Sarnela, S. Schobesberger, M. Simon, M. Sipilä, J. Almeida, A. Amorim, J. Dommen, N. M. Donahue, E. M. Dunne, R. C. Flagan, A. Franchin, J. Kirkby, A. Kupc, V. Makhmutov, T. Petäjä, A. P. Praplan, F. Riccobono, G. Steiner, A. Tomé, G. Tsagkogeorgas, P. E. Wagner, D. Wimmer, U. Baltensperger, M. Kulmala, D. R. Worsnop, and J. Curtius
Atmos. Chem. Phys., 15, 10701–10721, https://doi.org/10.5194/acp-15-10701-2015, https://doi.org/10.5194/acp-15-10701-2015, 2015
Short summary
Short summary
New particle formation (NPF) is an important atmospheric process. At cold temperatures in the upper troposphere the binary (H2SO4-H2O) and ternary (H2SO4-H2O-NH3) system are thought to be important for NPF. Sulfuric acid monomer (H2SO4) and sulfuric acid dimer ((H2SO4)2) concentrations were measured between 208 and 248K for these systems and dimer evaporation rates were derived. These data will help to better understand and predict binary and ternary nucleation at low temperatures.
M. Pikridas, J. Sciare, F. Freutel, S. Crumeyrolle, S.-L. von der Weiden-Reinmüller, A. Borbon, A. Schwarzenboeck, M. Merkel, M. Crippa, E. Kostenidou, M. Psichoudaki, L. Hildebrandt, G. J. Engelhart, T. Petäjä, A. S. H. Prévôt, F. Drewnick, U. Baltensperger, A. Wiedensohler, M. Kulmala, M. Beekmann, and S. N. Pandis
Atmos. Chem. Phys., 15, 10219–10237, https://doi.org/10.5194/acp-15-10219-2015, https://doi.org/10.5194/acp-15-10219-2015, 2015
Short summary
Short summary
Aerosol size distribution measurements from three ground sites, two mobile laboratories, and one airplane are combined to investigate the spatial and temporal variability of ultrafine particles in and around Paris during the summer and winter MEGAPOLI campaigns. The role of nucleation as a particle source and the influence of Paris emissions on their surroundings are examined.
Y. L. Sun, Z. F. Wang, W. Du, Q. Zhang, Q. Q. Wang, P. Q. Fu, X. L. Pan, J. Li, J. Jayne, and D. R. Worsnop
Atmos. Chem. Phys., 15, 10149–10165, https://doi.org/10.5194/acp-15-10149-2015, https://doi.org/10.5194/acp-15-10149-2015, 2015
Short summary
Short summary
We conducted the first long-term real-time measurement of submicron aerosol composition in Beijing using an ACSM for 1 year. The seasonal variations of mass concentrations and chemical composition of submicron aerosol were investigated in detail, and the meteorological effects on aerosol chemistry, particularly temperature and relative humidity, were elucidated. Finally, the potential source areas of aerosol species during four seasons were identified.
N. Kalivitis, V.-M. Kerminen, G. Kouvarakis, I. Stavroulas, A. Bougiatioti, A. Nenes, H. E. Manninen, T. Petäjä, M. Kulmala, and N. Mihalopoulos
Atmos. Chem. Phys., 15, 9203–9215, https://doi.org/10.5194/acp-15-9203-2015, https://doi.org/10.5194/acp-15-9203-2015, 2015
Short summary
Short summary
Cloud condensation nuclei (CCN) production associated with atmospheric new particle formation (NPF) is presented, and this is the first direct evidence of CCN production resulting from NPF in the eastern Mediterranean atmosphere. We show that condensation of both gaseous sulfuric acid and organic compounds from multiple sources leads to the rapid growth of nucleated particles. Sub-100nm particles were found to be substantially less hygroscopic than larger particles during the active NPF period.
T. Liu, X. Wang, W. Deng, Q. Hu, X. Ding, Y. Zhang, Q. He, Z. Zhang, S. Lü, X. Bi, J. Chen, and J. Yu
Atmos. Chem. Phys., 15, 9049–9062, https://doi.org/10.5194/acp-15-9049-2015, https://doi.org/10.5194/acp-15-9049-2015, 2015
L. Zhou, R. Gierens, A. Sogachev, D. Mogensen, J. Ortega, J. N. Smith, P. C. Harley, A. J. Prenni, E. J. T. Levin, A. Turnipseed, A. Rusanen, S. Smolander, A. B. Guenther, M. Kulmala, T. Karl, and M. Boy
Atmos. Chem. Phys., 15, 8643–8656, https://doi.org/10.5194/acp-15-8643-2015, https://doi.org/10.5194/acp-15-8643-2015, 2015
F. D. Lopez-Hilfiker, C. Mohr, M. Ehn, F. Rubach, E. Kleist, J. Wildt, Th. F. Mentel, A. J. Carrasquillo, K. E. Daumit, J. F. Hunter, J. H. Kroll, D. R. Worsnop, and J. A. Thornton
Atmos. Chem. Phys., 15, 7765–7776, https://doi.org/10.5194/acp-15-7765-2015, https://doi.org/10.5194/acp-15-7765-2015, 2015
Short summary
Short summary
We measured a large suite organic compounds using a recently developed Filter Inlet for Gases and AEROsols (FIGAERO) coupled to a (HR-ToF-CIMS). The instrument was deployed on environmental simulation chambers to study monoterpene oxidation as a secondary organic aerosol (SOA) source. We find that approximately 50% of the detected particle phase mass is associated with compounds having effective vapor pressures 4, or more, orders of magnitude lower than commonly measured products.
D. Wimmer, K. Lehtipalo, T. Nieminen, J. Duplissy, S. Ehrhart, J. Almeida, L. Rondo, A. Franchin, F. Kreissl, F. Bianchi, H. E. Manninen, M. Kulmala, J. Curtius, and T. Petäjä
Atmos. Chem. Phys., 15, 7547–7555, https://doi.org/10.5194/acp-15-7547-2015, https://doi.org/10.5194/acp-15-7547-2015, 2015
A. Franchin, S. Ehrhart, J. Leppä, T. Nieminen, S. Gagné, S. Schobesberger, D. Wimmer, J. Duplissy, F. Riccobono, E. M. Dunne, L. Rondo, A. Downard, F. Bianchi, A. Kupc, G. Tsagkogeorgas, K. Lehtipalo, H. E. Manninen, J. Almeida, A. Amorim, P. E. Wagner, A. Hansel, J. Kirkby, A. Kürten, N. M. Donahue, V. Makhmutov, S. Mathot, A. Metzger, T. Petäjä, R. Schnitzhofer, M. Sipilä, Y. Stozhkov, A. Tomé, V.-M. Kerminen, K. Carslaw, J. Curtius, U. Baltensperger, and M. Kulmala
Atmos. Chem. Phys., 15, 7203–7216, https://doi.org/10.5194/acp-15-7203-2015, https://doi.org/10.5194/acp-15-7203-2015, 2015
Short summary
Short summary
The ion-ion recombination coefficient was measured at different temperatures, relative humidities and concentrations of ozone and sulfur dioxide. The experiments were carried out using the CLOUD chamber at CERN.
We observed a strong dependency on temperature and on relative humidity, which has not been reported previously. No dependency of the ion-ion recombination coefficient on ozone concentration was observed and a weak variation with sulfur dioxide concentration was also observed.
A.-M. Sundström, A. Nikandrova, K. Atlaskina, T. Nieminen, V. Vakkari, L. Laakso, J. P. Beukes, A. Arola, P. G. van Zyl, M. Josipovic, A. D. Venter, K. Jaars, J. J. Pienaar, S. Piketh, A. Wiedensohler, E. K. Chiloane, G. de Leeuw, and M. Kulmala
Atmos. Chem. Phys., 15, 4983–4996, https://doi.org/10.5194/acp-15-4983-2015, https://doi.org/10.5194/acp-15-4983-2015, 2015
A. P. Praplan, S. Schobesberger, F. Bianchi, M. P. Rissanen, M. Ehn, T. Jokinen, H. Junninen, A. Adamov, A. Amorim, J. Dommen, J. Duplissy, J. Hakala, A. Hansel, M. Heinritzi, J. Kangasluoma, J. Kirkby, M. Krapf, A. Kürten, K. Lehtipalo, F. Riccobono, L. Rondo, N. Sarnela, M. Simon, A. Tomé, J. Tröstl, P. M. Winkler, C. Williamson, P. Ye, J. Curtius, U. Baltensperger, N. M. Donahue, M. Kulmala, and D. R. Worsnop
Atmos. Chem. Phys., 15, 4145–4159, https://doi.org/10.5194/acp-15-4145-2015, https://doi.org/10.5194/acp-15-4145-2015, 2015
Short summary
Short summary
Our study shows, based on data from three atmospheric pressure interface time-of-flight mass spectrometers measuring in parallel charged and neutral molecules and molecular clusters, how oxidised organic compounds bind to inorganic ions (e.g. bisulfate, nitrate, ammonium). This ionisation is selective for compounds with lower molar mass due to their limited amount and variety of functional groups. We also found that extremely low volatile organic compounds (ELVOCs) can be formed immediately.
D. Mogensen, R. Gierens, J. N. Crowley, P. Keronen, S. Smolander, A. Sogachev, A. C. Nölscher, L. Zhou, M. Kulmala, M. J. Tang, J. Williams, and M. Boy
Atmos. Chem. Phys., 15, 3909–3932, https://doi.org/10.5194/acp-15-3909-2015, https://doi.org/10.5194/acp-15-3909-2015, 2015
K. Neitola, D. Brus, U. Makkonen, M. Sipilä, R. L. Mauldin III, N. Sarnela, T. Jokinen, H. Lihavainen, and M. Kulmala
Atmos. Chem. Phys., 15, 3429–3443, https://doi.org/10.5194/acp-15-3429-2015, https://doi.org/10.5194/acp-15-3429-2015, 2015
Short summary
Short summary
A discrepancy of 2 orders of magnitude was found between the measured sulfuric acid monomer concentration and total sulfate, when measured with independent methods (mass spectrometry and ion chromatography) with the same source of sulphuric acid vapor. The ion chromatography method produces the exact concentrations predicted by empirical equations, and the mass spectrometry method shows significantly lower values. The discrepancy is investigated thoroughly from different points of views.
C. Rose, K. Sellegri, E. Asmi, M. Hervo, E. Freney, A. Colomb, H. Junninen, J. Duplissy, M. Sipilä, J. Kontkanen, K. Lehtipalo, and M. Kulmala
Atmos. Chem. Phys., 15, 3413–3428, https://doi.org/10.5194/acp-15-3413-2015, https://doi.org/10.5194/acp-15-3413-2015, 2015
A. T. Lambe, P. S. Chhabra, T. B. Onasch, W. H. Brune, J. F. Hunter, J. H. Kroll, M. J. Cummings, J. F. Brogan, Y. Parmar, D. R. Worsnop, C. E. Kolb, and P. Davidovits
Atmos. Chem. Phys., 15, 3063–3075, https://doi.org/10.5194/acp-15-3063-2015, https://doi.org/10.5194/acp-15-3063-2015, 2015
Short summary
Short summary
We compared the chemistry and yields of SOA generated from OH oxidation of gas-phase precursors in a flow reactor (high OH, short residence time) and environmental chambers (low OH, long residence time). We find that chemical composition of SOA produced in the flow reactor and in chambers is similar. SOA yields measured in the flow reactor are lower than in chambers. Seed particles increase the yield of SOA produced in the flow reactor and may account in part for higher SOA yields in chambers.
W. Nie, A. J. Ding, Y. N. Xie, Z. Xu, H. Mao, V.-M. Kerminen, L. F. Zheng, X. M. Qi, X. Huang, X.-Q. Yang, J. N. Sun, E. Herrmann, T. Petäjä, M. Kulmala, and C. B. Fu
Atmos. Chem. Phys., 15, 1147–1159, https://doi.org/10.5194/acp-15-1147-2015, https://doi.org/10.5194/acp-15-1147-2015, 2015
H. Vuollekoski, M. Vogt, V. A. Sinclair, J. Duplissy, H. Järvinen, E.-M. Kyrö, R. Makkonen, T. Petäjä, N. L. Prisle, P. Räisänen, M. Sipilä, J. Ylhäisi, and M. Kulmala
Hydrol. Earth Syst. Sci., 19, 601–613, https://doi.org/10.5194/hess-19-601-2015, https://doi.org/10.5194/hess-19-601-2015, 2015
Short summary
Short summary
The global potential for collecting usable water from dew on an
artificial collector sheet was investigated by utilising 34 years of
meteorological reanalysis data as input to a dew formation model. Continental dew formation was found to be frequent and common, but daily yields were
mostly below 0.1mm.
I. Nuaaman, S.-M. Li, K. L. Hayden, T. B. Onasch, P. Massoli, D. Sueper, D. R. Worsnop, T. S. Bates, P. K. Quinn, and R. McLaren
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-15-2085-2015, https://doi.org/10.5194/acpd-15-2085-2015, 2015
Revised manuscript has not been submitted
Short summary
Short summary
In this paper, we focus on the measurement and reporting of mass concentrations of particulate chloride and sea salt in a marine area off the coast of California using a High Resolution Aerosol Mass Spectrometer. We outline a method of deconvolving the total aerosol chloride mass into refractory and non-refractory components, previously not reported in the literature. This can be important in regions where refractory sea salt aerosols can contribute to the aerosol chloride signal measured with t
A.-M. Sundström, A. Arola, P. Kolmonen, Y. Xue, G. de Leeuw, and M. Kulmala
Atmos. Chem. Phys., 15, 505–518, https://doi.org/10.5194/acp-15-505-2015, https://doi.org/10.5194/acp-15-505-2015, 2015
Short summary
Short summary
In this work, a satellite-based approach to derive the aerosol direct shortwave (SW) radiative effect (ADRE) is studied. The method is based on using coincident satellite observations of SW fluxes and aerosol optical depths (AODs). The key findings of this study are that using normalized values of observed fluxes improves the estimates of ADRE and aerosol-free TOA fluxes as compared to a model. The method was applied over eastern China where the satellite-based mean ADRE of -5Wm-2 was obtained.
M. R. Canagaratna, J. L. Jimenez, J. H. Kroll, Q. Chen, S. H. Kessler, P. Massoli, L. Hildebrandt Ruiz, E. Fortner, L. R. Williams, K. R. Wilson, J. D. Surratt, N. M. Donahue, J. T. Jayne, and D. R. Worsnop
Atmos. Chem. Phys., 15, 253–272, https://doi.org/10.5194/acp-15-253-2015, https://doi.org/10.5194/acp-15-253-2015, 2015
Short summary
Short summary
Atomic oxygen-to-carbon (O:C), hydrogen-to-carbon (H:C), and organic mass-to-organic carbon (OM:OC) ratios of ambient organic aerosol (OA) species provide key constraints for understanding their sources and impacts. Here an improved method for obtaining accurate O:C, H:C, and OM:OC with a widely used aerosol mass spectrometer is developed. These results imply that OA is more oxidized than previously estimated and indicate the need for new chemical mechanisms that simulate ambient oxidation.
S. Schobesberger, A. Franchin, F. Bianchi, L. Rondo, J. Duplissy, A. Kürten, I. K. Ortega, A. Metzger, R. Schnitzhofer, J. Almeida, A. Amorim, J. Dommen, E. M. Dunne, M. Ehn, S. Gagné, L. Ickes, H. Junninen, A. Hansel, V.-M. Kerminen, J. Kirkby, A. Kupc, A. Laaksonen, K. Lehtipalo, S. Mathot, A. Onnela, T. Petäjä, F. Riccobono, F. D. Santos, M. Sipilä, A. Tomé, G. Tsagkogeorgas, Y. Viisanen, P. E. Wagner, D. Wimmer, J. Curtius, N. M. Donahue, U. Baltensperger, M. Kulmala, and D. R. Worsnop
Atmos. Chem. Phys., 15, 55–78, https://doi.org/10.5194/acp-15-55-2015, https://doi.org/10.5194/acp-15-55-2015, 2015
Short summary
Short summary
We used an ion mass spectrometer at CERN's CLOUD chamber to investigate the detailed composition of ammonia--sulfuric acid ion clusters (of both polarities) as they initially form and then grow into aerosol particles, at atmospherically relevant conditions. We found that these clusters’ composition is mainly determined by the ratio of the precursor vapors and ranges from ammonia-free clusters to clusters containing > 1 ammonia per sulfuric acid. Acid--base bindings are a key formation mechanism.
P. S. Chhabra, A. T. Lambe, M. R. Canagaratna, H. Stark, J. T. Jayne, T. B. Onasch, P. Davidovits, J. R. Kimmel, and D. R. Worsnop
Atmos. Meas. Tech., 8, 1–18, https://doi.org/10.5194/amt-8-1-2015, https://doi.org/10.5194/amt-8-1-2015, 2015
Short summary
Short summary
Authors of this publication used acetate chemical ionization mass spectrometry (acetate-CIMS) to measure experimental products of alpha-pinene and naphthalene oxidation formed in a flow reactor. Acetate-CIMS instrumentation is selective toward carboxylic acid compounds which are readily formed in atmospheric photooxidation processes. Spectral information was used to identify previously measured products of both systems and to estimate their volatilities.
J.-E. Petit, O. Favez, J. Sciare, F. Canonaco, P. Croteau, G. Močnik, J. Jayne, D. Worsnop, and E. Leoz-Garziandia
Atmos. Chem. Phys., 14, 13773–13787, https://doi.org/10.5194/acp-14-13773-2014, https://doi.org/10.5194/acp-14-13773-2014, 2014
L. Q. Hao, A. Kortelainen, S. Romakkaniemi, H. Portin, A. Jaatinen, A. Leskinen, M. Komppula, P. Miettinen, D. Sueper, A. Pajunoja, J. N. Smith, K. E. J. Lehtinen, D. R. Worsnop, A. Laaksonen, and A. Virtanen
Atmos. Chem. Phys., 14, 13483–13495, https://doi.org/10.5194/acp-14-13483-2014, https://doi.org/10.5194/acp-14-13483-2014, 2014
Short summary
Short summary
Positive matrix factorization (PMF) was applied to the unified high-resolution mass spectra organic species with NO+ and NO2+ ions from the measurement in a mixed region between the boreal forestland and the urban area. The PMF analysis succeeded in separating the mixed spectra into three distinct organic factors and one inorganic factor. The particulate organic nitrate was distinguished by PMF for the first time, with a contribution of one-third of the total nitrate mass.
M. D. Willis, A. K. Y. Lee, T. B. Onasch, E. C. Fortner, L. R. Williams, A. T. Lambe, D. R. Worsnop, and J. P. D. Abbatt
Atmos. Meas. Tech., 7, 4507–4516, https://doi.org/10.5194/amt-7-4507-2014, https://doi.org/10.5194/amt-7-4507-2014, 2014
J. Backman, A. Virkkula, V. Vakkari, J. P. Beukes, P. G. Van Zyl, M. Josipovic, S. Piketh, P. Tiitta, K. Chiloane, T. Petäjä, M. Kulmala, and L. Laakso
Atmos. Meas. Tech., 7, 4285–4298, https://doi.org/10.5194/amt-7-4285-2014, https://doi.org/10.5194/amt-7-4285-2014, 2014
C. Leng, Q. Zhang, D. Zhang, C. Xu, T. Cheng, R. Zhang, J. Tao, J. Chen, S. Zha, Y. Zhang, X. Li, L. Kong, and W. Gao
Atmos. Chem. Phys., 14, 12499–12512, https://doi.org/10.5194/acp-14-12499-2014, https://doi.org/10.5194/acp-14-12499-2014, 2014
M. Sipilä, T. Jokinen, T. Berndt, S. Richters, R. Makkonen, N. M. Donahue, R. L. Mauldin III, T. Kurtén, P. Paasonen, N. Sarnela, M. Ehn, H. Junninen, M. P. Rissanen, J. Thornton, F. Stratmann, H. Herrmann, D. R. Worsnop, M. Kulmala, V.-M. Kerminen, and T. Petäjä
Atmos. Chem. Phys., 14, 12143–12153, https://doi.org/10.5194/acp-14-12143-2014, https://doi.org/10.5194/acp-14-12143-2014, 2014
M. K. Sporre, E. Swietlicki, P. Glantz, and M. Kulmala
Atmos. Chem. Phys., 14, 12167–12179, https://doi.org/10.5194/acp-14-12167-2014, https://doi.org/10.5194/acp-14-12167-2014, 2014
L. Rondo, A. Kürten, S. Ehrhart, S. Schobesberger, A. Franchin, H. Junninen, T. Petäjä, M. Sipilä, D. R. Worsnop, and J. Curtius
Atmos. Meas. Tech., 7, 3849–3859, https://doi.org/10.5194/amt-7-3849-2014, https://doi.org/10.5194/amt-7-3849-2014, 2014
S. Decesari, J. Allan, C. Plass-Duelmer, B. J. Williams, M. Paglione, M. C. Facchini, C. O'Dowd, R. M. Harrison, J. K. Gietl, H. Coe, L. Giulianelli, G. P. Gobbi, C. Lanconelli, C. Carbone, D. Worsnop, A. T. Lambe, A. T. Ahern, F. Moretti, E. Tagliavini, T. Elste, S. Gilge, Y. Zhang, and M. Dall'Osto
Atmos. Chem. Phys., 14, 12109–12132, https://doi.org/10.5194/acp-14-12109-2014, https://doi.org/10.5194/acp-14-12109-2014, 2014
Short summary
Short summary
We made use of multiple spectrometric techniques for characterizing the aerosol chemical composition and mixing in the Po Valley in the summer.
The oxygenated organic aerosol (OOA) concentrations were correlated with simple tracers for recirculated planetary boundary layer air.
A full internal mixing between black carbon (BC) and the non-refractory aerosol components was never observed. Local sources in the Po Valley were responsible for the production of organic particles unmixed with BC.
J.-P. Pietikäinen, S. Mikkonen, A. Hamed, A. I. Hienola, W. Birmili, M. Kulmala, and A. Laaksonen
Atmos. Chem. Phys., 14, 11711–11729, https://doi.org/10.5194/acp-14-11711-2014, https://doi.org/10.5194/acp-14-11711-2014, 2014
C. Leng, Q. Zhang, J. Tao, H. Zhang, D. Zhang, C. Xu, X. Li, L. Kong, T. Cheng, R. Zhang, X. Yang, J. Chen, L. Qiao, S. Lou, H. Wang, and C. Chen
Atmos. Chem. Phys., 14, 11353–11365, https://doi.org/10.5194/acp-14-11353-2014, https://doi.org/10.5194/acp-14-11353-2014, 2014
S. G. Gonser, F. Klein, W. Birmili, J. Größ, M. Kulmala, H. E. Manninen, A. Wiedensohler, and A. Held
Atmos. Chem. Phys., 14, 10547–10563, https://doi.org/10.5194/acp-14-10547-2014, https://doi.org/10.5194/acp-14-10547-2014, 2014
S. Smolander, Q. He, D. Mogensen, L. Zhou, J. Bäck, T. Ruuskanen, S. Noe, A. Guenther, H. Aaltonen, M. Kulmala, and M. Boy
Biogeosciences, 11, 5425–5443, https://doi.org/10.5194/bg-11-5425-2014, https://doi.org/10.5194/bg-11-5425-2014, 2014
L. D. Kong, X. Zhao, Z. Y. Sun, Y. W. Yang, H. B. Fu, S. C. Zhang, T. T. Cheng, X. Yang, L. Wang, and J. M. Chen
Atmos. Chem. Phys., 14, 9451–9467, https://doi.org/10.5194/acp-14-9451-2014, https://doi.org/10.5194/acp-14-9451-2014, 2014
L. Liao, V.-M. Kerminen, M. Boy, M. Kulmala, and M. Dal Maso
Atmos. Chem. Phys., 14, 8295–8308, https://doi.org/10.5194/acp-14-8295-2014, https://doi.org/10.5194/acp-14-8295-2014, 2014
M. Vestenius, H. Hellén, J. Levula, P. Kuronen, K.J. Helminen, T. Nieminen, M. Kulmala, and H. Hakola
Atmos. Chem. Phys., 14, 7883–7893, https://doi.org/10.5194/acp-14-7883-2014, https://doi.org/10.5194/acp-14-7883-2014, 2014
T. R. Dallmann, T. B. Onasch, T. W. Kirchstetter, D. R. Worton, E. C. Fortner, S. C. Herndon, E. C. Wood, J. P. Franklin, D. R. Worsnop, A. H. Goldstein, and R. A. Harley
Atmos. Chem. Phys., 14, 7585–7599, https://doi.org/10.5194/acp-14-7585-2014, https://doi.org/10.5194/acp-14-7585-2014, 2014
S. Saarikoski, S. Carbone, M. J. Cubison, R. Hillamo, P. Keronen, C. Sioutas, D. R. Worsnop, and J. L. Jimenez
Atmos. Meas. Tech., 7, 2121–2135, https://doi.org/10.5194/amt-7-2121-2014, https://doi.org/10.5194/amt-7-2121-2014, 2014
K. Jaars, J. P. Beukes, P. G. van Zyl, A. D. Venter, M. Josipovic, J. J. Pienaar, V. Vakkari, H. Aaltonen, H. Laakso, M. Kulmala, P. Tiitta, A. Guenther, H. Hellén, L. Laakso, and H. Hakola
Atmos. Chem. Phys., 14, 7075–7089, https://doi.org/10.5194/acp-14-7075-2014, https://doi.org/10.5194/acp-14-7075-2014, 2014
S. H. Budisulistiorini, M. R. Canagaratna, P. L. Croteau, K. Baumann, E. S. Edgerton, M. S. Kollman, N. L. Ng, V. Verma, S. L. Shaw, E. M. Knipping, D. R. Worsnop, J. T. Jayne, R.J. Weber, and J. D. Surratt
Atmos. Meas. Tech., 7, 1929–1941, https://doi.org/10.5194/amt-7-1929-2014, https://doi.org/10.5194/amt-7-1929-2014, 2014
A. Setyan, C. Song, M. Merkel, W. B. Knighton, T. B. Onasch, M. R. Canagaratna, D. R. Worsnop, A. Wiedensohler, J. E. Shilling, and Q. Zhang
Atmos. Chem. Phys., 14, 6477–6494, https://doi.org/10.5194/acp-14-6477-2014, https://doi.org/10.5194/acp-14-6477-2014, 2014
M. Crippa, F. Canonaco, V. A. Lanz, M. Äijälä, J. D. Allan, S. Carbone, G. Capes, D. Ceburnis, M. Dall'Osto, D. A. Day, P. F. DeCarlo, M. Ehn, A. Eriksson, E. Freney, L. Hildebrandt Ruiz, R. Hillamo, J. L. Jimenez, H. Junninen, A. Kiendler-Scharr, A.-M. Kortelainen, M. Kulmala, A. Laaksonen, A. A. Mensah, C. Mohr, E. Nemitz, C. O'Dowd, J. Ovadnevaite, S. N. Pandis, T. Petäjä, L. Poulain, S. Saarikoski, K. Sellegri, E. Swietlicki, P. Tiitta, D. R. Worsnop, U. Baltensperger, and A. S. H. Prévôt
Atmos. Chem. Phys., 14, 6159–6176, https://doi.org/10.5194/acp-14-6159-2014, https://doi.org/10.5194/acp-14-6159-2014, 2014
M. Paglione, S. Saarikoski, S. Carbone, R. Hillamo, M. C. Facchini, E. Finessi, L. Giulianelli, C. Carbone, S. Fuzzi, F. Moretti, E. Tagliavini, E. Swietlicki, K. Eriksson Stenström, A. S. H. Prévôt, P. Massoli, M. Canaragatna, D. Worsnop, and S. Decesari
Atmos. Chem. Phys., 14, 5089–5110, https://doi.org/10.5194/acp-14-5089-2014, https://doi.org/10.5194/acp-14-5089-2014, 2014
G. W. Mann, K. S. Carslaw, C. L. Reddington, K. J. Pringle, M. Schulz, A. Asmi, D. V. Spracklen, D. A. Ridley, M. T. Woodhouse, L. A. Lee, K. Zhang, S. J. Ghan, R. C. Easter, X. Liu, P. Stier, Y. H. Lee, P. J. Adams, H. Tost, J. Lelieveld, S. E. Bauer, K. Tsigaridis, T. P. C. van Noije, A. Strunk, E. Vignati, N. Bellouin, M. Dalvi, C. E. Johnson, T. Bergman, H. Kokkola, K. von Salzen, F. Yu, G. Luo, A. Petzold, J. Heintzenberg, A. Clarke, J. A. Ogren, J. Gras, U. Baltensperger, U. Kaminski, S. G. Jennings, C. D. O'Dowd, R. M. Harrison, D. C. S. Beddows, M. Kulmala, Y. Viisanen, V. Ulevicius, N. Mihalopoulos, V. Zdimal, M. Fiebig, H.-C. Hansson, E. Swietlicki, and J. S. Henzing
Atmos. Chem. Phys., 14, 4679–4713, https://doi.org/10.5194/acp-14-4679-2014, https://doi.org/10.5194/acp-14-4679-2014, 2014
J. Hong, S. A. K. Häkkinen, M. Paramonov, M. Äijälä, J. Hakala, T. Nieminen, J. Mikkilä, N. L. Prisle, M. Kulmala, I. Riipinen, M. Bilde, V.-M. Kerminen, and T. Petäjä
Atmos. Chem. Phys., 14, 4733–4748, https://doi.org/10.5194/acp-14-4733-2014, https://doi.org/10.5194/acp-14-4733-2014, 2014
E.-M. Kyrö, R. Väänänen, V.-M. Kerminen, A. Virkkula, T. Petäjä, A. Asmi, M. Dal Maso, T. Nieminen, S. Juhola, A. Shcherbinin, I. Riipinen, K. Lehtipalo, P. Keronen, P. P. Aalto, P. Hari, and M. Kulmala
Atmos. Chem. Phys., 14, 4383–4396, https://doi.org/10.5194/acp-14-4383-2014, https://doi.org/10.5194/acp-14-4383-2014, 2014
D. C. S. Beddows, M. Dall'Osto, R. M. Harrison, M. Kulmala, A. Asmi, A. Wiedensohler, P. Laj, A.M. Fjaeraa, K. Sellegri, W. Birmili, N. Bukowiecki, E. Weingartner, U. Baltensperger, V. Zdimal, N. Zikova, J.-P. Putaud, A. Marinoni, P. Tunved, H.-C. Hansson, M. Fiebig, N. Kivekäs, E. Swietlicki, H. Lihavainen, E. Asmi, V. Ulevicius, P. P. Aalto, N. Mihalopoulos, N. Kalivitis, I. Kalapov, G. Kiss, G. de Leeuw, B. Henzing, C. O'Dowd, S. G. Jennings, H. Flentje, F. Meinhardt, L. Ries, H. A. C. Denier van der Gon, and A. J. H. Visschedijk
Atmos. Chem. Phys., 14, 4327–4348, https://doi.org/10.5194/acp-14-4327-2014, https://doi.org/10.5194/acp-14-4327-2014, 2014
F. D. Lopez-Hilfiker, C. Mohr, M. Ehn, F. Rubach, E. Kleist, J. Wildt, Th. F. Mentel, A. Lutz, M. Hallquist, D. Worsnop, and J. A. Thornton
Atmos. Meas. Tech., 7, 983–1001, https://doi.org/10.5194/amt-7-983-2014, https://doi.org/10.5194/amt-7-983-2014, 2014
J. Aalto, P. Kolari, P. Hari, V.-M. Kerminen, P. Schiestl-Aalto, H. Aaltonen, J. Levula, E. Siivola, M. Kulmala, and J. Bäck
Biogeosciences, 11, 1331–1344, https://doi.org/10.5194/bg-11-1331-2014, https://doi.org/10.5194/bg-11-1331-2014, 2014
J. Kangasluoma, C. Kuang, D. Wimmer, M. P. Rissanen, K. Lehtipalo, M. Ehn, D. R. Worsnop, J. Wang, M. Kulmala, and T. Petäjä
Atmos. Meas. Tech., 7, 689–700, https://doi.org/10.5194/amt-7-689-2014, https://doi.org/10.5194/amt-7-689-2014, 2014
I. Kourtchev, S. J. Fuller, C. Giorio, R. M. Healy, E. Wilson, I. O'Connor, J. C. Wenger, M. McLeod, J. Aalto, T. M. Ruuskanen, W. Maenhaut, R. Jones, D. S. Venables, J. R. Sodeau, M. Kulmala, and M. Kalberer
Atmos. Chem. Phys., 14, 2155–2167, https://doi.org/10.5194/acp-14-2155-2014, https://doi.org/10.5194/acp-14-2155-2014, 2014
P. Tiitta, V. Vakkari, P. Croteau, J. P. Beukes, P. G. van Zyl, M. Josipovic, A. D. Venter, K. Jaars, J. J. Pienaar, N. L. Ng, M. R. Canagaratna, J. T. Jayne, V.-M. Kerminen, H. Kokkola, M. Kulmala, A. Laaksonen, D. R. Worsnop, and L. Laakso
Atmos. Chem. Phys., 14, 1909–1927, https://doi.org/10.5194/acp-14-1909-2014, https://doi.org/10.5194/acp-14-1909-2014, 2014
H. Kokkola, P. Yli-Pirilä, M. Vesterinen, H. Korhonen, H. Keskinen, S. Romakkaniemi, L. Hao, A. Kortelainen, J. Joutsensaari, D. R. Worsnop, A. Virtanen, and K. E. J. Lehtinen
Atmos. Chem. Phys., 14, 1689–1700, https://doi.org/10.5194/acp-14-1689-2014, https://doi.org/10.5194/acp-14-1689-2014, 2014
R. L. N. Yatavelli, H. Stark, S. L. Thompson, J. R. Kimmel, M. J. Cubison, D. A. Day, P. Campuzano-Jost, B. B. Palm, A. Hodzic, J. A. Thornton, J. T. Jayne, D. R. Worsnop, and J. L. Jimenez
Atmos. Chem. Phys., 14, 1527–1546, https://doi.org/10.5194/acp-14-1527-2014, https://doi.org/10.5194/acp-14-1527-2014, 2014
C. E. Scott, A. Rap, D. V. Spracklen, P. M. Forster, K. S. Carslaw, G. W. Mann, K. J. Pringle, N. Kivekäs, M. Kulmala, H. Lihavainen, and P. Tunved
Atmos. Chem. Phys., 14, 447–470, https://doi.org/10.5194/acp-14-447-2014, https://doi.org/10.5194/acp-14-447-2014, 2014
A. L. Corrigan, L. M. Russell, S. Takahama, M. Äijälä, M. Ehn, H. Junninen, J. Rinne, T. Petäjä, M. Kulmala, A. L. Vogel, T. Hoffmann, C. J. Ebben, F. M. Geiger, P. Chhabra, J. H. Seinfeld, D. R. Worsnop, W. Song, J. Auld, and J. Williams
Atmos. Chem. Phys., 13, 12233–12256, https://doi.org/10.5194/acp-13-12233-2013, https://doi.org/10.5194/acp-13-12233-2013, 2013
C. Shi, S. Wang, R. Zhou, D. Li, H. Zhao, R. Liu, Z. Li, and B. Zhou
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amtd-6-11011-2013, https://doi.org/10.5194/amtd-6-11011-2013, 2013
Revised manuscript not accepted
C. J. Schumacher, C. Pöhlker, P. Aalto, V. Hiltunen, T. Petäjä, M. Kulmala, U. Pöschl, and J. A. Huffman
Atmos. Chem. Phys., 13, 11987–12001, https://doi.org/10.5194/acp-13-11987-2013, https://doi.org/10.5194/acp-13-11987-2013, 2013
L. R. Williams, L. A. Gonzalez, J. Peck, D. Trimborn, J. McInnis, M. R. Farrar, K. D. Moore, J. T. Jayne, W. A. Robinson, D. K. Lewis, T. B. Onasch, M. R. Canagaratna, A. Trimborn, M. T. Timko, G. Magoon, R. Deng, D. Tang, E. de la Rosa Blanco, A. S. H. Prévôt, K. A. Smith, and D. R. Worsnop
Atmos. Meas. Tech., 6, 3271–3280, https://doi.org/10.5194/amt-6-3271-2013, https://doi.org/10.5194/amt-6-3271-2013, 2013
R. Fröhlich, M. J. Cubison, J. G. Slowik, N. Bukowiecki, A. S. H. Prévôt, U. Baltensperger, J. Schneider, J. R. Kimmel, M. Gonin, U. Rohner, D. R. Worsnop, and J. T. Jayne
Atmos. Meas. Tech., 6, 3225–3241, https://doi.org/10.5194/amt-6-3225-2013, https://doi.org/10.5194/amt-6-3225-2013, 2013
X. Wang, B. J. Williams, X. Wang, Y. Tang, Y. Huang, L. Kong, X. Yang, and P. Biswas
Atmos. Chem. Phys., 13, 10919–10932, https://doi.org/10.5194/acp-13-10919-2013, https://doi.org/10.5194/acp-13-10919-2013, 2013
A. J. Ding, C. B. Fu, X. Q. Yang, J. N. Sun, T. Petäjä, V.-M. Kerminen, T. Wang, Y. Xie, E. Herrmann, L. F. Zheng, W. Nie, Q. Liu, X. L. Wei, and M. Kulmala
Atmos. Chem. Phys., 13, 10545–10554, https://doi.org/10.5194/acp-13-10545-2013, https://doi.org/10.5194/acp-13-10545-2013, 2013
M. R. Pennington, B. R. Bzdek, J. W. DePalma, J. N. Smith, A.-M. Kortelainen, L. Hildebrandt Ruiz, T. Petäjä, M. Kulmala, D. R. Worsnop, and M. V. Johnston
Atmos. Chem. Phys., 13, 10215–10225, https://doi.org/10.5194/acp-13-10215-2013, https://doi.org/10.5194/acp-13-10215-2013, 2013
M. Dall'Osto, X. Querol, A. Alastuey, M. C. Minguillon, M. Alier, F. Amato, M. Brines, M. Cusack, J. O. Grimalt, A. Karanasiou, T. Moreno, M. Pandolfi, J. Pey, C. Reche, A. Ripoll, R. Tauler, B. L. Van Drooge, M. Viana, R. M. Harrison, J. Gietl, D. Beddows, W. Bloss, C. O'Dowd, D. Ceburnis, G. Martucci, N. L. Ng, D. Worsnop, J. Wenger, E. Mc Gillicuddy, J. Sodeau, R. Healy, F. Lucarelli, S. Nava, J. L. Jimenez, F. Gomez Moreno, B. Artinano, A. S. H. Prévôt, L. Pfaffenberger, S. Frey, F. Wilsenack, D. Casabona, P. Jiménez-Guerrero, D. Gross, and N. Cots
Atmos. Chem. Phys., 13, 8991–9019, https://doi.org/10.5194/acp-13-8991-2013, https://doi.org/10.5194/acp-13-8991-2013, 2013
S. A. K. Häkkinen, H. E. Manninen, T. Yli-Juuti, J. Merikanto, M. K. Kajos, T. Nieminen, S. D. D'Andrea, A. Asmi, J. R. Pierce, M. Kulmala, and I. Riipinen
Atmos. Chem. Phys., 13, 7665–7682, https://doi.org/10.5194/acp-13-7665-2013, https://doi.org/10.5194/acp-13-7665-2013, 2013
E. Järvinen, A. Virkkula, T. Nieminen, P. P. Aalto, E. Asmi, C. Lanconelli, M. Busetto, A. Lupi, R. Schioppo, V. Vitale, M. Mazzola, T. Petäjä, V.-M. Kerminen, and M. Kulmala
Atmos. Chem. Phys., 13, 7473–7487, https://doi.org/10.5194/acp-13-7473-2013, https://doi.org/10.5194/acp-13-7473-2013, 2013
D. Wimmer, K. Lehtipalo, A. Franchin, J. Kangasluoma, F. Kreissl, A. Kürten, A. Kupc, A. Metzger, J. Mikkilä, T. Petäjä, F. Riccobono, J. Vanhanen, M. Kulmala, and J. Curtius
Atmos. Meas. Tech., 6, 1793–1804, https://doi.org/10.5194/amt-6-1793-2013, https://doi.org/10.5194/amt-6-1793-2013, 2013
A. J. Ding, C. B. Fu, X. Q. Yang, J. N. Sun, L. F. Zheng, Y. N. Xie, E. Herrmann, W. Nie, T. Petäjä, V.-M. Kerminen, and M. Kulmala
Atmos. Chem. Phys., 13, 5813–5830, https://doi.org/10.5194/acp-13-5813-2013, https://doi.org/10.5194/acp-13-5813-2013, 2013
H. Keskinen, A. Virtanen, J. Joutsensaari, G. Tsagkogeorgas, J. Duplissy, S. Schobesberger, M. Gysel, F. Riccobono, J. G. Slowik, F. Bianchi, T. Yli-Juuti, K. Lehtipalo, L. Rondo, M. Breitenlechner, A. Kupc, J. Almeida, A. Amorim, E. M. Dunne, A. J. Downard, S. Ehrhart, A. Franchin, M.K. Kajos, J. Kirkby, A. Kürten, T. Nieminen, V. Makhmutov, S. Mathot, P. Miettinen, A. Onnela, T. Petäjä, A. Praplan, F. D. Santos, S. Schallhart, M. Sipilä, Y. Stozhkov, A. Tomé, P. Vaattovaara, D. Wimmer, A. Prevot, J. Dommen, N. M. Donahue, R.C. Flagan, E. Weingartner, Y. Viisanen, I. Riipinen, A. Hansel, J. Curtius, M. Kulmala, D. R. Worsnop, U. Baltensperger, H. Wex, F. Stratmann, and A. Laaksonen
Atmos. Chem. Phys., 13, 5587–5600, https://doi.org/10.5194/acp-13-5587-2013, https://doi.org/10.5194/acp-13-5587-2013, 2013
S. Lance, T. Raatikainen, T. B. Onasch, D. R. Worsnop, X.-Y. Yu, M. L. Alexander, M. R. Stolzenburg, P. H. McMurry, J. N. Smith, and A. Nenes
Atmos. Chem. Phys., 13, 5049–5062, https://doi.org/10.5194/acp-13-5049-2013, https://doi.org/10.5194/acp-13-5049-2013, 2013
Y. Huang, L. Li, J. Li, X. Wang, H. Chen, J. Chen, X. Yang, D. S. Gross, H. Wang, L. Qiao, and C. Chen
Atmos. Chem. Phys., 13, 3931–3944, https://doi.org/10.5194/acp-13-3931-2013, https://doi.org/10.5194/acp-13-3931-2013, 2013
J. E. Shilling, R. A. Zaveri, J. D. Fast, L. Kleinman, M. L. Alexander, M. R. Canagaratna, E. Fortner, J. M. Hubbe, J. T. Jayne, A. Sedlacek, A. Setyan, S. Springston, D. R. Worsnop, and Q. Zhang
Atmos. Chem. Phys., 13, 2091–2113, https://doi.org/10.5194/acp-13-2091-2013, https://doi.org/10.5194/acp-13-2091-2013, 2013
V. Vakkari, J. P. Beukes, H. Laakso, D. Mabaso, J. J. Pienaar, M. Kulmala, and L. Laakso
Atmos. Chem. Phys., 13, 1751–1770, https://doi.org/10.5194/acp-13-1751-2013, https://doi.org/10.5194/acp-13-1751-2013, 2013
Related subject area
Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
High ice-nucleating particle concentrations associated with Arctic haze in springtime cold-air outbreaks
CCN estimations at a high-altitude remote site: role of organic aerosol variability and hygroscopicity
Aerosol hygroscopicity over the southeast Atlantic Ocean during the biomass burning season – Part 1: From the perspective of scattering enhancement
Spatial, temporal, and meteorological impact of the 26 February 2023 dust storm: increase in particulate matter concentrations across New Mexico and West Texas
Large spatiotemporal variability in aerosol properties over central Argentina during the CACTI field campaign
Quantification and characterization of primary biological aerosol particles and microbes aerosolized from Baltic seawater
Brownness of organics in anthropogenic biomass burning aerosols over South Asia
Source apportionment of particle number size distribution at the street canyon and urban background sites
Long-range transport of coarse mineral dust: an evaluation of the Met Office Unified Model against aircraft observations
Extreme Saharan dust events expand northward over the Atlantic and Europe, prompting record-breaking PM10 and PM2.5 episodes
Atmospheric black carbon in the metropolitan area of La Paz and El Alto, Bolivia: concentration levels and emission sources
Changing optical properties of black carbon and brown carbon aerosols during long-range transport from the Indo-Gangetic Plain to the equatorial Indian Ocean
Aerosol size distribution properties associated with cold-air outbreaks in the Norwegian Arctic
Ice-nucleating particles active below −24 °C in a Finnish boreal forest and their relationship to bioaerosols
Measurements of particle emissions of an A350-941 burning 100 % sustainable aviation fuels in cruise
Vertical distribution of ice nucleating particles over the boreal forest of Hyytiälä, Finland
Multi-year gradient measurements of sea spray fluxes over the Baltic Sea and the North Atlantic Ocean
External particle mixing influences hygroscopicity in a sub-urban area
Measurement report: In situ vertical profiles of below-cloud aerosol over the central Greenland Ice Sheet
Occurrence, abundance, and formation of atmospheric tarballs from a wide range of wildfires in the western US
Measurement report: Contribution of atmospheric new particle formation to ultrafine particle concentration, cloud condensation nuclei, and radiative forcing – results from 5-year observations in central Europe
Simulated contrail-processed aviation soot aerosols are poor ice-nucleating particles at cirrus temperatures
Biological and dust aerosols as sources of ice-nucleating particles in the eastern Mediterranean: source apportionment, atmospheric processing and parameterization
Quantifying the dust direct radiative effect in the southwestern United States: findings from multiyear measurements
How horizontal transport and turbulent mixing impact aerosol particle and precursor concentrations at a background site in the UAE
Markedly different impacts of primary emissions and secondary aerosol formation on aerosol mixing states revealed by simultaneous measurements of CCNC, H(/V)TDMA, and SP2
Aerosol spectral optical properties in the Paris urban area, and its peri−urban and forested surroundings during summer 2022 from ACROSS surface observations
Vertically resolved aerosol variability at the Amazon Tall Tower Observatory under wet-season conditions
Measurement report: Analysis of aerosol optical depth variation at Zhongshan Station in Antarctica
Vertical structure of a springtime smoky and humid troposphere over the southeast Atlantic from aircraft and reanalysis
Shipborne observations of black carbon aerosols in the western Arctic Ocean during summer and autumn 2016–2020: impact of boreal fires
Attribution of aerosol particle number size distributions to main sources using an 11-year urban dataset
Contribution of fluorescent primary biological aerosol particles to low-level Arctic cloud residuals
Opinion: New directions in atmospheric research offered by research infrastructures combined with open and data-intensive science
Measurement report: A comparison of ground-level ice-nucleating-particle abundance and aerosol properties during autumn at contrasting marine and terrestrial locations
Efficient droplet activation of ambient black carbon particles in a suburban environment
Tropospheric sulfate from Cumbre Vieja (La Palma) observed over Cabo Verde contrasted with background conditions: a lidar case study of aerosol extinction, backscatter, depolarization and lidar ratio profiles at 355, 532 and 1064 nm
The radiative impact of biomass burning aerosols on dust emissions over Namibia and the long-range transport of smoke observed during the Aerosols, Radiation and Clouds in southern Africa (AEROCLO-sA) campaign
Extending the wind profile beyond the surface layer by combining physical and machine learning approaches
Amazonian aerosol size distributions in a lognormal phase space: characteristics and trajectories
Measurement report: Hygroscopicity of size-selected aerosol particles in the heavily polluted urban atmosphere of Delhi: impacts of chloride aerosol
An observation-constrained estimation of brown carbon aerosol direct radiative effects
The Puy de Dôme ICe Nucleation Intercomparison Campaign (PICNIC): comparison between online and offline methods in ambient air
Optical properties and simple forcing efficiency of the organic aerosols and black carbon emitted by residential wood burning in rural central Europe
Particle phase state and aerosol liquid water greatly impact secondary aerosol formation: insights into phase transition and its role in haze events
Measurement Report: Comparative Analysis of Fluorescing African Dust Particles in Spain and Puerto Rico
Measurement report: Nocturnal subsidence behind the cold front enhances surface particulate matter in plains regions: observations from the mobile multi-lidar system
Increase in precipitation scavenging contributes to long-term reductions of light-absorbing aerosol in the Arctic
Sea spray emissions from the Baltic Sea: comparison of aerosol eddy covariance fluxes and chamber-simulated sea spray emissions
Higher absorption enhancement of black carbon in summer shown by 2-year measurements at the high-altitude mountain site of Pic du Midi Observatory in the French Pyrenees
Erin N. Raif, Sarah L. Barr, Mark D. Tarn, James B. McQuaid, Martin I. Daily, Steven J. Abel, Paul A. Barrett, Keith N. Bower, Paul R. Field, Kenneth S. Carslaw, and Benjamin J. Murray
Atmos. Chem. Phys., 24, 14045–14072, https://doi.org/10.5194/acp-24-14045-2024, https://doi.org/10.5194/acp-24-14045-2024, 2024
Short summary
Short summary
Ice-nucleating particles (INPs) allow ice to form in clouds at temperatures warmer than −35°C. We measured INP concentrations over the Norwegian and Barents seas in weather events where cold air is ejected from the Arctic. These concentrations were among the highest measured in the Arctic. It is likely that the INPs were transported to the Arctic from distant regions. These results show it is important to consider hemispheric-scale INP processes to understand INP concentrations in the Arctic.
Fernando Rejano, Andrea Casans, Marta Via, Juan Andrés Casquero-Vera, Sonia Castillo, Hassan Lyamani, Alberto Cazorla, Elisabeth Andrews, Daniel Pérez-Ramírez, Andrés Alastuey, Francisco Javier Gómez-Moreno, Lucas Alados-Arboledas, Francisco José Olmo, and Gloria Titos
Atmos. Chem. Phys., 24, 13865–13888, https://doi.org/10.5194/acp-24-13865-2024, https://doi.org/10.5194/acp-24-13865-2024, 2024
Short summary
Short summary
This study provides valuable insights to improve cloud condensation nuclei (CCN) estimations at a high-altitude remote site which is influenced by nearby urban pollution. Understanding the factors that affect CCN estimations is essential to improve the CCN data coverage worldwide and assess aerosol–cloud interactions on a global scale. This is crucial for improving climate models, since aerosol–cloud interactions are the most important source of uncertainty in climate projections.
Lu Zhang, Michal Segal-Rozenhaimer, Haochi Che, Caroline Dang, Junying Sun, Ye Kuang, Paola Formenti, and Steven G. Howell
Atmos. Chem. Phys., 24, 13849–13864, https://doi.org/10.5194/acp-24-13849-2024, https://doi.org/10.5194/acp-24-13849-2024, 2024
Short summary
Short summary
Using airborne measurements over the southeast Atlantic Ocean, we examined how much moisture aerosols take up during Africa’s biomass burning season. Our study revealed the important role of organic aerosols and introduced a predictive model for moisture uptake, accounting for organics, sulfate, and black carbon, summarizing results from various campaigns. These findings improve our understanding of aerosol–moisture interactions and their radiative effects in this climatically critical region.
Mary C. Robinson, Kaitlin Schueth, and Karin Ardon-Dryer
Atmos. Chem. Phys., 24, 13733–13750, https://doi.org/10.5194/acp-24-13733-2024, https://doi.org/10.5194/acp-24-13733-2024, 2024
Short summary
Short summary
On 26 February 2023, New Mexico and West Texas were impacted by a severe dust storm. To analyze this storm, 28 meteorological stations and 19 PM2.5 and PM10 stations were used. Dust particles were in the air for 16 h, and dust storm conditions lasted for up to 120 min. Hourly PM2.5 and PM10 concentrations were up to 518 and 9983 µg m−3, respectively. For Lubbock, Texas, the maximum PM2.5 concentrations were the highest ever recorded.
Jerome D. Fast, Adam C. Varble, Fan Mei, Mikhail Pekour, Jason Tomlinson, Alla Zelenyuk, Art J. Sedlacek III, Maria Zawadowicz, and Louisa Emmons
Atmos. Chem. Phys., 24, 13477–13502, https://doi.org/10.5194/acp-24-13477-2024, https://doi.org/10.5194/acp-24-13477-2024, 2024
Short summary
Short summary
Aerosol property measurements recently collected on the ground and by a research aircraft in central Argentina during the Cloud, Aerosol, and Complex Terrain Interactions (CACTI) campaign exhibit large spatial and temporal variability. These measurements coupled with coincident meteorological information provide a valuable data set needed to evaluate and improve model predictions of aerosols in a traditionally data-sparse region of South America.
Julika Zinke, Gabriel Pereira Freitas, Rachel Ann Foster, Paul Zieger, Ernst Douglas Nilsson, Piotr Markuszewski, and Matthew Edward Salter
Atmos. Chem. Phys., 24, 13413–13428, https://doi.org/10.5194/acp-24-13413-2024, https://doi.org/10.5194/acp-24-13413-2024, 2024
Short summary
Short summary
Bioaerosols, which can influence climate and human health, were studied in the Baltic Sea. In May and August 2021, we used a sea spray simulation chamber during two ship-based campaigns to collect and measure these aerosols. We found that microbes were enriched in air compared to seawater. Bacterial diversity was analysed using DNA sequencing. Our methods provided consistent estimates of microbial emission fluxes, aligning with previous studies.
Chimurkar Navinya, Taveen Singh Kapoor, Gupta Anurag, Chandra Venkataraman, Harish C. Phuleria, and Rajan K. Chakrabarty
Atmos. Chem. Phys., 24, 13285–13297, https://doi.org/10.5194/acp-24-13285-2024, https://doi.org/10.5194/acp-24-13285-2024, 2024
Short summary
Short summary
Brown carbon (BrC) aerosols show an order-of-magnitude variation in their light absorption strength. Our understanding of BrC from real-world biomass burning remains limited, complicating the determination of its radiative impact. Our study reports absorption properties of BrC emitted from four major biomass burning sources using field measurements in India. It develops an absorption parameterization for BrC and examines the spatial variability in BrC's absorption strength across India.
Sami D. Harni, Minna Aurela, Sanna Saarikoski, Jarkko V. Niemi, Harri Portin, Hanna Manninen, Ville Leinonen, Pasi Aalto, Phil K. Hopke, Tuukka Petäjä, Topi Rönkkö, and Hilkka Timonen
Atmos. Chem. Phys., 24, 12143–12160, https://doi.org/10.5194/acp-24-12143-2024, https://doi.org/10.5194/acp-24-12143-2024, 2024
Short summary
Short summary
In this study, particle number size distribution data were used in a novel way in positive matrix factorization analysis to find aerosol source profiles in the area. Measurements were made in Helsinki at a street canyon and urban background sites between February 2015 and June 2019. Five different aerosol sources were identified. These sources underline the significance of traffic-related emissions in urban environments despite recent improvements in emission reduction technologies.
Natalie G. Ratcliffe, Claire L. Ryder, Nicolas Bellouin, Stephanie Woodward, Anthony Jones, Ben Johnson, Lisa-Maria Wieland, Maximilian Dollner, Josef Gasteiger, and Bernadett Weinzierl
Atmos. Chem. Phys., 24, 12161–12181, https://doi.org/10.5194/acp-24-12161-2024, https://doi.org/10.5194/acp-24-12161-2024, 2024
Short summary
Short summary
Large mineral dust particles are more abundant in the atmosphere than expected and have different impacts on the environment than small particles, which are better represented in climate models. We use aircraft measurements to assess a climate model representation of large-dust transport. We find that the model underestimates the amount of large dust at all stages of transport and that fast removal of the large particles increases this underestimation with distance from the Sahara.
Sergio Rodríguez and Jessica López-Darias
Atmos. Chem. Phys., 24, 12031–12053, https://doi.org/10.5194/acp-24-12031-2024, https://doi.org/10.5194/acp-24-12031-2024, 2024
Short summary
Short summary
Extreme Saharan dust events expanded northward to the Atlantic and Europe, prompting record-breaking PM10 and PM2.5 events. These episodes are caused by low-to-high dipole meteorology during hemispheric anomalies characterized by subtropical anticyclones shifting to higher latitudes, anomalous low pressures beyond the tropics and amplified Rossby waves. Extreme dust events occur in a paradoxical context of a multidecadal decrease in dust emissions, a topic that requires further investigation.
Valeria Mardoñez-Balderrama, Griša Močnik, Marco Pandolfi, Robin L. Modini, Fernando Velarde, Laura Renzi, Angela Marinoni, Jean-Luc Jaffrezo, Isabel Moreno R., Diego Aliaga, Federico Bianchi, Claudia Mohr, Martin Gysel-Beer, Patrick Ginot, Radovan Krejci, Alfred Wiedensohler, Gaëlle Uzu, Marcos Andrade, and Paolo Laj
Atmos. Chem. Phys., 24, 12055–12077, https://doi.org/10.5194/acp-24-12055-2024, https://doi.org/10.5194/acp-24-12055-2024, 2024
Short summary
Short summary
Levels of black carbon (BC) are scarcely reported in the Southern Hemisphere, especially in high-altitude conditions. This study provides insight into the concentration level, variability, and optical properties of BC in La Paz and El Alto and at the Chacaltaya Global Atmosphere Watch Station. Two methods of source apportionment of absorption were tested and compared showing traffic as the main contributor to absorption in the urban area, in addition to biomass and open waste burning.
Krishnakant Budhavant, Mohanan Remani Manoj, Hari Ram Chandrika Rajendran Nair, Samuel Mwaniki Gaita, Henry Holmstrand, Abdus Salam, Ahmed Muslim, Sreedharan Krishnakumari Satheesh, and Örjan Gustafsson
Atmos. Chem. Phys., 24, 11911–11925, https://doi.org/10.5194/acp-24-11911-2024, https://doi.org/10.5194/acp-24-11911-2024, 2024
Short summary
Short summary
The South Asian Pollution Experiment 2018 used access to three strategically located receptor observatories. Observational constraints revealed opposing trends in the mass absorption cross sections of black carbon (BC MAC) and brown carbon (BrC MAC) during long-range transport. Models estimating the climate effects of BC aerosols may have underestimated the ambient BC MAC over distant receptor areas, leading to discrepancies in aerosol absorption predicted by observation-constrained models.
Abigail S. Williams, Jeramy L. Dedrick, Lynn M. Russell, Florian Tornow, Israel Silber, Ann M. Fridlind, Benjamin Swanson, Paul J. DeMott, Paul Zieger, and Radovan Krejci
Atmos. Chem. Phys., 24, 11791–11805, https://doi.org/10.5194/acp-24-11791-2024, https://doi.org/10.5194/acp-24-11791-2024, 2024
Short summary
Short summary
The measured aerosol size distribution modes reveal distinct properties characteristic of cold-air outbreaks in the Norwegian Arctic. We find higher sea spray number concentrations, smaller Hoppel minima, lower effective supersaturations, and accumulation-mode particle scavenging during cold-air outbreaks. These results advance our understanding of cold-air outbreak aerosol–cloud interactions in order to improve their accurate representation in models.
Franziska Vogel, Michael P. Adams, Larissa Lacher, Polly B. Foster, Grace C. E. Porter, Barbara Bertozzi, Kristina Höhler, Julia Schneider, Tobias Schorr, Nsikanabasi S. Umo, Jens Nadolny, Zoé Brasseur, Paavo Heikkilä, Erik S. Thomson, Nicole Büttner, Martin I. Daily, Romy Fösig, Alexander D. Harrison, Jorma Keskinen, Ulrike Proske, Jonathan Duplissy, Markku Kulmala, Tuukka Petäjä, Ottmar Möhler, and Benjamin J. Murray
Atmos. Chem. Phys., 24, 11737–11757, https://doi.org/10.5194/acp-24-11737-2024, https://doi.org/10.5194/acp-24-11737-2024, 2024
Short summary
Short summary
Primary ice formation in clouds strongly influences their properties; hence, it is important to understand the sources of ice-nucleating particles (INPs) and their variability. We present 2 months of INP measurements in a Finnish boreal forest using a new semi-autonomous INP counting device based on gas expansion. These results show strong variability in INP concentrations, and we present a case that the INPs we observe are, at least some of the time, of biological origin.
Rebecca Dischl, Daniel Sauer, Christiane Voigt, Theresa Harlaß, Felicitas Sakellariou, Raphael Märkl, Ulrich Schumann, Monika Scheibe, Stefan Kaufmann, Anke Roiger, Andreas Dörnbrack, Charles Renard, Maxime Gauthier, Peter Swann, Paul Madden, Darren Luff, Mark Johnson, Denise Ahrens, Reetu Sallinen, Tobias Schripp, Georg Eckel, Uwe Bauder, and Patrick Le Clercq
Atmos. Chem. Phys., 24, 11255–11273, https://doi.org/10.5194/acp-24-11255-2024, https://doi.org/10.5194/acp-24-11255-2024, 2024
Short summary
Short summary
In-flight measurements of aircraft emissions burning 100 % sustainable aviation fuel (SAF) show reduced particle number concentrations up to 41 % compared to conventional jet fuel. Particle emissions are dependent on engine power setting, flight altitude, and fuel composition. Engine models show a good correlation with measurement results. Future increased prevalence of SAF can positively influence the climate impact of aviation.
Zoé Brasseur, Julia Schneider, Janne Lampilahti, Ville Vakkari, Victoria A. Sinclair, Christina J. Williamson, Carlton Xavier, Dmitri Moisseev, Markus Hartmann, Pyry Poutanen, Markus Lampimäki, Markku Kulmala, Tuukka Petäjä, Katrianne Lehtipalo, Erik S. Thomson, Kristina Höhler, Ottmar Möhler, and Jonathan Duplissy
Atmos. Chem. Phys., 24, 11305–11332, https://doi.org/10.5194/acp-24-11305-2024, https://doi.org/10.5194/acp-24-11305-2024, 2024
Short summary
Short summary
Ice-nucleating particles (INPs) strongly influence the formation of clouds by initiating the formation of ice crystals. However, very little is known about the vertical distribution of INPs in the atmosphere. Here, we present aircraft measurements of INP concentrations above the Finnish boreal forest. Results show that near-surface INPs are efficiently transported and mixed within the boundary layer and occasionally reach the free troposphere.
Piotr Markuszewski, E. Douglas Nilsson, Julika Zinke, E. Monica Mårtensson, Matthew Salter, Przemysław Makuch, Małgorzata Kitowska, Iwona Niedźwiecka-Wróbel, Violetta Drozdowska, Dominik Lis, Tomasz Petelski, Luca Ferrero, and Jacek Piskozub
Atmos. Chem. Phys., 24, 11227–11253, https://doi.org/10.5194/acp-24-11227-2024, https://doi.org/10.5194/acp-24-11227-2024, 2024
Short summary
Short summary
Our research provides new insights into the study of sea spray aerosol (SSA) emissions in the Baltic Sea and North Atlantic. We observed that SSA flux is suppressed during increased marine biological activity in the Baltic Sea. At the same time, the influence of wave age showed higher SSA emissions in the Baltic Sea for younger waves compared to the Atlantic Ocean. These insights underscore the complex interplay between biological activity and physical dynamics in regulating SSA emissions.
Shravan Deshmukh, Laurent Poulain, Birgit Wehner, Silvia Henning, Jean-Eudes Petit, Pauline Fombelle, Olivier Favez, Hartmut Herrmann, and Mira Pöhlker
EGUsphere, https://doi.org/10.5194/egusphere-2024-3027, https://doi.org/10.5194/egusphere-2024-3027, 2024
Short summary
Short summary
Aerosol hygroscopicity has been investigated at the sub-urban site in Paris; analysis shows the sub-saturated regime's measured hygroscopicity and the chemically derived hygroscopic growth, shedding light on the large effect of external particle mixing and its influence on predicting hygroscopicity.
Heather Guy, Andrew S. Martin, Erik Olson, Ian M. Brooks, and Ryan R. Neely III
Atmos. Chem. Phys., 24, 11103–11114, https://doi.org/10.5194/acp-24-11103-2024, https://doi.org/10.5194/acp-24-11103-2024, 2024
Short summary
Short summary
Aerosol particles impact cloud properties which influence Greenland Ice Sheet melt. Understanding the aerosol population that interacts with clouds is important for constraining future melt. Measurements of aerosols at cloud height over Greenland are rare, and surface measurements are often used to investigate cloud–aerosol interactions. We use a tethered balloon to measure aerosols up to cloud base and show that surface measurements are often not equivalent to those just below the cloud.
Kouji Adachi, Jack E. Dibb, Joseph M. Katich, Joshua P. Schwarz, Hongyu Guo, Pedro Campuzano-Jost, Jose L. Jimenez, Jeff Peischl, Christopher D. Holmes, and James Crawford
Atmos. Chem. Phys., 24, 10985–11004, https://doi.org/10.5194/acp-24-10985-2024, https://doi.org/10.5194/acp-24-10985-2024, 2024
Short summary
Short summary
We examined aerosol particles from wildfires and identified tarballs (TBs) from the Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ) campaign. This study reveals the compositions, abundance, sizes, and mixing states of TBs and shows that TBs formed as the smoke aged for up to 5 h. This study provides measurements of TBs from various biomass-burning events and ages, enhancing our knowledge of TB emissions and our understanding of their climate impact.
Jia Sun, Markus Hermann, Kay Weinhold, Maik Merkel, Wolfram Birmili, Yifan Yang, Thomas Tuch, Harald Flentje, Björn Briel, Ludwig Ries, Cedric Couret, Michael Elsasser, Ralf Sohmer, Klaus Wirtz, Frank Meinhardt, Maik Schütze, Olaf Bath, Bryan Hellack, Veli-Matti Kerminen, Markku Kulmala, Nan Ma, and Alfred Wiedensohler
Atmos. Chem. Phys., 24, 10667–10687, https://doi.org/10.5194/acp-24-10667-2024, https://doi.org/10.5194/acp-24-10667-2024, 2024
Short summary
Short summary
We investigated the characteristics of new particle formation (NPF) for various environments from urban background to high Alpine and the impacts of NPF on cloud condensation nuclei and aerosol radiative forcing. NPF features differ between site categories, implying the crucial role of local environmental factors such as the degree of emissions and meteorological conditions. The results also underscore the importance of local environments when assessing the impact of NPF on climate in models.
Baptiste Testa, Lukas Durdina, Jacinta Edebeli, Curdin Spirig, and Zamin A. Kanji
Atmos. Chem. Phys., 24, 10409–10424, https://doi.org/10.5194/acp-24-10409-2024, https://doi.org/10.5194/acp-24-10409-2024, 2024
Short summary
Short summary
Aviation soot residuals released from contrails can become compacted upon sublimation of the ice crystals, generating new voids in the aggregates where ice nucleation can occur. Here we show that contrail-processed soot is highly compact but that it remains unable to form ice at a relative humidity different from that required for the formation of background cirrus from the more ubiquitous aqueous solution droplets, suggesting that it will not perturb cirrus cloud formation via ice nucleation.
Kunfeng Gao, Franziska Vogel, Romanos Foskinis, Stergios Vratolis, Maria I. Gini, Konstantinos Granakis, Anne-Claire Billault-Roux, Paraskevi Georgakaki, Olga Zografou, Prodromos Fetfatzis, Alexis Berne, Alexandros Papayannis, Konstantinos Eleftheridadis, Ottmar Möhler, and Athanasios Nenes
Atmos. Chem. Phys., 24, 9939–9974, https://doi.org/10.5194/acp-24-9939-2024, https://doi.org/10.5194/acp-24-9939-2024, 2024
Short summary
Short summary
Ice nucleating particle (INP) concentrations are required for correct predictions of clouds and precipitation in a changing climate, but they are poorly constrained in climate models. We unravel source contributions to INPs in the eastern Mediterranean and find that biological particles are important, regardless of their origin. The parameterizations developed exhibit superior performance and enable models to consider biological-particle effects on INPs.
Alexandra Kuwano, Amato T. Evan, Blake Walkowiak, and Robert Frouin
Atmos. Chem. Phys., 24, 9843–9868, https://doi.org/10.5194/acp-24-9843-2024, https://doi.org/10.5194/acp-24-9843-2024, 2024
Short summary
Short summary
The dust direct radiative effect is highly uncertain. Here we used new measurements collected over 3 years and during dust storms at a field site in a desert region in the southwestern United States to estimate the regional dust direct radiative effect. We also used novel soil mineralogy retrieved from an airborne spectrometer to estimate this parameter with model output. We find that, in this region, dust has a minimal net cooling effect on this region's climate.
Jutta Kesti, Ewan J. O'Connor, Anne Hirsikko, John Backman, Maria Filioglou, Anu-Maija Sundström, Juha Tonttila, Heikki Lihavainen, Hannele Korhonen, and Eija Asmi
Atmos. Chem. Phys., 24, 9369–9386, https://doi.org/10.5194/acp-24-9369-2024, https://doi.org/10.5194/acp-24-9369-2024, 2024
Short summary
Short summary
The study combines aerosol particle measurements at the surface and vertical profiling of the atmosphere with a scanning Doppler lidar to investigate how particle transportation together with boundary layer evolution can affect particle and SO2 concentrations at the surface in the Arabian Peninsula region. The instrumentation enabled us to see elevated nucleation mode particle and SO2 concentrations at the surface when air masses transported from polluted areas are mixed in the boundary layer.
Jiangchuan Tao, Biao Luo, Weiqi Xu, Gang Zhao, Hanbin Xu, Biao Xue, Miaomiao Zhai, Wanyun Xu, Huarong Zhao, Sanxue Ren, Guangsheng Zhou, Li Liu, Ye Kuang, and Yele Sun
Atmos. Chem. Phys., 24, 9131–9154, https://doi.org/10.5194/acp-24-9131-2024, https://doi.org/10.5194/acp-24-9131-2024, 2024
Short summary
Short summary
Using simultaneous measurements of DMA–CCNC, H(/V)TDMA, and DMA–SP2, impacts of primary emissions and secondary aerosol formations on changes in aerosol physicochemical properties were comprehensively investigated. It was found that intercomparisons among aerosol mixing-state parameters derived from different techniques can help us gain more insight into aerosol physical properties which, in turn, will aid the investigation of emission characteristics and secondary aerosol formation pathways.
Ludovico Di Antonio, Claudia Di Biagio, Paola Formenti, Aline Gratien, Vincent Michoud, Christopher Cantrell, Astrid Bauville, Antonin Bergé, Mathieu Cazaunau, Servanne Chevaillier, Manuela Cirtog, Patrice Coll, Barbara D'Anna, Joel F. de Brito, David O. De Haan, Juliette R. Dignum, Shravan Deshmukh, Olivier Favez, Pierre-Marie Flaud, Cecile Gaimoz, Lelia N. Hawkins, Julien Kammer, Brigitte Language, Franck Maisonneuve, Griša Močnik, Emilie Perraudin, Jean-Eudes Petit, Prodip Acharja, Laurent Poulain, Pauline Pouyes, Eva Drew Pronovost, Véronique Riffault, Kanuri I. Roundtree, Marwa Shahin, Guillaume Siour, Eric Villenave, Pascal Zapf, Gilles Foret, Jean-François Doussin, and Matthias Beekmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-2299, https://doi.org/10.5194/egusphere-2024-2299, 2024
Short summary
Short summary
The spectral complex refractive index (CRI) and single scattering albedo were retrieved from submicron aerosol measurements at three sites within the greater Paris area during the ACROSS field campaign (June–July 2022). Measurements revealed the urban emission impact on the surrounding areas. The CRI full period averages at 520 nm were 1.41–0.037i (urban), 1.52–0.038i (peri-urban), 1.50−0.025i (rural). Organic aerosols dominated the aerosol mass and contributed up to 22% of absorption at 370 nm.
Marco A. Franco, Rafael Valiati, Bruna A. Holanda, Bruno B. Meller, Leslie A. Kremper, Luciana V. Rizzo, Samara Carbone, Fernando G. Morais, Janaína P. Nascimento, Meinrat O. Andreae, Micael A. Cecchini, Luiz A. T. Machado, Milena Ponczek, Ulrich Pöschl, David Walter, Christopher Pöhlker, and Paulo Artaxo
Atmos. Chem. Phys., 24, 8751–8770, https://doi.org/10.5194/acp-24-8751-2024, https://doi.org/10.5194/acp-24-8751-2024, 2024
Short summary
Short summary
The Amazon wet-season atmosphere was studied at the Amazon Tall Tower Observatory site, revealing vertical variations (between 60 and 325 m) in natural aerosols. Daytime mixing contrasted with nighttime stratification, with distinct rain-induced changes in aerosol populations. Notably, optical property recovery at higher levels was faster, while near-canopy aerosols showed higher scattering efficiency. These findings enhance our understanding of aerosol impacts on climate dynamics.
Lijing Chen, Lei Zhang, Yong She, Zhaoliang Zeng, Yu Zheng, Biao Tian, Wenqian Zhang, Zhaohui Liu, and Minghu Ding
EGUsphere, https://doi.org/10.5194/egusphere-2024-798, https://doi.org/10.5194/egusphere-2024-798, 2024
Short summary
Short summary
AOD at Zhongshan Station varies seasonally, with lower values in summer and higher values in winter. Winter and spring AOD increases due to reduced fine mode particles, while summer and autumn increases are linked to particle growth. Duirnal AOD variation correlates positively with temperature but negatively with wind speed and humidity. Backward trajectory shows aerosols on high (low) AOD days primarily originate from the ocean (interior Antarctica).
Kristina Pistone, Eric M. Wilcox, Paquita Zuidema, Marco Giordano, James Podolske, Samuel E. LeBlanc, Meloë Kacenelenbogen, Steven G. Howell, and Steffen Freitag
Atmos. Chem. Phys., 24, 7983–8005, https://doi.org/10.5194/acp-24-7983-2024, https://doi.org/10.5194/acp-24-7983-2024, 2024
Short summary
Short summary
The springtime southeast Atlantic atmosphere contains lots of smoke from continental fires. This smoke travels with water vapor; more smoke means more humidity. We use aircraft observations and models to describe how the values change through the season and over the region. We sort the atmosphere into different types by vertical structure and amount of smoke and humidity. Since our work shows how frequently these components coincide, it helps to better quantify heating effects over this region.
Yange Deng, Hiroshi Tanimoto, Kohei Ikeda, Sohiko Kameyama, Sachiko Okamoto, Jinyoung Jung, Young Jun Yoon, Eun Jin Yang, and Sung-Ho Kang
Atmos. Chem. Phys., 24, 6339–6357, https://doi.org/10.5194/acp-24-6339-2024, https://doi.org/10.5194/acp-24-6339-2024, 2024
Short summary
Short summary
Black carbon (BC) aerosols play important roles in Arctic climate change, yet they are not well understood because of limited observational data. We observed BC mass concentrations (mBC) in the western Arctic Ocean during summer and early autumn 2016–2020. The mean mBC in 2019 was much higher than in other years. Biomass burning was likely the dominant BC source. Boreal fire BC transport occurring near the surface and/or in the mid-troposphere contributed to high-BC events in the Arctic Ocean.
Máté Vörösmarty, Philip K. Hopke, and Imre Salma
Atmos. Chem. Phys., 24, 5695–5712, https://doi.org/10.5194/acp-24-5695-2024, https://doi.org/10.5194/acp-24-5695-2024, 2024
Short summary
Short summary
The World Health Organization identified ultrafine particles, which make up most of the particle number concentrations, as a potential risk factor for humans. The sources of particle numbers are very different from those of the particulate matter mass. We performed source apportionment of size-segregated particle number concentrations over the diameter range of 6–1000 nm in Budapest for 11 full years. Six source types were identified, characterized and quantified.
Gabriel Pereira Freitas, Ben Kopec, Kouji Adachi, Radovan Krejci, Dominic Heslin-Rees, Karl Espen Yttri, Alun Hubbard, Jeffrey M. Welker, and Paul Zieger
Atmos. Chem. Phys., 24, 5479–5494, https://doi.org/10.5194/acp-24-5479-2024, https://doi.org/10.5194/acp-24-5479-2024, 2024
Short summary
Short summary
Bioaerosols can participate in ice formation within clouds. In the Arctic, where global warming manifests most, they may become more important as their sources prevail for longer periods of the year. We have directly measured bioaerosols within clouds for a full year at an Arctic mountain site using a novel combination of cloud particle sampling and single-particle techniques. We show that bioaerosols act as cloud seeds and may influence the presence of ice within clouds.
Andreas Petzold, Ulrich Bundke, Anca Hienola, Paolo Laj, Cathrine Lund Myhre, Alex Vermeulen, Angeliki Adamaki, Werner Kutsch, Valerie Thouret, Damien Boulanger, Markus Fiebig, Markus Stocker, Zhiming Zhao, and Ari Asmi
Atmos. Chem. Phys., 24, 5369–5388, https://doi.org/10.5194/acp-24-5369-2024, https://doi.org/10.5194/acp-24-5369-2024, 2024
Short summary
Short summary
Easy and fast access to long-term and high-quality observational data is recognised as fundamental to environmental research and the development of climate forecasting and assessment services. We discuss the potential new directions in atmospheric sciences offered by the atmosphere-centric European research infrastructures ACTRIS, IAGOS, and ICOS, building on their capabilities for standardised provision of data through open access combined with tools and methods of data-intensive science.
Elise K. Wilbourn, Larissa Lacher, Carlos Guerrero, Hemanth S. K. Vepuri, Kristina Höhler, Jens Nadolny, Aidan D. Pantoya, Ottmar Möhler, and Naruki Hiranuma
Atmos. Chem. Phys., 24, 5433–5456, https://doi.org/10.5194/acp-24-5433-2024, https://doi.org/10.5194/acp-24-5433-2024, 2024
Short summary
Short summary
Ambient ice particles were measured at terrestrial and temperate marine sites. Ice particles were more abundant in the former site, while the fraction of ice particles relative to total ambient particles, representing atmospheric ice nucleation efficiency, was higher in the latter site. Ice nucleation parameterizations were developed as a function of examined freezing temperatures from two sites for our study periods (autumn).
Ping Tian, Dantong Liu, Kang Hu, Yangzhou Wu, Mengyu Huang, Hui He, Jiujiang Sheng, Chenjie Yu, Dawei Hu, and Deping Ding
Atmos. Chem. Phys., 24, 5149–5164, https://doi.org/10.5194/acp-24-5149-2024, https://doi.org/10.5194/acp-24-5149-2024, 2024
Short summary
Short summary
The results provide direct evidence of efficient droplet activation of black carbon (BC). The cloud condensation nuclei (CCN) activation fraction of BC was higher than for all particles, suggesting higher CCN activity of BC, even though its hygroscopicity is lower. Our research reveals that the evolution of BC's hygroscopicity and its CCN activation properties through atmospheric aging can be effectively characterized by the photochemical age.
Henriette Gebauer, Athena Augusta Floutsi, Moritz Haarig, Martin Radenz, Ronny Engelmann, Dietrich Althausen, Annett Skupin, Albert Ansmann, Cordula Zenk, and Holger Baars
Atmos. Chem. Phys., 24, 5047–5067, https://doi.org/10.5194/acp-24-5047-2024, https://doi.org/10.5194/acp-24-5047-2024, 2024
Short summary
Short summary
Sulfate aerosol from the volcanic eruption at La Palma in 2021 was observed over Cabo Verde. We characterized the aerosol burden based on a case study of lidar and sun photometer observations. We compared the volcanic case to the typical background conditions (reference case) to quantify the volcanic pollution. We show the first ever measurements of the extinction coefficient, lidar ratio and depolarization ratio at 1064 nm for volcanic sulfate.
Cyrille Flamant, Jean-Pierre Chaboureau, Marco Gaetani, Kerstin Schepanski, and Paola Formenti
Atmos. Chem. Phys., 24, 4265–4288, https://doi.org/10.5194/acp-24-4265-2024, https://doi.org/10.5194/acp-24-4265-2024, 2024
Short summary
Short summary
In the austral dry season, the atmospheric composition over southern Africa is dominated by biomass burning aerosols and terrigenous aerosols (so-called mineral dust). This study suggests that the radiative effect of biomass burning aerosols needs to be taken into account to properly forecast dust emissions in Namibia.
Boming Liu, Xin Ma, Jianping Guo, Renqiang Wen, Hui Li, Shikuan Jin, Yingying Ma, Xiaoran Guo, and Wei Gong
Atmos. Chem. Phys., 24, 4047–4063, https://doi.org/10.5194/acp-24-4047-2024, https://doi.org/10.5194/acp-24-4047-2024, 2024
Short summary
Short summary
Accurate wind profile estimation, especially for the lowest few hundred meters of the atmosphere, is of great significance for the weather, climate, and renewable energy sector. We propose a novel method that combines the power-law method with the random forest algorithm to extend wind profiles beyond the surface layer. Compared with the traditional algorithm, this method has better stability and spatial applicability and can be used to obtain the wind profiles on different land cover types.
Gabriela R. Unfer, Luiz A. T. Machado, Paulo Artaxo, Marco A. Franco, Leslie A. Kremper, Mira L. Pöhlker, Ulrich Pöschl, and Christopher Pöhlker
Atmos. Chem. Phys., 24, 3869–3882, https://doi.org/10.5194/acp-24-3869-2024, https://doi.org/10.5194/acp-24-3869-2024, 2024
Short summary
Short summary
Amazonian aerosols and their interactions with precipitation were studied by understanding them in a 3D space based on three parameters that characterize the concentration and size distribution of aerosols. The results showed characteristic arrangements regarding seasonal and diurnal cycles, as well as when interacting with precipitation. The use of this 3D space appears to be a promising tool for aerosol population analysis and for model validation and parameterization.
Anil Kumar Mandariya, Ajit Ahlawat, Mohammed Haneef, Nisar Ali Baig, Kanan Patel, Joshua Apte, Lea Hildebrandt Ruiz, Alfred Wiedensohler, and Gazala Habib
Atmos. Chem. Phys., 24, 3627–3647, https://doi.org/10.5194/acp-24-3627-2024, https://doi.org/10.5194/acp-24-3627-2024, 2024
Short summary
Short summary
The current study explores the temporal variation of size-selected particle hygroscopicity in Delhi for the first time. Here, we report that the high volume fraction contribution of ammonium chloride to aerosol governs the high aerosol hygroscopicity and associated liquid water content based on the experimental data. The episodically high ammonium chloride present in Delhi's atmosphere could lead to haze and fog formation under high relative humidity in the region.
Yueyue Cheng, Chao Liu, Jiandong Wang, Jiaping Wang, Zhouyang Zhang, Li Chen, Dafeng Ge, Caijun Zhu, Jinbo Wang, and Aijun Ding
Atmos. Chem. Phys., 24, 3065–3078, https://doi.org/10.5194/acp-24-3065-2024, https://doi.org/10.5194/acp-24-3065-2024, 2024
Short summary
Short summary
Brown carbon (BrC), a light-absorbing aerosol, plays a pivotal role in influencing global climate. However, assessing BrC radiative effects remains challenging because the required observational data are hardly accessible. Here we develop a new BrC radiative effect estimation method combining conventional observations and numerical models. Our findings reveal that BrC absorbs up to a third of the sunlight at 370 nm that black carbon does, highlighting its importance in aerosol radiative effects.
Larissa Lacher, Michael P. Adams, Kevin Barry, Barbara Bertozzi, Heinz Bingemer, Cristian Boffo, Yannick Bras, Nicole Büttner, Dimitri Castarede, Daniel J. Cziczo, Paul J. DeMott, Romy Fösig, Megan Goodell, Kristina Höhler, Thomas C. J. Hill, Conrad Jentzsch, Luis A. Ladino, Ezra J. T. Levin, Stephan Mertes, Ottmar Möhler, Kathryn A. Moore, Benjamin J. Murray, Jens Nadolny, Tatjana Pfeuffer, David Picard, Carolina Ramírez-Romero, Mickael Ribeiro, Sarah Richter, Jann Schrod, Karine Sellegri, Frank Stratmann, Benjamin E. Swanson, Erik S. Thomson, Heike Wex, Martin J. Wolf, and Evelyn Freney
Atmos. Chem. Phys., 24, 2651–2678, https://doi.org/10.5194/acp-24-2651-2024, https://doi.org/10.5194/acp-24-2651-2024, 2024
Short summary
Short summary
Aerosol particles that trigger ice formation in clouds are important for the climate system but are very rare in the atmosphere, challenging measurement techniques. Here we compare three cloud chambers and seven methods for collecting aerosol particles on filters for offline analysis at a mountaintop station. A general good agreement of the methods was found when sampling aerosol particles behind a whole air inlet, supporting their use for obtaining data that can be implemented in models.
Andrea Cuesta-Mosquera, Kristina Glojek, Griša Močnik, Luka Drinovec, Asta Gregorič, Martin Rigler, Matej Ogrin, Baseerat Romshoo, Kay Weinhold, Maik Merkel, Dominik van Pinxteren, Hartmut Herrmann, Alfred Wiedensohler, Mira Pöhlker, and Thomas Müller
Atmos. Chem. Phys., 24, 2583–2605, https://doi.org/10.5194/acp-24-2583-2024, https://doi.org/10.5194/acp-24-2583-2024, 2024
Short summary
Short summary
This study evaluated the air pollution and climate impacts of residential-wood-burning particle emissions from a rural European site. The authors investigate the optical and physical properties that connect the aerosol emissions with climate by evaluating atmospheric radiative impacts via simple-forcing calculations. The study contributes to reducing the lack of information on the understanding of the optical properties of air pollution from anthropogenic sources.
Xiangxinyue Meng, Zhijun Wu, Jingchuan Chen, Yanting Qiu, Taomou Zong, Mijung Song, Jiyi Lee, and Min Hu
Atmos. Chem. Phys., 24, 2399–2414, https://doi.org/10.5194/acp-24-2399-2024, https://doi.org/10.5194/acp-24-2399-2024, 2024
Short summary
Short summary
Our study revealed that particles predominantly exist in a semi-solid or solid state during clean winter days with RH below 30 %. However, a non-liquid to a liquid phase transition occurred when the aerosol liquid water (ALW) mass fraction surpassed 15 % (dry mass) at transition RH thresholds ranging from 40 % to 60 %. We also provide insights into the increasingly important roles of particle phase state variation and ALW in secondary particulate growth during haze formation in Beijing, China.
Bighnaraj Sarangi, Darrel Baumgardner, Ana Isabel Calvo, Benjamin Bolaños-Rosero, Roberto Fraile, Alberto Rodríguez-Fernández, Delia Fernández-González, Carlos Blanco-Alegre, Cátia Gonçalves, Estela D. Vicente, and Olga L. Mayol Bracero
EGUsphere, https://doi.org/10.5194/egusphere-2024-446, https://doi.org/10.5194/egusphere-2024-446, 2024
Short summary
Short summary
Measurements of fluorescing aerosol particle properties have been made during two major African dust events, one over the island of Puerto Rico and the other over the city of León, Spain The measurements were with two Wideband Integrated Bioaerosol Spectrometers. A significant change in the background aerosol properties, at both locations, is observed when the dust is in the respective regions.
Yiming Wang, Haolin Wang, Yujie Qin, Xinqi Xu, Guowen He, Nanxi Liu, Shengjie Miao, Xiao Lu, Haichao Wang, and Shaojia Fan
Atmos. Chem. Phys., 24, 2267–2285, https://doi.org/10.5194/acp-24-2267-2024, https://doi.org/10.5194/acp-24-2267-2024, 2024
Short summary
Short summary
We conducted a vertical measurement of winter PM2.5 using a mobile multi-lidar system in four cities. Combined with the surface PM2.5 data, the ERA5 reanalysis data, and GEOS-Chem simulations during Dec 2018–Feb 2019, we found that transport nocturnal PM2.5 enhancement by subsidence (T-NPES) events widely occurred with high frequencies in plains regions in eastern China but happened less often in basin regions like Xi’an and Chengdu. We propose a conceptual model of the T-NPES events.
Dominic Heslin-Rees, Peter Tunved, Johan Ström, Roxana Cremer, Paul Zieger, Ilona Riipinen, Annica M. L. Ekman, Konstantinos Eleftheriadis, and Radovan Krejci
Atmos. Chem. Phys., 24, 2059–2075, https://doi.org/10.5194/acp-24-2059-2024, https://doi.org/10.5194/acp-24-2059-2024, 2024
Short summary
Short summary
Light-absorbing atmospheric particles (e.g. black carbon – BC) exert a warming effect on the Arctic climate. We show that the amount of particle light absorption decreased from 2002 to 2023. We conclude that in addition to reductions in emissions of BC, wet removal plays a role in the long-term reduction of BC in the Arctic, given the increase in surface precipitation experienced by air masses arriving at the site. The potential impact of biomass burning events is shown to have increased.
Julika Zinke, Ernst Douglas Nilsson, Piotr Markuszewski, Paul Zieger, Eva Monica Mårtensson, Anna Rutgersson, Erik Nilsson, and Matthew Edward Salter
Atmos. Chem. Phys., 24, 1895–1918, https://doi.org/10.5194/acp-24-1895-2024, https://doi.org/10.5194/acp-24-1895-2024, 2024
Short summary
Short summary
We conducted two research campaigns in the Baltic Sea, during which we combined laboratory sea spray simulation experiments with flux measurements on a nearby island. To combine these two methods, we scaled the laboratory measurements to the flux measurements using three different approaches. As a result, we derived a parameterization that is dependent on wind speed and wave state for particles with diameters 0.015–10 μm. This parameterization is applicable to low-salinity waters.
Sarah Tinorua, Cyrielle Denjean, Pierre Nabat, Thierry Bourrianne, Véronique Pont, François Gheusi, and Emmanuel Leclerc
Atmos. Chem. Phys., 24, 1801–1824, https://doi.org/10.5194/acp-24-1801-2024, https://doi.org/10.5194/acp-24-1801-2024, 2024
Short summary
Short summary
At a French high-altitude site, where many complex interactions between black carbon (BC), radiation, clouds and snow impact climate, 2 years of refractive BC (rBC) and aerosol optical and microphysical measurements have been made. We observed strong seasonal rBC properties variations, with an enhanced absorption in summer compared to winter. The combination of rBC emission sources, transport pathways, atmospheric dynamics and chemical processes explains the rBC light absorption seasonality.
Cited articles
Andreae, M. O. and Crutzen, P. J.: Atmospheric aerosols: biogeochemical sources and role in atmospheric chemistry, Science, 276, 1052–1058, 1997.
Anttila, T., Kerminen, V.-M., and Lehtinen, K. E. J.: Parameterizing the formation rate of new particles: the effect of nuclei self-coagulation, J. Aerosol Sci., 41, 621–636, https://doi.org/10.1016/j.jaerosci.2010.04.008, 2010.
Ball, S., Hanson, D., Eisele, F., and McMurry, P.: Laboratory studies of particle nucleation: Initial results for H2SO4, H2O, and NH3 vapors, J. Geophys. Res.-Atmos., 104, 23709–23718, 1999.
Benson, D. R., Erupe, M. E., and Lee, S. H.: Laboratory-measured H2SO4-H2O-NH3 ternary homogeneous nucleation rates: Initial observations, Geophys. Res. Lett., 36, L15818, https://doi.org/10.1029/2009GL038728, 2009.
Berndt, T., Stratmann, F., Sipilä, M., Vanhanen, J., Petäjä, T., Mikkilä, J., Grüner, A., Spindler, G., Lee Mauldin III, R., Curtius, J., Kulmala, M., and Heintzenberg, J.: Laboratory study on new particle formation from the reaction OH + SO2: influence of experimental conditions, H2O vapour, NH3 and the amine tert-butylamine on the overall process, Atmos. Chem. Phys., 10, 7101–7116, https://doi.org/10.5194/acp-10-7101-2010, 2010.
Chan, C. K. and Yao, X.: Air pollution in mega cities in China, Atmos. Environ., 42, 1–42, 2008.
Dal Maso, M. D., Kulmala, M., Riipinen, I., Wagner, R., Hussein, T., Aalto, P. P., and Lehtinen, K. E.: Formation and growth of fresh atmospheric aerosols: eight years of aerosol size distribution data from SMEAR II, Hyytiälä, Finland, Boreal Environ. Res., 10, 323–336, 2005.
Dockery, D. W., Pope, C. A., Xu, X., Spengler, J. D., Ware, J. H., Fay, M. E., Ferris Jr, B. G., and Speizer, F. E.: An association between air pollution and mortality in six US cities, New Engl. J. Med., 329, 1753–1759, 1993.
Du, J., Cheng, T., Zhang, M., Chen, J., He, Q., Wang, X., Zhang, R., Tao, J., Huang, G., and Li, X.: Aerosol Size Spectra and Particle Formation Events at Urban Shanghai in Eastern China, Aerosol Air Qual. Res, 12, 1362–1372, 2012.
Dunn, M. J., Jiménez, J. L., Baumgardner, D., Castro, T., McMurry, P. H., and Smith, J. N.: Measurements of Mexico City nanoparticle size distributions: Observations of new particle formation and growth, Geophys. Res. Lett., 31, L10102, https://doi.org/10.1029/2004GL019483, 2004.
Ehn, M., Thornton, J. A., Kleist, E., Sipilä, M., Junninen, H., Pullinen, I., Springer, M., Rubach, F., Tillmann, R., and Lee, B.: A large source of low-volatility secondary organic aerosol, Nature, 506, 476–479, 2014.
Eisele, F. and Tanner, D.: Measurement of the gas phase concentration of H2SO4 and methane sulfonic acid and estimates of H2SO4 production and loss in the atmosphere, J. Geophys. Res.-Atmos., 98, 9001–9010, 1993.
Erupe, M. E., Benson, D. R., Li, J., Young, L.-H., Verheggen, B., Al-Refai, M., Tahboub, O., Cunningham, V., Frimpong, F., Viggiano, A. A., and Lee, S.-H.: Correlation of aerosol nucleation rate with sulfuric acid and ammonia in Kent, Ohio: An atmospheric observation, J. Geophys. Res., 115, D23216, https://doi.org/10.1029/2010jd013942, 2010.
Gao, J., Chai, F., Wang, T., Wang, S., and Wang, W.: Particle number size distribution and new particle formation: New characteristics during the special pollution control period in Beijing, J. Environ. Sci., 24, 14–21, https://doi.org/10.1016/s1001-0742(11)60725-0, 2012.
Guo, H., Wang, D. W., Cheung, K., Ling, Z. H., Chan, C. K., and Yao, X. H.: Observation of aerosol size distribution and new particle formation at a mountain site in subtropical Hong Kong, Atmos. Chem. Phys., 12, 9923–9939, https://doi.org/10.5194/acp-12-9923-2012, 2012.
Haywood, J. and Boucher, O.: Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: a review, Rev. Geophys., 38, 513–543, https://doi.org/10.1029/1999rg000078, 2000.
Herrmann, E., Ding, A. J., Kerminen, V.-M., Petäjä, T., Yang, X. Q., Sun, J. N., Qi, X. M., Manninen, H., Hakala, J., Nieminen, T., Aalto, P. P., Kulmala, M., and Fu, C. B.: Aerosols and nucleation in eastern China: first insights from the new SORPES-NJU station, Atmos. Chem. Phys., 14, 2169–2183, https://doi.org/10.5194/acp-14-2169-2014, 2014.
Hirsikko, A., Nieminen, T., Gagné, S., Lehtipalo, K., Manninen, H. E., Ehn, M., Hõrrak, U., Kerminen, V.-M., Laakso, L., McMurry, P. H., Mirme, A., Mirme, S., Petäjä, T., Tammet, H., Vakkari, V., Vana, M., and Kulmala, M.: Atmospheric ions and nucleation: a review of observations, Atmos. Chem. Phys., 11, 767–798, https://doi.org/10.5194/acp-11-767-2011, 2011.
IPCC: IPCC, 2013: Climate change 2013: The physical science basis, Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013.
Kanawade, V. P., Benson, D. R., and Lee, S.-H.: Statistical analysis of 4-year observations of aerosol sizes in a semi-rural continental environment, Atmos. Environ., 59, 30–38, https://doi.org/10.1016/j.atmosenv.2012.05.047, 2012.
Korhonen, H., Sihto, S.-L., Kerminen, V.-M., and Lehtinen, K. E. J.: Evaluation of the accuracy of analysis tools for atmospheric new particle formation, Atmos. Chem. Phys., 11, 3051–3066, https://doi.org/10.5194/acp-11-3051-2011, 2011.
Kuang, C., Chen, M., Zhao, J., Smith, J., McMurry, P. H., and Wang, J.: Size and time-resolved growth rate measurements of 1 to 5 nm freshly formed atmospheric nuclei, Atmos. Chem. Phys., 12, 3573–3589, https://doi.org/10.5194/acp-12-3573-2012, 2012.
Kulmala, M., Toivonen, A., Mäkelä, J. M., and Laaksonen, A.: Analysis of the growth of nucleation mode particles observed in Boreal forest, Tellus B, 50, 449–462, 1998.
Kulmala, M., Kerminen, V. M., Anttila, T., Laaksonen, A., and O'Dowd, C. D.: Organic aerosol formation via sulphate cluster activation, J. Geophys. Res.-Atmos., 109, D04205, https://doi.org/10.1029/2003JD003961, 2004a.
Kulmala, M., Vehkamäki, H., Petäjä, T., Dal Maso, M., Lauri, A., Kerminen, V. M., Birmili, W., and McMurry, P. H.: Formation and growth rates of ultrafine atmospheric particles: a review of observations, J. Aerosol Sci., 35, 143–176, https://doi.org/10.1016/j.jaerosci.2003.10.003, 2004b.
Kulmala, M., Lehtinen, K. E. J., and Laaksonen, A.: Cluster activation theory as an explanation of the linear dependence between formation rate of 3 nm particles and sulphuric acid concentration, Atmos. Chem. Phys., 6, 787–793, https://doi.org/10.5194/acp-6-787-2006, 2006.
Kulmala, M., Riipinen, I., Sipilä, M., Manninen, H. E., Petäjä, T., Junninen, H., Dal Maso, M., Mordas, G., Mirme, A., and Vana, M.: Toward direct measurement of atmospheric nucleation, Science, 318, 89–92, 2007.
Kulmala, M., Petäjä, T., Nieminen, T., Sipilä, M., Manninen, H. E., Lehtipalo, K., Dal Maso, M., Aalto, P. P., Junninen, H., Paasonen, P., Riipinen, I., Lehtinen, K. E. J., Laaksonen, A., and Kerminen, V.-M.: Measurement of the nucleation of atmospheric aerosol particles, Nat. Protoc., 7, 1651–1667, https://doi.org/10.1038/nprot.2012.091, 2012.
Kulmala, M., Kontkanen, J., Junninen, H., Lehtipalo, K., Manninen, H. E., Nieminen, T., Petaja, T., Sipila, M., Schobesberger, S., Rantala, P., Franchin, A., Jokinen, T., Jarvinen, E., Aijala, M., Kangasluoma, J., Hakala, J., Aalto, P. P., Paasonen, P., Mikkila, J., Vanhanen, J., Aalto, J., Hakola, H., Makkonen, U., Ruuskanen, T., Mauldin, R. L., Duplissy, J., Vehkamaki, H., Back, J., Kortelainen, A., Riipinen, I., Kurten, T., Johnston, M. V., Smith, J. N., Ehn, M., Mentel, T. F., Lehtinen, K. E. J., Laaksonen, A., Kerminen, V. M., and Worsnop, D. R.: Direct Observations of Atmospheric Aerosol Nucleation, Science, 339, 943–946, https://doi.org/10.1126/science.1227385, 2013.
Kupiainen-Määttä, O., Olenius, T., Korhonen, H., Malila, J., Dal Maso, M., Lehtinen, K., and Vehkamäki, H.: Critical cluster size cannot in practice be determined by slope analysis in atmospherically relevant applications, J. Aerosol Sci., 77, 127–144, https://doi.org/10.1016/j.jaerosci.2014.07.005, 2014.
Kurtén, T., Noppel, M., Vehkamaeki, H., Salonen, M., and Kulmala, M.: Quantum chemical studies of hydrate formation of H2SO4 and HSO4-, Boreal Environ. Res., 12, 431–453, 2007.
Laden, F., Schwartz, J., Speizer, F. E., and Dockery, D. W.: Reduction in fine particulate air pollution and mortality: extended follow-up of the Harvard Six Cities study, Am. J. Resp. Crit.Care, 173, 667–672, 2006.
Lee, S.-H., Reeves, J., Wilson, J., Hunton, D., Viggiano, A., Miller, T., Ballenthin, J., and Lait, L.: Particle formation by ion nucleation in the upper troposphere and lower stratosphere, Science, 301, 1886–1889, 2003.
Lehtinen, K. E. J. and Kulmala, M.: A model for particle formation and growth in the atmosphere with molecular resolution in size, Atmos. Chem. Phys., 3, 251–257, https://doi.org/10.5194/acp-3-251-2003, 2003.
Ma, Y., Xu, X., Song, W., Geng, F., and Wang, L.: Seasonal and diurnal variations of particulate organosulfates in urban Shanghai, China, Atmos. Environ., 85, 152–160, 2014.
Matsui, H., Koike, M., Kondo, Y., Takegawa, N., Wiedensohler, A., Fast, J. D., and Zaveri, R. A.: Impact of new particle formation on the concentrations of aerosols and cloud condensation nuclei around Beijing, J. Geophys. Res.-Atmos., 116, D19208, https://doi.org/10.1029/2011JD016025, 2011.
McMurry, P. H., Fink, M., Sakurai, H., Stolzenburg, M., Mauldin, R., Smith, J., Eisele, F., Moore, K., Sjostedt, S., and Tanner, D.: A criterion for new particle formation in the sulfur-rich Atlanta atmosphere, J. Geophys. Res.-Atmos., 110, D22S02, https://doi.org/10.1029/2005JD005901, 2005.
Mikkonen, S., Romakkaniemi, S., Smith, J. N., Korhonen, H., Petäjä, T., Plass-Duelmer, C., Boy, M., McMurry, P. H., Lehtinen, K. E. J., Joutsensaari, J., Hamed, A., Mauldin III, R. L., Birmili, W., Spindler, G., Arnold, F., Kulmala, M., and Laaksonen, A.: A statistical proxy for sulphuric acid concentration, Atmos. Chem. Phys., 11, 11319–11334, https://doi.org/10.5194/acp-11-11319-2011, 2011.
Napari, I., Noppel, M., Vehkamäki, H., and Kulmala, M.: Parametrization of ternary nucleation rates for H2SO4-NH3-H2O vapors, J. Geophys. Res.-Atmos., 107, AAC 6-1–AAC 6-6, 2002.
Nieminen, T., Lehtinen, K. E. J., and Kulmala, M.: Sub-10 nm particle growth by vapor condensation –effects of vapor molecule size and particle thermal speed, Atmos. Chem. Phys., 10, 9773–9779, https://doi.org/10.5194/acp-10-9773-2010, 2010.
O'Dowd, C. D., Jimenez, J. L., Bahreini, R., Flagan, R. C., Seinfeld, J. H., Hämeri, K., Pirjola, L., Kulmala, M., Jennings, S. G., and Hoffmann, T.: Marine aerosol formation from biogenic iodine emissions, Nature, 417, 632–636, 2002.
Park, J., Sakurai, H., Vollmers, K., and McMurry, P. H.: Aerosol size distributions measured at the South Pole during ISCAT, Atmos. Environ., 38, 5493–5500, 2004.
Platt, U. and Stutz, J.: Differential Optical Absorption Spectroscopy-Principles and Applications, Springer Berlin Heidelberg, 2008.
Pope, C. A. and Dockery, D. W.: Health effects of fine particulate air pollution: lines that connect, Japca. J. Air Waste Ma., 56, 709–742, 2006.
Riccobono, F., Schobesberger, S., Scott, C. E., Dommen, J., Ortega, I. K., Rondo, L., Almeida, J., Amorim, A., Bianchi, F., and Breitenlechner, M.: Oxidation Products of Biogenic Emissions Contribute to Nucleation of Atmospheric Particles, Science, 344, 717–721, 2014.
Schobesberger, S., Junninen, H., Bianchi, F., Lönn, G., Ehn, M., Lehtipalo, K., Dommen, J., Ehrhart, S., Ortega, I. K., and Franchin, A.: Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules, P. Natl. Acad. Sci. USA, 110, 17223–17228, 2013.
Sihto, S.-L., Kulmala, M., Kerminen, V.-M., Dal Maso, M., Petäjä, T., Riipinen, I., Korhonen, H., Arnold, F., Janson, R., Boy, M., Laaksonen, A., and Lehtinen, K. E. J.: Atmospheric sulphuric acid and aerosol formation: implications from atmospheric measurements for nucleation and early growth mechanisms, Atmos. Chem. Phys., 6, 4079–4091, https://doi.org/10.5194/acp-6-4079-2006, 2006.
Sipila, M., Berndt, T., Petaja, T., Brus, D., Vanhanen, J., Stratmann, F., Patokoski, J., Mauldin, R. L., Hyvarinen, A. P., Lihavainen, H., and Kulmala, M.: The Role of Sulfuric Acid in Atmospheric Nucleation, Science, 327, 1243–1246, https://doi.org/10.1126/science.1180315, 2010.
Stolzenburg, M. R., McMurry, P. H., Sakurai, H., Smith, J. N., Mauldin, R. L., Eisele, F. L., and Clement, C. F.: Growth rates of freshly nucleated atmospheric particles in Atlanta, J. Geophys. Res., 110, D22S05, https://doi.org/10.1029/2005jd005935, 2005.
Vanhanen, J., Mikkilä, J., Lehtipalo, K., Sipilä, M., Manninen, H., Siivola, E., Petäjä, T., and Kulmala, M.: Particle size magnifier for nano-CN detection, Aerosol Sci. Tech., 45, 533–542, 2011.
Wang, L., Khalizov, A. F., Zheng, J., Xu, W., Ma, Y., Lal, V., and Zhang, R.: Atmospheric nanoparticles formed from heterogeneous reactions of organics, Nat. Geosci., 3, 238–242, 2010.
Wang, L., Xu, W., Khalizov, A. F., Zheng, J., Qiu, C., and Zhang, R.: Laboratory investigation on the role of organics in atmospheric nanoparticle growth,J. Phys. Chem. A, 115, 8940–8947, 2011.
Wang, L., Du, H., Chen, J., Zhang, M., Huang, X., Tan, H., Kong, L., and Geng, F.: Consecutive transport of anthropogenic air masses and dust storm plume: Two case events at Shanghai, China, Atmos. Res., 127, 22–33, 2013.
Wang, S., Zhou, R., Zhao, H., Wang, Z., Chen, L., and Zhou, B.: Long-term observation of atmospheric nitrous acid (HONO) and its implication to local NO2 levels in Shanghai, China, Atmos. Environ., 77, 718–724, https://doi.org/10.1016/j.atmosenv.2013.05.071, 2013.
Weber, R., Marti, J., McMurry, P., Eisele, F., Tanner, D., and Jefferson, A.: Measured atmospheric new particle formation rates: Implications for nucleation mechanisms, Chem. Eng. Commun., 151, 53–64, 1996.
Wu, Z., Hu, M., Liu, S., Wehner, B., Bauer, S., Ma ßling, A., Wiedensohler, A., Petäjä, T., Dal Maso, M., and Kulmala, M.: New particle formation in Beijing, China: Statistical analysis of a 1-year data set, J. Geophys. Res.-Atmos., 112, D09209, https://doi.org/10.1029/2006jd007406, 2007.
Yu, F. and Turco, R. P.: From molecular clusters to nanoparticles: Role of ambient ionization in tropospheric aerosol formation, J. Geophys. Res.-Atmos., 106, 4797–4814, 2001.
Yu, F. Q. and Hallar, A. G.: Difference in particle formation at a mountaintop location during spring and summer: Implications for the role of sulfuric acid and organics in nucleation, J. Geophys. Res.-Atmos., 119, 12246–12255, 2014.
Yu, H., Gannet Hallar, A., You, Y., Sedlacek, A., Springston, S., Kanawade, V. P., Lee, Y. N., Wang, J., Kuang, C., and McGraw, R. L.: Sub-3 nm particles observed at the coastal and continental sites in the United States, J. Geophys. Res.-Atmos., 119, 860–879, https://doi.org/10.1002/2013JD020841, 2014.
Yue, D., Hu, M., Wu, Z., Wang, Z., Guo, S., Wehner, B., Nowak, A., Achtert, P., Wiedensohler, A., Jung, J., Kim, Y. J., and Liu, S.: Characteristics of aerosol size distributions and new particle formation in the summer in Beijing, J. Geophys. Res., 114, D00G12, https://doi.org/10.1029/2008jd010894, 2009.
Yue, D. L., Hu, M., Zhang, R. Y., Wang, Z. B., Zheng, J., Wu, Z. J., Wiedensohler, A., He, L. Y., Huang, X. F., and Zhu, T.: The roles of sulfuric acid in new particle formation and growth in the mega-city of Beijing, Atmos. Chem. Phys., 10, 4953–4960, https://doi.org/10.5194/acp-10-4953-2010, 2010.
Yue, D. L., Hu, M., Zhang, R. Y., Wu, Z. J., Su, H., Wang, Z. B., Peng, J. F., He, L. Y., Huang, X. F., Gong, Y. G., and Wiedensohler, A.: Potential contribution of new particle formation to cloud condensation nuclei in Beijing, Atmos. Environ., 45, 6070–6077, https://doi.org/10.1016/j.atmosenv.2011.07.037, 2011.
Yue, D. L., Hu, M., Wang, Z. B., Wen, M. T., Guo, S., Zhong, L. J., Wiedensohler, A., and Zhang, Y. H.: Comparison of particle number size distributions and new particle formation between the urban and rural sites in the PRD region, China, Atmos. Environ., 76, 181–188, https://doi.org/10.1016/j.atmosenv.2012.11.018, 2013.
Zhang, R., Suh, I., Zhao, J., Zhang, D., Fortner, E. C., Tie, X., Molina, L. T., and Molina, M. J.: Atmospheric new particle formation enhanced by organic acids, Science, 304, 1487–1490, 2004.
Zhang, R., Wang, L., Khalizov, A. F., Zhao, J., Zheng, J., McGraw, R. L., and Molina, L. T.: Formation of nanoparticles of blue haze enhanced by anthropogenic pollution, P. Natl. Acad. Sci. USA, 106, 17650–17654, 2009.
Zhang, R., Khalizov, A., Wang, L., Hu, M., and Xu, W.: Nucleation and Growth of Nanoparticles in the Atmosphere, Chem. Rev., 112, 1957–2011, https://doi.org/10.1021/cr2001756, 2012.
Zhang, Y., Zhang, X., Sun, J., Lin, W., Gong, S., Shen, X., and Yang, S.: Characterization of new particle and secondary aerosol formation during summertime in Beijing, China, Tellus B, 63, 382–394, 2011.
Zhao, J., Smith, J. N., Eisele, F. L., Chen, M., Kuang, C., and McMurry, P. H.: Observation of neutral sulfuric acid-amine containing clusters in laboratory and ambient measurements, Atmos. Chem. Phys., 11, 10823–10836, https://doi.org/10.5194/acp-11-10823-2011, 2011.
Zheng, J., Hu, M., Zhang, R., Yue, D., Wang, Z., Guo, S., Li, X., Bohn, B., Shao, M., He, L., Huang, X., Wiedensohler, A., and Zhu, T.: Measurements of gaseous H2SO4 by AP-ID-CIMS during CAREBeijing 2008 Campaign, Atmos. Chem. Phys., 11, 7755–7765, https://doi.org/10.5194/acp-11-7755-2011, 2011.
Zheng, J., Ma, Y., Chen, M., Zhang, Q., Wang, L., Khalizov, A. F., Yao, L., Wang, Z., Wang, X., and Chen, L.: Measurement of atmospheric amines and ammonia using the high resolution time-of-flight chemical ionization mass spectrometry, Atmos. Environ., 102, 249–259, https://doi.org/10.1016/j.atmosenv.2014.12.002, 2015.
Altmetrics
Final-revised paper
Preprint