the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Modelling studies of HOMs and their contributions to new particle formation and growth: comparison of boreal forest in Finland and a polluted environment in China
Ximeng Qi
Pontus Roldin
Zhengning Xu
Putian Zhou
Nina Sarnela
Wei Nie
Xin Huang
Anton Rusanen
Mikael Ehn
Matti P. Rissanen
Tuukka Petäjä
Markku Kulmala
Michael Boy
Related authors
We present a novel version of an aerosol number size distribution instrument, showcasing its capability to measure particle number concentration and particle number size distribution between 1 and 12 nm. Our results show that the instrument agrees well with existing instrumentation and allows for both the accurate measurement of the smallest particles and overlap with more conventional aerosol number size distribution instruments.
underestimatedthe oxidation processes in the elevation atmospheres.
variantsof the model using an implausibility metric. Despite many compensating effects in the model, the procedure constrains the probability distributions of many parameters, and direct radiative forcing uncertainty is reduced by 34 %.
surface darkening) could influence the radiative energy balance. During the harvest season in eastern China, satellite retrieval shows that surface albedo was significantly decreased. Observational evidence of meteorological perturbations from the surface darkening is identified, which is further examined by model simulation. This work highlights the importance of burning-induced albedo change in weather forecast and regional climate.
dome effect). Key factors like vertical profile and aging of aerosol, and underlying surface, are explored with a meteorology–chemistry coupled model. We found the effect to be sensitive to altitude of aerosol and can be intensified by aging processes. The effect is also more substantial in rural areas. China’s air quality would benefit from black carbon reduction from elevated sources and domestic combustion.
Related subject area
A state-of-the-art thermodynamic model has been coupled with the city-scale chemistry transport model EPISODE–CityChem to investigate the equilibrium between the inorganic gas and aerosol phases over the greater Athens area, Greece. The simulations indicate that the formation of nitrates in an urban environment is significantly affected by local nitrogen oxide emissions, as well as ambient temperature, relative humidity, photochemical activity, and the presence of non-volatile cations.
hiddensource of inter-model variability and may be leading to bias in some climate model results.