Articles | Volume 17, issue 23
Atmos. Chem. Phys., 17, 14275–14289, 2017

Special issue: Regional transport and transformation of air pollution in...

Atmos. Chem. Phys., 17, 14275–14289, 2017

Research article 01 Dec 2017

Research article | 01 Dec 2017

Observations of the vertical distributions of summertime atmospheric pollutants and the corresponding ozone production in Shanghai, China

Chengzhi Xing1,*, Cheng Liu1,2,3,9,*, Shanshan Wang4, Ka Lok Chan5, Yang Gao6, Xin Huang7, Wenjing Su1, Chengxin Zhang1, Yunsheng Dong3, Guangqiang Fan3, Tianshu Zhang3, Zhenyi Chen3, Qihou Hu3, Hang Su8,10, Zhouqing Xie1,2,3,9, and Jianguo Liu2,3 Chengzhi Xing et al.
  • 1School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China
  • 2Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
  • 3Key Lab of Environmental Optics & Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, 230031, China
  • 4Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
  • 5Meteorological Institute, Ludwig-Maximilians-Universität München, Munich, Germany
  • 6College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
  • 7School of Atmospheric Sciences, Nanjing University, Nanjing, 210093, China
  • 8Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
  • 9Anhui Province Key Laboratory of Polar Environment and Global Change, USTC, Hefei, 230026, China
  • 10Biogeochemistry Department, Max Planck Institute for Chemistry, Mainz, 55020, Germany
  • *These authors contributed equally to this work.

Abstract. Ground-based multi-axis differential optical absorption spectroscopy (MAX-DOAS) and lidar measurements were performed in Shanghai, China, during May 2016 to investigate the vertical distribution of summertime atmospheric pollutants. In this study, vertical profiles of aerosol extinction coefficient, nitrogen dioxide (NO2) and formaldehyde (HCHO) concentrations were retrieved from MAX-DOAS measurements using the Heidelberg Profile (HEIPRO) algorithm, while vertical distribution of ozone (O3) was obtained from an ozone lidar. Sensitivity study of the MAX-DOAS aerosol profile retrieval shows that the a priori aerosol profile shape has significant influences on the aerosol profile retrieval. Aerosol profiles retrieved from MAX-DOAS measurements with Gaussian a priori profile demonstrate the best agreements with simultaneous lidar measurements and vehicle-based tethered-balloon observations among all a priori aerosol profiles. Tropospheric NO2 vertical column densities (VCDs) measured with MAX-DOAS show a good agreement with OMI satellite observations with a Pearson correlation coefficient (R) of 0.95. In addition, measurements of the O3 vertical distribution indicate that the ozone productions do not only occur at surface level but also at higher altitudes (about 1.1 km). Planetary boundary layer (PBL) height and horizontal and vertical wind field information were integrated to discuss the ozone formation at upper altitudes. The results reveal that enhanced ozone concentrations at ground level and upper altitudes are not directly related to horizontal and vertical transportation. Similar patterns of O3 and HCHO vertical distributions were observed during this campaign, which implies that the ozone productions near the surface and at higher altitudes are mainly influenced by the abundance of volatile organic compounds (VOCs) in the lower troposphere.

Short summary
Vertical profiles of the aerosol extinction coefficient and NO2 and HCHO concentrations were retrieved from MAX-DOAS measurement, while vertical distribution of O3 was obtained using ozone lidar. The measured O3 vertical distribution indicates that the ozone production not only occurs at surface level but also at higher altitudes (about 1.1 km), which are not directly related to horizontal and vertical transportation but are mainly influenced by the abundance of VOCs in the lower troposphere.
Final-revised paper