Articles | Volume 20, issue 20
https://doi.org/10.5194/acp-20-11893-2020
https://doi.org/10.5194/acp-20-11893-2020
Research article
 | 
22 Oct 2020
Research article |  | 22 Oct 2020

Using a coupled large-eddy simulation–aerosol radiation model to investigate urban haze: sensitivity to aerosol loading and meteorological conditions

Jessica Slater, Juha Tonttila, Gordon McFiggans, Paul Connolly, Sami Romakkaniemi, Thomas Kühn, and Hugh Coe

Related authors

The evolution of carbon oxidation state during secondary organic aerosol formation from individual and mixed organic precursors
Yunqi Shao, Aristeidis Voliotis, Mao Du, Yu Wang, Jacqueline Hamilton, M. Rami Alfarra, and Gordon McFiggans
Aerosol Research Discuss., https://doi.org/10.5194/ar-2025-22,https://doi.org/10.5194/ar-2025-22, 2025
Preprint under review for AR
Short summary
A theory-informed, experiment-based constraint on the rate of autoxidation chemistry – an analytical approach
Lukas Pichelstorfer, Simon P. O'Meara, and Gordon McFiggans
Aerosol Research, 3, 417–428, https://doi.org/10.5194/ar-3-417-2025,https://doi.org/10.5194/ar-3-417-2025, 2025
Short summary
Secondary Ice Formation in Cumulus Congestus Clouds: Insights from Observations and Aerosol-Aware Large-Eddy Simulations
Silvia M. Calderón, Noora Hyttinen, Harri Kokkola, Tomi Raatikainen, R. Paul Lawson, and Sami Romakkaniemi
EGUsphere, https://doi.org/10.5194/egusphere-2025-2730,https://doi.org/10.5194/egusphere-2025-2730, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Determination of the atmospheric volatility of pesticides using Filter Inlet for Gases and AEROsols–chemical ionisation mass spectrometry
Olivia M. Jackson, Aristeidis Voliotis, Thomas J. Bannan, Simon P. O'Meara, Gordon McFiggans, Dave Johnson, and Hugh Coe
Atmos. Chem. Phys., 25, 6257–6272, https://doi.org/10.5194/acp-25-6257-2025,https://doi.org/10.5194/acp-25-6257-2025, 2025
Short summary
The role of aerosols and meteorological conditions in shaping cloud droplet development in New Mexico summer deep-convective systems
Huihui Wu, Nicholas Marsden, Paul Connolly, Michael Flynn, Paul I. Williams, Declan Finney, Kezhen Hu, Graeme J. Nott, Navaneeth Thamban, Keith Bower, Alan Blyth, Martin Gallagher, and Hugh Coe
EGUsphere, https://doi.org/10.5194/egusphere-2025-2600,https://doi.org/10.5194/egusphere-2025-2600, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary

Related subject area

Subject: Dynamics | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Kinematic properties of regions that can involve persistent contrails over the North Atlantic and Europe during April and May 2024
Sina Maria Hofer and Klaus Martin Gierens
Atmos. Chem. Phys., 25, 6843–6856, https://doi.org/10.5194/acp-25-6843-2025,https://doi.org/10.5194/acp-25-6843-2025, 2025
Short summary
Synoptic and microphysical lifetime constraints for contrails
Sina Maria Hofer and Klaus Martin Gierens
EGUsphere, https://doi.org/10.5194/egusphere-2025-326,https://doi.org/10.5194/egusphere-2025-326, 2025
Short summary
Country- and species-dependent parameters for the heating degree day method to distribute NOx and PM emissions from residential heating in the EU 27: application to air quality modelling and multi-year emission projections
Antoine Guion, Florian Couvidat, Marc Guevara, and Augustin Colette
Atmos. Chem. Phys., 25, 2807–2827, https://doi.org/10.5194/acp-25-2807-2025,https://doi.org/10.5194/acp-25-2807-2025, 2025
Short summary
Contribution of gravity waves to shear in the extratropical lowermost stratosphere: insights from idealized baroclinic life cycle experiments
Madhuri Umbarkar and Daniel Kunkel
EGUsphere, https://doi.org/10.5194/egusphere-2025-351,https://doi.org/10.5194/egusphere-2025-351, 2025
Short summary
Physical processes influencing the Asian climate due to black carbon emission over East and South Asia
Feifei Luo, Bjørn Samset, Camilla Stjern, Manoj Joshi, Laura Wilcox, Robert Allen, Wei Hua, and Shuanglin Li
EGUsphere, https://doi.org/10.5194/egusphere-2024-3867,https://doi.org/10.5194/egusphere-2024-3867, 2025
Short summary

Cited articles

Ács, F., Mihailović, D. T., and Rajković, B.: A Coupled Soil Moisture and Surface Temperature Prediction Model, J. Appl. Meteorol., 30, 812–822, https://doi.org/10.1175/1520-0450(1991)030<0812:ACSMAS>2.0.CO;2, 1991. a, b
Andrejczuk, M., Gadian, A., and Blyth, A.: Numerical simulations of stratocumulus cloud response to aerosol perturbation, Atmos. Res., 140–141, 76–84, https://doi.org/10.1016/j.atmosres.2014.01.006, 2014. a
Bellon, G. and Stevens, B.: Using the sensitivity of large-eddy simulations to evaluate atmospheric boundary layer models, J. Atmos. Sci., 69, 1582–1601, https://doi.org/10.1175/JAS-D-11-0160.1, 2012. a
Bond, T. C. and Bergstrom, R. W.: Light absorption by carbonaceous particles: An investigative review, Aerosol Sci. Tech., 40, 27–67, https://doi.org/10.1080/02786820500421521, 2006. a
Byun, D. W.: Dynamically consistent formulations in meteorological and air quality models for multiscale atmospheric studies. Part II: Mass conservation issues, J. Atmos. Sci., 56, 3808–3820, https://doi.org/10.1175/1520-0469(1999)056<3808:DCFIMA>2.0.CO;2, 1999. a
Download
Short summary
The feedback effect between aerosol particles, radiation and meteorology reduces turbulent motion and results in increased surface aerosol concentrations during Beijing haze. Observational analysis and regional modelling studies have examined the feedback effect but these studies are limited. In this work, we set up a high-resolution model for the Beijing environment to examine the sensitivity of the aerosol feedback effect to initial meteorological conditions and aerosol loading.
Share
Altmetrics
Final-revised paper
Preprint