Articles | Volume 18, issue 3
Atmos. Chem. Phys., 18, 1475–1494, 2018

Special issue: BACCHUS – Impact of Biogenic versus Anthropogenic emissions...

Special issue: Aerosol-Cloud Coupling And Climate Interactions in the Arctic...

Atmos. Chem. Phys., 18, 1475–1494, 2018

Research article 02 Feb 2018

Research article | 02 Feb 2018

Relating large-scale subsidence to convection development in Arctic mixed-phase marine stratocumulus

Gillian Young1,a, Paul J. Connolly1, Christopher Dearden1,b, and Thomas W. Choularton1 Gillian Young et al.
  • 1Centre for Atmospheric Science, School of Earth and Environmental Sciences, University of Manchester, Manchester, UK
  • anow at: British Antarctic Survey, High Cross, Madingley Road, Cambridge, UK
  • bnow at: School of Earth and Environment, The University of Leeds, Leeds, UK

Abstract. Large-scale subsidence, associated with high-pressure systems, is often imposed in large-eddy simulation (LES) models to maintain the height of boundary layer (BL) clouds. Previous studies have considered the influence of subsidence on warm liquid clouds in subtropical regions; however, the relationship between subsidence and mixed-phase cloud microphysics has not specifically been studied. For the first time, we investigate how widespread subsidence associated with synoptic-scale meteorological features can affect the microphysics of Arctic mixed-phase marine stratocumulus (Sc) clouds. Modelled with LES, four idealised scenarios – a stable Sc, varied droplet (Ndrop) or ice (Nice) number concentrations, and a warming surface (representing motion southwards) – were subjected to different levels of subsidence to investigate the cloud microphysical response. We find strong sensitivities to large-scale subsidence, indicating that high-pressure systems in the ocean-exposed Arctic regions have the potential to generate turbulence and changes in cloud microphysics in any resident BL mixed-phase clouds.

Increased cloud convection is modelled with increased subsidence, driven by longwave radiative cooling at cloud top and rain evaporative cooling and latent heating from snow growth below cloud. Subsidence strengthens the BL temperature inversion, thus reducing entrainment and allowing the liquid- and ice-water paths (LWPs, IWPs) to increase. Through increased cloud-top radiative cooling and subsequent convective overturning, precipitation production is enhanced: rain particle number concentrations (Nrain), in-cloud rain mass production rates, and below-cloud evaporation rates increase with increased subsidence.

Ice number concentrations (Nice) play an important role, as greater concentrations suppress the liquid phase; therefore, Nice acts to mediate the strength of turbulent overturning promoted by increased subsidence. With a warming surface, a lack of – or low – subsidence allows for rapid BL turbulent kinetic energy (TKE) coupling, leading to a heterogeneous cloud layer, cloud-top ascent, and cumuli formation below the Sc cloud. In these scenarios, higher levels of subsidence act to stabilise the Sc layer, where the combination of these two forcings counteract one another to produce a stable, yet dynamic, cloud layer.

Short summary
Large-scale subsidence, associated with high-pressure systems, is often used in cloud-resolving models to maintain the height of boundary layer clouds; however, its influence on the small-scale interactions in mixed-phase clouds has not been previously investigated. Using large-eddy simulations, we have identified a relationship between subsidence and convection development in such clouds, with implications for mixed-phase boundary layer clouds forming in the ocean-exposed Arctic regions.
Final-revised paper