Articles | Volume 17, issue 21
https://doi.org/10.5194/acp-17-13361-2017
https://doi.org/10.5194/acp-17-13361-2017
Research article
 | 
10 Nov 2017
Research article |  | 10 Nov 2017

Estimation of atmospheric particle formation rates through an analytical formula: validation and application in Hyytiälä and Puijo, Finland

Elham Baranizadeh, Tuomo Nieminen, Taina Yli-Juuti, Markku Kulmala, Tuukka Petäjä, Ari Leskinen, Mika Komppula, Ari Laaksonen, and Kari E. J. Lehtinen

Related authors

Implementation of state-of-the-art ternary new-particle formation scheme to the regional chemical transport model PMCAMx-UF in Europe
Elham Baranizadeh, Benjamin N. Murphy, Jan Julin, Saeed Falahat, Carly L. Reddington, Antti Arola, Lars Ahlm, Santtu Mikkonen, Christos Fountoukis, David Patoulias, Andreas Minikin, Thomas Hamburger, Ari Laaksonen, Spyros N. Pandis, Hanna Vehkamäki, Kari E. J. Lehtinen, and Ilona Riipinen
Geosci. Model Dev., 9, 2741–2754, https://doi.org/10.5194/gmd-9-2741-2016,https://doi.org/10.5194/gmd-9-2741-2016, 2016
Short summary

Related subject area

Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Representation of iron aerosol size distributions of anthropogenic emissions is critical in evaluating atmospheric soluble iron input to the ocean
Mingxu Liu, Hitoshi Matsui, Douglas S. Hamilton, Sagar D. Rathod, Kara D. Lamb, and Natalie M. Mahowald
Atmos. Chem. Phys., 24, 13115–13127, https://doi.org/10.5194/acp-24-13115-2024,https://doi.org/10.5194/acp-24-13115-2024, 2024
Short summary
Revealing dominant patterns of aerosol regimes in the lower troposphere and their evolution from preindustrial times to the future in global climate model simulations
Jingmin Li, Mattia Righi, Johannes Hendricks, Christof G. Beer, Ulrike Burkhardt, and Anja Schmidt
Atmos. Chem. Phys., 24, 12727–12747, https://doi.org/10.5194/acp-24-12727-2024,https://doi.org/10.5194/acp-24-12727-2024, 2024
Short summary
Improving estimation of a record-breaking east Asian dust storm emission with lagged aerosol Ångström exponent observations
Yueming Cheng, Tie Dai, Junji Cao, Daisuke Goto, Jianbing Jin, Teruyuki Nakajima, and Guangyu Shi
Atmos. Chem. Phys., 24, 12643–12659, https://doi.org/10.5194/acp-24-12643-2024,https://doi.org/10.5194/acp-24-12643-2024, 2024
Short summary
Impact of biomass burning aerosols (BBA) on the tropical African climate in an ocean–atmosphere–aerosol coupled climate model
Marc Mallet, Aurore Voldoire, Fabien Solmon, Pierre Nabat, Thomas Drugé, and Romain Roehrig
Atmos. Chem. Phys., 24, 12509–12535, https://doi.org/10.5194/acp-24-12509-2024,https://doi.org/10.5194/acp-24-12509-2024, 2024
Short summary
Retrieval of refractive index and water content for the coating materials of aged black carbon aerosol based on optical properties: a theoretical analysis
Jia Liu, Cancan Zhu, Donghui Zhou, and Jinbao Han
Atmos. Chem. Phys., 24, 12341–12354, https://doi.org/10.5194/acp-24-12341-2024,https://doi.org/10.5194/acp-24-12341-2024, 2024
Short summary

Cited articles

Aalto, P., Hämeri, K., Becker, E., Weber, R., Salm, J., Mäkelä, J., Hoell, C., O'dowd, C., Hansson, H.-C., Väkevä, M., Koponen, I., Buzorius, G., and Kulmala, M.: Physical characterization of aerosol particles during nucleation events, Tellus B, 53, 344–358, https://doi.org/10.3402/tellusb.v53i4.17127, 2001.
Berndt, T., Sipilä, M., Stratmann, F., Petäjä, T., Vanhanen, J., Mikkilä, J., Patokoski, J., Taipale, R., Mauldin III, R. L., and Kulmala, M.: Enhancement of atmospheric H2SO4 ∕ H2O nucleation: organic oxidation products versus amines, Atmos. Chem. Phys., 14, 751–764, https://doi.org/10.5194/acp-14-751-2014, 2014.
Dal Maso, M., Kulmala, M., Riipinen, I., Wagner, R., Hussein, T., Aalto, P. P., and Lehtinen, K. E. J.: Formation and growth of fresh atmospheric aerosols: eight years of aerosol size distribution data from SMEAR II, Hyytiälä, Finland, Boreal Environ. Res., 10, 323–336, 2005.
Download
Short summary
Extrapolation of the particle formation rates from one measured larger size (e.g., 7 nm) to smaller sizes (e.g., 3 nm) based on simplified growth-scavenging dynamics works fairly well to estimate mean daily formation rates, but it fails to predict the time evolution of the particle population. This points to the challenges in predicting atmospheric nucleation rates for locations where the particle growth and loss rates are size- and time-dependent.
Altmetrics
Final-revised paper
Preprint