Articles | Volume 14, issue 3
https://doi.org/10.5194/acp-14-1299-2014
https://doi.org/10.5194/acp-14-1299-2014
Research article
 | 
05 Feb 2014
Research article |  | 05 Feb 2014

Radical chemistry at night: comparisons between observed and modelled HOx, NO3 and N2O5 during the RONOCO project

D. Stone, M. J. Evans, H. Walker, T. Ingham, S. Vaughan, B. Ouyang, O. J. Kennedy, M. W. McLeod, R. L. Jones, J. Hopkins, S. Punjabi, R. Lidster, J. F. Hamilton, J. D. Lee, A. C. Lewis, L. J. Carpenter, G. Forster, D. E. Oram, C. E. Reeves, S. Bauguitte, W. Morgan, H. Coe, E. Aruffo, C. Dari-Salisburgo, F. Giammaria, P. Di Carlo, and D. E. Heard

Related authors

Comparison of temperature-dependent calibration methods of an instrument to measure OH and HO2 radicals using laser-induced fluorescence spectroscopy
Frank A. F. Winiberg, William J. Warman, Charlotte A. Brumby, Graham Boustead, Iustinian G. Bejan, Thomas H. Speak, Dwayne E. Heard, Daniel Stone, and Paul W. Seakins
Atmos. Meas. Tech., 16, 4375–4390, https://doi.org/10.5194/amt-16-4375-2023,https://doi.org/10.5194/amt-16-4375-2023, 2023
Short summary
Identification, monitoring, and reaction kinetics of reactive trace species using time-resolved mid-infrared quantum cascade laser absorption spectroscopy: development, characterisation, and initial results for the CH2OO Criegee intermediate
Zara S. Mir, Matthew Jamieson, Nicholas R. Greenall, Paul W. Seakins, Mark A. Blitz, and Daniel Stone
Atmos. Meas. Tech., 15, 2875–2887, https://doi.org/10.5194/amt-15-2875-2022,https://doi.org/10.5194/amt-15-2875-2022, 2022
Short summary
Observations and modelling of glyoxal in the tropical Atlantic marine boundary layer
Hannah Walker, Daniel Stone, Trevor Ingham, Sina Hackenberg, Danny Cryer, Shalini Punjabi, Katie Read, James Lee, Lisa Whalley, Dominick V. Spracklen, Lucy J. Carpenter, Steve R. Arnold, and Dwayne E. Heard
Atmos. Chem. Phys., 22, 5535–5557, https://doi.org/10.5194/acp-22-5535-2022,https://doi.org/10.5194/acp-22-5535-2022, 2022
Short summary
Production of HONO from NO2 uptake on illuminated TiO2 aerosol particles and following the illumination of mixed TiO2∕ammonium nitrate particles
Joanna E. Dyson, Graham A. Boustead, Lauren T. Fleming, Mark Blitz, Daniel Stone, Stephen R. Arnold, Lisa K. Whalley, and Dwayne E. Heard
Atmos. Chem. Phys., 21, 5755–5775, https://doi.org/10.5194/acp-21-5755-2021,https://doi.org/10.5194/acp-21-5755-2021, 2021
Short summary
A new instrument for time-resolved measurement of HO2 radicals
Thomas H. Speak, Mark A. Blitz, Daniel Stone, and Paul W. Seakins
Atmos. Meas. Tech., 13, 839–852, https://doi.org/10.5194/amt-13-839-2020,https://doi.org/10.5194/amt-13-839-2020, 2020
Short summary

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Estimating the variability in NOx emissions from Wuhan with TROPOMI NO2 data during 2018 to 2023
Qianqian Zhang, K. Folkert Boersma, Chiel van der Laan, Alba Mols, Bin Zhao, Shengyue Li, and Yuepeng Pan
Atmos. Chem. Phys., 25, 3313–3326, https://doi.org/10.5194/acp-25-3313-2025,https://doi.org/10.5194/acp-25-3313-2025, 2025
Short summary
Enhanced understanding of atmospheric blocking modulation on ozone dynamics within a high-resolution Earth system model
Wenbin Kou, Yang Gao, Dan Tong, Xiaojie Guo, Xiadong An, Wenyu Liu, Mengshi Cui, Xiuwen Guo, Shaoqing Zhang, Huiwang Gao, and Lixin Wu
Atmos. Chem. Phys., 25, 3029–3048, https://doi.org/10.5194/acp-25-3029-2025,https://doi.org/10.5194/acp-25-3029-2025, 2025
Short summary
Natural emissions of VOC and NOx over Africa constrained by TROPOMI HCHO and NO2 data using the MAGRITTEv1.1 model
Beata Opacka, Trissevgeni Stavrakou, Jean-François Müller, Isabelle De Smedt, Jos van Geffen, Eloise A. Marais, Rebekah P. Horner, Dylan B. Millet, Kelly C. Wells, and Alex B. Guenther
Atmos. Chem. Phys., 25, 2863–2894, https://doi.org/10.5194/acp-25-2863-2025,https://doi.org/10.5194/acp-25-2863-2025, 2025
Short summary
Anthropogenic emission controls reduce summertime ozone–temperature sensitivity in the United States
Shuai Li, Haolin Wang, and Xiao Lu
Atmos. Chem. Phys., 25, 2725–2743, https://doi.org/10.5194/acp-25-2725-2025,https://doi.org/10.5194/acp-25-2725-2025, 2025
Short summary
Investigating the response of China's surface ozone concentration to the future changes of multiple factors
Jinya Yang, Yutong Wang, Lei Zhang, and Yu Zhao
Atmos. Chem. Phys., 25, 2649–2666, https://doi.org/10.5194/acp-25-2649-2025,https://doi.org/10.5194/acp-25-2649-2025, 2025
Short summary

Cited articles

Aldener, M., Brown, S. S., Stark, H., Williams, E. J., Lerner, B. M., Kuster, W. C., Goldan, P. D., Quinn, P. K., Bates, T. S., Fehsenfeld, F. C., and Ravishankara, A. R.: Reactivity and loss mechanisms of NO3 and N2O5 in a polluted marine environment: Results from in situ measurements during New England Air Quality Study 2002, J. Geophys. Res., 111, D23S73, https://doi.org/10.1029/2006JD007252, 2006.
Aliwell, S. R. and Jones, R. L.: Measurements of tropospheric NO3 at midlatitude, J. Geophys. Res. Atmos., 103, 5719–5727, 1998.
Allan, B. J., Carslaw, N., Coe, H., Burgess, R. A., Plane, J. M. C.: Observations of the nitrate radical in the marine boundary layer, J. Atmos. Chem., 33, 129–154, 1999.
Allan, B. J., Plane, J. M. C., Coe, H., Shillto, J.: Observations of NO3 concentration profiles in the troposphere, J. Geophys. Res., 107, 4588, https://doi.org/10.1029/2002JD002112, 2002.
Andreae, M. O., Ferek, R. J., Bermond, F., Byrd, K. P., Engstrom R. T., Hardin, S., Houmere, P. D., LeMarrec, F., and Raemdonck, H.: Dimethyl sulfide in the marine atmosphere, J. Geophys. Res., 90, 12891–12900, 1985.
Download

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Share
Altmetrics
Final-revised paper
Preprint