Corrigendum to Atmos. Chem. Phys., 14, 1299–1321, 2014 https://doi.org/10.5194/acp-14-1299-2014-corrigendum © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License.





## *Corrigendum to* "Radical chemistry at night: comparisons between observed and modelled $HO_x$ , $NO_3$ and $N_2O_5$ during the RONOCO project" published in Atmos. Chem. Phys., 14, 1299–1321, 2014

D. Stone<sup>1</sup>, M. J. Evans<sup>2,3</sup>, H. Walker<sup>1</sup>, T. Ingham<sup>1,4</sup>, S. Vaughan<sup>1</sup>, B. Ouyang<sup>5</sup>, O. J. Kennedy<sup>5</sup>, M. W. McLeod<sup>5</sup>, R. L. Jones<sup>5</sup>, J. Hopkins<sup>2,3</sup>, S. Punjabi<sup>3</sup>, R. Lidster<sup>3</sup>, J. F. Hamilton<sup>2,3</sup>, J. D. Lee<sup>2,3</sup>, A. C. Lewis<sup>2,3</sup>, L. J. Carpenter<sup>2,3</sup>, G. Forster<sup>6</sup>, D. E. Oram<sup>6,7</sup>, C. E. Reeves<sup>6,7</sup>, S. Bauguitte<sup>8</sup>, W. Morgan<sup>9,10</sup>, H. Coe<sup>9,10</sup>, E. Aruffo<sup>11,12</sup>, C. Dari-Salisburgo<sup>11</sup>, F. Giammaria<sup>12</sup>, P. Di Carlo<sup>11,12</sup>, and D. E. Heard<sup>1,4</sup>

<sup>1</sup>School of Chemistry, University of Leeds, Leeds, UK

<sup>2</sup>National Centre for Atmospheric Science, University of York, York, UK

<sup>3</sup>Department of Chemistry, University of York, York, UK

<sup>4</sup>National Centre for Atmospheric Science, University of Leeds, Leeds, UK

<sup>5</sup>Department of Chemistry, University of Cambridge, Cambridgeshire, UK

<sup>6</sup>School of Environmental Sciences, University of East Anglia, Norwich, UK

<sup>7</sup>National Centre for Atmospheric Science, University of East Anglia, Norwich, UK

<sup>8</sup>Facility for Airborne Atmospheric Measurements, Bedfordshire, UK

<sup>9</sup>School of Earth Atmospheric and Environmental Science, University of Manchester, Manchester, UK

<sup>10</sup>National Centre for Atmospheric Science, University of Manchester, Manchester, UK

<sup>11</sup>Center of Excellence CETEMPS Universita' degli studi di L'Aquila, L'Aquila, Italy

<sup>12</sup>Dipartimento di Fisica, Universita' degli studi di L'Aquila, L'Aquila, Italy

Correspondence: D. Stone (d.stone@leeds.ac.uk)

Published: 17 January 2018

We discovered an error in Eq. (2) of the paper, which incorrectly states that the gas-phase diffusion coefficient,  $D_g$ , is given by

$$D_{\rm g} = \frac{3}{N_{\rm A} d_{\rm g}^2 \rho_{\rm air}} \sqrt{\frac{RT m_{\rm air}}{2\pi} \left(\frac{m_{\rm g} + m_{\rm air}}{m_{\rm g}}\right)},\tag{2}$$

where  $N_A$  is Avogadro's number,  $d_g$  is the diameter of the gas molecule,  $\rho_{air}$  is the density of air, R is the gas constant, and  $m_g$  and  $m_{air}$  are the molar masses of gas and air, respectively.

The correct formula, as used in the calculations presented in the paper, is

$$D_{\rm g} = \frac{3}{8N_{\rm A}d_{\rm g}^2\rho_{\rm air}}\sqrt{\frac{RTm_{\rm air}}{2\pi}\left(\frac{m_{\rm g}+m_{\rm air}}{m_{\rm g}}\right)}.$$
 (2)

We apologise for any inconvenience.

Published by Copernicus Publications on behalf of the European Geosciences Union.