Articles | Volume 16, issue 22
https://doi.org/10.5194/acp-16-14657-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/acp-16-14657-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Evaluation of biomass burning aerosols in the HadGEM3 climate model with observations from the SAMBBA field campaign
Ben T. Johnson
CORRESPONDING AUTHOR
Met Office, Exeter, UK
James M. Haywood
Met Office, Exeter, UK
CEMPS, University of Exeter, Exeter, UK
Justin M. Langridge
Met Office, Exeter, UK
Eoghan Darbyshire
Centre for Atmospheric Science, University of Manchester, Manchester,
UK
William T. Morgan
Centre for Atmospheric Science, University of Manchester, Manchester,
UK
Kate Szpek
Met Office, Exeter, UK
Jennifer K. Brooke
Met Office, Exeter, UK
Franco Marenco
Met Office, Exeter, UK
Centre for Atmospheric Science, University of Manchester, Manchester,
UK
Paulo Artaxo
Physics Institute, University of São Paulo, São Paulo, Brazil
Karla M. Longo
National Institute for Space Research (INPE), São José dos
Campos, Brazil
now at: NASA Goddard Space Flight Center and USRA/GESTAR, Greenbelt, MD, USA
Jane P. Mulcahy
Met Office, Exeter, UK
Graham W. Mann
National Centre for Atmospheric Science, School of Earth and
Environment, University of Leeds, Leeds, UK
Mohit Dalvi
Met Office, Exeter, UK
Nicolas Bellouin
Department of Meteorology, University of Reading, Reading, UK
Related authors
Natalie G. Ratcliffe, Claire L. Ryder, Nicolas Bellouin, Stephanie Woodward, Anthony Jones, Ben Johnson, Lisa-Maria Wieland, Maximilian Dollner, Josef Gasteiger, and Bernadett Weinzierl
Atmos. Chem. Phys., 24, 12161–12181, https://doi.org/10.5194/acp-24-12161-2024, https://doi.org/10.5194/acp-24-12161-2024, 2024
Short summary
Short summary
Large mineral dust particles are more abundant in the atmosphere than expected and have different impacts on the environment than small particles, which are better represented in climate models. We use aircraft measurements to assess a climate model representation of large-dust transport. We find that the model underestimates the amount of large dust at all stages of transport and that fast removal of the large particles increases this underestimation with distance from the Sahara.
Lauren R. Marshall, Anja Schmidt, Andrew P. Schurer, Nathan Luke Abraham, Lucie J. Lücke, Rob Wilson, Kevin Anchukaitis, Gabriele Hegerl, Ben Johnson, Bette L. Otto-Bliesner, Esther C. Brady, Myriam Khodri, and Kohei Yoshida
EGUsphere, https://doi.org/10.5194/egusphere-2024-1322, https://doi.org/10.5194/egusphere-2024-1322, 2024
Short summary
Short summary
Large volcanic eruptions have caused temperature deviations over the past 1000 years, however climate model results and reconstructions of surface cooling using tree-rings do not match. We explore this mismatch using the latest models and find a better match to tree-ring reconstructions for some eruptions. Our results show that the way in which eruptions are simulated in models matters for the comparison to tree-rings, particularly regarding the spatial spread of volcanic aerosol.
Mariya Petrenko, Ralph Kahn, Mian Chin, Susanne E. Bauer, Tommi Bergman, Huisheng Bian, Gabriele Curci, Ben Johnson, Johannes Kaiser, Zak Kipling, Harri Kokkola, Xiaohong Liu, Keren Mezuman, Tero Mielonen, Gunnar Myhre, Xiaohua Pan, Anna Protonotariou, Samuel Remy, Ragnhild Bieltvedt Skeie, Philip Stier, Toshihiko Takemura, Kostas Tsigaridis, Hailong Wang, Duncan Watson-Parris, and Kai Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2024-1487, https://doi.org/10.5194/egusphere-2024-1487, 2024
Short summary
Short summary
We compared smoke plume simulations from 11 global models to each other and to satellite smoke-amount observations, aimed at constraining smoke source strength. In regions where plumes are thick and background aerosol is low, models and satellites compare well. However, the input emission inventory tends to underestimate in many places, and particle property and loss-rate assumptions vary enormously among models, causing uncertainties that require systematic in-situ measurements to resolve.
Chenwei Fang, Jim M. Haywood, Ju Liang, Ben T. Johnson, Ying Chen, and Bin Zhu
Atmos. Chem. Phys., 23, 8341–8368, https://doi.org/10.5194/acp-23-8341-2023, https://doi.org/10.5194/acp-23-8341-2023, 2023
Short summary
Short summary
The responses of Asian summer monsoon duration and intensity to air pollution mitigation are identified given the net-zero future. We show that reducing scattering aerosols makes the rainy season longer and stronger across South Asia and East Asia but that absorbing aerosol reduction has the opposite effect. Our results hint at distinct monsoon responses to emission controls that target different aerosols.
Qirui Zhong, Nick Schutgens, Guido van der Werf, Twan van Noije, Kostas Tsigaridis, Susanne E. Bauer, Tero Mielonen, Alf Kirkevåg, Øyvind Seland, Harri Kokkola, Ramiro Checa-Garcia, David Neubauer, Zak Kipling, Hitoshi Matsui, Paul Ginoux, Toshihiko Takemura, Philippe Le Sager, Samuel Rémy, Huisheng Bian, Mian Chin, Kai Zhang, Jialei Zhu, Svetlana G. Tsyro, Gabriele Curci, Anna Protonotariou, Ben Johnson, Joyce E. Penner, Nicolas Bellouin, Ragnhild B. Skeie, and Gunnar Myhre
Atmos. Chem. Phys., 22, 11009–11032, https://doi.org/10.5194/acp-22-11009-2022, https://doi.org/10.5194/acp-22-11009-2022, 2022
Short summary
Short summary
Aerosol optical depth (AOD) errors for biomass burning aerosol (BBA) are evaluated in 18 global models against satellite datasets. Notwithstanding biases in satellite products, they allow model evaluations. We observe large and diverse model biases due to errors in BBA. Further interpretations of AOD diversities suggest large biases exist in key processes for BBA which require better constraining. These results can contribute to further model improvement and development.
Jim M. Haywood, Andy Jones, Ben T. Johnson, and William McFarlane Smith
Atmos. Chem. Phys., 22, 6135–6150, https://doi.org/10.5194/acp-22-6135-2022, https://doi.org/10.5194/acp-22-6135-2022, 2022
Short summary
Short summary
Simulations are presented investigating the influence of moderately absorbing aerosol in the stratosphere to combat the impacts of climate change. A number of detrimental impacts are noted compared to sulfate aerosol, including (i) reduced cooling efficiency, (ii) increased deficits in global precipitation, (iii) delays in the recovery of the stratospheric ozone hole, and (iv) disruption of the stratospheric circulation and the wintertime storm tracks that impact European precipitation.
Davide Zanchettin, Claudia Timmreck, Myriam Khodri, Anja Schmidt, Matthew Toohey, Manabu Abe, Slimane Bekki, Jason Cole, Shih-Wei Fang, Wuhu Feng, Gabriele Hegerl, Ben Johnson, Nicolas Lebas, Allegra N. LeGrande, Graham W. Mann, Lauren Marshall, Landon Rieger, Alan Robock, Sara Rubinetti, Kostas Tsigaridis, and Helen Weierbach
Geosci. Model Dev., 15, 2265–2292, https://doi.org/10.5194/gmd-15-2265-2022, https://doi.org/10.5194/gmd-15-2265-2022, 2022
Short summary
Short summary
This paper provides metadata and first analyses of the volc-pinatubo-full experiment of CMIP6-VolMIP. Results from six Earth system models reveal significant differences in radiative flux anomalies that trace back to different implementations of volcanic forcing. Surface responses are in contrast overall consistent across models, reflecting the large spread due to internal variability. A second phase of VolMIP shall consider both aspects toward improved protocol for volc-pinatubo-full.
Anthony C. Jones, Adrian Hill, Samuel Remy, N. Luke Abraham, Mohit Dalvi, Catherine Hardacre, Alan J. Hewitt, Ben Johnson, Jane P. Mulcahy, and Steven T. Turnock
Atmos. Chem. Phys., 21, 15901–15927, https://doi.org/10.5194/acp-21-15901-2021, https://doi.org/10.5194/acp-21-15901-2021, 2021
Short summary
Short summary
Ammonium nitrate is hard to model because it forms and evaporates rapidly. One approach is to relate its equilibrium concentration to temperature, humidity, and the amount of nitric acid and ammonia gases. Using this approach, we limit the rate at which equilibrium is reached using various condensation rates in a climate model. We show that ammonium nitrate concentrations are highly sensitive to the condensation rate. Our results will help improve the representation of nitrate in climate models.
Fiona M. O'Connor, N. Luke Abraham, Mohit Dalvi, Gerd A. Folberth, Paul T. Griffiths, Catherine Hardacre, Ben T. Johnson, Ron Kahana, James Keeble, Byeonghyeon Kim, Olaf Morgenstern, Jane P. Mulcahy, Mark Richardson, Eddy Robertson, Jeongbyn Seo, Sungbo Shim, João C. Teixeira, Steven T. Turnock, Jonny Williams, Andrew J. Wiltshire, Stephanie Woodward, and Guang Zeng
Atmos. Chem. Phys., 21, 1211–1243, https://doi.org/10.5194/acp-21-1211-2021, https://doi.org/10.5194/acp-21-1211-2021, 2021
Short summary
Short summary
This paper calculates how changes in emissions and/or concentrations of different atmospheric constituents since the pre-industrial era have altered the Earth's energy budget at the present day using a metric called effective radiative forcing. The impact of land use change is also assessed. We find that individual contributions do not add linearly, and different Earth system interactions can affect the magnitude of the calculated effective radiative forcing.
Jim M. Haywood, Steven J. Abel, Paul A. Barrett, Nicolas Bellouin, Alan Blyth, Keith N. Bower, Melissa Brooks, Ken Carslaw, Haochi Che, Hugh Coe, Michael I. Cotterell, Ian Crawford, Zhiqiang Cui, Nicholas Davies, Beth Dingley, Paul Field, Paola Formenti, Hamish Gordon, Martin de Graaf, Ross Herbert, Ben Johnson, Anthony C. Jones, Justin M. Langridge, Florent Malavelle, Daniel G. Partridge, Fanny Peers, Jens Redemann, Philip Stier, Kate Szpek, Jonathan W. Taylor, Duncan Watson-Parris, Robert Wood, Huihui Wu, and Paquita Zuidema
Atmos. Chem. Phys., 21, 1049–1084, https://doi.org/10.5194/acp-21-1049-2021, https://doi.org/10.5194/acp-21-1049-2021, 2021
Short summary
Short summary
Every year, the seasonal cycle of biomass burning from agricultural practices in Africa creates a huge plume of smoke that travels many thousands of kilometres over the Atlantic Ocean. This study provides an overview of a measurement campaign called the cloud–aerosol–radiation interaction and forcing for year 2017 (CLARIFY-2017) and documents the rationale, deployment strategy, observations, and key results from the campaign which utilized the heavily equipped FAAM atmospheric research aircraft.
Gillian D. Thornhill, William J. Collins, Ryan J. Kramer, Dirk Olivié, Ragnhild B. Skeie, Fiona M. O'Connor, Nathan Luke Abraham, Ramiro Checa-Garcia, Susanne E. Bauer, Makoto Deushi, Louisa K. Emmons, Piers M. Forster, Larry W. Horowitz, Ben Johnson, James Keeble, Jean-Francois Lamarque, Martine Michou, Michael J. Mills, Jane P. Mulcahy, Gunnar Myhre, Pierre Nabat, Vaishali Naik, Naga Oshima, Michael Schulz, Christopher J. Smith, Toshihiko Takemura, Simone Tilmes, Tongwen Wu, Guang Zeng, and Jie Zhang
Atmos. Chem. Phys., 21, 853–874, https://doi.org/10.5194/acp-21-853-2021, https://doi.org/10.5194/acp-21-853-2021, 2021
Short summary
Short summary
This paper is a study of how different constituents in the atmosphere, such as aerosols and gases like methane and ozone, affect the energy balance in the atmosphere. Different climate models were run using the same inputs to allow an easy comparison of the results and to understand where the models differ. We found the effect of aerosols is to reduce warming in the atmosphere, but this effect varies between models. Reactions between gases are also important in affecting climate.
Jane P. Mulcahy, Colin Johnson, Colin G. Jones, Adam C. Povey, Catherine E. Scott, Alistair Sellar, Steven T. Turnock, Matthew T. Woodhouse, Nathan Luke Abraham, Martin B. Andrews, Nicolas Bellouin, Jo Browse, Ken S. Carslaw, Mohit Dalvi, Gerd A. Folberth, Matthew Glover, Daniel P. Grosvenor, Catherine Hardacre, Richard Hill, Ben Johnson, Andy Jones, Zak Kipling, Graham Mann, James Mollard, Fiona M. O'Connor, Julien Palmiéri, Carly Reddington, Steven T. Rumbold, Mark Richardson, Nick A. J. Schutgens, Philip Stier, Marc Stringer, Yongming Tang, Jeremy Walton, Stephanie Woodward, and Andrew Yool
Geosci. Model Dev., 13, 6383–6423, https://doi.org/10.5194/gmd-13-6383-2020, https://doi.org/10.5194/gmd-13-6383-2020, 2020
Short summary
Short summary
Aerosols are an important component of the Earth system. Here, we comprehensively document and evaluate the aerosol schemes as implemented in the physical and Earth system models, HadGEM3-GC3.1 and UKESM1. This study provides a useful characterisation of the aerosol climatology in both models, facilitating the understanding of the numerous aerosol–climate interaction studies that will be conducted for CMIP6 and beyond.
Debbie O'Sullivan, Franco Marenco, Claire L. Ryder, Yaswant Pradhan, Zak Kipling, Ben Johnson, Angela Benedetti, Melissa Brooks, Matthew McGill, John Yorks, and Patrick Selmer
Atmos. Chem. Phys., 20, 12955–12982, https://doi.org/10.5194/acp-20-12955-2020, https://doi.org/10.5194/acp-20-12955-2020, 2020
Short summary
Short summary
Mineral dust is an important component of the climate system, and we assess how well it is predicted by two operational models. We flew an aircraft in the dust layers in the eastern Atlantic, and we also make use of satellites. We show that models predict the dust layer too low and that it predicts the particles to be too small. We believe that these discrepancies may be overcome if models can be constrained with operational observations of dust vertical and size-resolved distribution.
Prodromos Zanis, Dimitris Akritidis, Aristeidis K. Georgoulias, Robert J. Allen, Susanne E. Bauer, Olivier Boucher, Jason Cole, Ben Johnson, Makoto Deushi, Martine Michou, Jane Mulcahy, Pierre Nabat, Dirk Olivié, Naga Oshima, Adriana Sima, Michael Schulz, Toshihiko Takemura, and Konstantinos Tsigaridis
Atmos. Chem. Phys., 20, 8381–8404, https://doi.org/10.5194/acp-20-8381-2020, https://doi.org/10.5194/acp-20-8381-2020, 2020
Short summary
Short summary
In this work, we use Coupled Model Intercomparison Project Phase 6 (CMIP6) simulations from 10 Earth system models (ESMs) and general circulation models (GCMs) to study the fast climate responses on pre-industrial climate, due to present-day aerosols. All models carried out two sets of simulations: a control experiment with all forcings set to the year 1850 and a perturbation experiment with all forcings identical to the control, except for aerosols with precursor emissions set to the year 2014.
William T. Morgan, James D. Allan, Stéphane Bauguitte, Eoghan Darbyshire, Michael J. Flynn, James Lee, Dantong Liu, Ben Johnson, Jim Haywood, Karla M. Longo, Paulo E. Artaxo, and Hugh Coe
Atmos. Chem. Phys., 20, 5309–5326, https://doi.org/10.5194/acp-20-5309-2020, https://doi.org/10.5194/acp-20-5309-2020, 2020
Short summary
Short summary
We flew a large atmospheric research aircraft across a number of different environments in the Amazon basin during the 2012 biomass burning season. Smoke from fires builds up and has a significant impact on weather, climate, health and natural ecosystems. Our goal was to quantify changes in the properties of the smoke emitted by fires as it is transported through the atmosphere. We found that the major control on the properties of the smoke was due to differences in the fires themselves.
David Walters, Anthony J. Baran, Ian Boutle, Malcolm Brooks, Paul Earnshaw, John Edwards, Kalli Furtado, Peter Hill, Adrian Lock, James Manners, Cyril Morcrette, Jane Mulcahy, Claudio Sanchez, Chris Smith, Rachel Stratton, Warren Tennant, Lorenzo Tomassini, Kwinten Van Weverberg, Simon Vosper, Martin Willett, Jo Browse, Andrew Bushell, Kenneth Carslaw, Mohit Dalvi, Richard Essery, Nicola Gedney, Steven Hardiman, Ben Johnson, Colin Johnson, Andy Jones, Colin Jones, Graham Mann, Sean Milton, Heather Rumbold, Alistair Sellar, Masashi Ujiie, Michael Whitall, Keith Williams, and Mohamed Zerroukat
Geosci. Model Dev., 12, 1909–1963, https://doi.org/10.5194/gmd-12-1909-2019, https://doi.org/10.5194/gmd-12-1909-2019, 2019
Short summary
Short summary
Global Atmosphere (GA) configurations of the Unified Model (UM) and Global Land (GL) configurations of JULES are developed for use in any global atmospheric modelling application. We describe a recent iteration of these configurations, GA7/GL7, which includes new aerosol and snow schemes and addresses the four critical errors identified in GA6. GA7/GL7 will underpin the UK's contributions to CMIP6, and hence their documentation is important.
Eoghan Darbyshire, William T. Morgan, James D. Allan, Dantong Liu, Michael J. Flynn, James R. Dorsey, Sebastian J. O'Shea, Douglas Lowe, Kate Szpek, Franco Marenco, Ben T. Johnson, Stephane Bauguitte, Jim M. Haywood, Joel F. Brito, Paulo Artaxo, Karla M. Longo, and Hugh Coe
Atmos. Chem. Phys., 19, 5771–5790, https://doi.org/10.5194/acp-19-5771-2019, https://doi.org/10.5194/acp-19-5771-2019, 2019
Short summary
Short summary
A novel analysis of aerosol and gas-phase vertical profiles shows a marked regional pollution contrast: composition is driven by the fire regime and vertical distribution is driven by thermodynamics. These drivers ought to be well represented in simulations to ensure realistic prediction of climate and air quality impacts. The BC : CO ratio in haze and plumes increases with altitude – long-range transport or fire stage coupled to plume dynamics may be responsible. Further enquiry is advocated.
Hamish Gordon, Paul R. Field, Steven J. Abel, Mohit Dalvi, Daniel P. Grosvenor, Adrian A. Hill, Ben T. Johnson, Annette K. Miltenberger, Masaru Yoshioka, and Ken S. Carslaw
Atmos. Chem. Phys., 18, 15261–15289, https://doi.org/10.5194/acp-18-15261-2018, https://doi.org/10.5194/acp-18-15261-2018, 2018
Short summary
Short summary
Smoke from African fires is frequently transported across the Atlantic Ocean, where it interacts with clouds. We simulate the interaction of the smoke with the clouds, and the consequences of this for the solar radiation the clouds reflect. The simulations use a new regional configuration of the UK Met Office climate model. Our simulations indicate that the properties of the clouds, in particular their height and reflectivity, and the fractional cloud cover, are strongly affected by the smoke.
Amy K. Hodgson, William T. Morgan, Sebastian O'Shea, Stéphane Bauguitte, James D. Allan, Eoghan Darbyshire, Michael J. Flynn, Dantong Liu, James Lee, Ben Johnson, Jim M. Haywood, Karla M. Longo, Paulo E. Artaxo, and Hugh Coe
Atmos. Chem. Phys., 18, 5619–5638, https://doi.org/10.5194/acp-18-5619-2018, https://doi.org/10.5194/acp-18-5619-2018, 2018
Short summary
Short summary
We flew a large atmospheric research aircraft across a number of different biomass burning environments in the Amazon Basin in September and October 2012. In this paper, we focus on smoke sampled very close to fresh fires (only 600–900 m above the fires and smoke that was 4–6 min old) to examine the chemical components that make up the smoke and their abundance. We found substantial differences in the emitted smoke that are due to the fuel type and combustion processes driving the fires.
Gillian D. Thornhill, Claire L. Ryder, Eleanor J. Highwood, Len C. Shaffrey, and Ben T. Johnson
Atmos. Chem. Phys., 18, 5321–5342, https://doi.org/10.5194/acp-18-5321-2018, https://doi.org/10.5194/acp-18-5321-2018, 2018
Short summary
Short summary
We investigated the impact on the regional climate of different amounts of smoke emission (aerosol) from the burning of vegetation in South America using a climate model. We looked at differences between high and low smoke emissions and found impacts from the higher smoke emissions on the amount of cloud cover, solar radiation reaching the surface, wind patterns and rainfall. This means the local climate may be affected if there is more deforestation and more smoke from burning of vegetation.
Franco Marenco, Ben Johnson, Justin M. Langridge, Jane Mulcahy, Angela Benedetti, Samuel Remy, Luke Jones, Kate Szpek, Jim Haywood, Karla Longo, and Paulo Artaxo
Atmos. Chem. Phys., 16, 2155–2174, https://doi.org/10.5194/acp-16-2155-2016, https://doi.org/10.5194/acp-16-2155-2016, 2016
Short summary
Short summary
A widespread and persistent smoke layer was observed in the Amazon
region during the biomass burning season, spanning a distance of 2200 km
and a period of 14 days. The larger smoke content was typically found
in elevated layers, from 1–1.5 km to 4–6 km.
Measurements have been compared to model predictions, and the latter
were able to reproduce the general features of the smoke layer, but
with some differences which are analysed and described in the paper.
S. R. Kolusu, J. H. Marsham, J. Mulcahy, B. Johnson, C. Dunning, M. Bush, and D. V. Spracklen
Atmos. Chem. Phys., 15, 12251–12266, https://doi.org/10.5194/acp-15-12251-2015, https://doi.org/10.5194/acp-15-12251-2015, 2015
J. Brito, L. V. Rizzo, W. T. Morgan, H. Coe, B. Johnson, J. Haywood, K. Longo, S. Freitas, M. O. Andreae, and P. Artaxo
Atmos. Chem. Phys., 14, 12069–12083, https://doi.org/10.5194/acp-14-12069-2014, https://doi.org/10.5194/acp-14-12069-2014, 2014
Short summary
Short summary
This paper details the physical--chemical characteristics of aerosols in a region strongly impacted by biomass burning in the western part of the Brazilian Amazon region. For such, a large suite of state-of-the-art instruments for realtime analysis was deployed at a ground site. Among the key findings, we observe the strong prevalence of organic aerosols associated to fire emissions, with important climate effects, and indications of its very fast processing in the atmosphere.
M. Yoshida, J. M. Haywood, T. Yokohata, H. Murakami, and T. Nakajima
Atmos. Chem. Phys., 13, 10827–10845, https://doi.org/10.5194/acp-13-10827-2013, https://doi.org/10.5194/acp-13-10827-2013, 2013
H. F. Dacre, A. L. M. Grant, and B. T. Johnson
Atmos. Chem. Phys., 13, 1277–1291, https://doi.org/10.5194/acp-13-1277-2013, https://doi.org/10.5194/acp-13-1277-2013, 2013
Mike Bush, David L. A. Flack, Huw W. Lewis, Sylvia I. Bohnenstengel, Chris J. Short, Charmaine Franklin, Adrian P. Lock, Martin Best, Paul Field, Anne McCabe, Kwinten Van Weverberg, Segolene Berthou, Ian Boutle, Jennifer K. Brooke, Seb Cole, Shaun Cooper, Gareth Dow, John Edwards, Anke Finnenkoetter, Kalli Furtado, Kate Halladay, Kirsty Hanley, Margaret A. Hendry, Adrian Hill, Aravindakshan Jayakumar, Richard W. Jones, Humphrey Lean, Joshua C. K. Lee, Andy Malcolm, Marion Mittermaier, Saji Mohandas, Stuart Moore, Cyril Morcrette, Rachel North, Aurore Porson, Susan Rennie, Nigel Roberts, Belinda Roux, Claudio Sanchez, Chun-Hsu Su, Simon Tucker, Simon Vosper, David Walters, James Warner, Stuart Webster, Mark Weeks, Jonathan Wilkinson, Michael Whitall, Keith D. Williams, and Hugh Zhang
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-201, https://doi.org/10.5194/gmd-2024-201, 2024
Preprint under review for GMD
Short summary
Short summary
RAL configurations define settings for the Unified Model atmosphere and Joint UK Land Environment Simulator. The third version of the Regional Atmosphere and Land (RAL3) science configuration for kilometre and sub-km scale modelling represents a major advance compared to previous versions (RAL2) by delivering a common science definition for applications in tropical and mid-latitude regions. RAL3 has more realistic precipitation distributions and improved representation of clouds and visibility.
Yunqian Zhu, Hideharu Akiyoshi, Valentina Aquila, Elisabeth Asher, Ewa M. Bednarz, Slimane Bekki, Christoph Brühl, Amy H. Butler, Parker Case, Simon Chabrillat, Gabriel Chiodo, Margot Clyne, Lola Falletti, Peter R. Colarco, Eric Fleming, Andrin Jörimann, Mahesh Kovilakam, Gerbrand Koren, Ales Kuchar, Nicolas Lebas, Qing Liang, Cheng-Cheng Liu, Graham Mann, Michael Manyin, Marion Marchand, Olaf Morgenstern, Paul Newman, Luke D. Oman, Freja F. Østerstrøm, Yifeng Peng, David Plummer, Ilaria Quaglia, William Randel, Samuel Rémy, Takashi Sekiya, Stephen Steenrod, Timofei Sukhodolov, Simone Tilmes, Kostas Tsigaridis, Rei Ueyama, Daniele Visioni, Xinyue Wang, Shingo Watanabe, Yousuke Yamashita, Pengfei Yu, Wandi Yu, Jun Zhang, and Zhihong Zhuo
EGUsphere, https://doi.org/10.5194/egusphere-2024-3412, https://doi.org/10.5194/egusphere-2024-3412, 2024
Short summary
Short summary
To understand the climate impact of the 2022 Hunga volcanic eruption, we developed a climate model-observation comparison project. The paper describes the protocols and models that participate in the experiments. We designed several experiments to achieve our goal of this activity: 1. evaluate the climate model performance; 2. understand the Earth system responses to this eruption.
Flossie Brown, Gerd Folberth, Stephen Sitch, Paulo Artaxo, Marijn Bauters, Pascal Boeckx, Alexander W. Cheesman, Matteo Detto, Ninong Komala, Luciana Rizzo, Nestor Rojas, Ines dos Santos Vieira, Steven Turnock, Hans Verbeeck, and Alfonso Zambrano
Atmos. Chem. Phys., 24, 12537–12555, https://doi.org/10.5194/acp-24-12537-2024, https://doi.org/10.5194/acp-24-12537-2024, 2024
Short summary
Short summary
Ozone is a pollutant that is detrimental to human and plant health. Ozone monitoring sites in the tropics are limited, so models are often used to understand ozone exposure. We use measurements from the tropics to evaluate ozone from the UK Earth system model, UKESM1. UKESM1 is able to capture the pattern of ozone in the tropics, except in southeast Asia, although it systematically overestimates it at all sites. This work highlights that UKESM1 can capture seasonal and hourly variability.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Hongmei Li, Ingrid T. Luijkx, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Almut Arneth, Vivek Arora, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Carla F. Berghoff, Henry C. Bittig, Laurent Bopp, Patricia Cadule, Katie Campbell, Matthew A. Chamberlain, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Thomas Colligan, Jeanne Decayeux, Laique Djeutchouang, Xinyu Dou, Carolina Duran Rojas, Kazutaka Enyo, Wiley Evans, Amanda Fay, Richard A. Feely, Daniel J. Ford, Adrianna Foster, Thomas Gasser, Marion Gehlen, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Etsushi Kato, Ralph F. Keeling, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Siv K. Lauvset, Nathalie Lefèvre, Zhu Liu, Junjie Liu, Lei Ma, Shamil Maksyutov, Gregg Marland, Nicolas Mayot, Patrick McGuire, Nicolas Metzl, Natalie M. Monacci, Eric J. Morgan, Shin-Ichiro Nakaoka, Craig Neill, Yosuke Niwa, Tobias Nützel, Lea Olivier, Tsuneo Ono, Paul I. Palmer, Denis Pierrot, Zhangcai Qin, Laure Resplandy, Alizée Roobaert, Thais M. Rosan, Christian Rödenbeck, Jörg Schwinger, T. Luke Smallman, Stephen Smith, Reinel Sospedra-Alfonso, Tobias Steinhoff, Qing Sun, Adrienne J. Sutton, Roland Séférian, Shintaro Takao, Hiroaki Tatebe, Hanqin Tian, Bronte Tilbrook, Olivier Torres, Etienne Tourigny, Hiroyuki Tsujino, Francesco Tubiello, Guido van der Werf, Rik Wanninkhof, Xuhui Wang, Dongxu Yang, Xiaojuan Yang, Zhen Yu, Wenping Yuan, Xu Yue, Sönke Zaehle, Ning Zeng, and Jiye Zeng
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-519, https://doi.org/10.5194/essd-2024-519, 2024
Preprint under review for ESSD
Short summary
Short summary
The Global Carbon Budget 2024 describes the methodology, main results, and data sets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2024). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Rafael Stern, Joel F. de Brito, Samara Carbone, Luciana Varanda Rizzo, Jonathan Daniel Muller, and Paulo Artaxo
EGUsphere, https://doi.org/10.5194/egusphere-2024-3339, https://doi.org/10.5194/egusphere-2024-3339, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Our work reveals the impact of forest fires on climate. We found that particles related to direct emissions from fires, beyond the well-known effect of absorbing light and thus heating the atmosphere, are also very efficient in scattering light, which causes an atmospheric cooling effect. In our remote study site, most of the particles presented a different chemical composition then particles directly emitted by the fires, but those were the main responsible for total light extinction.
Natalie G. Ratcliffe, Claire L. Ryder, Nicolas Bellouin, Stephanie Woodward, Anthony Jones, Ben Johnson, Lisa-Maria Wieland, Maximilian Dollner, Josef Gasteiger, and Bernadett Weinzierl
Atmos. Chem. Phys., 24, 12161–12181, https://doi.org/10.5194/acp-24-12161-2024, https://doi.org/10.5194/acp-24-12161-2024, 2024
Short summary
Short summary
Large mineral dust particles are more abundant in the atmosphere than expected and have different impacts on the environment than small particles, which are better represented in climate models. We use aircraft measurements to assess a climate model representation of large-dust transport. We find that the model underestimates the amount of large dust at all stages of transport and that fast removal of the large particles increases this underestimation with distance from the Sahara.
Neha Deot, Vijay Punjaji Kanawade, Alkistis Papetta, Rima Baalbaki, Michael Pikridas, Franco Marenco, Markku Kulmala, Jean Sciare, Katrianne Lehtipalo, and Tuija Jokinen
Aerosol Research Discuss., https://doi.org/10.5194/ar-2024-31, https://doi.org/10.5194/ar-2024-31, 2024
Preprint under review for AR
Short summary
Short summary
We studied how nanoparticles form in the atmosphere at two different altitudes in Cyprus, focusing on how meteorology impacts this process. Using data from two sites, we found that air from lower regions carries particles up to higher areas, affecting air quality and potentially climate. Our findings help improve understanding of how particles form and grow in the air, which is important for predicting changes in climate and air pollution in the future.
Xiaoli Shen, David M. Bell, Hugh Coe, Naruki Hiranuma, Fabian Mahrt, Nicholas A. Marsden, Claudia Mohr, Daniel M. Murphy, Harald Saathoff, Johannes Schneider, Jacqueline Wilson, Maria A. Zawadowicz, Alla Zelenyuk, Paul J. DeMott, Ottmar Möhler, and Daniel J. Cziczo
Atmos. Chem. Phys., 24, 10869–10891, https://doi.org/10.5194/acp-24-10869-2024, https://doi.org/10.5194/acp-24-10869-2024, 2024
Short summary
Short summary
Single-particle mass spectrometry (SPMS) is commonly used to measure the chemical composition and mixing state of aerosol particles. Intercomparison of SPMS instruments was conducted. All instruments reported similar size ranges and common spectral features. The instrument-specific detection efficiency was found to be more dependent on particle size than type. All differentiated secondary organic aerosol, soot, and soil dust but had difficulties differentiating among minerals and dusts.
Guilherme Martins Pereira, Leonardo Yoshiaki Kamigauti, Rubens Fabio Pereira, Djacinto Monteiro dos Santos, Thayná da Silva Santos, José Vinicius Martins, Célia Alves, Cátia Gonçalves, Ismael Casotti Rienda, Nora Kováts, Thiago Nogueira, Luciana Rizzo, Paulo Artaxo, Regina Maura de Miranda, Marcia Akemi Yamasoe, Edmilson Dias de Freitas, Pérola de Castro Vasconcellos, and Maria de Fatima Andrade
EGUsphere, https://doi.org/10.5194/egusphere-2024-2212, https://doi.org/10.5194/egusphere-2024-2212, 2024
Short summary
Short summary
The chemical composition of fine particulate matter was studied in the megacity of São Paulo (Brazil) during a polluted period. Vehicular-related sources were dominant; however, a high contribution of biomass burning was observed and correlated with sample ecotoxicity. Emerging biomass burning sources, such as forest fires and sugarcane bagasse-based power plants, highlight the need for additional control measures alongside stricter rules concerning vehicular emissions.
Richard J. Pope, Fiona M. O'Connor, Mohit Dalvi, Brian J. Kerridge, Richard Siddans, Barry G. Latter, Brice Barret, Eric Le Flochmoen, Anne Boynard, Martyn P. Chipperfield, Wuhu Feng, Matilda A. Pimlott, Sandip S. Dhomse, Christian Retscher, Catherine Wespes, and Richard Rigby
Atmos. Chem. Phys., 24, 9177–9195, https://doi.org/10.5194/acp-24-9177-2024, https://doi.org/10.5194/acp-24-9177-2024, 2024
Short summary
Short summary
Ozone is a potent air pollutant in the lower troposphere, with adverse impacts on human health. Satellite records of tropospheric ozone currently show large-scale inconsistencies in long-term trends. Our detailed study of the potential factors (e.g. satellite errors, where the satellite can observe ozone) potentially driving these inconsistencies found that, in North America, Europe, and East Asia, the underlying trends are typically small with large uncertainties.
Luiz A. T. Machado, Jürgen Kesselmeier, Santiago Botía, Hella van Asperen, Meinrat O. Andreae, Alessandro C. de Araújo, Paulo Artaxo, Achim Edtbauer, Rosaria R. Ferreira, Marco A. Franco, Hartwig Harder, Sam P. Jones, Cléo Q. Dias-Júnior, Guido G. Haytzmann, Carlos A. Quesada, Shujiro Komiya, Jost Lavric, Jos Lelieveld, Ingeborg Levin, Anke Nölscher, Eva Pfannerstill, Mira L. Pöhlker, Ulrich Pöschl, Akima Ringsdorf, Luciana Rizzo, Ana M. Yáñez-Serrano, Susan Trumbore, Wanda I. D. Valenti, Jordi Vila-Guerau de Arellano, David Walter, Jonathan Williams, Stefan Wolff, and Christopher Pöhlker
Atmos. Chem. Phys., 24, 8893–8910, https://doi.org/10.5194/acp-24-8893-2024, https://doi.org/10.5194/acp-24-8893-2024, 2024
Short summary
Short summary
Composite analysis of gas concentration before and after rainfall, during the day and night, gives insight into the complex relationship between trace gas variability and precipitation. The analysis helps us to understand the sources and sinks of trace gases within a forest ecosystem. It elucidates processes that are not discernible under undisturbed conditions and contributes to a deeper understanding of the trace gas life cycle and its intricate interactions with cloud dynamics in the Amazon.
Olivia G. Norman, Colette L. Heald, Pedro Campuzano-Jost, Hugh Coe, Marc N. Fiddler, Jaime R. Green, Jose L. Jimenez, Katharina Kaiser, Jin Liao, Ann M. Middlebrook, Benjamin A. Nault, John B. Nowak, Johannes Schneider, and André Welti
EGUsphere, https://doi.org/10.5194/egusphere-2024-2296, https://doi.org/10.5194/egusphere-2024-2296, 2024
Short summary
Short summary
This study finds that one component of secondary inorganic aerosols, nitrate, is greatly overestimated by a global atmospheric chemistry model compared to observations from 11 flight campaigns. None of the loss and production pathways explored can explain the nitrate bias alone. The model’s inability to capture the variability in the observations remains and requires future investigation to avoid biases in policy-related studies (i.e., air quality, health, climate impacts of these aerosols).
Marco A. Franco, Rafael Valiati, Bruna A. Holanda, Bruno B. Meller, Leslie A. Kremper, Luciana V. Rizzo, Samara Carbone, Fernando G. Morais, Janaína P. Nascimento, Meinrat O. Andreae, Micael A. Cecchini, Luiz A. T. Machado, Milena Ponczek, Ulrich Pöschl, David Walter, Christopher Pöhlker, and Paulo Artaxo
Atmos. Chem. Phys., 24, 8751–8770, https://doi.org/10.5194/acp-24-8751-2024, https://doi.org/10.5194/acp-24-8751-2024, 2024
Short summary
Short summary
The Amazon wet-season atmosphere was studied at the Amazon Tall Tower Observatory site, revealing vertical variations (between 60 and 325 m) in natural aerosols. Daytime mixing contrasted with nighttime stratification, with distinct rain-induced changes in aerosol populations. Notably, optical property recovery at higher levels was faster, while near-canopy aerosols showed higher scattering efficiency. These findings enhance our understanding of aerosol impacts on climate dynamics.
Olivia Mae Jackson, Aristeidis Voliotis, Thomas J. Bannan, Simon P. O'Meara, Gordon McFiggans, Dave Johnson, and Hugh Coe
EGUsphere, https://doi.org/10.5194/egusphere-2024-2380, https://doi.org/10.5194/egusphere-2024-2380, 2024
Short summary
Short summary
The paper details a method of measuring volatility of pesticides using chemical ionisation mass spectrometry (CIMS) to calculate vapour pressure. This was then compared to current literature values and commonly used models. The exact nature of the literature values often remain uncertain due to being hidden in industrial reports. The results show that the method used primarily matches current literature values and any difference can be explained by method differences either in the methodology.
Alkiviadis Kalisoras, Aristeidis K. Georgoulias, Dimitris Akritidis, Robert J. Allen, Vaishali Naik, Chaincy Kuo, Sophie Szopa, Pierre Nabat, Dirk Olivié, Twan van Noije, Philippe Le Sager, David Neubauer, Naga Oshima, Jane Mulcahy, Larry W. Horowitz, and Prodromos Zanis
Atmos. Chem. Phys., 24, 7837–7872, https://doi.org/10.5194/acp-24-7837-2024, https://doi.org/10.5194/acp-24-7837-2024, 2024
Short summary
Short summary
Effective radiative forcing (ERF) is a metric for estimating how human activities and natural agents change the energy flow into and out of the Earth’s climate system. We investigate the anthropogenic aerosol ERF, and we estimate the contribution of individual processes to the total ERF using simulations from Earth system models within the Coupled Model Intercomparison Project Phase 6 (CMIP6). Our findings highlight that aerosol–cloud interactions drive ERF variability during the last 150 years.
Sebastian Diez, Stuart Lacy, Hugh Coe, Josefina Urquiza, Max Priestman, Michael Flynn, Nicholas Marsden, Nicholas A. Martin, Stefan Gillott, Thomas Bannan, and Pete M. Edwards
Atmos. Meas. Tech., 17, 3809–3827, https://doi.org/10.5194/amt-17-3809-2024, https://doi.org/10.5194/amt-17-3809-2024, 2024
Short summary
Short summary
In this paper we present an overview of the QUANT project, which to our knowledge is one of the largest evaluations of commercial sensors to date. The objective was to evaluate the performance of a range of commercial products and also to nourish the different applications in which these technologies can offer relevant information.
Natalie M. Mahowald, Longlei Li, Julius Vira, Marje Prank, Douglas S. Hamilton, Hitoshi Matsui, Ron L. Miller, Louis Lu, Ezgi Akyuz, Daphne Meidan, Peter G. Hess, Heikki Lihavainen, Christine Wiedinmyer, Jenny Hand, Maria Grazia Alaimo, Célia Alves, Andres Alastuey, Paulo Artaxo, Africa Barreto, Francisco Barraza, Silvia Becagli, Giulia Calzolai, Shankararaman Chellam, Ying Chen, Patrick Chuang, David D. Cohen, Cristina Colombi, Evangelia Diapouli, Gaetano Dongarra, Konstantinos Eleftheriadis, Johann Engelbrecht, Corinne Galy-Lacaux, Cassandra Gaston, Dario Gomez, Yenny González Ramos, Roy M. Harrison, Chris Heyes, Barak Herut, Philip Hopke, Christoph Hüglin, Maria Kanakidou, Zsofia Kertesz, Zbigniew Klimont, Katriina Kyllönen, Fabrice Lambert, Xiaohong Liu, Remi Losno, Franco Lucarelli, Willy Maenhaut, Beatrice Marticorena, Randall V. Martin, Nikolaos Mihalopoulos, Yasser Morera-Gomez, Adina Paytan, Joseph Prospero, Sergio Rodríguez, Patricia Smichowski, Daniela Varrica, Brenna Walsh, Crystal Weagle, and Xi Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2024-1617, https://doi.org/10.5194/egusphere-2024-1617, 2024
Short summary
Short summary
Aerosol particles are an important part of the Earth system, but their concentrations are spatially and temporally heterogeneous, as well as variable in size and composition. Here we present a new compilation of PM2.5 and PM10 aerosol observations, focusing on the spatial variability across different observational stations, including composition, and demonstrate a method for comparing the datasets to model output.
Emmanouil Proestakis, Antonis Gkikas, Thanasis Georgiou, Anna Kampouri, Eleni Drakaki, Claire L. Ryder, Franco Marenco, Eleni Marinou, and Vassilis Amiridis
Atmos. Meas. Tech., 17, 3625–3667, https://doi.org/10.5194/amt-17-3625-2024, https://doi.org/10.5194/amt-17-3625-2024, 2024
Short summary
Short summary
A new four-dimensional, multiyear, and near-global climate data record of the fine-mode (submicrometer diameter) and coarse-mode (supermicrometer diameter) components of atmospheric pure dust is presented. The dataset is considered unique with respect to a wide range of potential applications, including climatological, time series, and trend analysis over extensive geographical domains and temporal periods, validation of atmospheric dust models and datasets, and air quality.
Diego Aliaga, Victoria A. Sinclair, Radovan Krejci, Marcos Andrade, Paulo Artaxo, Luis Blacutt, Runlong Cai, Samara Carbone, Yvette Gramlich, Liine Heikkinen, Dominic Heslin-Rees, Wei Huang, Veli-Matti Kerminen, Alkuin Maximilian Koenig, Markku Kulmala, Paolo Laj, Valeria Mardoñez-Balderrama, Claudia Mohr, Isabel Moreno, Pauli Paasonen, Wiebke Scholz, Karine Sellegri, Laura Ticona, Gaëlle Uzu, Fernando Velarde, Alfred Wiedensohler, Doug Worsnop, Cheng Wu, Chen Xuemeng, Qiaozhi Zha, and Federico Bianchi
Aerosol Research Discuss., https://doi.org/10.5194/ar-2024-15, https://doi.org/10.5194/ar-2024-15, 2024
Revised manuscript accepted for AR
Short summary
Short summary
This study examines new particle formation (NPF) in the Bolivian Andes at Chacaltaya mountain (CHC) and the urban El Alto-La Paz area (EAC). Days are clustered into four categories based on NPF intensity. Differences in particle size, precursor gases, and pollution levels are found. High NPF intensities increased Aitken mode particle concentrations at both sites, while volcanic influence selectively diminished NPF intensity at CHC but not EAC. This study highlights NPF dynamics in the Andes.
Lauren R. Marshall, Anja Schmidt, Andrew P. Schurer, Nathan Luke Abraham, Lucie J. Lücke, Rob Wilson, Kevin Anchukaitis, Gabriele Hegerl, Ben Johnson, Bette L. Otto-Bliesner, Esther C. Brady, Myriam Khodri, and Kohei Yoshida
EGUsphere, https://doi.org/10.5194/egusphere-2024-1322, https://doi.org/10.5194/egusphere-2024-1322, 2024
Short summary
Short summary
Large volcanic eruptions have caused temperature deviations over the past 1000 years, however climate model results and reconstructions of surface cooling using tree-rings do not match. We explore this mismatch using the latest models and find a better match to tree-ring reconstructions for some eruptions. Our results show that the way in which eruptions are simulated in models matters for the comparison to tree-rings, particularly regarding the spatial spread of volcanic aerosol.
Mariya Petrenko, Ralph Kahn, Mian Chin, Susanne E. Bauer, Tommi Bergman, Huisheng Bian, Gabriele Curci, Ben Johnson, Johannes Kaiser, Zak Kipling, Harri Kokkola, Xiaohong Liu, Keren Mezuman, Tero Mielonen, Gunnar Myhre, Xiaohua Pan, Anna Protonotariou, Samuel Remy, Ragnhild Bieltvedt Skeie, Philip Stier, Toshihiko Takemura, Kostas Tsigaridis, Hailong Wang, Duncan Watson-Parris, and Kai Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2024-1487, https://doi.org/10.5194/egusphere-2024-1487, 2024
Short summary
Short summary
We compared smoke plume simulations from 11 global models to each other and to satellite smoke-amount observations, aimed at constraining smoke source strength. In regions where plumes are thick and background aerosol is low, models and satellites compare well. However, the input emission inventory tends to underestimate in many places, and particle property and loss-rate assumptions vary enormously among models, causing uncertainties that require systematic in-situ measurements to resolve.
Jean-Paul Vernier, Thomas J. Aubry, Claudia Timmreck, Anja Schmidt, Lieven Clarisse, Fred Prata, Nicolas Theys, Andrew T. Prata, Graham Mann, Hyundeok Choi, Simon Carn, Richard Rigby, Susan C. Loughlin, and John A. Stevenson
Atmos. Chem. Phys., 24, 5765–5782, https://doi.org/10.5194/acp-24-5765-2024, https://doi.org/10.5194/acp-24-5765-2024, 2024
Short summary
Short summary
The 2019 Raikoke eruption (Kamchatka, Russia) generated one of the largest emissions of particles and gases into the stratosphere since the 1991 Mt. Pinatubo eruption. The Volcano Response (VolRes) initiative, an international effort, provided a platform for the community to share information about this eruption and assess its climate impact. The eruption led to a minor global surface cooling of 0.02 °C in 2020 which is negligible relative to warming induced by human greenhouse gas emissions.
Christina V. Brodowsky, Timofei Sukhodolov, Gabriel Chiodo, Valentina Aquila, Slimane Bekki, Sandip S. Dhomse, Michael Höpfner, Anton Laakso, Graham W. Mann, Ulrike Niemeier, Giovanni Pitari, Ilaria Quaglia, Eugene Rozanov, Anja Schmidt, Takashi Sekiya, Simone Tilmes, Claudia Timmreck, Sandro Vattioni, Daniele Visioni, Pengfei Yu, Yunqian Zhu, and Thomas Peter
Atmos. Chem. Phys., 24, 5513–5548, https://doi.org/10.5194/acp-24-5513-2024, https://doi.org/10.5194/acp-24-5513-2024, 2024
Short summary
Short summary
The aerosol layer is an essential part of the climate system. We characterize the sulfur budget in a volcanically quiescent (background) setting, with a special focus on the sulfate aerosol layer using, for the first time, a multi-model approach. The aim is to identify weak points in the representation of the atmospheric sulfur budget in an intercomparison of nine state-of-the-art coupled global circulation models.
Declan L. Finney, Alan M. Blyth, Martin Gallagher, Huihui Wu, Graeme J. Nott, Michael I. Biggerstaff, Richard G. Sonnenfeld, Martin Daily, Dan Walker, David Dufton, Keith Bower, Steven Böing, Thomas Choularton, Jonathan Crosier, James Groves, Paul R. Field, Hugh Coe, Benjamin J. Murray, Gary Lloyd, Nicholas A. Marsden, Michael Flynn, Kezhen Hu, Navaneeth M. Thamban, Paul I. Williams, Paul J. Connolly, James B. McQuaid, Joseph Robinson, Zhiqiang Cui, Ralph R. Burton, Gordon Carrie, Robert Moore, Steven J. Abel, Dave Tiddeman, and Graydon Aulich
Earth Syst. Sci. Data, 16, 2141–2163, https://doi.org/10.5194/essd-16-2141-2024, https://doi.org/10.5194/essd-16-2141-2024, 2024
Short summary
Short summary
The DCMEX (Deep Convective Microphysics Experiment) project undertook an aircraft- and ground-based measurement campaign of New Mexico deep convective clouds during July–August 2022. The campaign coordinated a broad range of instrumentation measuring aerosol, cloud physics, radar signals, thermodynamics, dynamics, electric fields, and weather. The project's objectives included the utilisation of these data with satellite observations to study the anvil cloud radiative effect.
Jonathan Elsey, Nicolas Bellouin, and Claire Ryder
Atmos. Chem. Phys., 24, 4065–4081, https://doi.org/10.5194/acp-24-4065-2024, https://doi.org/10.5194/acp-24-4065-2024, 2024
Short summary
Short summary
Aerosols influence the Earth's energy balance. The uncertainty in this radiative forcing is large depending partly on uncertainty in measurements of aerosol optical properties. We have developed a freely available new framework of millions of radiative transfer simulations spanning aerosol uncertainty and assess the impact on radiative forcing uncertainty. We find that reducing these uncertainties would reduce radiative forcing uncertainty, but non-aerosol uncertainties must also be considered.
Gabriela R. Unfer, Luiz A. T. Machado, Paulo Artaxo, Marco A. Franco, Leslie A. Kremper, Mira L. Pöhlker, Ulrich Pöschl, and Christopher Pöhlker
Atmos. Chem. Phys., 24, 3869–3882, https://doi.org/10.5194/acp-24-3869-2024, https://doi.org/10.5194/acp-24-3869-2024, 2024
Short summary
Short summary
Amazonian aerosols and their interactions with precipitation were studied by understanding them in a 3D space based on three parameters that characterize the concentration and size distribution of aerosols. The results showed characteristic arrangements regarding seasonal and diurnal cycles, as well as when interacting with precipitation. The use of this 3D space appears to be a promising tool for aerosol population analysis and for model validation and parameterization.
Alban Philibert, Marie Lothon, Julien Amestoy, Pierre-Yves Meslin, Solène Derrien, Yannick Bezombes, Bernard Campistron, Fabienne Lohou, Antoine Vial, Guylaine Canut-Rocafort, Joachim Reuder, and Jennifer K. Brooke
Atmos. Meas. Tech., 17, 1679–1701, https://doi.org/10.5194/amt-17-1679-2024, https://doi.org/10.5194/amt-17-1679-2024, 2024
Short summary
Short summary
We present a new algorithm, CALOTRITON, for the retrieval of the convective boundary layer depth with ultra-high-frequency radar measurements. CALOTRITON is partly based on the principle that the top of the convective boundary layer is associated with an inversion and a decrease in turbulence. It is evaluated using ceilometer and radiosonde data. It is able to qualify the complexity of the vertical structure of the low troposphere and detect internal or residual layers.
Alkistis Papetta, Franco Marenco, Maria Kezoudi, Rodanthi-Elisavet Mamouri, Argyro Nisantzi, Holger Baars, Ioana Elisabeta Popovici, Philippe Goloub, Stéphane Victori, and Jean Sciare
Atmos. Meas. Tech., 17, 1721–1738, https://doi.org/10.5194/amt-17-1721-2024, https://doi.org/10.5194/amt-17-1721-2024, 2024
Short summary
Short summary
We propose a method to determine depolarization parameters using observations from a reference instrument at a nearby location, needed for systems where a priori knowledge of cross-talk parameters is not available. It uses three-parameter equations to compare VDR between two co-located lidars at dust and molecular layers. It can be applied retrospectively to existing data acquired during campaigns. Its application to Cimel CE376 corrected VDR bias at high- and low-depolarizing layers.
Alexander T. Archibald, Bablu Sinha, Maria Russo, Emily Matthews, Freya Squires, N. Luke Abraham, Stephane Bauguitte, Thomas Bannan, Thomas Bell, David Berry, Lucy Carpenter, Hugh Coe, Andrew Coward, Peter Edwards, Daniel Feltham, Dwayne Heard, Jim Hopkins, James Keeble, Elizabeth C. Kent, Brian King, Isobel R. Lawrence, James Lee, Claire R. Macintosh, Alex Megann, Ben I. Moat, Katie Read, Chris Reed, Malcolm Roberts, Reinhard Schiemann, David Schroeder, Tim Smyth, Loren Temple, Navaneeth Thamban, Lisa Whalley, Simon Williams, Huihui Wu, and Ming-Xi Yang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-405, https://doi.org/10.5194/essd-2023-405, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Here we present an overview of the data generated as part of the North Atlantic Climate System Integrated Studies (ACSIS) programme which are available through dedicated repositories at the Centre for Environmental Data Analysis (CEDA, www.ceda.ac.uk) and the British Oceanographic Data Centre (BODC, bodc.ac.uk). ACSIS data cover the full North Atlantic System comprising: the North Atlantic Ocean, the atmosphere above it including its composition, Arctic Sea Ice and the Greenland Ice Sheet.
Natalie M. Mahowald, Longlei Li, Julius Vira, Marje Prank, Douglas S. Hamilton, Hitoshi Matsui, Ron L. Miller, Louis Lu, Ezgi Akyuz, Daphne Meidan, Peter Hess, Heikki Lihavainen, Christine Wiedinmyer, Jenny Hand, Maria Grazia Alaimo, Célia Alves, Andres Alastuey, Paulo Artaxo, Africa Barreto, Francisco Barraza, Silvia Becagli, Giulia Calzolai, Shankarararman Chellam, Ying Chen, Patrick Chuang, David D. Cohen, Cristina Colombi, Evangelia Diapouli, Gaetano Dongarra, Konstantinos Eleftheriadis, Corinne Galy-Lacaux, Cassandra Gaston, Dario Gomez, Yenny González Ramos, Hannele Hakola, Roy M. Harrison, Chris Heyes, Barak Herut, Philip Hopke, Christoph Hüglin, Maria Kanakidou, Zsofia Kertesz, Zbiginiw Klimont, Katriina Kyllönen, Fabrice Lambert, Xiaohong Liu, Remi Losno, Franco Lucarelli, Willy Maenhaut, Beatrice Marticorena, Randall V. Martin, Nikolaos Mihalopoulos, Yasser Morera-Gomez, Adina Paytan, Joseph Prospero, Sergio Rodríguez, Patricia Smichowski, Daniela Varrica, Brenna Walsh, Crystal Weagle, and Xi Zhao
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-1, https://doi.org/10.5194/essd-2024-1, 2024
Preprint withdrawn
Short summary
Short summary
Aerosol particles can interact with incoming solar radiation and outgoing long wave radiation, change cloud properties, affect photochemistry, impact surface air quality, and when deposited impact surface albedo of snow and ice, and modulate carbon dioxide uptake by the land and ocean. Here we present a new compilation of aerosol observations including composition, a methodology for comparing the datasets to model output, and show the implications of these results using one model.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Ingrid T. Luijkx, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Peter Anthoni, Leticia Barbero, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Bertrand Decharme, Laurent Bopp, Ida Bagus Mandhara Brasika, Patricia Cadule, Matthew A. Chamberlain, Naveen Chandra, Thi-Tuyet-Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Xinyu Dou, Kazutaka Enyo, Wiley Evans, Stefanie Falk, Richard A. Feely, Liang Feng, Daniel J. Ford, Thomas Gasser, Josefine Ghattas, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Fortunat Joos, Etsushi Kato, Ralph F. Keeling, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Xin Lan, Nathalie Lefèvre, Hongmei Li, Junjie Liu, Zhiqiang Liu, Lei Ma, Greg Marland, Nicolas Mayot, Patrick C. McGuire, Galen A. McKinley, Gesa Meyer, Eric J. Morgan, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin M. O'Brien, Are Olsen, Abdirahman M. Omar, Tsuneo Ono, Melf Paulsen, Denis Pierrot, Katie Pocock, Benjamin Poulter, Carter M. Powis, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Roland Séférian, T. Luke Smallman, Stephen M. Smith, Reinel Sospedra-Alfonso, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Erik van Ooijen, Rik Wanninkhof, Michio Watanabe, Cathy Wimart-Rousseau, Dongxu Yang, Xiaojuan Yang, Wenping Yuan, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 15, 5301–5369, https://doi.org/10.5194/essd-15-5301-2023, https://doi.org/10.5194/essd-15-5301-2023, 2023
Short summary
Short summary
The Global Carbon Budget 2023 describes the methodology, main results, and data sets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2023). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Calvin Howes, Pablo E. Saide, Hugh Coe, Amie Dobracki, Steffen Freitag, Jim M. Haywood, Steven G. Howell, Siddhant Gupta, Janek Uin, Mary Kacarab, Chongai Kuang, L. Ruby Leung, Athanasios Nenes, Greg M. McFarquhar, James Podolske, Jens Redemann, Arthur J. Sedlacek, Kenneth L. Thornhill, Jenny P. S. Wong, Robert Wood, Huihui Wu, Yang Zhang, Jianhao Zhang, and Paquita Zuidema
Atmos. Chem. Phys., 23, 13911–13940, https://doi.org/10.5194/acp-23-13911-2023, https://doi.org/10.5194/acp-23-13911-2023, 2023
Short summary
Short summary
To better understand smoke properties and its interactions with clouds, we compare the WRF-CAM5 model with observations from ORACLES, CLARIFY, and LASIC field campaigns in the southeastern Atlantic in August 2017. The model transports and mixes smoke well but does not fully capture some important processes. These include smoke chemical and physical aging over 4–12 days, smoke removal by rain, sulfate particle formation, aerosol activation into cloud droplets, and boundary layer turbulence.
Matthew Henry, Jim Haywood, Andy Jones, Mohit Dalvi, Alice Wells, Daniele Visioni, Ewa M. Bednarz, Douglas G. MacMartin, Walker Lee, and Mari R. Tye
Atmos. Chem. Phys., 23, 13369–13385, https://doi.org/10.5194/acp-23-13369-2023, https://doi.org/10.5194/acp-23-13369-2023, 2023
Short summary
Short summary
Solar climate interventions, such as injecting sulfur in the stratosphere, may be used to offset some of the adverse impacts of global warming. We use two independently developed Earth system models to assess the uncertainties around stratospheric sulfur injections. The injection locations and amounts are optimized to maintain the same pattern of surface temperature. While both models show reduced warming, the change in rainfall patterns (even without sulfur injections) is uncertain.
Angela Mynard, Joss Kent, Eleanor R. Smith, Andy Wilson, Kirsty Wivell, Noel Nelson, Matthew Hort, James Bowles, David Tiddeman, Justin M. Langridge, Benjamin Drummond, and Steven J. Abel
Atmos. Meas. Tech., 16, 4229–4261, https://doi.org/10.5194/amt-16-4229-2023, https://doi.org/10.5194/amt-16-4229-2023, 2023
Short summary
Short summary
Air quality models are key in understanding complex air pollution processes and assist in developing strategies to mitigate the impacts of air pollution. The ability of regional air quality models to skilfully represent pollutant distributions aloft is important to enabling their skilful prediction at the surface. To assist in model development and evaluation, a long-term, quality-assured dataset of the 3-D distribution of key pollutants was collected over the United Kingdom (2019–2022).
Xurong Wang, Qiaoqiao Wang, Maria Prass, Christopher Pöhlker, Daniel Moran-Zuloaga, Paulo Artaxo, Jianwei Gu, Ning Yang, Xiajie Yang, Jiangchuan Tao, Juan Hong, Nan Ma, Yafang Cheng, Hang Su, and Meinrat O. Andreae
Atmos. Chem. Phys., 23, 9993–10014, https://doi.org/10.5194/acp-23-9993-2023, https://doi.org/10.5194/acp-23-9993-2023, 2023
Short summary
Short summary
In this work, with an optimized particle mass size distribution, we captured observed aerosol optical depth (AOD) and coarse aerosol concentrations over source and/or receptor regions well, demonstrating good performance in simulating export of African dust toward the Amazon Basin. In addition to factors controlling the transatlantic transport of African dust, the study investigated the impact of African dust over the Amazon Basin, including the nutrient inputs associated with dust deposition.
Leighton A. Regayre, Lucia Deaconu, Daniel P. Grosvenor, David M. H. Sexton, Christopher Symonds, Tom Langton, Duncan Watson-Paris, Jane P. Mulcahy, Kirsty J. Pringle, Mark Richardson, Jill S. Johnson, John W. Rostron, Hamish Gordon, Grenville Lister, Philip Stier, and Ken S. Carslaw
Atmos. Chem. Phys., 23, 8749–8768, https://doi.org/10.5194/acp-23-8749-2023, https://doi.org/10.5194/acp-23-8749-2023, 2023
Short summary
Short summary
Aerosol forcing of Earth’s energy balance has persisted as a major cause of uncertainty in climate simulations over generations of climate model development. We show that structural deficiencies in a climate model are exposed by comprehensively exploring parametric uncertainty and that these deficiencies limit how much the model uncertainty can be reduced through observational constraint. This provides a future pathway towards building models with greater physical realism and lower uncertainty.
Valerian Hahn, Ralf Meerkötter, Christiane Voigt, Sonja Gisinger, Daniel Sauer, Valéry Catoire, Volker Dreiling, Hugh Coe, Cyrille Flamant, Stefan Kaufmann, Jonas Kleine, Peter Knippertz, Manuel Moser, Philip Rosenberg, Hans Schlager, Alfons Schwarzenboeck, and Jonathan Taylor
Atmos. Chem. Phys., 23, 8515–8530, https://doi.org/10.5194/acp-23-8515-2023, https://doi.org/10.5194/acp-23-8515-2023, 2023
Short summary
Short summary
During the DACCIWA campaign in West Africa, we found a 35 % increase in the cloud droplet concentration that formed in a polluted compared with a less polluted environment and a decrease of 17 % in effective droplet diameter. Radiative transfer simulations, based on the measured cloud properties, reveal that these low-level polluted clouds radiate only 2.6 % more energy back to space, compared with a less polluted cloud. The corresponding additional decrease in temperature is rather small.
Chenwei Fang, Jim M. Haywood, Ju Liang, Ben T. Johnson, Ying Chen, and Bin Zhu
Atmos. Chem. Phys., 23, 8341–8368, https://doi.org/10.5194/acp-23-8341-2023, https://doi.org/10.5194/acp-23-8341-2023, 2023
Short summary
Short summary
The responses of Asian summer monsoon duration and intensity to air pollution mitigation are identified given the net-zero future. We show that reducing scattering aerosols makes the rainy season longer and stronger across South Asia and East Asia but that absorbing aerosol reduction has the opposite effect. Our results hint at distinct monsoon responses to emission controls that target different aerosols.
Ernesto Reyes-Villegas, Douglas Lowe, Jill S. Johnson, Kenneth S. Carslaw, Eoghan Darbyshire, Michael Flynn, James D. Allan, Hugh Coe, Ying Chen, Oliver Wild, Scott Archer-Nicholls, Alex Archibald, Siddhartha Singh, Manish Shrivastava, Rahul A. Zaveri, Vikas Singh, Gufran Beig, Ranjeet Sokhi, and Gordon McFiggans
Atmos. Chem. Phys., 23, 5763–5782, https://doi.org/10.5194/acp-23-5763-2023, https://doi.org/10.5194/acp-23-5763-2023, 2023
Short summary
Short summary
Organic aerosols (OAs), their sources and their processes remain poorly understood. The volatility basis set (VBS) approach, implemented in air quality models such as WRF-Chem, can be a useful tool to describe primary OA (POA) production and aging. However, the main disadvantage is its complexity. We used a Gaussian process simulator to reproduce model results and to estimate the sources of model uncertainty. We do this by comparing the outputs with OA observations made at Delhi, India, in 2018.
Joanna E. Dyson, Lisa K. Whalley, Eloise J. Slater, Robert Woodward-Massey, Chunxiang Ye, James D. Lee, Freya Squires, James R. Hopkins, Rachel E. Dunmore, Marvin Shaw, Jacqueline F. Hamilton, Alastair C. Lewis, Stephen D. Worrall, Asan Bacak, Archit Mehra, Thomas J. Bannan, Hugh Coe, Carl J. Percival, Bin Ouyang, C. Nicholas Hewitt, Roderic L. Jones, Leigh R. Crilley, Louisa J. Kramer, W. Joe F. Acton, William J. Bloss, Supattarachai Saksakulkrai, Jingsha Xu, Zongbo Shi, Roy M. Harrison, Simone Kotthaus, Sue Grimmond, Yele Sun, Weiqi Xu, Siyao Yue, Lianfang Wei, Pingqing Fu, Xinming Wang, Stephen R. Arnold, and Dwayne E. Heard
Atmos. Chem. Phys., 23, 5679–5697, https://doi.org/10.5194/acp-23-5679-2023, https://doi.org/10.5194/acp-23-5679-2023, 2023
Short summary
Short summary
The hydroxyl (OH) and closely coupled hydroperoxyl (HO2) radicals are vital for their role in the removal of atmospheric pollutants. In less polluted regions, atmospheric models over-predict HO2 concentrations. In this modelling study, the impact of heterogeneous uptake of HO2 onto aerosol surfaces on radical concentrations and the ozone production regime in Beijing in the summertime is investigated, and the implications for emissions policies across China are considered.
George Manville, Thomas G. Bell, Jane P. Mulcahy, Rafel Simó, Martí Galí, Anoop S. Mahajan, Shrivardhan Hulswar, and Paul R. Halloran
Biogeosciences, 20, 1813–1828, https://doi.org/10.5194/bg-20-1813-2023, https://doi.org/10.5194/bg-20-1813-2023, 2023
Short summary
Short summary
We present the first global investigation of controls on seawater dimethylsulfide (DMS) spatial variability over scales of up to 100 km. Sea surface height anomalies, density, and chlorophyll a help explain almost 80 % of DMS variability. The results suggest that physical and biogeochemical processes play an equally important role in controlling DMS variability. These data provide independent confirmation that existing parameterisations of seawater DMS concentration use appropriate variables.
Ian Chang, Lan Gao, Connor J. Flynn, Yohei Shinozuka, Sarah J. Doherty, Michael S. Diamond, Karla M. Longo, Gonzalo A. Ferrada, Gregory R. Carmichael, Patricia Castellanos, Arlindo M. da Silva, Pablo E. Saide, Calvin Howes, Zhixin Xue, Marc Mallet, Ravi Govindaraju, Qiaoqiao Wang, Yafang Cheng, Yan Feng, Sharon P. Burton, Richard A. Ferrare, Samuel E. LeBlanc, Meloë S. Kacenelenbogen, Kristina Pistone, Michal Segal-Rozenhaimer, Kerry G. Meyer, Ju-Mee Ryoo, Leonhard Pfister, Adeyemi A. Adebiyi, Robert Wood, Paquita Zuidema, Sundar A. Christopher, and Jens Redemann
Atmos. Chem. Phys., 23, 4283–4309, https://doi.org/10.5194/acp-23-4283-2023, https://doi.org/10.5194/acp-23-4283-2023, 2023
Short summary
Short summary
Abundant aerosols are present above low-level liquid clouds over the southeastern Atlantic during late austral spring. The model simulation differences in the proportion of aerosol residing in the planetary boundary layer and in the free troposphere can greatly affect the regional aerosol radiative effects. This study examines the aerosol loading and fractional aerosol loading in the free troposphere among various models and evaluates them against measurements from the NASA ORACLES campaign.
Edward Gryspeerdt, Adam C. Povey, Roy G. Grainger, Otto Hasekamp, N. Christina Hsu, Jane P. Mulcahy, Andrew M. Sayer, and Armin Sorooshian
Atmos. Chem. Phys., 23, 4115–4122, https://doi.org/10.5194/acp-23-4115-2023, https://doi.org/10.5194/acp-23-4115-2023, 2023
Short summary
Short summary
The impact of aerosols on clouds is one of the largest uncertainties in the human forcing of the climate. Aerosol can increase the concentrations of droplets in clouds, but observational and model studies produce widely varying estimates of this effect. We show that these estimates can be reconciled if only polluted clouds are studied, but this is insufficient to constrain the climate impact of aerosol. The uncertainty in aerosol impact on clouds is currently driven by cases with little aerosol.
Christopher D. Wells, Matthew Kasoar, Nicolas Bellouin, and Apostolos Voulgarakis
Atmos. Chem. Phys., 23, 3575–3593, https://doi.org/10.5194/acp-23-3575-2023, https://doi.org/10.5194/acp-23-3575-2023, 2023
Short summary
Short summary
The climate is altered by greenhouse gases and air pollutant particles, and such emissions are likely to change drastically in the future over Africa. Air pollutants do not travel far, so their climate effect depends on where they are emitted. This study uses a climate model to find the climate impacts of future African pollutant emissions being either high or low. The particles absorb and scatter sunlight, causing the ground nearby to be cooler, but elsewhere the increased heat causes warming.
Jane P. Mulcahy, Colin G. Jones, Steven T. Rumbold, Till Kuhlbrodt, Andrea J. Dittus, Edward W. Blockley, Andrew Yool, Jeremy Walton, Catherine Hardacre, Timothy Andrews, Alejandro Bodas-Salcedo, Marc Stringer, Lee de Mora, Phil Harris, Richard Hill, Doug Kelley, Eddy Robertson, and Yongming Tang
Geosci. Model Dev., 16, 1569–1600, https://doi.org/10.5194/gmd-16-1569-2023, https://doi.org/10.5194/gmd-16-1569-2023, 2023
Short summary
Short summary
Recent global climate models simulate historical global mean surface temperatures which are too cold, possibly to due to excessive aerosol cooling. This raises questions about the models' ability to simulate important climate processes and reduces confidence in future climate predictions. We present a new version of the UK Earth System Model, which has an improved aerosols simulation and a historical temperature record. Interestingly, the long-term response to CO2 remains largely unchanged.
Alexander D. James, Finn Pace, Sebastien N. F. Sikora, Graham W. Mann, John M. C. Plane, and Benjamin J. Murray
Atmos. Chem. Phys., 23, 2215–2233, https://doi.org/10.5194/acp-23-2215-2023, https://doi.org/10.5194/acp-23-2215-2023, 2023
Short summary
Short summary
Here, we examine whether several materials of meteoric origin can nucleate crystallisation in stratospheric cloud droplets which would affect ozone depletion. We find that material which could fragment on atmospheric entry without melting is unlikely to be present in high enough concentration in the stratosphere to contribute to observed crystalline clouds. Material which ablates completely then forms a new solid known as meteoric smoke can provide enough nucleation to explain observed clouds.
Ilaria Quaglia, Claudia Timmreck, Ulrike Niemeier, Daniele Visioni, Giovanni Pitari, Christina Brodowsky, Christoph Brühl, Sandip S. Dhomse, Henning Franke, Anton Laakso, Graham W. Mann, Eugene Rozanov, and Timofei Sukhodolov
Atmos. Chem. Phys., 23, 921–948, https://doi.org/10.5194/acp-23-921-2023, https://doi.org/10.5194/acp-23-921-2023, 2023
Short summary
Short summary
The last very large explosive volcanic eruption we have measurements for is the eruption of Mt. Pinatubo in 1991. It is therefore often used as a benchmark for climate models' ability to reproduce these kinds of events. Here, we compare available measurements with the results from multiple experiments conducted with climate models interactively simulating the aerosol cloud formation.
Wiebke Scholz, Jiali Shen, Diego Aliaga, Cheng Wu, Samara Carbone, Isabel Moreno, Qiaozhi Zha, Wei Huang, Liine Heikkinen, Jean Luc Jaffrezo, Gaelle Uzu, Eva Partoll, Markus Leiminger, Fernando Velarde, Paolo Laj, Patrick Ginot, Paolo Artaxo, Alfred Wiedensohler, Markku Kulmala, Claudia Mohr, Marcos Andrade, Victoria Sinclair, Federico Bianchi, and Armin Hansel
Atmos. Chem. Phys., 23, 895–920, https://doi.org/10.5194/acp-23-895-2023, https://doi.org/10.5194/acp-23-895-2023, 2023
Short summary
Short summary
Dimethyl sulfide (DMS), emitted from the ocean, is the most abundant biogenic sulfur emission into the atmosphere. OH radicals, among others, can oxidize DMS to sulfuric and methanesulfonic acid, which are relevant for aerosol formation. We quantified DMS and nearly all DMS oxidation products with novel mass spectrometric instruments for gas and particle phase at the high mountain station Chacaltaya (5240 m a.s.l.) in the Bolivian Andes in free tropospheric air after long-range transport.
Yunfan Liu, Hang Su, Siwen Wang, Chao Wei, Wei Tao, Mira L. Pöhlker, Christopher Pöhlker, Bruna A. Holanda, Ovid O. Krüger, Thorsten Hoffmann, Manfred Wendisch, Paulo Artaxo, Ulrich Pöschl, Meinrat O. Andreae, and Yafang Cheng
Atmos. Chem. Phys., 23, 251–272, https://doi.org/10.5194/acp-23-251-2023, https://doi.org/10.5194/acp-23-251-2023, 2023
Short summary
Short summary
The origins of the abundant cloud condensation nuclei (CCN) in the upper troposphere (UT) of the Amazon remain unclear. With model developments of new secondary organic aerosol schemes and constrained by observation, we show that strong aerosol nucleation and condensation in the UT is triggered by biogenic organics, and organic condensation is key for UT CCN production. This UT CCN-producing mechanism may prevail over broader vegetation canopies and deserves emphasis in aerosol–climate feedback.
Leighton A. Regayre, Lucia Deaconu, Daniel P. Grosvenor, David Sexton, Christopher C. Symonds, Tom Langton, Duncan Watson-Paris, Jane P. Mulcahy, Kirsty J. Pringle, Mark Richardson, Jill S. Johnson, John Rostron, Hamish Gordon, Grenville Lister, Philip Stier, and Ken S. Carslaw
EGUsphere, https://doi.org/10.5194/egusphere-2022-1330, https://doi.org/10.5194/egusphere-2022-1330, 2022
Preprint archived
Short summary
Short summary
We show that potential structural deficiencies in a climate model can be exposed by comprehensively exploring its parametric uncertainty, and that these deficiencies limit how much the model uncertainty can be reduced through observational constraint. Combined consideration of parametric and structural uncertainties provides a future pathway towards building models that have greater physical realism and lower uncertainty.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Luke Gregor, Judith Hauck, Corinne Le Quéré, Ingrid T. Luijkx, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Ramdane Alkama, Almut Arneth, Vivek K. Arora, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Henry C. Bittig, Laurent Bopp, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Wiley Evans, Stefanie Falk, Richard A. Feely, Thomas Gasser, Marion Gehlen, Thanos Gkritzalis, Lucas Gloege, Giacomo Grassi, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Atul K. Jain, Annika Jersild, Koji Kadono, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Keith Lindsay, Junjie Liu, Zhu Liu, Gregg Marland, Nicolas Mayot, Matthew J. McGrath, Nicolas Metzl, Natalie M. Monacci, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Naiqing Pan, Denis Pierrot, Katie Pocock, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Carmen Rodriguez, Thais M. Rosan, Jörg Schwinger, Roland Séférian, Jamie D. Shutler, Ingunn Skjelvan, Tobias Steinhoff, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Toste Tanhua, Pieter P. Tans, Xiangjun Tian, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Anthony P. Walker, Rik Wanninkhof, Chris Whitehead, Anna Willstrand Wranne, Rebecca Wright, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 14, 4811–4900, https://doi.org/10.5194/essd-14-4811-2022, https://doi.org/10.5194/essd-14-4811-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2022 describes the datasets and methodology used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, the land ecosystems, and the ocean. These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Paul A. Barrett, Steven J. Abel, Hugh Coe, Ian Crawford, Amie Dobracki, James Haywood, Steve Howell, Anthony Jones, Justin Langridge, Greg M. McFarquhar, Graeme J. Nott, Hannah Price, Jens Redemann, Yohei Shinozuka, Kate Szpek, Jonathan W. Taylor, Robert Wood, Huihui Wu, Paquita Zuidema, Stéphane Bauguitte, Ryan Bennett, Keith Bower, Hong Chen, Sabrina Cochrane, Michael Cotterell, Nicholas Davies, David Delene, Connor Flynn, Andrew Freedman, Steffen Freitag, Siddhant Gupta, David Noone, Timothy B. Onasch, James Podolske, Michael R. Poellot, Sebastian Schmidt, Stephen Springston, Arthur J. Sedlacek III, Jamie Trembath, Alan Vance, Maria A. Zawadowicz, and Jianhao Zhang
Atmos. Meas. Tech., 15, 6329–6371, https://doi.org/10.5194/amt-15-6329-2022, https://doi.org/10.5194/amt-15-6329-2022, 2022
Short summary
Short summary
To better understand weather and climate, it is vital to go into the field and collect observations. Often measurements take place in isolation, but here we compared data from two aircraft and one ground-based site. This was done in order to understand how well measurements made on one platform compared to those made on another. Whilst this is easy to do in a controlled laboratory setting, it is more challenging in the real world, and so these comparisons are as valuable as they are rare.
Juan-Carlos Antuña-Marrero, Graham W. Mann, John Barnes, Abel Calle, Sandip S. Dhomse, Victoria E. Cachorro-Revilla, Terry Deshler, Li Zhengyao, Nimmi Sharma, and Louis Elterman
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-272, https://doi.org/10.5194/essd-2022-272, 2022
Revised manuscript not accepted
Short summary
Short summary
Tropospheric and stratospheric aerosol extinction profiles observations from a searchlight at New Mexico, US, were rescued and re-calibrated. Spanning between December 1963 and 1964, they measured the volcanic aerosols from the 1963 Agung eruption. Contemporary and state of the art information were used in the re-calibration. A unique and until the present forgotten/ignored dataset, it contributes current observational and modelling research on the impact of major volcanic eruptions on climate.
Ville Leinonen, Harri Kokkola, Taina Yli-Juuti, Tero Mielonen, Thomas Kühn, Tuomo Nieminen, Simo Heikkinen, Tuuli Miinalainen, Tommi Bergman, Ken Carslaw, Stefano Decesari, Markus Fiebig, Tareq Hussein, Niku Kivekäs, Radovan Krejci, Markku Kulmala, Ari Leskinen, Andreas Massling, Nikos Mihalopoulos, Jane P. Mulcahy, Steffen M. Noe, Twan van Noije, Fiona M. O'Connor, Colin O'Dowd, Dirk Olivie, Jakob B. Pernov, Tuukka Petäjä, Øyvind Seland, Michael Schulz, Catherine E. Scott, Henrik Skov, Erik Swietlicki, Thomas Tuch, Alfred Wiedensohler, Annele Virtanen, and Santtu Mikkonen
Atmos. Chem. Phys., 22, 12873–12905, https://doi.org/10.5194/acp-22-12873-2022, https://doi.org/10.5194/acp-22-12873-2022, 2022
Short summary
Short summary
We provide the first extensive comparison of detailed aerosol size distribution trends between in situ observations from Europe and five different earth system models. We investigated aerosol modes (nucleation, Aitken, and accumulation) separately and were able to show the differences between measured and modeled trends and especially their seasonal patterns. The differences in model results are likely due to complex effects of several processes instead of certain specific model features.
Johannes Quaas, Hailing Jia, Chris Smith, Anna Lea Albright, Wenche Aas, Nicolas Bellouin, Olivier Boucher, Marie Doutriaux-Boucher, Piers M. Forster, Daniel Grosvenor, Stuart Jenkins, Zbigniew Klimont, Norman G. Loeb, Xiaoyan Ma, Vaishali Naik, Fabien Paulot, Philip Stier, Martin Wild, Gunnar Myhre, and Michael Schulz
Atmos. Chem. Phys., 22, 12221–12239, https://doi.org/10.5194/acp-22-12221-2022, https://doi.org/10.5194/acp-22-12221-2022, 2022
Short summary
Short summary
Pollution particles cool climate and offset part of the global warming. However, they are washed out by rain and thus their effect responds quickly to changes in emissions. We show multiple datasets to demonstrate that aerosol emissions and their concentrations declined in many regions influenced by human emissions, as did the effects on clouds. Consequently, the cooling impact on the Earth energy budget became smaller. This change in trend implies a relative warming.
Micael Amore Cecchini, Marco de Bruine, Jordi Vilà-Guerau de Arellano, and Paulo Artaxo
Atmos. Chem. Phys., 22, 11867–11888, https://doi.org/10.5194/acp-22-11867-2022, https://doi.org/10.5194/acp-22-11867-2022, 2022
Short summary
Short summary
Shallow clouds (vertical extent up to 3 km height) are ubiquitous throughout the Amazon and are responsible for redistributing the solar heat and moisture vertically and horizontally. They are a key component of the water cycle because they can grow past the shallow phase to contribute significantly to the precipitation formation. However, they need favourable environmental conditions to grow. In this study, we analyse how changing wind patterns affect the development of such shallow clouds.
Qirui Zhong, Nick Schutgens, Guido van der Werf, Twan van Noije, Kostas Tsigaridis, Susanne E. Bauer, Tero Mielonen, Alf Kirkevåg, Øyvind Seland, Harri Kokkola, Ramiro Checa-Garcia, David Neubauer, Zak Kipling, Hitoshi Matsui, Paul Ginoux, Toshihiko Takemura, Philippe Le Sager, Samuel Rémy, Huisheng Bian, Mian Chin, Kai Zhang, Jialei Zhu, Svetlana G. Tsyro, Gabriele Curci, Anna Protonotariou, Ben Johnson, Joyce E. Penner, Nicolas Bellouin, Ragnhild B. Skeie, and Gunnar Myhre
Atmos. Chem. Phys., 22, 11009–11032, https://doi.org/10.5194/acp-22-11009-2022, https://doi.org/10.5194/acp-22-11009-2022, 2022
Short summary
Short summary
Aerosol optical depth (AOD) errors for biomass burning aerosol (BBA) are evaluated in 18 global models against satellite datasets. Notwithstanding biases in satellite products, they allow model evaluations. We observe large and diverse model biases due to errors in BBA. Further interpretations of AOD diversities suggest large biases exist in key processes for BBA which require better constraining. These results can contribute to further model improvement and development.
Caroline Dang, Michal Segal-Rozenhaimer, Haochi Che, Lu Zhang, Paola Formenti, Jonathan Taylor, Amie Dobracki, Sara Purdue, Pui-Shan Wong, Athanasios Nenes, Arthur Sedlacek III, Hugh Coe, Jens Redemann, Paquita Zuidema, Steven Howell, and James Haywood
Atmos. Chem. Phys., 22, 9389–9412, https://doi.org/10.5194/acp-22-9389-2022, https://doi.org/10.5194/acp-22-9389-2022, 2022
Short summary
Short summary
Transmission electron microscopy was used to analyze aged African smoke particles and how the smoke interacts with the marine atmosphere. We found that the volatility of organic aerosol increases with biomass burning plume age, that black carbon is often mixed with potassium salts and that the marine atmosphere can incorporate Na and Cl into smoke particles. Marine salts are more processed when mixed with smoke plumes, and there are interesting Cl-rich yet Na-absent marine particles.
Jim M. Haywood, Andy Jones, Ben T. Johnson, and William McFarlane Smith
Atmos. Chem. Phys., 22, 6135–6150, https://doi.org/10.5194/acp-22-6135-2022, https://doi.org/10.5194/acp-22-6135-2022, 2022
Short summary
Short summary
Simulations are presented investigating the influence of moderately absorbing aerosol in the stratosphere to combat the impacts of climate change. A number of detrimental impacts are noted compared to sulfate aerosol, including (i) reduced cooling efficiency, (ii) increased deficits in global precipitation, (iii) delays in the recovery of the stratospheric ozone hole, and (iv) disruption of the stratospheric circulation and the wintertime storm tracks that impact European precipitation.
Pierre Friedlingstein, Matthew W. Jones, Michael O'Sullivan, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Corinne Le Quéré, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Rob B. Jackson, Simone R. Alin, Peter Anthoni, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Laurent Bopp, Thi Tuyet Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Kim I. Currie, Bertrand Decharme, Laique M. Djeutchouang, Xinyu Dou, Wiley Evans, Richard A. Feely, Liang Feng, Thomas Gasser, Dennis Gilfillan, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Ingrid T. Luijkx, Atul Jain, Steve D. Jones, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Peter Landschützer, Siv K. Lauvset, Nathalie Lefèvre, Sebastian Lienert, Junjie Liu, Gregg Marland, Patrick C. McGuire, Joe R. Melton, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Tsuneo Ono, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Clemens Schwingshackl, Roland Séférian, Adrienne J. Sutton, Colm Sweeney, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Francesco Tubiello, Guido R. van der Werf, Nicolas Vuichard, Chisato Wada, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, and Jiye Zeng
Earth Syst. Sci. Data, 14, 1917–2005, https://doi.org/10.5194/essd-14-1917-2022, https://doi.org/10.5194/essd-14-1917-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2021 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Marco A. Franco, Florian Ditas, Leslie A. Kremper, Luiz A. T. Machado, Meinrat O. Andreae, Alessandro Araújo, Henrique M. J. Barbosa, Joel F. de Brito, Samara Carbone, Bruna A. Holanda, Fernando G. Morais, Janaína P. Nascimento, Mira L. Pöhlker, Luciana V. Rizzo, Marta Sá, Jorge Saturno, David Walter, Stefan Wolff, Ulrich Pöschl, Paulo Artaxo, and Christopher Pöhlker
Atmos. Chem. Phys., 22, 3469–3492, https://doi.org/10.5194/acp-22-3469-2022, https://doi.org/10.5194/acp-22-3469-2022, 2022
Short summary
Short summary
In Central Amazonia, new particle formation in the planetary boundary layer is rare. Instead, there is the appearance of sub-50 nm aerosols with diameters larger than about 20 nm that eventually grow to cloud condensation nuclei size range. Here, 254 growth events were characterized which have higher predominance in the wet season. About 70 % of them showed direct relation to convective downdrafts, while 30 % occurred partly under clear-sky conditions, evidencing still unknown particle sources.
Davide Zanchettin, Claudia Timmreck, Myriam Khodri, Anja Schmidt, Matthew Toohey, Manabu Abe, Slimane Bekki, Jason Cole, Shih-Wei Fang, Wuhu Feng, Gabriele Hegerl, Ben Johnson, Nicolas Lebas, Allegra N. LeGrande, Graham W. Mann, Lauren Marshall, Landon Rieger, Alan Robock, Sara Rubinetti, Kostas Tsigaridis, and Helen Weierbach
Geosci. Model Dev., 15, 2265–2292, https://doi.org/10.5194/gmd-15-2265-2022, https://doi.org/10.5194/gmd-15-2265-2022, 2022
Short summary
Short summary
This paper provides metadata and first analyses of the volc-pinatubo-full experiment of CMIP6-VolMIP. Results from six Earth system models reveal significant differences in radiative flux anomalies that trace back to different implementations of volcanic forcing. Surface responses are in contrast overall consistent across models, reflecting the large spread due to internal variability. A second phase of VolMIP shall consider both aspects toward improved protocol for volc-pinatubo-full.
Martin J. Osborne, Johannes de Leeuw, Claire Witham, Anja Schmidt, Frances Beckett, Nina Kristiansen, Joelle Buxmann, Cameron Saint, Ellsworth J. Welton, Javier Fochesatto, Ana R. Gomes, Ulrich Bundke, Andreas Petzold, Franco Marenco, and Jim Haywood
Atmos. Chem. Phys., 22, 2975–2997, https://doi.org/10.5194/acp-22-2975-2022, https://doi.org/10.5194/acp-22-2975-2022, 2022
Short summary
Short summary
Using the Met Office NAME dispersion model, supported by satellite- and ground-based remote-sensing observations, we describe the dispersion of aerosols from the 2019 Raikoke eruption and the concurrent wildfires in Alberta Canada. We show how the synergy of dispersion modelling and multiple observation sources allowed observers in the London VAAC to arrive at a more complete picture of the aerosol loading at altitudes commonly used by aviation.
Jessica Slater, Hugh Coe, Gordon McFiggans, Juha Tonttila, and Sami Romakkaniemi
Atmos. Chem. Phys., 22, 2937–2953, https://doi.org/10.5194/acp-22-2937-2022, https://doi.org/10.5194/acp-22-2937-2022, 2022
Short summary
Short summary
This paper shows the specific impact of black carbon (BC) on the aerosol–planetary boundary layer (PBL) feedback and its influence on a Beijing haze episode. Overall, this paper shows that strong temperature inversions prevent BC heating within the PBL from significantly increasing PBL height, while BC above the PBL suppresses PBL development significantly through the day. From this we suggest a method by which both locally and regionally emitted BC may impact urban pollution episodes.
Sandip S. Dhomse, Martyn P. Chipperfield, Wuhu Feng, Ryan Hossaini, Graham W. Mann, Michelle L. Santee, and Mark Weber
Atmos. Chem. Phys., 22, 903–916, https://doi.org/10.5194/acp-22-903-2022, https://doi.org/10.5194/acp-22-903-2022, 2022
Short summary
Short summary
Solar flux variations associated with 11-year sunspot cycle is believed to exert important external climate forcing. As largest variations occur at shorter wavelengths such as ultra-violet part of the solar spectrum, associated changes in stratospheric ozone are thought to provide direct evidence for solar climate interaction. Until now, most of the studies reported double-peak structured solar cycle signal (SCS), but relatively new satellite data suggest only single-peak-structured SCS.
Jie Zhang, Kalli Furtado, Steven T. Turnock, Jane P. Mulcahy, Laura J. Wilcox, Ben B. Booth, David Sexton, Tongwen Wu, Fang Zhang, and Qianxia Liu
Atmos. Chem. Phys., 21, 18609–18627, https://doi.org/10.5194/acp-21-18609-2021, https://doi.org/10.5194/acp-21-18609-2021, 2021
Short summary
Short summary
The CMIP6 ESMs systematically underestimate TAS anomalies in the NH midlatitudes, especially from 1960 to 1990. The anomalous cooling is concurrent in time and space with anthropogenic SO2 emissions. The spurious drop in TAS is attributed to the overestimated aerosol concentrations. The aerosol forcing sensitivity cannot well explain the inter-model spread of PHC biases. And the cloud-amount term accounts for most of the inter-model spread in aerosol forcing sensitivity.
Catherine Hardacre, Jane P. Mulcahy, Richard J. Pope, Colin G. Jones, Steven T. Rumbold, Can Li, Colin Johnson, and Steven T. Turnock
Atmos. Chem. Phys., 21, 18465–18497, https://doi.org/10.5194/acp-21-18465-2021, https://doi.org/10.5194/acp-21-18465-2021, 2021
Short summary
Short summary
We investigate UKESM1's ability to represent the sulfur (S) cycle in the recent historical period. The S cycle is a key driver of historical radiative forcing. Earth system models such as UKESM1 should represent the S cycle well so that we can have confidence in their projections of future climate. We compare UKESM1 to observations of sulfur compounds, finding that the model generally performs well. We also identify areas for UKESM1’s development, focussing on how SO2 is removed from the air.
Luiz A. T. Machado, Marco A. Franco, Leslie A. Kremper, Florian Ditas, Meinrat O. Andreae, Paulo Artaxo, Micael A. Cecchini, Bruna A. Holanda, Mira L. Pöhlker, Ivan Saraiva, Stefan Wolff, Ulrich Pöschl, and Christopher Pöhlker
Atmos. Chem. Phys., 21, 18065–18086, https://doi.org/10.5194/acp-21-18065-2021, https://doi.org/10.5194/acp-21-18065-2021, 2021
Short summary
Short summary
Several studies evaluate aerosol–cloud interactions, but only a few attempted to describe how clouds modify aerosol properties. This study evaluates the effect of weather events on the particle size distribution at the ATTO, combining remote sensing and in situ data. Ultrafine, Aitken and accumulation particles modes have different behaviors for the diurnal cycle and for rainfall events. This study opens up new scientific questions that need to be pursued in detail in new field campaigns.
Diego Aliaga, Victoria A. Sinclair, Marcos Andrade, Paulo Artaxo, Samara Carbone, Evgeny Kadantsev, Paolo Laj, Alfred Wiedensohler, Radovan Krejci, and Federico Bianchi
Atmos. Chem. Phys., 21, 16453–16477, https://doi.org/10.5194/acp-21-16453-2021, https://doi.org/10.5194/acp-21-16453-2021, 2021
Short summary
Short summary
We investigate the origin of air masses sampled at Mount Chacaltaya, Bolivia. Three-quarters of the measured air has not been influenced by the surface in the previous 4 d. However, it is rare that, at any given time, the sampled air has not been influenced at all by the surface, and often the sampled air has multiple origins. The influence of the surface is more prevalent during day than night. Furthermore, during the 6-month study, one-third of the air masses originated from Amazonia.
Dawei Hu, M. Rami Alfarra, Kate Szpek, Justin M. Langridge, Michael I. Cotterell, Claire Belcher, Ian Rule, Zixia Liu, Chenjie Yu, Yunqi Shao, Aristeidis Voliotis, Mao Du, Brett Smith, Greg Smallwood, Prem Lobo, Dantong Liu, Jim M. Haywood, Hugh Coe, and James D. Allan
Atmos. Chem. Phys., 21, 16161–16182, https://doi.org/10.5194/acp-21-16161-2021, https://doi.org/10.5194/acp-21-16161-2021, 2021
Short summary
Short summary
Here, we developed new techniques for investigating these properties in the laboratory and applied these to BC and BrC from different sources, including diesel exhaust, inverted propane flame and wood combustion. These have allowed us to quantify the changes in shape and chemical composition of different soots according to source and variables such as the moisture content of wood.
Anthony C. Jones, Adrian Hill, Samuel Remy, N. Luke Abraham, Mohit Dalvi, Catherine Hardacre, Alan J. Hewitt, Ben Johnson, Jane P. Mulcahy, and Steven T. Turnock
Atmos. Chem. Phys., 21, 15901–15927, https://doi.org/10.5194/acp-21-15901-2021, https://doi.org/10.5194/acp-21-15901-2021, 2021
Short summary
Short summary
Ammonium nitrate is hard to model because it forms and evaporates rapidly. One approach is to relate its equilibrium concentration to temperature, humidity, and the amount of nitric acid and ammonia gases. Using this approach, we limit the rate at which equilibrium is reached using various condensation rates in a climate model. We show that ammonium nitrate concentrations are highly sensitive to the condensation rate. Our results will help improve the representation of nitrate in climate models.
Zixia Liu, Martin Osborne, Karen Anderson, Jamie D. Shutler, Andy Wilson, Justin Langridge, Steve H. L. Yim, Hugh Coe, Suresh Babu, Sreedharan K. Satheesh, Paquita Zuidema, Tao Huang, Jack C. H. Cheng, and James Haywood
Atmos. Meas. Tech., 14, 6101–6118, https://doi.org/10.5194/amt-14-6101-2021, https://doi.org/10.5194/amt-14-6101-2021, 2021
Short summary
Short summary
This paper first validates the performance of an advanced aerosol observation instrument POPS against a reference instrument and examines any biases introduced by operating it on a quadcopter drone. The results show the POPS performs relatively well on the ground. The impact of the UAV rotors on the POPS is small at low wind speeds, but when operating under higher wind speeds, larger discrepancies occur. It appears that the POPS measures sub-micron aerosol particles more accurately on the UAV.
Juan-Carlos Antuña-Marrero, Graham W. Mann, John Barnes, Albeht Rodríguez-Vega, Sarah Shallcross, Sandip S. Dhomse, Giorgio Fiocco, and Gerald W. Grams
Earth Syst. Sci. Data, 13, 4407–4423, https://doi.org/10.5194/essd-13-4407-2021, https://doi.org/10.5194/essd-13-4407-2021, 2021
Short summary
Short summary
The first multi-year stratospheric aerosol lidar dataset was recovered and recalibrated. The vertical profile dataset, January 1964 to August 1965 at Lexington, MA, and July to August 1964 at Fairbanks, AK, provides info on volcanic forcing after the 1963 Agung eruption. Applying two-way transmittance correction to the original dataset reveals data variations, with corrected stratospheric aerosol optical depth (sAOD) highest in 1965 with the highest 532 nm sAOD peak at 0.07 in March 1965.
Maria Prass, Meinrat O. Andreae, Alessandro C. de Araùjo, Paulo Artaxo, Florian Ditas, Wolfgang Elbert, Jan-David Förster, Marco Aurélio Franco, Isabella Hrabe de Angelis, Jürgen Kesselmeier, Thomas Klimach, Leslie Ann Kremper, Eckhard Thines, David Walter, Jens Weber, Bettina Weber, Bernhard M. Fuchs, Ulrich Pöschl, and Christopher Pöhlker
Biogeosciences, 18, 4873–4887, https://doi.org/10.5194/bg-18-4873-2021, https://doi.org/10.5194/bg-18-4873-2021, 2021
Short summary
Short summary
Bioaerosols in the atmosphere over the Amazon rain forest were analyzed by molecular biological staining and microscopy. Eukaryotic, bacterial, and archaeal aerosols were quantified in time series and altitude profiles which exhibited clear differences in number concentrations and vertical distributions. Our results provide insights into the sources and dispersion of different Amazonian bioaerosol types as a basis for a better understanding of biosphere–atmosphere interactions.
Bjorn Stevens, Sandrine Bony, David Farrell, Felix Ament, Alan Blyth, Christopher Fairall, Johannes Karstensen, Patricia K. Quinn, Sabrina Speich, Claudia Acquistapace, Franziska Aemisegger, Anna Lea Albright, Hugo Bellenger, Eberhard Bodenschatz, Kathy-Ann Caesar, Rebecca Chewitt-Lucas, Gijs de Boer, Julien Delanoë, Leif Denby, Florian Ewald, Benjamin Fildier, Marvin Forde, Geet George, Silke Gross, Martin Hagen, Andrea Hausold, Karen J. Heywood, Lutz Hirsch, Marek Jacob, Friedhelm Jansen, Stefan Kinne, Daniel Klocke, Tobias Kölling, Heike Konow, Marie Lothon, Wiebke Mohr, Ann Kristin Naumann, Louise Nuijens, Léa Olivier, Robert Pincus, Mira Pöhlker, Gilles Reverdin, Gregory Roberts, Sabrina Schnitt, Hauke Schulz, A. Pier Siebesma, Claudia Christine Stephan, Peter Sullivan, Ludovic Touzé-Peiffer, Jessica Vial, Raphaela Vogel, Paquita Zuidema, Nicola Alexander, Lyndon Alves, Sophian Arixi, Hamish Asmath, Gholamhossein Bagheri, Katharina Baier, Adriana Bailey, Dariusz Baranowski, Alexandre Baron, Sébastien Barrau, Paul A. Barrett, Frédéric Batier, Andreas Behrendt, Arne Bendinger, Florent Beucher, Sebastien Bigorre, Edmund Blades, Peter Blossey, Olivier Bock, Steven Böing, Pierre Bosser, Denis Bourras, Pascale Bouruet-Aubertot, Keith Bower, Pierre Branellec, Hubert Branger, Michal Brennek, Alan Brewer, Pierre-Etienne Brilouet, Björn Brügmann, Stefan A. Buehler, Elmo Burke, Ralph Burton, Radiance Calmer, Jean-Christophe Canonici, Xavier Carton, Gregory Cato Jr., Jude Andre Charles, Patrick Chazette, Yanxu Chen, Michal T. Chilinski, Thomas Choularton, Patrick Chuang, Shamal Clarke, Hugh Coe, Céline Cornet, Pierre Coutris, Fleur Couvreux, Susanne Crewell, Timothy Cronin, Zhiqiang Cui, Yannis Cuypers, Alton Daley, Gillian M. Damerell, Thibaut Dauhut, Hartwig Deneke, Jean-Philippe Desbios, Steffen Dörner, Sebastian Donner, Vincent Douet, Kyla Drushka, Marina Dütsch, André Ehrlich, Kerry Emanuel, Alexandros Emmanouilidis, Jean-Claude Etienne, Sheryl Etienne-Leblanc, Ghislain Faure, Graham Feingold, Luca Ferrero, Andreas Fix, Cyrille Flamant, Piotr Jacek Flatau, Gregory R. Foltz, Linda Forster, Iulian Furtuna, Alan Gadian, Joseph Galewsky, Martin Gallagher, Peter Gallimore, Cassandra Gaston, Chelle Gentemann, Nicolas Geyskens, Andreas Giez, John Gollop, Isabelle Gouirand, Christophe Gourbeyre, Dörte de Graaf, Geiske E. de Groot, Robert Grosz, Johannes Güttler, Manuel Gutleben, Kashawn Hall, George Harris, Kevin C. Helfer, Dean Henze, Calvert Herbert, Bruna Holanda, Antonio Ibanez-Landeta, Janet Intrieri, Suneil Iyer, Fabrice Julien, Heike Kalesse, Jan Kazil, Alexander Kellman, Abiel T. Kidane, Ulrike Kirchner, Marcus Klingebiel, Mareike Körner, Leslie Ann Kremper, Jan Kretzschmar, Ovid Krüger, Wojciech Kumala, Armin Kurz, Pierre L'Hégaret, Matthieu Labaste, Tom Lachlan-Cope, Arlene Laing, Peter Landschützer, Theresa Lang, Diego Lange, Ingo Lange, Clément Laplace, Gauke Lavik, Rémi Laxenaire, Caroline Le Bihan, Mason Leandro, Nathalie Lefevre, Marius Lena, Donald Lenschow, Qiang Li, Gary Lloyd, Sebastian Los, Niccolò Losi, Oscar Lovell, Christopher Luneau, Przemyslaw Makuch, Szymon Malinowski, Gaston Manta, Eleni Marinou, Nicholas Marsden, Sebastien Masson, Nicolas Maury, Bernhard Mayer, Margarette Mayers-Als, Christophe Mazel, Wayne McGeary, James C. McWilliams, Mario Mech, Melina Mehlmann, Agostino Niyonkuru Meroni, Theresa Mieslinger, Andreas Minikin, Peter Minnett, Gregor Möller, Yanmichel Morfa Avalos, Caroline Muller, Ionela Musat, Anna Napoli, Almuth Neuberger, Christophe Noisel, David Noone, Freja Nordsiek, Jakub L. Nowak, Lothar Oswald, Douglas J. Parker, Carolyn Peck, Renaud Person, Miriam Philippi, Albert Plueddemann, Christopher Pöhlker, Veronika Pörtge, Ulrich Pöschl, Lawrence Pologne, Michał Posyniak, Marc Prange, Estefanía Quiñones Meléndez, Jule Radtke, Karim Ramage, Jens Reimann, Lionel Renault, Klaus Reus, Ashford Reyes, Joachim Ribbe, Maximilian Ringel, Markus Ritschel, Cesar B. Rocha, Nicolas Rochetin, Johannes Röttenbacher, Callum Rollo, Haley Royer, Pauline Sadoulet, Leo Saffin, Sanola Sandiford, Irina Sandu, Michael Schäfer, Vera Schemann, Imke Schirmacher, Oliver Schlenczek, Jerome Schmidt, Marcel Schröder, Alfons Schwarzenboeck, Andrea Sealy, Christoph J. Senff, Ilya Serikov, Samkeyat Shohan, Elizabeth Siddle, Alexander Smirnov, Florian Späth, Branden Spooner, M. Katharina Stolla, Wojciech Szkółka, Simon P. de Szoeke, Stéphane Tarot, Eleni Tetoni, Elizabeth Thompson, Jim Thomson, Lorenzo Tomassini, Julien Totems, Alma Anna Ubele, Leonie Villiger, Jan von Arx, Thomas Wagner, Andi Walther, Ben Webber, Manfred Wendisch, Shanice Whitehall, Anton Wiltshire, Allison A. Wing, Martin Wirth, Jonathan Wiskandt, Kevin Wolf, Ludwig Worbes, Ethan Wright, Volker Wulfmeyer, Shanea Young, Chidong Zhang, Dongxiao Zhang, Florian Ziemen, Tobias Zinner, and Martin Zöger
Earth Syst. Sci. Data, 13, 4067–4119, https://doi.org/10.5194/essd-13-4067-2021, https://doi.org/10.5194/essd-13-4067-2021, 2021
Short summary
Short summary
The EUREC4A field campaign, designed to test hypothesized mechanisms by which clouds respond to warming and benchmark next-generation Earth-system models, is presented. EUREC4A comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. It was the first campaign that attempted to characterize the full range of processes and scales influencing trade wind clouds.
James Weber, Scott Archer-Nicholls, Nathan Luke Abraham, Youngsub M. Shin, Thomas J. Bannan, Carl J. Percival, Asan Bacak, Paulo Artaxo, Michael Jenkin, M. Anwar H. Khan, Dudley E. Shallcross, Rebecca H. Schwantes, Jonathan Williams, and Alex T. Archibald
Geosci. Model Dev., 14, 5239–5268, https://doi.org/10.5194/gmd-14-5239-2021, https://doi.org/10.5194/gmd-14-5239-2021, 2021
Short summary
Short summary
The new mechanism CRI-Strat 2 features state-of-the-art isoprene chemistry not previously available in UKCA and improves UKCA's ability to reproduce observed concentrations of isoprene, monoterpenes, and OH in tropical regions. The enhanced ability to model isoprene, the most widely emitted non-methane volatile organic compound (VOC), will allow understanding of how isoprene and other biogenic VOCs affect atmospheric composition and, through biosphere–atmosphere feedbacks, climate change.
Ernesto Reyes-Villegas, Upasana Panda, Eoghan Darbyshire, James M. Cash, Rutambhara Joshi, Ben Langford, Chiara F. Di Marco, Neil J. Mullinger, Mohammed S. Alam, Leigh R. Crilley, Daniel J. Rooney, W. Joe F. Acton, Will Drysdale, Eiko Nemitz, Michael Flynn, Aristeidis Voliotis, Gordon McFiggans, Hugh Coe, James Lee, C. Nicholas Hewitt, Mathew R. Heal, Sachin S. Gunthe, Tuhin K. Mandal, Bhola R. Gurjar, Shivani, Ranu Gadi, Siddhartha Singh, Vijay Soni, and James D. Allan
Atmos. Chem. Phys., 21, 11655–11667, https://doi.org/10.5194/acp-21-11655-2021, https://doi.org/10.5194/acp-21-11655-2021, 2021
Short summary
Short summary
This paper shows the first multisite online measurements of PM1 in Delhi, India, with measurements over different seasons in Old Delhi and New Delhi in 2018. Organic aerosol (OA) source apportionment was performed using positive matrix factorisation (PMF). Traffic was the main primary aerosol source for both OAs and black carbon, seen with PMF and Aethalometer model analysis, indicating that control of primary traffic exhaust emissions would make a significant reduction to Delhi air pollution.
Benjamin A. Nault, Duseong S. Jo, Brian C. McDonald, Pedro Campuzano-Jost, Douglas A. Day, Weiwei Hu, Jason C. Schroder, James Allan, Donald R. Blake, Manjula R. Canagaratna, Hugh Coe, Matthew M. Coggon, Peter F. DeCarlo, Glenn S. Diskin, Rachel Dunmore, Frank Flocke, Alan Fried, Jessica B. Gilman, Georgios Gkatzelis, Jacqui F. Hamilton, Thomas F. Hanisco, Patrick L. Hayes, Daven K. Henze, Alma Hodzic, James Hopkins, Min Hu, L. Greggory Huey, B. Thomas Jobson, William C. Kuster, Alastair Lewis, Meng Li, Jin Liao, M. Omar Nawaz, Ilana B. Pollack, Jeffrey Peischl, Bernhard Rappenglück, Claire E. Reeves, Dirk Richter, James M. Roberts, Thomas B. Ryerson, Min Shao, Jacob M. Sommers, James Walega, Carsten Warneke, Petter Weibring, Glenn M. Wolfe, Dominique E. Young, Bin Yuan, Qiang Zhang, Joost A. de Gouw, and Jose L. Jimenez
Atmos. Chem. Phys., 21, 11201–11224, https://doi.org/10.5194/acp-21-11201-2021, https://doi.org/10.5194/acp-21-11201-2021, 2021
Short summary
Short summary
Secondary organic aerosol (SOA) is an important aspect of poor air quality for urban regions around the world, where a large fraction of the population lives. However, there is still large uncertainty in predicting SOA in urban regions. Here, we used data from 11 urban campaigns and show that the variability in SOA production in these regions is predictable and is explained by key emissions. These results are used to estimate the premature mortality associated with SOA in urban regions.
Johannes de Leeuw, Anja Schmidt, Claire S. Witham, Nicolas Theys, Isabelle A. Taylor, Roy G. Grainger, Richard J. Pope, Jim Haywood, Martin Osborne, and Nina I. Kristiansen
Atmos. Chem. Phys., 21, 10851–10879, https://doi.org/10.5194/acp-21-10851-2021, https://doi.org/10.5194/acp-21-10851-2021, 2021
Short summary
Short summary
Using the NAME dispersion model in combination with high-resolution SO2 satellite data from TROPOMI, we investigate the dispersion of volcanic SO2 from the 2019 Raikoke eruption. NAME accurately simulates the dispersion of SO2 during the first 2–3 weeks after the eruption and illustrates the potential of using high-resolution satellite data to identify potential limitations in dispersion models, which will ultimately help to improve efforts to forecast the dispersion of volcanic clouds.
Zainab Bibi, Hugh Coe, James Brooks, Paul I. Williams, Ernesto Reyes-Villegas, Michael Priestley, Carl J. Percival, and James D. Allan
Atmos. Chem. Phys., 21, 10763–10777, https://doi.org/10.5194/acp-21-10763-2021, https://doi.org/10.5194/acp-21-10763-2021, 2021
Short summary
Short summary
We are presenting a new method to apportion black carbon/soot into multiple sources through the inclusion of fullerene and metal data into HR-SP-AMS factorisation. While this itself would be considered a technical development, we can present a budget of contributions to measured BC during the event studied, including the conclusion that fireworks contributed little compared to the bonfire, traffic, and domestic wood-burning emissions.
Josué Bock, Martine Michou, Pierre Nabat, Manabu Abe, Jane P. Mulcahy, Dirk J. L. Olivié, Jörg Schwinger, Parvadha Suntharalingam, Jerry Tjiputra, Marco van Hulten, Michio Watanabe, Andrew Yool, and Roland Séférian
Biogeosciences, 18, 3823–3860, https://doi.org/10.5194/bg-18-3823-2021, https://doi.org/10.5194/bg-18-3823-2021, 2021
Short summary
Short summary
In this study we analyse surface ocean dimethylsulfide (DMS) concentration and flux to the atmosphere from four CMIP6 Earth system models over the historical and ssp585 simulations.
Our analysis of contemporary (1980–2009) climatologies shows that models better reproduce observations in mid to high latitudes. The models disagree on the sign of the trend of the global DMS flux from 1980 onwards. The models agree on a positive trend of DMS over polar latitudes following sea-ice retreat dynamics.
Huihui Wu, Jonathan W. Taylor, Justin M. Langridge, Chenjie Yu, James D. Allan, Kate Szpek, Michael I. Cotterell, Paul I. Williams, Michael Flynn, Patrick Barker, Cathryn Fox, Grant Allen, James Lee, and Hugh Coe
Atmos. Chem. Phys., 21, 9417–9440, https://doi.org/10.5194/acp-21-9417-2021, https://doi.org/10.5194/acp-21-9417-2021, 2021
Short summary
Short summary
Seasonal biomass burning over West Africa is a globally significant source of carbonaceous particles in the atmosphere, which have important climate impacts but are poorly constrained. We conducted in situ airborne measurements to investigate the evolution of smoke aerosol properties in this region. We observed absorption enhancement for both black carbon and brown carbon after emission, which provides new field results and constraints on aerosol parameterizations for future climate models.
Sobhan Kumar Kompalli, Surendran Nair Suresh Babu, Krishnaswamy Krishna Moorthy, Sreedharan Krishnakumari Satheesh, Mukunda Madhab Gogoi, Vijayakumar S. Nair, Venugopalan Nair Jayachandran, Dantong Liu, Michael J. Flynn, and Hugh Coe
Atmos. Chem. Phys., 21, 9173–9199, https://doi.org/10.5194/acp-21-9173-2021, https://doi.org/10.5194/acp-21-9173-2021, 2021
Short summary
Short summary
The first observations of refractory black carbon aerosol size distributions and mixing state in South Asian outflow to the northern Indian Ocean were carried out as a part of the ICARB-2018 experiment during winter. Size distributions indicated mixed sources of BC particles in the outflow, which are thickly coated. The coating thickness of BC is controlled mainly by the availability of condensable species in the outflow.
Mohanan R. Manoj, Sreedharan K. Satheesh, Krishnaswamy K. Moorthy, Jamie Trembath, and Hugh Coe
Atmos. Chem. Phys., 21, 8979–8997, https://doi.org/10.5194/acp-21-8979-2021, https://doi.org/10.5194/acp-21-8979-2021, 2021
Short summary
Short summary
Vertical distributions of atmospheric aerosols across the Indo-Gangetic Plain (IGP) and their ability to form clouds have been studied based on airborne measurements during the SWAAMI field campaign. The ability of the aerosols to act as cloud-forming nuclei exhibited large spatial variation across the IGP and strong seasonality with increase in this ability with increase in altitude prior to the onset of monsoon and decrease with increase in altitude during the active phase of the monsoon.
Djacinto Monteiro dos Santos, Luciana Varanda Rizzo, Samara Carbone, Patrick Schlag, and Paulo Artaxo
Atmos. Chem. Phys., 21, 8761–8773, https://doi.org/10.5194/acp-21-8761-2021, https://doi.org/10.5194/acp-21-8761-2021, 2021
Short summary
Short summary
The metropolitan area of São Paulo (MASP), with very extensive biofuel use, has unique atmospheric chemistry among world megacities. In this study, we examine the complex relationships between aerosol chemical composition and particle size distribution. Our findings provide a better understanding of the dynamics of the physicochemical properties of submicron particles and highlight the key role of secondary organic aerosol formation in the pollution levels in São Paulo.
Rei Kudo, Henri Diémoz, Victor Estellés, Monica Campanelli, Masahiro Momoi, Franco Marenco, Claire L. Ryder, Osamu Ijima, Akihiro Uchiyama, Kouichi Nakashima, Akihiro Yamazaki, Ryoji Nagasawa, Nozomu Ohkawara, and Haruma Ishida
Atmos. Meas. Tech., 14, 3395–3426, https://doi.org/10.5194/amt-14-3395-2021, https://doi.org/10.5194/amt-14-3395-2021, 2021
Short summary
Short summary
A new method, Skyrad pack MRI version 2, was developed to retrieve aerosol physical and optical properties, water vapor, and ozone column concentrations from the sky radiometer, a filter radiometer deployed in the SKYNET international network. Our method showed good performance in a radiative closure study using surface solar irradiances from the Baseline Surface Radiation Network and a comparison using aircraft in situ measurements of Saharan dust events during the SAVEX-D 2015 campaign.
Robbie Ramsay, Chiara F. Di Marco, Mathew R. Heal, Matthias Sörgel, Paulo Artaxo, Meinrat O. Andreae, and Eiko Nemitz
Biogeosciences, 18, 2809–2825, https://doi.org/10.5194/bg-18-2809-2021, https://doi.org/10.5194/bg-18-2809-2021, 2021
Short summary
Short summary
The exchange of the gas ammonia between the atmosphere and the surface is an important biogeochemical process, but little is known of this exchange for certain ecosystems, such as the Amazon rainforest. This study took measurements of ammonia exchange over an Amazon rainforest site and subsequently modelled the observed deposition and emission patterns. We observed emissions of ammonia from the rainforest, which can be simulated accurately by using a canopy resistance modelling approach.
Janaína P. Nascimento, Megan M. Bela, Bruno B. Meller, Alessandro L. Banducci, Luciana V. Rizzo, Angel Liduvino Vara-Vela, Henrique M. J. Barbosa, Helber Gomes, Sameh A. A. Rafee, Marco A. Franco, Samara Carbone, Glauber G. Cirino, Rodrigo A. F. Souza, Stuart A. McKeen, and Paulo Artaxo
Atmos. Chem. Phys., 21, 6755–6779, https://doi.org/10.5194/acp-21-6755-2021, https://doi.org/10.5194/acp-21-6755-2021, 2021
Yuan Zhang, Olivier Boucher, Philippe Ciais, Laurent Li, and Nicolas Bellouin
Geosci. Model Dev., 14, 2029–2039, https://doi.org/10.5194/gmd-14-2029-2021, https://doi.org/10.5194/gmd-14-2029-2021, 2021
Short summary
Short summary
We investigated different methods to reconstruct spatiotemporal distribution of the fraction of diffuse radiation (Fdf) to qualify the aerosol impacts on GPP using the ORCHIDEE_DF land surface model. We find that climatological-averaging methods which dampen the variability of Fdf can cause significant bias in the modeled diffuse radiation impacts on GPP. Better methods to reconstruct Fdf are recommended.
Michael Priestley, Thomas J. Bannan, Michael Le Breton, Stephen D. Worrall, Sungah Kang, Iida Pullinen, Sebastian Schmitt, Ralf Tillmann, Einhard Kleist, Defeng Zhao, Jürgen Wildt, Olga Garmash, Archit Mehra, Asan Bacak, Dudley E. Shallcross, Astrid Kiendler-Scharr, Åsa M. Hallquist, Mikael Ehn, Hugh Coe, Carl J. Percival, Mattias Hallquist, Thomas F. Mentel, and Gordon McFiggans
Atmos. Chem. Phys., 21, 3473–3490, https://doi.org/10.5194/acp-21-3473-2021, https://doi.org/10.5194/acp-21-3473-2021, 2021
Short summary
Short summary
A significant fraction of emissions from human activity consists of aromatic hydrocarbons, e.g. benzene, which oxidise to form new compounds important for particle growth. Characterisation of benzene oxidation products highlights the range of species produced as well as their chemical properties and contextualises them within relevant frameworks, e.g. MCM. Cluster analysis of the oxidation product time series distinguishes behaviours of CHON compounds that could aid in identifying functionality.
Margot Clyne, Jean-Francois Lamarque, Michael J. Mills, Myriam Khodri, William Ball, Slimane Bekki, Sandip S. Dhomse, Nicolas Lebas, Graham Mann, Lauren Marshall, Ulrike Niemeier, Virginie Poulain, Alan Robock, Eugene Rozanov, Anja Schmidt, Andrea Stenke, Timofei Sukhodolov, Claudia Timmreck, Matthew Toohey, Fiona Tummon, Davide Zanchettin, Yunqian Zhu, and Owen B. Toon
Atmos. Chem. Phys., 21, 3317–3343, https://doi.org/10.5194/acp-21-3317-2021, https://doi.org/10.5194/acp-21-3317-2021, 2021
Short summary
Short summary
This study finds how and why five state-of-the-art global climate models with interactive stratospheric aerosols differ when simulating the aftermath of large volcanic injections as part of the Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP). We identify and explain the consequences of significant disparities in the underlying physics and chemistry currently in some of the models, which are problems likely not unique to the models participating in this study.
Fanny Peers, Peter Francis, Steven J. Abel, Paul A. Barrett, Keith N. Bower, Michael I. Cotterell, Ian Crawford, Nicholas W. Davies, Cathryn Fox, Stuart Fox, Justin M. Langridge, Kerry G. Meyer, Steven E. Platnick, Kate Szpek, and Jim M. Haywood
Atmos. Chem. Phys., 21, 3235–3254, https://doi.org/10.5194/acp-21-3235-2021, https://doi.org/10.5194/acp-21-3235-2021, 2021
Short summary
Short summary
Satellite observations at high temporal resolution are a valuable asset to monitor the transport of biomass burning plumes and the cloud diurnal cycle in the South Atlantic, but they need to be validated. Cloud and above-cloud aerosol properties retrieved from SEVIRI are compared against MODIS and measurements from the CLARIFY-2017 campaign. While some systematic differences are observed between SEVIRI and MODIS, the overall agreement in the cloud and aerosol properties is very satisfactory.
Lisa K. Whalley, Eloise J. Slater, Robert Woodward-Massey, Chunxiang Ye, James D. Lee, Freya Squires, James R. Hopkins, Rachel E. Dunmore, Marvin Shaw, Jacqueline F. Hamilton, Alastair C. Lewis, Archit Mehra, Stephen D. Worrall, Asan Bacak, Thomas J. Bannan, Hugh Coe, Carl J. Percival, Bin Ouyang, Roderic L. Jones, Leigh R. Crilley, Louisa J. Kramer, William J. Bloss, Tuan Vu, Simone Kotthaus, Sue Grimmond, Yele Sun, Weiqi Xu, Siyao Yue, Lujie Ren, W. Joe F. Acton, C. Nicholas Hewitt, Xinming Wang, Pingqing Fu, and Dwayne E. Heard
Atmos. Chem. Phys., 21, 2125–2147, https://doi.org/10.5194/acp-21-2125-2021, https://doi.org/10.5194/acp-21-2125-2021, 2021
Short summary
Short summary
To understand how emission controls will impact ozone, an understanding of the sources and sinks of OH and the chemical cycling between peroxy radicals is needed. This paper presents measurements of OH, HO2 and total RO2 taken in central Beijing. The radical observations are compared to a detailed chemistry model, which shows that under low NO conditions, there is a missing OH source. Under high NOx conditions, the model under-predicts RO2 and impacts our ability to model ozone.
Mike J. Newland, Daniel J. Bryant, Rachel E. Dunmore, Thomas J. Bannan, W. Joe F. Acton, Ben Langford, James R. Hopkins, Freya A. Squires, William Dixon, William S. Drysdale, Peter D. Ivatt, Mathew J. Evans, Peter M. Edwards, Lisa K. Whalley, Dwayne E. Heard, Eloise J. Slater, Robert Woodward-Massey, Chunxiang Ye, Archit Mehra, Stephen D. Worrall, Asan Bacak, Hugh Coe, Carl J. Percival, C. Nicholas Hewitt, James D. Lee, Tianqu Cui, Jason D. Surratt, Xinming Wang, Alastair C. Lewis, Andrew R. Rickard, and Jacqueline F. Hamilton
Atmos. Chem. Phys., 21, 1613–1625, https://doi.org/10.5194/acp-21-1613-2021, https://doi.org/10.5194/acp-21-1613-2021, 2021
Short summary
Short summary
We report the formation of secondary pollutants in the urban megacity of Beijing that are typically associated with remote regions such as rainforests. This is caused by extremely low levels of nitric oxide (NO), typically expected to be high in urban areas, observed in the afternoon. This work has significant implications for how we understand atmospheric chemistry in the urban environment and thus for how to implement effective policies to improve urban air quality.
Jens Redemann, Robert Wood, Paquita Zuidema, Sarah J. Doherty, Bernadette Luna, Samuel E. LeBlanc, Michael S. Diamond, Yohei Shinozuka, Ian Y. Chang, Rei Ueyama, Leonhard Pfister, Ju-Mee Ryoo, Amie N. Dobracki, Arlindo M. da Silva, Karla M. Longo, Meloë S. Kacenelenbogen, Connor J. Flynn, Kristina Pistone, Nichola M. Knox, Stuart J. Piketh, James M. Haywood, Paola Formenti, Marc Mallet, Philip Stier, Andrew S. Ackerman, Susanne E. Bauer, Ann M. Fridlind, Gregory R. Carmichael, Pablo E. Saide, Gonzalo A. Ferrada, Steven G. Howell, Steffen Freitag, Brian Cairns, Brent N. Holben, Kirk D. Knobelspiesse, Simone Tanelli, Tristan S. L'Ecuyer, Andrew M. Dzambo, Ousmane O. Sy, Greg M. McFarquhar, Michael R. Poellot, Siddhant Gupta, Joseph R. O'Brien, Athanasios Nenes, Mary Kacarab, Jenny P. S. Wong, Jennifer D. Small-Griswold, Kenneth L. Thornhill, David Noone, James R. Podolske, K. Sebastian Schmidt, Peter Pilewskie, Hong Chen, Sabrina P. Cochrane, Arthur J. Sedlacek, Timothy J. Lang, Eric Stith, Michal Segal-Rozenhaimer, Richard A. Ferrare, Sharon P. Burton, Chris A. Hostetler, David J. Diner, Felix C. Seidel, Steven E. Platnick, Jeffrey S. Myers, Kerry G. Meyer, Douglas A. Spangenberg, Hal Maring, and Lan Gao
Atmos. Chem. Phys., 21, 1507–1563, https://doi.org/10.5194/acp-21-1507-2021, https://doi.org/10.5194/acp-21-1507-2021, 2021
Short summary
Short summary
Southern Africa produces significant biomass burning emissions whose impacts on regional and global climate are poorly understood. ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) is a 5-year NASA investigation designed to study the key processes that determine these climate impacts. The main purpose of this paper is to familiarize the broader scientific community with the ORACLES project, the dataset it produced, and the most important initial findings.
Fiona M. O'Connor, N. Luke Abraham, Mohit Dalvi, Gerd A. Folberth, Paul T. Griffiths, Catherine Hardacre, Ben T. Johnson, Ron Kahana, James Keeble, Byeonghyeon Kim, Olaf Morgenstern, Jane P. Mulcahy, Mark Richardson, Eddy Robertson, Jeongbyn Seo, Sungbo Shim, João C. Teixeira, Steven T. Turnock, Jonny Williams, Andrew J. Wiltshire, Stephanie Woodward, and Guang Zeng
Atmos. Chem. Phys., 21, 1211–1243, https://doi.org/10.5194/acp-21-1211-2021, https://doi.org/10.5194/acp-21-1211-2021, 2021
Short summary
Short summary
This paper calculates how changes in emissions and/or concentrations of different atmospheric constituents since the pre-industrial era have altered the Earth's energy budget at the present day using a metric called effective radiative forcing. The impact of land use change is also assessed. We find that individual contributions do not add linearly, and different Earth system interactions can affect the magnitude of the calculated effective radiative forcing.
Andy Jones, Jim M. Haywood, Anthony C. Jones, Simone Tilmes, Ben Kravitz, and Alan Robock
Atmos. Chem. Phys., 21, 1287–1304, https://doi.org/10.5194/acp-21-1287-2021, https://doi.org/10.5194/acp-21-1287-2021, 2021
Short summary
Short summary
Two different methods of simulating a geoengineering scenario are compared using data from two different Earth system models. One method is very idealised while the other includes details of a plausible mechanism. The results from both models agree that the idealised approach does not capture an impact found when detailed modelling is included, namely that geoengineering induces a positive phase of the North Atlantic Oscillation which leads to warmer, wetter winters in northern Europe.
Gillian Thornhill, William Collins, Dirk Olivié, Ragnhild B. Skeie, Alex Archibald, Susanne Bauer, Ramiro Checa-Garcia, Stephanie Fiedler, Gerd Folberth, Ada Gjermundsen, Larry Horowitz, Jean-Francois Lamarque, Martine Michou, Jane Mulcahy, Pierre Nabat, Vaishali Naik, Fiona M. O'Connor, Fabien Paulot, Michael Schulz, Catherine E. Scott, Roland Séférian, Chris Smith, Toshihiko Takemura, Simone Tilmes, Kostas Tsigaridis, and James Weber
Atmos. Chem. Phys., 21, 1105–1126, https://doi.org/10.5194/acp-21-1105-2021, https://doi.org/10.5194/acp-21-1105-2021, 2021
Short summary
Short summary
We find that increased temperatures affect aerosols and reactive gases by changing natural emissions and their rates of removal from the atmosphere. Changing the composition of these species in the atmosphere affects the radiative budget of the climate system and therefore amplifies or dampens the climate response of climate models of the Earth system. This study found that the largest effect is a dampening of climate change as warmer temperatures increase the emissions of cooling aerosols.
Jim M. Haywood, Steven J. Abel, Paul A. Barrett, Nicolas Bellouin, Alan Blyth, Keith N. Bower, Melissa Brooks, Ken Carslaw, Haochi Che, Hugh Coe, Michael I. Cotterell, Ian Crawford, Zhiqiang Cui, Nicholas Davies, Beth Dingley, Paul Field, Paola Formenti, Hamish Gordon, Martin de Graaf, Ross Herbert, Ben Johnson, Anthony C. Jones, Justin M. Langridge, Florent Malavelle, Daniel G. Partridge, Fanny Peers, Jens Redemann, Philip Stier, Kate Szpek, Jonathan W. Taylor, Duncan Watson-Parris, Robert Wood, Huihui Wu, and Paquita Zuidema
Atmos. Chem. Phys., 21, 1049–1084, https://doi.org/10.5194/acp-21-1049-2021, https://doi.org/10.5194/acp-21-1049-2021, 2021
Short summary
Short summary
Every year, the seasonal cycle of biomass burning from agricultural practices in Africa creates a huge plume of smoke that travels many thousands of kilometres over the Atlantic Ocean. This study provides an overview of a measurement campaign called the cloud–aerosol–radiation interaction and forcing for year 2017 (CLARIFY-2017) and documents the rationale, deployment strategy, observations, and key results from the campaign which utilized the heavily equipped FAAM atmospheric research aircraft.
Gillian D. Thornhill, William J. Collins, Ryan J. Kramer, Dirk Olivié, Ragnhild B. Skeie, Fiona M. O'Connor, Nathan Luke Abraham, Ramiro Checa-Garcia, Susanne E. Bauer, Makoto Deushi, Louisa K. Emmons, Piers M. Forster, Larry W. Horowitz, Ben Johnson, James Keeble, Jean-Francois Lamarque, Martine Michou, Michael J. Mills, Jane P. Mulcahy, Gunnar Myhre, Pierre Nabat, Vaishali Naik, Naga Oshima, Michael Schulz, Christopher J. Smith, Toshihiko Takemura, Simone Tilmes, Tongwen Wu, Guang Zeng, and Jie Zhang
Atmos. Chem. Phys., 21, 853–874, https://doi.org/10.5194/acp-21-853-2021, https://doi.org/10.5194/acp-21-853-2021, 2021
Short summary
Short summary
This paper is a study of how different constituents in the atmosphere, such as aerosols and gases like methane and ozone, affect the energy balance in the atmosphere. Different climate models were run using the same inputs to allow an easy comparison of the results and to understand where the models differ. We found the effect of aerosols is to reduce warming in the atmosphere, but this effect varies between models. Reactions between gases are also important in affecting climate.
Guilherme F. Camarinha-Neto, Julia C. P. Cohen, Cléo Q. Dias-Júnior, Matthias Sörgel, José Henrique Cattanio, Alessandro Araújo, Stefan Wolff, Paulo A. F. Kuhn, Rodrigo A. F. Souza, Luciana V. Rizzo, and Paulo Artaxo
Atmos. Chem. Phys., 21, 339–356, https://doi.org/10.5194/acp-21-339-2021, https://doi.org/10.5194/acp-21-339-2021, 2021
Short summary
Short summary
It was observed that friagem phenomena (incursion of cold waves from the high latitudes of the Southern Hemisphere to the Amazon region), very common in the dry season of the Amazon region, produced significant changes in microclimate and atmospheric chemistry. Moreover, the effects of the friagem change the surface O3 and CO2 mixing ratios and therefore interfere deeply in the microclimatic conditions and the chemical composition of the atmosphere above the rainforest.
Rutambhara Joshi, Dantong Liu, Eiko Nemitz, Ben Langford, Neil Mullinger, Freya Squires, James Lee, Yunfei Wu, Xiaole Pan, Pingqing Fu, Simone Kotthaus, Sue Grimmond, Qiang Zhang, Ruili Wu, Oliver Wild, Michael Flynn, Hugh Coe, and James Allan
Atmos. Chem. Phys., 21, 147–162, https://doi.org/10.5194/acp-21-147-2021, https://doi.org/10.5194/acp-21-147-2021, 2021
Short summary
Short summary
Black carbon (BC) is a component of particulate matter which has significant effects on climate and human health. Sources of BC include biomass burning, transport, industry and domestic cooking and heating. In this study, we measured BC emissions in Beijing, finding a dominance of traffic emissions over all other sources. The quantitative method presented here has benefits for revising widely used emissions inventories and for understanding BC sources with impacts on air quality and climate.
Jann Schrod, Erik S. Thomson, Daniel Weber, Jens Kossmann, Christopher Pöhlker, Jorge Saturno, Florian Ditas, Paulo Artaxo, Valérie Clouard, Jean-Marie Saurel, Martin Ebert, Joachim Curtius, and Heinz G. Bingemer
Atmos. Chem. Phys., 20, 15983–16006, https://doi.org/10.5194/acp-20-15983-2020, https://doi.org/10.5194/acp-20-15983-2020, 2020
Short summary
Short summary
Long-term ice-nucleating particle (INP) data are presented from four semi-pristine sites located in the Amazon, the Caribbean, Germany and the Arctic. Average INP concentrations did not differ by orders of magnitude between the sites. For all sites short-term variability dominated the time series, which lacked clear trends and seasonalities. Common drivers to explain the INP levels and their variations could not be identified, illustrating the complex nature of heterogeneous ice nucleation.
Jane P. Mulcahy, Colin Johnson, Colin G. Jones, Adam C. Povey, Catherine E. Scott, Alistair Sellar, Steven T. Turnock, Matthew T. Woodhouse, Nathan Luke Abraham, Martin B. Andrews, Nicolas Bellouin, Jo Browse, Ken S. Carslaw, Mohit Dalvi, Gerd A. Folberth, Matthew Glover, Daniel P. Grosvenor, Catherine Hardacre, Richard Hill, Ben Johnson, Andy Jones, Zak Kipling, Graham Mann, James Mollard, Fiona M. O'Connor, Julien Palmiéri, Carly Reddington, Steven T. Rumbold, Mark Richardson, Nick A. J. Schutgens, Philip Stier, Marc Stringer, Yongming Tang, Jeremy Walton, Stephanie Woodward, and Andrew Yool
Geosci. Model Dev., 13, 6383–6423, https://doi.org/10.5194/gmd-13-6383-2020, https://doi.org/10.5194/gmd-13-6383-2020, 2020
Short summary
Short summary
Aerosols are an important component of the Earth system. Here, we comprehensively document and evaluate the aerosol schemes as implemented in the physical and Earth system models, HadGEM3-GC3.1 and UKESM1. This study provides a useful characterisation of the aerosol climatology in both models, facilitating the understanding of the numerous aerosol–climate interaction studies that will be conducted for CMIP6 and beyond.
Robbie Ramsay, Chiara F. Di Marco, Matthias Sörgel, Mathew R. Heal, Samara Carbone, Paulo Artaxo, Alessandro C. de Araùjo, Marta Sá, Christopher Pöhlker, Jost Lavric, Meinrat O. Andreae, and Eiko Nemitz
Atmos. Chem. Phys., 20, 15551–15584, https://doi.org/10.5194/acp-20-15551-2020, https://doi.org/10.5194/acp-20-15551-2020, 2020
Short summary
Short summary
The Amazon rainforest is a unique
laboratoryto study the processes which govern the exchange of gases and aerosols to and from the atmosphere. This study investigated these processes by measuring the atmospheric concentrations of trace gases and particles at the Amazon Tall Tower Observatory. We found that the long-range transport of pollutants can affect the atmospheric composition above the Amazon rainforest and that the gases ammonia and nitrous acid can be emitted from the rainforest.
Patrick A. Barker, Grant Allen, Martin Gallagher, Joseph R. Pitt, Rebecca E. Fisher, Thomas Bannan, Euan G. Nisbet, Stéphane J.-B. Bauguitte, Dominika Pasternak, Samuel Cliff, Marina B. Schimpf, Archit Mehra, Keith N. Bower, James D. Lee, Hugh Coe, and Carl J. Percival
Atmos. Chem. Phys., 20, 15443–15459, https://doi.org/10.5194/acp-20-15443-2020, https://doi.org/10.5194/acp-20-15443-2020, 2020
Short summary
Short summary
Africa is estimated to account for approximately 52 % of global biomass burning (BB) carbon emissions. Despite this, there has been little previous in situ study of African BB emissions. This work presents BB emission factors for various atmospheric trace gases sampled from an aircraft in two distinct areas of Africa (Senegal and Uganda). Intracontinental variability in biomass burning methane emission is identified, which is attributed to difference in the specific fuel mixtures burnt.
Douglas Morrison, Ian Crawford, Nicholas Marsden, Michael Flynn, Katie Read, Luis Neves, Virginia Foot, Paul Kaye, Warren Stanley, Hugh Coe, David Topping, and Martin Gallagher
Atmos. Chem. Phys., 20, 14473–14490, https://doi.org/10.5194/acp-20-14473-2020, https://doi.org/10.5194/acp-20-14473-2020, 2020
Short summary
Short summary
We provide conservative estimates of the concentrations of bacteria within transatlantic dust clouds, originating from the African continent. We observe significant seasonal differences in the overall concentrations of particles but no seasonal variation in the ratio between bacteria and dust. With bacteria contributing to ice formation at warmer temperatures than dust, our observations should improve the accuracy of climate models.
Juan-Carlos Antuña-Marrero, Graham W. Mann, Philippe Keckhut, Sergey Avdyushin, Bruno Nardi, and Larry W. Thomason
Earth Syst. Sci. Data, 12, 2843–2851, https://doi.org/10.5194/essd-12-2843-2020, https://doi.org/10.5194/essd-12-2843-2020, 2020
Short summary
Short summary
We report the recovery of lidar measurements of the 1991 Pinatubo eruption. Two Soviet ships crossing the tropical Atlantic in July–September 1991 and January–February 1992 measured the vertical profile of the Pinatubo cloud at different points in its spatio-temporal evolution. The datasets provide valuable new information on the eruption's impacts on climate, with the SAGE-II satellite measurements not able to measure most of the lower half of the Pinatubo cloud in the tropics in this period.
Sandip S. Dhomse, Graham W. Mann, Juan Carlos Antuña Marrero, Sarah E. Shallcross, Martyn P. Chipperfield, Kenneth S. Carslaw, Lauren Marshall, N. Luke Abraham, and Colin E. Johnson
Atmos. Chem. Phys., 20, 13627–13654, https://doi.org/10.5194/acp-20-13627-2020, https://doi.org/10.5194/acp-20-13627-2020, 2020
Short summary
Short summary
We confirm downward adjustment of SO2 emission to simulate the Pinatubo aerosol cloud with aerosol microphysics models. Similar adjustment is also needed to simulate the El Chichón and Agung volcanic cloud, indicating potential missing removal or vertical redistribution process in models. Important inhomogeneities in the CMIP6 forcing datasets after Agung and El Chichón eruptions are difficult to reconcile. Quasi-biennial oscillation plays an important role in modifying stratospheric warming.
Lixia Liu, Yafang Cheng, Siwen Wang, Chao Wei, Mira L. Pöhlker, Christopher Pöhlker, Paulo Artaxo, Manish Shrivastava, Meinrat O. Andreae, Ulrich Pöschl, and Hang Su
Atmos. Chem. Phys., 20, 13283–13301, https://doi.org/10.5194/acp-20-13283-2020, https://doi.org/10.5194/acp-20-13283-2020, 2020
Short summary
Short summary
This modeling paper reveals how aerosol–cloud interactions (ACIs) and aerosol–radiation interactions (ARIs) induced by biomass burning (BB) aerosols act oppositely on radiation, cloud, and precipitation in the Amazon during the dry season. The varying relative significance of ACIs and ARIs with BB aerosol concentration leads to a nonlinear dependence of the total climate response on BB aerosol loading and features the growing importance of ARIs at high aerosol loading.
Debbie O'Sullivan, Franco Marenco, Claire L. Ryder, Yaswant Pradhan, Zak Kipling, Ben Johnson, Angela Benedetti, Melissa Brooks, Matthew McGill, John Yorks, and Patrick Selmer
Atmos. Chem. Phys., 20, 12955–12982, https://doi.org/10.5194/acp-20-12955-2020, https://doi.org/10.5194/acp-20-12955-2020, 2020
Short summary
Short summary
Mineral dust is an important component of the climate system, and we assess how well it is predicted by two operational models. We flew an aircraft in the dust layers in the eastern Atlantic, and we also make use of satellites. We show that models predict the dust layer too low and that it predicts the particles to be too small. We believe that these discrepancies may be overcome if models can be constrained with operational observations of dust vertical and size-resolved distribution.
Huihui Wu, Jonathan W. Taylor, Kate Szpek, Justin M. Langridge, Paul I. Williams, Michael Flynn, James D. Allan, Steven J. Abel, Joseph Pitt, Michael I. Cotterell, Cathryn Fox, Nicholas W. Davies, Jim Haywood, and Hugh Coe
Atmos. Chem. Phys., 20, 12697–12719, https://doi.org/10.5194/acp-20-12697-2020, https://doi.org/10.5194/acp-20-12697-2020, 2020
Short summary
Short summary
Airborne measurements of highly aged biomass burning aerosols (BBAs) over the remote southeast Atlantic provide unique aerosol parameters for climate models. Our observations demonstrate the persistence of strongly absorbing BBAs across wide regions of the South Atlantic. We also found significant vertical variation in the single-scattering albedo of these BBAs, as a function of relative chemical composition and size. Aerosol properties in the marine BL are suggested to be separated from the FT.
Nils Friedrich, Ivan Tadic, Jan Schuladen, James Brooks, Eoghan Darbyshire, Frank Drewnick, Horst Fischer, Jos Lelieveld, and John N. Crowley
Atmos. Meas. Tech., 13, 5739–5761, https://doi.org/10.5194/amt-13-5739-2020, https://doi.org/10.5194/amt-13-5739-2020, 2020
Short summary
Short summary
We present a new instrument for the measurement of NOx and NOy based on a combination of the thermal dissociation of NOy to NOx and cavity ring-down spectroscopic detection of NO2. It features a denuder to separate the contributions of gas-phase and particulate nitrates to NOy. We provide a detailed characterization of the instrument and briefly outline results from first deployments.
Kouji Adachi, Naga Oshima, Zhaoheng Gong, Suzane de Sá, Adam P. Bateman, Scot T. Martin, Joel F. de Brito, Paulo Artaxo, Glauber G. Cirino, Arthur J. Sedlacek III, and Peter R. Buseck
Atmos. Chem. Phys., 20, 11923–11939, https://doi.org/10.5194/acp-20-11923-2020, https://doi.org/10.5194/acp-20-11923-2020, 2020
Short summary
Short summary
Occurrences, size distributions, and number fractions of individual aerosol particles from the Amazon basin during the GoAmazon2014/5 campaign were analyzed using transmission electron microscopy. Aerosol particles from natural sources (e.g., mineral dust, primary biological aerosols, and sea salts) during the wet season originated from the Amazon forest and long-range transports (the Saharan desert and the Atlantic Ocean). They commonly mix at an individual particle scale during transport.
Jessica Slater, Juha Tonttila, Gordon McFiggans, Paul Connolly, Sami Romakkaniemi, Thomas Kühn, and Hugh Coe
Atmos. Chem. Phys., 20, 11893–11906, https://doi.org/10.5194/acp-20-11893-2020, https://doi.org/10.5194/acp-20-11893-2020, 2020
Short summary
Short summary
The feedback effect between aerosol particles, radiation and meteorology reduces turbulent motion and results in increased surface aerosol concentrations during Beijing haze. Observational analysis and regional modelling studies have examined the feedback effect but these studies are limited. In this work, we set up a high-resolution model for the Beijing environment to examine the sensitivity of the aerosol feedback effect to initial meteorological conditions and aerosol loading.
Jonathan W. Taylor, Huihui Wu, Kate Szpek, Keith Bower, Ian Crawford, Michael J. Flynn, Paul I. Williams, James Dorsey, Justin M. Langridge, Michael I. Cotterell, Cathryn Fox, Nicholas W. Davies, Jim M. Haywood, and Hugh Coe
Atmos. Chem. Phys., 20, 11201–11221, https://doi.org/10.5194/acp-20-11201-2020, https://doi.org/10.5194/acp-20-11201-2020, 2020
Short summary
Short summary
Every year, huge plumes of smoke hundreds of miles wide travel over the south Atlantic Ocean from fires in central and southern Africa. These plumes absorb the sun’s energy and warm the climate. We used airborne optical instrumentation to determine how absorbing the smoke was as well as the relative importance of black and brown carbon. We also tested different ways of simulating these properties that could be used in a climate model.
Archit Mehra, Jordan E. Krechmer, Andrew Lambe, Chinmoy Sarkar, Leah Williams, Farzaneh Khalaj, Alex Guenther, John Jayne, Hugh Coe, Douglas Worsnop, Celia Faiola, and Manjula Canagaratna
Atmos. Chem. Phys., 20, 10953–10965, https://doi.org/10.5194/acp-20-10953-2020, https://doi.org/10.5194/acp-20-10953-2020, 2020
Short summary
Short summary
Emissions of volatile organic compounds (VOCs) from plants are important for tropospheric ozone and secondary organic aerosol (SOA) formation. Real plant emissions are much more diverse than the few proxies widely used for studies of plant SOA. Here we present the first study of SOA from Californian sage plants and the oxygenated monoterpenes representing their major emissions. We identify SOA products and show the importance of the formation of highly oxygenated organic molecules and oligomers.
Marco Cucchi, Graham P. Weedon, Alessandro Amici, Nicolas Bellouin, Stefan Lange, Hannes Müller Schmied, Hans Hersbach, and Carlo Buontempo
Earth Syst. Sci. Data, 12, 2097–2120, https://doi.org/10.5194/essd-12-2097-2020, https://doi.org/10.5194/essd-12-2097-2020, 2020
Short summary
Short summary
WFDE5 is a novel meteorological forcing dataset for running land surface and global hydrological models. It has been generated using the WATCH Forcing Data methodology applied to surface meteorological variables from the ERA5 reanalysis. It is publicly available, along with its source code, through the C3S Climate Data Store at ECMWF. Results of the evaluations described in the paper highlight the benefits of using WFDE5 compared to both ERA5 and its predecessor WFDEI.
David Topping, David Watts, Hugh Coe, James Evans, Thomas J. Bannan, Douglas Lowe, Caroline Jay, and Jonathan W. Taylor
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-270, https://doi.org/10.5194/gmd-2020-270, 2020
Publication in GMD not foreseen
Short summary
Short summary
Time-series forecasting methods have often been used to mitigate some of the challenges associated with deploying chemical transport models. In this study we deploy and evaluate Facebook’s Prophetmodel v0.6 in predicting hourly concentrations of Nitrogen Dioxide [NO2]. et. Overall we find the Prophet model offers a relatively effective and simple way to make predictions about NO2 at local levels.
Archit Mehra, Yuwei Wang, Jordan E. Krechmer, Andrew Lambe, Francesca Majluf, Melissa A. Morris, Michael Priestley, Thomas J. Bannan, Daniel J. Bryant, Kelly L. Pereira, Jacqueline F. Hamilton, Andrew R. Rickard, Mike J. Newland, Harald Stark, Philip Croteau, John T. Jayne, Douglas R. Worsnop, Manjula R. Canagaratna, Lin Wang, and Hugh Coe
Atmos. Chem. Phys., 20, 9783–9803, https://doi.org/10.5194/acp-20-9783-2020, https://doi.org/10.5194/acp-20-9783-2020, 2020
Short summary
Short summary
Aromatic volatile organic compounds (VOCs) emitted from anthropogenic activity are important for tropospheric ozone and secondary organic aerosol (SOA) formation. Here we present a detailed chemical characterisation of SOA from four C9-aromatic isomers and a polycyclic aromatic hydrocarbon (PAH). We identify and compare their oxidation products in the gas and particle phases, showing the different relative importance of oxidation pathways and proportions of highly oxygenated organic molecules.
Yuwei Wang, Archit Mehra, Jordan E. Krechmer, Gan Yang, Xiaoyu Hu, Yiqun Lu, Andrew Lambe, Manjula Canagaratna, Jianmin Chen, Douglas Worsnop, Hugh Coe, and Lin Wang
Atmos. Chem. Phys., 20, 9563–9579, https://doi.org/10.5194/acp-20-9563-2020, https://doi.org/10.5194/acp-20-9563-2020, 2020
Short summary
Short summary
A series of OH-initiated oxidation experiments of trimethylbenzene were investigated in the absence and presence of NOx. Many C9 products with 1–11 oxygen atoms and C18 products presumably formed from dimerization of C9 peroxy radicals were observed, hinting at the extensive existence of autoxidation and accretion reaction pathways. The presence of NOx would suppress the formation of highly oxygenated C18 molecules and enhance the formation of organonitrates and even dinitrate compounds.
Jill S. Johnson, Leighton A. Regayre, Masaru Yoshioka, Kirsty J. Pringle, Steven T. Turnock, Jo Browse, David M. H. Sexton, John W. Rostron, Nick A. J. Schutgens, Daniel G. Partridge, Dantong Liu, James D. Allan, Hugh Coe, Aijun Ding, David D. Cohen, Armand Atanacio, Ville Vakkari, Eija Asmi, and Ken S. Carslaw
Atmos. Chem. Phys., 20, 9491–9524, https://doi.org/10.5194/acp-20-9491-2020, https://doi.org/10.5194/acp-20-9491-2020, 2020
Short summary
Short summary
We use over 9000 monthly aggregated grid-box measurements of aerosol to constrain the uncertainty in the HadGEM3-UKCA climate model. Measurements of AOD, PM2.5, particle number concentrations, sulfate and organic mass concentrations are compared to 1 million
variantsof the model using an implausibility metric. Despite many compensating effects in the model, the procedure constrains the probability distributions of many parameters, and direct radiative forcing uncertainty is reduced by 34 %.
Teruyuki Nakajima, Monica Campanelli, Huizheng Che, Victor Estellés, Hitoshi Irie, Sang-Woo Kim, Jhoon Kim, Dong Liu, Tomoaki Nishizawa, Govindan Pandithurai, Vijay Kumar Soni, Boossarasiri Thana, Nas-Urt Tugjsurn, Kazuma Aoki, Sujung Go, Makiko Hashimoto, Akiko Higurashi, Stelios Kazadzis, Pradeep Khatri, Natalia Kouremeti, Rei Kudo, Franco Marenco, Masahiro Momoi, Shantikumar S. Ningombam, Claire L. Ryder, Akihiro Uchiyama, and Akihiro Yamazaki
Atmos. Meas. Tech., 13, 4195–4218, https://doi.org/10.5194/amt-13-4195-2020, https://doi.org/10.5194/amt-13-4195-2020, 2020
Short summary
Short summary
This paper overviews the progress in sky radiometer technology and the development of the network called SKYNET. It is found that the technology has produced useful on-site calibration methods, retrieval algorithms, and data analyses from sky radiometer observations of aerosol, cloud, water vapor, and ozone. The paper also discusses current issues of SKYNET to provide better information for the community.
Gunnar Myhre, Bjørn H. Samset, Christian W. Mohr, Kari Alterskjær, Yves Balkanski, Nicolas Bellouin, Mian Chin, James Haywood, Øivind Hodnebrog, Stefan Kinne, Guangxing Lin, Marianne T. Lund, Joyce E. Penner, Michael Schulz, Nick Schutgens, Ragnhild B. Skeie, Philip Stier, Toshihiko Takemura, and Kai Zhang
Atmos. Chem. Phys., 20, 8855–8865, https://doi.org/10.5194/acp-20-8855-2020, https://doi.org/10.5194/acp-20-8855-2020, 2020
Short summary
Short summary
The radiative forcing of the direct aerosol effects can be decomposed into clear-sky and cloudy-sky portions. In this study we use observational methods and two sets of multi-model global aerosol simulations over the industrial era to show that the contribution from cloudy-sky regions is likely weak.
Prodromos Zanis, Dimitris Akritidis, Aristeidis K. Georgoulias, Robert J. Allen, Susanne E. Bauer, Olivier Boucher, Jason Cole, Ben Johnson, Makoto Deushi, Martine Michou, Jane Mulcahy, Pierre Nabat, Dirk Olivié, Naga Oshima, Adriana Sima, Michael Schulz, Toshihiko Takemura, and Konstantinos Tsigaridis
Atmos. Chem. Phys., 20, 8381–8404, https://doi.org/10.5194/acp-20-8381-2020, https://doi.org/10.5194/acp-20-8381-2020, 2020
Short summary
Short summary
In this work, we use Coupled Model Intercomparison Project Phase 6 (CMIP6) simulations from 10 Earth system models (ESMs) and general circulation models (GCMs) to study the fast climate responses on pre-industrial climate, due to present-day aerosols. All models carried out two sets of simulations: a control experiment with all forcings set to the year 1850 and a perturbation experiment with all forcings identical to the control, except for aerosols with precursor emissions set to the year 2014.
Nicolas Bellouin, Will Davies, Keith P. Shine, Johannes Quaas, Johannes Mülmenstädt, Piers M. Forster, Chris Smith, Lindsay Lee, Leighton Regayre, Guy Brasseur, Natalia Sudarchikova, Idir Bouarar, Olivier Boucher, and Gunnar Myhre
Earth Syst. Sci. Data, 12, 1649–1677, https://doi.org/10.5194/essd-12-1649-2020, https://doi.org/10.5194/essd-12-1649-2020, 2020
Short summary
Short summary
Quantifying the imbalance in the Earth's energy budget caused by human activities is important to understand and predict climate changes. This study presents new estimates of the imbalance caused by changes in atmospheric concentrations of carbon dioxide, methane, ozone, and particles of pollution. Over the period 2003–2017, the overall imbalance has been positive, indicating that the climate system has gained energy and will warm further.
Daniel J. Bryant, William J. Dixon, James R. Hopkins, Rachel E. Dunmore, Kelly L. Pereira, Marvin Shaw, Freya A. Squires, Thomas J. Bannan, Archit Mehra, Stephen D. Worrall, Asan Bacak, Hugh Coe, Carl J. Percival, Lisa K. Whalley, Dwayne E. Heard, Eloise J. Slater, Bin Ouyang, Tianqu Cui, Jason D. Surratt, Di Liu, Zongbo Shi, Roy Harrison, Yele Sun, Weiqi Xu, Alastair C. Lewis, James D. Lee, Andrew R. Rickard, and Jacqueline F. Hamilton
Atmos. Chem. Phys., 20, 7531–7552, https://doi.org/10.5194/acp-20-7531-2020, https://doi.org/10.5194/acp-20-7531-2020, 2020
Short summary
Short summary
Using the chemical composition of offline filter samples, we report that a large share of oxidized organic aerosol in Beijing during summer is due to isoprene secondary organic aerosol (iSOA). iSOA organosulfates showed a strong correlation with the product of ozone and particulate sulfate. This highlights the role of both photochemistry and the availability of particulate sulfate in heterogeneous reactions and further demonstrates that iSOA formation is controlled by anthropogenic emissions.
Camille Mouchel-Vallon, Julia Lee-Taylor, Alma Hodzic, Paulo Artaxo, Bernard Aumont, Marie Camredon, David Gurarie, Jose-Luis Jimenez, Donald H. Lenschow, Scot T. Martin, Janaina Nascimento, John J. Orlando, Brett B. Palm, John E. Shilling, Manish Shrivastava, and Sasha Madronich
Atmos. Chem. Phys., 20, 5995–6014, https://doi.org/10.5194/acp-20-5995-2020, https://doi.org/10.5194/acp-20-5995-2020, 2020
Short summary
Short summary
The GoAmazon 2014/5 field campaign took place near the city of Manaus, Brazil, isolated in the Amazon rainforest, to study the impacts of urban pollution on natural air masses. We simulated this campaign with an extremely detailed organic chemistry model to understand how the city would affect the growth and composition of natural aerosol particles. Discrepancies between the model and the measurements indicate that the chemistry of naturally emitted organic compounds is still poorly understood.
William T. Morgan, James D. Allan, Stéphane Bauguitte, Eoghan Darbyshire, Michael J. Flynn, James Lee, Dantong Liu, Ben Johnson, Jim Haywood, Karla M. Longo, Paulo E. Artaxo, and Hugh Coe
Atmos. Chem. Phys., 20, 5309–5326, https://doi.org/10.5194/acp-20-5309-2020, https://doi.org/10.5194/acp-20-5309-2020, 2020
Short summary
Short summary
We flew a large atmospheric research aircraft across a number of different environments in the Amazon basin during the 2012 biomass burning season. Smoke from fires builds up and has a significant impact on weather, climate, health and natural ecosystems. Our goal was to quantify changes in the properties of the smoke emitted by fires as it is transported through the atmosphere. We found that the major control on the properties of the smoke was due to differences in the fires themselves.
Bruna A. Holanda, Mira L. Pöhlker, David Walter, Jorge Saturno, Matthias Sörgel, Jeannine Ditas, Florian Ditas, Christiane Schulz, Marco Aurélio Franco, Qiaoqiao Wang, Tobias Donth, Paulo Artaxo, Henrique M. J. Barbosa, Stephan Borrmann, Ramon Braga, Joel Brito, Yafang Cheng, Maximilian Dollner, Johannes W. Kaiser, Thomas Klimach, Christoph Knote, Ovid O. Krüger, Daniel Fütterer, Jošt V. Lavrič, Nan Ma, Luiz A. T. Machado, Jing Ming, Fernando G. Morais, Hauke Paulsen, Daniel Sauer, Hans Schlager, Johannes Schneider, Hang Su, Bernadett Weinzierl, Adrian Walser, Manfred Wendisch, Helmut Ziereis, Martin Zöger, Ulrich Pöschl, Meinrat O. Andreae, and Christopher Pöhlker
Atmos. Chem. Phys., 20, 4757–4785, https://doi.org/10.5194/acp-20-4757-2020, https://doi.org/10.5194/acp-20-4757-2020, 2020
Short summary
Short summary
Biomass burning smoke from African savanna and grassland is transported across the South Atlantic Ocean in defined layers within the free troposphere. The combination of in situ aircraft and ground-based measurements aided by satellite observations showed that these layers are transported into the Amazon Basin during the early dry season. The influx of aged smoke, enriched in black carbon and cloud condensation nuclei, has important implications for the Amazonian aerosol and cloud cycling.
Siddika Celik, Frank Drewnick, Friederike Fachinger, James Brooks, Eoghan Darbyshire, Hugh Coe, Jean-Daniel Paris, Philipp G. Eger, Jan Schuladen, Ivan Tadic, Nils Friedrich, Dirk Dienhart, Bettina Hottmann, Horst Fischer, John N. Crowley, Hartwig Harder, and Stephan Borrmann
Atmos. Chem. Phys., 20, 4713–4734, https://doi.org/10.5194/acp-20-4713-2020, https://doi.org/10.5194/acp-20-4713-2020, 2020
Short summary
Short summary
Analysis of 252 ship emission plumes in the Mediterranean Sea and around the Arabian Peninsula examined particulate- and gas-phase characteristics. By identifying the corresponding ships, source features and plume age were determined. Emission factors (amount of pollutant per kilogram of fuel burned) were calculated and investigated for dependencies on source characteristics, atmospheric conditions, and transport time, providing insight into the most relevant influences on ship emissions.
Sobhan Kumar Kompalli, Surendran Nair Suresh Babu, Sreedharan Krishnakumari Satheesh, Krishnaswamy Krishna Moorthy, Trupti Das, Ramasamy Boopathy, Dantong Liu, Eoghan Darbyshire, James D. Allan, James Brooks, Michael J. Flynn, and Hugh Coe
Atmos. Chem. Phys., 20, 3965–3985, https://doi.org/10.5194/acp-20-3965-2020, https://doi.org/10.5194/acp-20-3965-2020, 2020
Mohanan R. Manoj, Sreedharan K. Satheesh, Krishnaswamy K. Moorthy, and Hugh Coe
Atmos. Chem. Phys., 20, 4031–4046, https://doi.org/10.5194/acp-20-4031-2020, https://doi.org/10.5194/acp-20-4031-2020, 2020
Short summary
Short summary
The study reports the observation of highly absorbing aerosol layers at high altitudes (1–2.5 km) prior to monsoon and during its development over the Indian region and quantifies its climate impacts. The absorption of solar radiation in these layers perturbs the onset of monsoon through the impact on the atmospheric stability. When height-resolved values of single scattering albedo (SSA) are used in a radiative transfer model, a maximum heating ~1 K d (~twice that using SSA) is obtained.
Chenjie Yu, Dantong Liu, Kurtis Broda, Rutambhara Joshi, Jason Olfert, Yele Sun, Pingqing Fu, Hugh Coe, and James D. Allan
Atmos. Chem. Phys., 20, 3645–3661, https://doi.org/10.5194/acp-20-3645-2020, https://doi.org/10.5194/acp-20-3645-2020, 2020
Short summary
Short summary
This study presents the first atmospheric application of a new morphology-independent measurement for the quantification of the mixing state of rBC-containing particles in urban Beijing as part of the UK–China APHH campaign. An inversion method has been applied for better quantification of rBC mixing state. The mass-resolved rBC mixing state information presented here has implications for detailed models of BC, its optical properties and its atmospheric life cycle.
Alexander T. Archibald, Fiona M. O'Connor, Nathan Luke Abraham, Scott Archer-Nicholls, Martyn P. Chipperfield, Mohit Dalvi, Gerd A. Folberth, Fraser Dennison, Sandip S. Dhomse, Paul T. Griffiths, Catherine Hardacre, Alan J. Hewitt, Richard S. Hill, Colin E. Johnson, James Keeble, Marcus O. Köhler, Olaf Morgenstern, Jane P. Mulcahy, Carlos Ordóñez, Richard J. Pope, Steven T. Rumbold, Maria R. Russo, Nicholas H. Savage, Alistair Sellar, Marc Stringer, Steven T. Turnock, Oliver Wild, and Guang Zeng
Geosci. Model Dev., 13, 1223–1266, https://doi.org/10.5194/gmd-13-1223-2020, https://doi.org/10.5194/gmd-13-1223-2020, 2020
Short summary
Short summary
Here we present a description and evaluation of the UKCA stratosphere–troposphere chemistry scheme (StratTrop vn 1.0) implemented in the UK Earth System Model (UKESM1). UKCA StratTrop represents a substantial step forward compared to previous versions of UKCA. We show here that it is fully suited to the challenges of representing interactions in a coupled Earth system model and identify key areas and components for future development that will make it even better in the future.
Sidhant J. Pai, Colette L. Heald, Jeffrey R. Pierce, Salvatore C. Farina, Eloise A. Marais, Jose L. Jimenez, Pedro Campuzano-Jost, Benjamin A. Nault, Ann M. Middlebrook, Hugh Coe, John E. Shilling, Roya Bahreini, Justin H. Dingle, and Kennedy Vu
Atmos. Chem. Phys., 20, 2637–2665, https://doi.org/10.5194/acp-20-2637-2020, https://doi.org/10.5194/acp-20-2637-2020, 2020
Short summary
Short summary
Aerosols in the atmosphere have significant health and climate impacts. Organic aerosol (OA) accounts for a large fraction of the total aerosol burden, but models have historically struggled to accurately simulate it. This study compares two very different OA model schemes and evaluates them against a suite of globally distributed airborne measurements with the goal of providing insight into the strengths and weaknesses of each approach across different environments.
Fan Mei, Jian Wang, Jennifer M. Comstock, Ralf Weigel, Martina Krämer, Christoph Mahnke, John E. Shilling, Johannes Schneider, Christiane Schulz, Charles N. Long, Manfred Wendisch, Luiz A. T. Machado, Beat Schmid, Trismono Krisna, Mikhail Pekour, John Hubbe, Andreas Giez, Bernadett Weinzierl, Martin Zoeger, Mira L. Pöhlker, Hans Schlager, Micael A. Cecchini, Meinrat O. Andreae, Scot T. Martin, Suzane S. de Sá, Jiwen Fan, Jason Tomlinson, Stephen Springston, Ulrich Pöschl, Paulo Artaxo, Christopher Pöhlker, Thomas Klimach, Andreas Minikin, Armin Afchine, and Stephan Borrmann
Atmos. Meas. Tech., 13, 661–684, https://doi.org/10.5194/amt-13-661-2020, https://doi.org/10.5194/amt-13-661-2020, 2020
Short summary
Short summary
In 2014, the US DOE G1 aircraft and the German HALO aircraft overflew the Amazon basin to study how aerosols influence cloud cycles under a clean condition and around a tropical megacity. This paper describes how to meaningfully compare similar measurements from two research aircraft and identify the potential measurement issue. We also discuss the uncertainty range for each measurement for further usage in model evaluation and satellite data validation.
Ross J. Herbert, Nicolas Bellouin, Ellie J. Highwood, and Adrian A. Hill
Atmos. Chem. Phys., 20, 1317–1340, https://doi.org/10.5194/acp-20-1317-2020, https://doi.org/10.5194/acp-20-1317-2020, 2020
Short summary
Short summary
Marine stratocumulus clouds cover large regions of the ocean and act to cool the climate. We use high-resolution simulations to understand how observed layers of elevated smoke impact stratocumulus via the solar heating that occurs within the smoke layer. We find that the cloud response is strongest for thin, dense layers of smoke close to the cloud. The response rapidly weakens as the cloud-to-smoke gap increases. Generally, the smoke acts to thicken clouds and enhance their cooling effect.
Nina Löbs, Cybelli G. G. Barbosa, Sebastian Brill, David Walter, Florian Ditas, Marta de Oliveira Sá, Alessandro C. de Araújo, Leonardo R. de Oliveira, Ricardo H. M. Godoi, Stefan Wolff, Meike Piepenbring, Jürgen Kesselmeier, Paulo Artaxo, Meinrat O. Andreae, Ulrich Pöschl, Christopher Pöhlker, and Bettina Weber
Atmos. Meas. Tech., 13, 153–164, https://doi.org/10.5194/amt-13-153-2020, https://doi.org/10.5194/amt-13-153-2020, 2020
Short summary
Short summary
Bioaerosols are considered to play a relevant role in atmospheric processes, but their sources, properties, and spatiotemporal distribution in the atmosphere are not yet well characterized. Measurement data on the release of fungal spores under natural conditions are also sparse. Here, we present an experimental approach to analyze and quantify the spore release from fungi and other spore-producing organisms under natural and laboratory conditions.
Laura E. Revell, Stefanie Kremser, Sean Hartery, Mike Harvey, Jane P. Mulcahy, Jonny Williams, Olaf Morgenstern, Adrian J. McDonald, Vidya Varma, Leroy Bird, and Alex Schuddeboom
Atmos. Chem. Phys., 19, 15447–15466, https://doi.org/10.5194/acp-19-15447-2019, https://doi.org/10.5194/acp-19-15447-2019, 2019
Short summary
Short summary
Aerosols over the Southern Ocean consist primarily of sea salt and sulfate, yet are seasonally biased in our model. We test three sulfate chemistry schemes to investigate DMS oxidation, which forms sulfate aerosol. Simulated cloud droplet number concentrations improve using more complex sulfate chemistry. We also show that a new sea spray aerosol source function, developed from measurements made on a recent Southern Ocean research voyage, improves the model's simulation of aerosol optical depth.
Sophie L. Haslett, Jonathan W. Taylor, Mathew Evans, Eleanor Morris, Bernhard Vogel, Alima Dajuma, Joel Brito, Anneke M. Batenburg, Stephan Borrmann, Johannes Schneider, Christiane Schulz, Cyrielle Denjean, Thierry Bourrianne, Peter Knippertz, Régis Dupuy, Alfons Schwarzenböck, Daniel Sauer, Cyrille Flamant, James Dorsey, Ian Crawford, and Hugh Coe
Atmos. Chem. Phys., 19, 15217–15234, https://doi.org/10.5194/acp-19-15217-2019, https://doi.org/10.5194/acp-19-15217-2019, 2019
Short summary
Short summary
Three aircraft datasets from the DACCIWA campaign in summer 2016 are used here to show there is a background mass of pollution present in the lower atmosphere in southern West Africa. We suggest that this likely comes from biomass burning in central and southern Africa, which has been carried into the region over the Atlantic Ocean. This would have a negative health impact on populations living near the coast and may alter the impact of growing city emissions on cloud formation and the monsoon.
Leigh R. Crilley, Louisa J. Kramer, Bin Ouyang, Jun Duan, Wenqian Zhang, Shengrui Tong, Maofa Ge, Ke Tang, Min Qin, Pinhua Xie, Marvin D. Shaw, Alastair C. Lewis, Archit Mehra, Thomas J. Bannan, Stephen D. Worrall, Michael Priestley, Asan Bacak, Hugh Coe, James Allan, Carl J. Percival, Olalekan A. M. Popoola, Roderic L. Jones, and William J. Bloss
Atmos. Meas. Tech., 12, 6449–6463, https://doi.org/10.5194/amt-12-6449-2019, https://doi.org/10.5194/amt-12-6449-2019, 2019
Short summary
Short summary
Nitrous acid (HONO) is key species for understanding tropospheric chemistry, yet accurate and precise measurements are challenging. Here we report an inter–comparison exercise of a number of instruments that measured HONO in a highly polluted location (Beijing). All instruments agreed on the temporal trends yet displayed divergence in absolute concentrations. The cause of this divergence was unclear, but it may in part be due to spatial variability in instrument location.
Hayley S. Glicker, Michael J. Lawler, John Ortega, Suzane S. de Sá, Scot T. Martin, Paulo Artaxo, Oscar Vega Bustillos, Rodrigo de Souza, Julio Tota, Annmarie Carlton, and James N. Smith
Atmos. Chem. Phys., 19, 13053–13066, https://doi.org/10.5194/acp-19-13053-2019, https://doi.org/10.5194/acp-19-13053-2019, 2019
Short summary
Short summary
An understanding of the chemical composition of the smallest particles in the air over the Amazon Basin provides insights into the natural and human-caused influences on particle production in this sensitive region. We present measurements of the composition of sub-100 nm diameter particles performed during the wet season and identify unique constituents that point to both natural and human-caused sources and processes.
James Brooks, Dantong Liu, James D. Allan, Paul I. Williams, Jim Haywood, Ellie J. Highwood, Sobhan K. Kompalli, S. Suresh Babu, Sreedharan K. Satheesh, Andrew G. Turner, and Hugh Coe
Atmos. Chem. Phys., 19, 13079–13096, https://doi.org/10.5194/acp-19-13079-2019, https://doi.org/10.5194/acp-19-13079-2019, 2019
Short summary
Short summary
Our study presents an analysis of the vertical and horizontal black carbon properties across northern India using aircraft measurements. The Indo-Gangetic Plain saw the greatest black carbon mass concentrations during the pre-monsoon season. Two black carbon modes were recorded: a small black carbon mode (traffic emissions) in the north-west and a moderately coated mode (solid-fuel emissions) in the Indo-Gangetic Plain. In the vertical profile, absorption properties increase with height.
Philipp G. Eger, Nils Friedrich, Jan Schuladen, Justin Shenolikar, Horst Fischer, Ivan Tadic, Hartwig Harder, Monica Martinez, Roland Rohloff, Sebastian Tauer, Frank Drewnick, Friederike Fachinger, James Brooks, Eoghan Darbyshire, Jean Sciare, Michael Pikridas, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 19, 12121–12140, https://doi.org/10.5194/acp-19-12121-2019, https://doi.org/10.5194/acp-19-12121-2019, 2019
Short summary
Short summary
Shipborne measurements of nitryl chloride (ClNO2) were made during the AQABA (Air Quality and climate change in the Arabian BAsin) ship campaign in summer 2017. The dataset includes measurements over the Mediterranean Sea and around the Arabian Peninsula with observed mixing ratios ranging from the limit of detection to 600 pptv. We examined the regional variability in the generation of ClNO2 and its importance for Cl atom generation in a marine boundary layer influenced by ships and industry.
Duncan Watson-Parris, Nick Schutgens, Carly Reddington, Kirsty J. Pringle, Dantong Liu, James D. Allan, Hugh Coe, Ken S. Carslaw, and Philip Stier
Atmos. Chem. Phys., 19, 11765–11790, https://doi.org/10.5194/acp-19-11765-2019, https://doi.org/10.5194/acp-19-11765-2019, 2019
Short summary
Short summary
The vertical distribution of aerosol in the atmosphere affects its ability to act as cloud condensation nuclei and changes the amount of sunlight it absorbs or reflects. Common global measurements of aerosol provide no information about this vertical distribution. Using a global collection of in situ aircraft measurements to compare with an aerosol–climate model (ECHAM-HAM), we explore the key processes controlling this distribution and find that wet removal plays a key role.
Fanny Peers, Peter Francis, Cathryn Fox, Steven J. Abel, Kate Szpek, Michael I. Cotterell, Nicholas W. Davies, Justin M. Langridge, Kerry G. Meyer, Steven E. Platnick, and Jim M. Haywood
Atmos. Chem. Phys., 19, 9595–9611, https://doi.org/10.5194/acp-19-9595-2019, https://doi.org/10.5194/acp-19-9595-2019, 2019
Short summary
Short summary
The measurements from the geostationary satellite MSG/SEVIRI are used to retrieve the cloud and above-cloud aerosol properties over the South Atlantic. The technique relies on the spectral contrast and the magnitude of the signal in the visible to shortwave infrared region as well as the atmospheric correction based on forecasted water vapour profiles. The sensitivity analysis and the stability of the retrieval over time show great potential of the high-temporal-resolution observations.
Carly L. Reddington, William T. Morgan, Eoghan Darbyshire, Joel Brito, Hugh Coe, Paulo Artaxo, Catherine E. Scott, John Marsham, and Dominick V. Spracklen
Atmos. Chem. Phys., 19, 9125–9152, https://doi.org/10.5194/acp-19-9125-2019, https://doi.org/10.5194/acp-19-9125-2019, 2019
Short summary
Short summary
We use an aerosol model and observations to explore model representation of aerosol emissions from fires in the Amazon. We find that observed aerosol concentrations are captured by the model over deforestation fires in the western Amazon but underestimated over savanna fires in the Cerrado environment. The model underestimates observed aerosol optical depth (AOD) even when the observed aerosol vertical profile is reproduced. We suggest this may be due to uncertainties in the AOD calculation.
Jonathan W. Taylor, Sophie L. Haslett, Keith Bower, Michael Flynn, Ian Crawford, James Dorsey, Tom Choularton, Paul J. Connolly, Valerian Hahn, Christiane Voigt, Daniel Sauer, Régis Dupuy, Joel Brito, Alfons Schwarzenboeck, Thierry Bourriane, Cyrielle Denjean, Phil Rosenberg, Cyrille Flamant, James D. Lee, Adam R. Vaughan, Peter G. Hill, Barbara Brooks, Valéry Catoire, Peter Knippertz, and Hugh Coe
Atmos. Chem. Phys., 19, 8503–8522, https://doi.org/10.5194/acp-19-8503-2019, https://doi.org/10.5194/acp-19-8503-2019, 2019
Short summary
Short summary
Low-level clouds cover a wide area of southern West Africa (SWA) and play an important role in the region's climate, reflecting sunlight away from the surface. We performed aircraft measurements of aerosols and clouds over SWA during the 2016 summer monsoon and found pollution, and polluted clouds, across the whole region. Smoke from biomass burning in Central Africa is transported to West Africa, causing a polluted background which limits the effect of local pollution on cloud properties.
Christopher Pöhlker, David Walter, Hauke Paulsen, Tobias Könemann, Emilio Rodríguez-Caballero, Daniel Moran-Zuloaga, Joel Brito, Samara Carbone, Céline Degrendele, Viviane R. Després, Florian Ditas, Bruna A. Holanda, Johannes W. Kaiser, Gerhard Lammel, Jošt V. Lavrič, Jing Ming, Daniel Pickersgill, Mira L. Pöhlker, Maria Praß, Nina Löbs, Jorge Saturno, Matthias Sörgel, Qiaoqiao Wang, Bettina Weber, Stefan Wolff, Paulo Artaxo, Ulrich Pöschl, and Meinrat O. Andreae
Atmos. Chem. Phys., 19, 8425–8470, https://doi.org/10.5194/acp-19-8425-2019, https://doi.org/10.5194/acp-19-8425-2019, 2019
Short summary
Short summary
The Amazon Tall Tower Observatory (ATTO) has been established to monitor the rain forest's biosphere–atmosphere exchange, which experiences the combined pressures from human-made deforestation and progressing climate change. This work is meant to be a reference study, which characterizes various geospatial properties of the ATTO footprint region and shows how the human-made transformation of Amazonia may impact future atmospheric observations at ATTO.
Jamie M. Kelly, Ruth M. Doherty, Fiona M. O'Connor, Graham W. Mann, Hugh Coe, and Dantong Liu
Geosci. Model Dev., 12, 2539–2569, https://doi.org/10.5194/gmd-12-2539-2019, https://doi.org/10.5194/gmd-12-2539-2019, 2019
Short summary
Short summary
This study develops the representation of secondary organic aerosol (SOA) within a global chemistry–climate model (UKCA). Both dry and wet deposition within the UKCA model are extended to consider precursors of SOA. The oxidation mechanism describing SOA formation is also extended by adding a reaction intermediate, with SOA yields that are dependent on oxidant concentrations.
Nicholas W. Davies, Cathryn Fox, Kate Szpek, Michael I. Cotterell, Jonathan W. Taylor, James D. Allan, Paul I. Williams, Jamie Trembath, Jim M. Haywood, and Justin M. Langridge
Atmos. Meas. Tech., 12, 3417–3434, https://doi.org/10.5194/amt-12-3417-2019, https://doi.org/10.5194/amt-12-3417-2019, 2019
Short summary
Short summary
This research project assesses biases in traditional, filter-based, aerosol absorption measurements by comparison to state-of-the-art, non-filter-based, or in situ, measurements. We assess biases in traditional absorption measurements for three main aerosol types, including dust and fresh and aged biomass burning aerosols. The main results of this study are that the traditional and state-of-the-art absorption measurements are well correlated and that biases in the former are up to 45 %.
Suzane S. de Sá, Luciana V. Rizzo, Brett B. Palm, Pedro Campuzano-Jost, Douglas A. Day, Lindsay D. Yee, Rebecca Wernis, Gabriel Isaacman-VanWertz, Joel Brito, Samara Carbone, Yingjun J. Liu, Arthur Sedlacek, Stephen Springston, Allen H. Goldstein, Henrique M. J. Barbosa, M. Lizabeth Alexander, Paulo Artaxo, Jose L. Jimenez, and Scot T. Martin
Atmos. Chem. Phys., 19, 7973–8001, https://doi.org/10.5194/acp-19-7973-2019, https://doi.org/10.5194/acp-19-7973-2019, 2019
Short summary
Short summary
This study investigates the impacts of urban and fire emissions on the concentration, composition, and optical properties of submicron particulate matter (PM1) in central Amazonia during the dry season. Biomass-burning and urban emissions appeared to contribute at least 80 % of brown carbon absorption while accounting for 30 % to 40 % of the organic PM1 mass concentration. Only a fraction of the 9-fold increase in mass concentration relative to the wet season was due to biomass burning.
Zongbo Shi, Tuan Vu, Simone Kotthaus, Roy M. Harrison, Sue Grimmond, Siyao Yue, Tong Zhu, James Lee, Yiqun Han, Matthias Demuzere, Rachel E. Dunmore, Lujie Ren, Di Liu, Yuanlin Wang, Oliver Wild, James Allan, W. Joe Acton, Janet Barlow, Benjamin Barratt, David Beddows, William J. Bloss, Giulia Calzolai, David Carruthers, David C. Carslaw, Queenie Chan, Lia Chatzidiakou, Yang Chen, Leigh Crilley, Hugh Coe, Tie Dai, Ruth Doherty, Fengkui Duan, Pingqing Fu, Baozhu Ge, Maofa Ge, Daobo Guan, Jacqueline F. Hamilton, Kebin He, Mathew Heal, Dwayne Heard, C. Nicholas Hewitt, Michael Hollaway, Min Hu, Dongsheng Ji, Xujiang Jiang, Rod Jones, Markus Kalberer, Frank J. Kelly, Louisa Kramer, Ben Langford, Chun Lin, Alastair C. Lewis, Jie Li, Weijun Li, Huan Liu, Junfeng Liu, Miranda Loh, Keding Lu, Franco Lucarelli, Graham Mann, Gordon McFiggans, Mark R. Miller, Graham Mills, Paul Monk, Eiko Nemitz, Fionna O'Connor, Bin Ouyang, Paul I. Palmer, Carl Percival, Olalekan Popoola, Claire Reeves, Andrew R. Rickard, Longyi Shao, Guangyu Shi, Dominick Spracklen, David Stevenson, Yele Sun, Zhiwei Sun, Shu Tao, Shengrui Tong, Qingqing Wang, Wenhua Wang, Xinming Wang, Xuejun Wang, Zifang Wang, Lianfang Wei, Lisa Whalley, Xuefang Wu, Zhijun Wu, Pinhua Xie, Fumo Yang, Qiang Zhang, Yanli Zhang, Yuanhang Zhang, and Mei Zheng
Atmos. Chem. Phys., 19, 7519–7546, https://doi.org/10.5194/acp-19-7519-2019, https://doi.org/10.5194/acp-19-7519-2019, 2019
Short summary
Short summary
APHH-Beijing is a collaborative international research programme to study the sources, processes and health effects of air pollution in Beijing. This introduction to the special issue provides an overview of (i) the APHH-Beijing programme, (ii) the measurement and modelling activities performed as part of it and (iii) the air quality and meteorological conditions during joint intensive field campaigns as a core activity within APHH-Beijing.
Stephanie Fiedler, Stefan Kinne, Wan Ting Katty Huang, Petri Räisänen, Declan O'Donnell, Nicolas Bellouin, Philip Stier, Joonas Merikanto, Twan van Noije, Risto Makkonen, and Ulrike Lohmann
Atmos. Chem. Phys., 19, 6821–6841, https://doi.org/10.5194/acp-19-6821-2019, https://doi.org/10.5194/acp-19-6821-2019, 2019
Dantong Liu, Rutambhara Joshi, Junfeng Wang, Chenjie Yu, James D. Allan, Hugh Coe, Michael J. Flynn, Conghui Xie, James Lee, Freya Squires, Simone Kotthaus, Sue Grimmond, Xinlei Ge, Yele Sun, and Pingqing Fu
Atmos. Chem. Phys., 19, 6749–6769, https://doi.org/10.5194/acp-19-6749-2019, https://doi.org/10.5194/acp-19-6749-2019, 2019
Short summary
Short summary
This study provides source attribution and characterization of BC in the Beijing urban environment in both winter and summer. For the first time, the physically and chemically based source apportionments are compared to evaluate the primary source contribution and secondary processing of BC-containing particles. A method is proposed to isolate the BC from the transportation sector and coal combustion sources.
David Walters, Anthony J. Baran, Ian Boutle, Malcolm Brooks, Paul Earnshaw, John Edwards, Kalli Furtado, Peter Hill, Adrian Lock, James Manners, Cyril Morcrette, Jane Mulcahy, Claudio Sanchez, Chris Smith, Rachel Stratton, Warren Tennant, Lorenzo Tomassini, Kwinten Van Weverberg, Simon Vosper, Martin Willett, Jo Browse, Andrew Bushell, Kenneth Carslaw, Mohit Dalvi, Richard Essery, Nicola Gedney, Steven Hardiman, Ben Johnson, Colin Johnson, Andy Jones, Colin Jones, Graham Mann, Sean Milton, Heather Rumbold, Alistair Sellar, Masashi Ujiie, Michael Whitall, Keith Williams, and Mohamed Zerroukat
Geosci. Model Dev., 12, 1909–1963, https://doi.org/10.5194/gmd-12-1909-2019, https://doi.org/10.5194/gmd-12-1909-2019, 2019
Short summary
Short summary
Global Atmosphere (GA) configurations of the Unified Model (UM) and Global Land (GL) configurations of JULES are developed for use in any global atmospheric modelling application. We describe a recent iteration of these configurations, GA7/GL7, which includes new aerosol and snow schemes and addresses the four critical errors identified in GA6. GA7/GL7 will underpin the UK's contributions to CMIP6, and hence their documentation is important.
Eoghan Darbyshire, William T. Morgan, James D. Allan, Dantong Liu, Michael J. Flynn, James R. Dorsey, Sebastian J. O'Shea, Douglas Lowe, Kate Szpek, Franco Marenco, Ben T. Johnson, Stephane Bauguitte, Jim M. Haywood, Joel F. Brito, Paulo Artaxo, Karla M. Longo, and Hugh Coe
Atmos. Chem. Phys., 19, 5771–5790, https://doi.org/10.5194/acp-19-5771-2019, https://doi.org/10.5194/acp-19-5771-2019, 2019
Short summary
Short summary
A novel analysis of aerosol and gas-phase vertical profiles shows a marked regional pollution contrast: composition is driven by the fire regime and vertical distribution is driven by thermodynamics. These drivers ought to be well represented in simulations to ensure realistic prediction of climate and air quality impacts. The BC : CO ratio in haze and plumes increases with altitude – long-range transport or fire stage coupled to plume dynamics may be responsible. Further enquiry is advocated.
James Brooks, James D. Allan, Paul I. Williams, Dantong Liu, Cathryn Fox, Jim Haywood, Justin M. Langridge, Ellie J. Highwood, Sobhan K. Kompalli, Debbie O'Sullivan, Suresh S. Babu, Sreedharan K. Satheesh, Andrew G. Turner, and Hugh Coe
Atmos. Chem. Phys., 19, 5615–5634, https://doi.org/10.5194/acp-19-5615-2019, https://doi.org/10.5194/acp-19-5615-2019, 2019
Short summary
Short summary
Our study, for the first time, presents measurements of aerosol chemical composition and physical characteristics across northern India in the pre-monsoon and monsoon seasons of 2016 using the FAAM BAe-146 UK research aircraft. Across northern India, an elevated aerosol layer dominated by sulfate aerosol exists that diminishes with monsoon arrival. The Indo-Gangetic Plain (IGP) boundary layer is dominated by organics, whereas outside the IGP sulfate dominates with increased scattering aerosol.
Jennifer K. Brooke, R. Chawn Harlow, Russell L. Scott, Martin J. Best, John M. Edwards, Jean-Claude Thelen, and Mark Weeks
Geosci. Model Dev., 12, 1703–1724, https://doi.org/10.5194/gmd-12-1703-2019, https://doi.org/10.5194/gmd-12-1703-2019, 2019
Short summary
Short summary
This paper evaluates a significant cold land surface temperature bias in semi-arid regions in the Met Office Unified Model when compared with satellite observations. Sparse vegetation canopies are not well represented in ancillary datasets, in particular regions of cold bias are correlated with low bare soil cover fractions. The study demonstrates the difficulties in modelling land surface temperatures that match state-of-the-art satellite retrievals required for operational data assimilation.
Michael I. Cotterell, Andrew J. Orr-Ewing, Kate Szpek, Jim M. Haywood, and Justin M. Langridge
Atmos. Meas. Tech., 12, 2371–2385, https://doi.org/10.5194/amt-12-2371-2019, https://doi.org/10.5194/amt-12-2371-2019, 2019
Short summary
Short summary
Photoacoustic spectroscopy provides measurements of absorption coefficient for aerosol and gas samples but requires careful calibration, and researchers often use concentrations of ozone. Recent work has shown that the bath gas composition impacts the accuracy of this calibration at visible wavelengths. We explore further the role of bath gas, demonstrating that the calibration accuracy is optimal for a bath gas composed of 20 % oxygen and 80 % nitrogen at wavelengths of 405, 514 and 658 nm.
Martin Osborne, Florent F. Malavelle, Mariana Adam, Joelle Buxmann, Jaqueline Sugier, Franco Marenco, and Jim Haywood
Atmos. Chem. Phys., 19, 3557–3578, https://doi.org/10.5194/acp-19-3557-2019, https://doi.org/10.5194/acp-19-3557-2019, 2019
Short summary
Short summary
In this paper we present an analysis of the unusual
red skyevent that occurred over the UK on 15 and 16 October 2017. We use measurements from the Met Office operational lidar and sun-photometer network, as well as other data and model output, to show that the event was caused by the passage of ex-hurricane Ophelia which transported unusual amounts of dust from the Sahara to the UK as well as smoke from forest fires in Portugal.
Thomas J. Bannan, Michael Le Breton, Michael Priestley, Stephen D. Worrall, Asan Bacak, Nicholas A. Marsden, Archit Mehra, Julia Hammes, Mattias Hallquist, M. Rami Alfarra, Ulrich K. Krieger, Jonathan P. Reid, John Jayne, Wade Robinson, Gordon McFiggans, Hugh Coe, Carl J. Percival, and Dave Topping
Atmos. Meas. Tech., 12, 1429–1439, https://doi.org/10.5194/amt-12-1429-2019, https://doi.org/10.5194/amt-12-1429-2019, 2019
Short summary
Short summary
The Filter Inlet for Gases and AEROsols (FIGAERO) is an inlet designed to be coupled with a high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) and provides simultaneous molecular information relating to both the gas- and particle-phase samples. This method has been used to extract vapour pressures of compounds whilst giving quantitative concentrations in the particle phase. Here we detail an ideal set of benchmark compounds for characterization of the FIGAERO.
Nicholas A. Marsden, Romy Ullrich, Ottmar Möhler, Stine Eriksen Hammer, Konrad Kandler, Zhiqiang Cui, Paul I. Williams, Michael J. Flynn, Dantong Liu, James D. Allan, and Hugh Coe
Atmos. Chem. Phys., 19, 2259–2281, https://doi.org/10.5194/acp-19-2259-2019, https://doi.org/10.5194/acp-19-2259-2019, 2019
Short summary
Short summary
The composition of airborne dust influences climate and ecosystems but its measurements presents a huge analytical challenge. Using online single-particle mass spectrometry, we demonstrate differences in mineralogy and mixing state can be detected in real time in both laboratory studies and ambient measurements. The results provide insights into the temporal and spatial evolution of dust properties that will be useful for aerosol–cloud interaction studies and dust cycle modelling.
Sophie L. Haslett, Jonathan W. Taylor, Konrad Deetz, Bernhard Vogel, Karmen Babić, Norbert Kalthoff, Andreas Wieser, Cheikh Dione, Fabienne Lohou, Joel Brito, Régis Dupuy, Alfons Schwarzenboeck, Paul Zieger, and Hugh Coe
Atmos. Chem. Phys., 19, 1505–1520, https://doi.org/10.5194/acp-19-1505-2019, https://doi.org/10.5194/acp-19-1505-2019, 2019
Short summary
Short summary
As the population in West Africa grows and air pollution increases, it is becoming ever more important to understand the effects of this pollution on the climate and on health. Aerosol particles can grow by absorbing water from the air around them. This paper shows that during the monsoon season, aerosol particles in the region are likely to grow significantly because of the high moisture in the air. This means that climate effects from increasing pollution will be enhanced.
Florent F. Malavelle, Jim M. Haywood, Lina M. Mercado, Gerd A. Folberth, Nicolas Bellouin, Stephen Sitch, and Paulo Artaxo
Atmos. Chem. Phys., 19, 1301–1326, https://doi.org/10.5194/acp-19-1301-2019, https://doi.org/10.5194/acp-19-1301-2019, 2019
Short summary
Short summary
Diffuse light can increase the efficiency of vegetation photosynthesis. Diffuse light results from scattering by either clouds or aerosols in the atmosphere. During the dry season biomass burning (BB) on the edges of the Amazon rainforest contributes significantly to the aerosol burden over the entire region. We show that despite a modest effect of change in light conditions, the overall impact of BB aerosols on the vegetation is still important when indirect climate feedbacks are considered.
Junfeng Wang, Dantong Liu, Xinlei Ge, Yangzhou Wu, Fuzhen Shen, Mindong Chen, Jian Zhao, Conghui Xie, Qingqing Wang, Weiqi Xu, Jie Zhang, Jianlin Hu, James Allan, Rutambhara Joshi, Pingqing Fu, Hugh Coe, and Yele Sun
Atmos. Chem. Phys., 19, 447–458, https://doi.org/10.5194/acp-19-447-2019, https://doi.org/10.5194/acp-19-447-2019, 2019
Short summary
Short summary
This work is part of the UK-China APHH campaign. We used a laser-only Aerodyne soot particle aerosol mass spectrometer, for the first time, to investigate the concentrations, size distributions and chemical compositions for those ambient submicron aerosol particles only with black carbon as cores. Our findings are valuable to understand the BC properties and processes in the densely populated megacities.
Conghui Xie, Weiqi Xu, Junfeng Wang, Qingqing Wang, Dantong Liu, Guiqian Tang, Ping Chen, Wei Du, Jian Zhao, Yingjie Zhang, Wei Zhou, Tingting Han, Qingyun Bian, Jie Li, Pingqing Fu, Zifa Wang, Xinlei Ge, James Allan, Hugh Coe, and Yele Sun
Atmos. Chem. Phys., 19, 165–179, https://doi.org/10.5194/acp-19-165-2019, https://doi.org/10.5194/acp-19-165-2019, 2019
Short summary
Short summary
We present the first simultaneous real-time online measurements of aerosol optical properties at ground level and at 260 m on a meteorological tower in urban Beijing in winter. The vertical similarities and differences in scattering and absorption coefficients were characterized. The increases in MAC of BC were mainly associated with the coating materials on rBC. Coal combustion was the dominant source contribution of brown carbon followed by biomass burning and SOA in winter in Beijing.
Franco Marenco, Claire Ryder, Victor Estellés, Debbie O'Sullivan, Jennifer Brooke, Luke Orgill, Gary Lloyd, and Martin Gallagher
Atmos. Chem. Phys., 18, 17655–17668, https://doi.org/10.5194/acp-18-17655-2018, https://doi.org/10.5194/acp-18-17655-2018, 2018
Short summary
Short summary
The AER-D airborne campaign characterised Saharan dust in the eastern Atlantic. We report an instance of unusual vertical structure of the Saharan Air Layer during an intense event, showing a large radiative impact and correlated with anomalous lightning activity. Moreover, we report a significant presence of giant dust particles. This is important because most models would miss the giant particles. Our findings may change the way we represent dust transport and deposition in the Atlantic.
Claire L. Ryder, Franco Marenco, Jennifer K. Brooke, Victor Estelles, Richard Cotton, Paola Formenti, James B. McQuaid, Hannah C. Price, Dantong Liu, Patrick Ausset, Phil D. Rosenberg, Jonathan W. Taylor, Tom Choularton, Keith Bower, Hugh Coe, Martin Gallagher, Jonathan Crosier, Gary Lloyd, Eleanor J. Highwood, and Benjamin J. Murray
Atmos. Chem. Phys., 18, 17225–17257, https://doi.org/10.5194/acp-18-17225-2018, https://doi.org/10.5194/acp-18-17225-2018, 2018
Short summary
Short summary
Every year, millions of tons of Saharan dust particles are carried across the Atlantic by the wind, where they can affect weather patterns and climate. Their sizes span orders of magnitude, but the largest (over 10 microns – around the width of a human hair) are difficult to measure and few observations exist. Here we show new aircraft observations of large dust particles, finding more than we would expect, and we quantify their properties which allow them to interact with atmospheric radiation.
Hamish Gordon, Paul R. Field, Steven J. Abel, Mohit Dalvi, Daniel P. Grosvenor, Adrian A. Hill, Ben T. Johnson, Annette K. Miltenberger, Masaru Yoshioka, and Ken S. Carslaw
Atmos. Chem. Phys., 18, 15261–15289, https://doi.org/10.5194/acp-18-15261-2018, https://doi.org/10.5194/acp-18-15261-2018, 2018
Short summary
Short summary
Smoke from African fires is frequently transported across the Atlantic Ocean, where it interacts with clouds. We simulate the interaction of the smoke with the clouds, and the consequences of this for the solar radiation the clouds reflect. The simulations use a new regional configuration of the UK Met Office climate model. Our simulations indicate that the properties of the clouds, in particular their height and reflectivity, and the fractional cloud cover, are strongly affected by the smoke.
Christiane Schulz, Johannes Schneider, Bruna Amorim Holanda, Oliver Appel, Anja Costa, Suzane S. de Sá, Volker Dreiling, Daniel Fütterer, Tina Jurkat-Witschas, Thomas Klimach, Christoph Knote, Martina Krämer, Scot T. Martin, Stephan Mertes, Mira L. Pöhlker, Daniel Sauer, Christiane Voigt, Adrian Walser, Bernadett Weinzierl, Helmut Ziereis, Martin Zöger, Meinrat O. Andreae, Paulo Artaxo, Luiz A. T. Machado, Ulrich Pöschl, Manfred Wendisch, and Stephan Borrmann
Atmos. Chem. Phys., 18, 14979–15001, https://doi.org/10.5194/acp-18-14979-2018, https://doi.org/10.5194/acp-18-14979-2018, 2018
Short summary
Short summary
Aerosol chemical composition measurements in the tropical upper troposphere over the Amazon region show that 78 % of the aerosol in the upper troposphere consists of organic matter. Up to 20 % of the organic aerosol can be attributed to isoprene epoxydiol secondary organic aerosol (IEPOX-SOA). Furthermore, organic nitrates were identified, suggesting a connection to the IEPOX-SOA formation.
Christopher Dearden, Adrian Hill, Hugh Coe, and Tom Choularton
Atmos. Chem. Phys., 18, 14253–14269, https://doi.org/10.5194/acp-18-14253-2018, https://doi.org/10.5194/acp-18-14253-2018, 2018
Short summary
Short summary
We perform computer simulations of the life cycle of low-lying clouds over southern West Africa during the monsoon season. Such clouds tend not to produce much precipitation, but they do affect the regional climate by modifying the amount of sunlight reaching the surface. The aim of this work is to understand the factors that influence the growth and break-up of these clouds. We show that the number of water droplets contained within the clouds affects how quickly they dissipate.
Konrad Deetz, Heike Vogel, Sophie Haslett, Peter Knippertz, Hugh Coe, and Bernhard Vogel
Atmos. Chem. Phys., 18, 14271–14295, https://doi.org/10.5194/acp-18-14271-2018, https://doi.org/10.5194/acp-18-14271-2018, 2018
Short summary
Short summary
Water uptake can significantly increase the size and therefore alters the optical properties of aerosols. Our model study reveals that the high moisture and aerosol burden in the southern West African monsoon
layer makes it favorable to quantify properties that determine the aerosol liquid water content and its impact on the aerosol optical depth and radiative transfer. Especially in moist tropical environments the relative humidity impact on AOD has to be considered in atmospheric models.
Michael Priestley, Michael le Breton, Thomas J. Bannan, Stephen D. Worrall, Asan Bacak, Andrew R. D. Smedley, Ernesto Reyes-Villegas, Archit Mehra, James Allan, Ann R. Webb, Dudley E. Shallcross, Hugh Coe, and Carl J. Percival
Atmos. Chem. Phys., 18, 13481–13493, https://doi.org/10.5194/acp-18-13481-2018, https://doi.org/10.5194/acp-18-13481-2018, 2018
Daniela Wimmer, Stephany Buenrostro Mazon, Hanna Elina Manninen, Juha Kangasluoma, Alessandro Franchin, Tuomo Nieminen, John Backman, Jian Wang, Chongai Kuang, Radovan Krejci, Joel Brito, Fernando Goncalves Morais, Scot Turnbull Martin, Paulo Artaxo, Markku Kulmala, Veli-Matti Kerminen, and Tuukka Petäjä
Atmos. Chem. Phys., 18, 13245–13264, https://doi.org/10.5194/acp-18-13245-2018, https://doi.org/10.5194/acp-18-13245-2018, 2018
Short summary
Short summary
This work focuses on understanding the production of very small airborne particles in the undisturbed environment of the Amazon basin. Computer models have shown that up to 70 % of these tiny particles are responsible for cloud formation on a global scale. The processes behind the production of these very small particles have been studied intensely recently. Their appearance has been observed almost all over the world. We directly measure sub-3 nm aerosols for the first time in the Amazon basin.
Ben Kravitz, Philip J. Rasch, Hailong Wang, Alan Robock, Corey Gabriel, Olivier Boucher, Jason N. S. Cole, Jim Haywood, Duoying Ji, Andy Jones, Andrew Lenton, John C. Moore, Helene Muri, Ulrike Niemeier, Steven Phipps, Hauke Schmidt, Shingo Watanabe, Shuting Yang, and Jin-Ho Yoon
Atmos. Chem. Phys., 18, 13097–13113, https://doi.org/10.5194/acp-18-13097-2018, https://doi.org/10.5194/acp-18-13097-2018, 2018
Short summary
Short summary
Marine cloud brightening has been proposed as a means of geoengineering/climate intervention, or deliberately altering the climate system to offset anthropogenic climate change. In idealized simulations that highlight contrasts between land and ocean, we find that the globe warms, including the ocean due to transport of heat from land. This study reinforces that no net energy input into the Earth system does not mean that temperature will necessarily remain unchanged.
Jorge Saturno, Bruna A. Holanda, Christopher Pöhlker, Florian Ditas, Qiaoqiao Wang, Daniel Moran-Zuloaga, Joel Brito, Samara Carbone, Yafang Cheng, Xuguang Chi, Jeannine Ditas, Thorsten Hoffmann, Isabella Hrabe de Angelis, Tobias Könemann, Jošt V. Lavrič, Nan Ma, Jing Ming, Hauke Paulsen, Mira L. Pöhlker, Luciana V. Rizzo, Patrick Schlag, Hang Su, David Walter, Stefan Wolff, Yuxuan Zhang, Paulo Artaxo, Ulrich Pöschl, and Meinrat O. Andreae
Atmos. Chem. Phys., 18, 12817–12843, https://doi.org/10.5194/acp-18-12817-2018, https://doi.org/10.5194/acp-18-12817-2018, 2018
Short summary
Short summary
Biomass burning emits light-absorbing aerosol particles that warm the atmosphere. One of them is the primarily emitted black carbon, which strongly absorbs radiation in the visible and UV spectral regions. Another one is the so-called brown carbon, a fraction of organic aerosol particles that are able to absorb radiation, especially in the UV spectral region. The contribution of both kinds of aerosol particles to light absorption over the Amazon rainforest is studied in this paper.
Nathan Luke Abraham, Alexander T. Archibald, Paul Cresswell, Sam Cusworth, Mohit Dalvi, David Matthews, Steven Wardle, and Stuart Whitehouse
Geosci. Model Dev., 11, 3647–3657, https://doi.org/10.5194/gmd-11-3647-2018, https://doi.org/10.5194/gmd-11-3647-2018, 2018
Short summary
Short summary
Using a virtual machine environment, a low-resolution configuration of the United Kingdom Chemistry and Aerosols (UKCA) composition-climate model has been developed. This configuration, while not suitable for long simulations, is an excellent test-bed for new model developments and can be used to train new users in how to use UKCA. This work was motivated by the desire to improve the usability of UKCA, and to encourage more users to become involved with the code development process.
Suzane S. de Sá, Brett B. Palm, Pedro Campuzano-Jost, Douglas A. Day, Weiwei Hu, Gabriel Isaacman-VanWertz, Lindsay D. Yee, Joel Brito, Samara Carbone, Igor O. Ribeiro, Glauber G. Cirino, Yingjun Liu, Ryan Thalman, Arthur Sedlacek, Aaron Funk, Courtney Schumacher, John E. Shilling, Johannes Schneider, Paulo Artaxo, Allen H. Goldstein, Rodrigo A. F. Souza, Jian Wang, Karena A. McKinney, Henrique Barbosa, M. Lizabeth Alexander, Jose L. Jimenez, and Scot T. Martin
Atmos. Chem. Phys., 18, 12185–12206, https://doi.org/10.5194/acp-18-12185-2018, https://doi.org/10.5194/acp-18-12185-2018, 2018
Short summary
Short summary
This study aimed at understanding and quantifying the changes in mass concentration and composition of submicron airborne particulate matter (PM) in Amazonia due to urban pollution. Downwind of Manaus, PM concentrations increased by up to 200 % under polluted compared with background conditions. The observed changes included contributions from both primary and secondary processes. The differences in organic PM composition suggested a shift in the pathways of secondary production with pollution.
Wei Zhou, Jian Zhao, Bin Ouyang, Archit Mehra, Weiqi Xu, Yuying Wang, Thomas J. Bannan, Stephen D. Worrall, Michael Priestley, Asan Bacak, Qi Chen, Conghui Xie, Qingqing Wang, Junfeng Wang, Wei Du, Yingjie Zhang, Xinlei Ge, Penglin Ye, James D. Lee, Pingqing Fu, Zifa Wang, Douglas Worsnop, Roderic Jones, Carl J. Percival, Hugh Coe, and Yele Sun
Atmos. Chem. Phys., 18, 11581–11597, https://doi.org/10.5194/acp-18-11581-2018, https://doi.org/10.5194/acp-18-11581-2018, 2018
Short summary
Short summary
We present measurements of gas-phase N2O5 and ClNO2 by ToF-CIMS during summer in urban Beijing as part of the APHH campaign. High reactivity of N2O5 indicative of active nocturnal chemistry was observed. The lifetime of N2O5 as a function of aerosol surface area and relative humidity was characterized, and N2O5 uptake coefficients were estimated. We also found that the N2O5 loss in this study is mainly attributed to its indirect loss via reactions of NO3 with VOCs and NO.
John E. Shilling, Mikhail S. Pekour, Edward C. Fortner, Paulo Artaxo, Suzane de Sá, John M. Hubbe, Karla M. Longo, Luiz A. T. Machado, Scot T. Martin, Stephen R. Springston, Jason Tomlinson, and Jian Wang
Atmos. Chem. Phys., 18, 10773–10797, https://doi.org/10.5194/acp-18-10773-2018, https://doi.org/10.5194/acp-18-10773-2018, 2018
Short summary
Short summary
We report aircraft observations of the evolution of organic aerosol in the Manaus urban plume as it ages. We observe dynamic changes in the organic aerosol. The mean carbon oxidation state of the OA increases from −0.6 to −0.45. Hydrocarbon-like organic aerosol (HOA) mass is lost and is balanced out by formation of oxygenated organic aerosol (OOA). Because HOA loss is balanced by OOA formation, we observe little change in the net Δorg / ΔCO values with aging.
Jorge Saturno, Florian Ditas, Marloes Penning de Vries, Bruna A. Holanda, Mira L. Pöhlker, Samara Carbone, David Walter, Nicole Bobrowski, Joel Brito, Xuguang Chi, Alexandra Gutmann, Isabella Hrabe de Angelis, Luiz A. T. Machado, Daniel Moran-Zuloaga, Julian Rüdiger, Johannes Schneider, Christiane Schulz, Qiaoqiao Wang, Manfred Wendisch, Paulo Artaxo, Thomas Wagner, Ulrich Pöschl, Meinrat O. Andreae, and Christopher Pöhlker
Atmos. Chem. Phys., 18, 10391–10405, https://doi.org/10.5194/acp-18-10391-2018, https://doi.org/10.5194/acp-18-10391-2018, 2018
Short summary
Short summary
This study uses satellite observations to track volcanic emissions in eastern Congo and their subsequent transport across the Atlantic Ocean into the Amazon Basin. Aircraft and ground-based observations are used to characterize the influence of volcanogenic aerosol on the chemical and microphysical properties of Amazonian aerosols. Further, this work is an illustrative example of the conditions and dynamics driving the transatlantic transport of African emissions to South America.
Lindsay D. Yee, Gabriel Isaacman-VanWertz, Rebecca A. Wernis, Meng Meng, Ventura Rivera, Nathan M. Kreisberg, Susanne V. Hering, Mads S. Bering, Marianne Glasius, Mary Alice Upshur, Ariana Gray Bé, Regan J. Thomson, Franz M. Geiger, John H. Offenberg, Michael Lewandowski, Ivan Kourtchev, Markus Kalberer, Suzane de Sá, Scot T. Martin, M. Lizabeth Alexander, Brett B. Palm, Weiwei Hu, Pedro Campuzano-Jost, Douglas A. Day, Jose L. Jimenez, Yingjun Liu, Karena A. McKinney, Paulo Artaxo, Juarez Viegas, Antonio Manzi, Maria B. Oliveira, Rodrigo de Souza, Luiz A. T. Machado, Karla Longo, and Allen H. Goldstein
Atmos. Chem. Phys., 18, 10433–10457, https://doi.org/10.5194/acp-18-10433-2018, https://doi.org/10.5194/acp-18-10433-2018, 2018
Short summary
Short summary
Biogenic volatile organic compounds react in the atmosphere to form secondary organic aerosol, yet the chemical pathways remain unclear. We collected filter samples and deployed a semi-volatile thermal desorption aerosol gas chromatograph in the central Amazon. We measured 30 sesquiterpenes and 4 diterpenes and find them to be important for reactive ozone loss. We estimate that sesquiterpene oxidation contributes at least 0.4–5 % (median 1 %) of observed submicron organic aerosol mass.
Mira L. Pöhlker, Florian Ditas, Jorge Saturno, Thomas Klimach, Isabella Hrabě de Angelis, Alessandro C. Araùjo, Joel Brito, Samara Carbone, Yafang Cheng, Xuguang Chi, Reiner Ditz, Sachin S. Gunthe, Bruna A. Holanda, Konrad Kandler, Jürgen Kesselmeier, Tobias Könemann, Ovid O. Krüger, Jošt V. Lavrič, Scot T. Martin, Eugene Mikhailov, Daniel Moran-Zuloaga, Luciana V. Rizzo, Diana Rose, Hang Su, Ryan Thalman, David Walter, Jian Wang, Stefan Wolff, Henrique M. J. Barbosa, Paulo Artaxo, Meinrat O. Andreae, Ulrich Pöschl, and Christopher Pöhlker
Atmos. Chem. Phys., 18, 10289–10331, https://doi.org/10.5194/acp-18-10289-2018, https://doi.org/10.5194/acp-18-10289-2018, 2018
Short summary
Short summary
This paper presents the aerosol and cloud condensation nuclei (CCN) variability for characteristic atmospheric states – such as biomass burning, long-range transport, and pristine rain forest conditions – in the vulnerable and climate-relevant Amazon Basin. It summarizes the key properties of aerosol and CCN and, thus, provides a basis for an in-depth analysis of aerosol–cloud interactions in the Amazon region.
Luciana Varanda Rizzo, Pontus Roldin, Joel Brito, John Backman, Erik Swietlicki, Radovan Krejci, Peter Tunved, Tukka Petäjä, Markku Kulmala, and Paulo Artaxo
Atmos. Chem. Phys., 18, 10255–10274, https://doi.org/10.5194/acp-18-10255-2018, https://doi.org/10.5194/acp-18-10255-2018, 2018
Short summary
Short summary
Aerosols are tiny particles suspended in the air that can interact with sunlight and form clouds, which in turn affect the climate. They can also recycle nutrients in forest environments. Aerosols are naturally emitted at the surface in the Amazon forest, in addition to being brought down from above the boundary layer by intense air movements. In this work, we describe how the particle size number concentrations of aerosols change over hours, days and seasons in a multi-year study in Amazonia.
Daniel Moran-Zuloaga, Florian Ditas, David Walter, Jorge Saturno, Joel Brito, Samara Carbone, Xuguang Chi, Isabella Hrabě de Angelis, Holger Baars, Ricardo H. M. Godoi, Birgit Heese, Bruna A. Holanda, Jošt V. Lavrič, Scot T. Martin, Jing Ming, Mira L. Pöhlker, Nina Ruckteschler, Hang Su, Yaqiang Wang, Qiaoqiao Wang, Zhibin Wang, Bettina Weber, Stefan Wolff, Paulo Artaxo, Ulrich Pöschl, Meinrat O. Andreae, and Christopher Pöhlker
Atmos. Chem. Phys., 18, 10055–10088, https://doi.org/10.5194/acp-18-10055-2018, https://doi.org/10.5194/acp-18-10055-2018, 2018
Short summary
Short summary
This study presents multiple years of aerosol coarse mode observations at the remote ATTO site in the Amazon Basin. The results are discussed in light of the frequent and episodic long-range transport of Saharan dust plumes in the early wet season as well as the persistent background bioaerosol cycling in the rain forest ecosystem. This work provides a solid basis for future studies on the dynamic coarse mode aerosol cycling and its biogeochemical relevance in the Amazon.
Leighton A. Regayre, Jill S. Johnson, Masaru Yoshioka, Kirsty J. Pringle, David M. H. Sexton, Ben B. B. Booth, Lindsay A. Lee, Nicolas Bellouin, and Kenneth S. Carslaw
Atmos. Chem. Phys., 18, 9975–10006, https://doi.org/10.5194/acp-18-9975-2018, https://doi.org/10.5194/acp-18-9975-2018, 2018
Short summary
Short summary
We sample uncertainty in one climate model by perturbing aerosol and physical atmosphere parameters. Our uncertainty is comparable to multi-model studies. Atmospheric parameters cause most of the top-of-atmosphere flux uncertainty; uncertainty in aerosol forcing is mostly caused by aerosols: both are important. The strongest aerosol forcings are inconsistent with top-of-atmosphere flux observations. Better constraint requires observations that share causes of uncertainty with aerosol forcing.
Konrad Deetz, Heike Vogel, Peter Knippertz, Bianca Adler, Jonathan Taylor, Hugh Coe, Keith Bower, Sophie Haslett, Michael Flynn, James Dorsey, Ian Crawford, Christoph Kottmeier, and Bernhard Vogel
Atmos. Chem. Phys., 18, 9767–9788, https://doi.org/10.5194/acp-18-9767-2018, https://doi.org/10.5194/acp-18-9767-2018, 2018
Short summary
Short summary
Highly resolved process study simulations for 2–3 July are conducted with COSMO-ART to assess the aerosol direct and indirect effect on meteorological conditions over southern West Africa. The meteorological phenomena of Atlantic inflow and stratus-to-cumulus transition are identified as highly susceptible to the aerosol direct effect, leading to a spatial shift of the Atlantic inflow front and a temporal shift of the stratus-to-cumulus transition with changes in the aerosol amount.
Claudia Timmreck, Graham W. Mann, Valentina Aquila, Rene Hommel, Lindsay A. Lee, Anja Schmidt, Christoph Brühl, Simon Carn, Mian Chin, Sandip S. Dhomse, Thomas Diehl, Jason M. English, Michael J. Mills, Ryan Neely, Jianxiong Sheng, Matthew Toohey, and Debra Weisenstein
Geosci. Model Dev., 11, 2581–2608, https://doi.org/10.5194/gmd-11-2581-2018, https://doi.org/10.5194/gmd-11-2581-2018, 2018
Short summary
Short summary
The paper describes the experimental design of the Interactive Stratospheric Aerosol Model Intercomparison Project (ISA-MIP). ISA-MIP will improve understanding of stratospheric aerosol processes, chemistry, and dynamics and constrain climate impacts of background aerosol variability and small and large volcanic eruptions. It will help to asses the stratospheric aerosol contribution to the early 21st century global warming hiatus period and the effects from hypothetical geoengineering schemes.
Sekou Keita, Cathy Liousse, Véronique Yoboué, Pamela Dominutti, Benjamin Guinot, Eric-Michel Assamoi, Agnès Borbon, Sophie L. Haslett, Laetitia Bouvier, Aurélie Colomb, Hugh Coe, Aristide Akpo, Jacques Adon, Julien Bahino, Madina Doumbia, Julien Djossou, Corinne Galy-Lacaux, Eric Gardrat, Sylvain Gnamien, Jean F. Léon, Money Ossohou, E. Touré N'Datchoh, and Laurent Roblou
Atmos. Chem. Phys., 18, 7691–7708, https://doi.org/10.5194/acp-18-7691-2018, https://doi.org/10.5194/acp-18-7691-2018, 2018
Short summary
Short summary
This study provides emission factor (EF) data for elemental and organic carbon, total particulate matter and 58 volatile organic compound species for combustion sources specific to Africa to establish emission inventories with less uncertainty. EFs obtained in this study are generally higher than those in the literature whose values are used in emissions inventories for Africa. This shows that particles and VOC emissions were sometimes underestimated and underlines this study's importance.
Jamie M. Kelly, Ruth M. Doherty, Fiona M. O'Connor, and Graham W. Mann
Atmos. Chem. Phys., 18, 7393–7422, https://doi.org/10.5194/acp-18-7393-2018, https://doi.org/10.5194/acp-18-7393-2018, 2018
Short summary
Short summary
The global secondary organic aerosol (SOA) budget is highly uncertain with global models typically underpredicting observed SOA concentrations. Using a global chemistry-climate model, the impacts of biogenic, anthropogenic, and biomass burning VOC emissions on the global SOA budget and model agreement with observed SOA concentrations are quantified.
Luiz A. T. Machado, Alan J. P. Calheiros, Thiago Biscaro, Scott Giangrande, Maria A. F. Silva Dias, Micael A. Cecchini, Rachel Albrecht, Meinrat O. Andreae, Wagner F. Araujo, Paulo Artaxo, Stephan Borrmann, Ramon Braga, Casey Burleyson, Cristiano W. Eichholz, Jiwen Fan, Zhe Feng, Gilberto F. Fisch, Michael P. Jensen, Scot T. Martin, Ulrich Pöschl, Christopher Pöhlker, Mira L. Pöhlker, Jean-François Ribaud, Daniel Rosenfeld, Jaci M. B. Saraiva, Courtney Schumacher, Ryan Thalman, David Walter, and Manfred Wendisch
Atmos. Chem. Phys., 18, 6461–6482, https://doi.org/10.5194/acp-18-6461-2018, https://doi.org/10.5194/acp-18-6461-2018, 2018
Short summary
Short summary
This overview discuss the main precipitation processes and their sensitivities to environmental conditions in the Central Amazon Basin. It presents a review of the knowledge acquired about cloud processes and rainfall formation in Amazonas. In addition, this study provides a characterization of the seasonal variation and rainfall sensitivities to topography, surface cover, and aerosol concentration. Airplane measurements were evaluated to characterize and contrast cloud microphysical properties.
Amy K. Hodgson, William T. Morgan, Sebastian O'Shea, Stéphane Bauguitte, James D. Allan, Eoghan Darbyshire, Michael J. Flynn, Dantong Liu, James Lee, Ben Johnson, Jim M. Haywood, Karla M. Longo, Paulo E. Artaxo, and Hugh Coe
Atmos. Chem. Phys., 18, 5619–5638, https://doi.org/10.5194/acp-18-5619-2018, https://doi.org/10.5194/acp-18-5619-2018, 2018
Short summary
Short summary
We flew a large atmospheric research aircraft across a number of different biomass burning environments in the Amazon Basin in September and October 2012. In this paper, we focus on smoke sampled very close to fresh fires (only 600–900 m above the fires and smoke that was 4–6 min old) to examine the chemical components that make up the smoke and their abundance. We found substantial differences in the emitted smoke that are due to the fuel type and combustion processes driving the fires.
Nicholas W. Davies, Michael I. Cotterell, Cathryn Fox, Kate Szpek, Jim M. Haywood, and Justin M. Langridge
Atmos. Meas. Tech., 11, 2313–2324, https://doi.org/10.5194/amt-11-2313-2018, https://doi.org/10.5194/amt-11-2313-2018, 2018
Short summary
Short summary
The poorly characterised optical properties of atmospheric aerosols are one of the major uncertainties when modelling future climate change. Photoacoustic spectroscopy is an accurate and sensitive method for measurement of aerosol light absorption. Photoacoustic spectrometers require calibration; hence this study validates the use of ozone as a calibrant and simultaneously verifies the accuracy of the photoacoustic spectrometers in question.
Gillian D. Thornhill, Claire L. Ryder, Eleanor J. Highwood, Len C. Shaffrey, and Ben T. Johnson
Atmos. Chem. Phys., 18, 5321–5342, https://doi.org/10.5194/acp-18-5321-2018, https://doi.org/10.5194/acp-18-5321-2018, 2018
Short summary
Short summary
We investigated the impact on the regional climate of different amounts of smoke emission (aerosol) from the burning of vegetation in South America using a climate model. We looked at differences between high and low smoke emissions and found impacts from the higher smoke emissions on the amount of cloud cover, solar radiation reaching the surface, wind patterns and rainfall. This means the local climate may be affected if there is more deforestation and more smoke from burning of vegetation.
Riinu Ots, Mathew R. Heal, Dominique E. Young, Leah R. Williams, James D. Allan, Eiko Nemitz, Chiara Di Marco, Anais Detournay, Lu Xu, Nga L. Ng, Hugh Coe, Scott C. Herndon, Ian A. Mackenzie, David C. Green, Jeroen J. P. Kuenen, Stefan Reis, and Massimo Vieno
Atmos. Chem. Phys., 18, 4497–4518, https://doi.org/10.5194/acp-18-4497-2018, https://doi.org/10.5194/acp-18-4497-2018, 2018
Short summary
Short summary
The main hypothesis of this paper is that people who live in large cities in the UK disobey the
smoke control lawas it has not been actively enforced for decades now. However, the use of wood in residential heating has increased, partly due to renewable energy targets, but also for discretionary (i.e. pleasant fireplaces) reasons. Our study is based mainly in London, but similar struggles with urban air quality due to residential wood and coal burning are seen in other major European cities.
James D. Lee, Stephen D. Mobbs, Axel Wellpott, Grant Allen, Stephane J.-B. Bauguitte, Ralph R. Burton, Richard Camilli, Hugh Coe, Rebecca E. Fisher, James L. France, Martin Gallagher, James R. Hopkins, Mathias Lanoiselle, Alastair C. Lewis, David Lowry, Euan G. Nisbet, Ruth M. Purvis, Sebastian O'Shea, John A. Pyle, and Thomas B. Ryerson
Atmos. Meas. Tech., 11, 1725–1739, https://doi.org/10.5194/amt-11-1725-2018, https://doi.org/10.5194/amt-11-1725-2018, 2018
Short summary
Short summary
This work describes measurements, made from an aircraft platform, of the emission of methane and other organic gases from an uncontrolled leak from an oil platform in the North Sea (Total Elgin). The measurements made helped the platform operators to devise a strategy for repairing the leak and serve as a methodology for assessing future similar incidents.
Ernesto Reyes-Villegas, Michael Priestley, Yu-Chieh Ting, Sophie Haslett, Thomas Bannan, Michael Le Breton, Paul I. Williams, Asan Bacak, Michael J. Flynn, Hugh Coe, Carl Percival, and James D. Allan
Atmos. Chem. Phys., 18, 4093–4111, https://doi.org/10.5194/acp-18-4093-2018, https://doi.org/10.5194/acp-18-4093-2018, 2018
Short summary
Short summary
This work presents the analysis of a special event with high biomass burning emissions, named Bonfire Night. Nitrogen chemistry was observed and it was possible to study the night time chemistry. It was possible to quantify particulate organic oxides of nitrogen (PON) concentrations of 2.8 µg m−3 using 46 : 30 ratios from aerosol mass spectrometry measurements. The use of the receptor model positive matrix factorization (PMF) allowed to separate organic aerosols into different sources.
Dantong Liu, Jonathan W. Taylor, Jonathan Crosier, Nicholas Marsden, Keith N. Bower, Gary Lloyd, Claire L. Ryder, Jennifer K. Brooke, Richard Cotton, Franco Marenco, Alan Blyth, Zhiqiang Cui, Victor Estelles, Martin Gallagher, Hugh Coe, and Tom W. Choularton
Atmos. Chem. Phys., 18, 3817–3838, https://doi.org/10.5194/acp-18-3817-2018, https://doi.org/10.5194/acp-18-3817-2018, 2018
Short summary
Short summary
This article presents measurements of aerosol properties off the coast of west Africa during August 2015. For the first time, an airborne laser-induced incandescence instrument was deployed to measure the hematite content of dust. The single scattering albedo of dust was found to be influenced by the hematite content, but depended on the dust source and potential dust age. This highlights the importance of size-dependent composition in determining the optical properties of dust.
Julia Schmale, Silvia Henning, Stefano Decesari, Bas Henzing, Helmi Keskinen, Karine Sellegri, Jurgita Ovadnevaite, Mira L. Pöhlker, Joel Brito, Aikaterini Bougiatioti, Adam Kristensson, Nikos Kalivitis, Iasonas Stavroulas, Samara Carbone, Anne Jefferson, Minsu Park, Patrick Schlag, Yoko Iwamoto, Pasi Aalto, Mikko Äijälä, Nicolas Bukowiecki, Mikael Ehn, Göran Frank, Roman Fröhlich, Arnoud Frumau, Erik Herrmann, Hartmut Herrmann, Rupert Holzinger, Gerard Kos, Markku Kulmala, Nikolaos Mihalopoulos, Athanasios Nenes, Colin O'Dowd, Tuukka Petäjä, David Picard, Christopher Pöhlker, Ulrich Pöschl, Laurent Poulain, André Stephan Henry Prévôt, Erik Swietlicki, Meinrat O. Andreae, Paulo Artaxo, Alfred Wiedensohler, John Ogren, Atsushi Matsuki, Seong Soo Yum, Frank Stratmann, Urs Baltensperger, and Martin Gysel
Atmos. Chem. Phys., 18, 2853–2881, https://doi.org/10.5194/acp-18-2853-2018, https://doi.org/10.5194/acp-18-2853-2018, 2018
Short summary
Short summary
Collocated long-term observations of cloud condensation nuclei (CCN) number concentrations, particle number size distributions and chemical composition from 12 sites are synthesized. Observations cover coastal environments, the Arctic, the Mediterranean, the boreal and rain forest, high alpine and continental background sites, and Monsoon-influenced areas. We interpret regional and seasonal variability. CCN concentrations are predicted with the κ–Köhler model and compared to the measurements.
Lauren Marshall, Anja Schmidt, Matthew Toohey, Ken S. Carslaw, Graham W. Mann, Michael Sigl, Myriam Khodri, Claudia Timmreck, Davide Zanchettin, William T. Ball, Slimane Bekki, James S. A. Brooke, Sandip Dhomse, Colin Johnson, Jean-Francois Lamarque, Allegra N. LeGrande, Michael J. Mills, Ulrike Niemeier, James O. Pope, Virginie Poulain, Alan Robock, Eugene Rozanov, Andrea Stenke, Timofei Sukhodolov, Simone Tilmes, Kostas Tsigaridis, and Fiona Tummon
Atmos. Chem. Phys., 18, 2307–2328, https://doi.org/10.5194/acp-18-2307-2018, https://doi.org/10.5194/acp-18-2307-2018, 2018
Short summary
Short summary
We use four global aerosol models to compare the simulated sulfate deposition from the 1815 Mt. Tambora eruption to ice core records. Inter-model volcanic sulfate deposition differs considerably. Volcanic sulfate deposited on polar ice sheets is used to estimate the atmospheric sulfate burden and subsequently radiative forcing of historic eruptions. Our results suggest that deriving such relationships from model simulations may be associated with greater uncertainties than previously thought.
Adriana Rocha-Lima, J. Vanderlei Martins, Lorraine A. Remer, Martin Todd, John H. Marsham, Sebastian Engelstaedter, Claire L. Ryder, Carolina Cavazos-Guerra, Paulo Artaxo, Peter Colarco, and Richard Washington
Atmos. Chem. Phys., 18, 1023–1043, https://doi.org/10.5194/acp-18-1023-2018, https://doi.org/10.5194/acp-18-1023-2018, 2018
Short summary
Short summary
We present results of ground-based measurements and subsequent laboratory analysis of Sahara dust samples collected in Algeria and Mauritania during the Fennec campaign in 2011. The results show that the sampled dust has low absorption characteristics and exhibits a distinct spectral bow-like shape. We find distinctive differences in the composition and optical characteristics of the dust from the two sites, corroborating with other studies that not all Saharan dust is the same.
Meinrat O. Andreae, Armin Afchine, Rachel Albrecht, Bruna Amorim Holanda, Paulo Artaxo, Henrique M. J. Barbosa, Stephan Borrmann, Micael A. Cecchini, Anja Costa, Maximilian Dollner, Daniel Fütterer, Emma Järvinen, Tina Jurkat, Thomas Klimach, Tobias Konemann, Christoph Knote, Martina Krämer, Trismono Krisna, Luiz A. T. Machado, Stephan Mertes, Andreas Minikin, Christopher Pöhlker, Mira L. Pöhlker, Ulrich Pöschl, Daniel Rosenfeld, Daniel Sauer, Hans Schlager, Martin Schnaiter, Johannes Schneider, Christiane Schulz, Antonio Spanu, Vinicius B. Sperling, Christiane Voigt, Adrian Walser, Jian Wang, Bernadett Weinzierl, Manfred Wendisch, and Helmut Ziereis
Atmos. Chem. Phys., 18, 921–961, https://doi.org/10.5194/acp-18-921-2018, https://doi.org/10.5194/acp-18-921-2018, 2018
Short summary
Short summary
We made airborne measurements of aerosol particle concentrations and properties over the Amazon Basin. We found extremely high concentrations of very small particles in the region between 8 and 14 km altitude all across the basin, which had been recently formed by gas-to-particle conversion at these altitudes. This makes the upper troposphere a very important source region of atmospheric particles with significant implications for the Earth's climate system.
Joel Brito, Evelyn Freney, Pamela Dominutti, Agnes Borbon, Sophie L. Haslett, Anneke M. Batenburg, Aurelie Colomb, Regis Dupuy, Cyrielle Denjean, Frederic Burnet, Thierry Bourriane, Adrien Deroubaix, Karine Sellegri, Stephan Borrmann, Hugh Coe, Cyrille Flamant, Peter Knippertz, and Alfons Schwarzenboeck
Atmos. Chem. Phys., 18, 757–772, https://doi.org/10.5194/acp-18-757-2018, https://doi.org/10.5194/acp-18-757-2018, 2018
Short summary
Short summary
This work focuses on sources of submicron aerosol particles over southern West Africa (SWA). Results have shown that isoprene, a gas-phase compound of biogenic origin, is responsible for roughly 25 % of the organic aerosol (OA) loading, under most background or urban plumes alike. This fraction represents a lower estimate from the biogenic contribution in this fairly polluted region. This work sheds light upon the role of anthropogenic and biogenic emissions on the pollution burden over SWA.
Camilla W. Stjern, Helene Muri, Lars Ahlm, Olivier Boucher, Jason N. S. Cole, Duoying Ji, Andy Jones, Jim Haywood, Ben Kravitz, Andrew Lenton, John C. Moore, Ulrike Niemeier, Steven J. Phipps, Hauke Schmidt, Shingo Watanabe, and Jón Egill Kristjánsson
Atmos. Chem. Phys., 18, 621–634, https://doi.org/10.5194/acp-18-621-2018, https://doi.org/10.5194/acp-18-621-2018, 2018
Short summary
Short summary
Marine cloud brightening (MCB) has been proposed to help limit global warming. We present here the first multi-model assessment of idealized MCB simulations from the Geoengineering Model Intercomparison Project. While all models predict a global cooling as intended, there is considerable spread between the models both in terms of radiative forcing and the climate response, largely linked to the substantial differences in the models' representation of clouds.
Brett B. Palm, Suzane S. de Sá, Douglas A. Day, Pedro Campuzano-Jost, Weiwei Hu, Roger Seco, Steven J. Sjostedt, Jeong-Hoo Park, Alex B. Guenther, Saewung Kim, Joel Brito, Florian Wurm, Paulo Artaxo, Ryan Thalman, Jian Wang, Lindsay D. Yee, Rebecca Wernis, Gabriel Isaacman-VanWertz, Allen H. Goldstein, Yingjun Liu, Stephen R. Springston, Rodrigo Souza, Matt K. Newburn, M. Lizabeth Alexander, Scot T. Martin, and Jose L. Jimenez
Atmos. Chem. Phys., 18, 467–493, https://doi.org/10.5194/acp-18-467-2018, https://doi.org/10.5194/acp-18-467-2018, 2018
Short summary
Short summary
Ambient air was oxidized by OH or O3 in an oxidation flow reactor during both wet and dry seasons in the GoAmazon2014/5 campaign to study secondary organic aerosol (SOA) formation. We investigated how much biogenic, urban, and biomass burning sources contributed to the ambient concentrations of SOA precursor gases and how their contributions changed diurnally and seasonally. SOA yields and hygroscopicity of organic aerosol in the oxidation flow reactor were also studied.
Sophie L. Haslett, J. Chris Thomas, William T. Morgan, Rory Hadden, Dantong Liu, James D. Allan, Paul I. Williams, Sekou Keita, Cathy Liousse, and Hugh Coe
Atmos. Chem. Phys., 18, 385–403, https://doi.org/10.5194/acp-18-385-2018, https://doi.org/10.5194/acp-18-385-2018, 2018
Short summary
Short summary
Wood burning is chaotic, so the particles emitted can be difficult to study in a repeatable way. Here, we addressed this problem by carefully controlling small wood fires in the lab. We saw three burning phases, which could be told apart chemically; we also saw evidence of these in measurements of wood burning in London in 2012. Controlled experiments like this help us to understand why emissions are so variable and to recognise burning conditions just from the particles seen in the atmosphere.
Nicholas A. Marsden, Michael J. Flynn, James D. Allan, and Hugh Coe
Atmos. Meas. Tech., 11, 195–213, https://doi.org/10.5194/amt-11-195-2018, https://doi.org/10.5194/amt-11-195-2018, 2018
Short summary
Short summary
Mineralogy of silicate mineral dust has a strong influence on climate and ecosystems due to variation in physiochemical properties that result from differences in composition and crystal structure (mineral phase). Traditional offline methods of analysing mineral phase are labour intensive and the temporal resolution of the data is lost. We introduce a novel technique that enables the online differentiation of mineral phase in silicate particles by single-particle mass spectrometry.
Micael A. Cecchini, Luiz A. T. Machado, Manfred Wendisch, Anja Costa, Martina Krämer, Meinrat O. Andreae, Armin Afchine, Rachel I. Albrecht, Paulo Artaxo, Stephan Borrmann, Daniel Fütterer, Thomas Klimach, Christoph Mahnke, Scot T. Martin, Andreas Minikin, Sergej Molleker, Lianet H. Pardo, Christopher Pöhlker, Mira L. Pöhlker, Ulrich Pöschl, Daniel Rosenfeld, and Bernadett Weinzierl
Atmos. Chem. Phys., 17, 14727–14746, https://doi.org/10.5194/acp-17-14727-2017, https://doi.org/10.5194/acp-17-14727-2017, 2017
Short summary
Short summary
This study introduces and explores the concept of gamma phase space. This space is able to represent all possible variations in the cloud droplet size distributions (DSDs). The methodology was applied to recent in situ aircraft measurements over the Amazon. It is shown that the phase space is able to represent several processes occurring in the clouds in a simple manner. The consequences for cloud studies, modeling, and the representation of the transition from warm to mixed phase are discussed.
Eugene F. Mikhailov, Svetlana Mironova, Gregory Mironov, Sergey Vlasenko, Alexey Panov, Xuguang Chi, David Walter, Samara Carbone, Paulo Artaxo, Martin Heimann, Jost Lavric, Ulrich Pöschl, and Meinrat O. Andreae
Atmos. Chem. Phys., 17, 14365–14392, https://doi.org/10.5194/acp-17-14365-2017, https://doi.org/10.5194/acp-17-14365-2017, 2017
Lucy S. Neal, Mohit Dalvi, Gerd Folberth, Rachel N. McInnes, Paul Agnew, Fiona M. O'Connor, Nicholas H. Savage, and Marie Tilbee
Geosci. Model Dev., 10, 3941–3962, https://doi.org/10.5194/gmd-10-3941-2017, https://doi.org/10.5194/gmd-10-3941-2017, 2017
Short summary
Short summary
This paper concerns aspects of downscaling global atmospheric composition and chemistry model predictions on the continental and UK national scale. A two-step nested model configuration was developed and used to simulate UK air quality for a 5-year period under present-day conditions. The results show some benefits associated with higher-resolution modelling for primary emitted pollutants, but also highlight the importance of consistency between the nested models.
Maria Sand, Bjørn H. Samset, Yves Balkanski, Susanne Bauer, Nicolas Bellouin, Terje K. Berntsen, Huisheng Bian, Mian Chin, Thomas Diehl, Richard Easter, Steven J. Ghan, Trond Iversen, Alf Kirkevåg, Jean-François Lamarque, Guangxing Lin, Xiaohong Liu, Gan Luo, Gunnar Myhre, Twan van Noije, Joyce E. Penner, Michael Schulz, Øyvind Seland, Ragnhild B. Skeie, Philip Stier, Toshihiko Takemura, Kostas Tsigaridis, Fangqun Yu, Kai Zhang, and Hua Zhang
Atmos. Chem. Phys., 17, 12197–12218, https://doi.org/10.5194/acp-17-12197-2017, https://doi.org/10.5194/acp-17-12197-2017, 2017
Short summary
Short summary
The role of aerosols in the changing polar climate is not well understood and the aerosols are poorly constrained in the models. In this study we have compared output from 16 different aerosol models with available observations at both poles. We show that the model median is representative of the observations, but the model spread is large. The Arctic direct aerosol radiative effect over the industrial area is positive during spring due to black carbon and negative during summer due to sulfate.
Ryan Thalman, Suzane S. de Sá, Brett B. Palm, Henrique M. J. Barbosa, Mira L. Pöhlker, M. Lizabeth Alexander, Joel Brito, Samara Carbone, Paulo Castillo, Douglas A. Day, Chongai Kuang, Antonio Manzi, Nga Lee Ng, Arthur J. Sedlacek III, Rodrigo Souza, Stephen Springston, Thomas Watson, Christopher Pöhlker, Ulrich Pöschl, Meinrat O. Andreae, Paulo Artaxo, Jose L. Jimenez, Scot T. Martin, and Jian Wang
Atmos. Chem. Phys., 17, 11779–11801, https://doi.org/10.5194/acp-17-11779-2017, https://doi.org/10.5194/acp-17-11779-2017, 2017
Short summary
Short summary
Particle hygroscopicity, mixing state, and the hygroscopicity of organic components were characterized in central Amazonia for 1 year; their seasonal and diel variations were driven by a combination of primary emissions, photochemical oxidation, and boundary layer development. The relationship between the hygroscopicity of organic components and their oxidation level was examined, and the results help to reconcile the differences among the relationships observed in previous studies.
Micael A. Cecchini, Luiz A. T. Machado, Meinrat O. Andreae, Scot T. Martin, Rachel I. Albrecht, Paulo Artaxo, Henrique M. J. Barbosa, Stephan Borrmann, Daniel Fütterer, Tina Jurkat, Christoph Mahnke, Andreas Minikin, Sergej Molleker, Mira L. Pöhlker, Ulrich Pöschl, Daniel Rosenfeld, Christiane Voigt, Bernadett Weinzierl, and Manfred Wendisch
Atmos. Chem. Phys., 17, 10037–10050, https://doi.org/10.5194/acp-17-10037-2017, https://doi.org/10.5194/acp-17-10037-2017, 2017
Short summary
Short summary
We study the effects of aerosol particles and updraft speed on the warm phase of Amazonian clouds. We expand the sensitivity analysis usually found in the literature by concomitantly considering cloud evolution and the effects on droplet size distribution (DSD) shape. The quantitative results show that particle concentration is the primary driver for the vertical profiles of effective diameter and droplet concentration in the warm phase of Amazonian convective clouds.
Jorge Saturno, Christopher Pöhlker, Dario Massabò, Joel Brito, Samara Carbone, Yafang Cheng, Xuguang Chi, Florian Ditas, Isabella Hrabě de Angelis, Daniel Morán-Zuloaga, Mira L. Pöhlker, Luciana V. Rizzo, David Walter, Qiaoqiao Wang, Paulo Artaxo, Paolo Prati, and Meinrat O. Andreae
Atmos. Meas. Tech., 10, 2837–2850, https://doi.org/10.5194/amt-10-2837-2017, https://doi.org/10.5194/amt-10-2837-2017, 2017
Short summary
Short summary
Different Aethalometer correction schemes were compared to a multi-wavelength absorption reference measurement. One of the correction schemes was found to artificially increase the short-wavelength absorption coefficients. It was found that accounting for aerosol scattering properties in the correction is crucial to retrieve the proper absorption Ångström exponent (AAE). We found that the raw AAE of uncompensated Aethalometer attenuation significantly correlates with a measured reference AAE.
Ramon Campos Braga, Daniel Rosenfeld, Ralf Weigel, Tina Jurkat, Meinrat O. Andreae, Manfred Wendisch, Mira L. Pöhlker, Thomas Klimach, Ulrich Pöschl, Christopher Pöhlker, Christiane Voigt, Christoph Mahnke, Stephan Borrmann, Rachel I. Albrecht, Sergej Molleker, Daniel A. Vila, Luiz A. T. Machado, and Paulo Artaxo
Atmos. Chem. Phys., 17, 7365–7386, https://doi.org/10.5194/acp-17-7365-2017, https://doi.org/10.5194/acp-17-7365-2017, 2017
Suzane S. de Sá, Brett B. Palm, Pedro Campuzano-Jost, Douglas A. Day, Matthew K. Newburn, Weiwei Hu, Gabriel Isaacman-VanWertz, Lindsay D. Yee, Ryan Thalman, Joel Brito, Samara Carbone, Paulo Artaxo, Allen H. Goldstein, Antonio O. Manzi, Rodrigo A. F. Souza, Fan Mei, John E. Shilling, Stephen R. Springston, Jian Wang, Jason D. Surratt, M. Lizabeth Alexander, Jose L. Jimenez, and Scot T. Martin
Atmos. Chem. Phys., 17, 6611–6629, https://doi.org/10.5194/acp-17-6611-2017, https://doi.org/10.5194/acp-17-6611-2017, 2017
John C. Kealy, Franco Marenco, John H. Marsham, Luis Garcia-Carreras, Pete N. Francis, Michael C. Cooke, and James Hocking
Atmos. Chem. Phys., 17, 5789–5807, https://doi.org/10.5194/acp-17-5789-2017, https://doi.org/10.5194/acp-17-5789-2017, 2017
Short summary
Short summary
Using novel methods of cloud detection from aircraft data over the Sahara desert, we evaluate the performance of the Meteosat satellite in measuring cloud properties: namely, the cloud mask and the cloud-top height. We find that the cloud mask can justifiably be used for many applications (such as creating a detailed Saharan cloud climatology), and we also discuss its limitations. As for the cloud-top height, we show that the dataset cannot yet be considered robust in this part of the world.
Oleg Travnikov, Hélène Angot, Paulo Artaxo, Mariantonia Bencardino, Johannes Bieser, Francesco D'Amore, Ashu Dastoor, Francesco De Simone, María del Carmen Diéguez, Aurélien Dommergue, Ralf Ebinghaus, Xin Bin Feng, Christian N. Gencarelli, Ian M. Hedgecock, Olivier Magand, Lynwill Martin, Volker Matthias, Nikolay Mashyanov, Nicola Pirrone, Ramesh Ramachandran, Katie Alana Read, Andrei Ryjkov, Noelle E. Selin, Fabrizio Sena, Shaojie Song, Francesca Sprovieri, Dennis Wip, Ingvar Wängberg, and Xin Yang
Atmos. Chem. Phys., 17, 5271–5295, https://doi.org/10.5194/acp-17-5271-2017, https://doi.org/10.5194/acp-17-5271-2017, 2017
Short summary
Short summary
The study provides a complex analysis of processes governing Hg fate in the atmosphere involving both measurement data and simulation results of chemical transport models. Evaluation of the model simulations and numerical experiments against observations allows explaining spatial and temporal variations of Hg concentration in the near-surface atmospheric layer and shows possibility of multiple pathways of Hg oxidation occurring concurrently in various parts of the atmosphere.
Rudra P. Pokhrel, Eric R. Beamesderfer, Nick L. Wagner, Justin M. Langridge, Daniel A. Lack, Thilina Jayarathne, Elizabeth A. Stone, Chelsea E. Stockwell, Robert J. Yokelson, and Shane M. Murphy
Atmos. Chem. Phys., 17, 5063–5078, https://doi.org/10.5194/acp-17-5063-2017, https://doi.org/10.5194/acp-17-5063-2017, 2017
Short summary
Short summary
This study investigates enhancement of black carbon (BC) absorption in biomass burning emissions due to absorbing and non-absorbing coatings. The fraction of absorption due to BC, brown carbon (BrC), and lensing is estimated using different approaches. The similarities and differences between the results from these approaches are discussed. Absorption by BrC is shown to have good correlation with the elemental to organic carbon ratio (EC / OC) and AAE.
Diego A. Gouveia, Boris Barja, Henrique M. J. Barbosa, Patric Seifert, Holger Baars, Theotonio Pauliquevis, and Paulo Artaxo
Atmos. Chem. Phys., 17, 3619–3636, https://doi.org/10.5194/acp-17-3619-2017, https://doi.org/10.5194/acp-17-3619-2017, 2017
Short summary
Short summary
We derive the first comprehensive statistics of cirrus clouds over a tropical rain forest. Monthly frequency of occurrence can be as high as 88 %. The diurnal cycle follows that of precipitation, and frequently cirrus is found in the tropopause layer. The mean values of cloud top, base, thickness, optical depth and lidar ratio were 14.3 km, 12.9 km, 1.4 km, 0.25, and 23 sr respectively. The high fraction (42 %) of subvisible clouds may contaminate satellite measurements to an unknown extent.
Céline Planche, Graham W. Mann, Kenneth S. Carslaw, Mohit Dalvi, John H. Marsham, and Paul R. Field
Atmos. Chem. Phys., 17, 3371–3384, https://doi.org/10.5194/acp-17-3371-2017, https://doi.org/10.5194/acp-17-3371-2017, 2017
Short summary
Short summary
A convection-permitting limited area model with prognostic aerosol microphysics is applied to investigate how concentrations of cloud condensation nuclei (CCN) in the marine boundary layer are affected by high-resolution dynamical and thermodynamic fields at sub-climate model scale. We gain new insight into the way primary sea-salt and secondary sulfate particles contribute to the overall CCN variance, and find a marked difference in the variability of super- and sub-micron CCN.
Samuel Rémy, Andreas Veira, Ronan Paugam, Mikhail Sofiev, Johannes W. Kaiser, Franco Marenco, Sharon P. Burton, Angela Benedetti, Richard J. Engelen, Richard Ferrare, and Jonathan W. Hair
Atmos. Chem. Phys., 17, 2921–2942, https://doi.org/10.5194/acp-17-2921-2017, https://doi.org/10.5194/acp-17-2921-2017, 2017
Short summary
Short summary
Biomass burning emission injection heights are an important source of uncertainty in global climate and atmospheric composition modelling. This work provides a global daily data set of injection heights computed by two very different algorithms, which coherently complete a global biomass burning emissions database. The two data sets were compared and validated against observations, and their use was found to improve forecasts of carbonaceous aerosols in two case studies.
Joana A. Rizzolo, Cybelli G. G. Barbosa, Guilherme C. Borillo, Ana F. L. Godoi, Rodrigo A. F. Souza, Rita V. Andreoli, Antônio O. Manzi, Marta O. Sá, Eliane G. Alves, Christopher Pöhlker, Isabella H. Angelis, Florian Ditas, Jorge Saturno, Daniel Moran-Zuloaga, Luciana V. Rizzo, Nilton E. Rosário, Theotonio Pauliquevis, Rosa M. N. Santos, Carlos I. Yamamoto, Meinrat O. Andreae, Paulo Artaxo, Philip E. Taylor, and Ricardo H. M. Godoi
Atmos. Chem. Phys., 17, 2673–2687, https://doi.org/10.5194/acp-17-2673-2017, https://doi.org/10.5194/acp-17-2673-2017, 2017
Short summary
Short summary
Particles collected from the air above the Amazon Basin during the wet season were identified as Saharan dust. Soluble minerals were analysed to assess the bioavailability of iron. Dust deposited onto the canopy and topsoil can likely benefit organisms such as fungi and lichens. The ongoing deposition of Saharan dust across the Amazon rainforest provides an iron-rich source of essential macronutrients and micronutrients to plant roots, and also directly to plant leaves during the wet season.
Francesco De Simone, Paulo Artaxo, Mariantonia Bencardino, Sergio Cinnirella, Francesco Carbone, Francesco D'Amore, Aurélien Dommergue, Xin Bin Feng, Christian N. Gencarelli, Ian M. Hedgecock, Matthew S. Landis, Francesca Sprovieri, Noriuki Suzuki, Ingvar Wängberg, and Nicola Pirrone
Atmos. Chem. Phys., 17, 1881–1899, https://doi.org/10.5194/acp-17-1881-2017, https://doi.org/10.5194/acp-17-1881-2017, 2017
Short summary
Short summary
Biomass burning (BB) releases of Hg, usually considered to be Hg(0), are a significant global source of atmospheric Hg. However there is experimental evidence that a fraction of this Hg is bound to particulate matter, Hg(P). This modelling study shows how increasing fractions of Hg(P) reduce the availability of Hg to the global pool, raising Hg exposure for those regions characterized by high BB, with implications for the sub-Arctic and also rice-growing areas in South-East Asia.
Adam P. Bateman, Zhaoheng Gong, Tristan H. Harder, Suzane S. de Sá, Bingbing Wang, Paulo Castillo, Swarup China, Yingjun Liu, Rachel E. O'Brien, Brett B. Palm, Hung-Wei Shiu, Glauber G. Cirino, Ryan Thalman, Kouji Adachi, M. Lizabeth Alexander, Paulo Artaxo, Allan K. Bertram, Peter R. Buseck, Mary K. Gilles, Jose L. Jimenez, Alexander Laskin, Antonio O. Manzi, Arthur Sedlacek, Rodrigo A. F. Souza, Jian Wang, Rahul Zaveri, and Scot T. Martin
Atmos. Chem. Phys., 17, 1759–1773, https://doi.org/10.5194/acp-17-1759-2017, https://doi.org/10.5194/acp-17-1759-2017, 2017
Short summary
Short summary
The occurrence of nonliquid and liquid physical states of submicron atmospheric particulate matter (PM) downwind of an urban region in central Amazonia was investigated. Air masses representing background conditions, urban pollution, and regional- and continental-scale biomass were measured. Anthropogenic influences contributed to the presence of nonliquid PM in the atmospheric particle population, while liquid PM dominated during periods of biogenic influence.
Alexandra Tsekeri, Vassilis Amiridis, Franco Marenco, Athanasios Nenes, Eleni Marinou, Stavros Solomos, Phil Rosenberg, Jamie Trembath, Graeme J. Nott, James Allan, Michael Le Breton, Asan Bacak, Hugh Coe, Carl Percival, and Nikolaos Mihalopoulos
Atmos. Meas. Tech., 10, 83–107, https://doi.org/10.5194/amt-10-83-2017, https://doi.org/10.5194/amt-10-83-2017, 2017
Short summary
Short summary
The In situ/Remote sensing aerosol Retrieval Algorithm (IRRA) provides vertical profiles of aerosol optical, microphysical and hygroscopic properties from airborne in situ and remote sensing measurements. The algorithm is highly advantageous for aerosol characterization in humid conditions, employing the ISORROPIA II model for acquiring the particle hygroscopic growth. IRRA can find valuable applications in aerosol–cloud interaction schemes and in validation of active space-borne sensors.
Mira L. Pöhlker, Christopher Pöhlker, Florian Ditas, Thomas Klimach, Isabella Hrabe de Angelis, Alessandro Araújo, Joel Brito, Samara Carbone, Yafang Cheng, Xuguang Chi, Reiner Ditz, Sachin S. Gunthe, Jürgen Kesselmeier, Tobias Könemann, Jošt V. Lavrič, Scot T. Martin, Eugene Mikhailov, Daniel Moran-Zuloaga, Diana Rose, Jorge Saturno, Hang Su, Ryan Thalman, David Walter, Jian Wang, Stefan Wolff, Henrique M. J. Barbosa, Paulo Artaxo, Meinrat O. Andreae, and Ulrich Pöschl
Atmos. Chem. Phys., 16, 15709–15740, https://doi.org/10.5194/acp-16-15709-2016, https://doi.org/10.5194/acp-16-15709-2016, 2016
Short summary
Short summary
The paper presents a systematic characterization of cloud condensation nuclei (CCN) concentration in the central Amazonian atmosphere. Our results show that the CCN population in this globally important ecosystem follows a pollution-related seasonal cycle, in which it mainly depends on changes in total aerosol size distribution and to a minor extent in the aerosol chemical composition. Our results allow an efficient modeling and prediction of the CCN population based on a novel approach.
Ernesto Reyes-Villegas, David C. Green, Max Priestman, Francesco Canonaco, Hugh Coe, André S. H. Prévôt, and James D. Allan
Atmos. Chem. Phys., 16, 15545–15559, https://doi.org/10.5194/acp-16-15545-2016, https://doi.org/10.5194/acp-16-15545-2016, 2016
Short summary
Short summary
For the first time in the UK, an Aerosol Chemical Speciation Monitor was used to measure aerosol concentrations in London in March–December 2013, with further organic aerosol (OA) source apportionment using the ME-2 factorization tool. Five OA sources were identified: biomass burning OA, hydrocarbon-like OA, cooking OA, semivolatile oxygenated OA and low-volatility oxygenated OA. This information can be used to take future action on the respective legislation in order to improve the air quality.
Nicholas Marsden, Michael J. Flynn, Jonathan W. Taylor, James D. Allan, and Hugh Coe
Atmos. Meas. Tech., 9, 6051–6068, https://doi.org/10.5194/amt-9-6051-2016, https://doi.org/10.5194/amt-9-6051-2016, 2016
Qiaoqiao Wang, Jorge Saturno, Xuguang Chi, David Walter, Jost V. Lavric, Daniel Moran-Zuloaga, Florian Ditas, Christopher Pöhlker, Joel Brito, Samara Carbone, Paulo Artaxo, and Meinrat O. Andreae
Atmos. Chem. Phys., 16, 14775–14794, https://doi.org/10.5194/acp-16-14775-2016, https://doi.org/10.5194/acp-16-14775-2016, 2016
Short summary
Short summary
We use a chemical transport model to interpret observed aerosol concentrations and absorption over the Amazon Basin during the wet season. With daily temporal resolution for open fire emissions and modified aerosol optical properties, our model successfully captures the observed variation in aerosol concentrations and absorption over the Amazon Basin. The simulation indicates the important influence of open fire mainly from northern South America and from northern Africa in the wet season.
Gillian Young, Hazel M. Jones, Thomas W. Choularton, Jonathan Crosier, Keith N. Bower, Martin W. Gallagher, Rhiannon S. Davies, Ian A. Renfrew, Andrew D. Elvidge, Eoghan Darbyshire, Franco Marenco, Philip R. A. Brown, Hugo M. A. Ricketts, Paul J. Connolly, Gary Lloyd, Paul I. Williams, James D. Allan, Jonathan W. Taylor, Dantong Liu, and Michael J. Flynn
Atmos. Chem. Phys., 16, 13945–13967, https://doi.org/10.5194/acp-16-13945-2016, https://doi.org/10.5194/acp-16-13945-2016, 2016
Short summary
Short summary
Clouds are intricately coupled to the Arctic sea ice. Our inability to accurately model cloud fractions causes large uncertainties in predicted radiative interactions in this region, therefore, affecting sea ice forecasts. Here, we present measurements of cloud microphysics, aerosol properties, and thermodynamic structure over the transition from sea ice to ocean to improve our understanding of the relationship between the Arctic atmosphere and clouds which develop in this region.
Nicolas Bellouin, Laura Baker, Øivind Hodnebrog, Dirk Olivié, Ribu Cherian, Claire Macintosh, Bjørn Samset, Anna Esteve, Borgar Aamaas, Johannes Quaas, and Gunnar Myhre
Atmos. Chem. Phys., 16, 13885–13910, https://doi.org/10.5194/acp-16-13885-2016, https://doi.org/10.5194/acp-16-13885-2016, 2016
Short summary
Short summary
This study uses global climate models to quantify how strongly man-made emissions of selected pollutants modify the energy budget of the Earth. The pollutants studied interact directly and indirectly with sunlight and terrestrial radiation and remain a relatively short time in the atmosphere, leading to regional and seasonal variations in their impacts. This new data set is useful to compare the potential climate impacts of different pollutants in support of policies to reduce climate change.
Riinu Ots, Massimo Vieno, James D. Allan, Stefan Reis, Eiko Nemitz, Dominique E. Young, Hugh Coe, Chiara Di Marco, Anais Detournay, Ian A. Mackenzie, David C. Green, and Mathew R. Heal
Atmos. Chem. Phys., 16, 13773–13789, https://doi.org/10.5194/acp-16-13773-2016, https://doi.org/10.5194/acp-16-13773-2016, 2016
Short summary
Short summary
Emissions of cooking organic aerosol (COA; from charbroiling, frying, etc.) are currently absent in European emissions inventories yet measurements have pointed to significant COA concentrations. In this study, emissions of COA were developed for the UK by model iteration against year-long measurements at two sites in London. Modelled COA dropped rapidly outside of major urban areas, suggesting that although a notable component in UK urban air, COA does not have a significant effect on rural PM.
François Benduhn, Graham W. Mann, Kirsty J. Pringle, David O. Topping, Gordon McFiggans, and Kenneth S. Carslaw
Geosci. Model Dev., 9, 3875–3906, https://doi.org/10.5194/gmd-9-3875-2016, https://doi.org/10.5194/gmd-9-3875-2016, 2016
Short summary
Short summary
We present a new mathematical formalism that serves to represent exchanges of inorganic matter between the atmosphere gas phase and the aerosol aqueous phase. In a global modelling framework, taking into account these processes may help represent many important features more accurately, such as the formation of cloud droplets or the radiative properties of the atmosphere. The formalism strives to keep an appropriate balance between accuracy and computation efficiency requirements.
Xuan Wang, Colette L. Heald, Arthur J. Sedlacek, Suzane S. de Sá, Scot T. Martin, M. Lizabeth Alexander, Thomas B. Watson, Allison C. Aiken, Stephen R. Springston, and Paulo Artaxo
Atmos. Chem. Phys., 16, 12733–12752, https://doi.org/10.5194/acp-16-12733-2016, https://doi.org/10.5194/acp-16-12733-2016, 2016
Short summary
Short summary
We describe a new approach to estimate the absorption of brown carbon (BrC) from multiple-wavelength absorption measurements. By applying this method to column and surface observations globally, we find that BrC contributes up to 40 % of the absorption measured at 440 nm. The analysis of two surface sites also suggests that BrC absorptivity decreases with photochemical aging in biomass burning plumes, but not in typical urban conditions.
Francesca Sprovieri, Nicola Pirrone, Mariantonia Bencardino, Francesco D'Amore, Francesco Carbone, Sergio Cinnirella, Valentino Mannarino, Matthew Landis, Ralf Ebinghaus, Andreas Weigelt, Ernst-Günther Brunke, Casper Labuschagne, Lynwill Martin, John Munthe, Ingvar Wängberg, Paulo Artaxo, Fernando Morais, Henrique de Melo Jorge Barbosa, Joel Brito, Warren Cairns, Carlo Barbante, María del Carmen Diéguez, Patricia Elizabeth Garcia, Aurélien Dommergue, Helene Angot, Olivier Magand, Henrik Skov, Milena Horvat, Jože Kotnik, Katie Alana Read, Luis Mendes Neves, Bernd Manfred Gawlik, Fabrizio Sena, Nikolay Mashyanov, Vladimir Obolkin, Dennis Wip, Xin Bin Feng, Hui Zhang, Xuewu Fu, Ramesh Ramachandran, Daniel Cossa, Joël Knoery, Nicolas Marusczak, Michelle Nerentorp, and Claus Norstrom
Atmos. Chem. Phys., 16, 11915–11935, https://doi.org/10.5194/acp-16-11915-2016, https://doi.org/10.5194/acp-16-11915-2016, 2016
Short summary
Short summary
This work presents atmospheric Hg concentrations recorded within the GMOS global network analyzing Hg measurement results in terms of temporal trends, seasonality and comparability within the network. The over-arching benefit of this coordinated Hg monitoring network would clearly be the production of high-quality measurement datasets on a global scale useful in developing and validating models on different spatial and temporal scales.
Carly L. Reddington, Dominick V. Spracklen, Paulo Artaxo, David A. Ridley, Luciana V. Rizzo, and Andrea Arana
Atmos. Chem. Phys., 16, 11083–11106, https://doi.org/10.5194/acp-16-11083-2016, https://doi.org/10.5194/acp-16-11083-2016, 2016
Short summary
Short summary
We use a global aerosol model evaluated against long-term observations of surface aerosol and aerosol optical depth (AOD) to better understand the impacts of biomass burning on tropical aerosol. We use three satellite-derived fire emission datasets in the model, identifying regions where these datasets capture observations and where emissions are likely to be underestimated. For coincident observations of surface aerosol and AOD, model underestimation of AOD is greater than of surface aerosol.
A. M. Yáñez-Serrano, A. C. Nölscher, E. Bourtsoukidis, B. Derstroff, N. Zannoni, V. Gros, M. Lanza, J. Brito, S. M. Noe, E. House, C. N. Hewitt, B. Langford, E. Nemitz, T. Behrendt, J. Williams, P. Artaxo, M. O. Andreae, and J. Kesselmeier
Atmos. Chem. Phys., 16, 10965–10984, https://doi.org/10.5194/acp-16-10965-2016, https://doi.org/10.5194/acp-16-10965-2016, 2016
Short summary
Short summary
This paper provides a general overview of methyl ethyl ketone (MEK) ambient observations in different ecosystems around the world in order to provide insights into the sources, sink and role of MEK in the atmosphere.
B. Quennehen, J.-C. Raut, K. S. Law, N. Daskalakis, G. Ancellet, C. Clerbaux, S.-W. Kim, M. T. Lund, G. Myhre, D. J. L. Olivié, S. Safieddine, R. B. Skeie, J. L. Thomas, S. Tsyro, A. Bazureau, N. Bellouin, M. Hu, M. Kanakidou, Z. Klimont, K. Kupiainen, S. Myriokefalitakis, J. Quaas, S. T. Rumbold, M. Schulz, R. Cherian, A. Shimizu, J. Wang, S.-C. Yoon, and T. Zhu
Atmos. Chem. Phys., 16, 10765–10792, https://doi.org/10.5194/acp-16-10765-2016, https://doi.org/10.5194/acp-16-10765-2016, 2016
Short summary
Short summary
This paper evaluates the ability of six global models and one regional model in reproducing short-lived pollutants (defined here as ozone and its precursors, aerosols and black carbon) concentrations over Asia using satellite, ground-based and airborne observations.
Key findings are that models homogeneously reproduce the trace gas observations although nitrous oxides are underestimated, whereas the aerosol distributions are heterogeneously reproduced, implicating important uncertainties.
Zarashpe Z. Kapadia, Dominick V. Spracklen, Steve R. Arnold, Duncan J. Borman, Graham W. Mann, Kirsty J. Pringle, Sarah A. Monks, Carly L. Reddington, François Benduhn, Alexandru Rap, Catherine E. Scott, Edward W. Butt, and Masaru Yoshioka
Atmos. Chem. Phys., 16, 10521–10541, https://doi.org/10.5194/acp-16-10521-2016, https://doi.org/10.5194/acp-16-10521-2016, 2016
Short summary
Short summary
Using a coupled tropospheric chemistry-aerosol microphysics model this research paper investigates the effect of variations in aviation fuel sulfur content (FSC) on surface PM2.5 concentrations, increases in aviation-induced premature mortalities, low-level cloud condensation nuclei and radiative effect.
When investigating the climatic impact of variations in FSC the ozone direct radiative effect, aerosol direct radiative effect and aerosol cloud albedo effect are quantified.
When investigating the climatic impact of variations in FSC the ozone direct radiative effect, aerosol direct radiative effect and aerosol cloud albedo effect are quantified.
Davide Zanchettin, Myriam Khodri, Claudia Timmreck, Matthew Toohey, Anja Schmidt, Edwin P. Gerber, Gabriele Hegerl, Alan Robock, Francesco S. R. Pausata, William T. Ball, Susanne E. Bauer, Slimane Bekki, Sandip S. Dhomse, Allegra N. LeGrande, Graham W. Mann, Lauren Marshall, Michael Mills, Marion Marchand, Ulrike Niemeier, Virginie Poulain, Eugene Rozanov, Angelo Rubino, Andrea Stenke, Kostas Tsigaridis, and Fiona Tummon
Geosci. Model Dev., 9, 2701–2719, https://doi.org/10.5194/gmd-9-2701-2016, https://doi.org/10.5194/gmd-9-2701-2016, 2016
Short summary
Short summary
Simulating volcanically-forced climate variability is a challenging task for climate models. The Model Intercomparison Project on the climatic response to volcanic forcing (VolMIP) – an endorsed contribution to CMIP6 – defines a protocol for idealized volcanic-perturbation experiments to improve comparability of results across different climate models. This paper illustrates the design of VolMIP's experiments and describes the aerosol forcing input datasets to be used.
Matthew Kasoar, Apostolos Voulgarakis, Jean-François Lamarque, Drew T. Shindell, Nicolas Bellouin, William J. Collins, Greg Faluvegi, and Kostas Tsigaridis
Atmos. Chem. Phys., 16, 9785–9804, https://doi.org/10.5194/acp-16-9785-2016, https://doi.org/10.5194/acp-16-9785-2016, 2016
Short summary
Short summary
Computer models are our primary tool to investigate how fossil-fuel emissions are affecting the climate. Here, we used three different climate models to see how they simulate the response to removing sulfur dioxide emissions from China. We found that the models disagreed substantially on how large the climate effect is from the emissions in this region. This range of outcomes is concerning if scientists or policy makers have to rely on any one model when performing their own studies.
James D. Whitehead, Eoghan Darbyshire, Joel Brito, Henrique M. J. Barbosa, Ian Crawford, Rafael Stern, Martin W. Gallagher, Paul H. Kaye, James D. Allan, Hugh Coe, Paulo Artaxo, and Gordon McFiggans
Atmos. Chem. Phys., 16, 9727–9743, https://doi.org/10.5194/acp-16-9727-2016, https://doi.org/10.5194/acp-16-9727-2016, 2016
Short summary
Short summary
We present measurements of aerosols during the transition from wet to dry seasons at a pristine rainforest site in central Amazonia. By excluding pollution episodes, we focus on natural biogenic aerosols. Submicron aerosols are dominated by organic material, similar to previous wet season measurements. Larger particles are dominated by biological material, mostly fungal spores, with higher concentrations at night. This study provides important data on the nature of particles above the Amazon.
Rudra P. Pokhrel, Nick L. Wagner, Justin M. Langridge, Daniel A. Lack, Thilina Jayarathne, Elizabeth A. Stone, Chelsea E. Stockwell, Robert J. Yokelson, and Shane M. Murphy
Atmos. Chem. Phys., 16, 9549–9561, https://doi.org/10.5194/acp-16-9549-2016, https://doi.org/10.5194/acp-16-9549-2016, 2016
Short summary
Short summary
This paper gives first multi-wavelength estimates of SSA and AAE of emissions from combustion of Indonesian peat. In addition, it demonstrates that SSA of biomass burning emissions can be parameterized with EC / (EC+OC) and that this parameterization is quantitatively superior to previously published parameterizations based on MCE. It also shows that EC / (EC+OC) parameterization accurately predicts SSA during the first few hours of aging of a biomass burning plume.
Borgar Aamaas, Terje K. Berntsen, Jan S. Fuglestvedt, Keith P. Shine, and Nicolas Bellouin
Atmos. Chem. Phys., 16, 7451–7468, https://doi.org/10.5194/acp-16-7451-2016, https://doi.org/10.5194/acp-16-7451-2016, 2016
Micael A. Cecchini, Luiz A. T. Machado, Jennifer M. Comstock, Fan Mei, Jian Wang, Jiwen Fan, Jason M. Tomlinson, Beat Schmid, Rachel Albrecht, Scot T. Martin, and Paulo Artaxo
Atmos. Chem. Phys., 16, 7029–7041, https://doi.org/10.5194/acp-16-7029-2016, https://doi.org/10.5194/acp-16-7029-2016, 2016
Short summary
Short summary
This work focuses on the analysis of anthropogenic impacts on Amazonian clouds. The experiment was conducted around Manaus (Brazil), which is a city with 2 million inhabitants and is surrounded by the Amazon forest in every direction. The clouds that form over the pristine atmosphere of the forest are understood as the background clouds and the ones that form over the city pollution are the anthropogenically impacted ones. The paper analyses microphysical characteristics of both types of clouds.
Stijn Hantson, Almut Arneth, Sandy P. Harrison, Douglas I. Kelley, I. Colin Prentice, Sam S. Rabin, Sally Archibald, Florent Mouillot, Steve R. Arnold, Paulo Artaxo, Dominique Bachelet, Philippe Ciais, Matthew Forrest, Pierre Friedlingstein, Thomas Hickler, Jed O. Kaplan, Silvia Kloster, Wolfgang Knorr, Gitta Lasslop, Fang Li, Stephane Mangeon, Joe R. Melton, Andrea Meyn, Stephen Sitch, Allan Spessa, Guido R. van der Werf, Apostolos Voulgarakis, and Chao Yue
Biogeosciences, 13, 3359–3375, https://doi.org/10.5194/bg-13-3359-2016, https://doi.org/10.5194/bg-13-3359-2016, 2016
Short summary
Short summary
Our ability to predict the magnitude and geographic pattern of past and future fire impacts rests on our ability to model fire regimes. A large variety of models exist, and it is unclear which type of model or degree of complexity is required to model fire adequately at regional to global scales. In this paper we summarize the current state of the art in fire-regime modelling and model evaluation, and outline what lessons may be learned from the Fire Model Intercomparison Project – FireMIP.
Riinu Ots, Dominique E. Young, Massimo Vieno, Lu Xu, Rachel E. Dunmore, James D. Allan, Hugh Coe, Leah R. Williams, Scott C. Herndon, Nga L. Ng, Jacqueline F. Hamilton, Robert Bergström, Chiara Di Marco, Eiko Nemitz, Ian A. Mackenzie, Jeroen J. P. Kuenen, David C. Green, Stefan Reis, and Mathew R. Heal
Atmos. Chem. Phys., 16, 6453–6473, https://doi.org/10.5194/acp-16-6453-2016, https://doi.org/10.5194/acp-16-6453-2016, 2016
Short summary
Short summary
This study investigates the contribution of diesel vehicle emissions to organic aerosol formation and particulate matter concentrations in London. Comparisons of simulated pollutant concentrations with observations show good agreement and give confidence in the skill of the model applied. The contribution of diesel vehicle emissions, which are currently not included in official emissions inventories, is demonstrated to be substantial, indicating that more research on this topic is required.
Dimitris Balis, Maria-Elissavet Koukouli, Nikolaos Siomos, Spyridon Dimopoulos, Lucia Mona, Gelsomina Pappalardo, Franco Marenco, Lieven Clarisse, Lucy J. Ventress, Elisa Carboni, Roy G. Grainger, Ping Wang, Gijsbert Tilstra, Ronald van der A, Nicolas Theys, and Claus Zehner
Atmos. Chem. Phys., 16, 5705–5720, https://doi.org/10.5194/acp-16-5705-2016, https://doi.org/10.5194/acp-16-5705-2016, 2016
Short summary
Short summary
The ESA-funded SACS-2 and SMASH projects developed and improved dedicated satellite-derived ash plume and sulfur dioxide level assessments. These estimates were validated using ground-based and aircraft lidar measurements. The validation results are promising for most satellite products and are within the estimated uncertainties of each of the comparative data sets. The IASI data show a better consistency concerning the ash optical depth and ash layer height.
Holger Baars, Thomas Kanitz, Ronny Engelmann, Dietrich Althausen, Birgit Heese, Mika Komppula, Jana Preißler, Matthias Tesche, Albert Ansmann, Ulla Wandinger, Jae-Hyun Lim, Joon Young Ahn, Iwona S. Stachlewska, Vassilis Amiridis, Eleni Marinou, Patric Seifert, Julian Hofer, Annett Skupin, Florian Schneider, Stephanie Bohlmann, Andreas Foth, Sebastian Bley, Anne Pfüller, Eleni Giannakaki, Heikki Lihavainen, Yrjö Viisanen, Rakesh Kumar Hooda, Sérgio Nepomuceno Pereira, Daniele Bortoli, Frank Wagner, Ina Mattis, Lucja Janicka, Krzysztof M. Markowicz, Peggy Achtert, Paulo Artaxo, Theotonio Pauliquevis, Rodrigo A. F. Souza, Ved Prakesh Sharma, Pieter Gideon van Zyl, Johan Paul Beukes, Junying Sun, Erich G. Rohwer, Ruru Deng, Rodanthi-Elisavet Mamouri, and Felix Zamorano
Atmos. Chem. Phys., 16, 5111–5137, https://doi.org/10.5194/acp-16-5111-2016, https://doi.org/10.5194/acp-16-5111-2016, 2016
Short summary
Short summary
The findings from more than 10 years of global aerosol lidar measurements with Polly systems are summarized, and a data set of optical properties for specific aerosol types is given. An automated data retrieval algorithm for continuous Polly lidar observations is presented and discussed by means of a Saharan dust advection event in Leipzig, Germany. Finally, a statistic on the vertical aerosol distribution including the seasonal variability at PollyNET locations around the globe is presented.
N. Huneeus, S. Basart, S. Fiedler, J.-J. Morcrette, A. Benedetti, J. Mulcahy, E. Terradellas, C. Pérez García-Pando, G. Pejanovic, S. Nickovic, P. Arsenovic, M. Schulz, E. Cuevas, J. M. Baldasano, J. Pey, S. Remy, and B. Cvetkovic
Atmos. Chem. Phys., 16, 4967–4986, https://doi.org/10.5194/acp-16-4967-2016, https://doi.org/10.5194/acp-16-4967-2016, 2016
Short summary
Short summary
Five dust models are evaluated regarding their performance in predicting an intense Saharan dust outbreak affecting western and northern Europe (NE). Models predict the onset and evolution of the event for all analysed lead times. On average, differences among the models are larger than differences in lead times for each model. The models tend to underestimate the long-range transport towards NE. This is partly due to difficulties in simulating the vertical dust distribution and horizontal wind.
S. T. Martin, P. Artaxo, L. A. T. Machado, A. O. Manzi, R. A. F. Souza, C. Schumacher, J. Wang, M. O. Andreae, H. M. J. Barbosa, J. Fan, G. Fisch, A. H. Goldstein, A. Guenther, J. L. Jimenez, U. Pöschl, M. A. Silva Dias, J. N. Smith, and M. Wendisch
Atmos. Chem. Phys., 16, 4785–4797, https://doi.org/10.5194/acp-16-4785-2016, https://doi.org/10.5194/acp-16-4785-2016, 2016
Short summary
Short summary
The Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) Experiment took place in central Amazonia throughout 2014 and 2015. The experiment focused on the complex links among vegetation, atmospheric chemistry, and aerosol production on the one hand and their connections to aerosols, clouds, and precipitation on the other, especially when altered by urban pollution. This article serves as an introduction to the special issue of publications presenting findings of this experiment.
G. Young, H. M. Jones, E. Darbyshire, K. J. Baustian, J. B. McQuaid, K. N. Bower, P. J. Connolly, M. W. Gallagher, and T. W. Choularton
Atmos. Chem. Phys., 16, 4063–4079, https://doi.org/10.5194/acp-16-4063-2016, https://doi.org/10.5194/acp-16-4063-2016, 2016
Eliane G. Alves, Kolby Jardine, Julio Tota, Angela Jardine, Ana Maria Yãnez-Serrano, Thomas Karl, Julia Tavares, Bruce Nelson, Dasa Gu, Trissevgeni Stavrakou, Scot Martin, Paulo Artaxo, Antonio Manzi, and Alex Guenther
Atmos. Chem. Phys., 16, 3903–3925, https://doi.org/10.5194/acp-16-3903-2016, https://doi.org/10.5194/acp-16-3903-2016, 2016
Short summary
Short summary
For a long time, it was thought that tropical rainforests are evergreen forests and the processes involved in these ecosystems do not change all year long. However, some satellite retrievals have suggested that ecophysiological processes may present seasonal variations mainly due to variation in light and leaf phenology in Amazonia. These in situ measurements are the first showing of a seasonal trend of volatile organic compound emissions, correlating with light and leaf phenology in Amazonia.
Zak Kipling, Philip Stier, Colin E. Johnson, Graham W. Mann, Nicolas Bellouin, Susanne E. Bauer, Tommi Bergman, Mian Chin, Thomas Diehl, Steven J. Ghan, Trond Iversen, Alf Kirkevåg, Harri Kokkola, Xiaohong Liu, Gan Luo, Twan van Noije, Kirsty J. Pringle, Knut von Salzen, Michael Schulz, Øyvind Seland, Ragnhild B. Skeie, Toshihiko Takemura, Kostas Tsigaridis, and Kai Zhang
Atmos. Chem. Phys., 16, 2221–2241, https://doi.org/10.5194/acp-16-2221-2016, https://doi.org/10.5194/acp-16-2221-2016, 2016
Short summary
Short summary
The vertical distribution of atmospheric aerosol is an important factor in its effects on climate. In this study we use a sophisticated model of the many interacting processes affecting aerosol in the atmosphere to show that the vertical distribution is typically dominated by only a few of these processes. Constraining these physical processes may help to reduce the large differences between models. However, the important processes are not always the same for different types of aerosol.
Franco Marenco, Ben Johnson, Justin M. Langridge, Jane Mulcahy, Angela Benedetti, Samuel Remy, Luke Jones, Kate Szpek, Jim Haywood, Karla Longo, and Paulo Artaxo
Atmos. Chem. Phys., 16, 2155–2174, https://doi.org/10.5194/acp-16-2155-2016, https://doi.org/10.5194/acp-16-2155-2016, 2016
Short summary
Short summary
A widespread and persistent smoke layer was observed in the Amazon
region during the biomass burning season, spanning a distance of 2200 km
and a period of 14 days. The larger smoke content was typically found
in elevated layers, from 1–1.5 km to 4–6 km.
Measurements have been compared to model predictions, and the latter
were able to reproduce the general features of the smoke layer, but
with some differences which are analysed and described in the paper.
L. Xu, L. R. Williams, D. E. Young, J. D. Allan, H. Coe, P. Massoli, E. Fortner, P. Chhabra, S. Herndon, W. A. Brooks, J. T. Jayne, D. R. Worsnop, A. C. Aiken, S. Liu, K. Gorkowski, M. K. Dubey, Z. L. Fleming, S. Visser, A. S. H. Prévôt, and N. L. Ng
Atmos. Chem. Phys., 16, 1139–1160, https://doi.org/10.5194/acp-16-1139-2016, https://doi.org/10.5194/acp-16-1139-2016, 2016
Short summary
Short summary
We investigate the spatial distribution of submicron aerosol in the greater London area as part of the Clean Air for London (ClearfLo) project in winter 2012. Although the concentrations of organic aerosol (OA) are similar between a rural and an urban site, the OA sources are different. We also examine the volatility of submicron aerosol at the rural site and find that the non-volatile organics have similar sources or have undergone similar chemical processing as refractory black carbon.
C. E. Scott, D. V. Spracklen, J. R. Pierce, I. Riipinen, S. D. D'Andrea, A. Rap, K. S. Carslaw, P. M. Forster, P. Artaxo, M. Kulmala, L. V. Rizzo, E. Swietlicki, G. W. Mann, and K. J. Pringle
Atmos. Chem. Phys., 15, 12989–13001, https://doi.org/10.5194/acp-15-12989-2015, https://doi.org/10.5194/acp-15-12989-2015, 2015
Short summary
Short summary
To understand the radiative effects of biogenic secondary organic aerosol (SOA) it is necessary to consider the manner in which it is distributed across the existing aerosol size distribution. We explore the importance of the approach taken by global-scale models to do this, when calculating the direct radiative effect (DRE) & first aerosol indirect effect (AIE) due to biogenic SOA. This choice has little effect on the DRE, but a substantial impact on the magnitude and even sign of the first AIE
A. M. Womack, P. E. Artaxo, F. Y. Ishida, R. C. Mueller, S. R. Saleska, K. T. Wiedemann, B. J. M. Bohannan, and J. L. Green
Biogeosciences, 12, 6337–6349, https://doi.org/10.5194/bg-12-6337-2015, https://doi.org/10.5194/bg-12-6337-2015, 2015
Short summary
Short summary
Fungi in the atmosphere can affect precipitation by nucleating the formation of clouds and ice. This process is important over the Amazon rainforest where precipitation is limited by the types and amount of airborne particles. We found that the total and metabolically active fungi communities were dominated by different taxonomic groups, and the active community unexpectedly contained many lichen fungi, which are effective at nucleating ice.
S. R. Kolusu, J. H. Marsham, J. Mulcahy, B. Johnson, C. Dunning, M. Bush, and D. V. Spracklen
Atmos. Chem. Phys., 15, 12251–12266, https://doi.org/10.5194/acp-15-12251-2015, https://doi.org/10.5194/acp-15-12251-2015, 2015
W. W. Hu, P. Campuzano-Jost, B. B. Palm, D. A. Day, A. M. Ortega, P. L. Hayes, J. E. Krechmer, Q. Chen, M. Kuwata, Y. J. Liu, S. S. de Sá, K. McKinney, S. T. Martin, M. Hu, S. H. Budisulistiorini, M. Riva, J. D. Surratt, J. M. St. Clair, G. Isaacman-Van Wertz, L. D. Yee, A. H. Goldstein, S. Carbone, J. Brito, P. Artaxo, J. A. de Gouw, A. Koss, A. Wisthaler, T. Mikoviny, T. Karl, L. Kaser, W. Jud, A. Hansel, K. S. Docherty, M. L. Alexander, N. H. Robinson, H. Coe, J. D. Allan, M. R. Canagaratna, F. Paulot, and J. L. Jimenez
Atmos. Chem. Phys., 15, 11807–11833, https://doi.org/10.5194/acp-15-11807-2015, https://doi.org/10.5194/acp-15-11807-2015, 2015
Short summary
Short summary
This work summarized all the studies reporting isoprene epoxydiols-derived secondary organic aerosol (IEPOX-SOA) measured globally by aerosol mass spectrometer and compare them with modeled gas-phase IEPOX, with results suggestive of the importance of IEPOX-SOA for regional and global OA budgets. A real-time tracer of IEPOX-SOA is thoroughly evaluated for the first time by combing multiple field and chamber studies. A quick and easy empirical method on IEPOX-SOA estimation is also presented.
D. Liu, B. Quennehen, E. Darbyshire, J. D. Allan, P. I. Williams, J. W. Taylor, S. J.-B. Bauguitte, M. J. Flynn, D. Lowe, M. W. Gallagher, K. N. Bower, T. W. Choularton, and H. Coe
Atmos. Chem. Phys., 15, 11537–11555, https://doi.org/10.5194/acp-15-11537-2015, https://doi.org/10.5194/acp-15-11537-2015, 2015
Short summary
Short summary
We show that during the springtime of 2013, the anthropogenic pollution particularly from sources in Asia, contributed significantly to black carbon across the European Arctic free troposphere. In contrast to previous studies, the contribution from open wildfires was minimal. Given that Asian pollution is likely to continue to rise over the coming years, it is likely that the radiative forcing in the Arctic will also continue to increase.
S. Visser, J. G. Slowik, M. Furger, P. Zotter, N. Bukowiecki, F. Canonaco, U. Flechsig, K. Appel, D. C. Green, A. H. Tremper, D. E. Young, P. I. Williams, J. D. Allan, H. Coe, L. R. Williams, C. Mohr, L. Xu, N. L. Ng, E. Nemitz, J. F. Barlow, C. H. Halios, Z. L. Fleming, U. Baltensperger, and A. S. H. Prévôt
Atmos. Chem. Phys., 15, 11291–11309, https://doi.org/10.5194/acp-15-11291-2015, https://doi.org/10.5194/acp-15-11291-2015, 2015
Short summary
Short summary
Trace element measurements in three particle size ranges (PM10-2.5, PM2.5-1.0 and PM1.0-0.3) were performed with 2h time resolution at kerbside, urban background and rural sites during the ClearfLo winter 2012 campaign in London. The environment-dependent variability of emissions was characterized using the Multilinear Engine implementation of the positive matrix factorization model. A total of nine different factors were resolved from local, regional and natural origin.
M. O. Andreae, O. C. Acevedo, A. Araùjo, P. Artaxo, C. G. G. Barbosa, H. M. J. Barbosa, J. Brito, S. Carbone, X. Chi, B. B. L. Cintra, N. F. da Silva, N. L. Dias, C. Q. Dias-Júnior, F. Ditas, R. Ditz, A. F. L. Godoi, R. H. M. Godoi, M. Heimann, T. Hoffmann, J. Kesselmeier, T. Könemann, M. L. Krüger, J. V. Lavric, A. O. Manzi, A. P. Lopes, D. L. Martins, E. F. Mikhailov, D. Moran-Zuloaga, B. W. Nelson, A. C. Nölscher, D. Santos Nogueira, M. T. F. Piedade, C. Pöhlker, U. Pöschl, C. A. Quesada, L. V. Rizzo, C.-U. Ro, N. Ruckteschler, L. D. A. Sá, M. de Oliveira Sá, C. B. Sales, R. M. N. dos Santos, J. Saturno, J. Schöngart, M. Sörgel, C. M. de Souza, R. A. F. de Souza, H. Su, N. Targhetta, J. Tóta, I. Trebs, S. Trumbore, A. van Eijck, D. Walter, Z. Wang, B. Weber, J. Williams, J. Winderlich, F. Wittmann, S. Wolff, and A. M. Yáñez-Serrano
Atmos. Chem. Phys., 15, 10723–10776, https://doi.org/10.5194/acp-15-10723-2015, https://doi.org/10.5194/acp-15-10723-2015, 2015
Short summary
Short summary
This paper describes the Amazon Tall Tower Observatory (ATTO), a new atmosphere-biosphere observatory located in the remote Amazon Basin. It presents results from ecosystem ecology, meteorology, trace gas, and aerosol measurements collected at the ATTO site during the first 3 years of operation.
A. Stohl, B. Aamaas, M. Amann, L. H. Baker, N. Bellouin, T. K. Berntsen, O. Boucher, R. Cherian, W. Collins, N. Daskalakis, M. Dusinska, S. Eckhardt, J. S. Fuglestvedt, M. Harju, C. Heyes, Ø. Hodnebrog, J. Hao, U. Im, M. Kanakidou, Z. Klimont, K. Kupiainen, K. S. Law, M. T. Lund, R. Maas, C. R. MacIntosh, G. Myhre, S. Myriokefalitakis, D. Olivié, J. Quaas, B. Quennehen, J.-C. Raut, S. T. Rumbold, B. H. Samset, M. Schulz, Ø. Seland, K. P. Shine, R. B. Skeie, S. Wang, K. E. Yttri, and T. Zhu
Atmos. Chem. Phys., 15, 10529–10566, https://doi.org/10.5194/acp-15-10529-2015, https://doi.org/10.5194/acp-15-10529-2015, 2015
Short summary
Short summary
This paper presents a summary of the findings of the ECLIPSE EU project. The project has investigated the climate and air quality impacts of short-lived climate pollutants (especially methane, ozone, aerosols) and has designed a global mitigation strategy that maximizes co-benefits between air quality and climate policy. Transient climate model simulations allowed quantifying the impacts on temperature (e.g., reduction in global warming by 0.22K for the decade 2041-2050) and precipitation.
J. G. Levine, A. R. MacKenzie, O. J. Squire, A. T. Archibald, P. T. Griffiths, N. L. Abraham, J. A. Pyle, D. E. Oram, G. Forster, J. F. Brito, J. D. Lee, J. R. Hopkins, A. C. Lewis, S. J. B. Bauguitte, C. F. Demarco, P. Artaxo, P. Messina, J. Lathière, D. A. Hauglustaine, E. House, C. N. Hewitt, and E. Nemitz
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-15-24251-2015, https://doi.org/10.5194/acpd-15-24251-2015, 2015
Revised manuscript has not been submitted
Short summary
Short summary
This study explores our ability to simulate atmospheric chemistry stemming from isoprene emissions—a reactive gas emitted from vegetation—in pristine and polluted regions of the Amazon basin. We explore how two contrasting models fare in reproducing recent airborne measurements in the region. Their differing treatments of transport and mixing are found to: profoundly affect their performance; and yield very different pictures of the exposure of the rainforest to harmful ozone concentrations.
S. T. Turnock, D. V. Spracklen, K. S. Carslaw, G. W. Mann, M. T. Woodhouse, P. M. Forster, J. Haywood, C. E. Johnson, M. Dalvi, N. Bellouin, and A. Sanchez-Lorenzo
Atmos. Chem. Phys., 15, 9477–9500, https://doi.org/10.5194/acp-15-9477-2015, https://doi.org/10.5194/acp-15-9477-2015, 2015
Short summary
Short summary
We evaluate HadGEM3-UKCA over Europe for the period 1960-2009 against observations of aerosol mass and number, aerosol optical depth (AOD) and surface solar radiation (SSR). The model underestimates aerosol mass and number but is less biased if compared to AOD and SSR. Observed trends in aerosols are well simulated by the model and necessary for reproducing the observed increase in SSR since 1990. European all-sky top of atmosphere aerosol radiative forcing increased by > 3 Wm-2 from 1970 to 2009.
C. L. Ryder, J. B. McQuaid, C. Flamant, P. D. Rosenberg, R. Washington, H. E. Brindley, E. J. Highwood, J. H. Marsham, D. J. Parker, M. C. Todd, J. R. Banks, J. K. Brooke, S. Engelstaedter, V. Estelles, P. Formenti, L. Garcia-Carreras, C. Kocha, F. Marenco, H. Sodemann, C. J. T. Allen, A. Bourdon, M. Bart, C. Cavazos-Guerra, S. Chevaillier, J. Crosier, E. Darbyshire, A. R. Dean, J. R. Dorsey, J. Kent, D. O'Sullivan, K. Schepanski, K. Szpek, J. Trembath, and A. Woolley
Atmos. Chem. Phys., 15, 8479–8520, https://doi.org/10.5194/acp-15-8479-2015, https://doi.org/10.5194/acp-15-8479-2015, 2015
Short summary
Short summary
Measurements of the Saharan atmosphere and of atmospheric mineral dust are lacking but are vital to our understanding of the climate of this region and their impacts further afield. Novel observations were made by the Fennec climate programme during June 2011 and 2012 using ground-based, remote sensing and airborne platforms. Here we describe the airborne observations and the contributions they have made to furthering our understanding of the Saharan climate system.
E. Athanasopoulou, A. P. Protonotariou, E. Bossioli, A. Dandou, M. Tombrou, J. D. Allan, H. Coe, N. Mihalopoulos, J. Kalogiros, A. Bacak, J. Sciare, and G. Biskos
Atmos. Chem. Phys., 15, 8401–8421, https://doi.org/10.5194/acp-15-8401-2015, https://doi.org/10.5194/acp-15-8401-2015, 2015
Short summary
Short summary
A model system is evaluated versus ground and airborne aerosol measurements, towards the identification of its competencies and deficiencies over the eastern Mediterranean (EM) during summer. Secondary organic aerosol (OA) formation is investigated towards improving OA behaviour. Biomass burning is a significant particle source, largely explaining OA underestimation (ca. 50%). More than 70% of the aerosol mass over the EM is related to trans-boundary transport during strong northeastern winds.
H. M. Walker, D. Stone, T. Ingham, S. Vaughan, M. Cain, R. L. Jones, O. J. Kennedy, M. McLeod, B. Ouyang, J. Pyle, S. Bauguitte, B. Bandy, G. Forster, M. J. Evans, J. F. Hamilton, J. R. Hopkins, J. D. Lee, A. C. Lewis, R. T. Lidster, S. Punjabi, W. T. Morgan, and D. E. Heard
Atmos. Chem. Phys., 15, 8179–8200, https://doi.org/10.5194/acp-15-8179-2015, https://doi.org/10.5194/acp-15-8179-2015, 2015
M. J. Alvarado, C. R. Lonsdale, R. J. Yokelson, S. K. Akagi, H. Coe, J. S. Craven, E. V. Fischer, G. R. McMeeking, J. H. Seinfeld, T. Soni, J. W. Taylor, D. R. Weise, and C. E. Wold
Atmos. Chem. Phys., 15, 6667–6688, https://doi.org/10.5194/acp-15-6667-2015, https://doi.org/10.5194/acp-15-6667-2015, 2015
Short summary
Short summary
Being able to understand and simulate the chemical evolution of biomass burning smoke plumes under a wide variety of conditions is a critical part of forecasting the impact of these fires on air quality, atmospheric composition, and climate. Here we use an improved model of this chemistry to simulate the evolution of ozone and secondary organic aerosol within a young biomass burning smoke plume from the Williams prescribed burn in chaparral, which was sampled over California in November 2009.
D. E. Young, J. D. Allan, P. I. Williams, D. C. Green, M. J. Flynn, R. M. Harrison, J. Yin, M. W. Gallagher, and H. Coe
Atmos. Chem. Phys., 15, 6351–6366, https://doi.org/10.5194/acp-15-6351-2015, https://doi.org/10.5194/acp-15-6351-2015, 2015
Short summary
Short summary
For the first time, the behaviour of non-refractory inorganic and organic submicron particulates through an entire annual cycle is investigated at a UK urban background site. We show secondary aerosols account for a significant fraction of the submicron aerosol burden, high concentration events are governed by different factors depending on season, and on an annual basis there is no variability in the extent of secondary organic aerosol oxidation.
X. Pan, M. Chin, R. Gautam, H. Bian, D. Kim, P. R. Colarco, T. L. Diehl, T. Takemura, L. Pozzoli, K. Tsigaridis, S. Bauer, and N. Bellouin
Atmos. Chem. Phys., 15, 5903–5928, https://doi.org/10.5194/acp-15-5903-2015, https://doi.org/10.5194/acp-15-5903-2015, 2015
J. D. Allan, P. I. Williams, J. Najera, J. D. Whitehead, M. J. Flynn, J. W. Taylor, D. Liu, E. Darbyshire, L. J. Carpenter, R. Chance, S. J. Andrews, S. C. Hackenberg, and G. McFiggans
Atmos. Chem. Phys., 15, 5599–5609, https://doi.org/10.5194/acp-15-5599-2015, https://doi.org/10.5194/acp-15-5599-2015, 2015
Short summary
Short summary
New particle formation (NPF) is an important contributor to aerosol number concentrations in the Arctic and thus has a major role in dictating cloud properties and climate in this region. Here we present direct evidence that the oxidation of iodine in the atmosphere causes NPF in the Greenland Sea. This is important because this is a NPF mechanism that has not previously been considered in modelling studies at these latitudes.
E. T. Sena and P. Artaxo
Atmos. Chem. Phys., 15, 5471–5483, https://doi.org/10.5194/acp-15-5471-2015, https://doi.org/10.5194/acp-15-5471-2015, 2015
Short summary
Short summary
A new methodology was developed for retrieving the daily direct radiative forcing of smoke aerosols (24h-DARF) using satellite remote sensing. This method was used to assess the DARF at high temporal resolution and over a large area in Amazonia. We showed that our methodology considerably reduces statistical sources of uncertainties in the estimate of the DARF. DARF assessments using the new methodology agree well with ground-based measurements and radiative transfer models.
J. W. Taylor, J. D. Allan, D. Liu, M. Flynn, R. Weber, X. Zhang, B. L. Lefer, N. Grossberg, J. Flynn, and H. Coe
Atmos. Meas. Tech., 8, 1701–1718, https://doi.org/10.5194/amt-8-1701-2015, https://doi.org/10.5194/amt-8-1701-2015, 2015
Short summary
Short summary
When using the SP2 to report black carbon core/shell coating thickness, the core density and refractive index must be estimated from literature values. We systematically vary the assumed parameters and the instrument calibration, and quantify the effects in the derived coatings. The technique is highly sensitive to the core refractive index but has only a minor sensitivity to the core density and coating refractive index. We identify the most appropriate values to use in future analysis.
Q. Chen, D. K. Farmer, L. V. Rizzo, T. Pauliquevis, M. Kuwata, T. G. Karl, A. Guenther, J. D. Allan, H. Coe, M. O. Andreae, U. Pöschl, J. L. Jimenez, P. Artaxo, and S. T. Martin
Atmos. Chem. Phys., 15, 3687–3701, https://doi.org/10.5194/acp-15-3687-2015, https://doi.org/10.5194/acp-15-3687-2015, 2015
Short summary
Short summary
Submicron particle mass concentration in the Amazon during the wet season of 2008 was dominated by organic material. The PMF analysis finds a comparable importance of gas-phase (gas-to-particle condensation) and particle-phase (reactive uptake of isoprene oxidation products, especially of epoxydiols to acidic haze, fog, or cloud droplets) production of secondary organic material during the study period, together accounting for >70% of the organic-particle mass concentration.
A. M. Yáñez-Serrano, A. C. Nölscher, J. Williams, S. Wolff, E. Alves, G. A. Martins, E. Bourtsoukidis, J. Brito, K. Jardine, P. Artaxo, and J. Kesselmeier
Atmos. Chem. Phys., 15, 3359–3378, https://doi.org/10.5194/acp-15-3359-2015, https://doi.org/10.5194/acp-15-3359-2015, 2015
M. D. Jolleys, H. Coe, G. McFiggans, J. W. Taylor, S. J. O'Shea, M. Le Breton, S. J.-B. Bauguitte, S. Moller, P. Di Carlo, E. Aruffo, P. I. Palmer, J. D. Lee, C. J. Percival, and M. W. Gallagher
Atmos. Chem. Phys., 15, 3077–3095, https://doi.org/10.5194/acp-15-3077-2015, https://doi.org/10.5194/acp-15-3077-2015, 2015
Short summary
Short summary
Particulate emissions in the form of organic aerosol from boreal forest fires in Canada have been measured during an aircraft measurement campaign. Ratios of the amount of aerosol emitted relative to gas species such as CO were calculated and show high levels of variability throughout the campaign. This variability is affected by both changes in fire conditions, as fires tended to die down later in the measurement period, and by changes to the aerosol due to chemical reactions in the atmosphere.
S. Archer-Nicholls, D. Lowe, E. Darbyshire, W. T. Morgan, M. M. Bela, G. Pereira, J. Trembath, J. W. Kaiser, K. M. Longo, S. R. Freitas, H. Coe, and G. McFiggans
Geosci. Model Dev., 8, 549–577, https://doi.org/10.5194/gmd-8-549-2015, https://doi.org/10.5194/gmd-8-549-2015, 2015
Short summary
Short summary
The regional WRF-Chem model was used to study aerosol particles from biomass burning in South America. The modelled estimates of fire plume injection heights were found to be too high, with serious implications for modelled aerosol vertical distribution, transport and impacts on local climate. A modified emission scenario was developed which improved the predicted injection height. Model results were compared and evaluated against in situ measurements from the 2012 SAMBBA flight campaign.
F. Pacifico, G. A. Folberth, S. Sitch, J. M. Haywood, L. V. Rizzo, F. F. Malavelle, and P. Artaxo
Atmos. Chem. Phys., 15, 2791–2804, https://doi.org/10.5194/acp-15-2791-2015, https://doi.org/10.5194/acp-15-2791-2015, 2015
D. E. Young, J. D. Allan, P. I. Williams, D. C. Green, R. M. Harrison, J. Yin, M. J. Flynn, M. W. Gallagher, and H. Coe
Atmos. Chem. Phys., 15, 2429–2443, https://doi.org/10.5194/acp-15-2429-2015, https://doi.org/10.5194/acp-15-2429-2015, 2015
Short summary
Short summary
Two solid fuel organic aerosol (SFOA) factors, both associated with domestic space heating activities, were derived from positive matrix factorisation (PMF) applied to organic aerosol data from an aerosol mass spectrometer (AMS) deployed at an urban background site in London during winter 2012. The factors controlling the split between the two SFOA factors were assessed, and it is concluded the split is likely governed predominantly by differences in burn conditions.
J. Yin, S. A. Cumberland, R. M. Harrison, J. Allan, D. E. Young, P. I. Williams, and H. Coe
Atmos. Chem. Phys., 15, 2139–2158, https://doi.org/10.5194/acp-15-2139-2015, https://doi.org/10.5194/acp-15-2139-2015, 2015
Short summary
Short summary
Breathing particles from polluted air is known to cause increased health complaints and higher death rates. Airborne particles come from a range of sources; in order to implement cost-effective control measures, it is necessary to understand the amount contributed by each. In this paper, two advanced procedures for estimating the contributions of particle sources in London are compared with one another, revealing a wide range of sources including traffic, woodsmoke and cooking particles.
K. M. Sakamoto, J. D. Allan, H. Coe, J. W. Taylor, T. J. Duck, and J. R. Pierce
Atmos. Chem. Phys., 15, 1633–1646, https://doi.org/10.5194/acp-15-1633-2015, https://doi.org/10.5194/acp-15-1633-2015, 2015
D. Lowe, S. Archer-Nicholls, W. Morgan, J. Allan, S. Utembe, B. Ouyang, E. Aruffo, M. Le Breton, R. A. Zaveri, P. Di Carlo, C. Percival, H. Coe, R. Jones, and G. McFiggans
Atmos. Chem. Phys., 15, 1385–1409, https://doi.org/10.5194/acp-15-1385-2015, https://doi.org/10.5194/acp-15-1385-2015, 2015
A. J. Baran, K. Furtado, L.-C. Labonnote, S. Havemann, J.-C. Thelen, and F. Marenco
Atmos. Chem. Phys., 15, 1105–1127, https://doi.org/10.5194/acp-15-1105-2015, https://doi.org/10.5194/acp-15-1105-2015, 2015
Short summary
Short summary
The relationship between the shape of cirrus scattering phase functions and the atmospheric state is investigated using space-based multi-angle remote sensing measurements and high-resolution numerical weather prediction model output of the relative humidity field with respect to ice (RHi). It is found that on a pixel-by-pixel basis, the most featureless phase functions are generally associated with RHi>1, whilst for RHi<1, a unique model phase function could not be assigned to the pixel.
G. Snider, C. L. Weagle, R. V. Martin, A. van Donkelaar, K. Conrad, D. Cunningham, C. Gordon, M. Zwicker, C. Akoshile, P. Artaxo, N. X. Anh, J. Brook, J. Dong, R. M. Garland, R. Greenwald, D. Griffith, K. He, B. N. Holben, R. Kahn, I. Koren, N. Lagrosas, P. Lestari, Z. Ma, J. Vanderlei Martins, E. J. Quel, Y. Rudich, A. Salam, S. N. Tripathi, C. Yu, Q. Zhang, Y. Zhang, M. Brauer, A. Cohen, M. D. Gibson, and Y. Liu
Atmos. Meas. Tech., 8, 505–521, https://doi.org/10.5194/amt-8-505-2015, https://doi.org/10.5194/amt-8-505-2015, 2015
Short summary
Short summary
We have initiated a global network of ground-level monitoring stations to measure concentrations of fine aerosols in urban environments. Our findings include major ions species, total mass, and total scatter at three wavelengths. Results will be used to further evaluate and enhance satellite remote sensing estimates.
W. T. Morgan, B. Ouyang, J. D. Allan, E. Aruffo, P. Di Carlo, O. J. Kennedy, D. Lowe, M. J. Flynn, P. D. Rosenberg, P. I. Williams, R. Jones, G. B. McFiggans, and H. Coe
Atmos. Chem. Phys., 15, 973–990, https://doi.org/10.5194/acp-15-973-2015, https://doi.org/10.5194/acp-15-973-2015, 2015
Short summary
Short summary
This paper used observations from a research aircraft flying around the UK to investigate how air pollution in north-western Europe can alter nighttime chemical reactions in the atmosphere. These chemical reactions can worsen air quality in the region, as well as influence regional climate change. Ammonium nitrate aerosol appears to play an important role. The paper indicates that representation of these chemical reactions is poorly represented in models used for air quality and climate.
M. M. Bela, K. M. Longo, S. R. Freitas, D. S. Moreira, V. Beck, S. C. Wofsy, C. Gerbig, K. Wiedemann, M. O. Andreae, and P. Artaxo
Atmos. Chem. Phys., 15, 757–782, https://doi.org/10.5194/acp-15-757-2015, https://doi.org/10.5194/acp-15-757-2015, 2015
Short summary
Short summary
In the Amazon Basin, gases that lead to the formation of ozone (O3), an air pollutant and greenhouse gas, are emitted from fire, urban and biogenic sources. This study presents the first basin wide aircraft measurements of O3 during the dry-to-wet and wet-to-dry transition seasons, which show extremely low values above undisturbed forest and increases from fires. This work also demonstrates the capabilities and limitations of regional atmospheric chemistry models in representing O3 in Amazonia.
W. R. Sessions, J. S. Reid, A. Benedetti, P. R. Colarco, A. da Silva, S. Lu, T. Sekiyama, T. Y. Tanaka, J. M. Baldasano, S. Basart, M. E. Brooks, T. F. Eck, M. Iredell, J. A. Hansen, O. C. Jorba, H.-M. H. Juang, P. Lynch, J.-J. Morcrette, S. Moorthi, J. Mulcahy, Y. Pradhan, M. Razinger, C. B. Sampson, J. Wang, and D. L. Westphal
Atmos. Chem. Phys., 15, 335–362, https://doi.org/10.5194/acp-15-335-2015, https://doi.org/10.5194/acp-15-335-2015, 2015
Short summary
M. C. Wyant, C. S. Bretherton, R. Wood, G. R. Carmichael, A. Clarke, J. Fast, R. George, W. I. Gustafson Jr., C. Hannay, A. Lauer, Y. Lin, J.-J. Morcrette, J. Mulcahy, P. E. Saide, S. N. Spak, and Q. Yang
Atmos. Chem. Phys., 15, 153–172, https://doi.org/10.5194/acp-15-153-2015, https://doi.org/10.5194/acp-15-153-2015, 2015
Short summary
Short summary
Simulations from a group of GCMs, forecast models, and regional models are compared with aircraft and ship observations of the marine boundary layer (MBL) in the southeast Pacific region during the VOCALS-REx field campaign of October-November 2008. Gradients of cloud, aerosol, and chemical properties in and above the MBL extending from the Peruvian coast westward along 20 degrees south are compared during the period.
J. W. Taylor, J. D. Allan, G. Allen, H. Coe, P. I. Williams, M. J. Flynn, M. Le Breton, J. B. A. Muller, C. J. Percival, D. Oram, G. Forster, J. D. Lee, A. R. Rickard, M. Parrington, and P. I. Palmer
Atmos. Chem. Phys., 14, 13755–13771, https://doi.org/10.5194/acp-14-13755-2014, https://doi.org/10.5194/acp-14-13755-2014, 2014
Short summary
Short summary
We present a case study of BC wet removal by examining aerosol properties in three biomass burning plumes, one of which passed through a precipitating cloud. Nucleation scavenging preferentially removed the largest and most coated BC-containing particles. Calculated single-scattering albedo (SSA) showed little variation, as a large number of non-BC particles were also present in the precipitation-affected plume.
G. Allen, S. M. Illingworth, S. J. O'Shea, S. Newman, A. Vance, S. J.-B. Bauguitte, F. Marenco, J. Kent, K. Bower, M. W. Gallagher, J. Muller, C. J. Percival, C. Harlow, J. Lee, and J. P. Taylor
Atmos. Meas. Tech., 7, 4401–4416, https://doi.org/10.5194/amt-7-4401-2014, https://doi.org/10.5194/amt-7-4401-2014, 2014
Short summary
Short summary
This paper presents a validated method and data set for new retrievals of trace gas concentrations and temperature from the ARIES infrared spectrometer instrument on the UK Atmospheric Research Aircraft (www.faam.ac.uk). This new capability for the aircraft will allow new science to be done because of the way it can sense information about the atmosphere without having to physically pass through it (remote sensing). This will allow us to better understand the make-up of the lower atmosphere.
B. H. Samset, G. Myhre, A. Herber, Y. Kondo, S.-M. Li, N. Moteki, M. Koike, N. Oshima, J. P. Schwarz, Y. Balkanski, S. E. Bauer, N. Bellouin, T. K. Berntsen, H. Bian, M. Chin, T. Diehl, R. C. Easter, S. J. Ghan, T. Iversen, A. Kirkevåg, J.-F. Lamarque, G. Lin, X. Liu, J. E. Penner, M. Schulz, Ø. Seland, R. B. Skeie, P. Stier, T. Takemura, K. Tsigaridis, and K. Zhang
Atmos. Chem. Phys., 14, 12465–12477, https://doi.org/10.5194/acp-14-12465-2014, https://doi.org/10.5194/acp-14-12465-2014, 2014
Short summary
Short summary
Far from black carbon (BC) emission sources, present climate models are unable to reproduce flight measurements. By comparing recent models with data, we find that the atmospheric lifetime of BC may be overestimated in models. By adjusting modeled BC concentrations to measurements in remote regions - over oceans and at high altitudes - we arrive at a reduced estimate for BC radiative forcing over the industrial era.
S. Decesari, J. Allan, C. Plass-Duelmer, B. J. Williams, M. Paglione, M. C. Facchini, C. O'Dowd, R. M. Harrison, J. K. Gietl, H. Coe, L. Giulianelli, G. P. Gobbi, C. Lanconelli, C. Carbone, D. Worsnop, A. T. Lambe, A. T. Ahern, F. Moretti, E. Tagliavini, T. Elste, S. Gilge, Y. Zhang, and M. Dall'Osto
Atmos. Chem. Phys., 14, 12109–12132, https://doi.org/10.5194/acp-14-12109-2014, https://doi.org/10.5194/acp-14-12109-2014, 2014
Short summary
Short summary
We made use of multiple spectrometric techniques for characterizing the aerosol chemical composition and mixing in the Po Valley in the summer.
The oxygenated organic aerosol (OOA) concentrations were correlated with simple tracers for recirculated planetary boundary layer air.
A full internal mixing between black carbon (BC) and the non-refractory aerosol components was never observed. Local sources in the Po Valley were responsible for the production of organic particles unmixed with BC.
J. Brito, L. V. Rizzo, W. T. Morgan, H. Coe, B. Johnson, J. Haywood, K. Longo, S. Freitas, M. O. Andreae, and P. Artaxo
Atmos. Chem. Phys., 14, 12069–12083, https://doi.org/10.5194/acp-14-12069-2014, https://doi.org/10.5194/acp-14-12069-2014, 2014
Short summary
Short summary
This paper details the physical--chemical characteristics of aerosols in a region strongly impacted by biomass burning in the western part of the Brazilian Amazon region. For such, a large suite of state-of-the-art instruments for realtime analysis was deployed at a ground site. Among the key findings, we observe the strong prevalence of organic aerosols associated to fire emissions, with important climate effects, and indications of its very fast processing in the atmosphere.
F. Marenco, V. Amiridis, E. Marinou, A. Tsekeri, and J. Pelon
Atmos. Chem. Phys., 14, 11871–11881, https://doi.org/10.5194/acp-14-11871-2014, https://doi.org/10.5194/acp-14-11871-2014, 2014
J. D. Allan, W. T. Morgan, E. Darbyshire, M. J. Flynn, P. I. Williams, D. E. Oram, P. Artaxo, J. Brito, J. D. Lee, and H. Coe
Atmos. Chem. Phys., 14, 11393–11407, https://doi.org/10.5194/acp-14-11393-2014, https://doi.org/10.5194/acp-14-11393-2014, 2014
S. S. Dhomse, K. M. Emmerson, G. W. Mann, N. Bellouin, K. S. Carslaw, M. P. Chipperfield, R. Hommel, N. L. Abraham, P. Telford, P. Braesicke, M. Dalvi, C. E. Johnson, F. O'Connor, O. Morgenstern, J. A. Pyle, T. Deshler, J. M. Zawodny, and L. W. Thomason
Atmos. Chem. Phys., 14, 11221–11246, https://doi.org/10.5194/acp-14-11221-2014, https://doi.org/10.5194/acp-14-11221-2014, 2014
X. Wang, C. L. Heald, D. A. Ridley, J. P. Schwarz, J. R. Spackman, A. E. Perring, H. Coe, D. Liu, and A. D. Clarke
Atmos. Chem. Phys., 14, 10989–11010, https://doi.org/10.5194/acp-14-10989-2014, https://doi.org/10.5194/acp-14-10989-2014, 2014
K. Tsigaridis, N. Daskalakis, M. Kanakidou, P. J. Adams, P. Artaxo, R. Bahadur, Y. Balkanski, S. E. Bauer, N. Bellouin, A. Benedetti, T. Bergman, T. K. Berntsen, J. P. Beukes, H. Bian, K. S. Carslaw, M. Chin, G. Curci, T. Diehl, R. C. Easter, S. J. Ghan, S. L. Gong, A. Hodzic, C. R. Hoyle, T. Iversen, S. Jathar, J. L. Jimenez, J. W. Kaiser, A. Kirkevåg, D. Koch, H. Kokkola, Y. H Lee, G. Lin, X. Liu, G. Luo, X. Ma, G. W. Mann, N. Mihalopoulos, J.-J. Morcrette, J.-F. Müller, G. Myhre, S. Myriokefalitakis, N. L. Ng, D. O'Donnell, J. E. Penner, L. Pozzoli, K. J. Pringle, L. M. Russell, M. Schulz, J. Sciare, Ø. Seland, D. T. Shindell, S. Sillman, R. B. Skeie, D. Spracklen, T. Stavrakou, S. D. Steenrod, T. Takemura, P. Tiitta, S. Tilmes, H. Tost, T. van Noije, P. G. van Zyl, K. von Salzen, F. Yu, Z. Wang, Z. Wang, R. A. Zaveri, H. Zhang, K. Zhang, Q. Zhang, and X. Zhang
Atmos. Chem. Phys., 14, 10845–10895, https://doi.org/10.5194/acp-14-10845-2014, https://doi.org/10.5194/acp-14-10845-2014, 2014
A. Rocha-Lima, J. V. Martins, L. A. Remer, N. A. Krotkov, M. H. Tabacniks, Y. Ben-Ami, and P. Artaxo
Atmos. Chem. Phys., 14, 10649–10661, https://doi.org/10.5194/acp-14-10649-2014, https://doi.org/10.5194/acp-14-10649-2014, 2014
D. Liu, J. D. Allan, D. E. Young, H. Coe, D. Beddows, Z. L. Fleming, M. J. Flynn, M. W. Gallagher, R. M. Harrison, J. Lee, A. S. H. Prevot, J. W. Taylor, J. Yin, P. I. Williams, and P. Zotter
Atmos. Chem. Phys., 14, 10061–10084, https://doi.org/10.5194/acp-14-10061-2014, https://doi.org/10.5194/acp-14-10061-2014, 2014
J. E. Franklin, J. R. Drummond, D. Griffin, J. R. Pierce, D. L. Waugh, P. I. Palmer, M. Parrington, J. D. Lee, A. C. Lewis, A. R. Rickard, J. W. Taylor, J. D. Allan, H. Coe, K. A. Walker, L. Chisholm, T. J. Duck, J. T. Hopper, Y. Blanchard, M. D. Gibson, K. R. Curry, K. M. Sakamoto, G. Lesins, L. Dan, J. Kliever, and A. Saha
Atmos. Chem. Phys., 14, 8449–8460, https://doi.org/10.5194/acp-14-8449-2014, https://doi.org/10.5194/acp-14-8449-2014, 2014
J. Browse, K. S. Carslaw, G. W. Mann, C. E. Birch, S. R. Arnold, and C. Leck
Atmos. Chem. Phys., 14, 7543–7557, https://doi.org/10.5194/acp-14-7543-2014, https://doi.org/10.5194/acp-14-7543-2014, 2014
G. P. Almeida, J. Brito, C. A. Morales, M. F. Andrade, and P. Artaxo
Atmos. Chem. Phys., 14, 7559–7572, https://doi.org/10.5194/acp-14-7559-2014, https://doi.org/10.5194/acp-14-7559-2014, 2014
G. G. Cirino, R. A. F. Souza, D. K. Adams, and P. Artaxo
Atmos. Chem. Phys., 14, 6523–6543, https://doi.org/10.5194/acp-14-6523-2014, https://doi.org/10.5194/acp-14-6523-2014, 2014
R. E. L. West, P. Stier, A. Jones, C. E. Johnson, G. W. Mann, N. Bellouin, D. G. Partridge, and Z. Kipling
Atmos. Chem. Phys., 14, 6369–6393, https://doi.org/10.5194/acp-14-6369-2014, https://doi.org/10.5194/acp-14-6369-2014, 2014
H. M. J. Barbosa, B. Barja, T. Pauliquevis, D. A. Gouveia, P. Artaxo, G. G. Cirino, R. M. N. Santos, and A. B. Oliveira
Atmos. Meas. Tech., 7, 1745–1762, https://doi.org/10.5194/amt-7-1745-2014, https://doi.org/10.5194/amt-7-1745-2014, 2014
G. W. Mann, K. S. Carslaw, C. L. Reddington, K. J. Pringle, M. Schulz, A. Asmi, D. V. Spracklen, D. A. Ridley, M. T. Woodhouse, L. A. Lee, K. Zhang, S. J. Ghan, R. C. Easter, X. Liu, P. Stier, Y. H. Lee, P. J. Adams, H. Tost, J. Lelieveld, S. E. Bauer, K. Tsigaridis, T. P. C. van Noije, A. Strunk, E. Vignati, N. Bellouin, M. Dalvi, C. E. Johnson, T. Bergman, H. Kokkola, K. von Salzen, F. Yu, G. Luo, A. Petzold, J. Heintzenberg, A. Clarke, J. A. Ogren, J. Gras, U. Baltensperger, U. Kaminski, S. G. Jennings, C. D. O'Dowd, R. M. Harrison, D. C. S. Beddows, M. Kulmala, Y. Viisanen, V. Ulevicius, N. Mihalopoulos, V. Zdimal, M. Fiebig, H.-C. Hansson, E. Swietlicki, and J. S. Henzing
Atmos. Chem. Phys., 14, 4679–4713, https://doi.org/10.5194/acp-14-4679-2014, https://doi.org/10.5194/acp-14-4679-2014, 2014
J. P. Mulcahy, D. N. Walters, N. Bellouin, and S. F. Milton
Atmos. Chem. Phys., 14, 4749–4778, https://doi.org/10.5194/acp-14-4749-2014, https://doi.org/10.5194/acp-14-4749-2014, 2014
S. M. Illingworth, G. Allen, S. Newman, A. Vance, F. Marenco, R. C. Harlow, J. Taylor, D. P. Moore, and J. J. Remedios
Atmos. Meas. Tech., 7, 1133–1150, https://doi.org/10.5194/amt-7-1133-2014, https://doi.org/10.5194/amt-7-1133-2014, 2014
C. Jiao, M. G. Flanner, Y. Balkanski, S. E. Bauer, N. Bellouin, T. K. Berntsen, H. Bian, K. S. Carslaw, M. Chin, N. De Luca, T. Diehl, S. J. Ghan, T. Iversen, A. Kirkevåg, D. Koch, X. Liu, G. W. Mann, J. E. Penner, G. Pitari, M. Schulz, Ø. Seland, R. B. Skeie, S. D. Steenrod, P. Stier, T. Takemura, K. Tsigaridis, T. van Noije, Y. Yun, and K. Zhang
Atmos. Chem. Phys., 14, 2399–2417, https://doi.org/10.5194/acp-14-2399-2014, https://doi.org/10.5194/acp-14-2399-2014, 2014
D. N. Walters, K. D. Williams, I. A. Boutle, A. C. Bushell, J. M. Edwards, P. R. Field, A. P. Lock, C. J. Morcrette, R. A. Stratton, J. M. Wilkinson, M. R. Willett, N. Bellouin, A. Bodas-Salcedo, M. E. Brooks, D. Copsey, P. D. Earnshaw, S. C. Hardiman, C. M. Harris, R. C. Levine, C. MacLachlan, J. C. Manners, G. M. Martin, S. F. Milton, M. D. Palmer, M. J. Roberts, J. M. Rodríguez, W. J. Tennant, and P. L. Vidale
Geosci. Model Dev., 7, 361–386, https://doi.org/10.5194/gmd-7-361-2014, https://doi.org/10.5194/gmd-7-361-2014, 2014
D. Stone, M. J. Evans, H. Walker, T. Ingham, S. Vaughan, B. Ouyang, O. J. Kennedy, M. W. McLeod, R. L. Jones, J. Hopkins, S. Punjabi, R. Lidster, J. F. Hamilton, J. D. Lee, A. C. Lewis, L. J. Carpenter, G. Forster, D. E. Oram, C. E. Reeves, S. Bauguitte, W. Morgan, H. Coe, E. Aruffo, C. Dari-Salisburgo, F. Giammaria, P. Di Carlo, and D. E. Heard
Atmos. Chem. Phys., 14, 1299–1321, https://doi.org/10.5194/acp-14-1299-2014, https://doi.org/10.5194/acp-14-1299-2014, 2014
C. E. Scott, A. Rap, D. V. Spracklen, P. M. Forster, K. S. Carslaw, G. W. Mann, K. J. Pringle, N. Kivekäs, M. Kulmala, H. Lihavainen, and P. Tunved
Atmos. Chem. Phys., 14, 447–470, https://doi.org/10.5194/acp-14-447-2014, https://doi.org/10.5194/acp-14-447-2014, 2014
J. Brito, L. V. Rizzo, P. Herckes, P. C. Vasconcellos, S. E. S. Caumo, A. Fornaro, R. Y. Ynoue, P. Artaxo, and M. F. Andrade
Atmos. Chem. Phys., 13, 12199–12213, https://doi.org/10.5194/acp-13-12199-2013, https://doi.org/10.5194/acp-13-12199-2013, 2013
S. Bezantakos, K. Barmpounis, M. Giamarelou, E. Bossioli, M. Tombrou, N. Mihalopoulos, K. Eleftheriadis, J. Kalogiros, J. D. Allan, A. Bacak, C. J. Percival, H. Coe, and G. Biskos
Atmos. Chem. Phys., 13, 11595–11608, https://doi.org/10.5194/acp-13-11595-2013, https://doi.org/10.5194/acp-13-11595-2013, 2013
J. F. Hamilton, M. R. Alfarra, N. Robinson, M. W. Ward, A. C. Lewis, G. B. McFiggans, H. Coe, and J. D. Allan
Atmos. Chem. Phys., 13, 11295–11305, https://doi.org/10.5194/acp-13-11295-2013, https://doi.org/10.5194/acp-13-11295-2013, 2013
M. Yoshida, J. M. Haywood, T. Yokohata, H. Murakami, and T. Nakajima
Atmos. Chem. Phys., 13, 10827–10845, https://doi.org/10.5194/acp-13-10827-2013, https://doi.org/10.5194/acp-13-10827-2013, 2013
D. A. Lack and J. M. Langridge
Atmos. Chem. Phys., 13, 10535–10543, https://doi.org/10.5194/acp-13-10535-2013, https://doi.org/10.5194/acp-13-10535-2013, 2013
K. M. Longo, S. R. Freitas, M. Pirre, V. Marécal, L. F. Rodrigues, J. Panetta, M. F. Alonso, N. E. Rosário, D. S. Moreira, M. S. Gácita, J. Arteta, R. Fonseca, R. Stockler, D. M. Katsurayama, A. Fazenda, and M. Bela
Geosci. Model Dev., 6, 1389–1405, https://doi.org/10.5194/gmd-6-1389-2013, https://doi.org/10.5194/gmd-6-1389-2013, 2013
L. A. Lee, K. J. Pringle, C. L. Reddington, G. W. Mann, P. Stier, D. V. Spracklen, J. R. Pierce, and K. S. Carslaw
Atmos. Chem. Phys., 13, 8879–8914, https://doi.org/10.5194/acp-13-8879-2013, https://doi.org/10.5194/acp-13-8879-2013, 2013
D. S. Moreira, S. R. Freitas, J. P. Bonatti, L. M. Mercado, N. M. É. Rosário, K. M. Longo, J. B. Miller, M. Gloor, and L. V. Gatti
Geosci. Model Dev., 6, 1243–1259, https://doi.org/10.5194/gmd-6-1243-2013, https://doi.org/10.5194/gmd-6-1243-2013, 2013
F. Marenco
Atmos. Meas. Tech., 6, 2055–2064, https://doi.org/10.5194/amt-6-2055-2013, https://doi.org/10.5194/amt-6-2055-2013, 2013
R. Saleh, C. J. Hennigan, G. R. McMeeking, W. K. Chuang, E. S. Robinson, H. Coe, N. M. Donahue, and A. L. Robinson
Atmos. Chem. Phys., 13, 7683–7693, https://doi.org/10.5194/acp-13-7683-2013, https://doi.org/10.5194/acp-13-7683-2013, 2013
M. Parrington, P. I. Palmer, A. C. Lewis, J. D. Lee, A. R. Rickard, P. Di Carlo, J. W. Taylor, J. R. Hopkins, S. Punjabi, D. E. Oram, G. Forster, E. Aruffo, S. J. Moller, S. J.-B. Bauguitte, J. D. Allan, H. Coe, and R. J. Leigh
Atmos. Chem. Phys., 13, 7321–7341, https://doi.org/10.5194/acp-13-7321-2013, https://doi.org/10.5194/acp-13-7321-2013, 2013
P. J. Connolly, G. Vaughan, P. Cook, G. Allen, H. Coe, T. W. Choularton, C. Dearden, and A. Hill
Atmos. Chem. Phys., 13, 7133–7152, https://doi.org/10.5194/acp-13-7133-2013, https://doi.org/10.5194/acp-13-7133-2013, 2013
F. Jégou, G. Berthet, C. Brogniez, J.-B. Renard, P. François, J. M. Haywood, A. Jones, Q. Bourgeois, T. Lurton, F. Auriol, S. Godin-Beekmann, C. Guimbaud, G. Krysztofiak, B. Gaubicher, M. Chartier, L. Clarisse, C. Clerbaux, J. Y. Balois, C. Verwaerde, and D. Daugeron
Atmos. Chem. Phys., 13, 6533–6552, https://doi.org/10.5194/acp-13-6533-2013, https://doi.org/10.5194/acp-13-6533-2013, 2013
Z. Kipling, P. Stier, J. P. Schwarz, A. E. Perring, J. R. Spackman, G. W. Mann, C. E. Johnson, and P. J. Telford
Atmos. Chem. Phys., 13, 5969–5986, https://doi.org/10.5194/acp-13-5969-2013, https://doi.org/10.5194/acp-13-5969-2013, 2013
C. L. Reddington, G. McMeeking, G. W. Mann, H. Coe, M. G. Frontoso, D. Liu, M. Flynn, D. V. Spracklen, and K. S. Carslaw
Atmos. Chem. Phys., 13, 4917–4939, https://doi.org/10.5194/acp-13-4917-2013, https://doi.org/10.5194/acp-13-4917-2013, 2013
N. E. Rosário, K. M. Longo, S. R. Freitas, M. A. Yamasoe, and R. M. Fonseca
Atmos. Chem. Phys., 13, 2923–2938, https://doi.org/10.5194/acp-13-2923-2013, https://doi.org/10.5194/acp-13-2923-2013, 2013
N. Bellouin, G. W. Mann, M. T. Woodhouse, C. Johnson, K. S. Carslaw, and M. Dalvi
Atmos. Chem. Phys., 13, 3027–3044, https://doi.org/10.5194/acp-13-3027-2013, https://doi.org/10.5194/acp-13-3027-2013, 2013
L. V. Rizzo, P. Artaxo, T. Müller, A. Wiedensohler, M. Paixão, G. G. Cirino, A. Arana, E. Swietlicki, P. Roldin, E. O. Fors, K. T. Wiedemann, L. S. M. Leal, and M. Kulmala
Atmos. Chem. Phys., 13, 2391–2413, https://doi.org/10.5194/acp-13-2391-2013, https://doi.org/10.5194/acp-13-2391-2013, 2013
B. H. Samset, G. Myhre, M. Schulz, Y. Balkanski, S. Bauer, T. K. Berntsen, H. Bian, N. Bellouin, T. Diehl, R. C. Easter, S. J. Ghan, T. Iversen, S. Kinne, A. Kirkevåg, J.-F. Lamarque, G. Lin, X. Liu, J. E. Penner, Ø. Seland, R. B. Skeie, P. Stier, T. Takemura, K. Tsigaridis, and K. Zhang
Atmos. Chem. Phys., 13, 2423–2434, https://doi.org/10.5194/acp-13-2423-2013, https://doi.org/10.5194/acp-13-2423-2013, 2013
N. Bellouin, J. Quaas, J.-J. Morcrette, and O. Boucher
Atmos. Chem. Phys., 13, 2045–2062, https://doi.org/10.5194/acp-13-2045-2013, https://doi.org/10.5194/acp-13-2045-2013, 2013
D. Liu, J. Allan, J. Whitehead, D. Young, M. Flynn, H. Coe, G. McFiggans, Z. L. Fleming, and B. Bandy
Atmos. Chem. Phys., 13, 2015–2029, https://doi.org/10.5194/acp-13-2015-2013, https://doi.org/10.5194/acp-13-2015-2013, 2013
H. F. Dacre, A. L. M. Grant, and B. T. Johnson
Atmos. Chem. Phys., 13, 1277–1291, https://doi.org/10.5194/acp-13-1277-2013, https://doi.org/10.5194/acp-13-1277-2013, 2013
M. Laborde, M. Schnaiter, C. Linke, H. Saathoff, K.-H. Naumann, O. Möhler, S. Berlenz, U. Wagner, J. W. Taylor, D. Liu, M. Flynn, J. D. Allan, H. Coe, K. Heimerl, F. Dahlkötter, B. Weinzierl, A. G. Wollny, M. Zanatta, J. Cozic, P. Laj, R. Hitzenberger, J. P. Schwarz, and M. Gysel
Atmos. Meas. Tech., 5, 3077–3097, https://doi.org/10.5194/amt-5-3077-2012, https://doi.org/10.5194/amt-5-3077-2012, 2012
J. A. Huffman, B. Sinha, R. M. Garland, A. Snee-Pollmann, S. S. Gunthe, P. Artaxo, S. T. Martin, M. O. Andreae, and U. Pöschl
Atmos. Chem. Phys., 12, 11997–12019, https://doi.org/10.5194/acp-12-11997-2012, https://doi.org/10.5194/acp-12-11997-2012, 2012
T. Hamburger, G. McMeeking, A. Minikin, A. Petzold, H. Coe, and R. Krejci
Atmos. Chem. Phys., 12, 11533–11554, https://doi.org/10.5194/acp-12-11533-2012, https://doi.org/10.5194/acp-12-11533-2012, 2012
Related subject area
Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
The key role of atmospheric absorption in the Asian summer monsoon response to dust emissions in CMIP6 models
Multi-model effective radiative forcing of the 2020 sulfur cap for shipping
Representation of iron aerosol size distributions of anthropogenic emissions is critical in evaluating atmospheric soluble iron input to the ocean
Revealing dominant patterns of aerosol regimes in the lower troposphere and their evolution from preindustrial times to the future in global climate model simulations
Improving estimation of a record-breaking east Asian dust storm emission with lagged aerosol Ångström exponent observations
Impact of biomass burning aerosols (BBA) on the tropical African climate in an ocean–atmosphere–aerosol coupled climate model
Retrieval of refractive index and water content for the coating materials of aged black carbon aerosol based on optical properties: a theoretical analysis
Predicting hygroscopic growth of organosulfur aerosol particles using COSMOtherm
Dust aerosol from the Aralkum Desert influences the radiation budget and atmospheric dynamics of Central Asia
Global modeling of aerosol nucleation with a semi-explicit chemical mechanism for highly oxygenated organic molecules (HOMs)
Synergistic effects of the winter North Atlantic Oscillation (NAO) and El Niño–Southern Oscillation (ENSO) on dust activities in North China during the following spring
Aerosol composition, air quality, and boundary layer dynamics in the urban background of Stuttgart in winter
Measurement report: Source attribution and estimation of black carbon levels in an urban hotspot of the central Po Valley – an integrated approach combining high-resolution dispersion modelling and micro-aethalometers
Quasi-weekly oscillation of regional PM2.5 transport over China driven by the synoptic-scale disturbance of East Asian Winter Monsoon circulation
Microphysical modelling of aerosol scavenging by different types of clouds: description and validation of the approach
Insights into the sources of ultrafine particle numbers at six European urban sites obtained by investigating COVID-19 lockdowns
In-plume and out-of-plume analysis of aerosol–cloud interactions derived from the 2014–2015 Holuhraun volcanic eruption
Impacts of atmospheric circulation patterns and cloud inhibition on aerosol radiative effect and boundary layer structure during winter air pollution in Sichuan Basin, China
Steady-State Mixing State of Black Carbon Aerosols from a Particle-Resolved Model
Investigating the sign of stratocumulus adjustments to aerosols in the ICON global storm-resolving model
A model study investigating the sensitivity of aerosol forcing to the volatilities of semi-volatile organic compounds
Distinctive dust weather intensities in North China resulted from two types of atmospheric circulation anomalies
Decomposing the effective radiative forcing of anthropogenic aerosols based on CMIP6 Earth system models
The role of interfacial tension in the size-dependent phase separation of atmospheric aerosol particles
Modeling impacts of dust mineralogy on fast climate response
Gaps in our understanding of ice-nucleating particle sources exposed by global simulation of the UK climate model
Uncertainties in laboratory-measured shortwave refractive indices of mineral dust aerosols and derived optical properties: a theoretical assessment
Diagnosing uncertainties in global biomass burning emission inventories and their impact on modeled air pollutants
Solar radiation estimation in West Africa: impact of dust conditions during 2021 dry season
Role of atmospheric aerosols in severe winter fog over the Indo-Gangetic Plain of India: a case study
Long-term variability in black carbon emissions constrained by gap-filled absorption aerosol optical depth and associated premature mortality in China
Intercomparison of aerosol optical depths from four reanalyses and their multi-reanalysis consensus
Biomass Burning Emissions Analysis Based on MODIS AOD and AeroCom Multi-Model Simulations
Global aviation contrail climate effects from 2019 to 2021
Rapid iodine oxoacid nucleation enhanced by dimethylamine in broad marine regions
Simulations of the impact of cloud condensation nuclei and ice-nucleating particles perturbations on the microphysics and radar reflectivity factor of stratiform mixed-phase clouds
Warming effects of reduced sulfur emissions from shipping
Aerosols in the central Arctic cryosphere: satellite and model integrated insights during Arctic spring and summer
Observationally constrained regional variations of shortwave absorption by iron oxides emphasize the cooling effect of dust
Droplet collection efficiencies inferred from satellite retrievals constrain effective radiative forcing of aerosol–cloud interactions
Global aerosol-type classification using a new hybrid algorithm and Aerosol Robotic Network data
Tropospheric aerosols over the western North Atlantic Ocean during the winter and summer campaigns of ACTIVATE 2020: Life cycle, transport, and distribution
Simulated phase state and viscosity of secondary organic aerosols over China
Comparing the simulated influence of biomass burning plumes on low-level clouds over the southeastern Atlantic under varying smoke conditions
A global dust emission dataset for estimating dust radiative forcings in climate models
Improved simulations of biomass burning aerosol optical properties and lifetimes in the NASA GEOS Model during the ORACLES-I campaign
Sharp increase in Saharan dust intrusions over the western Euro-Mediterranean in February–March 2020–2022 and associated atmospheric circulation
Temporal and spatial variations in dust activity in Australia based on remote sensing and reanalysis datasets
Sensitivity of global direct aerosol shortwave radiative forcing to uncertainties in aerosol optical properties
Molecular-level study on the role of methanesulfonic acid in iodine oxoacid nucleation
Alcide Zhao, Laura J. Wilcox, and Claire L. Ryder
Atmos. Chem. Phys., 24, 13385–13402, https://doi.org/10.5194/acp-24-13385-2024, https://doi.org/10.5194/acp-24-13385-2024, 2024
Short summary
Short summary
Climate models include desert dust aerosols, which cause atmospheric heating and can change circulation patterns. We assess the effect of dust on the Indian and east Asian summer monsoons through multi-model experiments isolating the effect of dust in current climate models for the first time. Dust atmospheric heating results in a southward shift of western Pacific equatorial rainfall and an enhanced Indian summer monsoon. This shows the importance of accurate dust representation in models.
Ragnhild Bieltvedt Skeie, Rachael Byrom, Øivind Hodnebrog, Caroline Jouan, and Gunnar Myhre
Atmos. Chem. Phys., 24, 13361–13370, https://doi.org/10.5194/acp-24-13361-2024, https://doi.org/10.5194/acp-24-13361-2024, 2024
Short summary
Short summary
In 2020, new regulations by the International Maritime Organization regarding sulfur emissions came into force, reducing emissions of SO2 from the shipping sector by approximately 80 %. In this study, we use multiple models to calculate how much the Earth energy balance changed due to the emission reduction or the so-called effective radiative forcing. The calculated effective radiative forcing is weak, comparable to the effect of the increase in CO2 over the last 2 to 3 years.
Mingxu Liu, Hitoshi Matsui, Douglas S. Hamilton, Sagar D. Rathod, Kara D. Lamb, and Natalie M. Mahowald
Atmos. Chem. Phys., 24, 13115–13127, https://doi.org/10.5194/acp-24-13115-2024, https://doi.org/10.5194/acp-24-13115-2024, 2024
Short summary
Short summary
Atmospheric aerosol deposition provides bioavailable iron to promote marine primary production, yet the estimates of its fluxes remain highly uncertain. This study, by performing global aerosol simulations, demonstrates that iron-containing particle size upon emission is a critical factor in regulating soluble iron input to open oceans. Further observational constraints on this are needed to reduce modeling uncertainties.
Jingmin Li, Mattia Righi, Johannes Hendricks, Christof G. Beer, Ulrike Burkhardt, and Anja Schmidt
Atmos. Chem. Phys., 24, 12727–12747, https://doi.org/10.5194/acp-24-12727-2024, https://doi.org/10.5194/acp-24-12727-2024, 2024
Short summary
Short summary
Aiming to understand underlying patterns and trends in aerosols, we characterize the spatial patterns and long-term evolution of lower tropospheric aerosols by clustering multiple aerosol properties from preindustrial times to the year 2050 under three Shared
Socioeconomic Pathway scenarios. The results provide a clear and condensed picture of the spatial extent and distribution of aerosols for different time periods and emission scenarios.
Socioeconomic Pathway scenarios. The results provide a clear and condensed picture of the spatial extent and distribution of aerosols for different time periods and emission scenarios.
Yueming Cheng, Tie Dai, Junji Cao, Daisuke Goto, Jianbing Jin, Teruyuki Nakajima, and Guangyu Shi
Atmos. Chem. Phys., 24, 12643–12659, https://doi.org/10.5194/acp-24-12643-2024, https://doi.org/10.5194/acp-24-12643-2024, 2024
Short summary
Short summary
In March 2021, east Asia experienced an outbreak of severe dust storms after an absence of 1.5 decades. Here, we innovatively used the time-lagged ground-based aerosol size information with the fixed-lag ensemble Kalman smoother to optimize dust emission and reproduce the dust storm. This work is valuable for not only the quantification of health damage, aviation risks, and profound impacts on the Earth's system but also revealing the climatic driving force and the process of desertification.
Marc Mallet, Aurore Voldoire, Fabien Solmon, Pierre Nabat, Thomas Drugé, and Romain Roehrig
Atmos. Chem. Phys., 24, 12509–12535, https://doi.org/10.5194/acp-24-12509-2024, https://doi.org/10.5194/acp-24-12509-2024, 2024
Short summary
Short summary
This study investigates the interactions between smoke aerosols and climate in tropical Africa using a coupled ocean–atmosphere–aerosol climate model. The work shows that smoke plumes have a significant impact by increasing the low-cloud fraction, decreasing the ocean and continental surface temperature and reducing the precipitation of coastal western Africa. It also highlights the role of the ocean temperature response and its feedbacks for the September–November season.
Jia Liu, Cancan Zhu, Donghui Zhou, and Jinbao Han
Atmos. Chem. Phys., 24, 12341–12354, https://doi.org/10.5194/acp-24-12341-2024, https://doi.org/10.5194/acp-24-12341-2024, 2024
Short summary
Short summary
The hydrophilic coatings of aged black carbon (BC) particles absorb moisture during the hygroscopic growth process, but it is difficult to characterize how much water is absorbed under different relative humidities (RHs). In this study, we propose a method to obtain the water content in the coatings based on the equivalent complex refractive index retrieved from optical properties. This method is verified from a theoretical perspective, and it performs well for thickly coated BC at high RHs.
Zijun Li, Angela Buchholz, and Noora Hyttinen
Atmos. Chem. Phys., 24, 11717–11725, https://doi.org/10.5194/acp-24-11717-2024, https://doi.org/10.5194/acp-24-11717-2024, 2024
Short summary
Short summary
Evaluating organosulfur (OS) hygroscopicity is important for assessing aerosol–cloud climate interactions in the post-fossil-fuel future, when SO2 emissions decrease and OS compounds become increasingly important. Here a state-of-the-art quantum-chemistry-based method was used to predict the hygroscopic growth factors (HGFs) of a group of atmospherically relevant OS compounds and their mixtures with (NH4)2SO4. A good agreement was observed between their model-estimated and experimental HGFs.
Jamie R. Banks, Bernd Heinold, and Kerstin Schepanski
Atmos. Chem. Phys., 24, 11451–11475, https://doi.org/10.5194/acp-24-11451-2024, https://doi.org/10.5194/acp-24-11451-2024, 2024
Short summary
Short summary
The Aralkum is a new desert in Central Asia formed by the desiccation of the Aral Sea. This has created a source of atmospheric dust, with implications for the balance of solar and thermal radiation. Simulating these effects using a dust transport model, we find that Aralkum dust adds radiative cooling effects to the surface and atmosphere on average but also adds heating events. Increases in surface pressure due to Aralkum dust strengthen the Siberian High and weaken the summer Asian heat low.
Xinyue Shao, Minghuai Wang, Xinyi Dong, Yaman Liu, Wenxiang Shen, Stephen R. Arnold, Leighton A. Regayre, Meinrat O. Andreae, Mira L. Pöhlker, Duseong S. Jo, Man Yue, and Ken S. Carslaw
Atmos. Chem. Phys., 24, 11365–11389, https://doi.org/10.5194/acp-24-11365-2024, https://doi.org/10.5194/acp-24-11365-2024, 2024
Short summary
Short summary
Highly oxygenated organic molecules (HOMs) play an important role in atmospheric new particle formation (NPF). By semi-explicitly coupling the chemical mechanism of HOMs and a comprehensive nucleation scheme in a global climate model, the updated model shows better agreement with measurements of nucleation rate, growth rate, and NPF event frequency. Our results reveal that HOM-driven NPF leads to a considerable increase in particle and cloud condensation nuclei burden globally.
Falei Xu, Shuang Wang, Yan Li, and Juan Feng
Atmos. Chem. Phys., 24, 10689–10705, https://doi.org/10.5194/acp-24-10689-2024, https://doi.org/10.5194/acp-24-10689-2024, 2024
Short summary
Short summary
This study examines how the winter North Atlantic Oscillation (NAO) and El Niño–Southern Oscillation (ENSO) affect dust activities in North China during the following spring. The results show that the NAO and ENSO, particularly in their negative phases, greatly influence dust activities. When both are negative, their combined effect on dust activities is even greater. This research highlights the importance of these climate patterns in predicting spring dust activities in North China.
Hengheng Zhang, Wei Huang, Xiaoli Shen, Ramakrishna Ramisetty, Junwei Song, Olga Kiseleva, Christopher Claus Holst, Basit Khan, Thomas Leisner, and Harald Saathoff
Atmos. Chem. Phys., 24, 10617–10637, https://doi.org/10.5194/acp-24-10617-2024, https://doi.org/10.5194/acp-24-10617-2024, 2024
Short summary
Short summary
Our study unravels how stagnant winter conditions elevate aerosol levels in Stuttgart. Cloud cover at night plays a pivotal role, impacting morning air quality. Validating a key model, our findings aid accurate air quality predictions, crucial for effective pollution mitigation in urban areas.
Giorgio Veratti, Alessandro Bigi, Michele Stortini, Sergio Teggi, and Grazia Ghermandi
Atmos. Chem. Phys., 24, 10475–10512, https://doi.org/10.5194/acp-24-10475-2024, https://doi.org/10.5194/acp-24-10475-2024, 2024
Short summary
Short summary
In a study of two consecutive winter seasons, we used measurements and modelling tools to identify the levels and sources of black carbon pollution in a medium-sized urban area of the Po Valley, Italy. Our findings show that biomass burning and traffic-related emissions (especially from Euro 4 diesel cars) significantly contribute to BC concentrations. This research offers crucial insights for policymakers and urban planners aiming to improve air quality in cities.
Yongqing Bai, Tianliang Zhao, Kai Meng, Yue Zhou, Jie Xiong, Xiaoyun Sun, Lijuan Shen, Yanyu Yue, Yan Zhu, Weiyang Hu, and Jingyan Yao
EGUsphere, https://doi.org/10.5194/egusphere-2024-2493, https://doi.org/10.5194/egusphere-2024-2493, 2024
Short summary
Short summary
We proposed a composite statistical method to discern the long-term moving spatial distribution with Quasi-weekly oscillation (QWO) of regional PM2.5 transport over China. The QWO of regional PM2.5 transport is constrained by synoptic-scale disturbances of the East Asian Winter Monsoon circulation with the periodic activities of Siberian high, providing a new insight into the understanding of regional pollutant transport with meteorological drivers in atmospheric environment changes.
Pascal Lemaitre, Arnaud Quérel, Alexis Dépée, Alice Guerra Devigne, Marie Monier, Thibault Hiron, Chloé Soto Minguez, Daniel Hardy, and Andrea Flossmann
Atmos. Chem. Phys., 24, 9713–9732, https://doi.org/10.5194/acp-24-9713-2024, https://doi.org/10.5194/acp-24-9713-2024, 2024
Short summary
Short summary
A new in-cloud scavenging scheme is proposed. It is based on a microphysical model of cloud formation and may be applied to long-distance atmospheric transport models (> 100 km) and climatic models. This model is applied to the two most extreme precipitating cloud types in terms of both relative humidity and vertical extension: cumulonimbus and stratus.
Alex Rowell, James Brean, David C. S. Beddows, Tuukka Petäjä, Máté Vörösmarty, Imre Salma, Jarkko V. Niemi, Hanna E. Manninen, Dominik van Pinxteren, Thomas Tuch, Kay Weinhold, Zongbo Shi, and Roy M. Harrison
Atmos. Chem. Phys., 24, 9515–9531, https://doi.org/10.5194/acp-24-9515-2024, https://doi.org/10.5194/acp-24-9515-2024, 2024
Short summary
Short summary
Different sources of airborne particles in the atmospheres of four European cities were distinguished by recognising their particle size distributions using a statistical procedure, positive matrix factorisation. The various sources responded differently to the changes in emissions associated with COVID-19 lockdowns, and the reasons are investigated. While traffic emissions generally decreased, particles formed from reactions of atmospheric gases decreased in some cities but increased in others.
Amy H. Peace, Ying Chen, George Jordan, Daniel G. Partridge, Florent Malavelle, Eliza Duncan, and Jim M. Haywood
Atmos. Chem. Phys., 24, 9533–9553, https://doi.org/10.5194/acp-24-9533-2024, https://doi.org/10.5194/acp-24-9533-2024, 2024
Short summary
Short summary
Natural aerosols from volcanic eruptions can help us understand how anthropogenic aerosols modify climate. We use observations and model simulations of the 2014–2015 Holuhraun eruption plume to examine aerosol–cloud interactions in September 2014. We find a shift to clouds with smaller, more numerous cloud droplets in the first 2 weeks of the eruption. In the third week, the background meteorology and previous conditions experienced by air masses modulate the aerosol perturbation to clouds.
Hua Lu, Min Xie, Bingliang Zhuang, Danyang Ma, Bojun Liu, Yangzhihao Zhan, Tijian Wang, Shu Li, Mengmeng Li, and Kuanguang Zhu
Atmos. Chem. Phys., 24, 8963–8982, https://doi.org/10.5194/acp-24-8963-2024, https://doi.org/10.5194/acp-24-8963-2024, 2024
Short summary
Short summary
To identify cloud, aerosol, and planetary boundary layer (PBL) interactions from an air quality perspective, we summarized two pollution patterns characterized by denser liquid cloud and by obvious cloud radiation interaction (CRI). Numerical simulation experiments showed CRI could cause a 50 % reduction in aerosol radiation interaction (ARI) under a low-trough system. The results emphasized the nonnegligible role of CRI and its inhibition of ARI under wet and cloudy pollution synoptic patterns.
Zhouyang Zhang, Jiandong Wang, Jiaping Wang, Nicole Riemer, Chao Liu, Yuzhi Jin, Zeyuan Tian, Jing Cai, Yueyue Cheng, Ganzhen Chen, Bin Wang, Shuxiao Wang, and Aijun Ding
EGUsphere, https://doi.org/10.5194/egusphere-2024-1924, https://doi.org/10.5194/egusphere-2024-1924, 2024
Short summary
Short summary
Black carbon (BC) exerts notable warming effects. We use a particle-resolved model to investigate the long-term behavior of BC mixing state, revealing its compositions, coating thickness distribution, and optical properties all stabilize with characteristic time of less than one day. This study can effectively simplify the description of the BC mixing state, which facilitates the precise assessment of the optical properties of BC aerosols in global and chemical transport models.
Emilie Fons, Ann Kristin Naumann, David Neubauer, Theresa Lang, and Ulrike Lohmann
Atmos. Chem. Phys., 24, 8653–8675, https://doi.org/10.5194/acp-24-8653-2024, https://doi.org/10.5194/acp-24-8653-2024, 2024
Short summary
Short summary
Aerosols can modify the liquid water path (LWP) of stratocumulus and, thus, their radiative effect. We compare storm-resolving model and satellite data that disagree on the sign of LWP adjustments and diagnose this discrepancy with causal inference. We find that strong precipitation, the absence of wet scavenging, and cloud deepening under a weak inversion contribute to positive LWP adjustments to aerosols in the model, despite weak negative effects from cloud-top entrainment enhancement.
Muhammed Irfan, Thomas Kühn, Taina Yli-Juuti, Anton Laakso, Eemeli Holopainen, Douglas R. Worsnop, Annele Virtanen, and Harri Kokkola
Atmos. Chem. Phys., 24, 8489–8506, https://doi.org/10.5194/acp-24-8489-2024, https://doi.org/10.5194/acp-24-8489-2024, 2024
Short summary
Short summary
The study examines how the volatility of semi-volatile organic compounds affects secondary organic aerosol (SOA) formation and climate. Our simulations show that uncertainties in these volatilities influence aerosol mass and climate impacts. Accurate representation of these compounds in climate models is crucial for predicting global climate patterns.
Qianyi Huo, Zhicong Yin, Xiaoqing Ma, and Huijun Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-1923, https://doi.org/10.5194/egusphere-2024-1923, 2024
Short summary
Short summary
The Mongolian cyclone, compared to the cold high-pressure system, caused more frequent and severe dust weather in North China during the spring seasons of 2015–2023. Different intensities of 500 hPa cyclonic and anticyclonic anomalies, control near-surface meteorological conditions, leading to two dust weather types in North China. The common predictor for the two types of dust weather successfully captured 76.1 % of dust days and provided a dust signal two days in advance.
Alkiviadis Kalisoras, Aristeidis K. Georgoulias, Dimitris Akritidis, Robert J. Allen, Vaishali Naik, Chaincy Kuo, Sophie Szopa, Pierre Nabat, Dirk Olivié, Twan van Noije, Philippe Le Sager, David Neubauer, Naga Oshima, Jane Mulcahy, Larry W. Horowitz, and Prodromos Zanis
Atmos. Chem. Phys., 24, 7837–7872, https://doi.org/10.5194/acp-24-7837-2024, https://doi.org/10.5194/acp-24-7837-2024, 2024
Short summary
Short summary
Effective radiative forcing (ERF) is a metric for estimating how human activities and natural agents change the energy flow into and out of the Earth’s climate system. We investigate the anthropogenic aerosol ERF, and we estimate the contribution of individual processes to the total ERF using simulations from Earth system models within the Coupled Model Intercomparison Project Phase 6 (CMIP6). Our findings highlight that aerosol–cloud interactions drive ERF variability during the last 150 years.
Ryan Schmedding and Andreas Zuend
EGUsphere, https://doi.org/10.5194/egusphere-2024-1690, https://doi.org/10.5194/egusphere-2024-1690, 2024
Short summary
Short summary
Four different approaches for computing the interfacial tension between liquid phases in aerosol particles were tested for particles with diameters from 10 nm to more than 5 μm. Antonov's rule led to the strongest reductions in the onset relative humidity of liquid–liquid phase separation and reproduced measured interfacial tensions for highly immiscible systems. A modified form of the Butler equation was able to best reproduce measured interfacial tensions in more miscible systems.
Qianqian Song, Paul Ginoux, María Gonçalves Ageitos, Ron L. Miller, Vincenzo Obiso, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 24, 7421–7446, https://doi.org/10.5194/acp-24-7421-2024, https://doi.org/10.5194/acp-24-7421-2024, 2024
Short summary
Short summary
We implement and simulate the distribution of eight dust minerals in the GFDL AM4.0 model. We found that resolving the eight minerals reduces dust absorption compared to the homogeneous dust used in the standard GFDL AM4.0 model that assumes a globally uniform hematite content of 2.7 % by volume. Resolving dust mineralogy results in significant impacts on radiation, land surface temperature, surface winds, and precipitation over North Africa in summer.
Ross J. Herbert, Alberto Sanchez-Marroquin, Daniel P. Grosvenor, Kirsty J. Pringle, Stephen R. Arnold, Benjamin J. Murray, and Kenneth S. Carslaw
EGUsphere, https://doi.org/10.5194/egusphere-2024-1538, https://doi.org/10.5194/egusphere-2024-1538, 2024
Short summary
Short summary
Aerosol particles that help form ice in clouds vary in number and type around the world and with time. However, in many weather and climate models cloud ice is not linked to aerosol that are known to nucleate ice. Here we report the first steps towards representing ice-nucleating particles within the UK's Earth System Model. We conclude that in addition to ice nucleation by sea spray and mineral components of soil dust we also need to represent ice nucleation by the organic components of soils.
Senyi Kong, Zheng Wang, and Lei Bi
Atmos. Chem. Phys., 24, 6911–6935, https://doi.org/10.5194/acp-24-6911-2024, https://doi.org/10.5194/acp-24-6911-2024, 2024
Short summary
Short summary
The retrieval of refractive indices of dust aerosols from laboratory optical measurements is commonly done assuming spherical particles. This paper aims to investigate the uncertainties in the shortwave refractive indices and corresponding optical properties by considering non-spherical and inhomogeneous models for dust samples. The study emphasizes the significance of using non-spherical models for simulating dust aerosols.
Wenxuan Hua, Sijia Lou, Xin Huang, Lian Xue, Ke Ding, Zilin Wang, and Aijun Ding
Atmos. Chem. Phys., 24, 6787–6807, https://doi.org/10.5194/acp-24-6787-2024, https://doi.org/10.5194/acp-24-6787-2024, 2024
Short summary
Short summary
In this study, we diagnose uncertainties in carbon monoxide and organic carbon emissions from four inventories for seven major wildfire-prone regions. Uncertainties in vegetation classification methods, fire detection products, and cloud obscuration effects lead to bias in these biomass burning (BB) emission inventories. By comparing simulations with measurements, we provide certain inventory recommendations. Our study has implications for reducing uncertainties in emissions in further studies.
Léo Clauzel, Sandrine Anquetin, Christophe Lavaysse, Gilles Bergametti, Christel Bouet, Guillaume Siour, Rémy Lapere, Béatrice Marticorena, and Jennie Thomas
EGUsphere, https://doi.org/10.5194/egusphere-2024-1604, https://doi.org/10.5194/egusphere-2024-1604, 2024
Short summary
Short summary
Solar energy production in West Africa is set to rise, needing accurate solar radiation estimates, which is affected by desert dust. This work analyses a March 2021 dust event using a modelling strategy incorporating desert dust. Results show that considering desert dust cut errors in solar radiation estimates by 75 % and reduces surface solar radiation by 18 %. This highlights the importance of incorporating dust aerosols into solar forecasting for better accuracy.
Chandrakala Bharali, Mary Barth, Rajesh Kumar, Sachin D. Ghude, Vinayak Sinha, and Baerbel Sinha
Atmos. Chem. Phys., 24, 6635–6662, https://doi.org/10.5194/acp-24-6635-2024, https://doi.org/10.5194/acp-24-6635-2024, 2024
Short summary
Short summary
This study examines the role of atmospheric aerosols in winter fog over the Indo-Gangetic Plains of India using WRF-Chem. The increase in RH with aerosol–radiation feedback (ARF) is found to be important for fog formation as it promotes the growth of aerosols in the polluted environment. Aqueous-phase chemistry in the fog increases PM2.5 concentration, further affecting ARF. ARF and aqueous-phase chemistry affect the fog intensity and the timing of fog formation by ~1–2 h.
Wenxin Zhao, Yu Zhao, Yu Zheng, Dong Chen, Jinyuan Xin, Kaitao Li, Huizheng Che, Zhengqiang Li, Mingrui Ma, and Yun Hang
Atmos. Chem. Phys., 24, 6593–6612, https://doi.org/10.5194/acp-24-6593-2024, https://doi.org/10.5194/acp-24-6593-2024, 2024
Short summary
Short summary
We evaluate the long-term (2000–2020) variabilities of aerosol absorption optical depth, black carbon emissions, and associated health risks in China with an integrated framework that combines multiple observations and modeling techniques. We demonstrate the remarkable emission abatement resulting from the implementation of national pollution controls and show how human activities affected the emissions with a spatiotemporal heterogeneity, thus supporting differentiated policy-making by region.
Peng Xian, Jeffrey S. Reid, Melanie Ades, Angela Benedetti, Peter R. Colarco, Arlindo da Silva, Tom F. Eck, Johannes Flemming, Edward J. Hyer, Zak Kipling, Samuel Rémy, Tsuyoshi Thomas Sekiyama, Taichu Tanaka, Keiya Yumimoto, and Jianglong Zhang
Atmos. Chem. Phys., 24, 6385–6411, https://doi.org/10.5194/acp-24-6385-2024, https://doi.org/10.5194/acp-24-6385-2024, 2024
Short summary
Short summary
The study compares and evaluates monthly AOD of four reanalyses (RA) and their consensus (i.e., ensemble mean). The basic verification characteristics of these RA versus both AERONET and MODIS retrievals are presented. The study discusses the strength of each RA and identifies regions where divergence and challenges are prominent. The RA consensus usually performs very well on a global scale in terms of how well it matches the observational data, making it a good choice for various applications.
Mariya Petrenko, Ralph Kahn, Mian Chin, Susanne E. Bauer, Tommi Bergman, Huisheng Bian, Gabriele Curci, Ben Johnson, Johannes Kaiser, Zak Kipling, Harri Kokkola, Xiaohong Liu, Keren Mezuman, Tero Mielonen, Gunnar Myhre, Xiaohua Pan, Anna Protonotariou, Samuel Remy, Ragnhild Bieltvedt Skeie, Philip Stier, Toshihiko Takemura, Kostas Tsigaridis, Hailong Wang, Duncan Watson-Parris, and Kai Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2024-1487, https://doi.org/10.5194/egusphere-2024-1487, 2024
Short summary
Short summary
We compared smoke plume simulations from 11 global models to each other and to satellite smoke-amount observations, aimed at constraining smoke source strength. In regions where plumes are thick and background aerosol is low, models and satellites compare well. However, the input emission inventory tends to underestimate in many places, and particle property and loss-rate assumptions vary enormously among models, causing uncertainties that require systematic in-situ measurements to resolve.
Roger Teoh, Zebediah Engberg, Ulrich Schumann, Christiane Voigt, Marc Shapiro, Susanne Rohs, and Marc E. J. Stettler
Atmos. Chem. Phys., 24, 6071–6093, https://doi.org/10.5194/acp-24-6071-2024, https://doi.org/10.5194/acp-24-6071-2024, 2024
Short summary
Short summary
The radiative forcing (RF) due to aviation contrails is comparable to that caused by CO2. We estimate that global contrail net RF in 2019 was 62.1 mW m−2. This is ~1/2 the previous best estimate for 2018. Contrail RF varies regionally due to differences in conditions required for persistent contrails. COVID-19 reduced contrail RF by 54% in 2020 relative to 2019. Globally, 2 % of all flights account for 80 % of the annual contrail energy forcing, suggesting a opportunity to mitigate contrail RF.
Haotian Zu, Biwu Chu, Yiqun Lu, Ling Liu, and Xiuhui Zhang
Atmos. Chem. Phys., 24, 5823–5835, https://doi.org/10.5194/acp-24-5823-2024, https://doi.org/10.5194/acp-24-5823-2024, 2024
Short summary
Short summary
The nucleation of iodic acid (HIO3) and iodous acid (HIO2) was proven to be critical in marine areas. However, HIO3–HIO2 nucleation cannot effectively derive the rapid nucleation in some polluted coasts. We find a significant enhancement of dimethylamine (DMA) on the HIO3–HIO2 nucleation in marine and polar regions with abundant DMA sources, which may establish reasonable connections between the HIO3–HIO2 nucleation and the rapid formation of new particles in polluted marine and polar regions.
Junghwa Lee, Patric Seifert, Tempei Hashino, Maximilian Maahn, Fabian Senf, and Oswald Knoth
Atmos. Chem. Phys., 24, 5737–5756, https://doi.org/10.5194/acp-24-5737-2024, https://doi.org/10.5194/acp-24-5737-2024, 2024
Short summary
Short summary
Spectral bin model simulations of an idealized supercooled stratiform cloud were performed with the AMPS model for variable CCN and INP concentrations. We performed radar forward simulations with PAMTRA to transfer the simulations into radar observational space. The derived radar reflectivity factors were compared to observational studies of stratiform mixed-phase clouds. These studies report a similar response of the radar reflectivity factor to aerosol perturbations as we found in our study.
Masaru Yoshioka, Daniel P. Grosvenor, Ben B. B. Booth, Colin P. Morice, and Kenneth S. Carslaw
EGUsphere, https://doi.org/10.5194/egusphere-2024-1428, https://doi.org/10.5194/egusphere-2024-1428, 2024
Short summary
Short summary
Sulfur emissions from shipping has been reduced by about 80 % as a result of the new regulation introduced in 2020. This has reduced aerosol in the atmosphere and its cooling effect through interactions with clouds. As a result, our coupled climate model simulations predict a global warming of 0.04 K averaged over three decades, potentially surpassing the Paris target of 1.5 K or contributing to recent temperature spikes, particularly notable in the Arctic with a mean warming of 0.15 K.
Basudev Swain, Marco Vountas, Aishwarya Singh, Nidhi L. Anchan, Adrien Deroubaix, Luca Lelli, Yanick Ziegler, Sachin S. Gunthe, Hartmut Bösch, and John P. Burrows
Atmos. Chem. Phys., 24, 5671–5693, https://doi.org/10.5194/acp-24-5671-2024, https://doi.org/10.5194/acp-24-5671-2024, 2024
Short summary
Short summary
Arctic amplification (AA) accelerates the warming of the central Arctic cryosphere and affects aerosol dynamics. Limited observations hinder a comprehensive analysis. This study uses AEROSNOW aerosol optical density (AOD) data and GEOS-Chem simulations to assess AOD variability. Discrepancies highlight the need for improved observational integration into models to refine our understanding of aerosol effects on cloud microphysics, ice nucleation, and radiative forcing under evolving AA.
Vincenzo Obiso, María Gonçalves Ageitos, Carlos Pérez García-Pando, Jan P. Perlwitz, Gregory L. Schuster, Susanne E. Bauer, Claudia Di Biagio, Paola Formenti, Kostas Tsigaridis, and Ron L. Miller
Atmos. Chem. Phys., 24, 5337–5367, https://doi.org/10.5194/acp-24-5337-2024, https://doi.org/10.5194/acp-24-5337-2024, 2024
Short summary
Short summary
We calculate the dust direct radiative effect (DRE) in an Earth system model accounting for regionally varying soil mineralogy through a new observationally constrained method. Linking dust absorption at solar wavelengths to the varying amount of specific minerals (i.e., iron oxides) improves the modeled range of dust single scattering albedo compared to observations and increases the global cooling by dust. Our results may contribute to improved estimates of the dust DRE and its climate impact.
Charlotte M. Beall, Po-Lun Ma, Matthew W. Christensen, Johannes Mülmenstädt, Adam Varble, Kentaroh Suzuki, and Takuro Michibata
Atmos. Chem. Phys., 24, 5287–5302, https://doi.org/10.5194/acp-24-5287-2024, https://doi.org/10.5194/acp-24-5287-2024, 2024
Short summary
Short summary
Single-layer warm liquid clouds cover nearly one-third of the Earth's surface, and uncertainties regarding the impact of aerosols on their radiative properties pose a significant challenge to climate prediction. Here, we demonstrate how satellite observations can be used to constrain Earth system model estimates of the radiative forcing from the interactions of aerosols with clouds due to warm rain processes.
Xiaoli Wei, Qian Cui, Leiming Ma, Feng Zhang, Wenwen Li, and Peng Liu
Atmos. Chem. Phys., 24, 5025–5045, https://doi.org/10.5194/acp-24-5025-2024, https://doi.org/10.5194/acp-24-5025-2024, 2024
Short summary
Short summary
A new aerosol-type classification algorithm has been proposed. It includes an optical database built by Mie scattering and a complex refractive index working as a baseline to identify different aerosol types. The new algorithm shows high accuracy and efficiency. Hence, a global map of aerosol types was generated to characterize aerosol types across the five continents. It will help improve the accuracy of aerosol inversion and determine the sources of aerosol pollution.
Hongyu Liu, Bo Zhang, Richard H. Moore, Luke D. Ziemba, Richard A. Ferrare, Hyundeok Choi, Armin Sorooshian, David Painemal, Hailong Wang, Michael A. Shook, Amy Jo Scarino, Johnathan W. Hair, Ewan C. Crosbie, Marta A. Fenn, Taylor J. Shingler, Chris A. Hostetler, Gao Chen, Mary M. Kleb, Gan Luo, Fangqun Yu, Jason L. Tackett, Mark A. Vaughan, Yongxiang Hu, Glenn S. Diskin, John B. Nowak, Joshua P. DiGangi, Yonghoon Choi, Christoph A. Keller, and Matthew S. Johnson
EGUsphere, https://doi.org/10.5194/egusphere-2024-1127, https://doi.org/10.5194/egusphere-2024-1127, 2024
Short summary
Short summary
We use the GEOS-Chem model to simulate aerosols over the western North Atlantic Ocean (WNAO) during the winter and summer campaigns of ACTIVATE 2020. Model results are evaluated against in situ and remote sensing measurements from two aircraft as well as ground-based and satellite observations. The improved understanding of the aerosol life cycle, composition, transport pathways, and distribution has important implications for characterizing aerosol-cloud-meteorology interactions over the WNAO.
Zhiqiang Zhang, Ying Li, Haiyan Ran, Junling An, Yu Qu, Wei Zhou, Weiqi Xu, Weiwei Hu, Hongbin Xie, Zifa Wang, Yele Sun, and Manabu Shiraiwa
Atmos. Chem. Phys., 24, 4809–4826, https://doi.org/10.5194/acp-24-4809-2024, https://doi.org/10.5194/acp-24-4809-2024, 2024
Short summary
Short summary
Secondary organic aerosols (SOAs) can exist in liquid, semi-solid, or amorphous solid states, which are rarely accounted for in current chemical transport models. We predict the phase state of SOA particles over China and find that in northwestern China SOA particles are mostly highly viscous or glassy solid. Our results indicate that the particle phase state should be considered in SOA formation in chemical transport models for more accurate prediction of SOA mass concentrations.
Alejandro Baró Pérez, Michael S. Diamond, Frida A.-M. Bender, Abhay Devasthale, Matthias Schwarz, Julien Savre, Juha Tonttila, Harri Kokkola, Hyunho Lee, David Painemal, and Annica M. L. Ekman
Atmos. Chem. Phys., 24, 4591–4610, https://doi.org/10.5194/acp-24-4591-2024, https://doi.org/10.5194/acp-24-4591-2024, 2024
Short summary
Short summary
We use a numerical model to study interactions between humid light-absorbing aerosol plumes, clouds, and radiation over the southeast Atlantic. We find that the warming produced by the aerosols reduces cloud cover, especially in highly polluted situations. Aerosol impacts on drizzle play a minor role. However, aerosol effects on cloud reflectivity and moisture-induced changes in cloud cover dominate the climatic response and lead to an overall cooling by the biomass burning plumes.
Danny M. Leung, Jasper F. Kok, Longlei Li, David M. Lawrence, Natalie M. Mahowald, Simone Tilmes, and Erik Kluzek
EGUsphere, https://doi.org/10.5194/egusphere-2024-1124, https://doi.org/10.5194/egusphere-2024-1124, 2024
Short summary
Short summary
This study derives a desert dust emission dataset for 1841–2000, by employing a combination of observed dust records from sedimentary cores as well as reanalyzed global dust cycle constraints. We evaluate the ability of global models to replicate the observed historical dust variability by using the emission dataset to force a historical simulation in an Earth system model. We show that prescribing our emissions forces the model to match better against observations than other mechanistic models.
Sampa Das, Peter R. Colarco, Huisheng Bian, and Santiago Gassó
Atmos. Chem. Phys., 24, 4421–4449, https://doi.org/10.5194/acp-24-4421-2024, https://doi.org/10.5194/acp-24-4421-2024, 2024
Short summary
Short summary
The smoke aerosols emitted from vegetation burning can alter the regional energy budget via multiple pathways. We utilized detailed observations from the NASA ORACLES airborne campaign based in Namibia during September 2016 to improve the representation of smoke aerosol properties and lifetimes in our GEOS Earth system model. The improved model simulations are for the first time able to capture the observed changes in the smoke absorption during long-range plume transport.
Emilio Cuevas-Agulló, David Barriopedro, Rosa Delia García, Silvia Alonso-Pérez, Juan Jesús González-Alemán, Ernest Werner, David Suárez, Juan José Bustos, Gerardo García-Castrillo, Omaira García, África Barreto, and Sara Basart
Atmos. Chem. Phys., 24, 4083–4104, https://doi.org/10.5194/acp-24-4083-2024, https://doi.org/10.5194/acp-24-4083-2024, 2024
Short summary
Short summary
During February–March (FM) 2020–2022, unusually intense dust storms from northern Africa hit the western Euro-Mediterranean (WEM). Using dust products from satellites and atmospheric reanalysis for 2003–2022, results show that cut-off lows and European blocking are key drivers of FM dust intrusions over the WEM. A higher frequency of cut-off lows associated with subtropical ridges is observed in the late 2020–2022 period.
Yahui Che, Bofu Yu, and Katherine Bracco
Atmos. Chem. Phys., 24, 4105–4128, https://doi.org/10.5194/acp-24-4105-2024, https://doi.org/10.5194/acp-24-4105-2024, 2024
Short summary
Short summary
Dust events occur more frequently during the Austral spring and summer in dust regions, including central Australia, the southwest of Western Australia, and the northern and southern regions of eastern Australia using remote sensing and reanalysis datasets. High-concentration dust is distributed around central Australia and in the downwind northern and southern Australia. Typically, around 50 % of the dust lifted settles on Australian land, with the remaining half being deposited in the ocean.
Jonathan Elsey, Nicolas Bellouin, and Claire Ryder
Atmos. Chem. Phys., 24, 4065–4081, https://doi.org/10.5194/acp-24-4065-2024, https://doi.org/10.5194/acp-24-4065-2024, 2024
Short summary
Short summary
Aerosols influence the Earth's energy balance. The uncertainty in this radiative forcing is large depending partly on uncertainty in measurements of aerosol optical properties. We have developed a freely available new framework of millions of radiative transfer simulations spanning aerosol uncertainty and assess the impact on radiative forcing uncertainty. We find that reducing these uncertainties would reduce radiative forcing uncertainty, but non-aerosol uncertainties must also be considered.
Jing Li, Nan Wu, Biwu Chu, An Ning, and Xiuhui Zhang
Atmos. Chem. Phys., 24, 3989–4000, https://doi.org/10.5194/acp-24-3989-2024, https://doi.org/10.5194/acp-24-3989-2024, 2024
Short summary
Short summary
Iodic acid (HIO3) nucleates with iodous acid (HIO2) efficiently in marine areas; however, whether methanesulfonic acid (MSA) can synergistically participate in the HIO3–HIO2-based nucleation is unclear. We provide molecular-level evidence that MSA can efficiently promote the formation of HIO3–HIO2-based clusters using a theoretical approach. The proposed MSA-enhanced iodine nucleation mechanism may help us to deeply understand marine new particle formation events with bursts of iodine particles.
Cited articles
Abel, S. J., Haywood, J. M., Highwood, E. J., Li, J., and Buseck, P. R.: Evolution of biomass burning aerosol properties from an agricultural fire in southern Africa, Geophys. Res. Lett., 530, 1783, https://doi.org/10.1029/2003GL017342, 2003.
Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S., Karl, T., Crounse, J. D., and Wennberg, P. O.: Emission factors for open and domestic biomass burning for use in atmospheric models, Atmos. Chem. Phys., 11, 4039–4072, https://doi.org/10.5194/acp-11-4039-2011, 2011.
Aiken, A. C., DeCarlo, P. F., Kroll, J. H., Worsnop, D. R., Huffman, J. A., Docherty, K., Ulbrich, I. M., Mohr, C., Kimmel, J. R., Sueper, D., Sun, Y., Zhang, Q., Trimborn, A., Northway, M., Ziemann, P. J., Canagaratna, M. R., Onasch, T. B., Alfarra, M. R., Prevot, A. S. H., Dommen, J., Duplissy, J., Metzger, A., Baltensperger, U., and Jiménez, J. L.: O ∕ C and OM ∕ OC Ratios of Primary, Secondary, and Ambient Organic Aerosols with a High Resolution Time-of-Flight Aerosol Mass Spectrometer, Environ. Sci. Technol., 42, 4478–4485, 2008.
Allan, J. D., Morgan, W. T., Darbyshire, E., Flynn, M. J., Williams, P. I., Oram, D. E., Artaxo, P., Brito, J., Lee, J. D., and Coe, H.: Airborne observations of IEPOX-derived isoprene SOA in the Amazon during SAMBBA, Atmos. Chem. Phys., 14, 11393–11407, https://doi.org/10.5194/acp-14-11393-2014, 2014.
Andreae, M. O. and Merlet, P.: Emission of trace gases and aerosols from biomass burning, Global Biogeochem. Cy., 15, 955–966, 2001.
Andreae, M. O., Rosenfeld, D., Artaxo, P., Costa, A. A., Frank, G. P., Longo, K. M., and Silva-Dias, M. A. F.: Smoking rain clouds over the Amazon, Science, 303, 1337–1342, https://doi.org/10.1126/science.1092779, 2004.
Andres, R. J. and Kasgnoc, A. D.: A time-averaged inventory of subaerial volcanic sulfur emissions, J. Geophys. Res., 103, 25251–25261, 1998.
Andrews, E., Sheridan, P. J., Fiebig, M., McComiskey, A., Ogren, J. A., Arnott, P., Covert, D., Elleman, R., Gasparini, R., Collins, D., Jonsson, H., Schmid, B., and Wang, J.: Comparison of methods for deriving aerosol asymmetry parameter, J. Geophys. Res., 111, D05S04, https://doi.org/10.1029/2004JD005734, 2006.
Archer-Nicholls, S., Lowe, D., Schultz, D. M., and McFiggans, G.: Aerosol-radiation-cloud interactions in a regional coupled model: the effects of convective parameterisation and resolution, Atmos. Chem. Phys., 16, 5573–5594, https://doi.org/10.5194/acp-16-5573-2016, 2016.
Bauer, S. E. and Menon, S.: Aerosol direct, indirect, semidirect, and surface albedo effects from sector contributions based on the IPCC AR5 emissions for preindustrial and present-day conditions, J. Geophys. Res., 117, D01206, https://doi.org/10.1029/2011JD016816, 2012.
Bellouin, N., Rae, J., Jones, A., Johnson, C., Haywood, J., and Boucher, O.: Aerosol forcing in the Climate Model Intercomparison Project (CMIP5) simulations by HadGEM2-ES and the role of ammonium nitrate, J. Geophys. Res., 116, D20206, https://doi.org/10.1029/2011JD016074, 2011.
Bellouin, N., Mann, G. W., Woodhouse, M. T., Johnson, C., Carslaw, K. S., and Dalvi, M.: Impact of the modal aerosol scheme GLOMAP-mode on aerosol forcing in the Hadley Centre Global Environmental Model, Atmos. Chem. Phys., 13, 3027–3044, https://doi.org/10.5194/acp-13-3027-2013, 2013.
Brito, J., Rizzo, L. V., Morgan, W. T., Coe, H., Johnson, B., Haywood, J., Longo, K., Freitas, S., Andreae, M. O., and Artaxo, P.: Ground-based aerosol characterization during the South American Biomass Burning Analysis (SAMBBA) field experiment, Atmos. Chem. Phys., 14, 12069–12083, https://doi.org/10.5194/acp-14-12069-2014, 2014.
Brooke, J. K.: Airborne Observations of the Physical and Optical Properties of Atmospheric Aerosol, Met Office CASE project, PhD Thesis, School of Earth and Environment, University of Leeds, UK, 2014.
Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P., Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh, S. K., Sherwood, S., Stevens, B., and Zhang, X.-Y.: Clouds and Aerosols, in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, UK and New York, NY, USA, 571–657, 2013.
Capes, G., Johnson, B., McFiggans, G., Williams, P. I., Haywood, J., and Coe, H.: Aging of biomass burning aerosols over West Africa: Aircraft measurements of chemical composition, microphysical properties, and emission ratios, J. Geophys. Res.-Atmos., 113, D00C15, https://doi.org/10.1029/2008JD009845, 2008.
Cusack, S., Slingo, A., Edwards, J., and Wild, M.: The radiative impact of a simple aerosol climatology on the Hadley Centre climate model, Q. J. Roy. Meteor. Soc., 124, 2517–2526, 1998.
Darbyshire, E. and Johnson, B.: The South American Biomass Burning Analysis (SAMBBA) Field Experiment, September–October 2012, Brazil, Summary booklet, Available on request from the authors, 2012.
Darbyshire, E., Morgan, W. T., Allan, J., Liu, D., Flynn, M., Dorsey, J., O'Shea, S., Trembath, J., Johnson, B., Szpek, K., Marenco, F., Haywood, J., Brito, J., Artaxo, P., Longo, K., and Coe, H.: Effect of fire regime on the physical and chemical properties of biomass burning aerosol over tropical South America – Perspectives from airborne in-situ observations during SAMBBA, in preparation, 2016.
Darmenov, A. and da Silva, A.: The Quick Fire Emissions Dataset (QFED): Documentation of versions 2.1, 2.2 and 2.4, NASA/TM-2015-104606, Vol. 38, available at: https://gmao.gsfc.nasa.gov/pubs/docs/Darmenov796.pdf (last access: 16 Noovember 2016), 2015.
Dentener, F., Kinne, S., Bond, T., Boucher, O., Cofala, J., Generoso, S., Ginoux, P., Gong, S., Hoelzemann, J. J., Ito, A., Marelli, L., Penner, J. E., Putaud, J.-P., Textor, C., Schulz, M., van der Werf, G. R., and Wilson, J.: Emissions of primary aerosol and precursor gases in the years 2000 and 1750 prescribed data-sets for AeroCom, Atmos. Chem. Phys., 6, 4321–4344, https://doi.org/10.5194/acp-6-4321-2006, 2006.
Derwent, R. G., Collins, W. J., Jenkin, M. E., and Johnson, C. E.: The global distribution of secondary particulate matter in a 3-D Lagrangian chemistry transport model, J. Atmos. Chem., 44, 57–95, 2003.
Diehl, T., Heil, A., Chin, M., Pan, X., Streets, D., Schultz, M., and Kinne, S.: Anthropogenic, biomass burning, and volcanic emissions of black carbon, organic carbon, and SO2 from 1980 to 2010 for hindcast model experiments, Atmos. Chem. Phys. Discuss., 12, 24895–24954, https://doi.org/10.5194/acpd-12-24895-2012, 2012.
Dubovik, O. and King, M. D.: A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements, J. Geophys. Res., 105, 20673–20696, 2000.
Dubovik, O., Sinyuk, A., Lapyonok, T., Holben, B. N.,Mishchenko, M., Yang, P., Eck, F. T., Volten, H., Muñoz, O., Veihelmann, B., van der Zande, W. J., Leon, J.-F., Sorokin, M., and Slutsker, I.: Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust, J. Geophys. Res.-Atmos., 111, D11208, https://doi.org/10.1029/2005JD006619, 2006.
Feingold, G., Remer, L. A., Ramaprasad, J., and Kaufman, Y. J.: Analysis of smoke impact on clouds in Brazilian biomass burning regions: An extension of Twomey's approach, J. Geophys. Res., 106, 22907–22922, 2001.
Freitas, S. R., Longo, K. M., Chatfield, R., Latham, D., Silva Dias, M. A. F., Andreae, M. O., Prins, E., Santos, J. C., Gielow, R., and Carvalho Jr., J. A.: Including the sub-grid scale plume rise of vegetation fires in low resolution atmospheric transport models, Atmos. Chem. Phys., 7, 3385–3398, https://doi.org/10.5194/acp-7-3385-2007, 2007.
Giglio, L., Randerson, J. T., and van der Werf, G. R.: Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4), J. Geophys. Res.-Biogeo., 118, 317–328, https://doi.org/10.1002/jgrg.20042, 2013.
Granier, C., Bessagnet, B., Bond, T., D'Angiola, A., van der Gon, H. D., Frost, G. J., Heil, A., Kaiser, J. W., Kinne, S., Klimont, Z., Kloster, S., Lamarque, J. F., Liousse, C., Masui, T., Meleux, F., Mieville, A., Ohara, T., Raut, J. C., Riahi, K., Schultz, M. G., Smith, S. J., Thompson, A., van Aardenne, J., van der Werf, G. R., and van Vuuren, D. P.: Evolution of anthropogenic and biomass burning emissions of air pollutants at global and regional scales during the 1980–2010 period, Climatic Change, 109, 163–190, https://doi.org/10.1007/s10584-011-0154-1, 2011.
Guenther, A., Hewitt, C. N., Erickson, D., Fall, R., Geron, C., Graedel, T., Harley, P., Klinger, L., Lerdau, M., Mckay, W. A., Pierce, T., Scholes, B., Steinbrecher, R., Tallamraju, R., Taylor, J., and Zimmerman, P.: A global model of natural volatile organic compound emissions, J. Geophys. Res., 100, 8873–8892, 1995.
Haywood, J. and Boucher, O.: Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review, Rev. Geophys., 38, 513–543, 2000.
Haywood, J. M., Osborne, S. R., Francis, P. N., Keil, A., Formenti, P., Andreae, M. O., and Kaye, P. H.: The mean physical and optical properties of regional haze dominated by biomass burning aerosol measured from the C-130 aircraft during SAFARI 2000, J. Geophys. Res.-Atmos., 108, 8473, https://doi.org/10.1029/2002JD002226, 2003.
Haywood, J. M., Pelon, J., Formenti, P., Bharmal, N., Brooks, M., Capes, G., Chazette, P., Chou, C., Christopher, S., Coe, H., Cuesta, J., Derimian, Y., Desboeufs, K., Greed, G., Harrison, M., Heese, B., Highwood, E. J., Johnson, B., Mallet, M., Marticorena, B., Marsham, J., Milton, S., Myhre, G., Osborne, S. R., Parker, D. J., Rajot, J.-L., Schulz, M., Slingo, A., Tanré, D., and Tulet, P.: Overview of the Dust and Biomass-burning Experiment and African Monsoon Multidisciplinary Analysis Special Observing Period-0, J. Geophys. Res., 113, D00C17, https://doi.org/10.1029/2008JD010077, 2008.
Hewitt, H. T., Copsey, D., Culverwell, I. D., Harris, C. M., Hill, R. S. R., Keen, A. B., McLaren, A. J., and Hunke, E. C.: Design and implementation of the infrastructure of HadGEM3: the next-generation Met Office climate modelling system, Geosci. Model Dev., 4, 223–253, https://doi.org/10.5194/gmd-4-223-2011, 2011.
Hsu, N. C., Tsay, S.-C., King, M. D., and Herman, J. R.: Aerosol properties over bright-reflecting source regions, IEEE T. Geosci. Remote, 42, 557–569, https://doi.org/10.1109/TGRS.2004.824067, 2004.
Hsu, N. C., Tsay, S.-C., King, M. D., and Herman, J. R.: Deep Blue retrievals of Asian aerosol properties during ACE-Asia, IEEE T. Geosci. Remote, 44, 3180–3195, https://doi.org/10.1109/TGRS.2006.879540, 2006.
Ichoku, C. and Ellison, L.: Global top-down smoke-aerosol emissions estimation using satellite fire radiative power measurements, Atmos. Chem. Phys., 14, 6643–6667, https://doi.org/10.5194/acp-14-6643-2014, 2014.
Johnson, B. T., Heese, B., McFarlane, S., Chazette, P., Jones, A., and Bellouin, N.: Vertical distribution and radiative forcing of mineral dust and biomass-burning aerosols over West Africa during DABEX, J. Geophys. Res., 113, D00C12, https://doi.org/10.1029/2008JD009848, 2008a.
Johnson, B. T., Osborne, S. R., Haywood, J. M., and Harrison, M. A. J.: Aircraft measurements of biomass burning aerosol over West Africa during DABEX, J. Geophys. Res.-Atmos., 113, D00C06, https://doi.org/10.1029/2007JD009451, 2008b.
Johnston, F. H., Henderson, B., Chen, Y., Randerson, J. T., Marlier, M., DeFries, R. S., Kinney, P., Bowman, D. M. J. S., and Brauer, M.: Estimated Global Mortality Attributable to Smoke from Landscape Fires, Environ. Health Persp., 120, 695–701, https://doi.org/10.1289/ehp.1104422, 2012.
Jolleys, M. D., Coe, H., McFiggans, G., Capes, G., Allan, J. D., Crosier, J., Williams, P. I., Allen, G., Bower, K. N., Jimenez, J. L., Russell, L. M., Grutter, M., and Baumgardner, D.: Characterizing the Aging of Biomass Burning Organic Aerosol by Use of Mixing Ratios: A Meta-analysis of Four Regions, Environ. Sci. Technol., 46, 13093–13102, https://doi.org/10.1021/es302386v, 2012.
Jones, A., Roberts, D. L., Woodage, M. J., and Johnson, C. E.: Indirect sulphate aerosol forcing in a climate model with an interactive sulphur cycle, J. Geophys. Res., 106, 20293–20310, https://doi.org/10.1029/2000JD000089, 2001.
Jones, A., Haywood, J. M., and Boucher, O.: Aerosol forcing, climate response and climate sensitivity in the Hadley Centre climate model, J. Geophy. Res., 112, D20211, https://doi.org/10.1029/2007JD008688, 2007.
Kahn, R. A., Chen, Y., Nelson, D. L., Leung, F.-Y., Li, Q., Diner, D. J., and Logan, J. A.: Wildfire smoke injection heights: two perspectives from space, Geophys. Res. Lett., 35, 18–21, https://doi.org/10.1029/2007GL032165, 2008.
Kaiser, J. W., Heil, A., Andreae, M. O., Benedetti, A., Chubarova, N., Jones, L., Morcrette, J.-J., Razinger, M., Schultz, M. G., Suttie, M., and van der Werf, G. R.: Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power, Biogeosciences, 9, 527–554, https://doi.org/10.5194/bg-9-527-2012, 2012.
Kaufman, Y. J., Hobbs, P. V., Kirchoff, V. W. J. H., Artaxo, P., Remer, L. A., Holben, B. N., King, M. D., Ward, D. E., Prins, E. M., Longo, K. M., and Mattos, L. F.: Smoke, Clouds, and Radiation-Brazil (SCAR-B) Experiment, J. Geophys. Res., 103, 31783–31808, 1998.
Kettle, A., Andreae, M., Amouroux, D., Andreae, T., Bates, T., Berresheim, H., Bingemer, H., Boniforti, R., Curran, M., DiTullio, G., Helas, G., Jones, G., Keller, M., Kiene, R., Leck, C., Levasseur, M., Malin, G., Maspero, M., Matrai, P., McTaggart, A., Mihalopoulos, N., Nguyen, B., Novo, A., Putaud, J., Rapsomanikis, S., Roberts, G., Schebeske, G., Sharma, S., Sim, R., Staubes, R., Turner, S., and Uher, G.: A global database of sea surface dimethylsulfide (DMS) measurements and a procedure to predict sea surface DMS as a function of latitude, longitude and month, Global Biogeochem. Cy., 13, 399–444, 1999.
Kolusu, S. R., Marsham, J. H., Mulcahy, J., Johnson, B., Dunning, C., Bush, M., and Spracklen, D. V.: Impacts of Amazonia biomass burning aerosols assessed from short-range weather forecasts, Atmos. Chem. Phys., 15, 12251–12266, https://doi.org/10.5194/acp-15-12251-2015, 2015.
Koren, I., Martins, J. V., Remer, L. A., and Afargan, H.: Smoke invigoration versus inhibition of clouds over the amazon, Science, 321, 946–949, https://doi.org/10.1126/science.1159185, 2008.
Kotchenruther, R. A. and Hobbs, P. V.: Humidification factors of aerosols from biomass burning in Brazil, J. Geophys. Res., 103, 32081–32089, 1998.
Kulmala, M., Laaksonen, A., and Pirjola, L.: Parameterizations for sulfuric acid/water nucleation rates, J. Geophys. Res., 103, 8301–8307, https://doi.org/10.1029/97JD03718, 1998.
Lack, D. A., Cappa, C. D., Covert, D. S., Baynard, T., Massoli, P., Sierau, B., Bates, T. S., Quinn, P., Lovejoy, E. R., and Ravishankara, A. R.: Bias in filter-based aerosol light absorption measurements due to organic aerosol loading: Evidence from ambient measurements, Aerosol Sci. Tech., 42, 1033–1041, 2008.
Lamarque, J.-F., Bond, T. C., Eyring, V., Granier, C., Heil, A., Klimont, Z., Lee, D., Liousse, C., Mieville, A., Owen, B., Schultz, M. G., Shindell, D., Smith, S. J., Stehfest, E., Van Aardenne, J., Cooper, O. R., Kainuma, M., Mahowald, N., McConnell, J. R., Naik, V., Riahi, K., and van Vuuren, D. P.: Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application, Atmos. Chem. Phys., 10, 7017–7039, https://doi.org/10.5194/acp-10-7017-2010, 2010.
Lau, K.-M., Tsay, S. C., Hsu, C., Chin, M., Ramanathan, V., Wu, G.-X., Li, Z., Sikka, R., Holben, B., Lu, D., Chen, H., Tartari, G., Koudelova, P., Ma, Y., Huang, J., Taniguchi, K., and Zhang, R.: The joint aerosol-monsoon experiment: A new challenge for Monsoon Climate Research, B. Am. Meteorol. Soc., 89, 369–383, 2008.
Levy, R. C., Remer, L. A., Mattoo, S., Vermote, E. F., and Kaufman, Y. J.: Second-generation operational algorithm: Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance, J. Geophys. Res., 112, D13211, https://doi.org/10.1029/2006JD007811, 2007.
Levy, R. C., Remer, L. A., Kleidman, R. G., Mattoo, S., Ichoku, C., Kahn, R., and Eck, T. F.: Global evaluation of the Collection 5 MODIS dark-target aerosol products over land, Atmos. Chem. Phys., 10, 10399–10420, https://doi.org/10.5194/acp-10-10399-2010, 2010.
Levy, R. C., Mattoo, S., Munchak, L. A., Remer, L. A., Sayer, A. M., Patadia, F., and Hsu, N. C.: The Collection 6 MODIS aerosol products over land and ocean, Atmos. Meas. Tech., 6, 2989–3034, https://doi.org/10.5194/amt-6-2989-2013, 2013.
Liousse, C., Guillaume, B., Grégoire, J. M., Mallet, M., Galy, C., Pont, V., Akpo, A., Bedou, M., Castéra, P., Dungall, L., Gardrat, E., Granier, C., Konaré, A., Malavelle, F., Mariscal, A., Mieville, A., Rosset, R., Serça, D., Solmon, F., Tummon, F., Assamoi, E., Yoboué, V., and Van Velthoven, P.: Updated African biomass burning emission inventories in the framework of the AMMA-IDAF program, with an evaluation of combustion aerosols, Atmos. Chem. Phys., 10, 9631–9646, https://doi.org/10.5194/acp-10-9631-2010, 2010.
Liss, P. and Merlivat, L.: The Role of Air-Sea Exchange in Geochemical Cycling, chap. Air-sea gas exchange rates: Introduction and synthesis, edited by: Buat-Ménard, Springer Netherlands, 113–127, https://doi.org/10.1007/978-94-009-4738-2_5, 1986.
Magi, B. I. and Hobbs, P. V.: Effects of humidity on aerosols in southern Africa during the biomass burning season, J. Geophys. Res., 108, 8495, https://doi.org/10.1029/2002JD002144, 2003.
Malavelle, F., Pont, V., Mallet, M., Solmon, F., Johnson, B., Leon, J.-F., and Liousse, C.: Simulation of aerosol radiative effects over West Africa during DABEX and AMMA SOP-0, J. Geophys. Res., 116, D08205, https://doi.org/10.1029/2010JD014829, 2011.
Mann, G. W., Carslaw, K. S., Spracklen, D. V., Ridley, D. A., Manktelow, P. T., Chipperfield, M. P., Pickering, S. J., and Johnson, C. E.: Description and evaluation of GLOMAP-mode: a modal global aerosol microphysics model for the UKCA composition-climate model, Geosci. Model Dev., 3, 519–551, https://doi.org/10.5194/gmd-3-519-2010, 2010.
Mann, G. W., Carslaw, K. S., Reddington, C. L., Pringle, K. J., Schulz, M., Asmi, A., Spracklen, D. V., Ridley, D. A., Woodhouse, M. T., Lee, L. A., Zhang, K., Ghan, S. J., Easter, R. C., Liu, X., Stier, P., Lee, Y. H., Adams, P. J., Tost, H., Lelieveld, J., Bauer, S. E., Tsigaridis, K., van Noije, T. P. C., Strunk, A., Vignati, E., Bellouin, N., Dalvi, M., Johnson, C. E., Bergman, T., Kokkola, H., von Salzen, K., Yu, F., Luo, G., Petzold, A., Heintzenberg, J., Clarke, A., Ogren, J. A., Gras, J., Baltensperger, U., Kaminski, U., Jennings, S. G., O'Dowd, C. D., Harrison, R. M., Beddows, D. C. S., Kulmala, M., Viisanen, Y., Ulevicius, V., Mihalopoulos, N., Zdimal, V., Fiebig, M., Hansson, H.-C., Swietlicki, E., and Henzing, J. S.: Intercomparison and evaluation of global aerosol microphysical properties among AeroCom models of a range of complexity, Atmos. Chem. Phys., 14, 4679–4713, https://doi.org/10.5194/acp-14-4679-2014, 2014.
Mao, J., Horowitz, L. W., Naik, V., Fan, S., Liu, J., and Fiore, A. M.: Sensitivity of tropospheric oxidants to biomass burning emissions: implications for radiative forcing, Geophys. Res. Lett., 40, 1241–1246, https://doi.org/10.1002/grl.50210, 2013.
Marenco, F., Johnson, B., Langridge, J. M., Mulcahy, J., Benedetti, A., Remy, S., Jones, L., Szpek, K., Haywood, J., Longo, K., and Artaxo, P.: On the vertical distribution of smoke in the Amazonian atmosphere during the dry season, Atmos. Chem. Phys., 16, 2155–2174, https://doi.org/10.5194/acp-16-2155-2016, 2016.
Marlier, M. E., DeFries, S. R., Voulgarakis, A., Kinney, P. L., Randerson, J. T., Shindell, D. T., Chen, Y., and Faluvegi, G.: El Nino and health risks from landscape fire emissions in southeast Asia, Nature Climate Change, 3, 131–136, https://doi.org/10.1038/nclimate1658, 2013.
Martin, S. T., Andreae, M. O., Artaxo, P., Baumgardner, D., Chen, Q., Goldstein, A. H., Guenther, A., Heald, C. L., Mayol Bracero, O. L., McMurry, P. H., Pauliquevis, T., Pöschl, U., Prather, K. A., Roberts, G. C., Saleska, S. R., Silva-Dias, M. A., Spracklen, D. V., Swietlicki, E., and Trebs, I.: Sources and properties of Amazonian aerosol particles, Rev. Geophys., 48, RG2002, https://doi.org/10.1029/2008RG000280, 2010.
Mercado, L., Bellouin, N., Stich, S., Boucher, O., Huntingford, C., Wild, M., and Wild, P.: Impacts of changes in diffuse radiation on the global land carbon sink, Nature, 458, 01014–01018, https://doi.org/10.1038/nature07949, 2009.
Milton, S. F., Greed G., Brooks, M. E., Haywood, J., Johnson, B., Allan, R. P., Slingo, A., and Grey, W. M. F.: Modeled and observed atmospheric radiation balance during the West African dry season: Role of mineral dust, biomass burning aerosol, and surface albedo, J. Geophys. Res., 113, D00C02, https://doi.org/10.1029/2007JD009741, 2008.
Morgan, W., Allan, J., Flynn, M., Darbyshire, E., Liu, D., Szpek, K., Langridge J., Johnson, B., Haywood, J., Longo, K. M., Artaxo, P., and Coe, H.: Transformation of aerosol chemical composition and resultant impact on climate during the South American Biomass Burning Analysis (SAMBBA), iCACGP/IGAC-2014 Science Conference on Atmospheric Chemistry, Brazil Natal, 22–26 September 2014.
Morgenstern, O., Braesicke, P., O'Connor, F. M., Bushell, A. C., Johnson, C. E., Osprey, S. M., and Pyle, J. A.: Evaluation of the new UKCA climate-composition model – Part 1: The stratosphere, Geosci. Model Dev., 2, 43–57, https://doi.org/10.5194/gmd-2-43-2009, 2009.
Myhre, G., Hoyle, C. R., Berglen, T. F., Johnson, B. T., and Haywood, J. M.: Modeling of the solar radiative impact of biomass burning aerosols during the Dust and Biomass-burning Experiment (DABEX), J. Geophys. Res., 113, D00C16, https://doi.org/10.1029/2008JD009857, 2008.
Myhre, G., Samset, B. H., Schulz, M., Balkanski, Y., Bauer, S., Berntsen, T. K., Bian, H., Bellouin, N., Chin, M., Diehl, T., Easter, R. C., Feichter, J., Ghan, S. J., Hauglustaine, D., Iversen, T., Kinne, S., Kirkevåg, A., Lamarque, J.-F., Lin, G., Liu, X., Lund, M. T., Luo, G., Ma, X., van Noije, T., Penner, J. E., Rasch, P. J., Ruiz, A., Seland, Ø., Skeie, R. B., Stier, P., Takemura, T., Tsigaridis, K., Wang, P., Wang, Z., Xu, L., Yu, H., Yu, F., Yoon, J.-H., Zhang, K., Zhang, H., and Zhou, C.: Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations, Atmos. Chem. Phys., 13, 1853–1877, https://doi.org/10.5194/acp-13-1853-2013, 2013.
Ng, N. L., Canagaratna, M. R., Zhang, Q., Jimenez, J. L., Tian, J., Ulbrich, I. M., Kroll, J. H., Docherty, K. S., Chhabra, P. S., Bahreini, R., Murphy, S. M., Seinfeld, J. H., Hildebrandt, L., Donahue, N. M., DeCarlo, P. F., Lanz, V. A., Prévôt, A. S. H., Dinar, E., Rudich, Y., and Worsnop, D. R.: Organic aerosol components observed in Northern Hemispheric datasets from Aerosol Mass Spectrometry, Atmos. Chem. Phys., 10, 4625–4641, https://doi.org/10.5194/acp-10-4625-2010, 2010.
O'Connor, F. M., Johnson, C. E., Morgenstern, O., Abraham, N. L., Braesicke, P., Dalvi, M., Folberth, G. A., Sanderson, M. G., Telford, P. J., Voulgarakis, A., Young, P. J., Zeng, G., Collins, W. J., and Pyle, J. A.: Evaluation of the new UKCA climate-composition model – Part 2: The Troposphere, Geosci. Model Dev., 7, 41–91, https://doi.org/10.5194/gmd-7-41-2014, 2014.
Ott, L., Duncan, B., Pawson, S., Colarco, P. R., Chin, M., Randles, C., Diehl, T., and Nielsen, E.: The influence of the 2006 Indonesian biomass burning aerosols on tropical dynamics studied with the GEOS-5 AGCM, J. Geophys. Res., 115, D14121, https://doi.org/10.1029/2009JD013181, 2010.
Pacifico, F., Folberth, G. A., Sitch, S., Haywood, J. M., Rizzo, L. V., Malavelle, F. F., and Artaxo, P.: Biomass burning related ozone damage on vegetation over the Amazon forest: a model sensitivity study, Atmos. Chem. Phys., 15, 2791–2804, https://doi.org/10.5194/acp-15-2791-2015, 2015.
Petrenko, M., Kahn, R., Chin, M., Soja, A., Kucsera, T., and Harshvardhan, N.: The use of satellite-measured aerosol optical depth to constrain biomass burning emissions source strength in the global model GOCART, J. Geophys. Res., 117, D18212, https://doi.org/10.1029/2012JD017870, 2012.
Polashenski, C. M., Dibb, J. E., Flanner, M. G., Chen, J. Y., Courville, Z. R., Lai, A. M., Schauer, J. S., Shafer, M. M., and Bergin, M.: Neither dust nor black carbon causing apparent albedo decline in Greenland's dry snow zone; implications for MODIS C5 surface reflectance, Geophys. Res. Lett., 42, 9319–9327, https://doi.org/10.1002/2015GL065912, 2015.
Ramanathan, V. and Carmichael, G.: Global and regional climate changes due to black carbon, Nat. Geosci., 1, 221–227, https://doi.org/10.1038/ngeo156, 2008.
Ramanathan, V., Crutzen, P. J., Kiehl, J. T., and Rosenfeld, D.: Aerosols, climate, and the hydrological cycle, Science, 294, 2119–2124, 2001.
Randerson, J. T., Chen, Y., van der Werf, G. R., Rogers, B. M., and Morton, D. C.: Global burned area and biomass burning emissions from small fires, J. Geophys. Res., 117, G04012, https://doi.org/10.1029/2012JG002128, 2012.
Randles, C. and Ramaswamy, V.: Absorbing aerosols over Asia: A Geophysical Fluid Dynamics Laboratory general circulation model sensitivity study of model response to aerosol optical depth and aerosol absorption, J. Geophys. Res., 113, D21203, https://doi.org/10.1029/2008JD010140, 2008.
Rap, A., Spracklen, D. V., Mercado, L., Reddington, C. L., Haywood, J. M., Ellis, R. J., Phillips, O. L., Artaxo, P., Bonal, D., Coupe, N. R., and Butt, N.: Fires increase Amazon forest productivity through increases in diffuse radiation, Geophys. Res. Lett., 42, 4654–4662, https://doi.org/10.1002/2015GL063719, 2015.
Reddington, C. L., Butt, E. W., Ridley, D. A., Artaxo, P., Morgan, W. T., Coe, H., and Spracklen, D. V.: Air quality and human health improvements from reductions in deforestation-related fire in Brazil, Nat. Geosci., 8, 768–771, https://doi.org/10.1038/ngeo2535, 2015.
Reddington, C. L., Spracklen, D. V., Artaxo, P., Ridley, D. A., Rizzo, L. V., and Arana, A.: Analysis of particulate emissions from tropical biomass burning using a global aerosol model and long-term surface observations, Atmos. Chem. Phys., 16, 11083–11106, https://doi.org/10.5194/acp-16-11083-2016, 2016.
Reid, J. S., Koppmann, R., Eck, T. F., and Eleuterio, D. P.: A review of biomass burning emissions part II: intensive physical properties of biomass burning particles, Atmos. Chem. Phys., 5, 799–825, https://doi.org/10.5194/acp-5-799-2005, 2005a.
Reid, J. S., Eck, T. F., Christopher, S. A., Koppmann, R., Dubovik, O., Eleuterio, D. P., Holben, B. N., Reid, E. A., and Zhang, J.: A review of biomass burning emissions part III: intensive optical properties of biomass burning particles, Atmos. Chem. Phys., 5, 827–849, https://doi.org/10.5194/acp-5-827-2005, 2005b.
Remer, L., Kaufman, Y., Tanre, D., Mattoo, S., Chu, D., Martins, J., Li, R.-R., Ichoku, C., Levy, R. C., Kleidman, R. G., Eck, T. F., Vermote, E., and Holben, B. N.: The MODIS aerosol algorithm, products, and validation, J. Atmos. Sci., 62, 947–973, 2005.
Reynolds, R. W., Smith, T. M., Liu, C., Chelton, D. B., Casey, K. S., and Schlax, M. G.: Daily High-Resolution-Blended Analyses for Sea Surface Temperature, J. Climate, 20, 5473–5496, https://doi.org/10.1175/2007JCLI1824.1, 2007.
Saleh, R., Robinson, E. S., Tkacik, D. S., Ahern, A. T., Liu, S., Aiken, A. C., Sullivan, R. C., Presto, A. A., Dubey, M. K., Yokelson, R. J., Donahue, N. M., and Robinson, A. L.: Brownness of organics in aerosols from biomass burning linked to their black carbon content, Nat. Geosci., 7, 647–650, 2014.
Samset, B. H., Myhre, G., Schulz, M., Balkanski, Y., Bauer, S., Berntsen, T. K., Bian, H., Bellouin, N., Diehl, T., Easter, R. C., Ghan, S. J., Iversen, T., Kinne, S., Kirkevåg, A., Lamarque, J.-F., Lin, G., Liu, X., Penner, J. E., Seland, Ø., Skeie, R. B., Stier, P., Takemura, T., Tsigaridis, K., and Zhang, K.: Black carbon vertical profiles strongly affect its radiative forcing uncertainty, Atmos. Chem. Phys., 13, 2423–2434, https://doi.org/10.5194/acp-13-2423-2013, 2013.
Sayer, A. M., Munchak, L. A., Hsu, N. C., Levy, R. C., Bettenhausen, C., and Jeong M.-J.: MODIS Collection 6 aerosol products: Comparison between Aqua's e-Deep Blue, Dark Target, and “merged” data sets, and usage recommendations, J. Geophys. Res.-Atmos., 119, 13965–13989, https://doi.org/10.1002/2014JD022453, 2014.
Shindell, D. T., Lamarque, J.-F., Schulz, M., Flanner, M., Jiao, C., Chin, M., Young, P. J., Lee, Y. H., Rotstayn, L., Mahowald, N., Milly, G., Faluvegi, G., Balkanski, Y., Collins, W. J., Conley, A. J., Dalsoren, S., Easter, R., Ghan, S., Horowitz, L., Liu, X., Myhre, G., Nagashima, T., Naik, V., Rumbold, S. T., Skeie, R., Sudo, K., Szopa, S., Takemura, T., Voulgarakis, A., Yoon, J.-H., and Lo, F.: Radiative forcing in the ACCMIP historical and future climate simulations, Atmos. Chem. Phys., 13, 2939–2974, https://doi.org/10.5194/acp-13-2939-2013, 2013.
Schutgens, N. A. J., Partridge, D. G., and Stier, P.: The importance of temporal collocation for the evaluation of aerosol models with observations, Atmos. Chem. Phys., 16, 1065–1079, https://doi.org/10.5194/acp-16-1065-2016, 2016.
Sofiev, M., Ermakova, T., and Vankevich, R.: Evaluation of the smoke-injection height from wild-land fires using remote-sensing data, Atmos. Chem. Phys., 12, 1995–2006, https://doi.org/10.5194/acp-12-1995-2012, 2012.
Spracklen, D. V., Carslaw, K. S., Pöschl, U., Rap, A., and Forster, P. M.: Global cloud condensation nuclei influenced by carbonaceous combustion aerosol, Atmos. Chem. Phys., 11, 9067–9087, https://doi.org/10.5194/acp-11-9067-2011, 2011.
Stier, P., Feichter, J., Kinne, S., Kloster, S., Vignati, E., Wilson, J., Ganzeveld, L., Tegen, I., Werner, M., Balkanski, Y., Schulz, M., Boucher, O., Minikin, A., and Petzold, A.: The aerosol-climate model ECHAM5-HAM, Atmos. Chem. Phys., 5, 1125–1156, https://doi.org/10.5194/acp-5-1125-2005, 2005.
Stokes, R. H. and Robinson, R. A.: Interactions in aqueous nonelectrolyte solutions, solute-solvent equilibria, J. Phys. Chem., 70, 2126–2131, 1966.
Swap, B., Annegarn, H. J., Suttles, J. T., Haywood, J., Helmlinger, M. C., Hely, C., Hobbs, P. V., Holben, B., Ji, J., King, M. D., Landmann, T., Maenhaut, W., Otter, L., Pak, B., Piketh, S. J., Platnick, S., Privette, J. L., Roy, D., Thompson, A. M., Ward, D., and Yokelson, R.: The Southern African Regional Science Initiative (SAFARI 2000): Overview of the dry season field campaign, S. African J. Sci., 98, 125–130, 2002.
Swietlicki, E., Hansson, H. C., Hameri, K., Svenningsson, B., Massling, A., McFiggans, G., McMurry, P., Petaja, T., Tunved, P., Gysel, M., Topping, D., Weingartner, E., Baltensperger, U., Rissler, J., Wiedensohler, A., and Kulmala, M.: Hygroscopic properties of submicrometer atmospheric aerosol particles measured with H TDMA instruments in various environments – A review, Tellus B, 60, 432–469, 2008.
Ten Hoeve, J. E., Jacobson, M. Z., and Remer, L. A.: Comparing results from a physical model with satellite and in situ observations to determine whether biomass burning aerosols over the Amazon brighten or burn off clouds, J. Geophys. Res., 117, D08203, https://doi.org/10.1029/2011JD016856, 2012.
Tiitta, P., Vakkari, V., Croteau, P., Beukes, J. P., van Zyl, P. G., Josipovic, M., Venter, A. D., Jaars, K., Pienaar, J. J., Ng, N. L., Canagaratna, M. R., Jayne, J. T., Kerminen, V.-M., Kokkola, H., Kulmala, M., Laaksonen, A., Worsnop, D. R., and Laakso, L.: Chemical composition, main sources and temporal variability of PM1 aerosols in southern African grassland, Atmos. Chem. Phys., 14, 1909–1927, https://doi.org/10.5194/acp-14-1909-2014, 2014.
Tosca, M. G., Randerson, J. T., Zender, C. S., Flanner, M. G., and Rasch, P. J.: Do biomass burning aerosols intensify drought in equatorial Asia during El Niño?, Atmos. Chem. Phys., 10, 3515–3528, https://doi.org/10.5194/acp-10-3515-2010, 2010.
Tosca, M. G., Randerson, J. T., Zender, C. S., Nelson, D. L., Diner, D. J., and Logan, J. A.: Dynamics of fire plumes and smoke clouds associated with peat and deforestation fires in Indonesia, J. Geophys. Res., 116, 1–14, https://doi.org/10.1029/2010JD015148, 2011.
Tosca, M. G., Randerson, J. T., and Zender, C. S.: Global impact of smoke aerosols from landscape fires on climate and the Hadley circulation, Atmos. Chem. Phys., 13, 5227–5241, https://doi.org/10.5194/acp-13-5227-2013, 2013.
Tosca, M. G., Diner, D. J., Garay, M. J., and Kalashnikova, O. V.: Observational evidence of fire-driven reduction of cloud fraction in tropical Africa, J. Geophys. Res.-Atmos., 119, 8418–8432, https://doi.org/10.1002/2014JD021759, 2014.
Turpin, B. J. and Lim, H. J.: Species Contributions to PM2.5 Mass Concentrations: Revisiting Common Assumptions for Estimating Organic Mass, Aerosol Sci., 35, 602–610, 2001.
Twomey, S.: Pollution and the planetary albedo, Atmos. Environ., 8, 1251–1256, 1974.
Val Martin, M., Logan, J. A., Kahn, R. A., Leung, F.-Y., Nelson, D. L., and Diner, D. J.: Smoke injection heights from fires in North America: analysis of 5 years of satellite observations, Atmos. Chem. Phys., 10, 1491–1510, https://doi.org/10.5194/acp-10-1491-2010, 2010.
Val Martin, M., Kahn, R. A., Logan, J. A., Paugam, R., Wooster, M., and Ichoku, C.: Space-based observational constraints for 1-D fire smoke plume-rise models, J. Geophys. Res., 117, D22204, https://doi.org/10.1029/2012JD018370, 2012.
Vakkari, V., Kerminen, V.-M., Beukes, J., Tiitta, P., van Zyl, P., Josipovic, M., Venter, A., Jaars, K., Worsnop, D., Kulmala, M., and Laakso, L.: Rapid changes in biomass burning aerosols by atmospheric oxidation, Geophys. Res. Lett., 41, 2644–2651, https://doi.org/10.1002/2014GL059396, 2014.
van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Mu, M., Kasibhatla, P. S., Morton, D. C., DeFries, R. S., Jin, Y., and van Leeuwen, T. T.: Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009), Atmos. Chem. Phys., 10, 11707–11735, https://doi.org/10.5194/acp-10-11707-2010, 2010.
Voulgarakis, A. and Field, R. D.: Fire influences on atmospheric composition, air quality, and climate, Curr. Pollut. Rep., 1, 70–81, https://doi.org/10.1007/s40726-015-0007-z, 2015.
Walters, D. N., Williams, K. D., Boutle, I. A., Bushell, A. C., Edwards, J. M., Field, P. R., Lock, A. P., Morcrette, C. J., Stratton, R. A., Wilkinson, J. M., Willett, M. R., Bellouin, N., Bodas-Salcedo, A., Brooks, M. E., Copsey, D., Earnshaw, P. D., Hardiman, S. C., Harris, C. M., Levine, R. C., MacLachlan, C., Manners, J. C., Martin, G. M., Milton, S. F., Palmer, M. D., Roberts, M. J., Rodríguez, J. M., Tennant, W. J., and Vidale, P. L.: The Met Office Unified Model Global Atmosphere 4.0 and JULES Global Land 4.0 configurations, Geosci. Model Dev., 7, 361–386, https://doi.org/10.5194/gmd-7-361-2014, 2014.
Ward, D. S., Kloster, S., Mahowald, N. M., Rogers, B. M., Randerson, J. T., and Hess, P. G.: The changing radiative forcing of fires: global model estimates for past, present and future, Atmos. Chem. Phys., 12, 10857–10886, https://doi.org/10.5194/acp-12-10857-2012, 2012.
Whitehead, J. D., Irwin, M., Allan, J. D., Good, N., and McFiggans, G.: A meta-analysis of particle water uptake reconciliation studies, Atmos. Chem. Phys., 14, 11833–11841, https://doi.org/10.5194/acp-14-11833-2014, 2014.
Williams, K. D., Harris, C. M., Bodas-Salcedo, A., Camp, J., Comer, R. E., Copsey, D., Fereday, D., Graham, T., Hill, R., Hinton, T., Hyder, P., Ineson, S., Masato, G., Milton, S. F., Roberts, M. J., Rowell, D. P., Sanchez, C., Shelly, A., Sinha, B., Walters, D. N., West, A., Woollings, T., and Xavier, P. K.: The Met Office Global Coupled model 2.0 (GC2) configuration, Geosci. Model Dev., 8, 1509–1524, https://doi.org/10.5194/gmd-8-1509-2015, 2015.
Woodward, S.: Modelling the atmospheric life cycle and radiative impact of mineral dust in the Hadley Centre climate model, J. Geophys. Res., 106, 18155–18166, 2001.
Woodward, S.: Mineral Dust in HadGEM2, Hadley Centre Technical Note 87, Met Office Hadley Centre for Climate Change, Exeter, United Kingdom, https://digital.nmla.metoffice.gov.uk/file/sdb:digitalFile|5fe342b8-e5c1-4992-89fd-1cfd6c05bf8a/ (last access: 16 November 2016), 2011.
World Climate Programme (WCP): Report of the experts meeting on aerosols and their climatic effects, edited by: Deepak, A. and Gerber, H. G., World Meteorological Organization, Geneva, Switzerland, Rep. WCP-55, 107 pp., 1983.
Wu, P., Christidis, N., and Stott, P.: Anthropogenic impact on Earth's hydrological cycle, Nature Climate Change, 3, 807–10, https://doi.org/10.1038/nclimate1932, 2013.
Zhang, Y., Fu, R., Yu, H., Qian, Y., Dickinson, R., Silva Dias, M. A. F., da Silva Dias, P. L., and Fernandes, K.: Impact of biomass burning aerosol on the monsoon circulation transition over Amazonia, Geophys. Res. Lett., 36, L10814, https://doi.org/10.1029/2009GL037180, 2009.
Short summary
Biomass burning is a large source of carbonaceous aerosols, which scatter and absorb solar radiation, and modify cloud properties. We evaluate the simulation of biomass burning aerosol processes and properties in the HadGEM3 climate model using observations, including those from the South American Biomass Burning Analysis. We find that modelled aerosol optical depths are underestimated unless aerosol emissions (Global Fire Emission Database v3) are increased by a factor of 1.6–2.0.
Biomass burning is a large source of carbonaceous aerosols, which scatter and absorb solar...
Special issue
Altmetrics
Final-revised paper
Preprint