Articles | Volume 20, issue 13
https://doi.org/10.5194/acp-20-8017-2020
https://doi.org/10.5194/acp-20-8017-2020
Research article
 | 
10 Jul 2020
Research article |  | 10 Jul 2020

Validation of Aura-OMI QA4ECV NO2 climate data records with ground-based DOAS networks: the role of measurement and comparison uncertainties

Steven Compernolle, Tijl Verhoelst, Gaia Pinardi, José Granville, Daan Hubert, Arno Keppens, Sander Niemeijer, Bruno Rino, Alkis Bais, Steffen Beirle, Folkert Boersma, John P. Burrows, Isabelle De Smedt, Henk Eskes, Florence Goutail, François Hendrick, Alba Lorente, Andrea Pazmino, Ankie Piters, Enno Peters, Jean-Pierre Pommereau, Julia Remmers, Andreas Richter, Jos van Geffen, Michel Van Roozendael, Thomas Wagner, and Jean-Christopher Lambert

Related authors

Feasibility of robust estimates of ozone production rates using a synergy of satellite observations, ground-based remote sensing, and models
Amir H. Souri, Gonzalo González Abad, Glenn M. Wolfe, Tijl Verhoelst, Corinne Vigouroux, Gaia Pinardi, Steven Compernolle, Bavo Langerock, Bryan N. Duncan, and Matthew S. Johnson
Atmos. Chem. Phys., 25, 2061–2086, https://doi.org/10.5194/acp-25-2061-2025,https://doi.org/10.5194/acp-25-2061-2025, 2025
Short summary
TROPOMI Level 3 tropospheric NO2 Dataset with Advanced Uncertainty Analysis from the ESA CCI+ ECV Precursor Project
Isolde Glissenaar, Klaas Folkert Boersma, Isidora Anglou, Pieter Rijsdijk, Tijl Verhoelst, Steven Compernolle, Gaia Pinardi, Jean-Christopher Lambert, Michel Van Roozendael, and Henk Eskes
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-616,https://doi.org/10.5194/essd-2024-616, 2025
Preprint under review for ESSD
Short summary
Global retrieval of TROPOMI tropospheric HCHO and NO2 columns with improved consistency based on updated Peking University OMI NO2 algorithm
Yuhang Zhang, Huan Yu, Isabelle De Smedt, Jintai Lin, Nicolas Theys, Michel Van Roozendael, Gaia Pinardi, Steven Compernolle, Ruijing Ni, Fangxuan Ren, Sijie Wang, Lulu Chen, Jos Van Geffen, Mengyao Liu, Alexander Cede, Alexis Merlaud, Martina Friedrich, Andreas Richter, Ankie Piters, Vinod Kumar, Vinayak Sinha, Thomas Wagner, Yongjoo Choi, Hisahiro Takashima, Yugo Kanaya, Hitoshi Irie, Robert Spurr, Wenfu Sun, and Lorenzo Fabris
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-182,https://doi.org/10.5194/amt-2024-182, 2024
Revised manuscript accepted for AMT
Short summary
5 years of Sentinel-5P TROPOMI operational ozone profiling and geophysical validation using ozonesonde and lidar ground-based networks
Arno Keppens, Serena Di Pede, Daan Hubert, Jean-Christopher Lambert, Pepijn Veefkind, Maarten Sneep, Johan De Haan, Mark ter Linden, Thierry Leblanc, Steven Compernolle, Tijl Verhoelst, José Granville, Oindrila Nath, Ann Mari Fjæraa, Ian Boyd, Sander Niemeijer, Roeland Van Malderen, Herman G. J. Smit, Valentin Duflot, Sophie Godin-Beekmann, Bryan J. Johnson, Wolfgang Steinbrecht, David W. Tarasick, Debra E. Kollonige, Ryan M. Stauffer, Anne M. Thompson, Angelika Dehn, and Claus Zehner
Atmos. Meas. Tech., 17, 3969–3993, https://doi.org/10.5194/amt-17-3969-2024,https://doi.org/10.5194/amt-17-3969-2024, 2024
Short summary
Potential of TROPOMI for understanding spatio-temporal variations in surface NO2 and their dependencies upon land use over the Iberian Peninsula
Hervé Petetin, Marc Guevara, Steven Compernolle, Dene Bowdalo, Pierre-Antoine Bretonnière, Santiago Enciso, Oriol Jorba, Franco Lopez, Albert Soret, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 23, 3905–3935, https://doi.org/10.5194/acp-23-3905-2023,https://doi.org/10.5194/acp-23-3905-2023, 2023
Short summary

Related subject area

Subject: Gases | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Air quality trends and regimes in South Korea inferred from 2015–2023 surface and satellite observations
Yujin J. Oak, Daniel J. Jacob, Drew C. Pendergrass, Ruijun Dang, Nadia K. Colombi, Heesung Chong, Seoyoung Lee, Su Keun Kuk, and Jhoon Kim
Atmos. Chem. Phys., 25, 3233–3252, https://doi.org/10.5194/acp-25-3233-2025,https://doi.org/10.5194/acp-25-3233-2025, 2025
Short summary
What can we learn about tropospheric OH from satellite observations of methane?
Elise Penn, Daniel J. Jacob, Zichong Chen, James D. East, Melissa P. Sulprizio, Lori Bruhwiler, Joannes D. Maasakkers, Hannah Nesser, Zhen Qu, Yuzhong Zhang, and John Worden
Atmos. Chem. Phys., 25, 2947–2965, https://doi.org/10.5194/acp-25-2947-2025,https://doi.org/10.5194/acp-25-2947-2025, 2025
Short summary
Identifying missing sources and reducing NOx emissions uncertainty over China using daily satellite data and a mass-conserving method
Lingxiao Lu, Jason Blake Cohen, Kai Qin, Xiaolu Li, and Qin He
Atmos. Chem. Phys., 25, 2291–2309, https://doi.org/10.5194/acp-25-2291-2025,https://doi.org/10.5194/acp-25-2291-2025, 2025
Short summary
Feasibility of robust estimates of ozone production rates using a synergy of satellite observations, ground-based remote sensing, and models
Amir H. Souri, Gonzalo González Abad, Glenn M. Wolfe, Tijl Verhoelst, Corinne Vigouroux, Gaia Pinardi, Steven Compernolle, Bavo Langerock, Bryan N. Duncan, and Matthew S. Johnson
Atmos. Chem. Phys., 25, 2061–2086, https://doi.org/10.5194/acp-25-2061-2025,https://doi.org/10.5194/acp-25-2061-2025, 2025
Short summary
Upper-tropospheric pollutants observed by MIPAS: geographic and seasonal variations
Norbert Glatthor, Gabriele P. Stiller, Thomas von Clarmann, Bernd Funke, Sylvia Kellmann, and Andrea Linden
Atmos. Chem. Phys., 25, 1175–1208, https://doi.org/10.5194/acp-25-1175-2025,https://doi.org/10.5194/acp-25-1175-2025, 2025
Short summary

Cited articles

Beirle, S., Hörmann, C., Jöckel, P., Liu, S., Penning de Vries, M., Pozzer, A., Sihler, H., Valks, P., and Wagner, T.: The STRatospheric Estimation Algorithm from Mainz (STREAM): estimating stratospheric NO2 from nadir-viewing satellites by weighted convolution, Atmos. Meas. Tech., 9, 2753–2779, https://doi.org/10.5194/amt-9-2753-2016, 2016. a, b, c
Boersma, K. F., Eskes, H. J., and Brinksma, E. J.: Error analysis for tropospheric NO2 retrieval from space, J. Geophys. Res., 109, D04311, https://doi.org/10.1029/2003jd003962, 2004. a
Boersma, K. F., Vinken, G. C. M., and Eskes, H. J.: Representativeness errors in comparing chemistry transport and chemistry climate models with satellite UV–Vis tropospheric column retrievals, Geosci. Model Dev., 9, 875–898, https://doi.org/10.5194/gmd-9-875-2016, 2016. a, b
Boersma, K. F., Eskes, H., Richter, A., De Smedt, I., Lorente, A., Beirle, S., Van Geffen, J., Peters, E., Van Roozendael, M., and Wagner, T.: QA4ECV NO2 tropospheric and stratospheric vertical column data from OMI (Version 1.1) [Data set], Royal Netherlands Meteorological Institute (KNMI), https://doi.org/10.21944/qa4ecv-no2-omi-v1.1 (last access: 20 April 2020), 2017a. a
Boersma, K. F., van Geffen, J., Eskes, H., van der A, R., De Smedt, I., Van Roozendael, M., Yu, H., Richter, A., Peters, E., Beirle, S., Wagner, T., Lorente, A., Scanlon, T., Compernolle, S., and Lambert, J.-C.: Product Specification Document for the QA4ECV NO2 ECV precursor product, techreport QA4ECV Deliverable D4.6, KNMI, available at: http://www.qa4ecv.eu/sites/default/files/D4.6.pdf (last access: 20 April 2020), 2017b. a, b, c, d
Download
Short summary
Tropospheric and stratospheric NO2 columns from the OMI QA4ECV NO2 satellite product are validated by comparison with ground-based measurements at 11 sites. The OMI stratospheric column has a small negative bias, and the OMI tropospheric column has a stronger negative bias relative to the ground-based data. Discrepancies are attributed to comparison errors (e.g. difference in horizontal smoothing) and measurement errors (e.g. clouds, aerosols, vertical smoothing and a priori profile assumptions).
Share
Altmetrics
Final-revised paper
Preprint