Articles | Volume 20, issue 13
https://doi.org/10.5194/acp-20-8017-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-20-8017-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Validation of Aura-OMI QA4ECV NO2 climate data records with ground-based DOAS networks: the role of measurement and comparison uncertainties
Steven Compernolle
CORRESPONDING AUTHOR
Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Uccle, Belgium
Tijl Verhoelst
Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Uccle, Belgium
Gaia Pinardi
Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Uccle, Belgium
José Granville
Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Uccle, Belgium
Daan Hubert
Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Uccle, Belgium
Arno Keppens
Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Uccle, Belgium
Sander Niemeijer
s[&]t Corporation, Delft, the Netherlands
Bruno Rino
s[&]t Corporation, Delft, the Netherlands
Alkis Bais
Aristotle University of Thessaloniki, Laboratory of Atmospheric Physics (AUTH), Thessaloniki, Greece
Steffen Beirle
Max Planck Institute for Chemistry (MPIC), Mainz, Germany
Folkert Boersma
Royal Netherlands Meteorological Institute (KNMI), De Bilt, the Netherlands
Wageningen University, Meteorology and Air Quality Group, Wageningen, the Netherlands
John P. Burrows
Institute of Environmental Physics, University of Bremen (IUP-B), Bremen, Germany
Isabelle De Smedt
Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Uccle, Belgium
Henk Eskes
Royal Netherlands Meteorological Institute (KNMI), De Bilt, the Netherlands
Florence Goutail
Laboratoire Atmosphères, Milieux, Observations Spatiales, CNRS, Guyancourt, France
François Hendrick
Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Uccle, Belgium
Alba Lorente
Wageningen University, Meteorology and Air Quality Group, Wageningen, the Netherlands
Andrea Pazmino
Laboratoire Atmosphères, Milieux, Observations Spatiales, CNRS, Guyancourt, France
Ankie Piters
Royal Netherlands Meteorological Institute (KNMI), De Bilt, the Netherlands
Enno Peters
Institute of Environmental Physics, University of Bremen (IUP-B), Bremen, Germany
Jean-Pierre Pommereau
Laboratoire Atmosphères, Milieux, Observations Spatiales, CNRS, Guyancourt, France
Julia Remmers
Max Planck Institute for Chemistry (MPIC), Mainz, Germany
Andreas Richter
Institute of Environmental Physics, University of Bremen (IUP-B), Bremen, Germany
Jos van Geffen
Royal Netherlands Meteorological Institute (KNMI), De Bilt, the Netherlands
Michel Van Roozendael
Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Uccle, Belgium
Thomas Wagner
Max Planck Institute for Chemistry (MPIC), Mainz, Germany
Jean-Christopher Lambert
Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Uccle, Belgium
Download
- Final revised paper (published on 10 Jul 2020)
- Supplement to the final revised paper
- Preprint (discussion started on 02 Jan 2020)
- Supplement to the preprint
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
- Printer-friendly version
- Supplement
- RC1: 'comments for Validation of Aura-OMI QA4ECV NO2 Climate Data Records with ground-based DOAS networks: role of measurement and comparison uncertainties', Anonymous Referee #1, 23 Jan 2020
- RC2: 'Review of Compernolle et al.', Anonymous Referee #2, 30 Jan 2020
- AC1: 'Author reply', Steven Compernolle, 24 Apr 2020
Peer-review completion
AR: Author's response | RR: Referee report | ED: Editor decision
AR by Steven Compernolle on behalf of the Authors (30 Apr 2020)
Author's response
Manuscript
ED: Publish as is (24 May 2020) by Ralf Sussmann
AR by Steven Compernolle on behalf of the Authors (02 Jun 2020)
Short summary
Tropospheric and stratospheric NO2 columns from the OMI QA4ECV NO2 satellite product are validated by comparison with ground-based measurements at 11 sites. The OMI stratospheric column has a small negative bias, and the OMI tropospheric column has a stronger negative bias relative to the ground-based data. Discrepancies are attributed to comparison errors (e.g. difference in horizontal smoothing) and measurement errors (e.g. clouds, aerosols, vertical smoothing and a priori profile assumptions).
Tropospheric and stratospheric NO2 columns from the OMI QA4ECV NO2 satellite product are...
Altmetrics
Final-revised paper
Preprint