Articles | Volume 14, issue 12
Atmos. Chem. Phys., 14, 6195–6211, 2014
https://doi.org/10.5194/acp-14-6195-2014
Atmos. Chem. Phys., 14, 6195–6211, 2014
https://doi.org/10.5194/acp-14-6195-2014

Research article 23 Jun 2014

Research article | 23 Jun 2014

Impact of tropical land convection on the water vapour budget in the tropical tropopause layer

F. Carminati2,1,5, P. Ricaud1, J.-P. Pommereau3, E. Rivière4, S. Khaykin3, J.-L. Attié1,5, and J. Warner2 F. Carminati et al.
  • 1CNRM GAME, Météo-France, CNRS UMR 3589, Toulouse, France
  • 2AOSC, University of Maryland, College Park, Maryland, USA
  • 3LATMOS, CNRS, Université Versailles St Quentin, Guyancourt, France
  • 4GSMA, CNRS, Université Champagne Ardennes, Reims, France
  • 5Laboratoire d'Aérologie, CNRS UMR 5560, Toulouse, France

Abstract. The tropical deep overshooting convection is known to be most intense above continental areas such as South America, Africa, and the maritime continent. However, its impact on the tropical tropopause layer (TTL) at global scale remains debated. In our analysis, we use the 8-year Microwave Limb Sounder (MLS) water vapour (H2O), cloud ice-water content (IWC), and temperature data sets from 2005 to date, to highlight the interplays between these parameters and their role in the water vapour variability in the TTL, and separately in the northern and southern tropics. In the tropical upper troposphere (177 hPa), continents, including the maritime continent, present the night-time (01:30 local time, LT) peak in the water vapour mixing ratio characteristic of the H2O diurnal cycle above tropical land. The western Pacific region, governed by the tropical oceanic diurnal cycle, has a daytime maximum (13:30 LT). In the TTL (100 hPa) and tropical lower stratosphere (56 hPa), South America and Africa differ from the maritime continent and western Pacific displaying a daytime maximum of H2O. In addition, the relative amplitude between day and night is found to be systematically higher by 5–10% in the southern tropical upper troposphere and 1–3% in the TTL than in the northern tropics during their respective summer, indicative of a larger impact of the convection on H2O in the southern tropics. Using a regional-scale approach, we investigate how mechanisms linked to the H2O variability differ in function of the geography. In summary, the MLS water vapour and cloud ice-water observations demonstrate a clear contribution to the TTL moistening by ice crystals overshooting over tropical land regions. The process is found to be much more effective in the southern tropics. Deep convection is responsible for the diurnal temperature variability in the same geographical areas in the lowermost stratosphere, which in turn drives the variability of H2O.

Download
Altmetrics
Final-revised paper
Preprint