Articles | Volume 17, issue 3
https://doi.org/10.5194/acp-17-1759-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-17-1759-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Anthropogenic influences on the physical state of submicron particulate matter over a tropical forest
Adam P. Bateman
School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
Zhaoheng Gong
School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
Tristan H. Harder
Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
now at: Physikalisches Institut, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
Suzane S. de Sá
School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
Bingbing Wang
William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
Paulo Castillo
Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, USA
Swarup China
William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
Yingjun Liu
School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
Rachel E. O'Brien
Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
now at: Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
Brett B. Palm
Department of Chemistry and Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, CO, USA
Hung-Wei Shiu
William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
now at: Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, Taiwan 30076
Glauber G. Cirino
National Institute of Amazonian Research, Manaus, Amazonas, Brazil
Ryan Thalman
Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, USA
now at: Departments of Chemistry and Natural Resources, Snow College, Richfield, UT, USA
Kouji Adachi
Atmospheric Environment and Applied Meteorology Research Department, Meteorological Research Institute, Tsukuba, Ibaraki, Japan
M. Lizabeth Alexander
William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
Paulo Artaxo
Departamento de Física Aplicada, University of São Paulo, São Paulo, Brazil
Allan K. Bertram
Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
Peter R. Buseck
School of Earth and Space Exploration & School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
Mary K. Gilles
Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
Jose L. Jimenez
Department of Chemistry and Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, CO, USA
Alexander Laskin
William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
Antonio O. Manzi
National Institute of Amazonian Research, Manaus, Amazonas, Brazil
Arthur Sedlacek
Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, USA
Rodrigo A. F. Souza
Amazonas State University, Manaus, Amazonas, Brazil
Jian Wang
Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, USA
Rahul Zaveri
William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
Scot T. Martin
CORRESPONDING AUTHOR
School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA
Related authors
Y. Zhang, M. S. Sanchez, C. Douet, Y. Wang, A. P. Bateman, Z. Gong, M. Kuwata, L. Renbaum-Wolff, B. B. Sato, P. F. Liu, A. K. Bertram, F. M. Geiger, and S. T. Martin
Atmos. Chem. Phys., 15, 7819–7829, https://doi.org/10.5194/acp-15-7819-2015, https://doi.org/10.5194/acp-15-7819-2015, 2015
Short summary
Short summary
The present work estimates the viscosity of submicron organic particles while they are still suspended as an aerosol without further post-processing techniques that can possibly alter the properties of semi-volatile materials. Results imply that atmospheric particles, at least those similar to the ones of this study and for low- to middle-RH regimes, can reach equilibrium or react rather slowly with the surrounding gas phase on time scales even longer than the residence time in the atmosphere.
Flossie Brown, Gerd Folberth, Stephen Sitch, Paulo Artaxo, Marijn Bauters, Pascal Boeckx, Alexander W. Cheesman, Matteo Detto, Ninong Komala, Luciana Rizzo, Nestor Rojas, Ines dos Santos Vieira, Steven Turnock, Hans Verbeeck, and Alfonso Zambrano
Atmos. Chem. Phys., 24, 12537–12555, https://doi.org/10.5194/acp-24-12537-2024, https://doi.org/10.5194/acp-24-12537-2024, 2024
Short summary
Short summary
Ozone is a pollutant that is detrimental to human and plant health. Ozone monitoring sites in the tropics are limited, so models are often used to understand ozone exposure. We use measurements from the tropics to evaluate ozone from the UK Earth system model, UKESM1. UKESM1 is able to capture the pattern of ozone in the tropics, except in southeast Asia, although it systematically overestimates it at all sites. This work highlights that UKESM1 can capture seasonal and hourly variability.
Rafael Stern, Joel F. de Brito, Samara Carbone, Luciana Varanda Rizzo, Jonathan Daniel Muller, and Paulo Artaxo
EGUsphere, https://doi.org/10.5194/egusphere-2024-3339, https://doi.org/10.5194/egusphere-2024-3339, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Our work reveals the impact of forest fires on climate. We found that particles related to direct emissions from fires, beyond the well-known effect of absorbing light and thus heating the atmosphere, are also very efficient in scattering light, which causes an atmospheric cooling effect. In our remote study site, most of the particles presented a different chemical composition then particles directly emitted by the fires, but those were the main responsible for total light extinction.
Fan Mei, Qi Zhang, Damao Zhang, Jerome Fast, Gourihar Kulkarni, Mikhail Pekour, Christopher Niedek, Susanne Glienke, Isarel Silber, Beat Schmid, Jason Tomlinson, Hardeep Mehta, Xena Mansoura, Zezhen Cheng, Gregory Vandergrift, Nurun Nahar Lata, Swarup China, and Zihua Zhu
EGUsphere, https://doi.org/10.5194/egusphere-2024-3089, https://doi.org/10.5194/egusphere-2024-3089, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
This study highlights the unique capability of the ArcticShark UAS in measuring vertically resolved atmospheric properties over the Southern Great Plains. Data from 32 research flights in 2023 reveal seasonal patterns and correlations with conventional measurements. The consistency and complementarity of in situ and remote sensing methods are highlighted. The study demonstrates the ArcticShark’s versatility in bridging data gaps and improving the understanding of vertical atmospheric structures.
Haley M. Royer, Michael T. Sheridan, Hope E. Elliott, Nurun Nahar Lata, Zezhen Cheng, Swarup China, Zihua Zhu, Andrew P. Ault, and Cassandra J. Gaston
EGUsphere, https://doi.org/10.5194/egusphere-2024-3288, https://doi.org/10.5194/egusphere-2024-3288, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Saharan dust transported across the Atlantic to the Caribbean, South America, and North America is hypothesized to undergo chemical processing by inorganic and organic acids that enhances cloud droplet formation, nutrient availability, and reflectivity of. In this study, chemical analysis performed on African dust deposited over Barbados shows that acid tracers are found mostly on sea salt and smoke particles, rather than dust, indicating that dust particles undergo minimal chemical processing.
Kouji Adachi, Jack E. Dibb, Joseph M. Katich, Joshua P. Schwarz, Hongyu Guo, Pedro Campuzano-Jost, Jose L. Jimenez, Jeff Peischl, Christopher D. Holmes, and James Crawford
Atmos. Chem. Phys., 24, 10985–11004, https://doi.org/10.5194/acp-24-10985-2024, https://doi.org/10.5194/acp-24-10985-2024, 2024
Short summary
Short summary
We examined aerosol particles from wildfires and identified tarballs (TBs) from the Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ) campaign. This study reveals the compositions, abundance, sizes, and mixing states of TBs and shows that TBs formed as the smoke aged for up to 5 h. This study provides measurements of TBs from various biomass-burning events and ages, enhancing our knowledge of TB emissions and our understanding of their climate impact.
Genevieve Rose Lorenzo, Luke D. Ziemba, Avelino F. Arellano, Mary C. Barth, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Richard Ferrare, Miguel Ricardo A. Hilario, Michael A. Shook, Simone Tilmes, Jian Wang, Qian Xiao, Jun Zhang, and Armin Sorooshian
EGUsphere, https://doi.org/10.5194/egusphere-2024-2604, https://doi.org/10.5194/egusphere-2024-2604, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Novel aerosol hygroscopicity analysis of CAMP2Ex field campaign data show low aerosol hygroscopicity values in Southeast Asia. Organic carbon from smoke decreases hygroscopicity to levels more like those in continental than in polluted marine regions. Hygroscopicity changes at cloud level demonstrate how surface particles impact clouds in the region affecting model representation of aerosol and cloud interactions in similar polluted marine regions with high organic carbon emissions.
Benjamin A. Nault, Katherine R. Travis, James H. Crawford, Donald R. Blake, Pedro Campuzano-Jost, Ronald C. Cohen, Joshua P. DiGangi, Glenn S. Diskin, Samuel R. Hall, L. Gregory Huey, Jose L. Jimenez, Kyung-Eun Min, Young Ro Lee, Isobel J. Simpson, Kirk Ullmann, and Armin Wisthaler
Atmos. Chem. Phys., 24, 9573–9595, https://doi.org/10.5194/acp-24-9573-2024, https://doi.org/10.5194/acp-24-9573-2024, 2024
Short summary
Short summary
Ozone (O3) is a pollutant formed from the reactions of gases emitted from various sources. In urban areas, the density of human activities can increase the O3 formation rate (P(O3)), thus impacting air quality and health. Observations collected over Seoul, South Korea, are used to constrain P(O3). A high local P(O3) was found; however, local P(O3) was partly reduced due to compounds typically ignored. These observations also provide constraints for unmeasured compounds that will impact P(O3).
Tianle Pan, Andrew T. Lambe, Weiwei Hu, Yicong He, Minghao Hu, Huaishan Zhou, Xinming Wang, Qingqing Hu, Hui Chen, Yue Zhao, Yuanlong Huang, Doug R. Worsnop, Zhe Peng, Melissa A. Morris, Douglas A. Day, Pedro Campuzano-Jost, Jose-Luis Jimenez, and Shantanu H. Jathar
Atmos. Meas. Tech., 17, 4915–4939, https://doi.org/10.5194/amt-17-4915-2024, https://doi.org/10.5194/amt-17-4915-2024, 2024
Short summary
Short summary
This study systematically characterizes the temperature enhancement in the lamp-enclosed oxidation flow reactor (OFR). The enhancement varied multiple dimensional factors, emphasizing the complexity of temperature inside of OFR. The effects of temperature on the flow field and gas- or particle-phase reaction inside OFR were also evaluated with experiments and model simulations. Finally, multiple mitigation strategies were demonstrated to minimize this temperature increase.
Guilherme Martins Pereira, Leonardo Yoshiaki Kamigauti, Rubens Fabio Pereira, Djacinto Monteiro dos Santos, Thayná da Silva Santos, José Vinicius Martins, Célia Alves, Cátia Gonçalves, Ismael Casotti Rienda, Nora Kováts, Thiago Nogueira, Luciana Rizzo, Paulo Artaxo, Regina Maura de Miranda, Marcia Akemi Yamasoe, Edmilson Dias de Freitas, Pérola de Castro Vasconcellos, and Maria de Fatima Andrade
EGUsphere, https://doi.org/10.5194/egusphere-2024-2212, https://doi.org/10.5194/egusphere-2024-2212, 2024
Short summary
Short summary
The chemical composition of fine particulate matter was studied in the megacity of São Paulo (Brazil) during a polluted period. Vehicular-related sources were dominant; however, a high contribution of biomass burning was observed and correlated with sample ecotoxicity. Emerging biomass burning sources, such as forest fires and sugarcane bagasse-based power plants, highlight the need for additional control measures alongside stricter rules concerning vehicular emissions.
Luiz A. T. Machado, Jürgen Kesselmeier, Santiago Botía, Hella van Asperen, Meinrat O. Andreae, Alessandro C. de Araújo, Paulo Artaxo, Achim Edtbauer, Rosaria R. Ferreira, Marco A. Franco, Hartwig Harder, Sam P. Jones, Cléo Q. Dias-Júnior, Guido G. Haytzmann, Carlos A. Quesada, Shujiro Komiya, Jost Lavric, Jos Lelieveld, Ingeborg Levin, Anke Nölscher, Eva Pfannerstill, Mira L. Pöhlker, Ulrich Pöschl, Akima Ringsdorf, Luciana Rizzo, Ana M. Yáñez-Serrano, Susan Trumbore, Wanda I. D. Valenti, Jordi Vila-Guerau de Arellano, David Walter, Jonathan Williams, Stefan Wolff, and Christopher Pöhlker
Atmos. Chem. Phys., 24, 8893–8910, https://doi.org/10.5194/acp-24-8893-2024, https://doi.org/10.5194/acp-24-8893-2024, 2024
Short summary
Short summary
Composite analysis of gas concentration before and after rainfall, during the day and night, gives insight into the complex relationship between trace gas variability and precipitation. The analysis helps us to understand the sources and sinks of trace gases within a forest ecosystem. It elucidates processes that are not discernible under undisturbed conditions and contributes to a deeper understanding of the trace gas life cycle and its intricate interactions with cloud dynamics in the Amazon.
Olivia G. Norman, Colette L. Heald, Pedro Campuzano-Jost, Hugh Coe, Marc N. Fiddler, Jaime R. Green, Jose L. Jimenez, Katharina Kaiser, Jin Liao, Ann M. Middlebrook, Benjamin A. Nault, John B. Nowak, Johannes Schneider, and André Welti
EGUsphere, https://doi.org/10.5194/egusphere-2024-2296, https://doi.org/10.5194/egusphere-2024-2296, 2024
Short summary
Short summary
This study finds that one component of secondary inorganic aerosols, nitrate, is greatly overestimated by a global atmospheric chemistry model compared to observations from 11 flight campaigns. None of the loss and production pathways explored can explain the nitrate bias alone. The model’s inability to capture the variability in the observations remains and requires future investigation to avoid biases in policy-related studies (i.e., air quality, health, climate impacts of these aerosols).
Marco A. Franco, Rafael Valiati, Bruna A. Holanda, Bruno B. Meller, Leslie A. Kremper, Luciana V. Rizzo, Samara Carbone, Fernando G. Morais, Janaína P. Nascimento, Meinrat O. Andreae, Micael A. Cecchini, Luiz A. T. Machado, Milena Ponczek, Ulrich Pöschl, David Walter, Christopher Pöhlker, and Paulo Artaxo
Atmos. Chem. Phys., 24, 8751–8770, https://doi.org/10.5194/acp-24-8751-2024, https://doi.org/10.5194/acp-24-8751-2024, 2024
Short summary
Short summary
The Amazon wet-season atmosphere was studied at the Amazon Tall Tower Observatory site, revealing vertical variations (between 60 and 325 m) in natural aerosols. Daytime mixing contrasted with nighttime stratification, with distinct rain-induced changes in aerosol populations. Notably, optical property recovery at higher levels was faster, while near-canopy aerosols showed higher scattering efficiency. These findings enhance our understanding of aerosol impacts on climate dynamics.
McKenna Stanford, Ann Fridlind, Andrew Ackerman, Bastiaan van Diedenhoven, Qian Xiao, Jian Wang, Toshihisa Matsui, Daniel Hernandez-Deckers, and Paul Lawson
EGUsphere, https://doi.org/10.5194/egusphere-2024-2413, https://doi.org/10.5194/egusphere-2024-2413, 2024
Short summary
Short summary
The evolution of cloud droplets, from the point they are activated by atmospheric aerosol to the formation of precipitation, is an important process relevant to understanding cloud-climate feedbacks. This study demonstrates a benchmark framework for using novel airborne measurements and retrievals to constrain high-resolution simulations of moderately deep cumulus clouds and pathways for scaling results to large-scale models and space-based observational platforms.
Adam E. Thomas, Hayley S. Glicker, Alex B. Guenther, Roger Seco, Oscar Vega Bustillos, Julio Tota, Rodrigo A. F. Souza, and James N. Smith
EGUsphere, https://doi.org/10.5194/egusphere-2024-2230, https://doi.org/10.5194/egusphere-2024-2230, 2024
Short summary
Short summary
We present measurements of the composition of ultrafine particles collected from the eastern Amazon, a relatively understudied region that is subjected to increasing human influence. We find that while isoprene chemistry is likely significant to ultrafine particle growth throughout the year, compounds related to other sources such as biological spore emissions and biomass burning exhibit striking seasonal differences, implying an extensive variation in regional ultrafine particle sources.
Delaney B. Kilgour, Christopher M. Jernigan, Olga Garmash, Sneha Aggarwal, Claudia Mohr, Matt E. Salter, Joel A. Thornton, Jian Wang, Paul Zieger, and Timothy H. Bertram
EGUsphere, https://doi.org/10.5194/egusphere-2024-1975, https://doi.org/10.5194/egusphere-2024-1975, 2024
Short summary
Short summary
We report simultaneous measurements of dimethyl sulfide (DMS) and hydroperoxymethyl thioformate (HPMTF) in the Eastern North Atlantic. We use an observationally constrained box model to show cloud loss is the dominant sink of HPMTF in this region over six weeks, resulting in large reductions in DMS-derived products that contribute to aerosol formation and growth. Our findings indicate that fast cloud processing of HPMTF must be included in global models to accurately capture the sulfur cycle.
Jiao Xue, Tian Zhang, Keyhong Park, Jinpei Yan, Young Jun Yoon, Jiyeon Park, and Bingbing Wang
Atmos. Chem. Phys., 24, 7731–7754, https://doi.org/10.5194/acp-24-7731-2024, https://doi.org/10.5194/acp-24-7731-2024, 2024
Short summary
Short summary
Ice formation by particles is an important way of making mixed-phase and ice clouds. We found that particles collected in the marine atmosphere exhibit diverse ice nucleation abilities and mixing states. Sea salt mixed-sulfate particles were enriched in ice-nucleating particles. Selective aging on sea salt particles made particle populations more externally mixed. Characterizations of particles and their mixing state are needed for a better understanding of aerosol–cloud interactions.
Fan Mei, Jennifer M. Comstock, Mikhail S. Pekour, Jerome D. Fast, Beat Schmid, Krista L. Gaustad, Shuaiqi Tang, Damao Zhang, John E. Shilling, Jason Tomlinson, Adam C. Varble, Jian Wang, L. Ruby Leung, Lawrence Kleinman, Scot Martin, Sebastien C. Biraud, Brian D. Ermold, and Kenneth W. Burk
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-97, https://doi.org/10.5194/essd-2024-97, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Our study explores a rich dataset from the final decade of the U.S. DOE's Gulfstream-1 (G-1) aircraft operations (2013-2018). The 236 flights cover diverse regions, including the Arctic, U.S. Southern Great Plains, U.S. West Coast, Eastern North Atlantic, Amazon Basin in Brazil, and Sierras de Córdoba range in Argentina. This airborne dataset offers unprecedented insights into atmospheric dynamics, aerosols, and clouds with a more accessible data format.
Natalie M. Mahowald, Longlei Li, Julius Vira, Marje Prank, Douglas S. Hamilton, Hitoshi Matsui, Ron L. Miller, Louis Lu, Ezgi Akyuz, Daphne Meidan, Peter G. Hess, Heikki Lihavainen, Christine Wiedinmyer, Jenny Hand, Maria Grazia Alaimo, Célia Alves, Andres Alastuey, Paulo Artaxo, Africa Barreto, Francisco Barraza, Silvia Becagli, Giulia Calzolai, Shankararaman Chellam, Ying Chen, Patrick Chuang, David D. Cohen, Cristina Colombi, Evangelia Diapouli, Gaetano Dongarra, Konstantinos Eleftheriadis, Johann Engelbrecht, Corinne Galy-Lacaux, Cassandra Gaston, Dario Gomez, Yenny González Ramos, Roy M. Harrison, Chris Heyes, Barak Herut, Philip Hopke, Christoph Hüglin, Maria Kanakidou, Zsofia Kertesz, Zbigniew Klimont, Katriina Kyllönen, Fabrice Lambert, Xiaohong Liu, Remi Losno, Franco Lucarelli, Willy Maenhaut, Beatrice Marticorena, Randall V. Martin, Nikolaos Mihalopoulos, Yasser Morera-Gomez, Adina Paytan, Joseph Prospero, Sergio Rodríguez, Patricia Smichowski, Daniela Varrica, Brenna Walsh, Crystal Weagle, and Xi Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2024-1617, https://doi.org/10.5194/egusphere-2024-1617, 2024
Short summary
Short summary
Aerosol particles are an important part of the Earth system, but their concentrations are spatially and temporally heterogeneous, as well as variable in size and composition. Here we present a new compilation of PM2.5 and PM10 aerosol observations, focusing on the spatial variability across different observational stations, including composition, and demonstrate a method for comparing the datasets to model output.
Amie Dobracki, Ernie Lewis, Arthur Sedlacek III, Tyler Tatro, Maria Zawadowicz, and Paquita Zuidema
EGUsphere, https://doi.org/10.5194/egusphere-2024-1347, https://doi.org/10.5194/egusphere-2024-1347, 2024
Short summary
Short summary
Biomass-burning aerosol is commonly present in the marine boundary layer of the southeast Atlantic Ocean between June and October. Our research indicates that burning conditions, aerosol transport pathways, and prolonged oxidation processes, both heterogeneous and aqueous-phase determine the chemical, microphysical, and optical properties of the boundary layer aerosol. Notably, we find that the aerosol optical properties can be estimated from the chemical properties alone.
Diego Aliaga, Victoria A. Sinclair, Radovan Krejci, Marcos Andrade, Paulo Artaxo, Luis Blacutt, Runlong Cai, Samara Carbone, Yvette Gramlich, Liine Heikkinen, Dominic Heslin-Rees, Wei Huang, Veli-Matti Kerminen, Alkuin Maximilian Koenig, Markku Kulmala, Paolo Laj, Valeria Mardoñez-Balderrama, Claudia Mohr, Isabel Moreno, Pauli Paasonen, Wiebke Scholz, Karine Sellegri, Laura Ticona, Gaëlle Uzu, Fernando Velarde, Alfred Wiedensohler, Doug Worsnop, Cheng Wu, Chen Xuemeng, Qiaozhi Zha, and Federico Bianchi
Aerosol Research Discuss., https://doi.org/10.5194/ar-2024-15, https://doi.org/10.5194/ar-2024-15, 2024
Revised manuscript accepted for AR
Short summary
Short summary
This study examines new particle formation (NPF) in the Bolivian Andes at Chacaltaya mountain (CHC) and the urban El Alto-La Paz area (EAC). Days are clustered into four categories based on NPF intensity. Differences in particle size, precursor gases, and pollution levels are found. High NPF intensities increased Aitken mode particle concentrations at both sites, while volcanic influence selectively diminished NPF intensity at CHC but not EAC. This study highlights NPF dynamics in the Andes.
Liviana K. Klein, Allan K. Bertram, Andreas Zuend, Florence Gregson, and Ulrich K. Krieger
EGUsphere, https://doi.org/10.5194/egusphere-2024-1459, https://doi.org/10.5194/egusphere-2024-1459, 2024
Short summary
Short summary
The viscosity of ammonium nitrate–sucrose–H2O was quantified with three methods ranging from liquid to solid state depending on the relative humidity. Moreover, the corresponding estimated internal aerosol mixing times remain below an hour for most tropospheric conditions, making equilibrium partitioning a reasonable assumption.
Jerome D. Fast, Adam C. Varble, Fan Mei, Mikhail Pekour, Jason Tomlinson, Alla Zelenyuk, Art J. Sedlacek III, Maria Zawadowicz, and Louisa K. Emmons
EGUsphere, https://doi.org/10.5194/egusphere-2024-1349, https://doi.org/10.5194/egusphere-2024-1349, 2024
Short summary
Short summary
Aerosol property measurements recently collected at the ground and by a research aircraft in central Argentina during the CACTI campaign exhibit large spatial and temporal variability. These measurements coupled with coincident meteorological information provide a valuable dataset needed to evaluate and improve model predictions of aerosols in a traditionally data sparse region of South America.
Gabriel Pereira Freitas, Ben Kopec, Kouji Adachi, Radovan Krejci, Dominic Heslin-Rees, Karl Espen Yttri, Alun Hubbard, Jeffrey M. Welker, and Paul Zieger
Atmos. Chem. Phys., 24, 5479–5494, https://doi.org/10.5194/acp-24-5479-2024, https://doi.org/10.5194/acp-24-5479-2024, 2024
Short summary
Short summary
Bioaerosols can participate in ice formation within clouds. In the Arctic, where global warming manifests most, they may become more important as their sources prevail for longer periods of the year. We have directly measured bioaerosols within clouds for a full year at an Arctic mountain site using a novel combination of cloud particle sampling and single-particle techniques. We show that bioaerosols act as cloud seeds and may influence the presence of ice within clouds.
Melinda K. Schueneman, Douglas A. Day, Dongwook Kim, Pedro Campuzano-Jost, Seonsik Yun, Marla P. DeVault, Anna C. Ziola, Paul J. Ziemann, and Jose L. Jimenez
Aerosol Research, 2, 59–76, https://doi.org/10.5194/ar-2-59-2024, https://doi.org/10.5194/ar-2-59-2024, 2024
Short summary
Short summary
Our study presents a novel method for quantifying mass spectrometer responses to molecular species in organic aerosols. Traditional calibrations often fail for complex mixtures like secondary organic aerosol. We combined chromatography with statistical component analysis to improve separation and quantification, achieving promising agreement with direct calibration. Our findings offer a new approach to assess aerosol composition, especially beneficial for complex mixtures.
Gabriela R. Unfer, Luiz A. T. Machado, Paulo Artaxo, Marco A. Franco, Leslie A. Kremper, Mira L. Pöhlker, Ulrich Pöschl, and Christopher Pöhlker
Atmos. Chem. Phys., 24, 3869–3882, https://doi.org/10.5194/acp-24-3869-2024, https://doi.org/10.5194/acp-24-3869-2024, 2024
Short summary
Short summary
Amazonian aerosols and their interactions with precipitation were studied by understanding them in a 3D space based on three parameters that characterize the concentration and size distribution of aerosols. The results showed characteristic arrangements regarding seasonal and diurnal cycles, as well as when interacting with precipitation. The use of this 3D space appears to be a promising tool for aerosol population analysis and for model validation and parameterization.
Melissa A. Morris, Demetrios Pagonis, Douglas A. Day, Joost A. de Gouw, Paul J. Ziemann, and Jose L. Jimenez
Atmos. Meas. Tech., 17, 1545–1559, https://doi.org/10.5194/amt-17-1545-2024, https://doi.org/10.5194/amt-17-1545-2024, 2024
Short summary
Short summary
Polymer absorption of volatile organic compounds (VOCs) is important to characterize for atmospheric sampling setups (as interactions cause sampling delays) and indoor air quality. Here we test different polymer materials and quantify their absorptive capacities through modeling. We found the main polymers in carpets to be highly absorptive, acting as large reservoirs for indoor pollution. We also demonstrated how polymer tubes can be used as a low-cost gas separation technique.
Feng Jiang, Kyla Siemens, Claudia Linke, Yanxia Li, Yiwei Gong, Thomas Leisner, Alexander Laskin, and Harald Saathoff
Atmos. Chem. Phys., 24, 2639–2649, https://doi.org/10.5194/acp-24-2639-2024, https://doi.org/10.5194/acp-24-2639-2024, 2024
Short summary
Short summary
We investigated the optical properties, chemical composition, and formation mechanisms of secondary organic aerosol (SOA) and brown carbon (BrC) from the oxidation of indole with and without NO2 in the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) simulation chamber. This work is one of the very few to link the optical properties and chemical composition of indole SOA with and without NO2 by simulation chamber experiments.
Simone Rodrigues, Glauber Cirino, Demerval Moreira, Andrea Pozzer, Rafael Palácios, Sung-Ching Lee, Breno Imbiriba, José Nogueira, Maria Isabel Vitorino, and George Vourlitis
Biogeosciences, 21, 843–868, https://doi.org/10.5194/bg-21-843-2024, https://doi.org/10.5194/bg-21-843-2024, 2024
Short summary
Short summary
The radiative effects of atmospheric particles are still unknown for a wide variety of species and types of vegetation present in Amazonian biomes. We examined the effects of aerosols on solar radiation and their impacts on photosynthesis in an area of semideciduous forest in the southern Amazon Basin. Under highly smoky-sky conditions, our results show substantial photosynthetic interruption (20–70 %), attributed specifically to the decrease in solar radiation and leaf canopy temperature.
Huisheng Bian, Mian Chin, Peter R. Colarco, Eric C. Apel, Donald R. Blake, Karl Froyd, Rebecca S. Hornbrook, Jose Jimenez, Pedro Campuzano Jost, Michael Lawler, Mingxu Liu, Marianne Tronstad Lund, Hitoshi Matsui, Benjamin A. Nault, Joyce E. Penner, Andrew W. Rollins, Gregory Schill, Ragnhild B. Skeie, Hailong Wang, Lu Xu, Kai Zhang, and Jialei Zhu
Atmos. Chem. Phys., 24, 1717–1741, https://doi.org/10.5194/acp-24-1717-2024, https://doi.org/10.5194/acp-24-1717-2024, 2024
Short summary
Short summary
This work studies sulfur in the remote troposphere at global and seasonal scales using aircraft measurements and multi-model simulations. The goal is to understand the sulfur cycle over remote oceans, spread of model simulations, and observation–model discrepancies. Such an understanding and comparison with real observations are crucial to narrow down the uncertainties in model sulfur simulations and improve understanding of the sulfur cycle in atmospheric air quality, climate, and ecosystems.
Natalie M. Mahowald, Longlei Li, Julius Vira, Marje Prank, Douglas S. Hamilton, Hitoshi Matsui, Ron L. Miller, Louis Lu, Ezgi Akyuz, Daphne Meidan, Peter Hess, Heikki Lihavainen, Christine Wiedinmyer, Jenny Hand, Maria Grazia Alaimo, Célia Alves, Andres Alastuey, Paulo Artaxo, Africa Barreto, Francisco Barraza, Silvia Becagli, Giulia Calzolai, Shankarararman Chellam, Ying Chen, Patrick Chuang, David D. Cohen, Cristina Colombi, Evangelia Diapouli, Gaetano Dongarra, Konstantinos Eleftheriadis, Corinne Galy-Lacaux, Cassandra Gaston, Dario Gomez, Yenny González Ramos, Hannele Hakola, Roy M. Harrison, Chris Heyes, Barak Herut, Philip Hopke, Christoph Hüglin, Maria Kanakidou, Zsofia Kertesz, Zbiginiw Klimont, Katriina Kyllönen, Fabrice Lambert, Xiaohong Liu, Remi Losno, Franco Lucarelli, Willy Maenhaut, Beatrice Marticorena, Randall V. Martin, Nikolaos Mihalopoulos, Yasser Morera-Gomez, Adina Paytan, Joseph Prospero, Sergio Rodríguez, Patricia Smichowski, Daniela Varrica, Brenna Walsh, Crystal Weagle, and Xi Zhao
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-1, https://doi.org/10.5194/essd-2024-1, 2024
Preprint withdrawn
Short summary
Short summary
Aerosol particles can interact with incoming solar radiation and outgoing long wave radiation, change cloud properties, affect photochemistry, impact surface air quality, and when deposited impact surface albedo of snow and ice, and modulate carbon dioxide uptake by the land and ocean. Here we present a new compilation of aerosol observations including composition, a methodology for comparing the datasets to model output, and show the implications of these results using one model.
Georgios I. Gkatzelis, Matthew M. Coggon, Chelsea E. Stockwell, Rebecca S. Hornbrook, Hannah Allen, Eric C. Apel, Megan M. Bela, Donald R. Blake, Ilann Bourgeois, Steven S. Brown, Pedro Campuzano-Jost, Jason M. St. Clair, James H. Crawford, John D. Crounse, Douglas A. Day, Joshua P. DiGangi, Glenn S. Diskin, Alan Fried, Jessica B. Gilman, Hongyu Guo, Johnathan W. Hair, Hannah S. Halliday, Thomas F. Hanisco, Reem Hannun, Alan Hills, L. Gregory Huey, Jose L. Jimenez, Joseph M. Katich, Aaron Lamplugh, Young Ro Lee, Jin Liao, Jakob Lindaas, Stuart A. McKeen, Tomas Mikoviny, Benjamin A. Nault, J. Andrew Neuman, John B. Nowak, Demetrios Pagonis, Jeff Peischl, Anne E. Perring, Felix Piel, Pamela S. Rickly, Michael A. Robinson, Andrew W. Rollins, Thomas B. Ryerson, Melinda K. Schueneman, Rebecca H. Schwantes, Joshua P. Schwarz, Kanako Sekimoto, Vanessa Selimovic, Taylor Shingler, David J. Tanner, Laura Tomsche, Krystal T. Vasquez, Patrick R. Veres, Rebecca Washenfelder, Petter Weibring, Paul O. Wennberg, Armin Wisthaler, Glenn M. Wolfe, Caroline C. Womack, Lu Xu, Katherine Ball, Robert J. Yokelson, and Carsten Warneke
Atmos. Chem. Phys., 24, 929–956, https://doi.org/10.5194/acp-24-929-2024, https://doi.org/10.5194/acp-24-929-2024, 2024
Short summary
Short summary
This study reports emissions of gases and particles from wildfires. These emissions are related to chemical proxies that can be measured by satellite and incorporated into models to improve predictions of wildfire impacts on air quality and climate.
Yang Wang, Chanakya Bagya Ramesh, Scott E. Giangrande, Jerome Fast, Xianda Gong, Jiaoshi Zhang, Ahmet Tolga Odabasi, Marcus Vinicius Batista Oliveira, Alyssa Matthews, Fan Mei, John E. Shilling, Jason Tomlinson, Die Wang, and Jian Wang
Atmos. Chem. Phys., 23, 15671–15691, https://doi.org/10.5194/acp-23-15671-2023, https://doi.org/10.5194/acp-23-15671-2023, 2023
Short summary
Short summary
We report the vertical profiles of aerosol properties over the Southern Great Plains (SGP), a region influenced by shallow convective clouds, land–atmosphere interactions, boundary layer turbulence, and the aerosol life cycle. We examined the processes that drive the aerosol population and distribution in the lower troposphere over the SGP. This study helps improve our understanding of aerosol–cloud interactions and the model representation of aerosol processes.
Sohyeon Jeon, Michael J. Walker, Donna T. Sueper, Douglas A. Day, Anne V. Handschy, Jose L. Jimenez, and Brent J. Williams
Atmos. Meas. Tech., 16, 6075–6095, https://doi.org/10.5194/amt-16-6075-2023, https://doi.org/10.5194/amt-16-6075-2023, 2023
Short summary
Short summary
A searchable database tool for the Aerosol Mass Spectrometer (AMS) and Aerosol Chemical Speciation Monitor (ACSM) mass spectral datasets was built to improve the efficiency of data analysis using Igor Pro. The tool incorporates the published mass spectra (MS) and sample information uploaded on the website. The tool allows users to compare their own mass spectrum with the reference MS in the database.
Calvin Howes, Pablo E. Saide, Hugh Coe, Amie Dobracki, Steffen Freitag, Jim M. Haywood, Steven G. Howell, Siddhant Gupta, Janek Uin, Mary Kacarab, Chongai Kuang, L. Ruby Leung, Athanasios Nenes, Greg M. McFarquhar, James Podolske, Jens Redemann, Arthur J. Sedlacek, Kenneth L. Thornhill, Jenny P. S. Wong, Robert Wood, Huihui Wu, Yang Zhang, Jianhao Zhang, and Paquita Zuidema
Atmos. Chem. Phys., 23, 13911–13940, https://doi.org/10.5194/acp-23-13911-2023, https://doi.org/10.5194/acp-23-13911-2023, 2023
Short summary
Short summary
To better understand smoke properties and its interactions with clouds, we compare the WRF-CAM5 model with observations from ORACLES, CLARIFY, and LASIC field campaigns in the southeastern Atlantic in August 2017. The model transports and mixes smoke well but does not fully capture some important processes. These include smoke chemical and physical aging over 4–12 days, smoke removal by rain, sulfate particle formation, aerosol activation into cloud droplets, and boundary layer turbulence.
Guangyu Li, Elise K. Wilbourn, Zezhen Cheng, Jörg Wieder, Allison Fagerson, Jan Henneberger, Ghislain Motos, Rita Traversi, Sarah D. Brooks, Mauro Mazzola, Swarup China, Athanasios Nenes, Ulrike Lohmann, Naruki Hiranuma, and Zamin A. Kanji
Atmos. Chem. Phys., 23, 10489–10516, https://doi.org/10.5194/acp-23-10489-2023, https://doi.org/10.5194/acp-23-10489-2023, 2023
Short summary
Short summary
In this work, we present results from an Arctic field campaign (NASCENT) in Ny-Ålesund, Svalbard, on the abundance, variability, physicochemical properties, and potential sources of ice-nucleating particles (INPs) relevant for mixed-phase cloud formation. This work improves the data coverage of Arctic INPs and aerosol properties, allowing for the validation of models predicting cloud microphysical and radiative properties of mixed-phase clouds in the rapidly warming Arctic.
Xurong Wang, Qiaoqiao Wang, Maria Prass, Christopher Pöhlker, Daniel Moran-Zuloaga, Paulo Artaxo, Jianwei Gu, Ning Yang, Xiajie Yang, Jiangchuan Tao, Juan Hong, Nan Ma, Yafang Cheng, Hang Su, and Meinrat O. Andreae
Atmos. Chem. Phys., 23, 9993–10014, https://doi.org/10.5194/acp-23-9993-2023, https://doi.org/10.5194/acp-23-9993-2023, 2023
Short summary
Short summary
In this work, with an optimized particle mass size distribution, we captured observed aerosol optical depth (AOD) and coarse aerosol concentrations over source and/or receptor regions well, demonstrating good performance in simulating export of African dust toward the Amazon Basin. In addition to factors controlling the transatlantic transport of African dust, the study investigated the impact of African dust over the Amazon Basin, including the nutrient inputs associated with dust deposition.
Qian Xiao, Jiaoshi Zhang, Yang Wang, Luke D. Ziemba, Ewan Crosbie, Edward L. Winstead, Claire E. Robinson, Joshua P. DiGangi, Glenn S. Diskin, Jeffrey S. Reid, K. Sebastian Schmidt, Armin Sorooshian, Miguel Ricardo A. Hilario, Sarah Woods, Paul Lawson, Snorre A. Stamnes, and Jian Wang
Atmos. Chem. Phys., 23, 9853–9871, https://doi.org/10.5194/acp-23-9853-2023, https://doi.org/10.5194/acp-23-9853-2023, 2023
Short summary
Short summary
Using recent airborne measurements, we show that the influences of anthropogenic emissions, transport, convective clouds, and meteorology lead to new particle formation (NPF) under a variety of conditions and at different altitudes in tropical marine environments. NPF is enhanced by fresh urban emissions in convective outflow but is suppressed in air masses influenced by aged urban emissions where reactive precursors are mostly consumed while particle surface area remains relatively high.
Daniel A. Knopf, Peiwen Wang, Benny Wong, Jay M. Tomlin, Daniel P. Veghte, Nurun N. Lata, Swarup China, Alexander Laskin, Ryan C. Moffet, Josephine Y. Aller, Matthew A. Marcus, and Jian Wang
Atmos. Chem. Phys., 23, 8659–8681, https://doi.org/10.5194/acp-23-8659-2023, https://doi.org/10.5194/acp-23-8659-2023, 2023
Short summary
Short summary
Ambient particle populations and associated ice-nucleating particles (INPs)
were examined from particle samples collected on board aircraft in the marine
boundary layer and free troposphere in the eastern North Atlantic during
summer and winter. Chemical imaging shows distinct differences in the
particle populations seasonally and with sampling altitudes, which are
reflected in the INP types. Freezing parameterizations are derived for
implementation in cloud-resolving and climate models.
Eliane Gomes Alves, Raoni Aquino Santana, Cléo Quaresma Dias-Júnior, Santiago Botía, Tyeen Taylor, Ana Maria Yáñez-Serrano, Jürgen Kesselmeier, Efstratios Bourtsoukidis, Jonathan Williams, Pedro Ivo Lembo Silveira de Assis, Giordane Martins, Rodrigo de Souza, Sérgio Duvoisin Júnior, Alex Guenther, Dasa Gu, Anywhere Tsokankunku, Matthias Sörgel, Bruce Nelson, Davieliton Pinto, Shujiro Komiya, Diogo Martins Rosa, Bettina Weber, Cybelli Barbosa, Michelle Robin, Kenneth J. Feeley, Alvaro Duque, Viviana Londoño Lemos, Maria Paula Contreras, Alvaro Idarraga, Norberto López, Chad Husby, Brett Jestrow, and Iván Mauricio Cely Toro
Atmos. Chem. Phys., 23, 8149–8168, https://doi.org/10.5194/acp-23-8149-2023, https://doi.org/10.5194/acp-23-8149-2023, 2023
Short summary
Short summary
Isoprene is emitted mainly by plants and can influence atmospheric chemistry and air quality. But, there are uncertainties in model emission estimates and follow-up atmospheric processes. In our study, with long-term observational datasets of isoprene and biological and environmental factors from central Amazonia, we show that isoprene emission estimates could be improved when biological processes were mechanistically incorporated into the model.
Kevin J. Nihill, Matthew M. Coggon, Christopher Y. Lim, Abigail R. Koss, Bin Yuan, Jordan E. Krechmer, Kanako Sekimoto, Jose L. Jimenez, Joost de Gouw, Christopher D. Cappa, Colette L. Heald, Carsten Warneke, and Jesse H. Kroll
Atmos. Chem. Phys., 23, 7887–7899, https://doi.org/10.5194/acp-23-7887-2023, https://doi.org/10.5194/acp-23-7887-2023, 2023
Short summary
Short summary
In this work, we collect emissions from controlled burns of biomass fuels that can be found in the western United States into an environmental chamber in order to simulate their oxidation as they pass through the atmosphere. These findings provide a detailed characterization of the composition of the atmosphere downwind of wildfires. In turn, this will help to explore the effects of these changing emissions on downwind populations and will also directly inform atmospheric and climate models.
Haihui Zhu, Randall V. Martin, Betty Croft, Shixian Zhai, Chi Li, Liam Bindle, Jeffrey R. Pierce, Rachel Y.-W. Chang, Bruce E. Anderson, Luke D. Ziemba, Johnathan W. Hair, Richard A. Ferrare, Chris A. Hostetler, Inderjeet Singh, Deepangsu Chatterjee, Jose L. Jimenez, Pedro Campuzano-Jost, Benjamin A. Nault, Jack E. Dibb, Joshua S. Schwarz, and Andrew Weinheimer
Atmos. Chem. Phys., 23, 5023–5042, https://doi.org/10.5194/acp-23-5023-2023, https://doi.org/10.5194/acp-23-5023-2023, 2023
Short summary
Short summary
Particle size of atmospheric aerosol is important for estimating its climate and health effects, but simulating atmospheric aerosol size is computationally demanding. This study derives a simple parameterization of the size of organic and secondary inorganic ambient aerosol that can be applied to atmospheric models. Applying this parameterization allows a better representation of the global spatial pattern of aerosol size, as verified by ground and airborne measurements.
Amie Dobracki, Paquita Zuidema, Steven G. Howell, Pablo Saide, Steffen Freitag, Allison C. Aiken, Sharon P. Burton, Arthur J. Sedlacek III, Jens Redemann, and Robert Wood
Atmos. Chem. Phys., 23, 4775–4799, https://doi.org/10.5194/acp-23-4775-2023, https://doi.org/10.5194/acp-23-4775-2023, 2023
Short summary
Short summary
Southern Africa produces approximately one-third of the world’s carbon from fires. The thick smoke layer can flow westward, interacting with the southeastern Atlantic cloud deck. The net radiative impact can alter regional circulation patterns, impacting rainfall over Africa. We find that the smoke is highly absorbing of sunlight, mostly because it contains more black carbon than smoke over the Northern Hemisphere.
Francesca Gallo, Janek Uin, Kevin J. Sanchez, Richard H. Moore, Jian Wang, Robert Wood, Fan Mei, Connor Flynn, Stephen Springston, Eduardo B. Azevedo, Chongai Kuang, and Allison C. Aiken
Atmos. Chem. Phys., 23, 4221–4246, https://doi.org/10.5194/acp-23-4221-2023, https://doi.org/10.5194/acp-23-4221-2023, 2023
Short summary
Short summary
This study provides a summary statistic of multiday aerosol plume transport event influences on aerosol physical properties and the cloud condensation nuclei budget at the U.S. Department of Energy Atmospheric Radiation Measurement Facility in the eastern North Atlantic (ENA). An algorithm that integrates aerosol properties is developed and applied to identify multiday aerosol transport events. The influence of the aerosol plumes on aerosol populations at the ENA is successively assessed.
Laura Tomsche, Felix Piel, Tomas Mikoviny, Claus J. Nielsen, Hongyu Guo, Pedro Campuzano-Jost, Benjamin A. Nault, Melinda K. Schueneman, Jose L. Jimenez, Hannah Halliday, Glenn Diskin, Joshua P. DiGangi, John B. Nowak, Elizabeth B. Wiggins, Emily Gargulinski, Amber J. Soja, and Armin Wisthaler
Atmos. Chem. Phys., 23, 2331–2343, https://doi.org/10.5194/acp-23-2331-2023, https://doi.org/10.5194/acp-23-2331-2023, 2023
Short summary
Short summary
Ammonia (NH3) is an important trace gas in the atmosphere and fires are among the poorly investigated sources. During the 2019 Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ) aircraft campaign, we measured gaseous NH3 and particulate ammonium (NH4+) in smoke plumes emitted from 6 wildfires in the Western US and 66 small agricultural fires in the Southeastern US. We herein present a comprehensive set of emission factors of NH3 and NHx, where NHx = NH3 + NH4+.
Viral Shah, Daniel J. Jacob, Ruijun Dang, Lok N. Lamsal, Sarah A. Strode, Stephen D. Steenrod, K. Folkert Boersma, Sebastian D. Eastham, Thibaud M. Fritz, Chelsea Thompson, Jeff Peischl, Ilann Bourgeois, Ilana B. Pollack, Benjamin A. Nault, Ronald C. Cohen, Pedro Campuzano-Jost, Jose L. Jimenez, Simone T. Andersen, Lucy J. Carpenter, Tomás Sherwen, and Mat J. Evans
Atmos. Chem. Phys., 23, 1227–1257, https://doi.org/10.5194/acp-23-1227-2023, https://doi.org/10.5194/acp-23-1227-2023, 2023
Short summary
Short summary
NOx in the free troposphere (above 2 km) affects global tropospheric chemistry and the retrieval and interpretation of satellite NO2 measurements. We evaluate free tropospheric NOx in global atmospheric chemistry models and find that recycling NOx from its reservoirs over the oceans is faster than that simulated in the models, resulting in increases in simulated tropospheric ozone and OH. Over the U.S., free tropospheric NO2 contributes the majority of the tropospheric NO2 column in summer.
Haley M. Royer, Mira L. Pöhlker, Ovid Krüger, Edmund Blades, Peter Sealy, Nurun Nahar Lata, Zezhen Cheng, Swarup China, Andrew P. Ault, Patricia K. Quinn, Paquita Zuidema, Christopher Pöhlker, Ulrich Pöschl, Meinrat Andreae, and Cassandra J. Gaston
Atmos. Chem. Phys., 23, 981–998, https://doi.org/10.5194/acp-23-981-2023, https://doi.org/10.5194/acp-23-981-2023, 2023
Short summary
Short summary
This paper presents atmospheric particle chemical composition and measurements of aerosol water uptake properties collected at Ragged Point, Barbados, during the winter of 2020. The result of this study indicates the importance of small African smoke particles for cloud droplet formation in the tropical North Atlantic and highlights the large spatial and temporal pervasiveness of smoke over the Atlantic Ocean.
Wiebke Scholz, Jiali Shen, Diego Aliaga, Cheng Wu, Samara Carbone, Isabel Moreno, Qiaozhi Zha, Wei Huang, Liine Heikkinen, Jean Luc Jaffrezo, Gaelle Uzu, Eva Partoll, Markus Leiminger, Fernando Velarde, Paolo Laj, Patrick Ginot, Paolo Artaxo, Alfred Wiedensohler, Markku Kulmala, Claudia Mohr, Marcos Andrade, Victoria Sinclair, Federico Bianchi, and Armin Hansel
Atmos. Chem. Phys., 23, 895–920, https://doi.org/10.5194/acp-23-895-2023, https://doi.org/10.5194/acp-23-895-2023, 2023
Short summary
Short summary
Dimethyl sulfide (DMS), emitted from the ocean, is the most abundant biogenic sulfur emission into the atmosphere. OH radicals, among others, can oxidize DMS to sulfuric and methanesulfonic acid, which are relevant for aerosol formation. We quantified DMS and nearly all DMS oxidation products with novel mass spectrometric instruments for gas and particle phase at the high mountain station Chacaltaya (5240 m a.s.l.) in the Bolivian Andes in free tropospheric air after long-range transport.
Yunfan Liu, Hang Su, Siwen Wang, Chao Wei, Wei Tao, Mira L. Pöhlker, Christopher Pöhlker, Bruna A. Holanda, Ovid O. Krüger, Thorsten Hoffmann, Manfred Wendisch, Paulo Artaxo, Ulrich Pöschl, Meinrat O. Andreae, and Yafang Cheng
Atmos. Chem. Phys., 23, 251–272, https://doi.org/10.5194/acp-23-251-2023, https://doi.org/10.5194/acp-23-251-2023, 2023
Short summary
Short summary
The origins of the abundant cloud condensation nuclei (CCN) in the upper troposphere (UT) of the Amazon remain unclear. With model developments of new secondary organic aerosol schemes and constrained by observation, we show that strong aerosol nucleation and condensation in the UT is triggered by biogenic organics, and organic condensation is key for UT CCN production. This UT CCN-producing mechanism may prevail over broader vegetation canopies and deserves emphasis in aerosol–climate feedback.
Pamela S. Rickly, Hongyu Guo, Pedro Campuzano-Jost, Jose L. Jimenez, Glenn M. Wolfe, Ryan Bennett, Ilann Bourgeois, John D. Crounse, Jack E. Dibb, Joshua P. DiGangi, Glenn S. Diskin, Maximilian Dollner, Emily M. Gargulinski, Samuel R. Hall, Hannah S. Halliday, Thomas F. Hanisco, Reem A. Hannun, Jin Liao, Richard Moore, Benjamin A. Nault, John B. Nowak, Jeff Peischl, Claire E. Robinson, Thomas Ryerson, Kevin J. Sanchez, Manuel Schöberl, Amber J. Soja, Jason M. St. Clair, Kenneth L. Thornhill, Kirk Ullmann, Paul O. Wennberg, Bernadett Weinzierl, Elizabeth B. Wiggins, Edward L. Winstead, and Andrew W. Rollins
Atmos. Chem. Phys., 22, 15603–15620, https://doi.org/10.5194/acp-22-15603-2022, https://doi.org/10.5194/acp-22-15603-2022, 2022
Short summary
Short summary
Biomass burning sulfur dioxide (SO2) emission factors range from 0.27–1.1 g kg-1 C. Biomass burning SO2 can quickly form sulfate and organosulfur, but these pathways are dependent on liquid water content and pH. Hydroxymethanesulfonate (HMS) appears to be directly emitted from some fire sources but is not the sole contributor to the organosulfur signal. It is shown that HMS and organosulfur chemistry may be an important S(IV) reservoir with the fate dependent on the surrounding conditions.
Qianjie Chen, Jessica A. Mirrielees, Sham Thanekar, Nicole A. Loeb, Rachel M. Kirpes, Lucia M. Upchurch, Anna J. Barget, Nurun Nahar Lata, Angela R. W. Raso, Stephen M. McNamara, Swarup China, Patricia K. Quinn, Andrew P. Ault, Aaron Kennedy, Paul B. Shepson, Jose D. Fuentes, and Kerri A. Pratt
Atmos. Chem. Phys., 22, 15263–15285, https://doi.org/10.5194/acp-22-15263-2022, https://doi.org/10.5194/acp-22-15263-2022, 2022
Short summary
Short summary
During a spring field campaign in the coastal Arctic, ultrafine particles were enhanced during high wind speeds, and coarse-mode particles were reduced during blowing snow. Calculated periods blowing snow were overpredicted compared to observations. Sea spray aerosols produced by sea ice leads affected the composition of aerosols and snowpack. An improved understanding of aerosol emissions from leads and blowing snow is critical for predicting the future climate of the rapidly warming Arctic.
Kouji Adachi, Yutaka Tobo, Makoto Koike, Gabriel Freitas, Paul Zieger, and Radovan Krejci
Atmos. Chem. Phys., 22, 14421–14439, https://doi.org/10.5194/acp-22-14421-2022, https://doi.org/10.5194/acp-22-14421-2022, 2022
Short summary
Short summary
Ambient aerosol and cloud residual particles in the fine mode were collected at Zeppelin Observatory in Svalbard and were analyzed using transmission electron microscopy. Fractions of mineral dust and sea salt particles increased in cloud residual samples collected at ambient temperatures below 0 °C. This study highlights the variety of aerosol and cloud residual particle compositions and mixing states that influence or are influenced by aerosol–cloud interactions in Arctic low-level clouds.
Youhua Tang, Patrick C. Campbell, Pius Lee, Rick Saylor, Fanglin Yang, Barry Baker, Daniel Tong, Ariel Stein, Jianping Huang, Ho-Chun Huang, Li Pan, Jeff McQueen, Ivanka Stajner, Jose Tirado-Delgado, Youngsun Jung, Melissa Yang, Ilann Bourgeois, Jeff Peischl, Tom Ryerson, Donald Blake, Joshua Schwarz, Jose-Luis Jimenez, James Crawford, Glenn Diskin, Richard Moore, Johnathan Hair, Greg Huey, Andrew Rollins, Jack Dibb, and Xiaoyang Zhang
Geosci. Model Dev., 15, 7977–7999, https://doi.org/10.5194/gmd-15-7977-2022, https://doi.org/10.5194/gmd-15-7977-2022, 2022
Short summary
Short summary
This paper compares two meteorological datasets for driving a regional air quality model: a regional meteorological model using WRF (WRF-CMAQ) and direct interpolation from an operational global model (GFS-CMAQ). In the comparison with surface measurements and aircraft data in summer 2019, these two methods show mixed performance depending on the corresponding meteorological settings. Direct interpolation is found to be a viable method to drive air quality models.
Paul A. Barrett, Steven J. Abel, Hugh Coe, Ian Crawford, Amie Dobracki, James Haywood, Steve Howell, Anthony Jones, Justin Langridge, Greg M. McFarquhar, Graeme J. Nott, Hannah Price, Jens Redemann, Yohei Shinozuka, Kate Szpek, Jonathan W. Taylor, Robert Wood, Huihui Wu, Paquita Zuidema, Stéphane Bauguitte, Ryan Bennett, Keith Bower, Hong Chen, Sabrina Cochrane, Michael Cotterell, Nicholas Davies, David Delene, Connor Flynn, Andrew Freedman, Steffen Freitag, Siddhant Gupta, David Noone, Timothy B. Onasch, James Podolske, Michael R. Poellot, Sebastian Schmidt, Stephen Springston, Arthur J. Sedlacek III, Jamie Trembath, Alan Vance, Maria A. Zawadowicz, and Jianhao Zhang
Atmos. Meas. Tech., 15, 6329–6371, https://doi.org/10.5194/amt-15-6329-2022, https://doi.org/10.5194/amt-15-6329-2022, 2022
Short summary
Short summary
To better understand weather and climate, it is vital to go into the field and collect observations. Often measurements take place in isolation, but here we compared data from two aircraft and one ground-based site. This was done in order to understand how well measurements made on one platform compared to those made on another. Whilst this is easy to do in a controlled laboratory setting, it is more challenging in the real world, and so these comparisons are as valuable as they are rare.
Fabian Mahrt, Long Peng, Julia Zaks, Yuanzhou Huang, Paul E. Ohno, Natalie R. Smith, Florence K. A. Gregson, Yiming Qin, Celia L. Faiola, Scot T. Martin, Sergey A. Nizkorodov, Markus Ammann, and Allan K. Bertram
Atmos. Chem. Phys., 22, 13783–13796, https://doi.org/10.5194/acp-22-13783-2022, https://doi.org/10.5194/acp-22-13783-2022, 2022
Short summary
Short summary
The number of condensed phases in mixtures of different secondary organic aerosol (SOA) types determines their impact on air quality and climate. Here we observe the number of phases in individual particles that contain mixtures of two different types of SOA. We find that SOA mixtures can form one- or two-phase particles, depending on the difference in the average oxygen-to-carbon (O / C) ratios of the two SOA types that are internally mixed within individual particles.
Kristian J. Kiland, Kevin L. Marroquin, Natalie R. Smith, Shaun Xu, Sergey A. Nizkorodov, and Allan K. Bertram
Atmos. Meas. Tech., 15, 5545–5561, https://doi.org/10.5194/amt-15-5545-2022, https://doi.org/10.5194/amt-15-5545-2022, 2022
Short summary
Short summary
Information on the viscosity of secondary organic aerosols is needed when making air quality, climate, and atmospheric chemistry predictions. Viscosity depends on temperature, so we developed a new method for measuring the temperature-dependent viscosity of small samples. As an application of the method, we measured the viscosity of farnesene secondary organic aerosol at different temperatures.
Nicole A. June, Anna L. Hodshire, Elizabeth B. Wiggins, Edward L. Winstead, Claire E. Robinson, K. Lee Thornhill, Kevin J. Sanchez, Richard H. Moore, Demetrios Pagonis, Hongyu Guo, Pedro Campuzano-Jost, Jose L. Jimenez, Matthew M. Coggon, Jonathan M. Dean-Day, T. Paul Bui, Jeff Peischl, Robert J. Yokelson, Matthew J. Alvarado, Sonia M. Kreidenweis, Shantanu H. Jathar, and Jeffrey R. Pierce
Atmos. Chem. Phys., 22, 12803–12825, https://doi.org/10.5194/acp-22-12803-2022, https://doi.org/10.5194/acp-22-12803-2022, 2022
Short summary
Short summary
The evolution of organic aerosol composition and size is uncertain due to variability within and between smoke plumes. We examine the impact of plume concentration on smoke evolution from smoke plumes sampled by the NASA DC-8 during FIREX-AQ. We find that observed organic aerosol and size distribution changes are correlated to plume aerosol mass concentrations. Additionally, coagulation explains the majority of the observed growth.
Micael Amore Cecchini, Marco de Bruine, Jordi Vilà-Guerau de Arellano, and Paulo Artaxo
Atmos. Chem. Phys., 22, 11867–11888, https://doi.org/10.5194/acp-22-11867-2022, https://doi.org/10.5194/acp-22-11867-2022, 2022
Short summary
Short summary
Shallow clouds (vertical extent up to 3 km height) are ubiquitous throughout the Amazon and are responsible for redistributing the solar heat and moisture vertically and horizontally. They are a key component of the water cycle because they can grow past the shallow phase to contribute significantly to the precipitation formation. However, they need favourable environmental conditions to grow. In this study, we analyse how changing wind patterns affect the development of such shallow clouds.
Jerome D. Fast, David M. Bell, Gourihar Kulkarni, Jiumeng Liu, Fan Mei, Georges Saliba, John E. Shilling, Kaitlyn Suski, Jason Tomlinson, Jian Wang, Rahul Zaveri, and Alla Zelenyuk
Atmos. Chem. Phys., 22, 11217–11238, https://doi.org/10.5194/acp-22-11217-2022, https://doi.org/10.5194/acp-22-11217-2022, 2022
Short summary
Short summary
Recent aircraft measurements from the HI-SCALE campaign conducted over the Southern Great Plains (SGP) site in Oklahoma are used to quantify spatial variability of aerosol properties in terms of grid spacings typically used by weather and climate models. Surprisingly large horizontal gradients in aerosol properties were frequently observed in this rural area. This spatial variability can be used as an uncertainty range when comparing surface point measurements with model predictions.
Ilann Bourgeois, Jeff Peischl, J. Andrew Neuman, Steven S. Brown, Hannah M. Allen, Pedro Campuzano-Jost, Matthew M. Coggon, Joshua P. DiGangi, Glenn S. Diskin, Jessica B. Gilman, Georgios I. Gkatzelis, Hongyu Guo, Hannah A. Halliday, Thomas F. Hanisco, Christopher D. Holmes, L. Gregory Huey, Jose L. Jimenez, Aaron D. Lamplugh, Young Ro Lee, Jakob Lindaas, Richard H. Moore, Benjamin A. Nault, John B. Nowak, Demetrios Pagonis, Pamela S. Rickly, Michael A. Robinson, Andrew W. Rollins, Vanessa Selimovic, Jason M. St. Clair, David Tanner, Krystal T. Vasquez, Patrick R. Veres, Carsten Warneke, Paul O. Wennberg, Rebecca A. Washenfelder, Elizabeth B. Wiggins, Caroline C. Womack, Lu Xu, Kyle J. Zarzana, and Thomas B. Ryerson
Atmos. Meas. Tech., 15, 4901–4930, https://doi.org/10.5194/amt-15-4901-2022, https://doi.org/10.5194/amt-15-4901-2022, 2022
Short summary
Short summary
Understanding fire emission impacts on the atmosphere is key to effective air quality management and requires accurate measurements. We present a comparison of airborne measurements of key atmospheric species in ambient air and in fire smoke. We show that most instruments performed within instrument uncertainties. In some cases, further work is needed to fully characterize instrument performance. Comparing independent measurements using different techniques is important to assess their accuracy.
Aditya Kumar, R. Bradley Pierce, Ravan Ahmadov, Gabriel Pereira, Saulo Freitas, Georg Grell, Chris Schmidt, Allen Lenzen, Joshua P. Schwarz, Anne E. Perring, Joseph M. Katich, John Hair, Jose L. Jimenez, Pedro Campuzano-Jost, and Hongyu Guo
Atmos. Chem. Phys., 22, 10195–10219, https://doi.org/10.5194/acp-22-10195-2022, https://doi.org/10.5194/acp-22-10195-2022, 2022
Short summary
Short summary
We use the WRF-Chem model with new implementations of GOES-16 wildfire emissions and plume rise based on fire radiative power (FRP) to interpret aerosol observations during the 2019 NASA–NOAA FIREX-AQ field campaign and perform model evaluations. The model shows significant improvements in simulating the variety of aerosol loading environments sampled during FIREX-AQ. Our results also highlight the importance of accurate wildfire diurnal cycle and aerosol chemical mechanisms in models.
Alexandra L. Klodt, Marley Adamek, Monica Dibley, Sergey A. Nizkorodov, and Rachel E. O'Brien
Atmos. Chem. Phys., 22, 10155–10171, https://doi.org/10.5194/acp-22-10155-2022, https://doi.org/10.5194/acp-22-10155-2022, 2022
Short summary
Short summary
We investigated photochemistry of a secondary organic aerosol under three different conditions: in a dilute aqueous solution mimicking cloud droplets, in a solution of concentrated ammonium sulfate mimicking deliquesced aerosol, and in an organic matrix mimicking dry organic aerosol. We find that rate and mechanisms of photochemistry depend sensitively on these conditions, suggesting that the same organic aerosol compounds will degrade at different rates depending on their local environment.
Deanna C. Myers, Saewung Kim, Steven Sjostedt, Alex B. Guenther, Roger Seco, Oscar Vega Bustillos, Julio Tota, Rodrigo A. F. Souza, and James N. Smith
Atmos. Chem. Phys., 22, 10061–10076, https://doi.org/10.5194/acp-22-10061-2022, https://doi.org/10.5194/acp-22-10061-2022, 2022
Short summary
Short summary
We present the first measurements of gas-phase sulfuric acid from the Amazon basin and evaluate the efficacy of existing sulfuric acid parameterizations in this understudied region. Sulfuric acid is produced during the daytime and nighttime, though current proxies underestimate nighttime production. These results illustrate the need for better parameterizations of sulfuric acid and its precursors that are informed by measurements across a broad range of locations.
Xueyin Ruan, Chun Zhao, Rahul A. Zaveri, Pengzhen He, Xinming Wang, Jingyuan Shao, and Lei Geng
Geosci. Model Dev., 15, 6143–6164, https://doi.org/10.5194/gmd-15-6143-2022, https://doi.org/10.5194/gmd-15-6143-2022, 2022
Short summary
Short summary
Accurate prediction of aerosol pH in chemical transport models is essential to aerosol modeling. This study examines the performance of the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) on aerosol pH predictions and the sensitivities to emissions of nonvolatile cations and NH3, aerosol-phase state assumption, and heterogeneous sulfate production. Temporal evolution of aerosol pH during haze cycles in Beijing and the driving factors are also presented and discussed.
Caroline Dang, Michal Segal-Rozenhaimer, Haochi Che, Lu Zhang, Paola Formenti, Jonathan Taylor, Amie Dobracki, Sara Purdue, Pui-Shan Wong, Athanasios Nenes, Arthur Sedlacek III, Hugh Coe, Jens Redemann, Paquita Zuidema, Steven Howell, and James Haywood
Atmos. Chem. Phys., 22, 9389–9412, https://doi.org/10.5194/acp-22-9389-2022, https://doi.org/10.5194/acp-22-9389-2022, 2022
Short summary
Short summary
Transmission electron microscopy was used to analyze aged African smoke particles and how the smoke interacts with the marine atmosphere. We found that the volatility of organic aerosol increases with biomass burning plume age, that black carbon is often mixed with potassium salts and that the marine atmosphere can incorporate Na and Cl into smoke particles. Marine salts are more processed when mixed with smoke plumes, and there are interesting Cl-rich yet Na-absent marine particles.
Ivo Beck, Hélène Angot, Andrea Baccarini, Lubna Dada, Lauriane Quéléver, Tuija Jokinen, Tiia Laurila, Markus Lampimäki, Nicolas Bukowiecki, Matthew Boyer, Xianda Gong, Martin Gysel-Beer, Tuukka Petäjä, Jian Wang, and Julia Schmale
Atmos. Meas. Tech., 15, 4195–4224, https://doi.org/10.5194/amt-15-4195-2022, https://doi.org/10.5194/amt-15-4195-2022, 2022
Short summary
Short summary
We present the pollution detection algorithm (PDA), a new method to identify local primary pollution in remote atmospheric aerosol and trace gas time series. The PDA identifies periods of contaminated data and relies only on the target dataset itself; i.e., it is independent of ancillary data such as meteorological variables. The parameters of all pollution identification steps are adjustable so that the PDA can be tuned to different locations and situations. It is available as open-access code.
Lu Zhang, Michal Segal-Rozenhaimer, Haochi Che, Caroline Dang, Arthur J. Sedlacek III, Ernie R. Lewis, Amie Dobracki, Jenny P. S. Wong, Paola Formenti, Steven G. Howell, and Athanasios Nenes
Atmos. Chem. Phys., 22, 9199–9213, https://doi.org/10.5194/acp-22-9199-2022, https://doi.org/10.5194/acp-22-9199-2022, 2022
Short summary
Short summary
Widespread biomass burning (BB) events occur annually in Africa and contribute ~ 1 / 3 of global BB emissions, which contain a large family of light-absorbing organics, known as brown carbon (BrC), whose absorption of incident radiation is difficult to estimate, leading to large uncertainties in the global radiative forcing estimation. This study quantifies the BrC absorption of aged BB particles and highlights the potential presence of absorbing iron oxides in this climatically important region.
Zezhen Cheng, Megan Morgenstern, Bo Zhang, Matthew Fraund, Nurun Nahar Lata, Rhenton Brimberry, Matthew A. Marcus, Lynn Mazzoleni, Paulo Fialho, Silvia Henning, Birgit Wehner, Claudio Mazzoleni, and Swarup China
Atmos. Chem. Phys., 22, 9033–9057, https://doi.org/10.5194/acp-22-9033-2022, https://doi.org/10.5194/acp-22-9033-2022, 2022
Short summary
Short summary
We observed a high abundance of liquid and internally mixed particles in samples collected in the North Atlantic free troposphere during summer. We also found several solid and semisolid particles for different emission sources and transport patterns. Our results suggest that considering the mixing state, emission source, and transport patterns of particles is necessary to estimate their phase state in the free troposphere, which is critical for predicting their effects on climate.
Haochi Che, Michal Segal-Rozenhaimer, Lu Zhang, Caroline Dang, Paquita Zuidema, Arthur J. Sedlacek III, Xiaoye Zhang, and Connor Flynn
Atmos. Chem. Phys., 22, 8767–8785, https://doi.org/10.5194/acp-22-8767-2022, https://doi.org/10.5194/acp-22-8767-2022, 2022
Short summary
Short summary
A 17-month in situ study on Ascension Island found low single-scattering albedo and strong absorption enhancement of the marine boundary layer aerosols during biomass burnings on the African continent, along with apparent patterns of regular monthly variability. We further discuss the characteristics and drivers behind these changes and find that biomass burning conditions in Africa may be the main factor influencing the optical properties of marine boundary aerosols.
Linghan Zeng, Jack Dibb, Eric Scheuer, Joseph M. Katich, Joshua P. Schwarz, Ilann Bourgeois, Jeff Peischl, Tom Ryerson, Carsten Warneke, Anne E. Perring, Glenn S. Diskin, Joshua P. DiGangi, John B. Nowak, Richard H. Moore, Elizabeth B. Wiggins, Demetrios Pagonis, Hongyu Guo, Pedro Campuzano-Jost, Jose L. Jimenez, Lu Xu, and Rodney J. Weber
Atmos. Chem. Phys., 22, 8009–8036, https://doi.org/10.5194/acp-22-8009-2022, https://doi.org/10.5194/acp-22-8009-2022, 2022
Short summary
Short summary
Wildfires emit aerosol particles containing brown carbon material that affects visibility and global climate and is toxic. Brown carbon is poorly characterized due to measurement limitations, and its evolution in the atmosphere is not well known. We report on aircraft measurements of brown carbon from large wildfires in the western United States. We compare two methods for measuring brown carbon and study the evolution of brown carbon in the smoke as it moved away from the burning regions.
Katherine R. Travis, James H. Crawford, Gao Chen, Carolyn E. Jordan, Benjamin A. Nault, Hwajin Kim, Jose L. Jimenez, Pedro Campuzano-Jost, Jack E. Dibb, Jung-Hun Woo, Younha Kim, Shixian Zhai, Xuan Wang, Erin E. McDuffie, Gan Luo, Fangqun Yu, Saewung Kim, Isobel J. Simpson, Donald R. Blake, Limseok Chang, and Michelle J. Kim
Atmos. Chem. Phys., 22, 7933–7958, https://doi.org/10.5194/acp-22-7933-2022, https://doi.org/10.5194/acp-22-7933-2022, 2022
Short summary
Short summary
The 2016 Korea–United States Air Quality (KORUS-AQ) field campaign provided a unique set of observations to improve our understanding of PM2.5 pollution in South Korea. Models typically have errors in simulating PM2.5 in this region, which is of concern for the development of control measures. We use KORUS-AQ observations to improve our understanding of the mechanisms driving PM2.5 and the implications of model errors for determining PM2.5 that is attributable to local or foreign sources.
Jiaoshi Zhang, Yang Wang, Steven Spielman, Susanne Hering, and Jian Wang
Atmos. Meas. Tech., 15, 2579–2590, https://doi.org/10.5194/amt-15-2579-2022, https://doi.org/10.5194/amt-15-2579-2022, 2022
Short summary
Short summary
New nonparametric, regularized methods are developed to invert the growth factor probability density function (GF-PDF) from humidity-controlled fast integrated mobility spectrometer measurements. These algorithms are computationally efficient, require no prior assumptions of the GF-PDF distribution, and reduce the error in inverted GF-PDF. They can be applied to humidified tandem differential mobility analyzer data. Among all algorithms, Twomey’s method retrieves GF-PDF with the smallest error.
Daniel A. Knopf, Joseph C. Charnawskas, Peiwen Wang, Benny Wong, Jay M. Tomlin, Kevin A. Jankowski, Matthew Fraund, Daniel P. Veghte, Swarup China, Alexander Laskin, Ryan C. Moffet, Mary K. Gilles, Josephine Y. Aller, Matthew A. Marcus, Shira Raveh-Rubin, and Jian Wang
Atmos. Chem. Phys., 22, 5377–5398, https://doi.org/10.5194/acp-22-5377-2022, https://doi.org/10.5194/acp-22-5377-2022, 2022
Short summary
Short summary
Marine boundary layer aerosols collected in the remote region of the eastern North Atlantic induce immersion freezing and deposition ice nucleation under typical mixed-phase and cirrus cloud conditions. Corresponding ice nucleation parameterizations for model applications have been derived. Chemical imaging of ambient aerosol and ice-nucleating particles demonstrates that the latter is dominated by sea salt and organics while also representing a major particle type in the particle population.
Glenn M. Wolfe, Thomas F. Hanisco, Heather L. Arkinson, Donald R. Blake, Armin Wisthaler, Tomas Mikoviny, Thomas B. Ryerson, Ilana Pollack, Jeff Peischl, Paul O. Wennberg, John D. Crounse, Jason M. St. Clair, Alex Teng, L. Gregory Huey, Xiaoxi Liu, Alan Fried, Petter Weibring, Dirk Richter, James Walega, Samuel R. Hall, Kirk Ullmann, Jose L. Jimenez, Pedro Campuzano-Jost, T. Paul Bui, Glenn Diskin, James R. Podolske, Glen Sachse, and Ronald C. Cohen
Atmos. Chem. Phys., 22, 4253–4275, https://doi.org/10.5194/acp-22-4253-2022, https://doi.org/10.5194/acp-22-4253-2022, 2022
Short summary
Short summary
Smoke plumes are chemically complex. This work combines airborne observations of smoke plume composition with a photochemical model to probe the production of ozone and the fate of reactive gases in the outflow of a large wildfire. Model–measurement comparisons illustrate how uncertain emissions and chemical processes propagate into simulated chemical evolution. Results provide insight into how this system responds to perturbations, which can help guide future observation and modeling efforts.
Haiyan Li, Thomas Golin Almeida, Yuanyuan Luo, Jian Zhao, Brett B. Palm, Christopher D. Daub, Wei Huang, Claudia Mohr, Jordan E. Krechmer, Theo Kurtén, and Mikael Ehn
Atmos. Meas. Tech., 15, 1811–1827, https://doi.org/10.5194/amt-15-1811-2022, https://doi.org/10.5194/amt-15-1811-2022, 2022
Short summary
Short summary
This work evaluated the potential for PTR-based mass spectrometers to detect ROOR and ROOH peroxides both experimentally and through computations. Laboratory experiments using a Vocus PTR observed only noisy signals of potential dimers during α-pinene ozonolysis and a few small signals of dimeric compounds during cyclohexene ozonolysis. Quantum chemical calculations for model ROOR and ROOH systems showed that most of these peroxides should fragment partially following protonation.
Meloë S. F. Kacenelenbogen, Qian Tan, Sharon P. Burton, Otto P. Hasekamp, Karl D. Froyd, Yohei Shinozuka, Andreas J. Beyersdorf, Luke Ziemba, Kenneth L. Thornhill, Jack E. Dibb, Taylor Shingler, Armin Sorooshian, Reed W. Espinosa, Vanderlei Martins, Jose L. Jimenez, Pedro Campuzano-Jost, Joshua P. Schwarz, Matthew S. Johnson, Jens Redemann, and Gregory L. Schuster
Atmos. Chem. Phys., 22, 3713–3742, https://doi.org/10.5194/acp-22-3713-2022, https://doi.org/10.5194/acp-22-3713-2022, 2022
Short summary
Short summary
The impact of aerosols on Earth's radiation budget and human health is important and strongly depends on their composition. One desire of our scientific community is to derive the composition of the aerosol from satellite sensors. However, satellites observe aerosol optical properties (and not aerosol composition) based on remote sensing instrumentation. This study assesses how much aerosol optical properties can tell us about aerosol composition.
Marco A. Franco, Florian Ditas, Leslie A. Kremper, Luiz A. T. Machado, Meinrat O. Andreae, Alessandro Araújo, Henrique M. J. Barbosa, Joel F. de Brito, Samara Carbone, Bruna A. Holanda, Fernando G. Morais, Janaína P. Nascimento, Mira L. Pöhlker, Luciana V. Rizzo, Marta Sá, Jorge Saturno, David Walter, Stefan Wolff, Ulrich Pöschl, Paulo Artaxo, and Christopher Pöhlker
Atmos. Chem. Phys., 22, 3469–3492, https://doi.org/10.5194/acp-22-3469-2022, https://doi.org/10.5194/acp-22-3469-2022, 2022
Short summary
Short summary
In Central Amazonia, new particle formation in the planetary boundary layer is rare. Instead, there is the appearance of sub-50 nm aerosols with diameters larger than about 20 nm that eventually grow to cloud condensation nuclei size range. Here, 254 growth events were characterized which have higher predominance in the wet season. About 70 % of them showed direct relation to convective downdrafts, while 30 % occurred partly under clear-sky conditions, evidencing still unknown particle sources.
Rupert Holzinger, Oliver Eppers, Kouji Adachi, Heiko Bozem, Markus Hartmann, Andreas Herber, Makoto Koike, Dylan B. Millet, Nobuhiro Moteki, Sho Ohata, Frank Stratmann, and Atsushi Yoshida
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-95, https://doi.org/10.5194/acp-2022-95, 2022
Revised manuscript not accepted
Short summary
Short summary
In spring 2018 the research aircraft Polar 5 conducted flights in the Arctic atmosphere. The flight operation was from Station Nord in Greenland, 1700 km north of the Arctic Circle (81°43'N, 17°47'W). Using a mass spectrometer we measured more than 100 organic compounds in the air. We found a clear signature of natural organic compounds that are transported from forests to the high Arctic. These compounds have the potential to change the cloud cover and energy budget of the Arctic region.
Ka Ming Fung, Colette L. Heald, Jesse H. Kroll, Siyuan Wang, Duseong S. Jo, Andrew Gettelman, Zheng Lu, Xiaohong Liu, Rahul A. Zaveri, Eric C. Apel, Donald R. Blake, Jose-Luis Jimenez, Pedro Campuzano-Jost, Patrick R. Veres, Timothy S. Bates, John E. Shilling, and Maria Zawadowicz
Atmos. Chem. Phys., 22, 1549–1573, https://doi.org/10.5194/acp-22-1549-2022, https://doi.org/10.5194/acp-22-1549-2022, 2022
Short summary
Short summary
Understanding the natural aerosol burden in the preindustrial era is crucial for us to assess how atmospheric aerosols affect the Earth's radiative budgets. Our study explores how a detailed description of dimethyl sulfide (DMS) oxidation (implemented in the Community Atmospheric Model version 6 with chemistry, CAM6-chem) could help us better estimate the present-day and preindustrial concentrations of sulfate and other relevant chemicals, as well as the resulting aerosol radiative impacts.
Douglas A. Day, Pedro Campuzano-Jost, Benjamin A. Nault, Brett B. Palm, Weiwei Hu, Hongyu Guo, Paul J. Wooldridge, Ronald C. Cohen, Kenneth S. Docherty, J. Alex Huffman, Suzane S. de Sá, Scot T. Martin, and Jose L. Jimenez
Atmos. Meas. Tech., 15, 459–483, https://doi.org/10.5194/amt-15-459-2022, https://doi.org/10.5194/amt-15-459-2022, 2022
Short summary
Short summary
Particle-phase nitrates are an important component of atmospheric aerosols and chemistry. In this paper, we systematically explore the application of aerosol mass spectrometry (AMS) to quantify the organic and inorganic nitrate fractions of aerosols in the atmosphere. While AMS has been used for a decade to quantify nitrates, methods are not standardized. We make recommendations for a more universal approach based on this analysis of a large range of field and laboratory observations.
Dongwook Kim, Changmin Cho, Seokhan Jeong, Soojin Lee, Benjamin A. Nault, Pedro Campuzano-Jost, Douglas A. Day, Jason C. Schroder, Jose L. Jimenez, Rainer Volkamer, Donald R. Blake, Armin Wisthaler, Alan Fried, Joshua P. DiGangi, Glenn S. Diskin, Sally E. Pusede, Samuel R. Hall, Kirk Ullmann, L. Gregory Huey, David J. Tanner, Jack Dibb, Christoph J. Knote, and Kyung-Eun Min
Atmos. Chem. Phys., 22, 805–821, https://doi.org/10.5194/acp-22-805-2022, https://doi.org/10.5194/acp-22-805-2022, 2022
Short summary
Short summary
CHOCHO was simulated using a 0-D box model constrained by measurements during the KORUS-AQ mission. CHOCHO concentration was high in large cities, aromatics being the most important precursors. Loss path to aerosol was the highest sink, contributing to ~ 20 % of secondary organic aerosol formation. Our work highlights that simple CHOCHO surface uptake approach is valid only for low aerosol conditions and more work is required to understand CHOCHO solubility in high-aerosol conditions.
Amie Dobracki, Paquita Zuidema, Steve Howell, Pablo Saide, Steffen Freitag, Allison C. Aiken, Sharon P. Burton, Arthur J. Sedlacek III, Jens Redemann, and Robert Wood
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-1081, https://doi.org/10.5194/acp-2021-1081, 2022
Preprint withdrawn
Short summary
Short summary
The global maximum of shortwave-absorbing aerosol above cloud occurs above the southeast Atlantic, where the biomass-burning aerosol provides a distinct aerosol radiative warming of regional climate. The smoke aerosols are unusually highly absorbing of sunlight. This study seeks to understand the cause. We conclude the aerosol is already strongly absorbing at the fire emission source, but that chemical aging, through encouraging a net loss of organic aerosol, also contributes.
Jay M. Tomlin, Kevin A. Jankowski, Daniel P. Veghte, Swarup China, Peiwen Wang, Matthew Fraund, Johannes Weis, Guangjie Zheng, Yang Wang, Felipe Rivera-Adorno, Shira Raveh-Rubin, Daniel A. Knopf, Jian Wang, Mary K. Gilles, Ryan C. Moffet, and Alexander Laskin
Atmos. Chem. Phys., 21, 18123–18146, https://doi.org/10.5194/acp-21-18123-2021, https://doi.org/10.5194/acp-21-18123-2021, 2021
Short summary
Short summary
Analysis of individual atmospheric particles shows that aerosol transported from North America during meteorological dry intrusion episodes may have a substantial impact on the mixing state and particle-type population over the mid-Atlantic, as organic contribution and particle-type diversity are significantly enhanced during these periods. These observations need to be considered in current atmospheric models.
Luiz A. T. Machado, Marco A. Franco, Leslie A. Kremper, Florian Ditas, Meinrat O. Andreae, Paulo Artaxo, Micael A. Cecchini, Bruna A. Holanda, Mira L. Pöhlker, Ivan Saraiva, Stefan Wolff, Ulrich Pöschl, and Christopher Pöhlker
Atmos. Chem. Phys., 21, 18065–18086, https://doi.org/10.5194/acp-21-18065-2021, https://doi.org/10.5194/acp-21-18065-2021, 2021
Short summary
Short summary
Several studies evaluate aerosol–cloud interactions, but only a few attempted to describe how clouds modify aerosol properties. This study evaluates the effect of weather events on the particle size distribution at the ATTO, combining remote sensing and in situ data. Ultrafine, Aitken and accumulation particles modes have different behaviors for the diurnal cycle and for rainfall events. This study opens up new scientific questions that need to be pursued in detail in new field campaigns.
Steven G. Howell, Steffen Freitag, Amie Dobracki, Nikolai Smirnow, and Arthur J. Sedlacek III
Atmos. Meas. Tech., 14, 7381–7404, https://doi.org/10.5194/amt-14-7381-2021, https://doi.org/10.5194/amt-14-7381-2021, 2021
Short summary
Short summary
Small particles in the air have important effects on visibility, clouds, and human health. For the ORACLES project we got a new particle sizing instrument that is fast, works over the most important particle sizes, and avoids some of the issues that plague other optical particle sizers. Unfortunately it sees some particles much smaller than they really are, likely because they heat up and evaporate. We show a crude correction and speculate why these particles heat up much more than expected.
Fan Mei, Steven Spielman, Susanne Hering, Jian Wang, Mikhail S. Pekour, Gregory Lewis, Beat Schmid, Jason Tomlinson, and Maynard Havlicek
Atmos. Meas. Tech., 14, 7329–7340, https://doi.org/10.5194/amt-14-7329-2021, https://doi.org/10.5194/amt-14-7329-2021, 2021
Short summary
Short summary
This study focuses on understanding a versatile water-based condensation particle counter (vWCPC 3789) performance under various ambient pressure conditions (500–1000 hPa). A vWCPC has the advantage of avoiding health and safety concerns. However, its performance characterization under low pressure is rare but crucial for ensuring successful airborne deployment. This paper provides advanced knowledge of operating a vWCPC 3789 to capture the spatial variations of atmospheric aerosols.
Shixian Zhai, Daniel J. Jacob, Jared F. Brewer, Ke Li, Jonathan M. Moch, Jhoon Kim, Seoyoung Lee, Hyunkwang Lim, Hyun Chul Lee, Su Keun Kuk, Rokjin J. Park, Jaein I. Jeong, Xuan Wang, Pengfei Liu, Gan Luo, Fangqun Yu, Jun Meng, Randall V. Martin, Katherine R. Travis, Johnathan W. Hair, Bruce E. Anderson, Jack E. Dibb, Jose L. Jimenez, Pedro Campuzano-Jost, Benjamin A. Nault, Jung-Hun Woo, Younha Kim, Qiang Zhang, and Hong Liao
Atmos. Chem. Phys., 21, 16775–16791, https://doi.org/10.5194/acp-21-16775-2021, https://doi.org/10.5194/acp-21-16775-2021, 2021
Short summary
Short summary
Geostationary satellite aerosol optical depth (AOD) has tremendous potential for monitoring surface fine particulate matter (PM2.5). Our study explored the physical relationship between AOD and PM2.5 by integrating data from surface networks, aircraft, and satellites with the GEOS-Chem chemical transport model. We quantitatively showed that accurate simulation of aerosol size distributions, boundary layer depths, relative humidity, coarse particles, and diurnal variations in PM2.5 are essential.
Diego Aliaga, Victoria A. Sinclair, Marcos Andrade, Paulo Artaxo, Samara Carbone, Evgeny Kadantsev, Paolo Laj, Alfred Wiedensohler, Radovan Krejci, and Federico Bianchi
Atmos. Chem. Phys., 21, 16453–16477, https://doi.org/10.5194/acp-21-16453-2021, https://doi.org/10.5194/acp-21-16453-2021, 2021
Short summary
Short summary
We investigate the origin of air masses sampled at Mount Chacaltaya, Bolivia. Three-quarters of the measured air has not been influenced by the surface in the previous 4 d. However, it is rare that, at any given time, the sampled air has not been influenced at all by the surface, and often the sampled air has multiple origins. The influence of the surface is more prevalent during day than night. Furthermore, during the 6-month study, one-third of the air masses originated from Amazonia.
Zachary C. J. Decker, Michael A. Robinson, Kelley C. Barsanti, Ilann Bourgeois, Matthew M. Coggon, Joshua P. DiGangi, Glenn S. Diskin, Frank M. Flocke, Alessandro Franchin, Carley D. Fredrickson, Georgios I. Gkatzelis, Samuel R. Hall, Hannah Halliday, Christopher D. Holmes, L. Gregory Huey, Young Ro Lee, Jakob Lindaas, Ann M. Middlebrook, Denise D. Montzka, Richard Moore, J. Andrew Neuman, John B. Nowak, Brett B. Palm, Jeff Peischl, Felix Piel, Pamela S. Rickly, Andrew W. Rollins, Thomas B. Ryerson, Rebecca H. Schwantes, Kanako Sekimoto, Lee Thornhill, Joel A. Thornton, Geoffrey S. Tyndall, Kirk Ullmann, Paul Van Rooy, Patrick R. Veres, Carsten Warneke, Rebecca A. Washenfelder, Andrew J. Weinheimer, Elizabeth Wiggins, Edward Winstead, Armin Wisthaler, Caroline Womack, and Steven S. Brown
Atmos. Chem. Phys., 21, 16293–16317, https://doi.org/10.5194/acp-21-16293-2021, https://doi.org/10.5194/acp-21-16293-2021, 2021
Short summary
Short summary
To understand air quality impacts from wildfires, we need an accurate picture of how wildfire smoke changes chemically both day and night as sunlight changes the chemistry of smoke. We present a chemical analysis of wildfire smoke as it changes from midday through the night. We use aircraft observations from the FIREX-AQ field campaign with a chemical box model. We find that even under sunlight typical
nighttimechemistry thrives and controls the fate of key smoke plume chemical processes.
Sho Ohata, Makoto Koike, Atsushi Yoshida, Nobuhiro Moteki, Kouji Adachi, Naga Oshima, Hitoshi Matsui, Oliver Eppers, Heiko Bozem, Marco Zanatta, and Andreas B. Herber
Atmos. Chem. Phys., 21, 15861–15881, https://doi.org/10.5194/acp-21-15861-2021, https://doi.org/10.5194/acp-21-15861-2021, 2021
Short summary
Short summary
Vertical profiles of black carbon (BC) in the Arctic were measured during the PAMARCMiP aircraft-based experiment in spring 2018 and compared with those observed during previous aircraft campaigns in 2008, 2010, and 2015. Their differences were explained primarily by the year-to-year variation of biomass burning activities in northern midlatitudes over Eurasia. Our observations provide a bases to evaluate numerical model simulations that assess the BC radiative effects in the Arctic spring.
Charles A. Brock, Karl D. Froyd, Maximilian Dollner, Christina J. Williamson, Gregory Schill, Daniel M. Murphy, Nicholas J. Wagner, Agnieszka Kupc, Jose L. Jimenez, Pedro Campuzano-Jost, Benjamin A. Nault, Jason C. Schroder, Douglas A. Day, Derek J. Price, Bernadett Weinzierl, Joshua P. Schwarz, Joseph M. Katich, Siyuan Wang, Linghan Zeng, Rodney Weber, Jack Dibb, Eric Scheuer, Glenn S. Diskin, Joshua P. DiGangi, ThaoPaul Bui, Jonathan M. Dean-Day, Chelsea R. Thompson, Jeff Peischl, Thomas B. Ryerson, Ilann Bourgeois, Bruce C. Daube, Róisín Commane, and Steven C. Wofsy
Atmos. Chem. Phys., 21, 15023–15063, https://doi.org/10.5194/acp-21-15023-2021, https://doi.org/10.5194/acp-21-15023-2021, 2021
Short summary
Short summary
The Atmospheric Tomography Mission was an airborne study that mapped the chemical composition of the remote atmosphere. From this, we developed a comprehensive description of aerosol properties that provides a unique, global-scale dataset against which models can be compared. The data show the polluted nature of the remote atmosphere in the Northern Hemisphere and quantify the contributions of sea salt, dust, soot, biomass burning particles, and pollution particles to the haziness of the sky.
Rose M. Miller, Greg M. McFarquhar, Robert M. Rauber, Joseph R. O'Brien, Siddhant Gupta, Michal Segal-Rozenhaimer, Amie N. Dobracki, Arthur J. Sedlacek, Sharon P. Burton, Steven G. Howell, Steffen Freitag, and Caroline Dang
Atmos. Chem. Phys., 21, 14815–14831, https://doi.org/10.5194/acp-21-14815-2021, https://doi.org/10.5194/acp-21-14815-2021, 2021
Short summary
Short summary
A large stratocumulus cloud deck resides off the west coast of central Africa. Biomass burning in Africa produces a large plume of aerosol that is carried by the wind over this stratocumulus cloud deck. This paper shows that particles with sizes from 0.01 to 1 mm reside within this plume. Past studies have shown that biomass burning produces such particles, but this is the first study to show that they can be transported westward, over long distances, to the Atlantic stratocumulus cloud deck.
Zhe Peng, Julia Lee-Taylor, Harald Stark, John J. Orlando, Bernard Aumont, and Jose L. Jimenez
Atmos. Chem. Phys., 21, 14649–14669, https://doi.org/10.5194/acp-21-14649-2021, https://doi.org/10.5194/acp-21-14649-2021, 2021
Short summary
Short summary
We use the fully explicit GECKO-A model to study the OH reactivity (OHR) evolution in the NO-free photooxidation of several volatile organic compounds. Oxidation progressively produces more saturated and functionalized species, then breaks them into small species. OHR per C atom evolution is similar for different precursors once saturated multifunctional species are formed. We also find that partitioning of these species to chamber walls leads to large deviations in chambers from the atmosphere.
Soleil E. Worthy, Anand Kumar, Yu Xi, Jingwei Yun, Jessie Chen, Cuishan Xu, Victoria E. Irish, Pierre Amato, and Allan K. Bertram
Atmos. Chem. Phys., 21, 14631–14648, https://doi.org/10.5194/acp-21-14631-2021, https://doi.org/10.5194/acp-21-14631-2021, 2021
Short summary
Short summary
We studied the effect of (NH4)2SO4 on the immersion freezing of non-mineral dust ice-nucleating substances (INSs) and mineral dusts. (NH4)2SO4 had no effect on the median freezing temperature of 9 of the 10 tested non-mineral dust INSs, slightly decreased that of the other, and increased that of all the mineral dusts. The difference in the response of mineral dust and non-mineral dust INSs to (NH4)2SO4 suggests that they nucleate ice and/or interact with (NH4)2SO4 via different mechanisms.
Robert Wagner, Luisa Ickes, Allan K. Bertram, Nora Els, Elena Gorokhova, Ottmar Möhler, Benjamin J. Murray, Nsikanabasi Silas Umo, and Matthew E. Salter
Atmos. Chem. Phys., 21, 13903–13930, https://doi.org/10.5194/acp-21-13903-2021, https://doi.org/10.5194/acp-21-13903-2021, 2021
Short summary
Short summary
Sea spray aerosol particles are a mixture of inorganic salts and organic matter from phytoplankton organisms. At low temperatures in the upper troposphere, both inorganic and organic constituents can induce the formation of ice crystals and thereby impact cloud properties and climate. In this study, we performed experiments in a cloud simulation chamber with particles produced from Arctic seawater samples to quantify the relative contribution of inorganic and organic species in ice formation.
Maria Prass, Meinrat O. Andreae, Alessandro C. de Araùjo, Paulo Artaxo, Florian Ditas, Wolfgang Elbert, Jan-David Förster, Marco Aurélio Franco, Isabella Hrabe de Angelis, Jürgen Kesselmeier, Thomas Klimach, Leslie Ann Kremper, Eckhard Thines, David Walter, Jens Weber, Bettina Weber, Bernhard M. Fuchs, Ulrich Pöschl, and Christopher Pöhlker
Biogeosciences, 18, 4873–4887, https://doi.org/10.5194/bg-18-4873-2021, https://doi.org/10.5194/bg-18-4873-2021, 2021
Short summary
Short summary
Bioaerosols in the atmosphere over the Amazon rain forest were analyzed by molecular biological staining and microscopy. Eukaryotic, bacterial, and archaeal aerosols were quantified in time series and altitude profiles which exhibited clear differences in number concentrations and vertical distributions. Our results provide insights into the sources and dispersion of different Amazonian bioaerosol types as a basis for a better understanding of biosphere–atmosphere interactions.
Fan Mei, Jian Wang, Shan Zhou, Qi Zhang, Sonya Collier, and Jianzhong Xu
Atmos. Chem. Phys., 21, 13019–13029, https://doi.org/10.5194/acp-21-13019-2021, https://doi.org/10.5194/acp-21-13019-2021, 2021
Short summary
Short summary
This work focuses on understanding aerosol's ability to act as cloud condensation nuclei (CCN) and its variations with organic oxidation level and volatility using measurements at a rural site. Aerosol properties were examined from four air mass sources. The results help improve the accurate representation of aerosol from different ambient aerosol emissions, transformation pathways, and atmospheric processes in a climate model.
James Weber, Scott Archer-Nicholls, Nathan Luke Abraham, Youngsub M. Shin, Thomas J. Bannan, Carl J. Percival, Asan Bacak, Paulo Artaxo, Michael Jenkin, M. Anwar H. Khan, Dudley E. Shallcross, Rebecca H. Schwantes, Jonathan Williams, and Alex T. Archibald
Geosci. Model Dev., 14, 5239–5268, https://doi.org/10.5194/gmd-14-5239-2021, https://doi.org/10.5194/gmd-14-5239-2021, 2021
Short summary
Short summary
The new mechanism CRI-Strat 2 features state-of-the-art isoprene chemistry not previously available in UKCA and improves UKCA's ability to reproduce observed concentrations of isoprene, monoterpenes, and OH in tropical regions. The enhanced ability to model isoprene, the most widely emitted non-methane volatile organic compound (VOC), will allow understanding of how isoprene and other biogenic VOCs affect atmospheric composition and, through biosphere–atmosphere feedbacks, climate change.
Jiaoshi Zhang, Steven Spielman, Yang Wang, Guangjie Zheng, Xianda Gong, Susanne Hering, and Jian Wang
Atmos. Meas. Tech., 14, 5625–5635, https://doi.org/10.5194/amt-14-5625-2021, https://doi.org/10.5194/amt-14-5625-2021, 2021
Short summary
Short summary
In this study, we present a newly developed instrument, the humidity-controlled fast integrated mobility spectrometer (HFIMS), for fast measurements of aerosol hygroscopic growth. The HFIMS can measure the distributions of particle hygroscopic growth factors at six diameters from 35 to 265 nm under five RH levels from 20 to 85 % within 25 min. The HFIMS significantly advances our capability of characterizing the hygroscopic growth of atmospheric aerosols over a wide range of relative humidities.
Benjamin A. Nault, Duseong S. Jo, Brian C. McDonald, Pedro Campuzano-Jost, Douglas A. Day, Weiwei Hu, Jason C. Schroder, James Allan, Donald R. Blake, Manjula R. Canagaratna, Hugh Coe, Matthew M. Coggon, Peter F. DeCarlo, Glenn S. Diskin, Rachel Dunmore, Frank Flocke, Alan Fried, Jessica B. Gilman, Georgios Gkatzelis, Jacqui F. Hamilton, Thomas F. Hanisco, Patrick L. Hayes, Daven K. Henze, Alma Hodzic, James Hopkins, Min Hu, L. Greggory Huey, B. Thomas Jobson, William C. Kuster, Alastair Lewis, Meng Li, Jin Liao, M. Omar Nawaz, Ilana B. Pollack, Jeffrey Peischl, Bernhard Rappenglück, Claire E. Reeves, Dirk Richter, James M. Roberts, Thomas B. Ryerson, Min Shao, Jacob M. Sommers, James Walega, Carsten Warneke, Petter Weibring, Glenn M. Wolfe, Dominique E. Young, Bin Yuan, Qiang Zhang, Joost A. de Gouw, and Jose L. Jimenez
Atmos. Chem. Phys., 21, 11201–11224, https://doi.org/10.5194/acp-21-11201-2021, https://doi.org/10.5194/acp-21-11201-2021, 2021
Short summary
Short summary
Secondary organic aerosol (SOA) is an important aspect of poor air quality for urban regions around the world, where a large fraction of the population lives. However, there is still large uncertainty in predicting SOA in urban regions. Here, we used data from 11 urban campaigns and show that the variability in SOA production in these regions is predictable and is explained by key emissions. These results are used to estimate the premature mortality associated with SOA in urban regions.
Yenny Gonzalez, Róisín Commane, Ethan Manninen, Bruce C. Daube, Luke D. Schiferl, J. Barry McManus, Kathryn McKain, Eric J. Hintsa, James W. Elkins, Stephen A. Montzka, Colm Sweeney, Fred Moore, Jose L. Jimenez, Pedro Campuzano Jost, Thomas B. Ryerson, Ilann Bourgeois, Jeff Peischl, Chelsea R. Thompson, Eric Ray, Paul O. Wennberg, John Crounse, Michelle Kim, Hannah M. Allen, Paul A. Newman, Britton B. Stephens, Eric C. Apel, Rebecca S. Hornbrook, Benjamin A. Nault, Eric Morgan, and Steven C. Wofsy
Atmos. Chem. Phys., 21, 11113–11132, https://doi.org/10.5194/acp-21-11113-2021, https://doi.org/10.5194/acp-21-11113-2021, 2021
Short summary
Short summary
Vertical profiles of N2O and a variety of chemical species and aerosols were collected nearly from pole to pole over the oceans during the NASA Atmospheric Tomography mission. We observed that tropospheric N2O variability is strongly driven by the influence of stratospheric air depleted in N2O, especially at middle and high latitudes. We also traced the origins of biomass burning and industrial emissions and investigated their impact on the variability of tropospheric N2O.
Yang Wang, Guangjie Zheng, Michael P. Jensen, Daniel A. Knopf, Alexander Laskin, Alyssa A. Matthews, David Mechem, Fan Mei, Ryan Moffet, Arthur J. Sedlacek, John E. Shilling, Stephen Springston, Amy Sullivan, Jason Tomlinson, Daniel Veghte, Rodney Weber, Robert Wood, Maria A. Zawadowicz, and Jian Wang
Atmos. Chem. Phys., 21, 11079–11098, https://doi.org/10.5194/acp-21-11079-2021, https://doi.org/10.5194/acp-21-11079-2021, 2021
Short summary
Short summary
This paper reports the vertical profiles of trace gas and aerosol properties over the eastern North Atlantic, a region of persistent but diverse subtropical marine boundary layer (MBL) clouds. We examined the key processes that drive the cloud condensation nuclei (CCN) population and how it varies with season and synoptic conditions. This study helps improve the model representation of the aerosol processes in the remote MBL, reducing the simulated aerosol indirect effects.
Richard H. Moore, Elizabeth B. Wiggins, Adam T. Ahern, Stephen Zimmerman, Lauren Montgomery, Pedro Campuzano Jost, Claire E. Robinson, Luke D. Ziemba, Edward L. Winstead, Bruce E. Anderson, Charles A. Brock, Matthew D. Brown, Gao Chen, Ewan C. Crosbie, Hongyu Guo, Jose L. Jimenez, Carolyn E. Jordan, Ming Lyu, Benjamin A. Nault, Nicholas E. Rothfuss, Kevin J. Sanchez, Melinda Schueneman, Taylor J. Shingler, Michael A. Shook, Kenneth L. Thornhill, Nicholas L. Wagner, and Jian Wang
Atmos. Meas. Tech., 14, 4517–4542, https://doi.org/10.5194/amt-14-4517-2021, https://doi.org/10.5194/amt-14-4517-2021, 2021
Short summary
Short summary
Atmospheric particles are everywhere and exist in a range of sizes, from a few nanometers to hundreds of microns. Because particle size determines the behavior of chemical and physical processes, accurately measuring particle sizes is an important and integral part of atmospheric field measurements! Here, we discuss the performance of two commonly used particle sizers and how changes in particle composition and optical properties may result in sizing uncertainties, which we quantify.
Ryan Thalman and Jaron C. Hansen
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-172, https://doi.org/10.5194/amt-2021-172, 2021
Revised manuscript not accepted
Short summary
Short summary
Sulfur dioxide (SO2) is an important gas precursor for formation of atmospheric sulfate aerosol and acid rain. SO2 has direct human health effects through the respiratory system. A new instrument using Broad Band Cavity Enhanced Absorption Spectroscopy (BBCEAS) for the measurement of SO2 with a minimum limit of detection of 0.6 ppbv has been fabricated. The instrument provides a new technique for the measurement of SO2 over a wide range of atmospherically relevant concentrations.
Djacinto Monteiro dos Santos, Luciana Varanda Rizzo, Samara Carbone, Patrick Schlag, and Paulo Artaxo
Atmos. Chem. Phys., 21, 8761–8773, https://doi.org/10.5194/acp-21-8761-2021, https://doi.org/10.5194/acp-21-8761-2021, 2021
Short summary
Short summary
The metropolitan area of São Paulo (MASP), with very extensive biofuel use, has unique atmospheric chemistry among world megacities. In this study, we examine the complex relationships between aerosol chemical composition and particle size distribution. Our findings provide a better understanding of the dynamics of the physicochemical properties of submicron particles and highlight the key role of secondary organic aerosol formation in the pollution levels in São Paulo.
Yue Zhou, Christopher P. West, Anusha P. S. Hettiyadura, Xiaoying Niu, Hui Wen, Jiecan Cui, Tenglong Shi, Wei Pu, Xin Wang, and Alexander Laskin
Atmos. Chem. Phys., 21, 8531–8555, https://doi.org/10.5194/acp-21-8531-2021, https://doi.org/10.5194/acp-21-8531-2021, 2021
Short summary
Short summary
We present a comprehensive characterization of water-soluble organic carbon (WSOC) in seasonal snow of northwestern China. We applied complementary multimodal analytical techniques to investigate bulk and molecular-level composition, optical properties, and sources of WSOC. For the first time, we estimated the extent of radiative forcing due to WSOC in snow using a model simulation and showed the profound influences of WSOC on the energy budget of midlatitude seasonal snowpack.
Maria A. Zawadowicz, Kaitlyn Suski, Jiumeng Liu, Mikhail Pekour, Jerome Fast, Fan Mei, Arthur J. Sedlacek, Stephen Springston, Yang Wang, Rahul A. Zaveri, Robert Wood, Jian Wang, and John E. Shilling
Atmos. Chem. Phys., 21, 7983–8002, https://doi.org/10.5194/acp-21-7983-2021, https://doi.org/10.5194/acp-21-7983-2021, 2021
Short summary
Short summary
This paper describes the results of a recent field campaign in the eastern North Atlantic, where two mass spectrometers were deployed aboard a research aircraft to measure the chemistry of aerosols and trace gases. Very clean conditions were found, dominated by local sulfate-rich acidic aerosol and very aged organics. Evidence of
long-range transport of aerosols from the continents was also identified.
Hongyu Guo, Pedro Campuzano-Jost, Benjamin A. Nault, Douglas A. Day, Jason C. Schroder, Dongwook Kim, Jack E. Dibb, Maximilian Dollner, Bernadett Weinzierl, and Jose L. Jimenez
Atmos. Meas. Tech., 14, 3631–3655, https://doi.org/10.5194/amt-14-3631-2021, https://doi.org/10.5194/amt-14-3631-2021, 2021
Short summary
Short summary
We utilize a set of high-quality datasets collected during the NASA Atmospheric Tomography Mission to investigate the impact of differences in observable particle sizes across aerosol instruments in aerosol measurement comparisons. Very good agreement was found between chemically and physically derived submicron aerosol volume. Results support a lack of significant unknown biases in the response of an Aerodyne aerosol mass spectrometer (AMS) when sampling remote aerosols across the globe.
Robbie Ramsay, Chiara F. Di Marco, Mathew R. Heal, Matthias Sörgel, Paulo Artaxo, Meinrat O. Andreae, and Eiko Nemitz
Biogeosciences, 18, 2809–2825, https://doi.org/10.5194/bg-18-2809-2021, https://doi.org/10.5194/bg-18-2809-2021, 2021
Short summary
Short summary
The exchange of the gas ammonia between the atmosphere and the surface is an important biogeochemical process, but little is known of this exchange for certain ecosystems, such as the Amazon rainforest. This study took measurements of ammonia exchange over an Amazon rainforest site and subsequently modelled the observed deposition and emission patterns. We observed emissions of ammonia from the rainforest, which can be simulated accurately by using a canopy resistance modelling approach.
Anna L. Hodshire, Emily Ramnarine, Ali Akherati, Matthew L. Alvarado, Delphine K. Farmer, Shantanu H. Jathar, Sonia M. Kreidenweis, Chantelle R. Lonsdale, Timothy B. Onasch, Stephen R. Springston, Jian Wang, Yang Wang, Lawrence I. Kleinman, Arthur J. Sedlacek III, and Jeffrey R. Pierce
Atmos. Chem. Phys., 21, 6839–6855, https://doi.org/10.5194/acp-21-6839-2021, https://doi.org/10.5194/acp-21-6839-2021, 2021
Short summary
Short summary
Biomass burning emits particles and vapors that can impact both health and climate. Here, we investigate the role of dilution in the evolution of aerosol size and composition in observed US wildfire smoke plumes. Centers of plumes dilute more slowly than edges. We see differences in concentrations and composition between the centers and edges both in the first measurement and in subsequent measurements. Our findings support the hypothesis that plume dilution influences smoke aging.
Janaína P. Nascimento, Megan M. Bela, Bruno B. Meller, Alessandro L. Banducci, Luciana V. Rizzo, Angel Liduvino Vara-Vela, Henrique M. J. Barbosa, Helber Gomes, Sameh A. A. Rafee, Marco A. Franco, Samara Carbone, Glauber G. Cirino, Rodrigo A. F. Souza, Stuart A. McKeen, and Paulo Artaxo
Atmos. Chem. Phys., 21, 6755–6779, https://doi.org/10.5194/acp-21-6755-2021, https://doi.org/10.5194/acp-21-6755-2021, 2021
Mizuo Kajino, Makoto Deushi, Tsuyoshi Thomas Sekiyama, Naga Oshima, Keiya Yumimoto, Taichu Yasumichi Tanaka, Joseph Ching, Akihiro Hashimoto, Tetsuya Yamamoto, Masaaki Ikegami, Akane Kamada, Makoto Miyashita, Yayoi Inomata, Shin-ichiro Shima, Pradeep Khatri, Atsushi Shimizu, Hitoshi Irie, Kouji Adachi, Yuji Zaizen, Yasuhito Igarashi, Hiromasa Ueda, Takashi Maki, and Masao Mikami
Geosci. Model Dev., 14, 2235–2264, https://doi.org/10.5194/gmd-14-2235-2021, https://doi.org/10.5194/gmd-14-2235-2021, 2021
Short summary
Short summary
This study compares performance of aerosol representation methods of the Japan Meteorological Agency's regional-scale nonhydrostatic meteorology–chemistry model (NHM-Chem). It indicates separate treatment of sea salt and dust in coarse mode and that of light-absorptive and non-absorptive particles in fine mode could provide accurate assessments on aerosol feedback processes.
Fernanda Córdoba, Carolina Ramírez-Romero, Diego Cabrera, Graciela B. Raga, Javier Miranda, Harry Alvarez-Ospina, Daniel Rosas, Bernardo Figueroa, Jong Sung Kim, Jacqueline Yakobi-Hancock, Talib Amador, Wilfrido Gutierrez, Manuel García, Allan K. Bertram, Darrel Baumgardner, and Luis A. Ladino
Atmos. Chem. Phys., 21, 4453–4470, https://doi.org/10.5194/acp-21-4453-2021, https://doi.org/10.5194/acp-21-4453-2021, 2021
Short summary
Short summary
Most precipitation from deep clouds over the continents and in the intertropical convergence zone is strongly influenced by the presence of ice crystals whose formation requires the presence of aerosol particles. In the present study, the ability of three different aerosol types (i.e., marine aerosol, biomass burning, and African dust) to facilitate ice particle formation was assessed in the Yucatán Peninsula, Mexico.
Melinda K. Schueneman, Benjamin A. Nault, Pedro Campuzano-Jost, Duseong S. Jo, Douglas A. Day, Jason C. Schroder, Brett B. Palm, Alma Hodzic, Jack E. Dibb, and Jose L. Jimenez
Atmos. Meas. Tech., 14, 2237–2260, https://doi.org/10.5194/amt-14-2237-2021, https://doi.org/10.5194/amt-14-2237-2021, 2021
Short summary
Short summary
This work focuses on two important properties of the aerosol, acidity, and sulfate composition, which is important for our understanding of aerosol health and environmental impacts. We explore different methods to understand the composition of the aerosol with measurements from a specific instrument and apply those methods to a large dataset. These measurements are confounded by other factors, making it challenging to predict aerosol sulfate composition; pH estimations, however, show promise.
Miguel Ricardo A. Hilario, Ewan Crosbie, Michael Shook, Jeffrey S. Reid, Maria Obiminda L. Cambaliza, James Bernard B. Simpas, Luke Ziemba, Joshua P. DiGangi, Glenn S. Diskin, Phu Nguyen, F. Joseph Turk, Edward Winstead, Claire E. Robinson, Jian Wang, Jiaoshi Zhang, Yang Wang, Subin Yoon, James Flynn, Sergio L. Alvarez, Ali Behrangi, and Armin Sorooshian
Atmos. Chem. Phys., 21, 3777–3802, https://doi.org/10.5194/acp-21-3777-2021, https://doi.org/10.5194/acp-21-3777-2021, 2021
Short summary
Short summary
This study characterizes long-range transport from major Asian pollution sources into the tropical northwest Pacific and the impact of scavenging on these air masses. We combined aircraft observations, HYSPLIT trajectories, reanalysis, and satellite retrievals to reveal distinct composition and size distribution profiles associated with specific emission sources and wet scavenging. The results of this work have implications for international policymaking related to climate and health.
Kouji Adachi, Naga Oshima, Sho Ohata, Atsushi Yoshida, Nobuhiro Moteki, and Makoto Koike
Atmos. Chem. Phys., 21, 3607–3626, https://doi.org/10.5194/acp-21-3607-2021, https://doi.org/10.5194/acp-21-3607-2021, 2021
Short summary
Short summary
Aerosol particles influence the Arctic climate by interacting with solar radiation, forming clouds, and melting surface snow and ice. Individual-particle analyses using transmission electron microscopy (TEM) and model simulations provide evidence of biomass burning and anthropogenic contributions to the Arctic aerosols by showing a wide range of compositions and mixing states depending on sampling altitude. Our results reveal the aerosol aging processes and climate influences in the Arctic.
Duseong S. Jo, Alma Hodzic, Louisa K. Emmons, Simone Tilmes, Rebecca H. Schwantes, Michael J. Mills, Pedro Campuzano-Jost, Weiwei Hu, Rahul A. Zaveri, Richard C. Easter, Balwinder Singh, Zheng Lu, Christiane Schulz, Johannes Schneider, John E. Shilling, Armin Wisthaler, and Jose L. Jimenez
Atmos. Chem. Phys., 21, 3395–3425, https://doi.org/10.5194/acp-21-3395-2021, https://doi.org/10.5194/acp-21-3395-2021, 2021
Short summary
Short summary
Secondary organic aerosol (SOA) is a major component of submicron particulate matter, but there are a lot of uncertainties in the future prediction of SOA. We used CESM 2.1 to investigate future IEPOX SOA concentration changes. The explicit chemistry predicted substantial changes in IEPOX SOA depending on the future scenario, but the parameterization predicted weak changes due to simplified chemistry, which shows the importance of correct physicochemical dependencies in future SOA prediction.
Zhibo Zhang, Qianqian Song, David B. Mechem, Vincent E. Larson, Jian Wang, Yangang Liu, Mikael K. Witte, Xiquan Dong, and Peng Wu
Atmos. Chem. Phys., 21, 3103–3121, https://doi.org/10.5194/acp-21-3103-2021, https://doi.org/10.5194/acp-21-3103-2021, 2021
Short summary
Short summary
This study investigates the small-scale variations and covariations of cloud microphysical properties, namely, cloud liquid water content and cloud droplet number concentration, in marine boundary layer clouds based on in situ observation from the Aerosol and Cloud Experiments in the Eastern North Atlantic (ACE-ENA) campaign. We discuss the dependence of cloud variations on vertical location in cloud and the implications for warm-rain simulations in the global climate models.
Demetrios Pagonis, Pedro Campuzano-Jost, Hongyu Guo, Douglas A. Day, Melinda K. Schueneman, Wyatt L. Brown, Benjamin A. Nault, Harald Stark, Kyla Siemens, Alex Laskin, Felix Piel, Laura Tomsche, Armin Wisthaler, Matthew M. Coggon, Georgios I. Gkatzelis, Hannah S. Halliday, Jordan E. Krechmer, Richard H. Moore, David S. Thomson, Carsten Warneke, Elizabeth B. Wiggins, and Jose L. Jimenez
Atmos. Meas. Tech., 14, 1545–1559, https://doi.org/10.5194/amt-14-1545-2021, https://doi.org/10.5194/amt-14-1545-2021, 2021
Short summary
Short summary
We describe the airborne deployment of an extractive electrospray time-of-flight mass spectrometer (EESI-MS). The instrument provides a quantitative 1 Hz measurement of the chemical composition of organic aerosol up to altitudes of
7 km, with single-compound detection limits as low as 50 ng per standard cubic meter.
Jens Redemann, Robert Wood, Paquita Zuidema, Sarah J. Doherty, Bernadette Luna, Samuel E. LeBlanc, Michael S. Diamond, Yohei Shinozuka, Ian Y. Chang, Rei Ueyama, Leonhard Pfister, Ju-Mee Ryoo, Amie N. Dobracki, Arlindo M. da Silva, Karla M. Longo, Meloë S. Kacenelenbogen, Connor J. Flynn, Kristina Pistone, Nichola M. Knox, Stuart J. Piketh, James M. Haywood, Paola Formenti, Marc Mallet, Philip Stier, Andrew S. Ackerman, Susanne E. Bauer, Ann M. Fridlind, Gregory R. Carmichael, Pablo E. Saide, Gonzalo A. Ferrada, Steven G. Howell, Steffen Freitag, Brian Cairns, Brent N. Holben, Kirk D. Knobelspiesse, Simone Tanelli, Tristan S. L'Ecuyer, Andrew M. Dzambo, Ousmane O. Sy, Greg M. McFarquhar, Michael R. Poellot, Siddhant Gupta, Joseph R. O'Brien, Athanasios Nenes, Mary Kacarab, Jenny P. S. Wong, Jennifer D. Small-Griswold, Kenneth L. Thornhill, David Noone, James R. Podolske, K. Sebastian Schmidt, Peter Pilewskie, Hong Chen, Sabrina P. Cochrane, Arthur J. Sedlacek, Timothy J. Lang, Eric Stith, Michal Segal-Rozenhaimer, Richard A. Ferrare, Sharon P. Burton, Chris A. Hostetler, David J. Diner, Felix C. Seidel, Steven E. Platnick, Jeffrey S. Myers, Kerry G. Meyer, Douglas A. Spangenberg, Hal Maring, and Lan Gao
Atmos. Chem. Phys., 21, 1507–1563, https://doi.org/10.5194/acp-21-1507-2021, https://doi.org/10.5194/acp-21-1507-2021, 2021
Short summary
Short summary
Southern Africa produces significant biomass burning emissions whose impacts on regional and global climate are poorly understood. ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) is a 5-year NASA investigation designed to study the key processes that determine these climate impacts. The main purpose of this paper is to familiarize the broader scientific community with the ORACLES project, the dataset it produced, and the most important initial findings.
Guilherme F. Camarinha-Neto, Julia C. P. Cohen, Cléo Q. Dias-Júnior, Matthias Sörgel, José Henrique Cattanio, Alessandro Araújo, Stefan Wolff, Paulo A. F. Kuhn, Rodrigo A. F. Souza, Luciana V. Rizzo, and Paulo Artaxo
Atmos. Chem. Phys., 21, 339–356, https://doi.org/10.5194/acp-21-339-2021, https://doi.org/10.5194/acp-21-339-2021, 2021
Short summary
Short summary
It was observed that friagem phenomena (incursion of cold waves from the high latitudes of the Southern Hemisphere to the Amazon region), very common in the dry season of the Amazon region, produced significant changes in microclimate and atmospheric chemistry. Moreover, the effects of the friagem change the surface O3 and CO2 mixing ratios and therefore interfere deeply in the microclimatic conditions and the chemical composition of the atmosphere above the rainforest.
Ana C. Morales, Thilina Jayarathne, Jonathan H. Slade, Alexander Laskin, and Paul B. Shepson
Atmos. Chem. Phys., 21, 129–145, https://doi.org/10.5194/acp-21-129-2021, https://doi.org/10.5194/acp-21-129-2021, 2021
Short summary
Short summary
Organic nitrates formed from the oxidation of biogenic volatile organic compounds impact both ozone and particulate matter as they remove nitrogen oxides, but they represent important aerosol precursors. We conducted a series of reaction chamber experiments that quantified the total organic nitrate and secondary organic aerosol yield from the OH-radical-initiated oxidation of ocimene, and also measured their hydrolysis lifetimes in the aqueous phase, as a function of pH.
Megan S. Claflin, Demetrios Pagonis, Zachary Finewax, Anne V. Handschy, Douglas A. Day, Wyatt L. Brown, John T. Jayne, Douglas R. Worsnop, Jose L. Jimenez, Paul J. Ziemann, Joost de Gouw, and Brian M. Lerner
Atmos. Meas. Tech., 14, 133–152, https://doi.org/10.5194/amt-14-133-2021, https://doi.org/10.5194/amt-14-133-2021, 2021
Short summary
Short summary
We have developed a field-deployable gas chromatograph with thermal desorption preconcentration and detector switching between two high-resolution mass spectrometers for in situ measurements of volatile organic compounds (VOCs). This system combines chromatography with both proton transfer and electron ionization to offer fast time response and continuous molecular speciation. This technique was applied during the 2018 ATHLETIC campaign to characterize VOC emissions in an indoor environment.
Jann Schrod, Erik S. Thomson, Daniel Weber, Jens Kossmann, Christopher Pöhlker, Jorge Saturno, Florian Ditas, Paulo Artaxo, Valérie Clouard, Jean-Marie Saurel, Martin Ebert, Joachim Curtius, and Heinz G. Bingemer
Atmos. Chem. Phys., 20, 15983–16006, https://doi.org/10.5194/acp-20-15983-2020, https://doi.org/10.5194/acp-20-15983-2020, 2020
Short summary
Short summary
Long-term ice-nucleating particle (INP) data are presented from four semi-pristine sites located in the Amazon, the Caribbean, Germany and the Arctic. Average INP concentrations did not differ by orders of magnitude between the sites. For all sites short-term variability dominated the time series, which lacked clear trends and seasonalities. Common drivers to explain the INP levels and their variations could not be identified, illustrating the complex nature of heterogeneous ice nucleation.
Robbie Ramsay, Chiara F. Di Marco, Matthias Sörgel, Mathew R. Heal, Samara Carbone, Paulo Artaxo, Alessandro C. de Araùjo, Marta Sá, Christopher Pöhlker, Jost Lavric, Meinrat O. Andreae, and Eiko Nemitz
Atmos. Chem. Phys., 20, 15551–15584, https://doi.org/10.5194/acp-20-15551-2020, https://doi.org/10.5194/acp-20-15551-2020, 2020
Short summary
Short summary
The Amazon rainforest is a unique
laboratoryto study the processes which govern the exchange of gases and aerosols to and from the atmosphere. This study investigated these processes by measuring the atmospheric concentrations of trace gases and particles at the Amazon Tall Tower Observatory. We found that the long-range transport of pollutants can affect the atmospheric composition above the Amazon rainforest and that the gases ammonia and nitrous acid can be emitted from the rainforest.
Gourihar Kulkarni, Naruki Hiranuma, Ottmar Möhler, Kristina Höhler, Swarup China, Daniel J. Cziczo, and Paul J. DeMott
Atmos. Meas. Tech., 13, 6631–6643, https://doi.org/10.5194/amt-13-6631-2020, https://doi.org/10.5194/amt-13-6631-2020, 2020
Short summary
Short summary
This study presents a new continuous-flow-diffusion-chamber-style operated ice chamber (Modified Compact Ice Chamber, MCIC) to measure the immersion-freezing efficiency of atmospheric particles. MCIC allowed us to obtain maximum droplet-freezing efficiency at higher time resolution without droplet breakthrough ambiguity. Its evaluation was performed by reproducing published data from the recent ice nucleation workshop and past laboratory data for standard and airborne ice-nucleating particles.
Junfeng Wang, Jianhuai Ye, Dantong Liu, Yangzhou Wu, Jian Zhao, Weiqi Xu, Conghui Xie, Fuzhen Shen, Jie Zhang, Paul E. Ohno, Yiming Qin, Xiuyong Zhao, Scot T. Martin, Alex K. Y. Lee, Pingqing Fu, Daniel J. Jacob, Qi Zhang, Yele Sun, Mindong Chen, and Xinlei Ge
Atmos. Chem. Phys., 20, 14091–14102, https://doi.org/10.5194/acp-20-14091-2020, https://doi.org/10.5194/acp-20-14091-2020, 2020
Short summary
Short summary
We compared the organics in total submicron matter and those coated on BC cores during summertime in Beijing and found large differences between them. Traffic-related OA was associated significantly with BC, while cooking-related OA did not coat BC. In addition, a factor likely originated from primary biomass burning OA was only identified in BC-containing particles. Such a unique BBOA requires further field and laboratory studies to verify its presence and elucidate its properties and impacts.
Benjamin A. Nault, Pedro Campuzano-Jost, Douglas A. Day, Hongyu Guo, Duseong S. Jo, Anne V. Handschy, Demetrios Pagonis, Jason C. Schroder, Melinda K. Schueneman, Michael J. Cubison, Jack E. Dibb, Alma Hodzic, Weiwei Hu, Brett B. Palm, and Jose L. Jimenez
Atmos. Meas. Tech., 13, 6193–6213, https://doi.org/10.5194/amt-13-6193-2020, https://doi.org/10.5194/amt-13-6193-2020, 2020
Short summary
Short summary
Collecting particulate matter, or aerosols, onto filters to be analyzed offline is a widely used method to investigate the mass concentration and chemical composition of the aerosol, especially the inorganic portion. Here, we show that acidic aerosol (sulfuric acid) collected onto filters and then exposed to high ammonia mixing ratios (from human emissions) will lead to biases in the ammonium collected onto filters, and the uptake of ammonia is rapid (< 10 s), which impacts the filter data.
Lawrence I. Kleinman, Arthur J. Sedlacek III, Kouji Adachi, Peter R. Buseck, Sonya Collier, Manvendra K. Dubey, Anna L. Hodshire, Ernie Lewis, Timothy B. Onasch, Jeffery R. Pierce, John Shilling, Stephen R. Springston, Jian Wang, Qi Zhang, Shan Zhou, and Robert J. Yokelson
Atmos. Chem. Phys., 20, 13319–13341, https://doi.org/10.5194/acp-20-13319-2020, https://doi.org/10.5194/acp-20-13319-2020, 2020
Short summary
Short summary
Aerosols from wildfires affect the Earth's temperature by absorbing light or reflecting it back into space. This study investigates time-dependent chemical, microphysical, and optical properties of aerosols generated by wildfires in the Pacific Northwest, USA. Wildfire smoke plumes were traversed by an instrumented aircraft at locations near the fire and up to 3.5 h travel time downwind. Although there was no net aerosol production, aerosol particles grew and became more efficient scatters.
Lixia Liu, Yafang Cheng, Siwen Wang, Chao Wei, Mira L. Pöhlker, Christopher Pöhlker, Paulo Artaxo, Manish Shrivastava, Meinrat O. Andreae, Ulrich Pöschl, and Hang Su
Atmos. Chem. Phys., 20, 13283–13301, https://doi.org/10.5194/acp-20-13283-2020, https://doi.org/10.5194/acp-20-13283-2020, 2020
Short summary
Short summary
This modeling paper reveals how aerosol–cloud interactions (ACIs) and aerosol–radiation interactions (ARIs) induced by biomass burning (BB) aerosols act oppositely on radiation, cloud, and precipitation in the Amazon during the dry season. The varying relative significance of ACIs and ARIs with BB aerosol concentration leads to a nonlinear dependence of the total climate response on BB aerosol loading and features the growing importance of ARIs at high aerosol loading.
Yiqi Zheng, Joel A. Thornton, Nga Lee Ng, Hansen Cao, Daven K. Henze, Erin E. McDuffie, Weiwei Hu, Jose L. Jimenez, Eloise A. Marais, Eric Edgerton, and Jingqiu Mao
Atmos. Chem. Phys., 20, 13091–13107, https://doi.org/10.5194/acp-20-13091-2020, https://doi.org/10.5194/acp-20-13091-2020, 2020
Short summary
Short summary
This study aims to address a challenge in biosphere–atmosphere interactions: to what extent can biogenic organic aerosol (OA) be modified through human activities? From three surface network observations, we show OA is weakly dependent on sulfate and aerosol acidity in the summer southeast US, on both long-term trends and monthly variability. The results are in strong contrast to a global model, GEOS-Chem, suggesting the need to revisit the representation of aqueous-phase secondary OA formation.
Guangjie Zheng, Chongai Kuang, Janek Uin, Thomas Watson, and Jian Wang
Atmos. Chem. Phys., 20, 12515–12525, https://doi.org/10.5194/acp-20-12515-2020, https://doi.org/10.5194/acp-20-12515-2020, 2020
Short summary
Short summary
Condensational growth of Aitken-mode particles is a major source of cloud condensation nuclei in the remote marine boundary layer. It has been long thought that over remote oceans, condensation growth is dominated by sulfate that derives from ocean-emitted dimethyl sulfide. In this study, we present the first long-term observational evidence that, contrary to conventional thinking, organics play an even more important role than sulfate in particle growth over remote oceans throughout the year.
Kouji Adachi, Naga Oshima, Zhaoheng Gong, Suzane de Sá, Adam P. Bateman, Scot T. Martin, Joel F. de Brito, Paulo Artaxo, Glauber G. Cirino, Arthur J. Sedlacek III, and Peter R. Buseck
Atmos. Chem. Phys., 20, 11923–11939, https://doi.org/10.5194/acp-20-11923-2020, https://doi.org/10.5194/acp-20-11923-2020, 2020
Short summary
Short summary
Occurrences, size distributions, and number fractions of individual aerosol particles from the Amazon basin during the GoAmazon2014/5 campaign were analyzed using transmission electron microscopy. Aerosol particles from natural sources (e.g., mineral dust, primary biological aerosols, and sea salts) during the wet season originated from the Amazon forest and long-range transports (the Saharan desert and the Atlantic Ocean). They commonly mix at an individual particle scale during transport.
Matthew Fraund, Daniel J. Bonanno, Swarup China, Don Q. Pham, Daniel Veghte, Johannes Weis, Gourihar Kulkarni, Ken Teske, Mary K. Gilles, Alexander Laskin, and Ryan C. Moffet
Atmos. Chem. Phys., 20, 11593–11606, https://doi.org/10.5194/acp-20-11593-2020, https://doi.org/10.5194/acp-20-11593-2020, 2020
Short summary
Short summary
High viscosity organic particles (HVOPs) in the Southern Great Plains have been analyzed, and two particle types were found. Previously studied tar balls and the recently discovered airborne soil organic particles (ASOPs) are both shown to be brown carbon (BrC). These particle types can be identified in bulk by an absorption Ångström exponent approaching 2.6. HVOP types can be differentiated by comparing carbon absorption spectrum peak ratios between the carboxylic acid, alcohol, and sp2 peaks.
Young-Chul Song, Ariana G. Bé, Scot T. Martin, Franz M. Geiger, Allan K. Bertram, Regan J. Thomson, and Mijung Song
Atmos. Chem. Phys., 20, 11263–11273, https://doi.org/10.5194/acp-20-11263-2020, https://doi.org/10.5194/acp-20-11263-2020, 2020
Short summary
Short summary
We report the liquid–liquid phase separation (LLPS) of organic aerosol consisting of α-pinene- and β-caryophyllene-derived ozonolysis products and commercial organic compounds. As compositional complexity increased from one to two organic species, LLPS occurred over a wider range of average O : C values (increasing from 0.44 to 0.67). These results provide further evidence that LLPS is likely frequent in organic aerosol particles in the troposphere, even in the absence of inorganic salt.
Luisa Ickes, Grace C. E. Porter, Robert Wagner, Michael P. Adams, Sascha Bierbauer, Allan K. Bertram, Merete Bilde, Sigurd Christiansen, Annica M. L. Ekman, Elena Gorokhova, Kristina Höhler, Alexei A. Kiselev, Caroline Leck, Ottmar Möhler, Benjamin J. Murray, Thea Schiebel, Romy Ullrich, and Matthew E. Salter
Atmos. Chem. Phys., 20, 11089–11117, https://doi.org/10.5194/acp-20-11089-2020, https://doi.org/10.5194/acp-20-11089-2020, 2020
Short summary
Short summary
The Arctic is a region where aerosols are scarce. Sea spray might be a potential source of aerosols acting as ice-nucleating particles. We investigate two common phytoplankton species (Melosira arctica and Skeletonema marinoi) and present their ice nucleation activity in comparison with Arctic seawater microlayer samples from different field campaigns. We also aim to understand the aerosolization process of marine biological samples and the potential effect on the ice nucleation activity.
W. Richard Leaitch, John K. Kodros, Megan D. Willis, Sarah Hanna, Hannes Schulz, Elisabeth Andrews, Heiko Bozem, Julia Burkart, Peter Hoor, Felicia Kolonjari, John A. Ogren, Sangeeta Sharma, Meng Si, Knut von Salzen, Allan K. Bertram, Andreas Herber, Jonathan P. D. Abbatt, and Jeffrey R. Pierce
Atmos. Chem. Phys., 20, 10545–10563, https://doi.org/10.5194/acp-20-10545-2020, https://doi.org/10.5194/acp-20-10545-2020, 2020
Short summary
Short summary
Black carbon is a factor in the warming of the Arctic atmosphere due to its ability to absorb light, but the uncertainty is high and few observations have been made in the high Arctic above 80° N. We combine airborne and ground-based observations in the springtime Arctic, at and above 80° N, with simulations from a global model to show that light absorption by black carbon may be much larger than modelled. However, the uncertainty remains high.
Ifayoyinsola Ibikunle, Andreas Beyersdorf, Pedro Campuzano-Jost, Chelsea Corr, John D. Crounse, Jack Dibb, Glenn Diskin, Greg Huey, Jose-Luis Jimenez, Michelle J. Kim, Benjamin A. Nault, Eric Scheuer, Alex Teng, Paul O. Wennberg, Bruce Anderson, James Crawford, Rodney Weber, and Athanasios Nenes
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-501, https://doi.org/10.5194/acp-2020-501, 2020
Publication in ACP not foreseen
Short summary
Short summary
Analysis of observations over South Korea during the NASA/NIER
KORUS-AQ field campaign show that aerosol is fairly acidic (mean pH 2.43 ± 0.68). Aerosol formation is always sensitive to HNO3 levels, especially in highly polluted regions, while it is only exclusively sensitive to NH3 in some rural/remote regions. Nitrate levels accumulate because dry deposition velocity is low. HNO3 reductions achieved by NOx controls can be the most effective PM reduction strategy for all conditions observed.
Ying Li, Douglas A. Day, Harald Stark, Jose L. Jimenez, and Manabu Shiraiwa
Atmos. Chem. Phys., 20, 8103–8122, https://doi.org/10.5194/acp-20-8103-2020, https://doi.org/10.5194/acp-20-8103-2020, 2020
Short summary
Short summary
Viscosity is an important property of organic aerosols, but viscosity measurements of ambient organic aerosols are scarce. We developed a method to predict glass transition temperatures using volatility and the atomic oxygen-to-carbon ratio. The method was applied to field observations of volatility distributions to predict viscosity of ambient organic aerosols, yielding consistent results with ambient particle phase-state measurements and global simulations.
Francesca Gallo, Janek Uin, Stephen Springston, Jian Wang, Guangjie Zheng, Chongai Kuang, Robert Wood, Eduardo B. Azevedo, Allison McComiskey, Fan Mei, Adam Theisen, Jenni Kyrouac, and Allison C. Aiken
Atmos. Chem. Phys., 20, 7553–7573, https://doi.org/10.5194/acp-20-7553-2020, https://doi.org/10.5194/acp-20-7553-2020, 2020
Short summary
Short summary
Continuous high-time-resolution ambient data can include periods when aerosol properties do not represent regional aerosol processes due to high-concentration local events. We develop a novel aerosol mask at the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) facility in the eastern North Atlantic (ENA). We use two ground sites to validate the mask, include a comparison with aircraft overflights, and provide guidance to increase data quality at ENA and other locations.
Pablo E. Saide, Meng Gao, Zifeng Lu, Daniel L. Goldberg, David G. Streets, Jung-Hun Woo, Andreas Beyersdorf, Chelsea A. Corr, Kenneth L. Thornhill, Bruce Anderson, Johnathan W. Hair, Amin R. Nehrir, Glenn S. Diskin, Jose L. Jimenez, Benjamin A. Nault, Pedro Campuzano-Jost, Jack Dibb, Eric Heim, Kara D. Lamb, Joshua P. Schwarz, Anne E. Perring, Jhoon Kim, Myungje Choi, Brent Holben, Gabriele Pfister, Alma Hodzic, Gregory R. Carmichael, Louisa Emmons, and James H. Crawford
Atmos. Chem. Phys., 20, 6455–6478, https://doi.org/10.5194/acp-20-6455-2020, https://doi.org/10.5194/acp-20-6455-2020, 2020
Short summary
Short summary
Air quality forecasts over the Korean Peninsula captured aerosol optical depth but largely overpredicted surface PM during a Chinese haze transport event. Model deficiency was related to the calculation of optical properties. In order to improve it, aerosol size representation needs to be refined in the calculations, and the representation of aerosol properties, such as size distribution, chemical composition, refractive index, hygroscopicity parameter, and density, needs to be improved.
Camille Mouchel-Vallon, Julia Lee-Taylor, Alma Hodzic, Paulo Artaxo, Bernard Aumont, Marie Camredon, David Gurarie, Jose-Luis Jimenez, Donald H. Lenschow, Scot T. Martin, Janaina Nascimento, John J. Orlando, Brett B. Palm, John E. Shilling, Manish Shrivastava, and Sasha Madronich
Atmos. Chem. Phys., 20, 5995–6014, https://doi.org/10.5194/acp-20-5995-2020, https://doi.org/10.5194/acp-20-5995-2020, 2020
Short summary
Short summary
The GoAmazon 2014/5 field campaign took place near the city of Manaus, Brazil, isolated in the Amazon rainforest, to study the impacts of urban pollution on natural air masses. We simulated this campaign with an extremely detailed organic chemistry model to understand how the city would affect the growth and composition of natural aerosol particles. Discrepancies between the model and the measurements indicate that the chemistry of naturally emitted organic compounds is still poorly understood.
Andrew T. Lambe, Ezra C. Wood, Jordan E. Krechmer, Francesca Majluf, Leah R. Williams, Philip L. Croteau, Manuela Cirtog, Anaïs Féron, Jean-Eudes Petit, Alexandre Albinet, Jose L. Jimenez, and Zhe Peng
Atmos. Meas. Tech., 13, 2397–2411, https://doi.org/10.5194/amt-13-2397-2020, https://doi.org/10.5194/amt-13-2397-2020, 2020
Short summary
Short summary
We present a new method to continuously generate N2O5 in the gas phase that is injected into a reactor where it decomposes to generate nitrate radicals (NO3). To assess the applicability of the method towards different chemical systems, we present experimental and model characterization of the integrated NO3 exposure and other metrics as a function of operating conditions. We demonstrate the method by characterizing secondary organic aerosol particles generated from the β-pinene + NO3 reaction.
William T. Morgan, James D. Allan, Stéphane Bauguitte, Eoghan Darbyshire, Michael J. Flynn, James Lee, Dantong Liu, Ben Johnson, Jim Haywood, Karla M. Longo, Paulo E. Artaxo, and Hugh Coe
Atmos. Chem. Phys., 20, 5309–5326, https://doi.org/10.5194/acp-20-5309-2020, https://doi.org/10.5194/acp-20-5309-2020, 2020
Short summary
Short summary
We flew a large atmospheric research aircraft across a number of different environments in the Amazon basin during the 2012 biomass burning season. Smoke from fires builds up and has a significant impact on weather, climate, health and natural ecosystems. Our goal was to quantify changes in the properties of the smoke emitted by fires as it is transported through the atmosphere. We found that the major control on the properties of the smoke was due to differences in the fires themselves.
Bruna A. Holanda, Mira L. Pöhlker, David Walter, Jorge Saturno, Matthias Sörgel, Jeannine Ditas, Florian Ditas, Christiane Schulz, Marco Aurélio Franco, Qiaoqiao Wang, Tobias Donth, Paulo Artaxo, Henrique M. J. Barbosa, Stephan Borrmann, Ramon Braga, Joel Brito, Yafang Cheng, Maximilian Dollner, Johannes W. Kaiser, Thomas Klimach, Christoph Knote, Ovid O. Krüger, Daniel Fütterer, Jošt V. Lavrič, Nan Ma, Luiz A. T. Machado, Jing Ming, Fernando G. Morais, Hauke Paulsen, Daniel Sauer, Hans Schlager, Johannes Schneider, Hang Su, Bernadett Weinzierl, Adrian Walser, Manfred Wendisch, Helmut Ziereis, Martin Zöger, Ulrich Pöschl, Meinrat O. Andreae, and Christopher Pöhlker
Atmos. Chem. Phys., 20, 4757–4785, https://doi.org/10.5194/acp-20-4757-2020, https://doi.org/10.5194/acp-20-4757-2020, 2020
Short summary
Short summary
Biomass burning smoke from African savanna and grassland is transported across the South Atlantic Ocean in defined layers within the free troposphere. The combination of in situ aircraft and ground-based measurements aided by satellite observations showed that these layers are transported into the Amazon Basin during the early dry season. The influx of aged smoke, enriched in black carbon and cloud condensation nuclei, has important implications for the Amazonian aerosol and cloud cycling.
Havala O. T. Pye, Athanasios Nenes, Becky Alexander, Andrew P. Ault, Mary C. Barth, Simon L. Clegg, Jeffrey L. Collett Jr., Kathleen M. Fahey, Christopher J. Hennigan, Hartmut Herrmann, Maria Kanakidou, James T. Kelly, I-Ting Ku, V. Faye McNeill, Nicole Riemer, Thomas Schaefer, Guoliang Shi, Andreas Tilgner, John T. Walker, Tao Wang, Rodney Weber, Jia Xing, Rahul A. Zaveri, and Andreas Zuend
Atmos. Chem. Phys., 20, 4809–4888, https://doi.org/10.5194/acp-20-4809-2020, https://doi.org/10.5194/acp-20-4809-2020, 2020
Short summary
Short summary
Acid rain is recognized for its impacts on human health and ecosystems, and programs to mitigate these effects have had implications for atmospheric acidity. Historical measurements indicate that cloud and fog droplet acidity has changed in recent decades in response to controls on emissions from human activity, while the limited trend data for suspended particles indicate acidity may be relatively constant. This review synthesizes knowledge on the acidity of atmospheric particles and clouds.
Alma Hodzic, Pedro Campuzano-Jost, Huisheng Bian, Mian Chin, Peter R. Colarco, Douglas A. Day, Karl D. Froyd, Bernd Heinold, Duseong S. Jo, Joseph M. Katich, John K. Kodros, Benjamin A. Nault, Jeffrey R. Pierce, Eric Ray, Jacob Schacht, Gregory P. Schill, Jason C. Schroder, Joshua P. Schwarz, Donna T. Sueper, Ina Tegen, Simone Tilmes, Kostas Tsigaridis, Pengfei Yu, and Jose L. Jimenez
Atmos. Chem. Phys., 20, 4607–4635, https://doi.org/10.5194/acp-20-4607-2020, https://doi.org/10.5194/acp-20-4607-2020, 2020
Short summary
Short summary
Organic aerosol (OA) is a key source of uncertainty in aerosol climate effects. We present the first pole-to-pole OA characterization during the NASA Atmospheric Tomography aircraft mission. OA has a strong seasonal and zonal variability, with the highest levels in summer and over fire-influenced regions and the lowest ones in the southern high latitudes. We show that global models predict the OA distribution well but not the relative contribution of OA emissions vs. chemical production.
Sidhant J. Pai, Colette L. Heald, Jeffrey R. Pierce, Salvatore C. Farina, Eloise A. Marais, Jose L. Jimenez, Pedro Campuzano-Jost, Benjamin A. Nault, Ann M. Middlebrook, Hugh Coe, John E. Shilling, Roya Bahreini, Justin H. Dingle, and Kennedy Vu
Atmos. Chem. Phys., 20, 2637–2665, https://doi.org/10.5194/acp-20-2637-2020, https://doi.org/10.5194/acp-20-2637-2020, 2020
Short summary
Short summary
Aerosols in the atmosphere have significant health and climate impacts. Organic aerosol (OA) accounts for a large fraction of the total aerosol burden, but models have historically struggled to accurately simulate it. This study compares two very different OA model schemes and evaluates them against a suite of globally distributed airborne measurements with the goal of providing insight into the strengths and weaknesses of each approach across different environments.
Therese S. Carter, Colette L. Heald, Jose L. Jimenez, Pedro Campuzano-Jost, Yutaka Kondo, Nobuhiro Moteki, Joshua P. Schwarz, Christine Wiedinmyer, Anton S. Darmenov, Arlindo M. da Silva, and Johannes W. Kaiser
Atmos. Chem. Phys., 20, 2073–2097, https://doi.org/10.5194/acp-20-2073-2020, https://doi.org/10.5194/acp-20-2073-2020, 2020
Short summary
Short summary
Fires and the smoke they emit impact air quality, health, and climate, but the abundance and properties of smoke remain uncertain and poorly constrained. To explore this, we compare model simulations driven by four commonly-used fire emission inventories with surface, aloft, and satellite observations. We show that across inventories smoke emissions differ by factors of 4 to 7 over North America, challenging our ability to accurately characterize the impact of smoke on air quality and climate.
Fan Mei, Jian Wang, Jennifer M. Comstock, Ralf Weigel, Martina Krämer, Christoph Mahnke, John E. Shilling, Johannes Schneider, Christiane Schulz, Charles N. Long, Manfred Wendisch, Luiz A. T. Machado, Beat Schmid, Trismono Krisna, Mikhail Pekour, John Hubbe, Andreas Giez, Bernadett Weinzierl, Martin Zoeger, Mira L. Pöhlker, Hans Schlager, Micael A. Cecchini, Meinrat O. Andreae, Scot T. Martin, Suzane S. de Sá, Jiwen Fan, Jason Tomlinson, Stephen Springston, Ulrich Pöschl, Paulo Artaxo, Christopher Pöhlker, Thomas Klimach, Andreas Minikin, Armin Afchine, and Stephan Borrmann
Atmos. Meas. Tech., 13, 661–684, https://doi.org/10.5194/amt-13-661-2020, https://doi.org/10.5194/amt-13-661-2020, 2020
Short summary
Short summary
In 2014, the US DOE G1 aircraft and the German HALO aircraft overflew the Amazon basin to study how aerosols influence cloud cycles under a clean condition and around a tropical megacity. This paper describes how to meaningfully compare similar measurements from two research aircraft and identify the potential measurement issue. We also discuss the uncertainty range for each measurement for further usage in model evaluation and satellite data validation.
Lauren T. Fleming, Peng Lin, James M. Roberts, Vanessa Selimovic, Robert Yokelson, Julia Laskin, Alexander Laskin, and Sergey A. Nizkorodov
Atmos. Chem. Phys., 20, 1105–1129, https://doi.org/10.5194/acp-20-1105-2020, https://doi.org/10.5194/acp-20-1105-2020, 2020
Short summary
Short summary
We have explored the nature and stability of molecules that give biomass burning smoke its faint brown color. Different types of biomass fuels were burned and the resulting smoke was collected for a detailed chemical analysis. We found that brown molecules in smoke become less colored when they are irradiated by sunlight, but this photobleaching process is very slow. This means that biomass burning smoke will remain brown-colored for a long time and efficiently warm up the atmosphere.
Nina Löbs, Cybelli G. G. Barbosa, Sebastian Brill, David Walter, Florian Ditas, Marta de Oliveira Sá, Alessandro C. de Araújo, Leonardo R. de Oliveira, Ricardo H. M. Godoi, Stefan Wolff, Meike Piepenbring, Jürgen Kesselmeier, Paulo Artaxo, Meinrat O. Andreae, Ulrich Pöschl, Christopher Pöhlker, and Bettina Weber
Atmos. Meas. Tech., 13, 153–164, https://doi.org/10.5194/amt-13-153-2020, https://doi.org/10.5194/amt-13-153-2020, 2020
Short summary
Short summary
Bioaerosols are considered to play a relevant role in atmospheric processes, but their sources, properties, and spatiotemporal distribution in the atmosphere are not yet well characterized. Measurement data on the release of fungal spores under natural conditions are also sparse. Here, we present an experimental approach to analyze and quantify the spore release from fungi and other spore-producing organisms under natural and laboratory conditions.
Maurício I. Oliveira, Otávio C. Acevedo, Matthias Sörgel, Ernani L. Nascimento, Antonio O. Manzi, Pablo E. S. Oliveira, Daiane V. Brondani, Anywhere Tsokankunku, and Meinrat O. Andreae
Atmos. Chem. Phys., 20, 15–27, https://doi.org/10.5194/acp-20-15-2020, https://doi.org/10.5194/acp-20-15-2020, 2020
Short summary
Short summary
In this study, data collected during four deep convection events at the 80 m tower from the Amazon Tall Tower Observatory are analyzed. It provides a unique view on how such events affect the local boundary layer and how it recovers after their passage. Quantities analyzed include mean wind speed, virtual potential temperature, turbulent kinetic energy, sensible, and latent heat fluxes. A conceptual model for boundary layer structure along the passage of deep convection events is proposed.
Matthew M. Coggon, Christopher Y. Lim, Abigail R. Koss, Kanako Sekimoto, Bin Yuan, Jessica B. Gilman, David H. Hagan, Vanessa Selimovic, Kyle J. Zarzana, Steven S. Brown, James M. Roberts, Markus Müller, Robert Yokelson, Armin Wisthaler, Jordan E. Krechmer, Jose L. Jimenez, Christopher Cappa, Jesse H. Kroll, Joost de Gouw, and Carsten Warneke
Atmos. Chem. Phys., 19, 14875–14899, https://doi.org/10.5194/acp-19-14875-2019, https://doi.org/10.5194/acp-19-14875-2019, 2019
Short summary
Short summary
Wildfire emissions significantly contribute to adverse air quality; however, the chemical processes that lead to hazardous pollutants, such as ozone, are not fully understood. In this study, we describe laboratory experiments where we simulate the atmospheric chemistry of smoke emitted from a range of biomass fuels. We show that certain understudied compounds, such as furans and phenolic compounds, are significant contributors to pollutants formed as a result of typical atmospheric oxidation.
Karl D. Froyd, Daniel M. Murphy, Charles A. Brock, Pedro Campuzano-Jost, Jack E. Dibb, Jose-Luis Jimenez, Agnieszka Kupc, Ann M. Middlebrook, Gregory P. Schill, Kenneth L. Thornhill, Christina J. Williamson, James C. Wilson, and Luke D. Ziemba
Atmos. Meas. Tech., 12, 6209–6239, https://doi.org/10.5194/amt-12-6209-2019, https://doi.org/10.5194/amt-12-6209-2019, 2019
Short summary
Short summary
Single-particle mass spectrometer (SPMS) instruments characterize the composition of individual aerosol particles in real time. We present a new method that combines SPMS composition with independently measured particle size distributions to determine absolute number, surface area, volume, and mass concentrations of mineral dust, biomass burning, sea salt, and other climate-relevant atmospheric particle types, with a fast time response applicable to aircraft sampling.
Maria A. Zawadowicz, Karl D. Froyd, Anne E. Perring, Daniel M. Murphy, Dominick V. Spracklen, Colette L. Heald, Peter R. Buseck, and Daniel J. Cziczo
Atmos. Chem. Phys., 19, 13859–13870, https://doi.org/10.5194/acp-19-13859-2019, https://doi.org/10.5194/acp-19-13859-2019, 2019
Short summary
Short summary
We report measurements of small particles of biological origin (for example, fragments of bacteria, pollen, or fungal spores) in the atmosphere over the continental United States. We use a recently developed identification technique based on airborne mass spectrometry in conjunction with an extensive aircraft dataset. We show that biological particles are present at altitudes up to 10 km and we quantify typical concentrations.
Brett B. Palm, Xiaoxi Liu, Jose L. Jimenez, and Joel A. Thornton
Atmos. Meas. Tech., 12, 5829–5844, https://doi.org/10.5194/amt-12-5829-2019, https://doi.org/10.5194/amt-12-5829-2019, 2019
Short summary
Short summary
We introduce a coaxial, low-pressure ion–molecule reaction (IMR) region for iodide-adduct chemical ionization mass spectrometry, designed to decrease the effects of IMR wall interactions with organic/inorganic gases. This IMR has 3–10 times shorter delay times than previous IMRs. We introduce a conceptual framework for understanding and subtracting the background signal due to analyte molecules interacting with IMR walls. This framework can be applied to other tubing and instrument systems.
Hayley S. Glicker, Michael J. Lawler, John Ortega, Suzane S. de Sá, Scot T. Martin, Paulo Artaxo, Oscar Vega Bustillos, Rodrigo de Souza, Julio Tota, Annmarie Carlton, and James N. Smith
Atmos. Chem. Phys., 19, 13053–13066, https://doi.org/10.5194/acp-19-13053-2019, https://doi.org/10.5194/acp-19-13053-2019, 2019
Short summary
Short summary
An understanding of the chemical composition of the smallest particles in the air over the Amazon Basin provides insights into the natural and human-caused influences on particle production in this sensitive region. We present measurements of the composition of sub-100 nm diameter particles performed during the wet season and identify unique constituents that point to both natural and human-caused sources and processes.
Daun Jeong, Roger Seco, Dasa Gu, Youngro Lee, Benjamin A. Nault, Christoph J. Knote, Tom Mcgee, John T. Sullivan, Jose L. Jimenez, Pedro Campuzano-Jost, Donald R. Blake, Dianne Sanchez, Alex B. Guenther, David Tanner, L. Gregory Huey, Russell Long, Bruce E. Anderson, Samuel R. Hall, Kirk Ullmann, Hye-jung Shin, Scott C. Herndon, Youngjae Lee, Danbi Kim, Joonyoung Ahn, and Saewung Kim
Atmos. Chem. Phys., 19, 12779–12795, https://doi.org/10.5194/acp-19-12779-2019, https://doi.org/10.5194/acp-19-12779-2019, 2019
Mijung Song, Adrian M. Maclean, Yuanzhou Huang, Natalie R. Smith, Sandra L. Blair, Julia Laskin, Alexander Laskin, Wing-Sy Wong DeRieux, Ying Li, Manabu Shiraiwa, Sergey A. Nizkorodov, and Allan K. Bertram
Atmos. Chem. Phys., 19, 12515–12529, https://doi.org/10.5194/acp-19-12515-2019, https://doi.org/10.5194/acp-19-12515-2019, 2019
Emma L. D'Ambro, Siegfried Schobesberger, Cassandra J. Gaston, Felipe D. Lopez-Hilfiker, Ben H. Lee, Jiumeng Liu, Alla Zelenyuk, David Bell, Christopher D. Cappa, Taylor Helgestad, Ziyue Li, Alex Guenther, Jian Wang, Matthew Wise, Ryan Caylor, Jason D. Surratt, Theran Riedel, Noora Hyttinen, Vili-Taneli Salo, Galib Hasan, Theo Kurtén, John E. Shilling, and Joel A. Thornton
Atmos. Chem. Phys., 19, 11253–11265, https://doi.org/10.5194/acp-19-11253-2019, https://doi.org/10.5194/acp-19-11253-2019, 2019
Short summary
Short summary
Isoprene is the most abundantly emitted reactive organic gas globally, and thus it is important to understand its fate and role in aerosol formation and growth. A major product of its oxidation is an epoxydiol, IEPOX, which can be efficiently taken up by acidic aerosol to generate substantial amounts of secondary organic aerosol (SOA). We present chamber experiments exploring the properties of IEPOX SOA and reconcile discrepancies between field, laboratory, and model studies of this process.
Valentin Duflot, Pierre Tulet, Olivier Flores, Christelle Barthe, Aurélie Colomb, Laurent Deguillaume, Mickael Vaïtilingom, Anne Perring, Alex Huffman, Mark T. Hernandez, Karine Sellegri, Ellis Robinson, David J. O'Connor, Odessa M. Gomez, Frédéric Burnet, Thierry Bourrianne, Dominique Strasberg, Manon Rocco, Allan K. Bertram, Patrick Chazette, Julien Totems, Jacques Fournel, Pierre Stamenoff, Jean-Marc Metzger, Mathilde Chabasset, Clothilde Rousseau, Eric Bourrianne, Martine Sancelme, Anne-Marie Delort, Rachel E. Wegener, Cedric Chou, and Pablo Elizondo
Atmos. Chem. Phys., 19, 10591–10618, https://doi.org/10.5194/acp-19-10591-2019, https://doi.org/10.5194/acp-19-10591-2019, 2019
Short summary
Short summary
The Forests gAses aeRosols Clouds Exploratory (FARCE) campaign was conducted in March–April 2015 on the tropical island of La Réunion. For the first time, several scientific teams from different disciplines collaborated to provide reference measurements and characterization of La Réunion vegetation, volatile organic compounds (VOCs), biogenic VOCs (BVOCs), (bio)aerosols and composition of clouds, with a strong focus on the Maïdo mount slope area.
Erin Evoy, Adrian M. Maclean, Grazia Rovelli, Ying Li, Alexandra P. Tsimpidi, Vlassis A. Karydis, Saeid Kamal, Jos Lelieveld, Manabu Shiraiwa, Jonathan P. Reid, and Allan K. Bertram
Atmos. Chem. Phys., 19, 10073–10085, https://doi.org/10.5194/acp-19-10073-2019, https://doi.org/10.5194/acp-19-10073-2019, 2019
Short summary
Short summary
We measured the diffusion rates of organic molecules in a number of proxies for secondary organic aerosol (SOA) and compared measured diffusion with predictions from two relations: the Stokes–Einstein relation and a fractional Stokes–Einstein relation. The fractional relation does a better job of predicting diffusion rates in this case. Output from an atmospheric model shows that mixing times predicted using the two relations differ by up to 1 order of magnitude at an altitude of ~ 3 km.
Kristina Pistone, Jens Redemann, Sarah Doherty, Paquita Zuidema, Sharon Burton, Brian Cairns, Sabrina Cochrane, Richard Ferrare, Connor Flynn, Steffen Freitag, Steven G. Howell, Meloë Kacenelenbogen, Samuel LeBlanc, Xu Liu, K. Sebastian Schmidt, Arthur J. Sedlacek III, Michal Segal-Rozenhaimer, Yohei Shinozuka, Snorre Stamnes, Bastiaan van Diedenhoven, Gerard Van Harten, and Feng Xu
Atmos. Chem. Phys., 19, 9181–9208, https://doi.org/10.5194/acp-19-9181-2019, https://doi.org/10.5194/acp-19-9181-2019, 2019
Short summary
Short summary
Understanding how smoke particles interact with sunlight is important in calculating their effects on climate, since some smoke is more scattering (cooling) and some is more absorbing (heating). Knowing this proportion is important for both satellite observations and climate models. We measured smoke properties in a recent aircraft-based field campaign off the west coast of Africa and present a comparison of these properties as measured using the six different, independent techniques available.
Carly L. Reddington, William T. Morgan, Eoghan Darbyshire, Joel Brito, Hugh Coe, Paulo Artaxo, Catherine E. Scott, John Marsham, and Dominick V. Spracklen
Atmos. Chem. Phys., 19, 9125–9152, https://doi.org/10.5194/acp-19-9125-2019, https://doi.org/10.5194/acp-19-9125-2019, 2019
Short summary
Short summary
We use an aerosol model and observations to explore model representation of aerosol emissions from fires in the Amazon. We find that observed aerosol concentrations are captured by the model over deforestation fires in the western Amazon but underestimated over savanna fires in the Cerrado environment. The model underestimates observed aerosol optical depth (AOD) even when the observed aerosol vertical profile is reproduced. We suggest this may be due to uncertainties in the AOD calculation.
Duseong S. Jo, Alma Hodzic, Louisa K. Emmons, Eloise A. Marais, Zhe Peng, Benjamin A. Nault, Weiwei Hu, Pedro Campuzano-Jost, and Jose L. Jimenez
Geosci. Model Dev., 12, 2983–3000, https://doi.org/10.5194/gmd-12-2983-2019, https://doi.org/10.5194/gmd-12-2983-2019, 2019
Short summary
Short summary
We developed a parameterization method for IEPOX-SOA based on the detailed chemical mechanism. Our parameterizations were tested using a box model and 3-D chemical transport model, which accurately captured the spatiotemporal distribution and response to changes in emissions compared to the explicit full chemistry, while being more computationally efficient. The method developed in this study can be applied to global climate models for long-term studies with a lower computational cost.
Christopher Pöhlker, David Walter, Hauke Paulsen, Tobias Könemann, Emilio Rodríguez-Caballero, Daniel Moran-Zuloaga, Joel Brito, Samara Carbone, Céline Degrendele, Viviane R. Després, Florian Ditas, Bruna A. Holanda, Johannes W. Kaiser, Gerhard Lammel, Jošt V. Lavrič, Jing Ming, Daniel Pickersgill, Mira L. Pöhlker, Maria Praß, Nina Löbs, Jorge Saturno, Matthias Sörgel, Qiaoqiao Wang, Bettina Weber, Stefan Wolff, Paulo Artaxo, Ulrich Pöschl, and Meinrat O. Andreae
Atmos. Chem. Phys., 19, 8425–8470, https://doi.org/10.5194/acp-19-8425-2019, https://doi.org/10.5194/acp-19-8425-2019, 2019
Short summary
Short summary
The Amazon Tall Tower Observatory (ATTO) has been established to monitor the rain forest's biosphere–atmosphere exchange, which experiences the combined pressures from human-made deforestation and progressing climate change. This work is meant to be a reference study, which characterizes various geospatial properties of the ATTO footprint region and shows how the human-made transformation of Amazonia may impact future atmospheric observations at ATTO.
Benjamin L. Deming, Demetrios Pagonis, Xiaoxi Liu, Douglas A. Day, Ranajit Talukdar, Jordan E. Krechmer, Joost A. de Gouw, Jose L. Jimenez, and Paul J. Ziemann
Atmos. Meas. Tech., 12, 3453–3461, https://doi.org/10.5194/amt-12-3453-2019, https://doi.org/10.5194/amt-12-3453-2019, 2019
Short summary
Short summary
Losses or measurement delays of gas-phase compounds sampled through tubing are important to atmospheric science. Here we characterize 14 tubing materials by measuring the effects on step changes in organic compound concentration. We find that polymeric tubings exhibit absorptive partitioning behaviour while glass and metal tubings show adsorptive partitioning. Adsorptive materials impart complex humidity, concentration, and VOC–VOC interaction dependencies that absorptive tubings do not.
Suzane S. de Sá, Luciana V. Rizzo, Brett B. Palm, Pedro Campuzano-Jost, Douglas A. Day, Lindsay D. Yee, Rebecca Wernis, Gabriel Isaacman-VanWertz, Joel Brito, Samara Carbone, Yingjun J. Liu, Arthur Sedlacek, Stephen Springston, Allen H. Goldstein, Henrique M. J. Barbosa, M. Lizabeth Alexander, Paulo Artaxo, Jose L. Jimenez, and Scot T. Martin
Atmos. Chem. Phys., 19, 7973–8001, https://doi.org/10.5194/acp-19-7973-2019, https://doi.org/10.5194/acp-19-7973-2019, 2019
Short summary
Short summary
This study investigates the impacts of urban and fire emissions on the concentration, composition, and optical properties of submicron particulate matter (PM1) in central Amazonia during the dry season. Biomass-burning and urban emissions appeared to contribute at least 80 % of brown carbon absorption while accounting for 30 % to 40 % of the organic PM1 mass concentration. Only a fraction of the 9-fold increase in mass concentration relative to the wet season was due to biomass burning.
Weijun Li, Lei Liu, Qi Yuan, Liang Xu, Yanhong Zhu, Bingbing Wang, Hua Yu, Xiaokun Ding, Jian Zhang, Dao Huang, Dantong Liu, Wei Hu, Daizhou Zhang, Pingqing Fu, Maosheng Yao, Min Hu, Xiaoye Zhang, and Zongbo Shi
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-539, https://doi.org/10.5194/acp-2019-539, 2019
Preprint withdrawn
Short summary
Short summary
The real state of individual primary biological aerosol particles (PBAPs) derived from natural sources is under mystery, although many studies well evaluate the morphology, mixing state, and elemental composition of anthropogenic particles. It induces that some studies mislead some anthropogenic particles into biological particles through electron microscopy. Here we firstly estimate the full database of individual PBAPs through two microscopic instruments. The database is good for research.
Karena A. McKinney, Daniel Wang, Jianhuai Ye, Jean-Baptiste de Fouchier, Patricia C. Guimarães, Carla E. Batista, Rodrigo A. F. Souza, Eliane G. Alves, Dasa Gu, Alex B. Guenther, and Scot T. Martin
Atmos. Meas. Tech., 12, 3123–3135, https://doi.org/10.5194/amt-12-3123-2019, https://doi.org/10.5194/amt-12-3123-2019, 2019
Short summary
Short summary
Volatile organic compound (VOC) emissions influence air quality and particulate distributions, particularly in major source regions such as the Amazon. A sampler for collecting VOCs from an unmanned aerial vehicle (UAV) is described. Field tests of its performance and an initial example data set collected in the Amazon are also presented. The low cost, ease of use, and maneuverability of UAVs give this method the potential to significantly advance knowledge of the spatial distribution of VOCs.
Xiaoxi Liu, Benjamin Deming, Demetrios Pagonis, Douglas A. Day, Brett B. Palm, Ranajit Talukdar, James M. Roberts, Patrick R. Veres, Jordan E. Krechmer, Joel A. Thornton, Joost A. de Gouw, Paul J. Ziemann, and Jose L. Jimenez
Atmos. Meas. Tech., 12, 3137–3149, https://doi.org/10.5194/amt-12-3137-2019, https://doi.org/10.5194/amt-12-3137-2019, 2019
Short summary
Short summary
Delays or losses of gases in sampling tubing and instrumental surfaces due to surface interactions can lead to inaccurate quantification. By sampling with several chemical ionization mass spectrometers and six tubing materials, we quantify delays of semivolatile organic compounds and small polar gases. Delay times generally increase with decreasing volatility or increasing polarity and also depend on materials. The method and results will inform inlet material selection and instrumental design.
Victoria E. Irish, Sarah J. Hanna, Yu Xi, Matthew Boyer, Elena Polishchuk, Mohamed Ahmed, Jessie Chen, Jonathan P. D. Abbatt, Michel Gosselin, Rachel Chang, Lisa A. Miller, and Allan K. Bertram
Atmos. Chem. Phys., 19, 7775–7787, https://doi.org/10.5194/acp-19-7775-2019, https://doi.org/10.5194/acp-19-7775-2019, 2019
Short summary
Short summary
The ocean is a source of atmospheric ice-nucleating particles (INPs). In this study we compared INPs measured in microlayer and bulk seawater in the Canadian Arctic in 2016 to those measured in 2014. A strong negative correlation between salinity and freezing temperatures was observed, possibly due to INPs associated with melting sea ice. In addition, although spatial patterns of INPs and salinities were similar in 2014 and 2016, the concentrations of INPs were on average higher in 2016.
Charles A. Brock, Christina Williamson, Agnieszka Kupc, Karl D. Froyd, Frank Erdesz, Nicholas Wagner, Matthews Richardson, Joshua P. Schwarz, Ru-Shan Gao, Joseph M. Katich, Pedro Campuzano-Jost, Benjamin A. Nault, Jason C. Schroder, Jose L. Jimenez, Bernadett Weinzierl, Maximilian Dollner, ThaoPaul Bui, and Daniel M. Murphy
Atmos. Meas. Tech., 12, 3081–3099, https://doi.org/10.5194/amt-12-3081-2019, https://doi.org/10.5194/amt-12-3081-2019, 2019
Short summary
Short summary
From 2016 to 2018 a NASA aircraft profiled the atmosphere from 180 m to ~12 km from the Arctic to the Antarctic over both the Pacific and Atlantic oceans. This program, ATom, sought to sample atmospheric chemical composition to compare with global climate models. We describe the how measurements of particulate matter were made during ATom, and show that the instrument performance was excellent. Data from this project can be used with confidence to evaluate models and compare with satellites.
Luis A. Ladino, Graciela B. Raga, Harry Alvarez-Ospina, Manuel A. Andino-Enríquez, Irma Rosas, Leticia Martínez, Eva Salinas, Javier Miranda, Zyanya Ramírez-Díaz, Bernardo Figueroa, Cedric Chou, Allan K. Bertram, Erika T. Quintana, Luis A. Maldonado, Agustín García-Reynoso, Meng Si, and Victoria E. Irish
Atmos. Chem. Phys., 19, 6147–6165, https://doi.org/10.5194/acp-19-6147-2019, https://doi.org/10.5194/acp-19-6147-2019, 2019
Short summary
Short summary
This study presents results obtained during a field campaign conducted in the tropical village of Sisal located on the coast of the Gulf of Mexico. Air masses arriving in Sisal during the passage of cold fronts have surprisingly higher ice-nucleating particle (INP) concentrations than the campaign average. The high concentrations of INPs at T > −15 C and the supermicron size of the INPs suggest that biological particles may have been a significant contributor to the INP population in Sisal.
Eoghan Darbyshire, William T. Morgan, James D. Allan, Dantong Liu, Michael J. Flynn, James R. Dorsey, Sebastian J. O'Shea, Douglas Lowe, Kate Szpek, Franco Marenco, Ben T. Johnson, Stephane Bauguitte, Jim M. Haywood, Joel F. Brito, Paulo Artaxo, Karla M. Longo, and Hugh Coe
Atmos. Chem. Phys., 19, 5771–5790, https://doi.org/10.5194/acp-19-5771-2019, https://doi.org/10.5194/acp-19-5771-2019, 2019
Short summary
Short summary
A novel analysis of aerosol and gas-phase vertical profiles shows a marked regional pollution contrast: composition is driven by the fire regime and vertical distribution is driven by thermodynamics. These drivers ought to be well represented in simulations to ensure realistic prediction of climate and air quality impacts. The BC : CO ratio in haze and plumes increases with altitude – long-range transport or fire stage coupled to plume dynamics may be responsible. Further enquiry is advocated.
Naruki Hiranuma, Kouji Adachi, David M. Bell, Franco Belosi, Hassan Beydoun, Bhaskar Bhaduri, Heinz Bingemer, Carsten Budke, Hans-Christian Clemen, Franz Conen, Kimberly M. Cory, Joachim Curtius, Paul J. DeMott, Oliver Eppers, Sarah Grawe, Susan Hartmann, Nadine Hoffmann, Kristina Höhler, Evelyn Jantsch, Alexei Kiselev, Thomas Koop, Gourihar Kulkarni, Amelie Mayer, Masataka Murakami, Benjamin J. Murray, Alessia Nicosia, Markus D. Petters, Matteo Piazza, Michael Polen, Naama Reicher, Yinon Rudich, Atsushi Saito, Gianni Santachiara, Thea Schiebel, Gregg P. Schill, Johannes Schneider, Lior Segev, Emiliano Stopelli, Ryan C. Sullivan, Kaitlyn Suski, Miklós Szakáll, Takuya Tajiri, Hans Taylor, Yutaka Tobo, Romy Ullrich, Daniel Weber, Heike Wex, Thomas F. Whale, Craig L. Whiteside, Katsuya Yamashita, Alla Zelenyuk, and Ottmar Möhler
Atmos. Chem. Phys., 19, 4823–4849, https://doi.org/10.5194/acp-19-4823-2019, https://doi.org/10.5194/acp-19-4823-2019, 2019
Short summary
Short summary
A total of 20 ice nucleation measurement techniques contributed to investigate the immersion freezing behavior of cellulose particles – natural polymers. Our data showed several types of cellulose are able to nucleate ice as efficiently as some mineral dust samples and cellulose has the potential to be an important atmospheric ice-nucleating particle. Continued investigation/collaboration is necessary to obtain further insight into consistency or diversity of ice nucleation measurements.
Ali Akherati, Christopher D. Cappa, Michael J. Kleeman, Kenneth S. Docherty, Jose L. Jimenez, Stephen M. Griffith, Sebastien Dusanter, Philip S. Stevens, and Shantanu H. Jathar
Atmos. Chem. Phys., 19, 4561–4594, https://doi.org/10.5194/acp-19-4561-2019, https://doi.org/10.5194/acp-19-4561-2019, 2019
Short summary
Short summary
Unburned and partially burned organic compounds emitted from fossil fuel and biomass combustion can react in the atmosphere in the presence of sunlight to form particles. In this work, we use an air pollution model to examine the influence of these organic compounds released by motor vehicles and fires on fine particle pollution in southern California.
Rachel E. O'Brien, Kelsey J. Ridley, Manjula R. Canagaratna, John T. Jayne, Philip L. Croteau, Douglas R. Worsnop, Sri Hapsari Budisulistiorini, Jason D. Surratt, Christopher L. Follett, Daniel J. Repeta, and Jesse H. Kroll
Atmos. Meas. Tech., 12, 1659–1671, https://doi.org/10.5194/amt-12-1659-2019, https://doi.org/10.5194/amt-12-1659-2019, 2019
Short summary
Short summary
Analysis of the elemental composition of organic mixtures can provide insights into the sources and aging of environmental samples. Here we describe a method that allows characterization of this type of material using micrograms of material by a combination of a small-volume ultrasonic nebulizer and an aerosol mass spectrometer. This technique enables rapid analysis of complex organic mixtures using approximately an order of magnitude less sample than standard analyses.
Anna L. Hodshire, Pedro Campuzano-Jost, John K. Kodros, Betty Croft, Benjamin A. Nault, Jason C. Schroder, Jose L. Jimenez, and Jeffrey R. Pierce
Atmos. Chem. Phys., 19, 3137–3160, https://doi.org/10.5194/acp-19-3137-2019, https://doi.org/10.5194/acp-19-3137-2019, 2019
Short summary
Short summary
A global chemical-transport model is used to determine the impact of methanesulfonic acid (MSA) on the aerosol size distribution and associated radiative effects, testing varying assumptions of MSA’s effective volatility and nucleating ability. We find that MSA mass best matches the ATom airborne measurements when volatility varies as a function of temperature, relative humidity, and available gas-phase bases, and the MSA radiative forcing is on the order of -50 mW m-2 over the Southern Ocean.
Meng Si, Erin Evoy, Jingwei Yun, Yu Xi, Sarah J. Hanna, Alina Chivulescu, Kevin Rawlings, Daniel Veber, Andrew Platt, Daniel Kunkel, Peter Hoor, Sangeeta Sharma, W. Richard Leaitch, and Allan K. Bertram
Atmos. Chem. Phys., 19, 3007–3024, https://doi.org/10.5194/acp-19-3007-2019, https://doi.org/10.5194/acp-19-3007-2019, 2019
Short summary
Short summary
We investigated the importance of mineral dust, sea spray aerosol, and anthropogenic aerosol to the ice-nucleating particle (INP) population in the Canadian Arctic during spring 2016. The results suggest that mineral dust transported from the Gobi Desert was a major source of the INP population studied, and that sea spray aerosol decreased the ice-nucleating ability of mineral dust. The results should be useful for testing and improving models used to predict INPs and climate in the Arctic.
Jin Liao, Thomas F. Hanisco, Glenn M. Wolfe, Jason St. Clair, Jose L. Jimenez, Pedro Campuzano-Jost, Benjamin A. Nault, Alan Fried, Eloise A. Marais, Gonzalo Gonzalez Abad, Kelly Chance, Hiren T. Jethva, Thomas B. Ryerson, Carsten Warneke, and Armin Wisthaler
Atmos. Chem. Phys., 19, 2765–2785, https://doi.org/10.5194/acp-19-2765-2019, https://doi.org/10.5194/acp-19-2765-2019, 2019
Short summary
Short summary
Organic aerosol (OA) intimately links natural and anthropogenic emissions with air quality and climate. Direct OA measurements from space are currently not possible. This paper describes a new method to estimate OA by combining satellite HCHO and in situ OA and HCHO. The OA estimate is validated with the ground network. This new method has a potential for mapping observation-based global OA estimate.
Jonathan P. D. Abbatt, W. Richard Leaitch, Amir A. Aliabadi, Allan K. Bertram, Jean-Pierre Blanchet, Aude Boivin-Rioux, Heiko Bozem, Julia Burkart, Rachel Y. W. Chang, Joannie Charette, Jai P. Chaubey, Robert J. Christensen, Ana Cirisan, Douglas B. Collins, Betty Croft, Joelle Dionne, Greg J. Evans, Christopher G. Fletcher, Martí Galí, Roya Ghahreman, Eric Girard, Wanmin Gong, Michel Gosselin, Margaux Gourdal, Sarah J. Hanna, Hakase Hayashida, Andreas B. Herber, Sareh Hesaraki, Peter Hoor, Lin Huang, Rachel Hussherr, Victoria E. Irish, Setigui A. Keita, John K. Kodros, Franziska Köllner, Felicia Kolonjari, Daniel Kunkel, Luis A. Ladino, Kathy Law, Maurice Levasseur, Quentin Libois, John Liggio, Martine Lizotte, Katrina M. Macdonald, Rashed Mahmood, Randall V. Martin, Ryan H. Mason, Lisa A. Miller, Alexander Moravek, Eric Mortenson, Emma L. Mungall, Jennifer G. Murphy, Maryam Namazi, Ann-Lise Norman, Norman T. O'Neill, Jeffrey R. Pierce, Lynn M. Russell, Johannes Schneider, Hannes Schulz, Sangeeta Sharma, Meng Si, Ralf M. Staebler, Nadja S. Steiner, Jennie L. Thomas, Knut von Salzen, Jeremy J. B. Wentzell, Megan D. Willis, Gregory R. Wentworth, Jun-Wei Xu, and Jacqueline D. Yakobi-Hancock
Atmos. Chem. Phys., 19, 2527–2560, https://doi.org/10.5194/acp-19-2527-2019, https://doi.org/10.5194/acp-19-2527-2019, 2019
Short summary
Short summary
The Arctic is experiencing considerable environmental change with climate warming, illustrated by the dramatic decrease in sea-ice extent. It is important to understand both the natural and perturbed Arctic systems to gain a better understanding of how they will change in the future. This paper summarizes new insights into the relationships between Arctic aerosol particles and climate, as learned over the past five or so years by a large Canadian research consortium, NETCARE.
Shino Toma, Steve Bertman, Christopher Groff, Fulizi Xiong, Paul B. Shepson, Paul Romer, Kaitlin Duffey, Paul Wooldridge, Ronald Cohen, Karsten Baumann, Eric Edgerton, Abigail R. Koss, Joost de Gouw, Allen Goldstein, Weiwei Hu, and Jose L. Jimenez
Atmos. Chem. Phys., 19, 1867–1880, https://doi.org/10.5194/acp-19-1867-2019, https://doi.org/10.5194/acp-19-1867-2019, 2019
Short summary
Short summary
Acyl peroxy nitrates (APN) were measured near the ground in Alabama using GC in summer 2013 to study biosphere–atmosphere interactions. APN were lower than measured in the SE USA over the past 2 decades. Historical data showed APN in 2013 was limited by NOx and production was dominated by biogenic precursors more than in the past. Isoprene-derived MPAN correlated with isoprene hydroxynitrates as NOx-dependent products. MPAN varied with aerosol growth, but not with N-containing particles.
Dagny A. Ullmann, Mallory L. Hinks, Adrian M. Maclean, Christopher L. Butenhoff, James W. Grayson, Kelley Barsanti, Jose L. Jimenez, Sergey A. Nizkorodov, Saeid Kamal, and Allan K. Bertram
Atmos. Chem. Phys., 19, 1491–1503, https://doi.org/10.5194/acp-19-1491-2019, https://doi.org/10.5194/acp-19-1491-2019, 2019
Short summary
Short summary
We measured the viscosity and diffusion of organic molecules in secondary organic aerosol (SOA) generated from the ozonolysis of limonene. The results suggest that the mixing times of large organics in the SOA studied are short (< 1 h) for conditions found in the planetary boundary layer. The results also show that the Stokes–Einstein equation gives accurate predictions of diffusion coefficients of large organics within the studied SOA up to a viscosity of 102 to 104 Pa s.
Florent F. Malavelle, Jim M. Haywood, Lina M. Mercado, Gerd A. Folberth, Nicolas Bellouin, Stephen Sitch, and Paulo Artaxo
Atmos. Chem. Phys., 19, 1301–1326, https://doi.org/10.5194/acp-19-1301-2019, https://doi.org/10.5194/acp-19-1301-2019, 2019
Short summary
Short summary
Diffuse light can increase the efficiency of vegetation photosynthesis. Diffuse light results from scattering by either clouds or aerosols in the atmosphere. During the dry season biomass burning (BB) on the edges of the Amazon rainforest contributes significantly to the aerosol burden over the entire region. We show that despite a modest effect of change in light conditions, the overall impact of BB aerosols on the vegetation is still important when indirect climate feedbacks are considered.
Li Wu, Xue Li, HyeKyeong Kim, Hong Geng, Ricardo H. M. Godoi, Cybelli G. G. Barbosa, Ana F. L. Godoi, Carlos I. Yamamoto, Rodrigo A. F. de Souza, Christopher Pöhlker, Meinrat O. Andreae, and Chul-Un Ro
Atmos. Chem. Phys., 19, 1221–1240, https://doi.org/10.5194/acp-19-1221-2019, https://doi.org/10.5194/acp-19-1221-2019, 2019
Short summary
Short summary
Aerosol samples collected at a remote site in the Amazonian rainforest (ATTO) and an urban site in Manaus, Brazil, were investigated on a single particle basis using a quantitative energy-dispersive electron probe X-ray microanalysis, suggesting the different sources and formation mechanisms of secondary aerosols, i.e., the predominant presence of sulfate at the ATTO site from mostly biogenic emissions and the elevated influences of nitrates from anthropogenic activities at the Manaus site.
Victoria E. Irish, Sarah J. Hanna, Megan D. Willis, Swarup China, Jennie L. Thomas, Jeremy J. B. Wentzell, Ana Cirisan, Meng Si, W. Richard Leaitch, Jennifer G. Murphy, Jonathan P. D. Abbatt, Alexander Laskin, Eric Girard, and Allan K. Bertram
Atmos. Chem. Phys., 19, 1027–1039, https://doi.org/10.5194/acp-19-1027-2019, https://doi.org/10.5194/acp-19-1027-2019, 2019
Short summary
Short summary
Ice nucleating particles (INPs) are atmospheric particles that catalyse the formation of ice crystals in clouds. INPs influence the Earth's radiative balance and hydrological cycle. In this study we measured the concentrations of INPs in the Canadian Arctic marine boundary layer. Average INP concentrations fell within the range measured in other marine boundary layer locations. We also found that mineral dust is a more important contributor to the INP population than sea spray aerosol.
Jian Wang, John E. Shilling, Jiumeng Liu, Alla Zelenyuk, David M. Bell, Markus D. Petters, Ryan Thalman, Fan Mei, Rahul A. Zaveri, and Guangjie Zheng
Atmos. Chem. Phys., 19, 941–954, https://doi.org/10.5194/acp-19-941-2019, https://doi.org/10.5194/acp-19-941-2019, 2019
Short summary
Short summary
Earlier studies showed organic hygroscopicity increases with oxidation level. Such increases have been attributed to higher water solubility for more oxidized organics. By systematically varying the water content of activating droplets, we show that for secondary organic aerosols, essentially all organics are dissolved at the point of droplet activation. Therefore, the organic hygroscopicity is not limited by solubility but is dictated mainly by the molecular weight of organic species.
Zhe Peng, Julia Lee-Taylor, John J. Orlando, Geoffrey S. Tyndall, and Jose L. Jimenez
Atmos. Chem. Phys., 19, 813–834, https://doi.org/10.5194/acp-19-813-2019, https://doi.org/10.5194/acp-19-813-2019, 2019
Short summary
Short summary
The use of oxidation flow reactors (OFRs) has been rapidly increasing. We investigate organic peroxy radical (RO2) chemistry in OFRs by kinetic modeling. It is found that, at low NO, UV intensity should be limited to avoid high radical levels leading to significant reaction of RO2 with OH and negligible RO2 isomerization, both of which are atmospherically irrelevant. We also develop two RO2 fate estimators (for general use and for OFRs) to aid experiment design and interpretation.
Juhi Nagori, Ruud H. H. Janssen, Juliane L. Fry, Maarten Krol, Jose L. Jimenez, Weiwei Hu, and Jordi Vilà-Guerau de Arellano
Atmos. Chem. Phys., 19, 701–729, https://doi.org/10.5194/acp-19-701-2019, https://doi.org/10.5194/acp-19-701-2019, 2019
Short summary
Short summary
Secondary organic aerosol (SOA) is produced through a complex interaction of sunlight, volatile organic compounds emitted from trees, anthropogenic emissions, and atmospheric chemistry. We are able to successfully model the formation and diurnal evolution of SOA using a model that takes into consideration the surface and boundary layer dynamics (1–2 km from the surface) and photochemistry above the southeastern US with data collected during the SOAS campaign to constrain the model.
Andrew T. Lambe, Jordan E. Krechmer, Zhe Peng, Jason R. Casar, Anthony J. Carrasquillo, Jonathan D. Raff, Jose L. Jimenez, and Douglas R. Worsnop
Atmos. Meas. Tech., 12, 299–311, https://doi.org/10.5194/amt-12-299-2019, https://doi.org/10.5194/amt-12-299-2019, 2019
Short summary
Short summary
This paper is an evaluation of methods used to generate OH radicals under conditions with high concentrations of NO and NO2 to simulate oxidation chemistry in polluted urban atmospheres over equivalent atmospheric timescales of ~ 1 day.
Hiroshi Ishimoto, Rei Kudo, and Kouji Adachi
Atmos. Meas. Tech., 12, 107–118, https://doi.org/10.5194/amt-12-107-2019, https://doi.org/10.5194/amt-12-107-2019, 2019
Short summary
Short summary
We developed a shape model of coated soot particles and created a dataset of their optical properties. To simulate the detailed shape properties of mixtures of soot aggregates and adhered water-soluble substances, we propose a simple model of surface tension derived from the artificial surface potential. The results of some single-scattering properties including lidar backscattering were discussed.
Chunlin Li, Quanfu He, Julian Schade, Johannes Passig, Ralf Zimmermann, Daphne Meidan, Alexander Laskin, and Yinon Rudich
Atmos. Chem. Phys., 19, 139–163, https://doi.org/10.5194/acp-19-139-2019, https://doi.org/10.5194/acp-19-139-2019, 2019
Jessie M. Creamean, Rachel M. Kirpes, Kerri A. Pratt, Nicholas J. Spada, Maximilian Maahn, Gijs de Boer, Russell C. Schnell, and Swarup China
Atmos. Chem. Phys., 18, 18023–18042, https://doi.org/10.5194/acp-18-18023-2018, https://doi.org/10.5194/acp-18-18023-2018, 2018
Short summary
Short summary
Warm-temperature ice nucleating particles (INPs) were observed during a springtime transition period of the melting of frozen surfaces in Northern Alaska. Such INPs were likely biological and from marine and terrestrial (tundra) sources. Influxes of these efficient INPs may have important implications for Arctic cloud ice formation and, consequently, the surface energy budget.
Benjamin A. Nault, Pedro Campuzano-Jost, Douglas A. Day, Jason C. Schroder, Bruce Anderson, Andreas J. Beyersdorf, Donald R. Blake, William H. Brune, Yonghoon Choi, Chelsea A. Corr, Joost A. de Gouw, Jack Dibb, Joshua P. DiGangi, Glenn S. Diskin, Alan Fried, L. Gregory Huey, Michelle J. Kim, Christoph J. Knote, Kara D. Lamb, Taehyoung Lee, Taehyun Park, Sally E. Pusede, Eric Scheuer, Kenneth L. Thornhill, Jung-Hun Woo, and Jose L. Jimenez
Atmos. Chem. Phys., 18, 17769–17800, https://doi.org/10.5194/acp-18-17769-2018, https://doi.org/10.5194/acp-18-17769-2018, 2018
Short summary
Short summary
Aerosol impacts visibility and human health in large cities. Sources of aerosols are still highly uncertain, especially for cities surrounded by numerous other cities. We use observations collected during the Korea–United States Air Quality study to determine sources of organic aerosol (OA). We find that secondary OA (SOA) is rapidly produced over Seoul, South Korea, and that the sources of the SOA originate from short-lived hydrocarbons, which originate from local emissions.
Guangjie Zheng, Yang Wang, Allison C. Aiken, Francesca Gallo, Michael P. Jensen, Pavlos Kollias, Chongai Kuang, Edward Luke, Stephen Springston, Janek Uin, Robert Wood, and Jian Wang
Atmos. Chem. Phys., 18, 17615–17635, https://doi.org/10.5194/acp-18-17615-2018, https://doi.org/10.5194/acp-18-17615-2018, 2018
Short summary
Short summary
Here, we elucidate the key processes that drive marine boundary layer (MBL) aerosol size distribution in the eastern North Atlantic (ENA) using long-term measurements. The governing equations of particle concentration are established for different modes. Particles entrained from the free troposphere represent the major source of MBL cloud condensation nuclei (CCN), contributing both directly to CCN population and indirectly by supplying Aitken-mode particles that grow to CCN in the MBL.
Barbara Ervens, Armin Sorooshian, Abdulmonam M. Aldhaif, Taylor Shingler, Ewan Crosbie, Luke Ziemba, Pedro Campuzano-Jost, Jose L. Jimenez, and Armin Wisthaler
Atmos. Chem. Phys., 18, 16099–16119, https://doi.org/10.5194/acp-18-16099-2018, https://doi.org/10.5194/acp-18-16099-2018, 2018
Short summary
Short summary
The paper presents a new framework that can be used to identify emission scenarios in which aerosol populations are most likely modified by chemical processes in clouds. We show that in neither very polluted nor in very clean air masses is this the case. Only if the ratio of possible aerosol mass precursors (sulfur dioxide, some organics) and preexisting aerosol mass is sufficiently high will aerosol particles show substantially modified physicochemical properties upon cloud processing.
Meng Si, Victoria E. Irish, Ryan H. Mason, Jesús Vergara-Temprado, Sarah J. Hanna, Luis A. Ladino, Jacqueline D. Yakobi-Hancock, Corinne L. Schiller, Jeremy J. B. Wentzell, Jonathan P. D. Abbatt, Ken S. Carslaw, Benjamin J. Murray, and Allan K. Bertram
Atmos. Chem. Phys., 18, 15669–15685, https://doi.org/10.5194/acp-18-15669-2018, https://doi.org/10.5194/acp-18-15669-2018, 2018
Short summary
Short summary
Using the concentrations of ice-nucleating particles (INPs) and total aerosol particles measured at three coastal marine sites, the ice-nucleating ability of aerosol particles on a per number basis and a per surface-area basis were determined as a function of size. The ice-nucleating ability was strongly dependent on size, with larger particles being more efficient. This type of information can help determine the sources of INPs and constrain the future modelling of INPs and mixed-phase clouds.
Christiane Schulz, Johannes Schneider, Bruna Amorim Holanda, Oliver Appel, Anja Costa, Suzane S. de Sá, Volker Dreiling, Daniel Fütterer, Tina Jurkat-Witschas, Thomas Klimach, Christoph Knote, Martina Krämer, Scot T. Martin, Stephan Mertes, Mira L. Pöhlker, Daniel Sauer, Christiane Voigt, Adrian Walser, Bernadett Weinzierl, Helmut Ziereis, Martin Zöger, Meinrat O. Andreae, Paulo Artaxo, Luiz A. T. Machado, Ulrich Pöschl, Manfred Wendisch, and Stephan Borrmann
Atmos. Chem. Phys., 18, 14979–15001, https://doi.org/10.5194/acp-18-14979-2018, https://doi.org/10.5194/acp-18-14979-2018, 2018
Short summary
Short summary
Aerosol chemical composition measurements in the tropical upper troposphere over the Amazon region show that 78 % of the aerosol in the upper troposphere consists of organic matter. Up to 20 % of the organic aerosol can be attributed to isoprene epoxydiol secondary organic aerosol (IEPOX-SOA). Furthermore, organic nitrates were identified, suggesting a connection to the IEPOX-SOA formation.
Daniela Wimmer, Stephany Buenrostro Mazon, Hanna Elina Manninen, Juha Kangasluoma, Alessandro Franchin, Tuomo Nieminen, John Backman, Jian Wang, Chongai Kuang, Radovan Krejci, Joel Brito, Fernando Goncalves Morais, Scot Turnbull Martin, Paulo Artaxo, Markku Kulmala, Veli-Matti Kerminen, and Tuukka Petäjä
Atmos. Chem. Phys., 18, 13245–13264, https://doi.org/10.5194/acp-18-13245-2018, https://doi.org/10.5194/acp-18-13245-2018, 2018
Short summary
Short summary
This work focuses on understanding the production of very small airborne particles in the undisturbed environment of the Amazon basin. Computer models have shown that up to 70 % of these tiny particles are responsible for cloud formation on a global scale. The processes behind the production of these very small particles have been studied intensely recently. Their appearance has been observed almost all over the world. We directly measure sub-3 nm aerosols for the first time in the Amazon basin.
Jorge Saturno, Bruna A. Holanda, Christopher Pöhlker, Florian Ditas, Qiaoqiao Wang, Daniel Moran-Zuloaga, Joel Brito, Samara Carbone, Yafang Cheng, Xuguang Chi, Jeannine Ditas, Thorsten Hoffmann, Isabella Hrabe de Angelis, Tobias Könemann, Jošt V. Lavrič, Nan Ma, Jing Ming, Hauke Paulsen, Mira L. Pöhlker, Luciana V. Rizzo, Patrick Schlag, Hang Su, David Walter, Stefan Wolff, Yuxuan Zhang, Paulo Artaxo, Ulrich Pöschl, and Meinrat O. Andreae
Atmos. Chem. Phys., 18, 12817–12843, https://doi.org/10.5194/acp-18-12817-2018, https://doi.org/10.5194/acp-18-12817-2018, 2018
Short summary
Short summary
Biomass burning emits light-absorbing aerosol particles that warm the atmosphere. One of them is the primarily emitted black carbon, which strongly absorbs radiation in the visible and UV spectral regions. Another one is the so-called brown carbon, a fraction of organic aerosol particles that are able to absorb radiation, especially in the UV spectral region. The contribution of both kinds of aerosol particles to light absorption over the Amazon rainforest is studied in this paper.
Amy L. Bondy, Daniel Bonanno, Ryan C. Moffet, Bingbing Wang, Alexander Laskin, and Andrew P. Ault
Atmos. Chem. Phys., 18, 12595–12612, https://doi.org/10.5194/acp-18-12595-2018, https://doi.org/10.5194/acp-18-12595-2018, 2018
Short summary
Short summary
To determine important sources of aerosols during the Southern Oxidant and Aerosol Study (SOAS), as well as their mixing with secondary species, individual particles were analyzed with electron and X-ray microscopy to determine size and chemical composition. Secondary organic aerosol, sea spray aerosol, and mineral dust each dominated during different periods. Particles were less similar chemically to each other than is commonly assumed, which is important for air quality and climate models.
Anna L. Hodshire, Brett B. Palm, M. Lizabeth Alexander, Qijing Bian, Pedro Campuzano-Jost, Eben S. Cross, Douglas A. Day, Suzane S. de Sá, Alex B. Guenther, Armin Hansel, James F. Hunter, Werner Jud, Thomas Karl, Saewung Kim, Jesse H. Kroll, Jeong-Hoo Park, Zhe Peng, Roger Seco, James N. Smith, Jose L. Jimenez, and Jeffrey R. Pierce
Atmos. Chem. Phys., 18, 12433–12460, https://doi.org/10.5194/acp-18-12433-2018, https://doi.org/10.5194/acp-18-12433-2018, 2018
Short summary
Short summary
We investigate the nucleation and growth processes that shape the aerosol size distribution inside oxidation flow reactors (OFRs) that sampled ambient air from Colorado and the Amazon rainforest. Results indicate that organics are important for both nucleation and growth, vapor uptake was limited to accumulation-mode particles, fragmentation reactions were important to limit particle growth at higher OH exposures, and an H2SO4-organics nucleation mechanism captured new particle formation well.
Suzane S. de Sá, Brett B. Palm, Pedro Campuzano-Jost, Douglas A. Day, Weiwei Hu, Gabriel Isaacman-VanWertz, Lindsay D. Yee, Joel Brito, Samara Carbone, Igor O. Ribeiro, Glauber G. Cirino, Yingjun Liu, Ryan Thalman, Arthur Sedlacek, Aaron Funk, Courtney Schumacher, John E. Shilling, Johannes Schneider, Paulo Artaxo, Allen H. Goldstein, Rodrigo A. F. Souza, Jian Wang, Karena A. McKinney, Henrique Barbosa, M. Lizabeth Alexander, Jose L. Jimenez, and Scot T. Martin
Atmos. Chem. Phys., 18, 12185–12206, https://doi.org/10.5194/acp-18-12185-2018, https://doi.org/10.5194/acp-18-12185-2018, 2018
Short summary
Short summary
This study aimed at understanding and quantifying the changes in mass concentration and composition of submicron airborne particulate matter (PM) in Amazonia due to urban pollution. Downwind of Manaus, PM concentrations increased by up to 200 % under polluted compared with background conditions. The observed changes included contributions from both primary and secondary processes. The differences in organic PM composition suggested a shift in the pathways of secondary production with pollution.
Sara D. Forestieri, Taylor M. Helgestad, Andrew T. Lambe, Lindsay Renbaum-Wolff, Daniel A. Lack, Paola Massoli, Eben S. Cross, Manvendra K. Dubey, Claudio Mazzoleni, Jason S. Olfert, Arthur J. Sedlacek III, Andrew Freedman, Paul Davidovits, Timothy B. Onasch, and Christopher D. Cappa
Atmos. Chem. Phys., 18, 12141–12159, https://doi.org/10.5194/acp-18-12141-2018, https://doi.org/10.5194/acp-18-12141-2018, 2018
Short summary
Short summary
We characterized optical properties of flame-derived black carbon particles and interpret our observations through the use of Mie theory and Rayleigh–Debye–Gans theory. We determined that the mass absorption coefficient is independent of particle collapse and use this to derive theory- and wavelength-specific refractive indices for black carbon (BC). We demonstrate the inadequacy of Mie theory and suggest an alternative approach for atmospheric models to better represent light absorption by BC.
Mijung Song, Suhan Ham, Ryan J. Andrews, Yuan You, and Allan K. Bertram
Atmos. Chem. Phys., 18, 12075–12084, https://doi.org/10.5194/acp-18-12075-2018, https://doi.org/10.5194/acp-18-12075-2018, 2018
Yangxi Chu, Erin Evoy, Saeid Kamal, Young Chul Song, Jonathan P. Reid, Chak K. Chan, and Allan K. Bertram
Atmos. Meas. Tech., 11, 4809–4822, https://doi.org/10.5194/amt-11-4809-2018, https://doi.org/10.5194/amt-11-4809-2018, 2018
Short summary
Short summary
The viscosity of erythritol, a tetrol found in aerosol particles, is highly uncertain. To help resolve this uncertainty, we measured the viscosities of
erythritol–water particles using rectangular-area fluorescence recovery after photobleaching and aerosol optical tweezers techniques. These results
should help improve the understanding of the viscosity of secondary organic aerosol particles. In addition, we present an intercomparison of techniques
for measuring the viscosity of particles.
Juliane L. Fry, Steven S. Brown, Ann M. Middlebrook, Peter M. Edwards, Pedro Campuzano-Jost, Douglas A. Day, José L. Jimenez, Hannah M. Allen, Thomas B. Ryerson, Ilana Pollack, Martin Graus, Carsten Warneke, Joost A. de Gouw, Charles A. Brock, Jessica Gilman, Brian M. Lerner, William P. Dubé, Jin Liao, and André Welti
Atmos. Chem. Phys., 18, 11663–11682, https://doi.org/10.5194/acp-18-11663-2018, https://doi.org/10.5194/acp-18-11663-2018, 2018
Short summary
Short summary
This paper uses measurements made during research aircraft flights through power plant smokestack emissions plumes as a natural laboratory in the field experiment. We investigated a specific source of airborne particulate matter from the combination of human-produced NOx pollutant emissions (the smokestack plumes) with isoprene emitted by naturally by trees in the southeastern United States. These field-based yields appear to be higher than those typically measured in chamber studies.
John K. Kodros, Sarah J. Hanna, Allan K. Bertram, W. Richard Leaitch, Hannes Schulz, Andreas B. Herber, Marco Zanatta, Julia Burkart, Megan D. Willis, Jonathan P. D. Abbatt, and Jeffrey R. Pierce
Atmos. Chem. Phys., 18, 11345–11361, https://doi.org/10.5194/acp-18-11345-2018, https://doi.org/10.5194/acp-18-11345-2018, 2018
Short summary
Short summary
The mixing state of black carbon is one of the key uncertainties limiting the ability of models to estimate the direct radiative effect. In this work, we present aircraft measurements from the Canadian Arctic of coating thickness as a function of black carbon core diameter and black-carbon-containing particle number fractions. We use these measurements to inform estimates of the direct radiative effect in Arctic aerosol simulations.
Arthur J. Sedlacek III, Peter R. Buseck, Kouji Adachi, Timothy B. Onasch, Stephen R. Springston, and Lawrence Kleinman
Atmos. Chem. Phys., 18, 11289–11301, https://doi.org/10.5194/acp-18-11289-2018, https://doi.org/10.5194/acp-18-11289-2018, 2018
Short summary
Short summary
This paper presents the first direct atmospheric observations of the formation and evolution of tar balls (TBs) in forest fires collected during the Department of Energy’s Biomass Burning Observation Project (BBOP). We quantify, for the first time, the TB mass fraction in the BB plumes and show that this mass fraction increases from less than 1 % to 50 % within the first couple of hours of plume aging. Using Mie theory we find that TBs are consistent with being weak light absorbers.
John E. Shilling, Mikhail S. Pekour, Edward C. Fortner, Paulo Artaxo, Suzane de Sá, John M. Hubbe, Karla M. Longo, Luiz A. T. Machado, Scot T. Martin, Stephen R. Springston, Jason Tomlinson, and Jian Wang
Atmos. Chem. Phys., 18, 10773–10797, https://doi.org/10.5194/acp-18-10773-2018, https://doi.org/10.5194/acp-18-10773-2018, 2018
Short summary
Short summary
We report aircraft observations of the evolution of organic aerosol in the Manaus urban plume as it ages. We observe dynamic changes in the organic aerosol. The mean carbon oxidation state of the OA increases from −0.6 to −0.45. Hydrocarbon-like organic aerosol (HOA) mass is lost and is balanced out by formation of oxygenated organic aerosol (OOA). Because HOA loss is balanced by OOA formation, we observe little change in the net Δorg / ΔCO values with aging.
Jorge Saturno, Florian Ditas, Marloes Penning de Vries, Bruna A. Holanda, Mira L. Pöhlker, Samara Carbone, David Walter, Nicole Bobrowski, Joel Brito, Xuguang Chi, Alexandra Gutmann, Isabella Hrabe de Angelis, Luiz A. T. Machado, Daniel Moran-Zuloaga, Julian Rüdiger, Johannes Schneider, Christiane Schulz, Qiaoqiao Wang, Manfred Wendisch, Paulo Artaxo, Thomas Wagner, Ulrich Pöschl, Meinrat O. Andreae, and Christopher Pöhlker
Atmos. Chem. Phys., 18, 10391–10405, https://doi.org/10.5194/acp-18-10391-2018, https://doi.org/10.5194/acp-18-10391-2018, 2018
Short summary
Short summary
This study uses satellite observations to track volcanic emissions in eastern Congo and their subsequent transport across the Atlantic Ocean into the Amazon Basin. Aircraft and ground-based observations are used to characterize the influence of volcanogenic aerosol on the chemical and microphysical properties of Amazonian aerosols. Further, this work is an illustrative example of the conditions and dynamics driving the transatlantic transport of African emissions to South America.
Lindsay D. Yee, Gabriel Isaacman-VanWertz, Rebecca A. Wernis, Meng Meng, Ventura Rivera, Nathan M. Kreisberg, Susanne V. Hering, Mads S. Bering, Marianne Glasius, Mary Alice Upshur, Ariana Gray Bé, Regan J. Thomson, Franz M. Geiger, John H. Offenberg, Michael Lewandowski, Ivan Kourtchev, Markus Kalberer, Suzane de Sá, Scot T. Martin, M. Lizabeth Alexander, Brett B. Palm, Weiwei Hu, Pedro Campuzano-Jost, Douglas A. Day, Jose L. Jimenez, Yingjun Liu, Karena A. McKinney, Paulo Artaxo, Juarez Viegas, Antonio Manzi, Maria B. Oliveira, Rodrigo de Souza, Luiz A. T. Machado, Karla Longo, and Allen H. Goldstein
Atmos. Chem. Phys., 18, 10433–10457, https://doi.org/10.5194/acp-18-10433-2018, https://doi.org/10.5194/acp-18-10433-2018, 2018
Short summary
Short summary
Biogenic volatile organic compounds react in the atmosphere to form secondary organic aerosol, yet the chemical pathways remain unclear. We collected filter samples and deployed a semi-volatile thermal desorption aerosol gas chromatograph in the central Amazon. We measured 30 sesquiterpenes and 4 diterpenes and find them to be important for reactive ozone loss. We estimate that sesquiterpene oxidation contributes at least 0.4–5 % (median 1 %) of observed submicron organic aerosol mass.
Mira L. Pöhlker, Florian Ditas, Jorge Saturno, Thomas Klimach, Isabella Hrabě de Angelis, Alessandro C. Araùjo, Joel Brito, Samara Carbone, Yafang Cheng, Xuguang Chi, Reiner Ditz, Sachin S. Gunthe, Bruna A. Holanda, Konrad Kandler, Jürgen Kesselmeier, Tobias Könemann, Ovid O. Krüger, Jošt V. Lavrič, Scot T. Martin, Eugene Mikhailov, Daniel Moran-Zuloaga, Luciana V. Rizzo, Diana Rose, Hang Su, Ryan Thalman, David Walter, Jian Wang, Stefan Wolff, Henrique M. J. Barbosa, Paulo Artaxo, Meinrat O. Andreae, Ulrich Pöschl, and Christopher Pöhlker
Atmos. Chem. Phys., 18, 10289–10331, https://doi.org/10.5194/acp-18-10289-2018, https://doi.org/10.5194/acp-18-10289-2018, 2018
Short summary
Short summary
This paper presents the aerosol and cloud condensation nuclei (CCN) variability for characteristic atmospheric states – such as biomass burning, long-range transport, and pristine rain forest conditions – in the vulnerable and climate-relevant Amazon Basin. It summarizes the key properties of aerosol and CCN and, thus, provides a basis for an in-depth analysis of aerosol–cloud interactions in the Amazon region.
Luciana Varanda Rizzo, Pontus Roldin, Joel Brito, John Backman, Erik Swietlicki, Radovan Krejci, Peter Tunved, Tukka Petäjä, Markku Kulmala, and Paulo Artaxo
Atmos. Chem. Phys., 18, 10255–10274, https://doi.org/10.5194/acp-18-10255-2018, https://doi.org/10.5194/acp-18-10255-2018, 2018
Short summary
Short summary
Aerosols are tiny particles suspended in the air that can interact with sunlight and form clouds, which in turn affect the climate. They can also recycle nutrients in forest environments. Aerosols are naturally emitted at the surface in the Amazon forest, in addition to being brought down from above the boundary layer by intense air movements. In this work, we describe how the particle size number concentrations of aerosols change over hours, days and seasons in a multi-year study in Amazonia.
Daniel Moran-Zuloaga, Florian Ditas, David Walter, Jorge Saturno, Joel Brito, Samara Carbone, Xuguang Chi, Isabella Hrabě de Angelis, Holger Baars, Ricardo H. M. Godoi, Birgit Heese, Bruna A. Holanda, Jošt V. Lavrič, Scot T. Martin, Jing Ming, Mira L. Pöhlker, Nina Ruckteschler, Hang Su, Yaqiang Wang, Qiaoqiao Wang, Zhibin Wang, Bettina Weber, Stefan Wolff, Paulo Artaxo, Ulrich Pöschl, Meinrat O. Andreae, and Christopher Pöhlker
Atmos. Chem. Phys., 18, 10055–10088, https://doi.org/10.5194/acp-18-10055-2018, https://doi.org/10.5194/acp-18-10055-2018, 2018
Short summary
Short summary
This study presents multiple years of aerosol coarse mode observations at the remote ATTO site in the Amazon Basin. The results are discussed in light of the frequent and episodic long-range transport of Saharan dust plumes in the early wet season as well as the persistent background bioaerosol cycling in the rain forest ecosystem. This work provides a solid basis for future studies on the dynamic coarse mode aerosol cycling and its biogeochemical relevance in the Amazon.
Eliane G. Alves, Julio Tóta, Andrew Turnipseed, Alex B. Guenther, José Oscar W. Vega Bustillos, Raoni A. Santana, Glauber G. Cirino, Julia V. Tavares, Aline P. Lopes, Bruce W. Nelson, Rodrigo A. de Souza, Dasa Gu, Trissevgeni Stavrakou, David K. Adams, Jin Wu, Scott Saleska, and Antonio O. Manzi
Biogeosciences, 15, 4019–4032, https://doi.org/10.5194/bg-15-4019-2018, https://doi.org/10.5194/bg-15-4019-2018, 2018
Short summary
Short summary
This study shows that leaf quantity and leaf age have an important effect on seasonal changes in isoprene emissions and that these could play an even more important role in regulating ecosystem isoprene fluxes than light and temperature at seasonal timescales in tropical forests. These results bring novelty and new insight for future research because in the past leaf phenology was not considered as an important factor that controls biological processes in the tropics.
Die Wang, Scott E. Giangrande, Mary Jane Bartholomew, Joseph Hardin, Zhe Feng, Ryan Thalman, and Luiz A. T. Machado
Atmos. Chem. Phys., 18, 9121–9145, https://doi.org/10.5194/acp-18-9121-2018, https://doi.org/10.5194/acp-18-9121-2018, 2018
Mizuo Kajino, Makoto Deushi, Tsuyoshi Thomas Sekiyama, Naga Oshima, Keiya Yumimoto, Taichu Yasumichi Tanaka, Joseph Ching, Akihiro Hashimoto, Tetsuya Yamamoto, Masaaki Ikegami, Akane Kamada, Makoto Miyashita, Yayoi Inomata, Shin-ichiro Shima, Kouji Adachi, Yuji Zaizen, Yasuhito Igarashi, Hiromasa Ueda, Takashi Maki, and Masao Mikami
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-128, https://doi.org/10.5194/gmd-2018-128, 2018
Revised manuscript not accepted
Evelyn Freney, Karine Sellegri, Mounir Chrit, Kouji Adachi, Joel Brito, Antoine Waked, Agnès Borbon, Aurélie Colomb, Régis Dupuy, Jean-Marc Pichon, Laetitia Bouvier, Claire Delon, Corinne Jambert, Pierre Durand, Thierry Bourianne, Cécile Gaimoz, Sylvain Triquet, Anaïs Féron, Matthias Beekmann, François Dulac, and Karine Sartelet
Atmos. Chem. Phys., 18, 7041–7056, https://doi.org/10.5194/acp-18-7041-2018, https://doi.org/10.5194/acp-18-7041-2018, 2018
Short summary
Short summary
The focus of these experiments, within the ChArMEx project, were to better understand the chemical properties of ambient aerosols over the Mediterranean region. A series of airborne measurements were performed aboard the French research aircraft, the ATR42, during the summer period. Aerosol and gas-phase chemical mass spectrometry allowed us to understand the sources and formation of organic aerosols. Numerical models were incorporated into this study to help interpret our observations.
Luiz A. T. Machado, Alan J. P. Calheiros, Thiago Biscaro, Scott Giangrande, Maria A. F. Silva Dias, Micael A. Cecchini, Rachel Albrecht, Meinrat O. Andreae, Wagner F. Araujo, Paulo Artaxo, Stephan Borrmann, Ramon Braga, Casey Burleyson, Cristiano W. Eichholz, Jiwen Fan, Zhe Feng, Gilberto F. Fisch, Michael P. Jensen, Scot T. Martin, Ulrich Pöschl, Christopher Pöhlker, Mira L. Pöhlker, Jean-François Ribaud, Daniel Rosenfeld, Jaci M. B. Saraiva, Courtney Schumacher, Ryan Thalman, David Walter, and Manfred Wendisch
Atmos. Chem. Phys., 18, 6461–6482, https://doi.org/10.5194/acp-18-6461-2018, https://doi.org/10.5194/acp-18-6461-2018, 2018
Short summary
Short summary
This overview discuss the main precipitation processes and their sensitivities to environmental conditions in the Central Amazon Basin. It presents a review of the knowledge acquired about cloud processes and rainfall formation in Amazonas. In addition, this study provides a characterization of the seasonal variation and rainfall sensitivities to topography, surface cover, and aerosol concentration. Airplane measurements were evaluated to characterize and contrast cloud microphysical properties.
Wing-Sy Wong DeRieux, Ying Li, Peng Lin, Julia Laskin, Alexander Laskin, Allan K. Bertram, Sergey A. Nizkorodov, and Manabu Shiraiwa
Atmos. Chem. Phys., 18, 6331–6351, https://doi.org/10.5194/acp-18-6331-2018, https://doi.org/10.5194/acp-18-6331-2018, 2018
Short summary
Short summary
The phase transition of organic particles between glassy and semi-solid states occurs at the glass transition temperature. We developed a method to predict glass transition temperatures and the viscosity of secondary organic aerosols using molecular composition, with consistent results with viscosity measurements. The viscosity of biomass burning particles was also estimated using the chemical composition measured by high-resolution mass spectrometry with two different ionization techniques.
Amy K. Hodgson, William T. Morgan, Sebastian O'Shea, Stéphane Bauguitte, James D. Allan, Eoghan Darbyshire, Michael J. Flynn, Dantong Liu, James Lee, Ben Johnson, Jim M. Haywood, Karla M. Longo, Paulo E. Artaxo, and Hugh Coe
Atmos. Chem. Phys., 18, 5619–5638, https://doi.org/10.5194/acp-18-5619-2018, https://doi.org/10.5194/acp-18-5619-2018, 2018
Short summary
Short summary
We flew a large atmospheric research aircraft across a number of different biomass burning environments in the Amazon Basin in September and October 2012. In this paper, we focus on smoke sampled very close to fresh fires (only 600–900 m above the fires and smoke that was 4–6 min old) to examine the chemical components that make up the smoke and their abundance. We found substantial differences in the emitted smoke that are due to the fuel type and combustion processes driving the fires.
Adan S. S. Medeiros, Igor O. Ribeiro, Marcos V. B. Morais, Rita V. Andreoli, Jorge A. Martins, Leila D. Martins, Carla E. Batista, Patrícia C. Guimarães, Scot T. Martin, and Rodrigo A. F. Souza
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-347, https://doi.org/10.5194/acp-2018-347, 2018
Revised manuscript not accepted
Short summary
Short summary
The study evaluates the river breezes influence on pollutant plume dispersion or canalization in central amazon, using atmospheric chemistry modelling. Manaus, a 2 million people city, is considered herein for be a major city surrounded by pristine forest and large rivers. The main conclusion is that Manaus pollution plume dispersion could at times be partially canalized leading to significant changes of surface river concentration, even most of Manaus plume following prevailing trade winds.
Rachel M. Kirpes, Amy L. Bondy, Daniel Bonanno, Ryan C. Moffet, Bingbing Wang, Alexander Laskin, Andrew P. Ault, and Kerri A. Pratt
Atmos. Chem. Phys., 18, 3937–3949, https://doi.org/10.5194/acp-18-3937-2018, https://doi.org/10.5194/acp-18-3937-2018, 2018
Short summary
Short summary
Arctic atmospheric particles have important climate impacts via cloud formation and precipitation, particularly in the wintertime. We show that sulfate, formed during atmospheric transport, is within individual sea spray particles and organic particles measured in the Alaskan Arctic. Greater contributions of combustion emissions were observed when the wind direction came from the Prudhoe Bay oil fields, showing its regional influence.
Abigail R. Koss, Kanako Sekimoto, Jessica B. Gilman, Vanessa Selimovic, Matthew M. Coggon, Kyle J. Zarzana, Bin Yuan, Brian M. Lerner, Steven S. Brown, Jose L. Jimenez, Jordan Krechmer, James M. Roberts, Carsten Warneke, Robert J. Yokelson, and Joost de Gouw
Atmos. Chem. Phys., 18, 3299–3319, https://doi.org/10.5194/acp-18-3299-2018, https://doi.org/10.5194/acp-18-3299-2018, 2018
Short summary
Short summary
Non-methane organic gases (NMOGs) were detected by proton-transfer-reaction mass spectrometry (PTR-ToF) during an extensive laboratory characterization of wildfire emissions. Identifications for PTR-ToF ion masses are proposed and supported by a combination of techniques. Overall excellent agreement with other instrumentation is shown. Scalable emission factors and ratios are reported for many newly reported reactive species. An analysis of chemical characteristics is presented.
Pablo E. S. Oliveira, Otávio C. Acevedo, Matthias Sörgel, Anywhere Tsokankunku, Stefan Wolff, Alessandro C. Araújo, Rodrigo A. F. Souza, Marta O. Sá, Antônio O. Manzi, and Meinrat O. Andreae
Atmos. Chem. Phys., 18, 3083–3099, https://doi.org/10.5194/acp-18-3083-2018, https://doi.org/10.5194/acp-18-3083-2018, 2018
Short summary
Short summary
Carbon dioxide and latent heat fluxes within the canopy are dominated by low-frequency (nonturbulent) processes. There is a striking contrast between fully turbulent and intermittent nights, such that turbulent processes dominate the total nighttime exchange during the former, while nonturbulent processes are more relevant in the latter. In very stable nights, during which intermittent exchange prevails, the stable boundary layer may be shallower than the highest observational level at 80 m.
Julia Schmale, Silvia Henning, Stefano Decesari, Bas Henzing, Helmi Keskinen, Karine Sellegri, Jurgita Ovadnevaite, Mira L. Pöhlker, Joel Brito, Aikaterini Bougiatioti, Adam Kristensson, Nikos Kalivitis, Iasonas Stavroulas, Samara Carbone, Anne Jefferson, Minsu Park, Patrick Schlag, Yoko Iwamoto, Pasi Aalto, Mikko Äijälä, Nicolas Bukowiecki, Mikael Ehn, Göran Frank, Roman Fröhlich, Arnoud Frumau, Erik Herrmann, Hartmut Herrmann, Rupert Holzinger, Gerard Kos, Markku Kulmala, Nikolaos Mihalopoulos, Athanasios Nenes, Colin O'Dowd, Tuukka Petäjä, David Picard, Christopher Pöhlker, Ulrich Pöschl, Laurent Poulain, André Stephan Henry Prévôt, Erik Swietlicki, Meinrat O. Andreae, Paulo Artaxo, Alfred Wiedensohler, John Ogren, Atsushi Matsuki, Seong Soo Yum, Frank Stratmann, Urs Baltensperger, and Martin Gysel
Atmos. Chem. Phys., 18, 2853–2881, https://doi.org/10.5194/acp-18-2853-2018, https://doi.org/10.5194/acp-18-2853-2018, 2018
Short summary
Short summary
Collocated long-term observations of cloud condensation nuclei (CCN) number concentrations, particle number size distributions and chemical composition from 12 sites are synthesized. Observations cover coastal environments, the Arctic, the Mediterranean, the boreal and rain forest, high alpine and continental background sites, and Monsoon-influenced areas. We interpret regional and seasonal variability. CCN concentrations are predicted with the κ–Köhler model and compared to the measurements.
Jingqiu Mao, Annmarie Carlton, Ronald C. Cohen, William H. Brune, Steven S. Brown, Glenn M. Wolfe, Jose L. Jimenez, Havala O. T. Pye, Nga Lee Ng, Lu Xu, V. Faye McNeill, Kostas Tsigaridis, Brian C. McDonald, Carsten Warneke, Alex Guenther, Matthew J. Alvarado, Joost de Gouw, Loretta J. Mickley, Eric M. Leibensperger, Rohit Mathur, Christopher G. Nolte, Robert W. Portmann, Nadine Unger, Mika Tosca, and Larry W. Horowitz
Atmos. Chem. Phys., 18, 2615–2651, https://doi.org/10.5194/acp-18-2615-2018, https://doi.org/10.5194/acp-18-2615-2018, 2018
Short summary
Short summary
This paper is aimed at discussing progress in evaluating, diagnosing, and improving air quality and climate modeling using comparisons to SAS observations as a guide to thinking about improvements to mechanisms and parameterizations in models.
Lauren T. Fleming, Peng Lin, Alexander Laskin, Julia Laskin, Robert Weltman, Rufus D. Edwards, Narendra K. Arora, Ankit Yadav, Simone Meinardi, Donald R. Blake, Ajay Pillarisetti, Kirk R. Smith, and Sergey A. Nizkorodov
Atmos. Chem. Phys., 18, 2461–2480, https://doi.org/10.5194/acp-18-2461-2018, https://doi.org/10.5194/acp-18-2461-2018, 2018
Short summary
Short summary
Household cooking emissions in India, which rely on traditional meal preparation with dung- and brushwood-fueled cookstoves, produce copious amounts of particulate matter. Detailed chemical analysis of the compounds found in this particulate matter detected a large number of previously unidentified nitrogen-containing organic compounds, originating from dung-fueled cookstoves.
Mallory L. Hinks, Julia Montoya-Aguilera, Lucas Ellison, Peng Lin, Alexander Laskin, Julia Laskin, Manabu Shiraiwa, Donald Dabdub, and Sergey A. Nizkorodov
Atmos. Chem. Phys., 18, 1643–1652, https://doi.org/10.5194/acp-18-1643-2018, https://doi.org/10.5194/acp-18-1643-2018, 2018
Short summary
Short summary
We have observed a strong effect of relative humidity on the composition of particulate matter produced from the oxidation of toluene in clean air. At higher relative humidity, there was a significant reduction in the fraction of high-molecular-weight compounds present in the particles. The amount of particulate matter also decreased at higher relative humidity. The main implication of this study is that water vapor participates in the photooxidation of toluene in a complicated way.
Adriana Rocha-Lima, J. Vanderlei Martins, Lorraine A. Remer, Martin Todd, John H. Marsham, Sebastian Engelstaedter, Claire L. Ryder, Carolina Cavazos-Guerra, Paulo Artaxo, Peter Colarco, and Richard Washington
Atmos. Chem. Phys., 18, 1023–1043, https://doi.org/10.5194/acp-18-1023-2018, https://doi.org/10.5194/acp-18-1023-2018, 2018
Short summary
Short summary
We present results of ground-based measurements and subsequent laboratory analysis of Sahara dust samples collected in Algeria and Mauritania during the Fennec campaign in 2011. The results show that the sampled dust has low absorption characteristics and exhibits a distinct spectral bow-like shape. We find distinctive differences in the composition and optical characteristics of the dust from the two sites, corroborating with other studies that not all Saharan dust is the same.
Meinrat O. Andreae, Armin Afchine, Rachel Albrecht, Bruna Amorim Holanda, Paulo Artaxo, Henrique M. J. Barbosa, Stephan Borrmann, Micael A. Cecchini, Anja Costa, Maximilian Dollner, Daniel Fütterer, Emma Järvinen, Tina Jurkat, Thomas Klimach, Tobias Konemann, Christoph Knote, Martina Krämer, Trismono Krisna, Luiz A. T. Machado, Stephan Mertes, Andreas Minikin, Christopher Pöhlker, Mira L. Pöhlker, Ulrich Pöschl, Daniel Rosenfeld, Daniel Sauer, Hans Schlager, Martin Schnaiter, Johannes Schneider, Christiane Schulz, Antonio Spanu, Vinicius B. Sperling, Christiane Voigt, Adrian Walser, Jian Wang, Bernadett Weinzierl, Manfred Wendisch, and Helmut Ziereis
Atmos. Chem. Phys., 18, 921–961, https://doi.org/10.5194/acp-18-921-2018, https://doi.org/10.5194/acp-18-921-2018, 2018
Short summary
Short summary
We made airborne measurements of aerosol particle concentrations and properties over the Amazon Basin. We found extremely high concentrations of very small particles in the region between 8 and 14 km altitude all across the basin, which had been recently formed by gas-to-particle conversion at these altitudes. This makes the upper troposphere a very important source region of atmospheric particles with significant implications for the Earth's climate system.
Xuan Wang, Colette L. Heald, Jiumeng Liu, Rodney J. Weber, Pedro Campuzano-Jost, Jose L. Jimenez, Joshua P. Schwarz, and Anne E. Perring
Atmos. Chem. Phys., 18, 635–653, https://doi.org/10.5194/acp-18-635-2018, https://doi.org/10.5194/acp-18-635-2018, 2018
Short summary
Short summary
Brown carbon (BrC) contributes significantly to uncertainty in estimating the global direct radiative effect (DRE) of aerosols. We develop a global model simulation of BrC and test it against BrC absorption measurements from two aircraft campaigns in the continental United States. We suggest that BrC DRE has been overestimated previously due to the lack of observational constraints from direct measurements and omission of the effects of photochemical whitening.
Jessie M. Creamean, Maximilian Maahn, Gijs de Boer, Allison McComiskey, Arthur J. Sedlacek, and Yan Feng
Atmos. Chem. Phys., 18, 555–570, https://doi.org/10.5194/acp-18-555-2018, https://doi.org/10.5194/acp-18-555-2018, 2018
Short summary
Short summary
We report on airborne observations from the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) program's Fifth Airborne Carbon Measurements (ACME-V) campaign along the North Slope of Alaska during the summer of 2015. We show how local oil extraction activities, 2015's central Alaskan wildfires, and, to a lesser extent, long-range transport introduce aerosols and trace gases higher in concentration than previously reported in Arctic haze measurements to the North Slope.
Brett B. Palm, Suzane S. de Sá, Douglas A. Day, Pedro Campuzano-Jost, Weiwei Hu, Roger Seco, Steven J. Sjostedt, Jeong-Hoo Park, Alex B. Guenther, Saewung Kim, Joel Brito, Florian Wurm, Paulo Artaxo, Ryan Thalman, Jian Wang, Lindsay D. Yee, Rebecca Wernis, Gabriel Isaacman-VanWertz, Allen H. Goldstein, Yingjun Liu, Stephen R. Springston, Rodrigo Souza, Matt K. Newburn, M. Lizabeth Alexander, Scot T. Martin, and Jose L. Jimenez
Atmos. Chem. Phys., 18, 467–493, https://doi.org/10.5194/acp-18-467-2018, https://doi.org/10.5194/acp-18-467-2018, 2018
Short summary
Short summary
Ambient air was oxidized by OH or O3 in an oxidation flow reactor during both wet and dry seasons in the GoAmazon2014/5 campaign to study secondary organic aerosol (SOA) formation. We investigated how much biogenic, urban, and biomass burning sources contributed to the ambient concentrations of SOA precursor gases and how their contributions changed diurnally and seasonally. SOA yields and hygroscopicity of organic aerosol in the oxidation flow reactor were also studied.
Sangeeta Sharma, W. Richard Leaitch, Lin Huang, Daniel Veber, Felicia Kolonjari, Wendy Zhang, Sarah J. Hanna, Allan K. Bertram, and John A. Ogren
Atmos. Chem. Phys., 17, 15225–15243, https://doi.org/10.5194/acp-17-15225-2017, https://doi.org/10.5194/acp-17-15225-2017, 2017
Short summary
Short summary
A new and unique data set on BC properties at the highest latitude observatory in the world, at Alert, Canada, evaluates three techniques for estimating black carbon (BC) and gives seasonal best estimates of the BC mass concentrations and BC mass absorption coefficients (MAC) for 2.5 years of data. As a short-lived climate forcer, better estimates of the properties of BC are necessary to ensure accurate modelling of aerosol climate forcing of the Arctic atmosphere for mitigation purposes.
Ryan D. Cook, Ying-Hsuan Lin, Zhuoyu Peng, Eric Boone, Rosalie K. Chu, James E. Dukett, Matthew J. Gunsch, Wuliang Zhang, Nikola Tolic, Alexander Laskin, and Kerri A. Pratt
Atmos. Chem. Phys., 17, 15167–15180, https://doi.org/10.5194/acp-17-15167-2017, https://doi.org/10.5194/acp-17-15167-2017, 2017
Short summary
Short summary
Reactions occur within water in both atmospheric particles and cloud droplets, yet little is known about the organic compounds in cloud water. In this work, cloud water samples were collected at Whiteface Mountain, New York, and analyzed using ultra-high-resolution mass spectrometry to investigate the molecular composition of the dissolved organic compounds. The results focus on changes in cloud water composition with air mass origin – influences of forest, urban, and wildfire emissions.
Tamara Pinterich, Steven R. Spielman, Yang Wang, Susanne V. Hering, and Jian Wang
Atmos. Meas. Tech., 10, 4915–4925, https://doi.org/10.5194/amt-10-4915-2017, https://doi.org/10.5194/amt-10-4915-2017, 2017
Short summary
Short summary
The ability of atmospheric particles to uptake water (particle hygroscopicity) is a key parameter in determining their impact on global climate.
We present a humidity-controlled fast integrated mobility spectrometer (HFIMS) for rapid measurement of particle hygroscopicity. The HFIMS' performance evaluation shows that it is about an order of magnitude faster than traditional systems, greatly improving our capability to study particle hygroscopicity especially for rapidly evolving aerosols.
Micael A. Cecchini, Luiz A. T. Machado, Manfred Wendisch, Anja Costa, Martina Krämer, Meinrat O. Andreae, Armin Afchine, Rachel I. Albrecht, Paulo Artaxo, Stephan Borrmann, Daniel Fütterer, Thomas Klimach, Christoph Mahnke, Scot T. Martin, Andreas Minikin, Sergej Molleker, Lianet H. Pardo, Christopher Pöhlker, Mira L. Pöhlker, Ulrich Pöschl, Daniel Rosenfeld, and Bernadett Weinzierl
Atmos. Chem. Phys., 17, 14727–14746, https://doi.org/10.5194/acp-17-14727-2017, https://doi.org/10.5194/acp-17-14727-2017, 2017
Short summary
Short summary
This study introduces and explores the concept of gamma phase space. This space is able to represent all possible variations in the cloud droplet size distributions (DSDs). The methodology was applied to recent in situ aircraft measurements over the Amazon. It is shown that the phase space is able to represent several processes occurring in the clouds in a simple manner. The consequences for cloud studies, modeling, and the representation of the transition from warm to mixed phase are discussed.
Scott E. Giangrande, Zhe Feng, Michael P. Jensen, Jennifer M. Comstock, Karen L. Johnson, Tami Toto, Meng Wang, Casey Burleyson, Nitin Bharadwaj, Fan Mei, Luiz A. T. Machado, Antonio O. Manzi, Shaocheng Xie, Shuaiqi Tang, Maria Assuncao F. Silva Dias, Rodrigo A. F de Souza, Courtney Schumacher, and Scot T. Martin
Atmos. Chem. Phys., 17, 14519–14541, https://doi.org/10.5194/acp-17-14519-2017, https://doi.org/10.5194/acp-17-14519-2017, 2017
Short summary
Short summary
The Amazon forest is the largest tropical rain forest on the planet, featuring
prolific and diverse cloud conditions. The Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) experiment was motivated by demands to gain a better understanding of aerosol and cloud interactions on climate and the global circulation. The routine DOE ARM observations from this 2-year campaign are summarized to help quantify controls on clouds and precipitation over this undersampled region.
Eugene F. Mikhailov, Svetlana Mironova, Gregory Mironov, Sergey Vlasenko, Alexey Panov, Xuguang Chi, David Walter, Samara Carbone, Paulo Artaxo, Martin Heimann, Jost Lavric, Ulrich Pöschl, and Meinrat O. Andreae
Atmos. Chem. Phys., 17, 14365–14392, https://doi.org/10.5194/acp-17-14365-2017, https://doi.org/10.5194/acp-17-14365-2017, 2017
Demetrios Pagonis, Jordan E. Krechmer, Joost de Gouw, Jose L. Jimenez, and Paul J. Ziemann
Atmos. Meas. Tech., 10, 4687–4696, https://doi.org/10.5194/amt-10-4687-2017, https://doi.org/10.5194/amt-10-4687-2017, 2017
Short summary
Short summary
Laboratory studies were conducted to investigate gas-wall partitioning of atmospheric organic compounds in Teflon tubing and inside an instrument used to monitor concentrations. Rapid partitioning caused time delays in instrument response that vary with tubing length and diameter, flow rate, and compound volatility. Tubing delay times of seconds to hours were described using a model that also included effects of instrument surfaces. The results can enable better design of air sampling systems.
Douglas B. Collins, Julia Burkart, Rachel Y.-W. Chang, Martine Lizotte, Aude Boivin-Rioux, Marjolaine Blais, Emma L. Mungall, Matthew Boyer, Victoria E. Irish, Guillaume Massé, Daniel Kunkel, Jean-Éric Tremblay, Tim Papakyriakou, Allan K. Bertram, Heiko Bozem, Michel Gosselin, Maurice Levasseur, and Jonathan P. D. Abbatt
Atmos. Chem. Phys., 17, 13119–13138, https://doi.org/10.5194/acp-17-13119-2017, https://doi.org/10.5194/acp-17-13119-2017, 2017
Short summary
Short summary
The sources of aerosol particles and their growth to sizes large enough to act as cloud droplet seeds is of major importance to climate since clouds exert substantial control over the atmospheric energy balance. Using ship-board measurements from two summers in the Canadian Arctic, aerosol formation events were related to co-sampled atmospheric and oceanic parameters, providing insight into factors that drive particle formation and motivating further study of ocean–atmosphere interactions.
Adrian M. Maclean, Christopher L. Butenhoff, James W. Grayson, Kelley Barsanti, Jose L. Jimenez, and Allan K. Bertram
Atmos. Chem. Phys., 17, 13037–13048, https://doi.org/10.5194/acp-17-13037-2017, https://doi.org/10.5194/acp-17-13037-2017, 2017
Short summary
Short summary
Using laboratory data, meteorological fields and a chemical transport model, we investigated how often mixing times are < 1 h within SOA in the planetary boundary layer (PBL). Based on viscosity data for alpha-pinene SOA generated using mass concentrations of ~1000 µg m −3, mixing times in biogenic SOA are < 1h most of the time.
Zhe Peng and Jose L. Jimenez
Atmos. Chem. Phys., 17, 11991–12010, https://doi.org/10.5194/acp-17-11991-2017, https://doi.org/10.5194/acp-17-11991-2017, 2017
Short summary
Short summary
Oxidation flow reactors (OFRs) have been increasingly used to study atmospheric chemistry at high NO. We show that it is very difficult to obtain high-NO chemistry (in terms of RO2 fate) in OFRs by initial NO injection. Past OFR studies with combustion sources generally had too-high precursor and NOx concentrations that caused several types of experimental artifacts. A strong dilution (× 100 or larger) may be needed for such experiments to avoid undesired chemistry.
Ryan Thalman, Suzane S. de Sá, Brett B. Palm, Henrique M. J. Barbosa, Mira L. Pöhlker, M. Lizabeth Alexander, Joel Brito, Samara Carbone, Paulo Castillo, Douglas A. Day, Chongai Kuang, Antonio Manzi, Nga Lee Ng, Arthur J. Sedlacek III, Rodrigo Souza, Stephen Springston, Thomas Watson, Christopher Pöhlker, Ulrich Pöschl, Meinrat O. Andreae, Paulo Artaxo, Jose L. Jimenez, Scot T. Martin, and Jian Wang
Atmos. Chem. Phys., 17, 11779–11801, https://doi.org/10.5194/acp-17-11779-2017, https://doi.org/10.5194/acp-17-11779-2017, 2017
Short summary
Short summary
Particle hygroscopicity, mixing state, and the hygroscopicity of organic components were characterized in central Amazonia for 1 year; their seasonal and diel variations were driven by a combination of primary emissions, photochemical oxidation, and boundary layer development. The relationship between the hygroscopicity of organic components and their oxidation level was examined, and the results help to reconcile the differences among the relationships observed in previous studies.
Julia Montoya-Aguilera, Jeremy R. Horne, Mallory L. Hinks, Lauren T. Fleming, Véronique Perraud, Peng Lin, Alexander Laskin, Julia Laskin, Donald Dabdub, and Sergey A. Nizkorodov
Atmos. Chem. Phys., 17, 11605–11621, https://doi.org/10.5194/acp-17-11605-2017, https://doi.org/10.5194/acp-17-11605-2017, 2017
Short summary
Short summary
Various plant species emit a chemical compound called indole under stressed conditions or during flowering events. Our experiments show that indole can be oxidized in the atmosphere to produce a brownish haze containing well-known indole-derived dyes, such as indigo dye. An airshed model that includes indole chemistry shows that indole aerosol makes a significant contribution to the total aerosol burden and to visibility.
Yevgeny Derimian, Marie Choël, Yinon Rudich, Karine Deboudt, Oleg Dubovik, Alexander Laskin, Michel Legrand, Bahaiddin Damiri, Ilan Koren, Florin Unga, Myriam Moreau, Meinrat O. Andreae, and Arnon Karnieli
Atmos. Chem. Phys., 17, 11331–11353, https://doi.org/10.5194/acp-17-11331-2017, https://doi.org/10.5194/acp-17-11331-2017, 2017
Short summary
Short summary
We present influence of daily occurrence of the sea breeze flow from the Mediterranean Sea on physicochemical and optical properties of atmospheric aerosol deep inland in the Negev Desert of Israel. Sampled airborne dust was found be internally mixed with sea-salt particles and reacted with anthropogenic pollution, which makes the dust highly hygroscopic and a liquid coating of particles appears. These physicochemical transformations are associated with a change in aerosol radiative properties.
Mijung Song, Pengfei Liu, Scot T. Martin, and Allan K. Bertram
Atmos. Chem. Phys., 17, 11261–11271, https://doi.org/10.5194/acp-17-11261-2017, https://doi.org/10.5194/acp-17-11261-2017, 2017
Paul J. DeMott, Thomas C. J. Hill, Markus D. Petters, Allan K. Bertram, Yutaka Tobo, Ryan H. Mason, Kaitlyn J. Suski, Christina S. McCluskey, Ezra J. T. Levin, Gregory P. Schill, Yvonne Boose, Anne Marie Rauker, Anna J. Miller, Jake Zaragoza, Katherine Rocci, Nicholas E. Rothfuss, Hans P. Taylor, John D. Hader, Cedric Chou, J. Alex Huffman, Ulrich Pöschl, Anthony J. Prenni, and Sonia M. Kreidenweis
Atmos. Chem. Phys., 17, 11227–11245, https://doi.org/10.5194/acp-17-11227-2017, https://doi.org/10.5194/acp-17-11227-2017, 2017
Short summary
Short summary
The consistency and complementarity of different methods for measuring the numbers of particles capable of forming ice in clouds are examined in the atmosphere. Four methods for collecting particles for later (offline) freezing studies are compared to a common instantaneous method. Results support very good agreement in many cases but also biases that require further research. Present capabilities and uncertainties for obtaining global data on these climate-relevant aerosols are thus defined.
Benjamin N. Murphy, Matthew C. Woody, Jose L. Jimenez, Ann Marie G. Carlton, Patrick L. Hayes, Shang Liu, Nga L. Ng, Lynn M. Russell, Ari Setyan, Lu Xu, Jeff Young, Rahul A. Zaveri, Qi Zhang, and Havala O. T. Pye
Atmos. Chem. Phys., 17, 11107–11133, https://doi.org/10.5194/acp-17-11107-2017, https://doi.org/10.5194/acp-17-11107-2017, 2017
Short summary
Short summary
We incorporate recent findings about the behavior of organic pollutants in urban airsheds into the Community Multiscale Air Quality (CMAQ) model to refine predictions of organic particulate pollution in the United States. The new techniques, which account for the volatility and ongoing chemistry of airborne organic compounds, substantially reduce biases, particularly in the winter time and near emission sources.
Matthew J. Gunsch, Rachel M. Kirpes, Katheryn R. Kolesar, Tate E. Barrett, Swarup China, Rebecca J. Sheesley, Alexander Laskin, Alfred Wiedensohler, Thomas Tuch, and Kerri A. Pratt
Atmos. Chem. Phys., 17, 10879–10892, https://doi.org/10.5194/acp-17-10879-2017, https://doi.org/10.5194/acp-17-10879-2017, 2017
Short summary
Short summary
Arctic sea ice loss is leading to increasing petroleum extraction and shipping. It is necessary to identify emissions from these activities for improved Arctic air quality and climate assessment. Atmospheric particles were measured from August to September 2015 in Utqiaġvik, AK. For periods influenced by Prudhoe Bay, significant influence associated with combustion emissions was observed, compared to fresh sea spray influence during Arctic Ocean periods.
Victoria E. Irish, Pablo Elizondo, Jessie Chen, Cédric Chou, Joannie Charette, Martine Lizotte, Luis A. Ladino, Theodore W. Wilson, Michel Gosselin, Benjamin J. Murray, Elena Polishchuk, Jonathan P. D. Abbatt, Lisa A. Miller, and Allan K. Bertram
Atmos. Chem. Phys., 17, 10583–10595, https://doi.org/10.5194/acp-17-10583-2017, https://doi.org/10.5194/acp-17-10583-2017, 2017
Short summary
Short summary
The ocean is a possible source of atmospheric ice-nucleating particles (INPs). In this study we found that INPs were ubiquitous in the sea-surface microlayer and bulk seawater in the Canadian Arctic. A strong negative correlation was observed between salinity and freezing temperatures (after correcting for freezing point depression). Heat and filtration treatments of the samples showed that the INPs were likely biological material with sizes between 0.02 μm and 0.2 μm in diameter.
Simon O'Meara, David O. Topping, Rahul A. Zaveri, and Gordon McFiggans
Atmos. Chem. Phys., 17, 10477–10494, https://doi.org/10.5194/acp-17-10477-2017, https://doi.org/10.5194/acp-17-10477-2017, 2017
Short summary
Short summary
To simulate particle-phase diffusion, an analytical expression is desired because it takes less calculation time than a differential equation. Here a correction is found for the analytical solution for when diffusivity is dependent on composition, thereby making it more widely applicable than before. Consequently, we are able to more realistically evaluate the rate limitation (if any) imposed by particle-phase diffusion on component partitioning between the gas and particle phase.
Micael A. Cecchini, Luiz A. T. Machado, Meinrat O. Andreae, Scot T. Martin, Rachel I. Albrecht, Paulo Artaxo, Henrique M. J. Barbosa, Stephan Borrmann, Daniel Fütterer, Tina Jurkat, Christoph Mahnke, Andreas Minikin, Sergej Molleker, Mira L. Pöhlker, Ulrich Pöschl, Daniel Rosenfeld, Christiane Voigt, Bernadett Weinzierl, and Manfred Wendisch
Atmos. Chem. Phys., 17, 10037–10050, https://doi.org/10.5194/acp-17-10037-2017, https://doi.org/10.5194/acp-17-10037-2017, 2017
Short summary
Short summary
We study the effects of aerosol particles and updraft speed on the warm phase of Amazonian clouds. We expand the sensitivity analysis usually found in the literature by concomitantly considering cloud evolution and the effects on droplet size distribution (DSD) shape. The quantitative results show that particle concentration is the primary driver for the vertical profiles of effective diameter and droplet concentration in the warm phase of Amazonian convective clouds.
Weiwei Hu, Pedro Campuzano-Jost, Douglas A. Day, Philip Croteau, Manjula R. Canagaratna, John T. Jayne, Douglas R. Worsnop, and Jose L. Jimenez
Atmos. Meas. Tech., 10, 2897–2921, https://doi.org/10.5194/amt-10-2897-2017, https://doi.org/10.5194/amt-10-2897-2017, 2017
Short summary
Short summary
Aerosol mass spectrometers (AMS) from ARI are used widely to measure the non-refractory species in PM1. Recently, a new capture vapourizer (CV) has been designed to reduce the need for a bounce-related CE correction in the commonly used standard vapourizer (SV) installed in AMS. To test the CV, the fragments, CE and size distributions of four pure inorganic species in the CV-AMS are investigated in various laboratory experiments. Results from the co-located SV-AMS are also shown as a comparison.
Jorge Saturno, Christopher Pöhlker, Dario Massabò, Joel Brito, Samara Carbone, Yafang Cheng, Xuguang Chi, Florian Ditas, Isabella Hrabě de Angelis, Daniel Morán-Zuloaga, Mira L. Pöhlker, Luciana V. Rizzo, David Walter, Qiaoqiao Wang, Paulo Artaxo, Paolo Prati, and Meinrat O. Andreae
Atmos. Meas. Tech., 10, 2837–2850, https://doi.org/10.5194/amt-10-2837-2017, https://doi.org/10.5194/amt-10-2837-2017, 2017
Short summary
Short summary
Different Aethalometer correction schemes were compared to a multi-wavelength absorption reference measurement. One of the correction schemes was found to artificially increase the short-wavelength absorption coefficients. It was found that accounting for aerosol scattering properties in the correction is crucial to retrieve the proper absorption Ångström exponent (AAE). We found that the raw AAE of uncompensated Aethalometer attenuation significantly correlates with a measured reference AAE.
Prettiny K. Ma, Yunliang Zhao, Allen L. Robinson, David R. Worton, Allen H. Goldstein, Amber M. Ortega, Jose L. Jimenez, Peter Zotter, André S. H. Prévôt, Sönke Szidat, and Patrick L. Hayes
Atmos. Chem. Phys., 17, 9237–9259, https://doi.org/10.5194/acp-17-9237-2017, https://doi.org/10.5194/acp-17-9237-2017, 2017
Short summary
Short summary
Airborne particulate matter (PM) negatively impacts air quality in cities throughout the world. An important fraction of PM is organic aerosol. We have evaluated and developed several new models for secondary organic aerosol (SOA), which is formed from the chemical processing of gaseous precursors. Using our model results, we have quantified important SOA sources and precursors and also identified possible model parameterizations that could be used for air quality predictions.
Adan S. S. Medeiros, Gisele Calderaro, Patricia C. Guimarães, Mateus R. Magalhaes, Marcos V. B. Morais, Sameh A. A. Rafee, Igor O. Ribeiro, Rita V. Andreoli, Jorge A. Martins, Leila D. Martins, Scot T. Martin, and Rodrigo A. F. Souza
Atmos. Chem. Phys., 17, 8987–8998, https://doi.org/10.5194/acp-17-8987-2017, https://doi.org/10.5194/acp-17-8987-2017, 2017
Short summary
Short summary
How a changing energy matrix for power production affects air quality is considered for an urban region in a tropical, forested environment. The atmospheric chemistry modeling study shows that the burning of fuel oil and diesel have enormous potential for regional ozone production (an important pollutant and air quality indicator). Conversely, substitution with natural gas has an excellent effect on comparative air quality and human health.
James W. Grayson, Erin Evoy, Mijung Song, Yangxi Chu, Adrian Maclean, Allena Nguyen, Mary Alice Upshur, Marzieh Ebrahimi, Chak K. Chan, Franz M. Geiger, Regan J. Thomson, and Allan K. Bertram
Atmos. Chem. Phys., 17, 8509–8524, https://doi.org/10.5194/acp-17-8509-2017, https://doi.org/10.5194/acp-17-8509-2017, 2017
Short summary
Short summary
The viscosities of four polyols and three saccharides mixed with water were determined. The results from the polyol studies suggest viscosity increases by 1–2 orders of magnitude with the addition of an OH functional group to a carbon backbone. The results from the saccharide studies suggest that the viscosity of highly oxidized compounds is strongly dependent on molar mass and oligomerization of highly oxidized compounds in atmospheric SOM could lead to large increases in viscosity.
Sameh A. Abou Rafee, Leila D. Martins, Ana B. Kawashima, Daniela S. Almeida, Marcos V. B. Morais, Rita V. A. Souza, Maria B. L. Oliveira, Rodrigo A. F. Souza, Adan S. S. Medeiros, Viviana Urbina, Edmilson D. Freitas, Scot T. Martin, and Jorge A. Martins
Atmos. Chem. Phys., 17, 7977–7995, https://doi.org/10.5194/acp-17-7977-2017, https://doi.org/10.5194/acp-17-7977-2017, 2017
Short summary
Short summary
This paper evaluates the impact of the emissions from mobile and stationary sources in the Amazon rainforest by using the Weather Research and Forecasting with Chemistry (WRF-Chem) model. Results show that stationary sources have an important role in the contribution of human activity in Manaus; a future scenario of the expansion in the urban area demonstrates that it could increase air pollution; and the pollutant urban plume of Manaus has an impact over hundreds of kilometers in length.
Ramon Campos Braga, Daniel Rosenfeld, Ralf Weigel, Tina Jurkat, Meinrat O. Andreae, Manfred Wendisch, Mira L. Pöhlker, Thomas Klimach, Ulrich Pöschl, Christopher Pöhlker, Christiane Voigt, Christoph Mahnke, Stephan Borrmann, Rachel I. Albrecht, Sergej Molleker, Daniel A. Vila, Luiz A. T. Machado, and Paulo Artaxo
Atmos. Chem. Phys., 17, 7365–7386, https://doi.org/10.5194/acp-17-7365-2017, https://doi.org/10.5194/acp-17-7365-2017, 2017
Suzane S. de Sá, Brett B. Palm, Pedro Campuzano-Jost, Douglas A. Day, Matthew K. Newburn, Weiwei Hu, Gabriel Isaacman-VanWertz, Lindsay D. Yee, Ryan Thalman, Joel Brito, Samara Carbone, Paulo Artaxo, Allen H. Goldstein, Antonio O. Manzi, Rodrigo A. F. Souza, Fan Mei, John E. Shilling, Stephen R. Springston, Jian Wang, Jason D. Surratt, M. Lizabeth Alexander, Jose L. Jimenez, and Scot T. Martin
Atmos. Chem. Phys., 17, 6611–6629, https://doi.org/10.5194/acp-17-6611-2017, https://doi.org/10.5194/acp-17-6611-2017, 2017
Katrina M. Macdonald, Sangeeta Sharma, Desiree Toom, Alina Chivulescu, Sarah Hanna, Allan K. Bertram, Andrew Platt, Mike Elsasser, Lin Huang, David Tarasick, Nathan Chellman, Joseph R. McConnell, Heiko Bozem, Daniel Kunkel, Ying Duan Lei, Greg J. Evans, and Jonathan P. D. Abbatt
Atmos. Chem. Phys., 17, 5775–5788, https://doi.org/10.5194/acp-17-5775-2017, https://doi.org/10.5194/acp-17-5775-2017, 2017
Short summary
Short summary
Rapid climate changes within the Arctic have highlighted existing uncertainties in the transport of contaminants to Arctic snow. Fresh snow samples collected frequently through the winter season were analyzed for major constituents creating a unique record of Arctic snow. Comparison with simultaneous atmospheric measurements provides insight into the driving processes in the transfer of contaminants from air to snow. The relative importance of deposition mechanisms over the season is proposed.
Hongyu Guo, Jiumeng Liu, Karl D. Froyd, James M. Roberts, Patrick R. Veres, Patrick L. Hayes, Jose L. Jimenez, Athanasios Nenes, and Rodney J. Weber
Atmos. Chem. Phys., 17, 5703–5719, https://doi.org/10.5194/acp-17-5703-2017, https://doi.org/10.5194/acp-17-5703-2017, 2017
Short summary
Short summary
Fine particle pH is linked to many environmental impacts by affecting particle concentration and composition. Predicted Pasadena, CA (CalNex campaign), PM1 pH is 1.9 and PM2.5 pH 2.7, the latter higher due to sea salts. The model predicted gas–particle partitionings of HNO3–NO3−, NH3–NH4+, and HCl–Cl− are in good agreement, verifying the model predictions. A summary of contrasting locations in the US and eastern Mediterranean shows fine particles are generally highly acidic, with pH below 3.
Brett B. Palm, Pedro Campuzano-Jost, Douglas A. Day, Amber M. Ortega, Juliane L. Fry, Steven S. Brown, Kyle J. Zarzana, William Dube, Nicholas L. Wagner, Danielle C. Draper, Lisa Kaser, Werner Jud, Thomas Karl, Armin Hansel, Cándido Gutiérrez-Montes, and Jose L. Jimenez
Atmos. Chem. Phys., 17, 5331–5354, https://doi.org/10.5194/acp-17-5331-2017, https://doi.org/10.5194/acp-17-5331-2017, 2017
Short summary
Short summary
Ambient forest air was oxidized by OH, O3, or NO3 inside an oxidation flow reactor, leading to formation of particulate matter from any gaseous precursors found in the air. Closure was achieved between the amount of particulate mass formed from O3 and NO3 oxidation and the amount predicted from speciated gaseous precursors, which was in contrast to previous results for OH oxidation (Palm et al., 2016). Elemental analysis of the particulate mass formed in the reactor is presented.
Oleg Travnikov, Hélène Angot, Paulo Artaxo, Mariantonia Bencardino, Johannes Bieser, Francesco D'Amore, Ashu Dastoor, Francesco De Simone, María del Carmen Diéguez, Aurélien Dommergue, Ralf Ebinghaus, Xin Bin Feng, Christian N. Gencarelli, Ian M. Hedgecock, Olivier Magand, Lynwill Martin, Volker Matthias, Nikolay Mashyanov, Nicola Pirrone, Ramesh Ramachandran, Katie Alana Read, Andrei Ryjkov, Noelle E. Selin, Fabrizio Sena, Shaojie Song, Francesca Sprovieri, Dennis Wip, Ingvar Wängberg, and Xin Yang
Atmos. Chem. Phys., 17, 5271–5295, https://doi.org/10.5194/acp-17-5271-2017, https://doi.org/10.5194/acp-17-5271-2017, 2017
Short summary
Short summary
The study provides a complex analysis of processes governing Hg fate in the atmosphere involving both measurement data and simulation results of chemical transport models. Evaluation of the model simulations and numerical experiments against observations allows explaining spatial and temporal variations of Hg concentration in the near-surface atmospheric layer and shows possibility of multiple pathways of Hg oxidation occurring concurrently in various parts of the atmosphere.
Rachel F. Silvern, Daniel J. Jacob, Patrick S. Kim, Eloise A. Marais, Jay R. Turner, Pedro Campuzano-Jost, and Jose L. Jimenez
Atmos. Chem. Phys., 17, 5107–5118, https://doi.org/10.5194/acp-17-5107-2017, https://doi.org/10.5194/acp-17-5107-2017, 2017
Short summary
Short summary
We identify a fundamental discrepancy between thermodynamic equilibrium theory and observations of inorganic aerosol composition in the eastern US in summer that shows low ammonium sulfate aerosol ratios. In addition, from 2003 to 2013, while SO2 emissions have declined due to US emission controls, aerosols have become more acidic in the southeastern US. To explain these observations, we suggest that the large and increasing source of organic aerosol may be affecting thermodynamic equilibrium.
Luca Cappellin, Alberto Algarra Alarcon, Irina Herdlinger-Blatt, Juaquin Sanchez, Franco Biasioli, Scot T. Martin, Francesco Loreto, and Karena A. McKinney
Atmos. Chem. Phys., 17, 4189–4207, https://doi.org/10.5194/acp-17-4189-2017, https://doi.org/10.5194/acp-17-4189-2017, 2017
Short summary
Short summary
The role of volatile organic compounds (VOCs) in plant interactions with the atmosphere is investigated through field observations of branch-level VOC exchange in a New England forest. The data reveal previously unknown sources and sinks of oxygenated VOCs. The emission of methyl ethyl ketone is linked to uptake of methyl vinyl ketone, suggesting the possibility of within-leaf isoprene oxidation. Bidirectional fluxes of some VOCs are also reported, including for benzaldehyde for the first time.
Diego A. Gouveia, Boris Barja, Henrique M. J. Barbosa, Patric Seifert, Holger Baars, Theotonio Pauliquevis, and Paulo Artaxo
Atmos. Chem. Phys., 17, 3619–3636, https://doi.org/10.5194/acp-17-3619-2017, https://doi.org/10.5194/acp-17-3619-2017, 2017
Short summary
Short summary
We derive the first comprehensive statistics of cirrus clouds over a tropical rain forest. Monthly frequency of occurrence can be as high as 88 %. The diurnal cycle follows that of precipitation, and frequently cirrus is found in the tropopause layer. The mean values of cloud top, base, thickness, optical depth and lidar ratio were 14.3 km, 12.9 km, 1.4 km, 0.25, and 23 sr respectively. The high fraction (42 %) of subvisible clouds may contaminate satellite measurements to an unknown extent.
Jesús Vergara-Temprado, Benjamin J. Murray, Theodore W. Wilson, Daniel O'Sullivan, Jo Browse, Kirsty J. Pringle, Karin Ardon-Dryer, Allan K. Bertram, Susannah M. Burrows, Darius Ceburnis, Paul J. DeMott, Ryan H. Mason, Colin D. O'Dowd, Matteo Rinaldi, and Ken S. Carslaw
Atmos. Chem. Phys., 17, 3637–3658, https://doi.org/10.5194/acp-17-3637-2017, https://doi.org/10.5194/acp-17-3637-2017, 2017
Short summary
Short summary
We quantify the importance in the atmosphere of different aerosol components to contribute to global ice-nucleating particles concentrations (INPs). The aim is to improve the way atmospheric cloud-ice processes are represented in climate models so they will be able to make better predictions in the future. We found that a kind of dust (K-feldspar), together with marine organic aerosols, can help to improve the representation of INPs and explain most of their observations.
Joana A. Rizzolo, Cybelli G. G. Barbosa, Guilherme C. Borillo, Ana F. L. Godoi, Rodrigo A. F. Souza, Rita V. Andreoli, Antônio O. Manzi, Marta O. Sá, Eliane G. Alves, Christopher Pöhlker, Isabella H. Angelis, Florian Ditas, Jorge Saturno, Daniel Moran-Zuloaga, Luciana V. Rizzo, Nilton E. Rosário, Theotonio Pauliquevis, Rosa M. N. Santos, Carlos I. Yamamoto, Meinrat O. Andreae, Paulo Artaxo, Philip E. Taylor, and Ricardo H. M. Godoi
Atmos. Chem. Phys., 17, 2673–2687, https://doi.org/10.5194/acp-17-2673-2017, https://doi.org/10.5194/acp-17-2673-2017, 2017
Short summary
Short summary
Particles collected from the air above the Amazon Basin during the wet season were identified as Saharan dust. Soluble minerals were analysed to assess the bioavailability of iron. Dust deposited onto the canopy and topsoil can likely benefit organisms such as fungi and lichens. The ongoing deposition of Saharan dust across the Amazon rainforest provides an iron-rich source of essential macronutrients and micronutrients to plant roots, and also directly to plant leaves during the wet season.
Andrew D. Teakles, Rita So, Bruce Ainslie, Robert Nissen, Corinne Schiller, Roxanne Vingarzan, Ian McKendry, Anne Marie Macdonald, Daniel A. Jaffe, Allan K. Bertram, Kevin B. Strawbridge, W. Richard Leaitch, Sarah Hanna, Desiree Toom, Jonathan Baik, and Lin Huang
Atmos. Chem. Phys., 17, 2593–2611, https://doi.org/10.5194/acp-17-2593-2017, https://doi.org/10.5194/acp-17-2593-2017, 2017
Short summary
Short summary
We present a case study of an intense wildfire smoke plume from Siberia that affected the air quality across the Pacific Northwest on 6–10 July 2012. The transport, entrainment, and chemical composition of the plume are examined to characterize the event. Ambient O3 and PM2.5 from surface monitoring is contrast to modelled baseline air quality estimates to show the overall contribution of the plume to exceedances in O3 and PM2.5 air quality standards and objectives that occurred.
Shan Zhou, Sonya Collier, Daniel A. Jaffe, Nicole L. Briggs, Jonathan Hee, Arthur J. Sedlacek III, Lawrence Kleinman, Timothy B. Onasch, and Qi Zhang
Atmos. Chem. Phys., 17, 2477–2493, https://doi.org/10.5194/acp-17-2477-2017, https://doi.org/10.5194/acp-17-2477-2017, 2017
Short summary
Short summary
Wildfire plumes in the western US were sampled at a high-elevation site in summer 2013. Three distinct BBOA types were identified, representing biomass burning OA with different degrees of atmospheric processing. Analysis of consecutive BB plumes transported from the same fire source showed that photooxidation led to enhanced mass fractions of aged BBOAs but negligible net OA production. A possible reason is that SOA formation was almost entirely balanced by BBOA volatilization during transport.
Madeleine Sánchez Gácita, Karla M. Longo, Julliana L. M. Freire, Saulo R. Freitas, and Scot T. Martin
Atmos. Chem. Phys., 17, 2373–2392, https://doi.org/10.5194/acp-17-2373-2017, https://doi.org/10.5194/acp-17-2373-2017, 2017
Short summary
Short summary
This study uses an adiabatic cloud model to simulate the activation of smoke aerosol particles in the Amazon region as cloud condensation nuclei (CCN). The relative importance of variability in hygroscopicity, mixing state, and activation kinetics for the activated fraction and maximum supersaturation is assessed. Our findings on uncertainties and sensitivities provide guidance on appropriate simplifications that can be used for modeling of smoke aerosols within general circulation models.
Yuri Chenyakin, Dagny A. Ullmann, Erin Evoy, Lindsay Renbaum-Wolff, Saeid Kamal, and Allan K. Bertram
Atmos. Chem. Phys., 17, 2423–2435, https://doi.org/10.5194/acp-17-2423-2017, https://doi.org/10.5194/acp-17-2423-2017, 2017
Short summary
Short summary
Viscosity measurements, along with the Stokes–Einstein relation, have been used to estimate the diffusion rates of organics within SOA particles. To test the Stokes–Einstein relation, we measured the diffusion coefficients of three fluorescent organic dyes within sucrose–water solutions with varying water activity. The diffusion coefficients were measured using fluorescence recovery after photobleaching. The results should be useful for predicting the diffusion of organics with SOA particles.
Nga Lee Ng, Steven S. Brown, Alexander T. Archibald, Elliot Atlas, Ronald C. Cohen, John N. Crowley, Douglas A. Day, Neil M. Donahue, Juliane L. Fry, Hendrik Fuchs, Robert J. Griffin, Marcelo I. Guzman, Hartmut Herrmann, Alma Hodzic, Yoshiteru Iinuma, José L. Jimenez, Astrid Kiendler-Scharr, Ben H. Lee, Deborah J. Luecken, Jingqiu Mao, Robert McLaren, Anke Mutzel, Hans D. Osthoff, Bin Ouyang, Benedicte Picquet-Varrault, Ulrich Platt, Havala O. T. Pye, Yinon Rudich, Rebecca H. Schwantes, Manabu Shiraiwa, Jochen Stutz, Joel A. Thornton, Andreas Tilgner, Brent J. Williams, and Rahul A. Zaveri
Atmos. Chem. Phys., 17, 2103–2162, https://doi.org/10.5194/acp-17-2103-2017, https://doi.org/10.5194/acp-17-2103-2017, 2017
Short summary
Short summary
Oxidation of biogenic volatile organic compounds by NO3 is an important interaction between anthropogenic
and natural emissions. This review results from a June 2015 workshop and includes the recent literature
on kinetics, mechanisms, organic aerosol yields, and heterogeneous chemistry; advances in analytical
instrumentation; the current state NO3-BVOC chemistry in atmospheric models; and critical needs for
future research in modeling, field observations, and laboratory studies.
Francesco De Simone, Paulo Artaxo, Mariantonia Bencardino, Sergio Cinnirella, Francesco Carbone, Francesco D'Amore, Aurélien Dommergue, Xin Bin Feng, Christian N. Gencarelli, Ian M. Hedgecock, Matthew S. Landis, Francesca Sprovieri, Noriuki Suzuki, Ingvar Wängberg, and Nicola Pirrone
Atmos. Chem. Phys., 17, 1881–1899, https://doi.org/10.5194/acp-17-1881-2017, https://doi.org/10.5194/acp-17-1881-2017, 2017
Short summary
Short summary
Biomass burning (BB) releases of Hg, usually considered to be Hg(0), are a significant global source of atmospheric Hg. However there is experimental evidence that a fraction of this Hg is bound to particulate matter, Hg(P). This modelling study shows how increasing fractions of Hg(P) reduce the availability of Hg to the global pool, raising Hg exposure for those regions characterized by high BB, with implications for the sub-Arctic and also rice-growing areas in South-East Asia.
Havala O. T. Pye, Benjamin N. Murphy, Lu Xu, Nga L. Ng, Annmarie G. Carlton, Hongyu Guo, Rodney Weber, Petros Vasilakos, K. Wyat Appel, Sri Hapsari Budisulistiorini, Jason D. Surratt, Athanasios Nenes, Weiwei Hu, Jose L. Jimenez, Gabriel Isaacman-VanWertz, Pawel K. Misztal, and Allen H. Goldstein
Atmos. Chem. Phys., 17, 343–369, https://doi.org/10.5194/acp-17-343-2017, https://doi.org/10.5194/acp-17-343-2017, 2017
Short summary
Short summary
We use a chemical transport model to examine how organic compounds in the atmosphere interact with water present in particles. Organic compounds themselves lead to water uptake, and organic compounds interact with water associated with inorganic compounds in the rural southeast atmosphere. Including interactions of organic compounds with water requires a treatment of nonideality to more accurately represent aerosol observations during the Southern Oxidant and Aerosol Study (SOAS) 2013.
Emma L. D'Ambro, Ben H. Lee, Jiumeng Liu, John E. Shilling, Cassandra J. Gaston, Felipe D. Lopez-Hilfiker, Siegfried Schobesberger, Rahul A. Zaveri, Claudia Mohr, Anna Lutz, Zhenfa Zhang, Avram Gold, Jason D. Surratt, Jean C. Rivera-Rios, Frank N. Keutsch, and Joel A. Thornton
Atmos. Chem. Phys., 17, 159–174, https://doi.org/10.5194/acp-17-159-2017, https://doi.org/10.5194/acp-17-159-2017, 2017
Short summary
Short summary
We studied the formation and properties of secondary organic aerosol produced from isoprene. We find that a significant fraction (~50 %) of the mass is composed of low-volatility, highly oxidized compounds such as C5H12O6. A significant fraction of the remainder appears to be in the form of oligomeric material. Adding NOx maintained or decreased SOA yields while increasing the fraction of low-volatility material, possibly due to oligomers.
Mira L. Pöhlker, Christopher Pöhlker, Florian Ditas, Thomas Klimach, Isabella Hrabe de Angelis, Alessandro Araújo, Joel Brito, Samara Carbone, Yafang Cheng, Xuguang Chi, Reiner Ditz, Sachin S. Gunthe, Jürgen Kesselmeier, Tobias Könemann, Jošt V. Lavrič, Scot T. Martin, Eugene Mikhailov, Daniel Moran-Zuloaga, Diana Rose, Jorge Saturno, Hang Su, Ryan Thalman, David Walter, Jian Wang, Stefan Wolff, Henrique M. J. Barbosa, Paulo Artaxo, Meinrat O. Andreae, and Ulrich Pöschl
Atmos. Chem. Phys., 16, 15709–15740, https://doi.org/10.5194/acp-16-15709-2016, https://doi.org/10.5194/acp-16-15709-2016, 2016
Short summary
Short summary
The paper presents a systematic characterization of cloud condensation nuclei (CCN) concentration in the central Amazonian atmosphere. Our results show that the CCN population in this globally important ecosystem follows a pollution-related seasonal cycle, in which it mainly depends on changes in total aerosol size distribution and to a minor extent in the aerosol chemical composition. Our results allow an efficient modeling and prediction of the CCN population based on a novel approach.
Kirsti Ashworth, Serena H. Chung, Karena A. McKinney, Ying Liu, J. William Munger, Scot T. Martin, and Allison L. Steiner
Atmos. Chem. Phys., 16, 15461–15484, https://doi.org/10.5194/acp-16-15461-2016, https://doi.org/10.5194/acp-16-15461-2016, 2016
Qiaoqiao Wang, Jorge Saturno, Xuguang Chi, David Walter, Jost V. Lavric, Daniel Moran-Zuloaga, Florian Ditas, Christopher Pöhlker, Joel Brito, Samara Carbone, Paulo Artaxo, and Meinrat O. Andreae
Atmos. Chem. Phys., 16, 14775–14794, https://doi.org/10.5194/acp-16-14775-2016, https://doi.org/10.5194/acp-16-14775-2016, 2016
Short summary
Short summary
We use a chemical transport model to interpret observed aerosol concentrations and absorption over the Amazon Basin during the wet season. With daily temporal resolution for open fire emissions and modified aerosol optical properties, our model successfully captures the observed variation in aerosol concentrations and absorption over the Amazon Basin. The simulation indicates the important influence of open fire mainly from northern South America and from northern Africa in the wet season.
Yaping Zhang, Brent J. Williams, Allen H. Goldstein, Kenneth S. Docherty, and Jose L. Jimenez
Atmos. Meas. Tech., 9, 5637–5653, https://doi.org/10.5194/amt-9-5637-2016, https://doi.org/10.5194/amt-9-5637-2016, 2016
Short summary
Short summary
The binning method provides an alternate way to process GC–MS data in a very fast manner. It only takes a very small portion of time (days versus years) compared to the traditional GC–MS data analysis method (peak identification and integration). Furthermore, the binning method can also be applied to any data set from a measurement (mass spectrometry, spectroscopy, etc.) with additional separations (volatility, polarity, size, etc.).
Ben T. Johnson, James M. Haywood, Justin M. Langridge, Eoghan Darbyshire, William T. Morgan, Kate Szpek, Jennifer K. Brooke, Franco Marenco, Hugh Coe, Paulo Artaxo, Karla M. Longo, Jane P. Mulcahy, Graham W. Mann, Mohit Dalvi, and Nicolas Bellouin
Atmos. Chem. Phys., 16, 14657–14685, https://doi.org/10.5194/acp-16-14657-2016, https://doi.org/10.5194/acp-16-14657-2016, 2016
Short summary
Short summary
Biomass burning is a large source of carbonaceous aerosols, which scatter and absorb solar radiation, and modify cloud properties. We evaluate the simulation of biomass burning aerosol processes and properties in the HadGEM3 climate model using observations, including those from the South American Biomass Burning Analysis. We find that modelled aerosol optical depths are underestimated unless aerosol emissions (Global Fire Emission Database v3) are increased by a factor of 1.6–2.0.
Ryan C. Moffet, Rachel E. O'Brien, Peter A. Alpert, Stephen T. Kelly, Don Q. Pham, Mary K. Gilles, Daniel A. Knopf, and Alexander Laskin
Atmos. Chem. Phys., 16, 14515–14525, https://doi.org/10.5194/acp-16-14515-2016, https://doi.org/10.5194/acp-16-14515-2016, 2016
Short summary
Short summary
Atmospheric black carbon (BC), commonly known as soot, is an important constituent of the earth that imparts a warming similar to that of carbon dioxide. However, BC is much shorter lived and has uncertain warming due to its mixture with other solid and liquid components. Here, advanced microscopic methods have provided a detailed look at thousands of BC particles sampled from central California; these measurements will lead towards a better understanding of the effects that BC has on climate.
Janarjan Bhandari, Swarup China, Timothy Onasch, Lindsay Wolff, Andrew Lambe, Paul Davidovits, Eben Cross, Adam Ahern, Jason Olfert, Manvendra Dubey, and Claudio Mazzoleni
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2016-270, https://doi.org/10.5194/amt-2016-270, 2016
Revised manuscript not accepted
Short summary
Short summary
Soot particles emitted during the incomplete burning activities, absorb solar radiation and contribute to global warming. Light absorption by soot is also affected by its structure. To investigate whether the soot particle changes its structure or not, we used thermodenuding technique in which soot particles were passed through a heated tube (275 0C). Our study found only minor restructuring of soot suggesting no significant biases in absorption by the modification of soot structure alone.
Xuan Zhang, Jordan E. Krechmer, Michael Groessl, Wen Xu, Stephan Graf, Michael Cubison, John T. Jayne, Jose L. Jimenez, Douglas R. Worsnop, and Manjula R. Canagaratna
Atmos. Chem. Phys., 16, 12945–12959, https://doi.org/10.5194/acp-16-12945-2016, https://doi.org/10.5194/acp-16-12945-2016, 2016
Short summary
Short summary
We develop a novel two-dimensional space to probe the molecular composition of atmospheric organic aerosols.
Jiumeng Liu, Peng Lin, Alexander Laskin, Julia Laskin, Shawn M. Kathmann, Matthew Wise, Ryan Caylor, Felisha Imholt, Vanessa Selimovic, and John E. Shilling
Atmos. Chem. Phys., 16, 12815–12827, https://doi.org/10.5194/acp-16-12815-2016, https://doi.org/10.5194/acp-16-12815-2016, 2016
Short summary
Short summary
Light absorbing organic aerosols (BrC) absorb sunlight thereby influencing climate; however, understanding of the link between their optical properties and environmental variables remains limited. Our chamber experiment results suggest that variables including NOx concentration, RH level, and photolysis time have considerable influence on secondary BrC optical properties. The results contribute to a more accurate characterization of the impacts of aerosols on climate, especially in urban areas.
Xuan Wang, Colette L. Heald, Arthur J. Sedlacek, Suzane S. de Sá, Scot T. Martin, M. Lizabeth Alexander, Thomas B. Watson, Allison C. Aiken, Stephen R. Springston, and Paulo Artaxo
Atmos. Chem. Phys., 16, 12733–12752, https://doi.org/10.5194/acp-16-12733-2016, https://doi.org/10.5194/acp-16-12733-2016, 2016
Short summary
Short summary
We describe a new approach to estimate the absorption of brown carbon (BrC) from multiple-wavelength absorption measurements. By applying this method to column and surface observations globally, we find that BrC contributes up to 40 % of the absorption measured at 440 nm. The analysis of two surface sites also suggests that BrC absorptivity decreases with photochemical aging in biomass burning plumes, but not in typical urban conditions.
Ivan Kourtchev, Ricardo H. M. Godoi, Sarah Connors, James G. Levine, Alex T. Archibald, Ana F. L. Godoi, Sarah L. Paralovo, Cybelli G. G. Barbosa, Rodrigo A. F. Souza, Antonio O. Manzi, Roger Seco, Steve Sjostedt, Jeong-Hoo Park, Alex Guenther, Saewung Kim, James Smith, Scot T. Martin, and Markus Kalberer
Atmos. Chem. Phys., 16, 11899–11913, https://doi.org/10.5194/acp-16-11899-2016, https://doi.org/10.5194/acp-16-11899-2016, 2016
Francesca Sprovieri, Nicola Pirrone, Mariantonia Bencardino, Francesco D'Amore, Francesco Carbone, Sergio Cinnirella, Valentino Mannarino, Matthew Landis, Ralf Ebinghaus, Andreas Weigelt, Ernst-Günther Brunke, Casper Labuschagne, Lynwill Martin, John Munthe, Ingvar Wängberg, Paulo Artaxo, Fernando Morais, Henrique de Melo Jorge Barbosa, Joel Brito, Warren Cairns, Carlo Barbante, María del Carmen Diéguez, Patricia Elizabeth Garcia, Aurélien Dommergue, Helene Angot, Olivier Magand, Henrik Skov, Milena Horvat, Jože Kotnik, Katie Alana Read, Luis Mendes Neves, Bernd Manfred Gawlik, Fabrizio Sena, Nikolay Mashyanov, Vladimir Obolkin, Dennis Wip, Xin Bin Feng, Hui Zhang, Xuewu Fu, Ramesh Ramachandran, Daniel Cossa, Joël Knoery, Nicolas Marusczak, Michelle Nerentorp, and Claus Norstrom
Atmos. Chem. Phys., 16, 11915–11935, https://doi.org/10.5194/acp-16-11915-2016, https://doi.org/10.5194/acp-16-11915-2016, 2016
Short summary
Short summary
This work presents atmospheric Hg concentrations recorded within the GMOS global network analyzing Hg measurement results in terms of temporal trends, seasonality and comparability within the network. The over-arching benefit of this coordinated Hg monitoring network would clearly be the production of high-quality measurement datasets on a global scale useful in developing and validating models on different spatial and temporal scales.
Weiwei Hu, Brett B. Palm, Douglas A. Day, Pedro Campuzano-Jost, Jordan E. Krechmer, Zhe Peng, Suzane S. de Sá, Scot T. Martin, M. Lizabeth Alexander, Karsten Baumann, Lina Hacker, Astrid Kiendler-Scharr, Abigail R. Koss, Joost A. de Gouw, Allen H. Goldstein, Roger Seco, Steven J. Sjostedt, Jeong-Hoo Park, Alex B. Guenther, Saewung Kim, Francesco Canonaco, André S. H. Prévôt, William H. Brune, and Jose L. Jimenez
Atmos. Chem. Phys., 16, 11563–11580, https://doi.org/10.5194/acp-16-11563-2016, https://doi.org/10.5194/acp-16-11563-2016, 2016
Short summary
Short summary
IEPOX-SOA is biogenically derived secondary organic aerosol under anthropogenic influence, which has been shown to comprise a substantial fraction of OA globally. We investigated the lifetime of ambient IEPOX-SOA in the SE US and Amazonia, with an oxidation flow reactor and thermodenuder coupled with MS-based instrumentation. The low volatility and long lifetime of IEPOX-SOA against OH radicals' oxidation (> 2 weeks) was observed, which can help to constrain OA impact on air quality and climate.
Aki Pajunoja, Weiwei Hu, Yu J. Leong, Nathan F. Taylor, Pasi Miettinen, Brett B. Palm, Santtu Mikkonen, Don R. Collins, Jose L. Jimenez, and Annele Virtanen
Atmos. Chem. Phys., 16, 11163–11176, https://doi.org/10.5194/acp-16-11163-2016, https://doi.org/10.5194/acp-16-11163-2016, 2016
Short summary
Short summary
The phase state of ambient particles was inferred from bounce measurements conducted at a rural site in central Alabama during the SOAS campaign. The organic-dominated ambient particles are mostly in the liquid phase at summertime conditions but they turn semisolid when dried in the measurement setup. Bounce humidograms reveal that the hygroscopicity and oxidation of the particles decreases the liquefying RH. The effect of oxidation is emphasized by oxidation flow reactor measurements.
Carly L. Reddington, Dominick V. Spracklen, Paulo Artaxo, David A. Ridley, Luciana V. Rizzo, and Andrea Arana
Atmos. Chem. Phys., 16, 11083–11106, https://doi.org/10.5194/acp-16-11083-2016, https://doi.org/10.5194/acp-16-11083-2016, 2016
Short summary
Short summary
We use a global aerosol model evaluated against long-term observations of surface aerosol and aerosol optical depth (AOD) to better understand the impacts of biomass burning on tropical aerosol. We use three satellite-derived fire emission datasets in the model, identifying regions where these datasets capture observations and where emissions are likely to be underestimated. For coincident observations of surface aerosol and AOD, model underestimation of AOD is greater than of surface aerosol.
A. M. Yáñez-Serrano, A. C. Nölscher, E. Bourtsoukidis, B. Derstroff, N. Zannoni, V. Gros, M. Lanza, J. Brito, S. M. Noe, E. House, C. N. Hewitt, B. Langford, E. Nemitz, T. Behrendt, J. Williams, P. Artaxo, M. O. Andreae, and J. Kesselmeier
Atmos. Chem. Phys., 16, 10965–10984, https://doi.org/10.5194/acp-16-10965-2016, https://doi.org/10.5194/acp-16-10965-2016, 2016
Short summary
Short summary
This paper provides a general overview of methyl ethyl ketone (MEK) ambient observations in different ecosystems around the world in order to provide insights into the sources, sink and role of MEK in the atmosphere.
Giancarlo Ciarelli, Sebnem Aksoyoglu, Monica Crippa, Jose-Luis Jimenez, Eriko Nemitz, Karine Sellegri, Mikko Äijälä, Samara Carbone, Claudia Mohr, Colin O'Dowd, Laurent Poulain, Urs Baltensperger, and André S. H. Prévôt
Atmos. Chem. Phys., 16, 10313–10332, https://doi.org/10.5194/acp-16-10313-2016, https://doi.org/10.5194/acp-16-10313-2016, 2016
Short summary
Short summary
Recent studies based on aerosol mass spectrometer measurements revealed that the organic fraction dominates the non-refractory PM1 composition. However its representation in chemical transport models is still very challenging due to uncertainties in emission sources and formation pathways. In this study, a novel organic aerosol scheme was tested in the regional air quality model CAMx and results were compared with ambient measurements at 11 different sites in Europe.
James D. Whitehead, Eoghan Darbyshire, Joel Brito, Henrique M. J. Barbosa, Ian Crawford, Rafael Stern, Martin W. Gallagher, Paul H. Kaye, James D. Allan, Hugh Coe, Paulo Artaxo, and Gordon McFiggans
Atmos. Chem. Phys., 16, 9727–9743, https://doi.org/10.5194/acp-16-9727-2016, https://doi.org/10.5194/acp-16-9727-2016, 2016
Short summary
Short summary
We present measurements of aerosols during the transition from wet to dry seasons at a pristine rainforest site in central Amazonia. By excluding pollution episodes, we focus on natural biogenic aerosols. Submicron aerosols are dominated by organic material, similar to previous wet season measurements. Larger particles are dominated by biological material, mostly fungal spores, with higher concentrations at night. This study provides important data on the nature of particles above the Amazon.
Matthew J. Alvarado, Chantelle R. Lonsdale, Helen L. Macintyre, Huisheng Bian, Mian Chin, David A. Ridley, Colette L. Heald, Kenneth L. Thornhill, Bruce E. Anderson, Michael J. Cubison, Jose L. Jimenez, Yutaka Kondo, Lokesh K. Sahu, Jack E. Dibb, and Chien Wang
Atmos. Chem. Phys., 16, 9435–9455, https://doi.org/10.5194/acp-16-9435-2016, https://doi.org/10.5194/acp-16-9435-2016, 2016
Short summary
Short summary
Understanding the scattering and absorption of light by aerosols is necessary for understanding air quality and climate change. We used data from the 2008 ARCTAS campaign to evaluate aerosol optical property models using a closure methodology that separates errors in these models from other errors in aerosol emissions, chemistry, or transport. We find that the models on average perform reasonably well, and make suggestions for how remaining biases could be reduced.
Mijung Song, Pengfei F. Liu, Sarah J. Hanna, Rahul A. Zaveri, Katie Potter, Yuan You, Scot T. Martin, and Allan K. Bertram
Atmos. Chem. Phys., 16, 8817–8830, https://doi.org/10.5194/acp-16-8817-2016, https://doi.org/10.5194/acp-16-8817-2016, 2016
Lindsay Renbaum-Wolff, Mijung Song, Claudia Marcolli, Yue Zhang, Pengfei F. Liu, James W. Grayson, Franz M. Geiger, Scot T. Martin, and Allan K. Bertram
Atmos. Chem. Phys., 16, 7969–7979, https://doi.org/10.5194/acp-16-7969-2016, https://doi.org/10.5194/acp-16-7969-2016, 2016
Alma Hodzic, Prasad S. Kasibhatla, Duseong S. Jo, Christopher D. Cappa, Jose L. Jimenez, Sasha Madronich, and Rokjin J. Park
Atmos. Chem. Phys., 16, 7917–7941, https://doi.org/10.5194/acp-16-7917-2016, https://doi.org/10.5194/acp-16-7917-2016, 2016
Short summary
Short summary
The global budget and spatial distribution of secondary organic aerosol (SOA) are highly uncertain in chemistry-climate models, which reflects our inability to characterize all phases of the OA lifecycle. We have performed global model simulations with the newly proposed formation and removal processes (photolysis and heterogeneous chemistry) and shown that SOA is a far more dynamic system, with 4 times stronger production rates and more efficient removal mechanisms, than assumed in models.
Amber M. Ortega, Patrick L. Hayes, Zhe Peng, Brett B. Palm, Weiwei Hu, Douglas A. Day, Rui Li, Michael J. Cubison, William H. Brune, Martin Graus, Carsten Warneke, Jessica B. Gilman, William C. Kuster, Joost de Gouw, Cándido Gutiérrez-Montes, and Jose L. Jimenez
Atmos. Chem. Phys., 16, 7411–7433, https://doi.org/10.5194/acp-16-7411-2016, https://doi.org/10.5194/acp-16-7411-2016, 2016
Short summary
Short summary
An oxidation flow reactor (OFR) was deployed to study secondary organic aerosol (SOA) formation and aging of urban emissions at a wide range of OH exposures during the CalNex campaign in Pasadena, CA, in 2010. Results include linking SOA formation to short-lived reactive compounds, similar elemental composition of reactor-aged emissions to atmospheric aging, changes in OA mass due to condensation of oxidized gas-phase species and heterogeneous oxidation of particle-phase species.
Micael A. Cecchini, Luiz A. T. Machado, Jennifer M. Comstock, Fan Mei, Jian Wang, Jiwen Fan, Jason M. Tomlinson, Beat Schmid, Rachel Albrecht, Scot T. Martin, and Paulo Artaxo
Atmos. Chem. Phys., 16, 7029–7041, https://doi.org/10.5194/acp-16-7029-2016, https://doi.org/10.5194/acp-16-7029-2016, 2016
Short summary
Short summary
This work focuses on the analysis of anthropogenic impacts on Amazonian clouds. The experiment was conducted around Manaus (Brazil), which is a city with 2 million inhabitants and is surrounded by the Amazon forest in every direction. The clouds that form over the pristine atmosphere of the forest are understood as the background clouds and the ones that form over the city pollution are the anthropogenically impacted ones. The paper analyses microphysical characteristics of both types of clouds.
Stijn Hantson, Almut Arneth, Sandy P. Harrison, Douglas I. Kelley, I. Colin Prentice, Sam S. Rabin, Sally Archibald, Florent Mouillot, Steve R. Arnold, Paulo Artaxo, Dominique Bachelet, Philippe Ciais, Matthew Forrest, Pierre Friedlingstein, Thomas Hickler, Jed O. Kaplan, Silvia Kloster, Wolfgang Knorr, Gitta Lasslop, Fang Li, Stephane Mangeon, Joe R. Melton, Andrea Meyn, Stephen Sitch, Allan Spessa, Guido R. van der Werf, Apostolos Voulgarakis, and Chao Yue
Biogeosciences, 13, 3359–3375, https://doi.org/10.5194/bg-13-3359-2016, https://doi.org/10.5194/bg-13-3359-2016, 2016
Short summary
Short summary
Our ability to predict the magnitude and geographic pattern of past and future fire impacts rests on our ability to model fire regimes. A large variety of models exist, and it is unclear which type of model or degree of complexity is required to model fire adequately at regional to global scales. In this paper we summarize the current state of the art in fire-regime modelling and model evaluation, and outline what lessons may be learned from the Fire Model Intercomparison Project – FireMIP.
Christopher D. Cappa, Katheryn R. Kolesar, Xiaolu Zhang, Dean B. Atkinson, Mikhail S. Pekour, Rahul A. Zaveri, Alla Zelenyuk, and Qi Zhang
Atmos. Chem. Phys., 16, 6511–6535, https://doi.org/10.5194/acp-16-6511-2016, https://doi.org/10.5194/acp-16-6511-2016, 2016
Short summary
Short summary
Measurements of size-dependent aerosol optical properties at visible wavelengths made during the 2010 CARES study are reported on, with a special focus on the characterization of supermicron particles. The relationships with and dependence upon particle composition, particle size, photochemical aging, water uptake and heating are discussed, along with broader implications of these in situ measurements for the interpretation of remote sensing products.
Kolby J. Jardine, Angela B. Jardine, Vinicius F. Souza, Vilany Carneiro, Joao V. Ceron, Bruno O. Gimenez, Cilene P. Soares, Flavia M. Durgante, Niro Higuchi, Antonio O. Manzi, José F. C. Gonçalves, Sabrina Garcia, Scot T. Martin, Raquel F. Zorzanelli, Luani R. Piva, and Jeff Q. Chambers
Atmos. Chem. Phys., 16, 6441–6452, https://doi.org/10.5194/acp-16-6441-2016, https://doi.org/10.5194/acp-16-6441-2016, 2016
Short summary
Short summary
In this study, high light-dependent isoprene emissions were observed from mature V. guianensis leaves in the central Amazon. As predicted by energetic models, isoprene emission increased nonlinearly with net photosynthesis. High leaf temperatures resulted in the classic uncoupling of net photosynthesis from isoprene emissions. Finally, leaf phenology differentially controlled methanol and isoprene emissions.
James W. Grayson, Yue Zhang, Anke Mutzel, Lindsay Renbaum-Wolff, Olaf Böge, Saeid Kamal, Hartmut Herrmann, Scot T. Martin, and Allan K. Bertram
Atmos. Chem. Phys., 16, 6027–6040, https://doi.org/10.5194/acp-16-6027-2016, https://doi.org/10.5194/acp-16-6027-2016, 2016
Short summary
Short summary
The effect of several experimental parameters on the viscosity of secondary organic material (SOM) generated from the ozonolysis of α-pinene has been studied. The results demonstrate that the viscosity of SOM depends on the particle mass concentration at which SOM is produced, and the relative humidity (RH) at which the SOM is studied. Hence, particle mass concentration and RH should be considered when comparing experimental results for SOM, or extrapolating laboratory results to the atmosphere.
Jenny A. Fisher, Daniel J. Jacob, Katherine R. Travis, Patrick S. Kim, Eloise A. Marais, Christopher Chan Miller, Karen Yu, Lei Zhu, Robert M. Yantosca, Melissa P. Sulprizio, Jingqiu Mao, Paul O. Wennberg, John D. Crounse, Alex P. Teng, Tran B. Nguyen, Jason M. St. Clair, Ronald C. Cohen, Paul Romer, Benjamin A. Nault, Paul J. Wooldridge, Jose L. Jimenez, Pedro Campuzano-Jost, Douglas A. Day, Weiwei Hu, Paul B. Shepson, Fulizi Xiong, Donald R. Blake, Allen H. Goldstein, Pawel K. Misztal, Thomas F. Hanisco, Glenn M. Wolfe, Thomas B. Ryerson, Armin Wisthaler, and Tomas Mikoviny
Atmos. Chem. Phys., 16, 5969–5991, https://doi.org/10.5194/acp-16-5969-2016, https://doi.org/10.5194/acp-16-5969-2016, 2016
Short summary
Short summary
We use new airborne and ground-based observations from two summer 2013 campaigns in the southeastern US, interpreted with a chemical transport model, to understand the impact of isoprene and monoterpene chemistry on the atmospheric NOx budget via production of organic nitrates (RONO2). We find that a diversity of species contribute to observed RONO2. Our work implies that the NOx sink to RONO2 production is only sensitive to NOx emissions in regions where they are already low.
Holger Baars, Thomas Kanitz, Ronny Engelmann, Dietrich Althausen, Birgit Heese, Mika Komppula, Jana Preißler, Matthias Tesche, Albert Ansmann, Ulla Wandinger, Jae-Hyun Lim, Joon Young Ahn, Iwona S. Stachlewska, Vassilis Amiridis, Eleni Marinou, Patric Seifert, Julian Hofer, Annett Skupin, Florian Schneider, Stephanie Bohlmann, Andreas Foth, Sebastian Bley, Anne Pfüller, Eleni Giannakaki, Heikki Lihavainen, Yrjö Viisanen, Rakesh Kumar Hooda, Sérgio Nepomuceno Pereira, Daniele Bortoli, Frank Wagner, Ina Mattis, Lucja Janicka, Krzysztof M. Markowicz, Peggy Achtert, Paulo Artaxo, Theotonio Pauliquevis, Rodrigo A. F. Souza, Ved Prakesh Sharma, Pieter Gideon van Zyl, Johan Paul Beukes, Junying Sun, Erich G. Rohwer, Ruru Deng, Rodanthi-Elisavet Mamouri, and Felix Zamorano
Atmos. Chem. Phys., 16, 5111–5137, https://doi.org/10.5194/acp-16-5111-2016, https://doi.org/10.5194/acp-16-5111-2016, 2016
Short summary
Short summary
The findings from more than 10 years of global aerosol lidar measurements with Polly systems are summarized, and a data set of optical properties for specific aerosol types is given. An automated data retrieval algorithm for continuous Polly lidar observations is presented and discussed by means of a Saharan dust advection event in Leipzig, Germany. Finally, a statistic on the vertical aerosol distribution including the seasonal variability at PollyNET locations around the globe is presented.
Charles A. Brock, Nicholas L. Wagner, Bruce E. Anderson, Alexis R. Attwood, Andreas Beyersdorf, Pedro Campuzano-Jost, Annmarie G. Carlton, Douglas A. Day, Glenn S. Diskin, Timothy D. Gordon, Jose L. Jimenez, Daniel A. Lack, Jin Liao, Milos Z. Markovic, Ann M. Middlebrook, Nga L. Ng, Anne E. Perring, Matthews S. Richardson, Joshua P. Schwarz, Rebecca A. Washenfelder, Andre Welti, Lu Xu, Luke D. Ziemba, and Daniel M. Murphy
Atmos. Chem. Phys., 16, 4987–5007, https://doi.org/10.5194/acp-16-4987-2016, https://doi.org/10.5194/acp-16-4987-2016, 2016
Short summary
Short summary
Microscopic pollution particles make the atmosphere look hazy and also cool the earth by sending sunlight back to space. When the air is moist, these particles swell with water and scatter even more sunlight. We showed that particles formed from organic material – which dominates particulate pollution in the southeastern U.S. – does not take up water very effectively, toward the low end of most previous studies. We also found a better way to mathematically describe this swelling process.
Charles A. Brock, Nicholas L. Wagner, Bruce E. Anderson, Andreas Beyersdorf, Pedro Campuzano-Jost, Douglas A. Day, Glenn S. Diskin, Timothy D. Gordon, Jose L. Jimenez, Daniel A. Lack, Jin Liao, Milos Z. Markovic, Ann M. Middlebrook, Anne E. Perring, Matthews S. Richardson, Joshua P. Schwarz, Andre Welti, Luke D. Ziemba, and Daniel M. Murphy
Atmos. Chem. Phys., 16, 5009–5019, https://doi.org/10.5194/acp-16-5009-2016, https://doi.org/10.5194/acp-16-5009-2016, 2016
Short summary
Short summary
Two research aircraft made dozens of vertical profiles over rural areas in the southeastern US in summer 2013. These measurements show that, in addition to how much pollution was present and how moist the atmosphere was, the size of the pollutant particles affected how much sunlight was reflected back to space. These measurements will help climate modelers determine which characteristics of pollution are important to predict with accuracy.
S. T. Martin, P. Artaxo, L. A. T. Machado, A. O. Manzi, R. A. F. Souza, C. Schumacher, J. Wang, M. O. Andreae, H. M. J. Barbosa, J. Fan, G. Fisch, A. H. Goldstein, A. Guenther, J. L. Jimenez, U. Pöschl, M. A. Silva Dias, J. N. Smith, and M. Wendisch
Atmos. Chem. Phys., 16, 4785–4797, https://doi.org/10.5194/acp-16-4785-2016, https://doi.org/10.5194/acp-16-4785-2016, 2016
Short summary
Short summary
The Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) Experiment took place in central Amazonia throughout 2014 and 2015. The experiment focused on the complex links among vegetation, atmospheric chemistry, and aerosol production on the one hand and their connections to aerosols, clouds, and precipitation on the other, especially when altered by urban pollution. This article serves as an introduction to the special issue of publications presenting findings of this experiment.
Lu Yu, Jeremy Smith, Alexander Laskin, Katheryn M. George, Cort Anastasio, Julia Laskin, Ann M. Dillner, and Qi Zhang
Atmos. Chem. Phys., 16, 4511–4527, https://doi.org/10.5194/acp-16-4511-2016, https://doi.org/10.5194/acp-16-4511-2016, 2016
Short summary
Short summary
The chemical evolution of SOA formed during aqueous reactions of phenolic compounds is studied via combined bulk and molecular analysis. Phenolic SOA evolve dynamically during photochemical aging, with different reaction mechanisms (oligomerization, fragmentation, and functionalization) leading to different generations of products that span an enormous range in volatilities and a large range in oxidation state and composition. Aqueous reactions of phenols are likely an important source of ELVOC.
Brent J. Williams, Yaping Zhang, Xiaochen Zuo, Raul E. Martinez, Michael J. Walker, Nathan M. Kreisberg, Allen H. Goldstein, Kenneth S. Docherty, and Jose L. Jimenez
Atmos. Meas. Tech., 9, 1569–1586, https://doi.org/10.5194/amt-9-1569-2016, https://doi.org/10.5194/amt-9-1569-2016, 2016
Short summary
Short summary
The thermal desorption aerosol gas chromatograph (TAG) has been used for in situ measurements of organic marker compounds to identify atmospheric particle sources and transformation processes. Here we identify that inorganic aerosol components (e.g., nitrate and sulfate) and highly oxygenated organic components experience thermal decomposition upon sample heating. This thermal decomposition signal in the TAG system is investigated through laboratory and field data.
Zhe Peng, Douglas A. Day, Amber M. Ortega, Brett B. Palm, Weiwei Hu, Harald Stark, Rui Li, Kostas Tsigaridis, William H. Brune, and Jose L. Jimenez
Atmos. Chem. Phys., 16, 4283–4305, https://doi.org/10.5194/acp-16-4283-2016, https://doi.org/10.5194/acp-16-4283-2016, 2016
Short summary
Short summary
Oxidation flow reactors (OFRs) are promising tools of studying atmospheric oxidation processes. Elevated concentrations of both OH and non-OH oxidants in OFRs leave room for speculation that non-OH chemistry can play a major role. Through systematic modeling, we find conditions where non-OH VOC fate is significant and show that, in most field studies of SOA using OFRs, non-OH VOC fate in OFRs was insignificant. We also provide guidelines helping OFR users avoid significant non-OH VOC oxidation.
Matthew C. Woody, Kirk R. Baker, Patrick L. Hayes, Jose L. Jimenez, Bonyoung Koo, and Havala O. T. Pye
Atmos. Chem. Phys., 16, 4081–4100, https://doi.org/10.5194/acp-16-4081-2016, https://doi.org/10.5194/acp-16-4081-2016, 2016
Short summary
Short summary
In this work, organic aerosol (OA) predictions from the volatility basis set (VBS) module in the CMAQ photochemical transport model were evaluated against routine monitoring data and measurements collected during the 2010 CalNex field study. We found that the VBS module more accurately reproduced the observed primary/secondary OA split and secondary OA (SOA) mass at the CalNex Pasadena ground site compared to the traditional CMAQ OA module but still underpredicted observed SOA by ~ 5.2 ×.
Eliane G. Alves, Kolby Jardine, Julio Tota, Angela Jardine, Ana Maria Yãnez-Serrano, Thomas Karl, Julia Tavares, Bruce Nelson, Dasa Gu, Trissevgeni Stavrakou, Scot Martin, Paulo Artaxo, Antonio Manzi, and Alex Guenther
Atmos. Chem. Phys., 16, 3903–3925, https://doi.org/10.5194/acp-16-3903-2016, https://doi.org/10.5194/acp-16-3903-2016, 2016
Short summary
Short summary
For a long time, it was thought that tropical rainforests are evergreen forests and the processes involved in these ecosystems do not change all year long. However, some satellite retrievals have suggested that ecophysiological processes may present seasonal variations mainly due to variation in light and leaf phenology in Amazonia. These in situ measurements are the first showing of a seasonal trend of volatile organic compound emissions, correlating with light and leaf phenology in Amazonia.
Christopher D. Cappa, Shantanu H. Jathar, Michael J. Kleeman, Kenneth S. Docherty, Jose L. Jimenez, John H. Seinfeld, and Anthony S. Wexler
Atmos. Chem. Phys., 16, 3041–3059, https://doi.org/10.5194/acp-16-3041-2016, https://doi.org/10.5194/acp-16-3041-2016, 2016
Short summary
Short summary
Losses of vapors to walls of chambers can negatively bias SOA formation measurements, consequently leading to low predicted SOA concentrations in air quality models. Here, we show that accounting for such vapor losses leads to substantial increases in the predicted amount of SOA formed from VOCs and to notable increases in the O : C atomic ratio in two US regions. Comparison with a variety of observational data suggests generally improved model performance when vapor wall losses are accounted for.
Brett B. Palm, Pedro Campuzano-Jost, Amber M. Ortega, Douglas A. Day, Lisa Kaser, Werner Jud, Thomas Karl, Armin Hansel, James F. Hunter, Eben S. Cross, Jesse H. Kroll, Zhe Peng, William H. Brune, and Jose L. Jimenez
Atmos. Chem. Phys., 16, 2943–2970, https://doi.org/10.5194/acp-16-2943-2016, https://doi.org/10.5194/acp-16-2943-2016, 2016
Short summary
Short summary
Ambient pine forest air was oxidized by OH radicals in a PAM oxidation flow reactor during the BEACHON-RoMBAS campaign to study secondary organic aerosol formation. Approximately 4.4 times more secondary organic aerosol was formed in the reactor than could be explained by the volatile organic gases (VOCs) measured in ambient air. The organic aerosol formation can be explained by including an SOA yield from typically unmeasured semivolatile and intermediate-volatility organic gases (S/IVOCs).
Sayako Ueda, Tomoki Nakayama, Fumikazu Taketani, Kouji Adachi, Atsushi Matsuki, Yoko Iwamoto, Yasuhiro Sadanaga, and Yutaka Matsumi
Atmos. Chem. Phys., 16, 2525–2541, https://doi.org/10.5194/acp-16-2525-2016, https://doi.org/10.5194/acp-16-2525-2016, 2016
Short summary
Short summary
Detailed understandings of the light absorption property of black carbon (BC) particles and its relation to the mixing state and morphology are important. In this study, the enhancement of light absorption of BC due to coating (lensing effect) in a well-aged air mass was observed at an East Asian outflow site in Japan using a photoacoustic spectrometer, and its relation with mixing state and morphology of individual particles was examined based on transmission electron microscope analyses.
Franco Marenco, Ben Johnson, Justin M. Langridge, Jane Mulcahy, Angela Benedetti, Samuel Remy, Luke Jones, Kate Szpek, Jim Haywood, Karla Longo, and Paulo Artaxo
Atmos. Chem. Phys., 16, 2155–2174, https://doi.org/10.5194/acp-16-2155-2016, https://doi.org/10.5194/acp-16-2155-2016, 2016
Short summary
Short summary
A widespread and persistent smoke layer was observed in the Amazon
region during the biomass burning season, spanning a distance of 2200 km
and a period of 14 days. The larger smoke content was typically found
in elevated layers, from 1–1.5 km to 4–6 km.
Measurements have been compared to model predictions, and the latter
were able to reproduce the general features of the smoke layer, but
with some differences which are analysed and described in the paper.
L. Kleinman, C. Kuang, A. Sedlacek, G. Senum, S. Springston, J. Wang, Q. Zhang, J. Jayne, J. Fast, J. Hubbe, J. Shilling, and R. Zaveri
Atmos. Chem. Phys., 16, 1729–1746, https://doi.org/10.5194/acp-16-1729-2016, https://doi.org/10.5194/acp-16-1729-2016, 2016
Short summary
Short summary
Atmospheric measurements of total organic aerosol (OA) and tracers of anthropogenic and biogenic emissions are used to quantify synergistic effects (A–B interactions) between two classes of precursors in the formation of OA. Regressions are consistent with the Sacramento plume composed mainly of modern carbon, and OA correlating best with an anthropogenic tracer. It is found that meteorological conditions during a pollution episode can mimic effects of A–B interactions.
R. H. Mason, M. Si, C. Chou, V. E. Irish, R. Dickie, P. Elizondo, R. Wong, M. Brintnell, M. Elsasser, W. M. Lassar, K. M. Pierce, W. R. Leaitch, A. M. MacDonald, A. Platt, D. Toom-Sauntry, R. Sarda-Estève, C. L. Schiller, K. J. Suski, T. C. J. Hill, J. P. D. Abbatt, J. A. Huffman, P. J. DeMott, and A. K. Bertram
Atmos. Chem. Phys., 16, 1637–1651, https://doi.org/10.5194/acp-16-1637-2016, https://doi.org/10.5194/acp-16-1637-2016, 2016
E. A. Marais, D. J. Jacob, J. L. Jimenez, P. Campuzano-Jost, D. A. Day, W. Hu, J. Krechmer, L. Zhu, P. S. Kim, C. C. Miller, J. A. Fisher, K. Travis, K. Yu, T. F. Hanisco, G. M. Wolfe, H. L. Arkinson, H. O. T. Pye, K. D. Froyd, J. Liao, and V. F. McNeill
Atmos. Chem. Phys., 16, 1603–1618, https://doi.org/10.5194/acp-16-1603-2016, https://doi.org/10.5194/acp-16-1603-2016, 2016
Short summary
Short summary
Isoprene secondary organic aerosol (SOA) is a dominant aerosol component in the southeast US, but models routinely underestimate isoprene SOA with traditional schemes based on chamber studies operated under conditions not representative of isoprene-emitting forests. We develop a new irreversible uptake mechanism to reproduce isoprene SOA yields (3.3 %) and composition, and find a factor of 2 co-benefit of SO2 emission controls on reducing sulfate and organic aerosol in the southeast US.
A. W. H. Chan, N. M. Kreisberg, T. Hohaus, P. Campuzano-Jost, Y. Zhao, D. A. Day, L. Kaser, T. Karl, A. Hansel, A. P. Teng, C. R. Ruehl, D. T. Sueper, J. T. Jayne, D. R. Worsnop, J. L. Jimenez, S. V. Hering, and A. H. Goldstein
Atmos. Chem. Phys., 16, 1187–1205, https://doi.org/10.5194/acp-16-1187-2016, https://doi.org/10.5194/acp-16-1187-2016, 2016
Short summary
Short summary
Using a novel instrument, we have made measurements of organic compounds that can exist as a gas or particle in the rural atmosphere. Through hourly measurements, we have identified the sources and atmospheric processes of these compounds, which are important for modeling the climate and health impact of these emissions.
L. M. Zamora, R. A. Kahn, M. J. Cubison, G. S. Diskin, J. L. Jimenez, Y. Kondo, G. M. McFarquhar, A. Nenes, K. L. Thornhill, A. Wisthaler, A. Zelenyuk, and L. D. Ziemba
Atmos. Chem. Phys., 16, 715–738, https://doi.org/10.5194/acp-16-715-2016, https://doi.org/10.5194/acp-16-715-2016, 2016
Short summary
Short summary
Based on extensive aircraft campaigns, we quantify how biomass burning smoke affects subarctic and Arctic liquid cloud microphysical properties. Enhanced cloud albedo may decrease short-wave radiative flux by between 2 and 4 Wm2 or more in some subarctic conditions. Smoke halved average cloud droplet diameter. In one case study, it also appeared to limit droplet formation. Numerous Arctic background Aitken particles can also interact with combustion particles, perhaps affecting their properties.
B. R. Ayres, H. M. Allen, D. C. Draper, S. S. Brown, R. J. Wild, J. L. Jimenez, D. A. Day, P. Campuzano-Jost, W. Hu, J. de Gouw, A. Koss, R. C. Cohen, K. C. Duffey, P. Romer, K. Baumann, E. Edgerton, S. Takahama, J. A. Thornton, B. H. Lee, F. D. Lopez-Hilfiker, C. Mohr, P. O. Wennberg, T. B. Nguyen, A. Teng, A. H. Goldstein, K. Olson, and J. L. Fry
Atmos. Chem. Phys., 15, 13377–13392, https://doi.org/10.5194/acp-15-13377-2015, https://doi.org/10.5194/acp-15-13377-2015, 2015
Short summary
Short summary
This paper reports atmospheric gas- and aerosol-phase field measurements from the southeastern United States in summer 2013 to demonstrate that the oxidation of biogenic volatile organic compounds by nitrate radical produces a substantial amount of secondary organic aerosol in this region. This process, driven largely by monoterpenes, results in a comparable aerosol nitrate production rate to inorganic nitrate formation by heterogeneous uptake of HNO3 onto dust particles.
C. E. Scott, D. V. Spracklen, J. R. Pierce, I. Riipinen, S. D. D'Andrea, A. Rap, K. S. Carslaw, P. M. Forster, P. Artaxo, M. Kulmala, L. V. Rizzo, E. Swietlicki, G. W. Mann, and K. J. Pringle
Atmos. Chem. Phys., 15, 12989–13001, https://doi.org/10.5194/acp-15-12989-2015, https://doi.org/10.5194/acp-15-12989-2015, 2015
Short summary
Short summary
To understand the radiative effects of biogenic secondary organic aerosol (SOA) it is necessary to consider the manner in which it is distributed across the existing aerosol size distribution. We explore the importance of the approach taken by global-scale models to do this, when calculating the direct radiative effect (DRE) & first aerosol indirect effect (AIE) due to biogenic SOA. This choice has little effect on the DRE, but a substantial impact on the magnitude and even sign of the first AIE
Z. Peng, D. A. Day, H. Stark, R. Li, J. Lee-Taylor, B. B. Palm, W. H. Brune, and J. L. Jimenez
Atmos. Meas. Tech., 8, 4863–4890, https://doi.org/10.5194/amt-8-4863-2015, https://doi.org/10.5194/amt-8-4863-2015, 2015
R. H. Mason, M. Si, J. Li, C. Chou, R. Dickie, D. Toom-Sauntry, C. Pöhlker, J. D. Yakobi-Hancock, L. A. Ladino, K. Jones, W. R. Leaitch, C. L. Schiller, J. P. D. Abbatt, J. A. Huffman, and A. K. Bertram
Atmos. Chem. Phys., 15, 12547–12566, https://doi.org/10.5194/acp-15-12547-2015, https://doi.org/10.5194/acp-15-12547-2015, 2015
A. M. Womack, P. E. Artaxo, F. Y. Ishida, R. C. Mueller, S. R. Saleska, K. T. Wiedemann, B. J. M. Bohannan, and J. L. Green
Biogeosciences, 12, 6337–6349, https://doi.org/10.5194/bg-12-6337-2015, https://doi.org/10.5194/bg-12-6337-2015, 2015
Short summary
Short summary
Fungi in the atmosphere can affect precipitation by nucleating the formation of clouds and ice. This process is important over the Amazon rainforest where precipitation is limited by the types and amount of airborne particles. We found that the total and metabolically active fungi communities were dominated by different taxonomic groups, and the active community unexpectedly contained many lichen fungi, which are effective at nucleating ice.
A. Lupascu, R. Easter, R. Zaveri, M. Shrivastava, M. Pekour, J. Tomlinson, Q. Yang, H. Matsui, A. Hodzic, Q. Zhang, and J. D. Fast
Atmos. Chem. Phys., 15, 12283–12313, https://doi.org/10.5194/acp-15-12283-2015, https://doi.org/10.5194/acp-15-12283-2015, 2015
M. Paramonov, V.-M. Kerminen, M. Gysel, P. P. Aalto, M. O. Andreae, E. Asmi, U. Baltensperger, A. Bougiatioti, D. Brus, G. P. Frank, N. Good, S. S. Gunthe, L. Hao, M. Irwin, A. Jaatinen, Z. Jurányi, S. M. King, A. Kortelainen, A. Kristensson, H. Lihavainen, M. Kulmala, U. Lohmann, S. T. Martin, G. McFiggans, N. Mihalopoulos, A. Nenes, C. D. O'Dowd, J. Ovadnevaite, T. Petäjä, U. Pöschl, G. C. Roberts, D. Rose, B. Svenningsson, E. Swietlicki, E. Weingartner, J. Whitehead, A. Wiedensohler, C. Wittbom, and B. Sierau
Atmos. Chem. Phys., 15, 12211–12229, https://doi.org/10.5194/acp-15-12211-2015, https://doi.org/10.5194/acp-15-12211-2015, 2015
Short summary
Short summary
The research paper presents the first comprehensive overview of field measurements with the CCN Counter performed at a large number of locations around the world within the EUCAARI framework. The paper sheds light on the CCN number concentrations and activated fractions around the world and their dependence on the water vapour supersaturation ratio, the dependence of aerosol hygroscopicity on particle size, and seasonal and diurnal variation of CCN activation and hygroscopic properties.
W. W. Hu, P. Campuzano-Jost, B. B. Palm, D. A. Day, A. M. Ortega, P. L. Hayes, J. E. Krechmer, Q. Chen, M. Kuwata, Y. J. Liu, S. S. de Sá, K. McKinney, S. T. Martin, M. Hu, S. H. Budisulistiorini, M. Riva, J. D. Surratt, J. M. St. Clair, G. Isaacman-Van Wertz, L. D. Yee, A. H. Goldstein, S. Carbone, J. Brito, P. Artaxo, J. A. de Gouw, A. Koss, A. Wisthaler, T. Mikoviny, T. Karl, L. Kaser, W. Jud, A. Hansel, K. S. Docherty, M. L. Alexander, N. H. Robinson, H. Coe, J. D. Allan, M. R. Canagaratna, F. Paulot, and J. L. Jimenez
Atmos. Chem. Phys., 15, 11807–11833, https://doi.org/10.5194/acp-15-11807-2015, https://doi.org/10.5194/acp-15-11807-2015, 2015
Short summary
Short summary
This work summarized all the studies reporting isoprene epoxydiols-derived secondary organic aerosol (IEPOX-SOA) measured globally by aerosol mass spectrometer and compare them with modeled gas-phase IEPOX, with results suggestive of the importance of IEPOX-SOA for regional and global OA budgets. A real-time tracer of IEPOX-SOA is thoroughly evaluated for the first time by combing multiple field and chamber studies. A quick and easy empirical method on IEPOX-SOA estimation is also presented.
M. O. Andreae, O. C. Acevedo, A. Araùjo, P. Artaxo, C. G. G. Barbosa, H. M. J. Barbosa, J. Brito, S. Carbone, X. Chi, B. B. L. Cintra, N. F. da Silva, N. L. Dias, C. Q. Dias-Júnior, F. Ditas, R. Ditz, A. F. L. Godoi, R. H. M. Godoi, M. Heimann, T. Hoffmann, J. Kesselmeier, T. Könemann, M. L. Krüger, J. V. Lavric, A. O. Manzi, A. P. Lopes, D. L. Martins, E. F. Mikhailov, D. Moran-Zuloaga, B. W. Nelson, A. C. Nölscher, D. Santos Nogueira, M. T. F. Piedade, C. Pöhlker, U. Pöschl, C. A. Quesada, L. V. Rizzo, C.-U. Ro, N. Ruckteschler, L. D. A. Sá, M. de Oliveira Sá, C. B. Sales, R. M. N. dos Santos, J. Saturno, J. Schöngart, M. Sörgel, C. M. de Souza, R. A. F. de Souza, H. Su, N. Targhetta, J. Tóta, I. Trebs, S. Trumbore, A. van Eijck, D. Walter, Z. Wang, B. Weber, J. Williams, J. Winderlich, F. Wittmann, S. Wolff, and A. M. Yáñez-Serrano
Atmos. Chem. Phys., 15, 10723–10776, https://doi.org/10.5194/acp-15-10723-2015, https://doi.org/10.5194/acp-15-10723-2015, 2015
Short summary
Short summary
This paper describes the Amazon Tall Tower Observatory (ATTO), a new atmosphere-biosphere observatory located in the remote Amazon Basin. It presents results from ecosystem ecology, meteorology, trace gas, and aerosol measurements collected at the ATTO site during the first 3 years of operation.
H. M. Allen, D. C. Draper, B. R. Ayres, A. Ault, A. Bondy, S. Takahama, R. L. Modini, K. Baumann, E. Edgerton, C. Knote, A. Laskin, B. Wang, and J. L. Fry
Atmos. Chem. Phys., 15, 10669–10685, https://doi.org/10.5194/acp-15-10669-2015, https://doi.org/10.5194/acp-15-10669-2015, 2015
Short summary
Short summary
We report ion chromatographic measurements of gas- and aerosol-phase inorganic species at the SOAS 2013 field study. Our particular focus is on inorganic nitrate aerosol formation via HNO3 uptake onto coarse-mode dust and sea salt particles, which we find to be the dominant source of episodic inorganic nitrate at this site, due to the high acidity of the particles preventing formation of NH4NO3. We calculate a production rate of inorganic nitrate aerosol.
P. S. Kim, D. J. Jacob, J. A. Fisher, K. Travis, K. Yu, L. Zhu, R. M. Yantosca, M. P. Sulprizio, J. L. Jimenez, P. Campuzano-Jost, K. D. Froyd, J. Liao, J. W. Hair, M. A. Fenn, C. F. Butler, N. L. Wagner, T. D. Gordon, A. Welti, P. O. Wennberg, J. D. Crounse, J. M. St. Clair, A. P. Teng, D. B. Millet, J. P. Schwarz, M. Z. Markovic, and A. E. Perring
Atmos. Chem. Phys., 15, 10411–10433, https://doi.org/10.5194/acp-15-10411-2015, https://doi.org/10.5194/acp-15-10411-2015, 2015
J. H. Slade, R. Thalman, J. Wang, and D. A. Knopf
Atmos. Chem. Phys., 15, 10183–10201, https://doi.org/10.5194/acp-15-10183-2015, https://doi.org/10.5194/acp-15-10183-2015, 2015
Short summary
Short summary
Aerosol particles undergo chemical modification during atmospheric transport due to reactions with trace gas species such as OH radicals affecting cloud formation and, thus, prediction of climate. Here, the cloud formation potential of surrogate biomass burning aerosol (BBA) is studied as a function of particle composition and OH exposure. We find that OH oxidation can alter the cloud formation potential of BBA, but its significance depends on the available water-soluble particulate material.
J. G. Levine, A. R. MacKenzie, O. J. Squire, A. T. Archibald, P. T. Griffiths, N. L. Abraham, J. A. Pyle, D. E. Oram, G. Forster, J. F. Brito, J. D. Lee, J. R. Hopkins, A. C. Lewis, S. J. B. Bauguitte, C. F. Demarco, P. Artaxo, P. Messina, J. Lathière, D. A. Hauglustaine, E. House, C. N. Hewitt, and E. Nemitz
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-15-24251-2015, https://doi.org/10.5194/acpd-15-24251-2015, 2015
Revised manuscript has not been submitted
Short summary
Short summary
This study explores our ability to simulate atmospheric chemistry stemming from isoprene emissions—a reactive gas emitted from vegetation—in pristine and polluted regions of the Amazon basin. We explore how two contrasting models fare in reproducing recent airborne measurements in the region. Their differing treatments of transport and mixing are found to: profoundly affect their performance; and yield very different pictures of the exposure of the rainforest to harmful ozone concentrations.
A. Hodzic, S. Madronich, P. S. Kasibhatla, G. Tyndall, B. Aumont, J. L. Jimenez, J. Lee-Taylor, and J. Orlando
Atmos. Chem. Phys., 15, 9253–9269, https://doi.org/10.5194/acp-15-9253-2015, https://doi.org/10.5194/acp-15-9253-2015, 2015
Short summary
Short summary
Our study combines process and global chemistry modeling to investigate the potential effect of gas- and particle-phase organic photolysis reactions on the formation and lifetime of secondary organic aerosols (SOAs). Photolysis of the oxidation intermediates that partition between gas and particle phases to form SOA is not included in 3D models. Our results suggest that exposure to UV light can suppress the formation of SOA or even lead to its substantial loss (comparable to wet deposition).
S. H. Budisulistiorini, X. Li, S. T. Bairai, J. Renfro, Y. Liu, Y. J. Liu, K. A. McKinney, S. T. Martin, V. F. McNeill, H. O. T. Pye, A. Nenes, M. E. Neff, E. A. Stone, S. Mueller, C. Knote, S. L. Shaw, Z. Zhang, A. Gold, and J. D. Surratt
Atmos. Chem. Phys., 15, 8871–8888, https://doi.org/10.5194/acp-15-8871-2015, https://doi.org/10.5194/acp-15-8871-2015, 2015
Short summary
Short summary
Isoprene epoxydiols (IEPOX) are major gas-phase products from the atmospheric oxidation of isoprene that yield secondary organic aerosol (SOA) by reactive uptake onto acidic sulfate aerosol. We report a substantial contribution of IEPOX-derived SOA to the total fine aerosol collected during summer. IEPOX-derived SOA measured by online and offline mass spectrometry techniques is correlated with acidic sulfate aerosol, demonstrating the critical role of anthropogenic emissions in its formation.
J. Liu, E. Scheuer, J. Dibb, G. S. Diskin, L. D. Ziemba, K. L. Thornhill, B. E. Anderson, A. Wisthaler, T. Mikoviny, J. J. Devi, M. Bergin, A. E. Perring, M. Z. Markovic, J. P. Schwarz, P. Campuzano-Jost, D. A. Day, J. L. Jimenez, and R. J. Weber
Atmos. Chem. Phys., 15, 7841–7858, https://doi.org/10.5194/acp-15-7841-2015, https://doi.org/10.5194/acp-15-7841-2015, 2015
Short summary
Short summary
Brown carbon (BrC) is found throughout the US continental troposphere during a summer of extensive biomass burning and its prevalence relative to black carbon (BC) increases with altitude. A radiative transfer model based on direct measurements of aerosol scattering and absorption by BC and BrC shows BrC reduces top-of-atmosphere forcing by 20%. A method to estimate BrC radiative forcing efficiencies from surface-based measurements is provided.
Y. Zhang, M. S. Sanchez, C. Douet, Y. Wang, A. P. Bateman, Z. Gong, M. Kuwata, L. Renbaum-Wolff, B. B. Sato, P. F. Liu, A. K. Bertram, F. M. Geiger, and S. T. Martin
Atmos. Chem. Phys., 15, 7819–7829, https://doi.org/10.5194/acp-15-7819-2015, https://doi.org/10.5194/acp-15-7819-2015, 2015
Short summary
Short summary
The present work estimates the viscosity of submicron organic particles while they are still suspended as an aerosol without further post-processing techniques that can possibly alter the properties of semi-volatile materials. Results imply that atmospheric particles, at least those similar to the ones of this study and for low- to middle-RH regimes, can reach equilibrium or react rather slowly with the surrounding gas phase on time scales even longer than the residence time in the atmosphere.
N. L. Wagner, C. A. Brock, W. M. Angevine, A. Beyersdorf, P. Campuzano-Jost, D. Day, J. A. de Gouw, G. S. Diskin, T. D. Gordon, M. G. Graus, J. S. Holloway, G. Huey, J. L. Jimenez, D. A. Lack, J. Liao, X. Liu, M. Z. Markovic, A. M. Middlebrook, T. Mikoviny, J. Peischl, A. E. Perring, M. S. Richardson, T. B. Ryerson, J. P. Schwarz, C. Warneke, A. Welti, A. Wisthaler, L. D. Ziemba, and D. M. Murphy
Atmos. Chem. Phys., 15, 7085–7102, https://doi.org/10.5194/acp-15-7085-2015, https://doi.org/10.5194/acp-15-7085-2015, 2015
Short summary
Short summary
This paper investigates the summertime vertical profile of aerosol over the southeastern US using in situ measurements collected from aircraft. We use a vertical mixing model and measurements of CO to predict the vertical profile of aerosol that we would expect from vertical mixing alone and compare with the observed aerosol profile. We found a modest enhancement of aerosol in the cloudy transition layer during shallow cumulus convection and attribute the enhancement to local aerosol formation.
B. V. Scarnato, S. China, K. Nielsen, and C. Mazzoleni
Atmos. Chem. Phys., 15, 6913–6928, https://doi.org/10.5194/acp-15-6913-2015, https://doi.org/10.5194/acp-15-6913-2015, 2015
J. W. Grayson, M. Song, M. Sellier, and A. K. Bertram
Atmos. Meas. Tech., 8, 2463–2472, https://doi.org/10.5194/amt-8-2463-2015, https://doi.org/10.5194/amt-8-2463-2015, 2015
R. H. Mason, C. Chou, C. S. McCluskey, E. J. T. Levin, C. L. Schiller, T. C. J. Hill, J. A. Huffman, P. J. DeMott, and A. K. Bertram
Atmos. Meas. Tech., 8, 2449–2462, https://doi.org/10.5194/amt-8-2449-2015, https://doi.org/10.5194/amt-8-2449-2015, 2015
M. J. Cubison and J. L. Jimenez
Atmos. Meas. Tech., 8, 2333–2345, https://doi.org/10.5194/amt-8-2333-2015, https://doi.org/10.5194/amt-8-2333-2015, 2015
P. L. Hayes, A. G. Carlton, K. R. Baker, R. Ahmadov, R. A. Washenfelder, S. Alvarez, B. Rappenglück, J. B. Gilman, W. C. Kuster, J. A. de Gouw, P. Zotter, A. S. H. Prévôt, S. Szidat, T. E. Kleindienst, J. H. Offenberg, P. K. Ma, and J. L. Jimenez
Atmos. Chem. Phys., 15, 5773–5801, https://doi.org/10.5194/acp-15-5773-2015, https://doi.org/10.5194/acp-15-5773-2015, 2015
Short summary
Short summary
(1) Four different parameterizations for the formation and chemical evolution of secondary organic aerosol (SOA) are evaluated using a box model representing the Los Angeles region during the CalNex campaign.
(2) The SOA formed only from the oxidation of VOCs is insufficient to explain the observed SOA concentrations.
(3) The amount of SOA mass formed from diesel vehicle emissions is estimated to be 16-27%.
(4) Modeled SOA depends strongly on the P-S/IVOC volatility distribution.
E. T. Sena and P. Artaxo
Atmos. Chem. Phys., 15, 5471–5483, https://doi.org/10.5194/acp-15-5471-2015, https://doi.org/10.5194/acp-15-5471-2015, 2015
Short summary
Short summary
A new methodology was developed for retrieving the daily direct radiative forcing of smoke aerosols (24h-DARF) using satellite remote sensing. This method was used to assess the DARF at high temporal resolution and over a large area in Amazonia. We showed that our methodology considerably reduces statistical sources of uncertainties in the estimate of the DARF. DARF assessments using the new methodology agree well with ground-based measurements and radiative transfer models.
K. R. Baker, A. G. Carlton, T. E. Kleindienst, J. H. Offenberg, M. R. Beaver, D. R. Gentner, A. H. Goldstein, P. L. Hayes, J. L. Jimenez, J. B. Gilman, J. A. de Gouw, M. C. Woody, H. O. T. Pye, J. T. Kelly, M. Lewandowski, M. Jaoui, P. S. Stevens, W. H. Brune, Y.-H. Lin, C. L. Rubitschun, and J. D. Surratt
Atmos. Chem. Phys., 15, 5243–5258, https://doi.org/10.5194/acp-15-5243-2015, https://doi.org/10.5194/acp-15-5243-2015, 2015
Short summary
Short summary
This work details the evaluation of PM2.5 carbon, VOC precursors, and OH estimated by the CMAQ photochemical transport model using routine and special measurements from the 2010 CalNex field study. Here, CMAQ and most recent emissions inventory (2011 NEI) are used to generate model PM2.5 OC estimates that are examined in novel ways including primary vs. secondary formation, fossil vs. contemporary carbon, OH and HO2 evaluation, and the relationship between key VOC precursors and SOC tracers.
M. Song, P. F. Liu, S. J. Hanna, Y. J. Li, S. T. Martin, and A. K. Bertram
Atmos. Chem. Phys., 15, 5145–5159, https://doi.org/10.5194/acp-15-5145-2015, https://doi.org/10.5194/acp-15-5145-2015, 2015
K. Dzepina, C. Mazzoleni, P. Fialho, S. China, B. Zhang, R. C. Owen, D. Helmig, J. Hueber, S. Kumar, J. A. Perlinger, L. J. Kramer, M. P. Dziobak, M. T. Ampadu, S. Olsen, D. J. Wuebbles, and L. R. Mazzoleni
Atmos. Chem. Phys., 15, 5047–5068, https://doi.org/10.5194/acp-15-5047-2015, https://doi.org/10.5194/acp-15-5047-2015, 2015
Short summary
Short summary
Aerosol was sampled at the Pico Mountain Observatory located at 2.2km amsl on Pico Island of the North Atlantic Azores archipelago. Two aerosol samples characterized by ultrahigh resolution mass spectrometry had biomass burning and marine emissions origins, as corroborated by collocated gas- and particle-phase measurements, air masses analyses and satellites. The paper presents the first molecular characterization of aged and processed aerosol intercepted at a remote lower free troposphere
R. Thalman, M. T. Baeza-Romero, S. M. Ball, E. Borrás, M. J. S. Daniels, I. C. A. Goodall, S. B. Henry, T. Karl, F. N. Keutsch, S. Kim, J. Mak, P. S. Monks, A. Muñoz, J. Orlando, S. Peppe, A. R. Rickard, M. Ródenas, P. Sánchez, R. Seco, L. Su, G. Tyndall, M. Vázquez, T. Vera, E. Waxman, and R. Volkamer
Atmos. Meas. Tech., 8, 1835–1862, https://doi.org/10.5194/amt-8-1835-2015, https://doi.org/10.5194/amt-8-1835-2015, 2015
Short summary
Short summary
Measurements of α-dicarbonyl compounds, like glyoxal (CHOCHO) and methyl glyoxal (CH3C(O)CHO), are informative about the rate of hydrocarbon oxidation, oxidative capacity, and secondary organic aerosol (SOA) formation in the atmosphere. We have compared nine instruments and seven techniques to measure α-dicarbonyl, using simulation chamber facilities in the US and Europe. We assess our understanding of calibration, precision, accuracy and detection limits, as well as possible sampling biases.
Q. Chen, D. K. Farmer, L. V. Rizzo, T. Pauliquevis, M. Kuwata, T. G. Karl, A. Guenther, J. D. Allan, H. Coe, M. O. Andreae, U. Pöschl, J. L. Jimenez, P. Artaxo, and S. T. Martin
Atmos. Chem. Phys., 15, 3687–3701, https://doi.org/10.5194/acp-15-3687-2015, https://doi.org/10.5194/acp-15-3687-2015, 2015
Short summary
Short summary
Submicron particle mass concentration in the Amazon during the wet season of 2008 was dominated by organic material. The PMF analysis finds a comparable importance of gas-phase (gas-to-particle condensation) and particle-phase (reactive uptake of isoprene oxidation products, especially of epoxydiols to acidic haze, fog, or cloud droplets) production of secondary organic material during the study period, together accounting for >70% of the organic-particle mass concentration.
A. M. Yáñez-Serrano, A. C. Nölscher, J. Williams, S. Wolff, E. Alves, G. A. Martins, E. Bourtsoukidis, J. Brito, K. Jardine, P. Artaxo, and J. Kesselmeier
Atmos. Chem. Phys., 15, 3359–3378, https://doi.org/10.5194/acp-15-3359-2015, https://doi.org/10.5194/acp-15-3359-2015, 2015
A. Ripoll, M. C. Minguillón, J. Pey, J. L. Jimenez, D. A. Day, Y. Sosedova, F. Canonaco, A. S. H. Prévôt, X. Querol, and A. Alastuey
Atmos. Chem. Phys., 15, 2935–2951, https://doi.org/10.5194/acp-15-2935-2015, https://doi.org/10.5194/acp-15-2935-2015, 2015
Short summary
Short summary
Real-time measurements of inorganic (sulfate, nitrate, ammonium, chloride and black carbon (BC)) and organic submicron aerosols from a continental background site (Montsec, MSC, 1570m a.s.l.) in the western Mediterranean Basin (WMB) were conducted for 10 months (July 2011 - April 2012) with an aerosol chemical speciation monitor (ACSM). The ACSM was co-located with other online and offline PM1 measurements. Analyses of the hourly, diurnal, and seasonal variations are presented here.
F. Pacifico, G. A. Folberth, S. Sitch, J. M. Haywood, L. V. Rizzo, F. F. Malavelle, and P. Artaxo
Atmos. Chem. Phys., 15, 2791–2804, https://doi.org/10.5194/acp-15-2791-2015, https://doi.org/10.5194/acp-15-2791-2015, 2015
B. Yuan, P. R. Veres, C. Warneke, J. M. Roberts, J. B. Gilman, A. Koss, P. M. Edwards, M. Graus, W. C. Kuster, S.-M. Li, R. J. Wild, S. S. Brown, W. P. Dubé, B. M. Lerner, E. J. Williams, J. E. Johnson, P. K. Quinn, T. S. Bates, B. Lefer, P. L. Hayes, J. L. Jimenez, R. J. Weber, R. Zamora, B. Ervens, D. B. Millet, B. Rappenglück, and J. A. de Gouw
Atmos. Chem. Phys., 15, 1975–1993, https://doi.org/10.5194/acp-15-1975-2015, https://doi.org/10.5194/acp-15-1975-2015, 2015
Short summary
Short summary
In this work, secondary formation of formic acid at an urban site and a site in an oil and gas production region is studied. We investigated various gas phase formation pathways of formic acid, including those recently proposed, using a box model. The contributions from aerosol-related processes, fog events and air-snow exchange to formic acid are also quantified.
P. F. Liu, N. Abdelmalki, H.-M. Hung, Y. Wang, W. H. Brune, and S. T. Martin
Atmos. Chem. Phys., 15, 1435–1446, https://doi.org/10.5194/acp-15-1435-2015, https://doi.org/10.5194/acp-15-1435-2015, 2015
J. C. Schroder, S. J. Hanna, R. L. Modini, A. L. Corrigan, S. M. Kreidenwies, A. M. Macdonald, K. J. Noone, L. M. Russell, W. R. Leaitch, and A. K. Bertram
Atmos. Chem. Phys., 15, 1367–1383, https://doi.org/10.5194/acp-15-1367-2015, https://doi.org/10.5194/acp-15-1367-2015, 2015
D. Lowe, S. Archer-Nicholls, W. Morgan, J. Allan, S. Utembe, B. Ouyang, E. Aruffo, M. Le Breton, R. A. Zaveri, P. Di Carlo, C. Percival, H. Coe, R. Jones, and G. McFiggans
Atmos. Chem. Phys., 15, 1385–1409, https://doi.org/10.5194/acp-15-1385-2015, https://doi.org/10.5194/acp-15-1385-2015, 2015
Y. You and A. K. Bertram
Atmos. Chem. Phys., 15, 1351–1365, https://doi.org/10.5194/acp-15-1351-2015, https://doi.org/10.5194/acp-15-1351-2015, 2015
Short summary
Short summary
The first set of studies illustrates that the liquid/liquid phase separation relative humidity (SRH) does not depend strongly on molecular weight. The second set of studies shows that for most particle types and temperature range studied, SRH does not depend strongly on temperature. SRH did depend strongly on temperature for particles containing α,4-dihydroxy-3-methoxybenzeneacetic acid mixed with ammonium bisulfate due to a combination of low temperature and low water content.
G. Snider, C. L. Weagle, R. V. Martin, A. van Donkelaar, K. Conrad, D. Cunningham, C. Gordon, M. Zwicker, C. Akoshile, P. Artaxo, N. X. Anh, J. Brook, J. Dong, R. M. Garland, R. Greenwald, D. Griffith, K. He, B. N. Holben, R. Kahn, I. Koren, N. Lagrosas, P. Lestari, Z. Ma, J. Vanderlei Martins, E. J. Quel, Y. Rudich, A. Salam, S. N. Tripathi, C. Yu, Q. Zhang, Y. Zhang, M. Brauer, A. Cohen, M. D. Gibson, and Y. Liu
Atmos. Meas. Tech., 8, 505–521, https://doi.org/10.5194/amt-8-505-2015, https://doi.org/10.5194/amt-8-505-2015, 2015
Short summary
Short summary
We have initiated a global network of ground-level monitoring stations to measure concentrations of fine aerosols in urban environments. Our findings include major ions species, total mass, and total scatter at three wavelengths. Results will be used to further evaluate and enhance satellite remote sensing estimates.
M. M. Bela, K. M. Longo, S. R. Freitas, D. S. Moreira, V. Beck, S. C. Wofsy, C. Gerbig, K. Wiedemann, M. O. Andreae, and P. Artaxo
Atmos. Chem. Phys., 15, 757–782, https://doi.org/10.5194/acp-15-757-2015, https://doi.org/10.5194/acp-15-757-2015, 2015
Short summary
Short summary
In the Amazon Basin, gases that lead to the formation of ozone (O3), an air pollutant and greenhouse gas, are emitted from fire, urban and biogenic sources. This study presents the first basin wide aircraft measurements of O3 during the dry-to-wet and wet-to-dry transition seasons, which show extremely low values above undisturbed forest and increases from fires. This work also demonstrates the capabilities and limitations of regional atmospheric chemistry models in representing O3 in Amazonia.
M. R. Canagaratna, J. L. Jimenez, J. H. Kroll, Q. Chen, S. H. Kessler, P. Massoli, L. Hildebrandt Ruiz, E. Fortner, L. R. Williams, K. R. Wilson, J. D. Surratt, N. M. Donahue, J. T. Jayne, and D. R. Worsnop
Atmos. Chem. Phys., 15, 253–272, https://doi.org/10.5194/acp-15-253-2015, https://doi.org/10.5194/acp-15-253-2015, 2015
Short summary
Short summary
Atomic oxygen-to-carbon (O:C), hydrogen-to-carbon (H:C), and organic mass-to-organic carbon (OM:OC) ratios of ambient organic aerosol (OA) species provide key constraints for understanding their sources and impacts. Here an improved method for obtaining accurate O:C, H:C, and OM:OC with a widely used aerosol mass spectrometer is developed. These results imply that OA is more oxidized than previously estimated and indicate the need for new chemical mechanisms that simulate ambient oxidation.
C. Knote, A. Hodzic, and J. L. Jimenez
Atmos. Chem. Phys., 15, 1–18, https://doi.org/10.5194/acp-15-1-2015, https://doi.org/10.5194/acp-15-1-2015, 2015
Short summary
Short summary
Organic material found in ambient aerosol is mostly formed through the oxidation of gaseous precursors. It is semi-volatile under atmospheric conditions, and it continuously partitions between the gas and particle phases. At the same time, it is also highly water soluble. We show that wet and especially dry deposition of semi-volatile organic compounds in the gas phase are major indirect removal pathways for the particle phase, and hence need to be accurately accounted for in modeling studies.
J. D. Yakobi-Hancock, L. A. Ladino, A. K. Bertram, J. A. Huffman, K. Jones, W. R. Leaitch, R. H. Mason, C. L. Schiller, D. Toom-Sauntry, J. P. S. Wong, and J. P. D. Abbatt
Atmos. Chem. Phys., 14, 12307–12317, https://doi.org/10.5194/acp-14-12307-2014, https://doi.org/10.5194/acp-14-12307-2014, 2014
Short summary
Short summary
As one aspect of the NETwork on Climate and Aerosols: addressing key uncertainties in Remote Canadian Environments, measurements of the cloud condensation nucleation properties of 50 nm and 100 nm aerosol particles were conducted at Ucluelet on the west coast of Vancouver Island in August 2013. The most efficient cloud condensation nuclei arose when the organic to sulfate ratio of the aerosol was lowest and when winds arrived from the west after transport through the marine boundary layer.
J. Brito, L. V. Rizzo, W. T. Morgan, H. Coe, B. Johnson, J. Haywood, K. Longo, S. Freitas, M. O. Andreae, and P. Artaxo
Atmos. Chem. Phys., 14, 12069–12083, https://doi.org/10.5194/acp-14-12069-2014, https://doi.org/10.5194/acp-14-12069-2014, 2014
Short summary
Short summary
This paper details the physical--chemical characteristics of aerosols in a region strongly impacted by biomass burning in the western part of the Brazilian Amazon region. For such, a large suite of state-of-the-art instruments for realtime analysis was deployed at a ground site. Among the key findings, we observe the strong prevalence of organic aerosols associated to fire emissions, with important climate effects, and indications of its very fast processing in the atmosphere.
S. Archer-Nicholls, D. Lowe, S. Utembe, J. Allan, R. A. Zaveri, J. D. Fast, Ø. Hodnebrog, H. Denier van der Gon, and G. McFiggans
Geosci. Model Dev., 7, 2557–2579, https://doi.org/10.5194/gmd-7-2557-2014, https://doi.org/10.5194/gmd-7-2557-2014, 2014
J. D. Allan, W. T. Morgan, E. Darbyshire, M. J. Flynn, P. I. Williams, D. E. Oram, P. Artaxo, J. Brito, J. D. Lee, and H. Coe
Atmos. Chem. Phys., 14, 11393–11407, https://doi.org/10.5194/acp-14-11393-2014, https://doi.org/10.5194/acp-14-11393-2014, 2014
K. Tsigaridis, N. Daskalakis, M. Kanakidou, P. J. Adams, P. Artaxo, R. Bahadur, Y. Balkanski, S. E. Bauer, N. Bellouin, A. Benedetti, T. Bergman, T. K. Berntsen, J. P. Beukes, H. Bian, K. S. Carslaw, M. Chin, G. Curci, T. Diehl, R. C. Easter, S. J. Ghan, S. L. Gong, A. Hodzic, C. R. Hoyle, T. Iversen, S. Jathar, J. L. Jimenez, J. W. Kaiser, A. Kirkevåg, D. Koch, H. Kokkola, Y. H Lee, G. Lin, X. Liu, G. Luo, X. Ma, G. W. Mann, N. Mihalopoulos, J.-J. Morcrette, J.-F. Müller, G. Myhre, S. Myriokefalitakis, N. L. Ng, D. O'Donnell, J. E. Penner, L. Pozzoli, K. J. Pringle, L. M. Russell, M. Schulz, J. Sciare, Ø. Seland, D. T. Shindell, S. Sillman, R. B. Skeie, D. Spracklen, T. Stavrakou, S. D. Steenrod, T. Takemura, P. Tiitta, S. Tilmes, H. Tost, T. van Noije, P. G. van Zyl, K. von Salzen, F. Yu, Z. Wang, Z. Wang, R. A. Zaveri, H. Zhang, K. Zhang, Q. Zhang, and X. Zhang
Atmos. Chem. Phys., 14, 10845–10895, https://doi.org/10.5194/acp-14-10845-2014, https://doi.org/10.5194/acp-14-10845-2014, 2014
A. Rocha-Lima, J. V. Martins, L. A. Remer, N. A. Krotkov, M. H. Tabacniks, Y. Ben-Ami, and P. Artaxo
Atmos. Chem. Phys., 14, 10649–10661, https://doi.org/10.5194/acp-14-10649-2014, https://doi.org/10.5194/acp-14-10649-2014, 2014
J. D. Fast, J. Allan, R. Bahreini, J. Craven, L. Emmons, R. Ferrare, P. L. Hayes, A. Hodzic, J. Holloway, C. Hostetler, J. L. Jimenez, H. Jonsson, S. Liu, Y. Liu, A. Metcalf, A. Middlebrook, J. Nowak, M. Pekour, A. Perring, L. Russell, A. Sedlacek, J. Seinfeld, A. Setyan, J. Shilling, M. Shrivastava, S. Springston, C. Song, R. Subramanian, J. W. Taylor, V. Vinoj, Q. Yang, R. A. Zaveri, and Q. Zhang
Atmos. Chem. Phys., 14, 10013–10060, https://doi.org/10.5194/acp-14-10013-2014, https://doi.org/10.5194/acp-14-10013-2014, 2014
D. I. Haga, S. M. Burrows, R. Iannone, M. J. Wheeler, R. H. Mason, J. Chen, E. A. Polishchuk, U. Pöschl, and A. K. Bertram
Atmos. Chem. Phys., 14, 8611–8630, https://doi.org/10.5194/acp-14-8611-2014, https://doi.org/10.5194/acp-14-8611-2014, 2014
G. P. Almeida, J. Brito, C. A. Morales, M. F. Andrade, and P. Artaxo
Atmos. Chem. Phys., 14, 7559–7572, https://doi.org/10.5194/acp-14-7559-2014, https://doi.org/10.5194/acp-14-7559-2014, 2014
S. Saarikoski, S. Carbone, M. J. Cubison, R. Hillamo, P. Keronen, C. Sioutas, D. R. Worsnop, and J. L. Jimenez
Atmos. Meas. Tech., 7, 2121–2135, https://doi.org/10.5194/amt-7-2121-2014, https://doi.org/10.5194/amt-7-2121-2014, 2014
G. G. Cirino, R. A. F. Souza, D. K. Adams, and P. Artaxo
Atmos. Chem. Phys., 14, 6523–6543, https://doi.org/10.5194/acp-14-6523-2014, https://doi.org/10.5194/acp-14-6523-2014, 2014
J. Ortega, A. Turnipseed, A. B. Guenther, T. G. Karl, D. A. Day, D. Gochis, J. A. Huffman, A. J. Prenni, E. J. T. Levin, S. M. Kreidenweis, P. J. DeMott, Y. Tobo, E. G. Patton, A. Hodzic, Y. Y. Cui, P. C. Harley, R. S. Hornbrook, E. C. Apel, R. K. Monson, A. S. D. Eller, J. P. Greenberg, M. C. Barth, P. Campuzano-Jost, B. B. Palm, J. L. Jimenez, A. C. Aiken, M. K. Dubey, C. Geron, J. Offenberg, M. G. Ryan, P. J. Fornwalt, S. C. Pryor, F. N. Keutsch, J. P. DiGangi, A. W. H. Chan, A. H. Goldstein, G. M. Wolfe, S. Kim, L. Kaser, R. Schnitzhofer, A. Hansel, C. A. Cantrell, R. L. Mauldin, and J. N. Smith
Atmos. Chem. Phys., 14, 6345–6367, https://doi.org/10.5194/acp-14-6345-2014, https://doi.org/10.5194/acp-14-6345-2014, 2014
C. Knote, A. Hodzic, J. L. Jimenez, R. Volkamer, J. J. Orlando, S. Baidar, J. Brioude, J. Fast, D. R. Gentner, A. H. Goldstein, P. L. Hayes, W. B. Knighton, H. Oetjen, A. Setyan, H. Stark, R. Thalman, G. Tyndall, R. Washenfelder, E. Waxman, and Q. Zhang
Atmos. Chem. Phys., 14, 6213–6239, https://doi.org/10.5194/acp-14-6213-2014, https://doi.org/10.5194/acp-14-6213-2014, 2014
M. Crippa, F. Canonaco, V. A. Lanz, M. Äijälä, J. D. Allan, S. Carbone, G. Capes, D. Ceburnis, M. Dall'Osto, D. A. Day, P. F. DeCarlo, M. Ehn, A. Eriksson, E. Freney, L. Hildebrandt Ruiz, R. Hillamo, J. L. Jimenez, H. Junninen, A. Kiendler-Scharr, A.-M. Kortelainen, M. Kulmala, A. Laaksonen, A. A. Mensah, C. Mohr, E. Nemitz, C. O'Dowd, J. Ovadnevaite, S. N. Pandis, T. Petäjä, L. Poulain, S. Saarikoski, K. Sellegri, E. Swietlicki, P. Tiitta, D. R. Worsnop, U. Baltensperger, and A. S. H. Prévôt
Atmos. Chem. Phys., 14, 6159–6176, https://doi.org/10.5194/acp-14-6159-2014, https://doi.org/10.5194/acp-14-6159-2014, 2014
H. M. J. Barbosa, B. Barja, T. Pauliquevis, D. A. Gouveia, P. Artaxo, G. G. Cirino, R. M. N. Santos, and A. B. Oliveira
Atmos. Meas. Tech., 7, 1745–1762, https://doi.org/10.5194/amt-7-1745-2014, https://doi.org/10.5194/amt-7-1745-2014, 2014
J. C. Kaiser, J. Hendricks, M. Righi, N. Riemer, R. A. Zaveri, S. Metzger, and V. Aquila
Geosci. Model Dev., 7, 1137–1157, https://doi.org/10.5194/gmd-7-1137-2014, https://doi.org/10.5194/gmd-7-1137-2014, 2014
R. A. Zaveri, R. C. Easter, J. E. Shilling, and J. H. Seinfeld
Atmos. Chem. Phys., 14, 5153–5181, https://doi.org/10.5194/acp-14-5153-2014, https://doi.org/10.5194/acp-14-5153-2014, 2014
S. G. Howell, A. D. Clarke, S. Freitag, C. S. McNaughton, V. Kapustin, V. Brekovskikh, J.-L. Jimenez, and M. J. Cubison
Atmos. Chem. Phys., 14, 5073–5087, https://doi.org/10.5194/acp-14-5073-2014, https://doi.org/10.5194/acp-14-5073-2014, 2014
Y.-N. Lee, S. Springston, J. Jayne, J. Wang, J. Hubbe, G. Senum, L. Kleinman, and P. H. Daum
Atmos. Chem. Phys., 14, 5057–5072, https://doi.org/10.5194/acp-14-5057-2014, https://doi.org/10.5194/acp-14-5057-2014, 2014
E. J. T. Levin, A. J. Prenni, B. B. Palm, D. A. Day, P. Campuzano-Jost, P. M. Winkler, S. M. Kreidenweis, P. J. DeMott, J. L. Jimenez, and J. N. Smith
Atmos. Chem. Phys., 14, 2657–2667, https://doi.org/10.5194/acp-14-2657-2014, https://doi.org/10.5194/acp-14-2657-2014, 2014
J. J. Ensberg, P. L. Hayes, J. L. Jimenez, J. B. Gilman, W. C. Kuster, J. A. de Gouw, J. S. Holloway, T. D. Gordon, S. Jathar, A. L. Robinson, and J. H. Seinfeld
Atmos. Chem. Phys., 14, 2383–2397, https://doi.org/10.5194/acp-14-2383-2014, https://doi.org/10.5194/acp-14-2383-2014, 2014
J. Kangasluoma, C. Kuang, D. Wimmer, M. P. Rissanen, K. Lehtipalo, M. Ehn, D. R. Worsnop, J. Wang, M. Kulmala, and T. Petäjä
Atmos. Meas. Tech., 7, 689–700, https://doi.org/10.5194/amt-7-689-2014, https://doi.org/10.5194/amt-7-689-2014, 2014
R. L. N. Yatavelli, H. Stark, S. L. Thompson, J. R. Kimmel, M. J. Cubison, D. A. Day, P. Campuzano-Jost, B. B. Palm, A. Hodzic, J. A. Thornton, J. T. Jayne, D. R. Worsnop, and J. L. Jimenez
Atmos. Chem. Phys., 14, 1527–1546, https://doi.org/10.5194/acp-14-1527-2014, https://doi.org/10.5194/acp-14-1527-2014, 2014
S. Zhou, L. Gonzalez, A. Leithead, Z. Finewax, R. Thalman, A. Vlasenko, S. Vagle, L.A. Miller, S.-M. Li, S. Bureekul, H. Furutani, M. Uematsu, R. Volkamer, and J. Abbatt
Atmos. Chem. Phys., 14, 1371–1384, https://doi.org/10.5194/acp-14-1371-2014, https://doi.org/10.5194/acp-14-1371-2014, 2014
F. Mei, A. Setyan, Q. Zhang, and J. Wang
Atmos. Chem. Phys., 13, 12155–12169, https://doi.org/10.5194/acp-13-12155-2013, https://doi.org/10.5194/acp-13-12155-2013, 2013
J. Brito, L. V. Rizzo, P. Herckes, P. C. Vasconcellos, S. E. S. Caumo, A. Fornaro, R. Y. Ynoue, P. Artaxo, and M. F. Andrade
Atmos. Chem. Phys., 13, 12199–12213, https://doi.org/10.5194/acp-13-12199-2013, https://doi.org/10.5194/acp-13-12199-2013, 2013
Y. You, L. Renbaum-Wolff, and A. K. Bertram
Atmos. Chem. Phys., 13, 11723–11734, https://doi.org/10.5194/acp-13-11723-2013, https://doi.org/10.5194/acp-13-11723-2013, 2013
A. M. Ortega, D. A. Day, M. J. Cubison, W. H. Brune, D. Bon, J. A. de Gouw, and J. L. Jimenez
Atmos. Chem. Phys., 13, 11551–11571, https://doi.org/10.5194/acp-13-11551-2013, https://doi.org/10.5194/acp-13-11551-2013, 2013
C. Zhao, S. Chen, L. R. Leung, Y. Qian, J. F. Kok, R. A. Zaveri, and J. Huang
Atmos. Chem. Phys., 13, 10733–10753, https://doi.org/10.5194/acp-13-10733-2013, https://doi.org/10.5194/acp-13-10733-2013, 2013
R. C. Moffet, T. C. Rödel, S. T. Kelly, X. Y. Yu, G. T. Carroll, J. Fast, R. A. Zaveri, A. Laskin, and M. K. Gilles
Atmos. Chem. Phys., 13, 10445–10459, https://doi.org/10.5194/acp-13-10445-2013, https://doi.org/10.5194/acp-13-10445-2013, 2013
J. L. Fry, D. C. Draper, K. J. Zarzana, P. Campuzano-Jost, D. A. Day, J. L. Jimenez, S. S. Brown, R. C. Cohen, L. Kaser, A. Hansel, L. Cappellin, T. Karl, A. Hodzic Roux, A. Turnipseed, C. Cantrell, B. L. Lefer, and N. Grossberg
Atmos. Chem. Phys., 13, 8585–8605, https://doi.org/10.5194/acp-13-8585-2013, https://doi.org/10.5194/acp-13-8585-2013, 2013
J. Wang, R. L. McGraw, and C. Kuang
Atmos. Chem. Phys., 13, 6523–6531, https://doi.org/10.5194/acp-13-6523-2013, https://doi.org/10.5194/acp-13-6523-2013, 2013
J. A. Huffman, A. J. Prenni, P. J. DeMott, C. Pöhlker, R. H. Mason, N. H. Robinson, J. Fröhlich-Nowoisky, Y. Tobo, V. R. Després, E. Garcia, D. J. Gochis, E. Harris, I. Müller-Germann, C. Ruzene, B. Schmer, B. Sinha, D. A. Day, M. O. Andreae, J. L. Jimenez, M. Gallagher, S. M. Kreidenweis, A. K. Bertram, and U. Pöschl
Atmos. Chem. Phys., 13, 6151–6164, https://doi.org/10.5194/acp-13-6151-2013, https://doi.org/10.5194/acp-13-6151-2013, 2013
Y. J. Liu, I. Herdlinger-Blatt, K. A. McKinney, and S. T. Martin
Atmos. Chem. Phys., 13, 5715–5730, https://doi.org/10.5194/acp-13-5715-2013, https://doi.org/10.5194/acp-13-5715-2013, 2013
M. Kuwata, W. Shao, R. Lebouteiller, and S. T. Martin
Atmos. Chem. Phys., 13, 5309–5324, https://doi.org/10.5194/acp-13-5309-2013, https://doi.org/10.5194/acp-13-5309-2013, 2013
E. C. Browne, K.-E. Min, P. J. Wooldridge, E. Apel, D. R. Blake, W. H. Brune, C. A. Cantrell, M. J. Cubison, G. S. Diskin, J. L. Jimenez, A. J. Weinheimer, P. O. Wennberg, A. Wisthaler, and R. C. Cohen
Atmos. Chem. Phys., 13, 4543–4562, https://doi.org/10.5194/acp-13-4543-2013, https://doi.org/10.5194/acp-13-4543-2013, 2013
M. Gyawali, W. P. Arnott, R. A. Zaveri, C. Song, M. Pekour, B. Flowers, M. K. Dubey, A. Setyan, Q. Zhang, J. W. Harworth, J. G. Radney, D. B. Atkinson, S. China, C. Mazzoleni, K. Gorkowski, R. Subramanian, B. T. Jobson, and H. Moosmüller
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-13-7113-2013, https://doi.org/10.5194/acpd-13-7113-2013, 2013
Revised manuscript not accepted
T. L. Lathem, A. J. Beyersdorf, K. L. Thornhill, E. L. Winstead, M. J. Cubison, A. Hecobian, J. L. Jimenez, R. J. Weber, B. E. Anderson, and A. Nenes
Atmos. Chem. Phys., 13, 2735–2756, https://doi.org/10.5194/acp-13-2735-2013, https://doi.org/10.5194/acp-13-2735-2013, 2013
L. V. Rizzo, P. Artaxo, T. Müller, A. Wiedensohler, M. Paixão, G. G. Cirino, A. Arana, E. Swietlicki, P. Roldin, E. O. Fors, K. T. Wiedemann, L. S. M. Leal, and M. Kulmala
Atmos. Chem. Phys., 13, 2391–2413, https://doi.org/10.5194/acp-13-2391-2013, https://doi.org/10.5194/acp-13-2391-2013, 2013
J. E. Shilling, R. A. Zaveri, J. D. Fast, L. Kleinman, M. L. Alexander, M. R. Canagaratna, E. Fortner, J. M. Hubbe, J. T. Jayne, A. Sedlacek, A. Setyan, S. Springston, D. R. Worsnop, and Q. Zhang
Atmos. Chem. Phys., 13, 2091–2113, https://doi.org/10.5194/acp-13-2091-2013, https://doi.org/10.5194/acp-13-2091-2013, 2013
L. Renbaum-Wolff, J. W. Grayson, and A. K. Bertram
Atmos. Chem. Phys., 13, 791–802, https://doi.org/10.5194/acp-13-791-2013, https://doi.org/10.5194/acp-13-791-2013, 2013
J. A. Huffman, B. Sinha, R. M. Garland, A. Snee-Pollmann, S. S. Gunthe, P. Artaxo, S. T. Martin, M. O. Andreae, and U. Pöschl
Atmos. Chem. Phys., 12, 11997–12019, https://doi.org/10.5194/acp-12-11997-2012, https://doi.org/10.5194/acp-12-11997-2012, 2012
Related subject area
Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
A multi-site passive approach to studying the emissions and evolution of smoke from prescribed fires
The annual cycle and sources of relevant aerosol precursor vapors in the central Arctic during the MOSAiC expedition
Opinion: How will advances in aerosol science inform our understanding of the health impacts of outdoor particulate pollution?
Measurement report: Intra-annual variability of black carbon and brown carbon and their interrelation with meteorological conditions over Gangtok, Sikkim
Long-range transport of air pollutants increases the concentration of hazardous components of PM2.5 in northern South America
Dominant influence of biomass combustion and cross-border transport on nitrogen-containing organic compound levels in the southeastern Tibetan Plateau
Impacts of elevated anthropogenic emissions on physicochemical characteristics of black-carbon-containing particles over the Tibetan Plateau
Online characterization of primary and secondary emissions of particulate matter and acidic molecules from a modern fleet of city buses
Atmospheric evolution of environmentally persistent free radicals in the rural North China Plain: effects on water solubility and PM2.5 oxidative potential
Two distinct ship emission profiles for organic-sulfate source apportionment of PM in sulfur emission control areas
Automated compound speciation, cluster analysis, and quantification of organic vapors and aerosols using comprehensive two-dimensional gas chromatography and mass spectrometry
Measurement report: Occurrence of aminiums in PM2.5 during winter in China – aminium outbreak during polluted episodes and potential constraints
Bridging gas and aerosol properties between the northeastern US and Bermuda: analysis of eight transit flights
The behaviour of charged particles (ions) during new particle formation events in urban Leipzig, Germany
Exploring the sources of light-absorbing carbonaceous aerosols by integrating observational and modeling results: insights from Northeast China
Measurement report: Characteristics of airborne black-carbon-containing particles during the 2021 summer COVID-19 lockdown in a typical Yangtze River Delta city, China
Aerosol optical properties within the atmospheric boundary layer predicted from ground-based observations compared to Raman lidar retrievals during RITA-2021
Hygroscopic growth and activation changed submicron aerosol composition and properties in the North China Plain
Measurement report: Formation of tropospheric brown carbon in a lifting air mass
Vertical variability of aerosol properties and trace gases over a remote marine region: a case study over Bermuda
Differences in aerosol and cloud properties along the central California coast when winds change from northerly to southerly
International airport emissions and their impact on local air quality: chemical speciation of ambient aerosols at Madrid–Barajas Airport during the AVIATOR campaign
Significant role of biomass burning in heavy haze formation in a megacity: Molecular-level insights from intensive PM2.5 sampling on winter hazy days
The local ship speed reduction effect on black carbon emissions measured at a remote marine station
High-altitude aerosol chemical characterization and source identification: insights from the CALISHTO campaign
Measurement report: Impact of emission control measures on environmental persistent free radicals and reactive oxygen species – a short-term case study in Beijing
Characterizing water solubility of fresh and aged secondary organic aerosol in PM2.5 with the stable carbon isotope technique
Measurement report: Impact of cloud processes on secondary organic aerosols at a forested mountain site in southeastern China
Critical contribution of chemically diverse carbonyl molecules to the oxidative potential of atmospheric aerosols
Seasonal Investigation of Ultrafine Particle Composition in an Eastern Amazonian Rainforest
Measurement report: Vanadium-containing ship exhaust particles detected in and above the marine boundary layer in the remote atmosphere
Diverging trends in aerosol sulfate and nitrate measured in the remote North Atlantic in Barbados are attributed to clean air policies, African smoke, and anthropogenic emissions
Technical note: Quantified organic aerosol subsaturated hygroscopicity by a simple optical scatter monitor system through field measurements
Diverse sources and aging change the mixing state and ice nucleation properties of aerosol particles over the western Pacific and Southern Ocean
The water-insoluble organic carbon in PM2.5 of typical Chinese urban areas: light-absorbing properties, potential sources, radiative forcing effects, and a possible light-absorbing continuum
Measurement report: Size-resolved secondary organic aerosol formation modulated by aerosol water uptake in wintertime haze
In situ measurement of organic aerosol molecular markers in urban Hong Kong during a summer period: temporal variations and source apportionment
Technical note: Determining chemical composition of atmospheric single particles by a standard-free mass calibration algorithm
Different formation pathways of nitrogen-containing organic compounds in aerosols and fog water in northern China
Impact of weather patterns and meteorological factors on PM2.5 and O3 responses to the COVID-19 lockdown in China
Daytime and nighttime aerosol soluble iron formation in clean and slightly polluted moist air in a coastal city in eastern China
Non-negligible secondary contribution to brown carbon in autumn and winter: inspiration from particulate nitrated and oxygenated aromatic compounds in urban Beijing
Non-sea-salt aerosols that contain trace bromine and iodine are widespread in the remote troposphere
Simultaneous organic aerosol source apportionment at two Antarctic sites reveals large-scale and ecoregion-specific components
Measurement report: Optical characterization, seasonality, and sources of brown carbon in fine aerosols from Tianjin, North China: year-round observations
High-resolution analyses of concentrations and sizes of black carbon particles deposited on northwest Greenland over the past 350 years – Part 2: Seasonal and temporal trends in black carbon originated from fossil fuel combustion and biomass burning
Bayesian inference-based estimation of hourly primary and secondary organic carbon in suburban Hong Kong: multi-temporal-scale variations and evolution characteristics during PM2.5 episodes
Formation and chemical evolution of SOA in two different environments: A dual chamber study
Enhanced daytime secondary aerosol formation driven by gas-particle partitioning in downwind urban plumes
Multiple eco-regions contribute to the seasonal cycle of Antarctic aerosol size distributions
Rime El Asmar, Zongrun Li, David J. Tanner, Yongtao Hu, Susan O'Neill, L. Gregory Huey, M. Talat Odman, and Rodney J. Weber
Atmos. Chem. Phys., 24, 12749–12773, https://doi.org/10.5194/acp-24-12749-2024, https://doi.org/10.5194/acp-24-12749-2024, 2024
Short summary
Short summary
Prescribed burning is an important method for managing ecosystems and preventing wildfires. However, smoke from prescribed fires can have a significant impact on air quality. Here, using a network of fixed sites and sampling throughout an extended prescribed burning period in 2 different years, we characterize emissions and evolutions of up to 8 h of PM2.5 mass, black carbon (BC), and brown carbon (BrC) in smoke from burning of forested lands in the southeastern USA.
Matthew Boyer, Diego Aliaga, Lauriane L. J. Quéléver, Silvia Bucci, Hélène Angot, Lubna Dada, Benjamin Heutte, Lisa Beck, Marina Duetsch, Andreas Stohl, Ivo Beck, Tiia Laurila, Nina Sarnela, Roseline C. Thakur, Branka Miljevic, Markku Kulmala, Tuukka Petäjä, Mikko Sipilä, Julia Schmale, and Tuija Jokinen
Atmos. Chem. Phys., 24, 12595–12621, https://doi.org/10.5194/acp-24-12595-2024, https://doi.org/10.5194/acp-24-12595-2024, 2024
Short summary
Short summary
We analyze the seasonal cycle and sources of gases that are relevant for the formation of aerosol particles in the central Arctic. Since theses gases can form new particles, they can influence Arctic climate. We show that the sources of these gases are associated with changes in the Arctic environment during the year, especially with respect to sea ice. Therefore, the concentration of these gases will likely change in the future as the Arctic continues to warm.
Imad El Haddad, Danielle Vienneau, Kaspar R. Daellenbach, Robin Modini, Jay G. Slowik, Abhishek Upadhyay, Petros N. Vasilakos, David Bell, Kees de Hoogh, and Andre S. H. Prevot
Atmos. Chem. Phys., 24, 11981–12011, https://doi.org/10.5194/acp-24-11981-2024, https://doi.org/10.5194/acp-24-11981-2024, 2024
Short summary
Short summary
This opinion paper explores how advances in aerosol science inform our understanding of the health impacts of outdoor particulate pollution. We advocate for a shift in the way we target PM pollution, focusing on the most harmful anthropogenic emissions. We highlight key observations, modelling developments, and emission measurements needed to achieve this shift.
Pramod Kumar, Khushboo Sharma, Ankita Malu, Rajeev Rajak, Aparna Gupta, Bidyutjyoti Baruah, Shailesh Yadav, Thupstan Angchuk, Jayant Sharma, Rakesh Kumar Ranjan, Anil Kumar Misra, and Nishchal Wanjari
Atmos. Chem. Phys., 24, 11585–11601, https://doi.org/10.5194/acp-24-11585-2024, https://doi.org/10.5194/acp-24-11585-2024, 2024
Short summary
Short summary
This work monitors and assesses air pollution, especially black and brown carbon, its controlling factor, and its effect on the environment of Sikkim Himalayan region. The huge urban sprawl in recent decades has led to regional human-induced air pollution in the region. Black carbon was highest in April 2021 and March 2022, exceeding the WHO limit. The monsoon season causes huge rainfall over the region, which reduces the pollutants by scavenging (rainout and washout).
Maria P. Velásquez-García, K. Santiago Hernández, James A. Vergara-Correa, Richard J. Pope, Miriam Gómez-Marín, and Angela M. Rendón
Atmos. Chem. Phys., 24, 11497–11520, https://doi.org/10.5194/acp-24-11497-2024, https://doi.org/10.5194/acp-24-11497-2024, 2024
Short summary
Short summary
In the Aburrá Valley, northern South America, local emissions determine air quality conditions. However, we found that external sources, such as regional fires, Saharan dust, and volcanic emissions, increase particulate concentrations and worsen chemical composition by introducing elements like heavy metals. Dry winds and source variability contribute to seasonal influences on these events. This study assesses the air quality risks posed by such events, which can affect broad regions worldwide.
Meng Wang, Qiyuan Wang, Steven Sai Hang Ho, Jie Tian, Yong Zhang, Shun-cheng Lee, and Junji Cao
Atmos. Chem. Phys., 24, 11175–11189, https://doi.org/10.5194/acp-24-11175-2024, https://doi.org/10.5194/acp-24-11175-2024, 2024
Short summary
Short summary
We studied nitrogen-containing organic compounds (NOCs) in particulate matter <2.5 µm particles on the southeastern Tibetan Plateau. We found that biomass burning and transboundary transport are the main sources of NOCs in the high-altitude area. Understanding these aerosol sources informs how they add to regional and potentially global climate changes. Our findings could help shape effective environmental policies to enhance air quality and address climate impacts in this sensitive region.
Jinbo Wang, Jiaping Wang, Yuxuan Zhang, Tengyu Liu, Xuguang Chi, Xin Huang, Dafeng Ge, Shiyi Lai, Caijun Zhu, Lei Wang, Qiaozhi Zha, Ximeng Qi, Wei Nie, Congbin Fu, and Aijun Ding
Atmos. Chem. Phys., 24, 11063–11080, https://doi.org/10.5194/acp-24-11063-2024, https://doi.org/10.5194/acp-24-11063-2024, 2024
Short summary
Short summary
In this study, we found large spatial discrepancies in the physical and chemical properties of black carbon over the Tibetan Plateau (TP). Elevated anthropogenic emissions from low-altitude regions can significantly change the mass concentration, mixing state and chemical composition of black-carbon-containing aerosol in the TP region, further altering its light absorption ability. Our study emphasizes the vulnerability of remote plateau regions to intense anthropogenic influences.
Liyuan Zhou, Qianyun Liu, Christian M. Salvador, Michael Le Breton, Mattias Hallquist, Jian Zhen Yu, Chak K. Chan, and Åsa M. Hallquist
Atmos. Chem. Phys., 24, 11045–11061, https://doi.org/10.5194/acp-24-11045-2024, https://doi.org/10.5194/acp-24-11045-2024, 2024
Short summary
Short summary
Our research on city bus emissions reveals that alternative fuels (compressed natural gas and biofuels) reduce fresh particle emissions compared to diesel. However, all fuels lead to secondary air pollution. Aiming at guiding better environmental policies, we studied 76 buses using advanced emission measurement techniques. This work sheds light on the complex effects of bus fuels on urban air quality, emphasizing the need for comprehensive evaluations of future transportation technologies.
Xu Yang, Fobang Liu, Shuqi Yang, Yuling Yang, Yanan Wang, Jingjing Li, Mingyu Zhao, Zhao Wang, Kai Wang, Chi He, and Haijie Tong
Atmos. Chem. Phys., 24, 11029–11043, https://doi.org/10.5194/acp-24-11029-2024, https://doi.org/10.5194/acp-24-11029-2024, 2024
Short summary
Short summary
A study in the rural North China Plain showed environmentally persistent free radicals (EPFRs) in atmospheric particulate matter (PM), with a notable water-soluble fraction likely from atmospheric oxidation during transport. Significant positive correlations between EPFRs and the water-soluble oxidative potential of PM2.5 were found, primarily attributable to the water-soluble fractions of EPFRs. These findings emphasize understanding EPFRs' atmospheric evolution for climate and health impacts.
Kirsten N. Fossum, Chunshui Lin, Niall O'Sullivan, Lu Lei, Stig Hellebust, Darius Ceburnis, Aqeel Afzal, Anja Tremper, David Green, Srishti Jain, Steigvilė Byčenkienė, Colin O'Dowd, John Wenger, and Jurgita Ovadnevaite
Atmos. Chem. Phys., 24, 10815–10831, https://doi.org/10.5194/acp-24-10815-2024, https://doi.org/10.5194/acp-24-10815-2024, 2024
Short summary
Short summary
The chemical composition and sources of submicron aerosol in the Dublin Port area were investigated over a month-long campaign. Two distinct types of ship emissions were identified and characterised: sulfate-rich plumes from the use of heavy fuel oil with scrubbers and organic-rich plumes from the use of low-sulfur fuels. The latter were more frequent, emitting double the particle number and having a typical V / Ni ratio for ship emission.
Xiao He, Xuan Zheng, Shuwen Guo, Lewei Zeng, Ting Chen, Bohan Yang, Shupei Xiao, Qiongqiong Wang, Zhiyuan Li, Yan You, Shaojun Zhang, and Ye Wu
Atmos. Chem. Phys., 24, 10655–10666, https://doi.org/10.5194/acp-24-10655-2024, https://doi.org/10.5194/acp-24-10655-2024, 2024
Short summary
Short summary
This study introduces an innovative method for identifying and quantifying complex organic vapors and aerosols. By combining advanced analytical techniques and new algorithms, we categorized thousands of compounds from heavy-duty diesel vehicles and ambient air and highlighted specific tracers for emission sources. The innovative approach enhances peak identification, reduces quantification uncertainties, and offers new insights for air quality management and atmospheric chemistry.
Yu Xu, Tang Liu, Yi-Jia Ma, Qi-Bin Sun, Hong-Wei Xiao, Hao Xiao, Hua-Yun Xiao, and Cong-Qiang Liu
Atmos. Chem. Phys., 24, 10531–10542, https://doi.org/10.5194/acp-24-10531-2024, https://doi.org/10.5194/acp-24-10531-2024, 2024
Short summary
Short summary
This study investigates the characteristics of aminiums and ammonium in PM2.5 on clean and polluted winter days in 11 Chinese cities, highlighting the possibility of the competitive uptake of ammonia versus amines on acidic aerosols or the displacement of aminiums by ammonia under high-ammonia conditions. The overall results deepen the understanding of the spatiotemporal differences in aminium characteristics and formation in China.
Cassidy Soloff, Taiwo Ajayi, Yonghoon Choi, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Marta A. Fenn, Richard A. Ferrare, Francesca Gallo, Johnathan W. Hair, Miguel Ricardo A. Hilario, Simon Kirschler, Richard H. Moore, Taylor J. Shingler, Michael A. Shook, Kenneth L. Thornhill, Christiane Voigt, Edward L. Winstead, Luke D. Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 24, 10385–10408, https://doi.org/10.5194/acp-24-10385-2024, https://doi.org/10.5194/acp-24-10385-2024, 2024
Short summary
Short summary
Using aircraft measurements over the northwestern Atlantic between the US East Coast and Bermuda and trajectory modeling of continental outflow, we identify trace gas and particle properties that exhibit gradients with offshore distance and quantify these changes with high-resolution measurements of concentrations and particle chemistry, size, and scattering properties. This work furthers our understanding of the complex interactions between continental and marine environments.
Alex Rowell, James Brean, David C. S. Beddows, Zongbo Shi, Avinash Kumar, Matti Rissanen, Miikka Dal Maso, Peter Mettke, Kay Weinhold, Maik Merkel, and Roy M. Harrison
Atmos. Chem. Phys., 24, 10349–10361, https://doi.org/10.5194/acp-24-10349-2024, https://doi.org/10.5194/acp-24-10349-2024, 2024
Short summary
Short summary
Ions enhance the formation and growth rates of new particles, affecting the Earth's radiation budget. Despite these effects, there is little published data exploring the sources of ions in the urban environment and their role in new particle formation (NPF). Here we show that natural ion sources dominate in urban environments, while traffic is a secondary source. Ions contribute up to 12.7 % of the formation rate of particles, indicating that they are important for forming urban PM.
Yuan Cheng, Xu-bing Cao, Sheng-qiang Zhu, Zhi-qing Zhang, Jiu-meng Liu, Hong-liang Zhang, Qiang Zhang, and Ke-bin He
Atmos. Chem. Phys., 24, 9869–9883, https://doi.org/10.5194/acp-24-9869-2024, https://doi.org/10.5194/acp-24-9869-2024, 2024
Short summary
Short summary
The agreement between observational and modeling results is essential for the development of efficient air pollution control strategies. Here we constrained the modeling results of carbonaceous aerosols by field observation in Northeast China, a historically overlooked but recently targeted region of national clean-air actions. Our study suggested that the simulation of agricultural fire emissions and secondary organic aerosols remains challenging.
Yuan Dai, Junfeng Wang, Houjun Wang, Shijie Cui, Yunjiang Zhang, Haiwei Li, Yun Wu, Ming Wang, Eleonora Aruffo, and Xinlei Ge
Atmos. Chem. Phys., 24, 9733–9748, https://doi.org/10.5194/acp-24-9733-2024, https://doi.org/10.5194/acp-24-9733-2024, 2024
Short summary
Short summary
Short-term strict emission control can improve air quality, but its effectiveness needs assessment. During the 2021 summer COVID-19 lockdown in Yangzhou, we found that PM2.5 levels did not decrease despite reduced primary emissions. Aged black-carbon particles increased substantially due to higher O3 levels and transported pollutants. High humidity and low wind also played key roles. The results highlight the importance of a regionally balanced control strategy for future air quality management.
Xinya Liu, Diego Alves Gouveia, Bas Henzing, Arnoud Apituley, Arjan Hensen, Danielle van Dinther, Rujin Huang, and Ulrike Dusek
Atmos. Chem. Phys., 24, 9597–9614, https://doi.org/10.5194/acp-24-9597-2024, https://doi.org/10.5194/acp-24-9597-2024, 2024
Short summary
Short summary
The vertical distribution of aerosol optical properties is important for their effect on climate. This is usually measured by lidar, which has limitations, most notably the assumption of a lidar ratio. Our study shows that routine surface-level aerosol measurements are able to predict this lidar ratio reasonably well within the lower layers of the atmosphere and thus provide a relatively simple and cost-effective method to improve lidar measurements.
Weiqi Xu, Ye Kuang, Wanyun Xu, Zhiqiang Zhang, Biao Luo, Xiaoyi Zhang, Jiangchuang Tao, Hongqin Qiao, Li Liu, and Yele Sun
Atmos. Chem. Phys., 24, 9387–9399, https://doi.org/10.5194/acp-24-9387-2024, https://doi.org/10.5194/acp-24-9387-2024, 2024
Short summary
Short summary
We deployed an advanced aerosol–fog sampling system at a rural site in the North China Plain to investigate impacts of aerosol hygroscopic growth and activation on the physicochemical properties of submicron aerosols. Observed results highlighted remarkably different aqueous processing of primary and secondary submicron aerosol components under distinct ambient relative humidity (RH) conditions and that RH levels significantly impact aerosol sampling through the aerosol swelling effect.
Can Wu, Xiaodi Liu, Ke Zhang, Si Zhang, Cong Cao, Jianjun Li, Rui Li, Fan Zhang, and Gehui Wang
Atmos. Chem. Phys., 24, 9263–9275, https://doi.org/10.5194/acp-24-9263-2024, https://doi.org/10.5194/acp-24-9263-2024, 2024
Short summary
Short summary
Brown carbon (BrC) is prevalent in the troposphere and can efficiently absorb solar and terrestrial radiation. Our observations show that the enhanced light absorption of BrC relative to black carbon at the tropopause can be attributed to the formation of nitrogen-containing organic compounds through the aqueous-phase reactions of carbonyls with ammonium.
Taiwo Ajayi, Yonghoon Choi, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Marta A. Fenn, Richard A. Ferrare, Johnathan W. Hair, Miguel Ricardo A. Hilario, Chris A. Hostetler, Simon Kirschler, Richard H. Moore, Taylor J. Shingler, Michael A. Shook, Cassidy Soloff, Kenneth L. Thornhill, Christiane Voigt, Edward L. Winstead, Luke D. Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 24, 9197–9218, https://doi.org/10.5194/acp-24-9197-2024, https://doi.org/10.5194/acp-24-9197-2024, 2024
Short summary
Short summary
This study uses airborne data to examine vertical profiles of trace gases, aerosol particles, and meteorological variables over a remote marine area (Bermuda). Results show distinct differences based on both air mass source region (North America, Ocean, Caribbean/North Africa) and altitude for a given air mass type. This work highlights the sensitivity of remote marine areas to long-range transport and the importance of considering the vertical dependence of trace gas and aerosol properties.
Kira Zeider, Grace Betito, Anthony Bucholtz, Peng Xian, Annette Walker, and Armin Sorooshian
Atmos. Chem. Phys., 24, 9059–9083, https://doi.org/10.5194/acp-24-9059-2024, https://doi.org/10.5194/acp-24-9059-2024, 2024
Short summary
Short summary
The predominant wind direction along the California coast (northerly) reverses several times during the summer (to southerly). The effects of these wind reversals on aerosol and cloud characteristics are not well understood. Using data from multiple datasets we found that southerly flow periods had enhanced signatures of anthropogenic emissions due to shipping and continental sources, and clouds had more but smaller droplets.
Saleh Alzahrani, Doğuşhan Kılıç, Michael Flynn, Paul I. Williams, and James Allan
Atmos. Chem. Phys., 24, 9045–9058, https://doi.org/10.5194/acp-24-9045-2024, https://doi.org/10.5194/acp-24-9045-2024, 2024
Short summary
Short summary
This paper investigates emissions from aviation activities at an international airport to evaluate their impact on local air quality. The study provides detailed insights into the chemical composition of aerosols and key pollutants in the airport environment. Source apportionment analysis using positive matrix factorisation (PMF) identified three significant sources: less oxidised oxygenated organic aerosol, alkane organic aerosol, and more oxidised oxygenated organic aerosol.
Mingjie Kang, Mengying Bao, Wenhuai Song, Aduburexiati Abulimiti, Fang Cao, Sönke Szidat, and Yanlin Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2098, https://doi.org/10.5194/egusphere-2024-2098, 2024
Short summary
Short summary
Reports on the molecular level knowledge of high temporal resolution PM2.5 components on hazy days are still limited. This study investigated many individual PM2.5 species and sources. The results show biomass burning (BB) was the main source of organic carbon. Moreover, BB enhanced fungal spore emissions and secondary aerosol formation. The contribution of non-fossils increased with increasing haze pollution. These findings suggest BB may be an important driver of haze events in winter.
Mikko Heikkilä, Krista Luoma, Timo Mäkelä, and Tiia Grönholm
Atmos. Chem. Phys., 24, 8927–8941, https://doi.org/10.5194/acp-24-8927-2024, https://doi.org/10.5194/acp-24-8927-2024, 2024
Short summary
Short summary
Black carbon (BC) concentration was measured from 211 ship exhaust gas plumes at a remote marine station. Emission factors of BC were calculated in grams per kilogram of fuel. Ships with an exhaust gas cleaning system (EGCS) were found to have median BC emissions per fuel consumed 5 times lower than ships without an EGCS. However, this might be because of non-EGCS ships running at low engine loads rather than the EGCS itself. A local speed restriction would increase BC emissions of ships.
Olga Zografou, Maria Gini, Prodromos Fetfatzis, Konstantinos Granakis, Romanos Foskinis, Manousos Ioannis Manousakas, Fotios Tsopelas, Evangelia Diapouli, Eleni Dovrou, Christina N. Vasilakopoulou, Alexandros Papayannis, Spyros N. Pandis, Athanasios Nenes, and Konstantinos Eleftheriadis
Atmos. Chem. Phys., 24, 8911–8926, https://doi.org/10.5194/acp-24-8911-2024, https://doi.org/10.5194/acp-24-8911-2024, 2024
Short summary
Short summary
Characterization of PM1 and positive matrix factorization (PMF) source apportionment of organic and inorganic fractions were conducted at the high-altitude station (HAC)2. Cloud presence reduced PM1, affecting sulfate more than organics. Free-troposphere (FT) conditions showed more black carbon (eBC) than planetary boundary layer (PBL) conditions.
Yuanyuan Qin, Xinghua Zhang, Wei Huang, Juanjuan Qin, Xiaoyu Hu, Yuxuan Cao, Tianyi Zhao, Yang Zhang, Jihua Tan, Ziyin Zhang, Xinming Wang, and Zhenzhen Wang
Atmos. Chem. Phys., 24, 8737–8750, https://doi.org/10.5194/acp-24-8737-2024, https://doi.org/10.5194/acp-24-8737-2024, 2024
Short summary
Short summary
Environmental persistent free radicals (EPFRs) and reactive oxygen species (ROSs) play an active role in the atmosphere. Despite control measures having effectively reduced their emissions, reductions were less than in PM2.5. Emission control measures performed well in achieving Parade Blue, but reducing the impact of the atmosphere on human health remains challenging. Thus, there is a need to reassess emission control measures to better address the challenges posed by EPFRs and ROSs.
Fenghua Wei, Xing Peng, Liming Cao, Mengxue Tang, Ning Feng, Xiaofeng Huang, and Lingyan He
Atmos. Chem. Phys., 24, 8507–8518, https://doi.org/10.5194/acp-24-8507-2024, https://doi.org/10.5194/acp-24-8507-2024, 2024
Short summary
Short summary
The water solubility of secondary organic aerosols (SOAs) is a crucial factor in determining their hygroscopicity and climatic impact. Stable carbon isotope and mass spectrometry techniques were combined to assess the water solubility of SOAs with different aging degrees in a coastal megacity in China. This work revealed a much higher water-soluble fraction of aged SOA compared to fresh SOA, indicating that the aging degree of SOA has considerable impacts on its water solubility.
Zijun Zhang, Weiqi Xu, Yi Zhang, Wei Zhou, Xiangyu Xu, Aodong Du, Yinzhou Zhang, Hongqin Qiao, Ye Kuang, Xiaole Pan, Zifa Wang, Xueling Cheng, Lanzhong Liu, Qingyan Fu, Douglas R. Worsnop, Jie Li, and Yele Sun
Atmos. Chem. Phys., 24, 8473–8488, https://doi.org/10.5194/acp-24-8473-2024, https://doi.org/10.5194/acp-24-8473-2024, 2024
Short summary
Short summary
We investigated aerosol composition and sources and the interaction between secondary organic aerosol (SOA) and clouds at a regional mountain site in southeastern China. Clouds efficiently scavenge more oxidized SOA; however, cloud evaporation leads to the production of less oxidized SOA. The unexpectedly high presence of nitrate in aerosol particles indicates that nitrate formed in polluted areas has undergone interactions with clouds, significantly influencing the regional background site.
Feifei Li, Shanshan Tang, Jitao Lv, Shiyang Yu, Xu Sun, Dong Cao, Yawei Wang, and Guibin Jiang
Atmos. Chem. Phys., 24, 8397–8411, https://doi.org/10.5194/acp-24-8397-2024, https://doi.org/10.5194/acp-24-8397-2024, 2024
Short summary
Short summary
Targeted derivatization and non-targeted analysis with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) were used to reveal the molecular composition of carbonyl molecules in PM2.5, and the important role of carbonyls in increasing the oxidative potential of organic aerosol was found in real samples.
Adam E. Thomas, Hayley S. Glicker, Alex B. Guenther, Roger Seco, Oscar Vega Bustillos, Julio Tota, Rodrigo A. F. Souza, and James N. Smith
EGUsphere, https://doi.org/10.5194/egusphere-2024-2230, https://doi.org/10.5194/egusphere-2024-2230, 2024
Short summary
Short summary
We present measurements of the composition of ultrafine particles collected from the eastern Amazon, a relatively understudied region that is subjected to increasing human influence. We find that while isoprene chemistry is likely significant to ultrafine particle growth throughout the year, compounds related to other sources such as biological spore emissions and biomass burning exhibit striking seasonal differences, implying an extensive variation in regional ultrafine particle sources.
Maya Abou-Ghanem, Daniel M. Murphy, Gregory P. Schill, Michael J. Lawler, and Karl D. Froyd
Atmos. Chem. Phys., 24, 8263–8275, https://doi.org/10.5194/acp-24-8263-2024, https://doi.org/10.5194/acp-24-8263-2024, 2024
Short summary
Short summary
Using particle analysis by laser mass spectrometry, we examine vanadium-containing ship exhaust particles measured on NASA's DC-8 during the Atmospheric Tomography Mission (ATom). Our results reveal ship exhaust particles are sufficiently widespread in the marine atmosphere and experience atmospheric aging. Finally, we use laboratory calibrations to determine the vanadium, sulfate, and organic single-particle mass fractions of vanadium-containing ship exhaust particles.
Cassandra J. Gaston, Joseph M. Prospero, Kristen Foley, Havala O. T. Pye, Lillian Custals, Edmund Blades, Peter Sealy, and James A. Christie
Atmos. Chem. Phys., 24, 8049–8066, https://doi.org/10.5194/acp-24-8049-2024, https://doi.org/10.5194/acp-24-8049-2024, 2024
Short summary
Short summary
To understand how changing emissions have impacted aerosols in remote regions, we measured nitrate and sulfate in Barbados and compared them to model predictions from EPA’s Air QUAlity TimE Series (EQUATES). Nitrate was stable, except for spikes in 2008 and 2010 due to transported smoke. Sulfate decreased in the 1990s due to reductions in sulfur dioxide (SO2) in the US and Europe; then it increased in the 2000s, likely due to anthropogenic emissions from Africa.
Jie Zhang, Tianyu Zhu, Alexandra Catena, Yaowei Li, Margaret Schwab, Pengfei Liu, Akua Asa-Awuku, and James Schwab
EGUsphere, https://doi.org/10.5194/egusphere-2024-1390, https://doi.org/10.5194/egusphere-2024-1390, 2024
Short summary
Short summary
This study shows the derived organic aerosol hygroscopicity under high humidity conditions based on a simple optical scatter monitor system, including two nephelometric monitors (pDR-1500), after knowing the aerosol chemical composition.
Jiao Xue, Tian Zhang, Keyhong Park, Jinpei Yan, Young Jun Yoon, Jiyeon Park, and Bingbing Wang
Atmos. Chem. Phys., 24, 7731–7754, https://doi.org/10.5194/acp-24-7731-2024, https://doi.org/10.5194/acp-24-7731-2024, 2024
Short summary
Short summary
Ice formation by particles is an important way of making mixed-phase and ice clouds. We found that particles collected in the marine atmosphere exhibit diverse ice nucleation abilities and mixing states. Sea salt mixed-sulfate particles were enriched in ice-nucleating particles. Selective aging on sea salt particles made particle populations more externally mixed. Characterizations of particles and their mixing state are needed for a better understanding of aerosol–cloud interactions.
Yangzhi Mo, Jun Li, Guangcai Zhong, Sanyuan Zhu, Shizhen Zhao, Jiao Tang, Hongxing Jiang, Zhineng Cheng, Chongguo Tian, Yingjun Chen, and Gan Zhang
Atmos. Chem. Phys., 24, 7755–7772, https://doi.org/10.5194/acp-24-7755-2024, https://doi.org/10.5194/acp-24-7755-2024, 2024
Short summary
Short summary
In this study, we found that biomass burning (31.0 %) and coal combustion (31.1 %) were the dominant sources of water-insoluble organic carbon in China, with coal combustion sources exhibiting the strongest light-absorbing capacity. Additionally, we propose a light-absorbing carbonaceous continuum, revealing that components enriched with fossil sources tend to have stronger light-absorbing capacity, higher aromaticity, higher molecular weights, and greater recalcitrance in the atmosphere.
Jing Duan, Ru-Jin Huang, Ying Wang, Wei Xu, Haobin Zhong, Chunshui Lin, Wei Huang, Yifang Gu, Jurgita Ovadnevaite, Darius Ceburnis, and Colin O'Dowd
Atmos. Chem. Phys., 24, 7687–7698, https://doi.org/10.5194/acp-24-7687-2024, https://doi.org/10.5194/acp-24-7687-2024, 2024
Short summary
Short summary
The chemical composition of atmospheric particles has shown significant changes in recent years. We investigated the potential effects of changes in inorganics on aerosol water uptake and, thus, secondary organic aerosol formation in wintertime haze based on the size-resolved measurements of non-refractory fine particulate matter (NR-PM2.5) in Xi’an, northwestern China. We highlight the key role of aerosol water as a medium to link inorganics and organics in their multiphase processes.
Hongyong Li, Xiaopu Lyu, Likun Xue, Yunxi Huo, Dawen Yao, Haoxian Lu, and Hai Guo
Atmos. Chem. Phys., 24, 7085–7100, https://doi.org/10.5194/acp-24-7085-2024, https://doi.org/10.5194/acp-24-7085-2024, 2024
Short summary
Short summary
Organic aerosol is ubiquitous in the atmosphere and largely explains the gap between current levels of fine particulate matter in many cities and the World Health Organization guideline values. This study highlights the dominant contributions of cooking emissions to organic aerosol when marine air prevailed in Hong Kong, which were occasionally overwhelmed by aromatics-derived secondary organic aerosol in continental ouflows.
Shao Shi, Jinghao Zhai, Xin Yang, Yechun Ruan, Yuanlong Huang, Xujian Chen, Antai Zhang, Jianhuai Ye, Guomao Zheng, Baohua Cai, Yaling Zeng, Yixiang Wang, Chunbo Xing, Yujie Zhang, Tzung-May Fu, Lei Zhu, Huizhong Shen, and Chen Wang
Atmos. Chem. Phys., 24, 7001–7012, https://doi.org/10.5194/acp-24-7001-2024, https://doi.org/10.5194/acp-24-7001-2024, 2024
Short summary
Short summary
The determination of ions in the mass spectra of individual particles remains uncertain. We have developed a standard-free mass calibration algorithm applicable to more than 98 % of ambient particles. With our algorithm, ions with ~ 0.05 Th mass difference could be determined. Therefore, many more atmospheric species could be determined and involved in the source apportionment of aerosols, the study of chemical reaction mechanisms, and the analysis of single-particle mixing states.
Wei Sun, Xiaodong Hu, Yuzhen Fu, Guohua Zhang, Yujiao Zhu, Xinfeng Wang, Caiqing Yan, Likun Xue, He Meng, Bin Jiang, Yuhong Liao, Xinming Wang, Ping'an Peng, and Xinhui Bi
Atmos. Chem. Phys., 24, 6987–6999, https://doi.org/10.5194/acp-24-6987-2024, https://doi.org/10.5194/acp-24-6987-2024, 2024
Short summary
Short summary
The formation pathways of nitrogen-containing compounds (NOCs) in the atmosphere remain unclear. We investigated the composition of aerosols and fog water by state-of-the-art mass spectrometry and compared the formation pathways of NOCs. We found that NOCs in aerosols were mainly formed through nitration reaction, while ammonia addition played a more important role in fog water. The results deepen our understanding of the processes of organic particulate pollution.
Fuzhen Shen, Michaela I. Hegglin, and Yue Yuan
Atmos. Chem. Phys., 24, 6539–6553, https://doi.org/10.5194/acp-24-6539-2024, https://doi.org/10.5194/acp-24-6539-2024, 2024
Short summary
Short summary
We attempt to use a novel structural self-organising map and machine learning models to identify a weather system and quantify the importance of each meteorological factor in driving the unexpected PM2.5 and O3 changes under the specific weather system during the COVID-19 lockdown in China. The result highlights that temperature under the double-centre high-pressure system plays the most crucial role in abnormal events.
Wenshuai Li, Yuxuan Qi, Yingchen Liu, Guanru Wu, Yanjing Zhang, Jinhui Shi, Wenjun Qu, Lifang Sheng, Wencai Wang, Daizhou Zhang, and Yang Zhou
Atmos. Chem. Phys., 24, 6495–6508, https://doi.org/10.5194/acp-24-6495-2024, https://doi.org/10.5194/acp-24-6495-2024, 2024
Short summary
Short summary
Aerosol particles from mainland can transport to oceans and deposit, providing soluble Fe and affecting phytoplankton growth. Thus, we studied the dissolution process of aerosol Fe and found that photochemistry played a key role in promoting Fe dissolution in clean conditions. RH-dependent reactions were more influential in slightly polluted conditions. These results highlight the distinct roles of two weather-related parameters (radiation and RH) in influencing geochemical cycles related to Fe.
Yanqin Ren, Zhenhai Wu, Yuanyuan Ji, Fang Bi, Junling Li, Haijie Zhang, Hao Zhang, Hong Li, and Gehui Wang
Atmos. Chem. Phys., 24, 6525–6538, https://doi.org/10.5194/acp-24-6525-2024, https://doi.org/10.5194/acp-24-6525-2024, 2024
Short summary
Short summary
Nitrated aromatic compounds (NACs) and oxygenated derivatives of polycyclic aromatic hydrocarbons (OPAHs) in PM2.5 were examined from an urban area in Beijing during the autumn and winter. The OPAH and NAC concentrations were much higher during heating than before heating. They majorly originated from the combustion of biomass and automobile emissions, and the secondary generation was the major contributor throughout the whole sampling period.
Gregory P. Schill, Karl D. Froyd, Daniel M. Murphy, Christina J. Williamson, Charles Brock, Tomás Sherwen, Mat J. Evans, Eric A. Ray, Eric C. Apel, Rebecca S. Hornbrook, Alan J. Hills, Jeff Peischl, Tomas B. Ryerson, Chelsea R. Thompson, Ilann Bourgeois, Donald R. Blake, Joshua P. DiGangi, and Glenn S. Diskin
EGUsphere, https://doi.org/10.5194/egusphere-2024-1399, https://doi.org/10.5194/egusphere-2024-1399, 2024
Short summary
Short summary
Using single-particle mass spectrometry, we show that trace concentrations of bromine and iodine are ubiquitous in remote tropospheric aerosol, and suggest that aerosols are an important part of the global reactive iodine budget. Comparisons to a global climate model with detailed iodine chemistry are favorable in the background atmosphere; however, the model cannot replicate our measurements near the ocean surface, in biomass burning plumes, and in the stratosphere.
Marco Paglione, David C. S. Beddows, Anna Jones, Thomas Lachlan-Cope, Matteo Rinaldi, Stefano Decesari, Francesco Manarini, Mara Russo, Karam Mansour, Roy M. Harrison, Andrea Mazzanti, Emilio Tagliavini, and Manuel Dall'Osto
Atmos. Chem. Phys., 24, 6305–6322, https://doi.org/10.5194/acp-24-6305-2024, https://doi.org/10.5194/acp-24-6305-2024, 2024
Short summary
Short summary
Applying factor analysis techniques to H-NMR spectra, we present the organic aerosol (OA) source apportionment of PM1 samples collected in parallel at two Antarctic stations, namely Signy and Halley, allowing investigation of aerosol–climate interactions in an unperturbed atmosphere. Our results show remarkable differences between pelagic (open-ocean) and sympagic (sea-ice-influenced) air masses and indicate that various sources and processes are controlling Antarctic aerosols.
Zhichao Dong, Chandra Mouli Pavuluri, Peisen Li, Zhanjie Xu, Junjun Deng, Xueyan Zhao, Xiaomai Zhao, Pingqing Fu, and Cong-Qiang Liu
Atmos. Chem. Phys., 24, 5887–5905, https://doi.org/10.5194/acp-24-5887-2024, https://doi.org/10.5194/acp-24-5887-2024, 2024
Short summary
Short summary
Comprehensive study of optical properties of brown carbon (BrC) in fine aerosols from Tianjin, China, implied that biological emissions are major sources of BrC in summer, whereas fossil fuel combustion and biomass burning emissions are in cold periods. The direct radiation absorption caused by BrC in short wavelengths contributed about 40 % to that caused by BrC in 300–700 nm. Water-insoluble but methanol-soluble BrC contains more protein-like chromophores (PLOM) than that of water-soluble BrC.
Kumiko Goto-Azuma, Yoshimi Ogawa-Tsukagawa, Kaori Fukuda, Koji Fujita, Motohiro Hirabayashi, Remi Dallmayr, Jun Ogata, Nobuhiro Moteki, Tatsuhiro Mori, Sho Ohata, Yutaka Kondo, Makoto Koike, Sumito Matoba, and Teruo Aoki
EGUsphere, https://doi.org/10.5194/egusphere-2024-1498, https://doi.org/10.5194/egusphere-2024-1498, 2024
Short summary
Short summary
Monthly records spanning 350 years from a Greenland ice core reveal trends in black carbon (BC) concentrations and sizes. BC concentrations have risen since the late 19th century due to the inflow of anthropogenic BC, with these particles being larger than those from biomass burning (BB). High BB BC concentration peaks in summer originating from BB could reduce albedo. However, BB BC showed no upward trend until the early 2000s. Our findings are crucial for validating aerosol and climate models.
Shan Wang, Kezheng Liao, Zijing Zhang, Yuk Ying Cheng, Qiongqiong Wang, Hanzhe Chen, and Jian Zhen Yu
Atmos. Chem. Phys., 24, 5803–5821, https://doi.org/10.5194/acp-24-5803-2024, https://doi.org/10.5194/acp-24-5803-2024, 2024
Short summary
Short summary
In this work, hourly primary and secondary organic carbon were estimated by a novel Bayesian inference approach in suburban Hong Kong. Their multi-temporal-scale variations and evolution characteristics during PM2.5 episodes were examined. The methodology could serve as a guide for other locations with similar monitoring capabilities. The observation-based results are helpful for understanding the evolving nature of secondary organic aerosols and refining the accuracy of model simulations.
Andreas Aktypis, Dontavious Sippial, Christina Vasilakopoulou, Angeliki Matrali, Christos Kaltsonoudis, Andrea Simonati, Marco Paglione, Matteo Rinaldi, Stefano Decesari, and Spyros Pandis
EGUsphere, https://doi.org/10.5194/egusphere-2024-1317, https://doi.org/10.5194/egusphere-2024-1317, 2024
Short summary
Short summary
A dual chamber system was deployed in two different environments (Po Valley, Italy and Pertouli forest, Greece) to study the potential of ambient air directly injected into the chambers, to form secondary aerosol. In the Po Valley, the system reacts rapidly forming large amounts of SOA, while in Pertouli the corresponding SOA formation chemistry appears to have been practically terminated before the beginning of most experiments, so there is little additional SOA formation potential left.
Mingfu Cai, Chenshuo Ye, Bin Yuan, Shan Huang, E Zheng, Suxia Yang, Zelong Wang, Yi Lin, Tiange Li, Weiwei Hu, Wei Chen, Qicong Song, Wei Li, Yuwen Peng, Baolin Liang, Qibin Sun, Jun Zhao, Duohong Chen, Jiaren Sun, Zhiyong Yang, and Min Shao
EGUsphere, https://doi.org/10.5194/egusphere-2024-887, https://doi.org/10.5194/egusphere-2024-887, 2024
Short summary
Short summary
This study investigated the daytime secondary organic aerosol (SOA) formation in urban plumes. We observed a significant daytime SOA formation through gas-particle partitioning when the site was affected by urban plumes. Box model simulation indicated that urban pollutants (nitrogen oxide and volatile organic compounds) could enhance the oxidizing capacity, while the elevated volatile organic compounds were mainly responsible for promoting daytime SOA formation.
James Brean, David C. S. Beddows, Eija Asmi, Ari Virkkula, Lauriane L. J. Quéléver, Mikko Sipilä, Floortje Van Den Heuvel, Thomas Lachlan-Cope, Anna Jones, Markus Frey, Angelo Lupi, Jiyeon Park, Young Jun Yoon, Ralf Weller, Giselle L. Marincovich, Gabriela C. Mulena, Roy M. Harrison, and Manuel Dall´Osto
EGUsphere, https://doi.org/10.5194/egusphere-2024-987, https://doi.org/10.5194/egusphere-2024-987, 2024
Short summary
Short summary
Our results emphasize how understanding the geographical variation in surface types across the Antarctic is key to understanding secondary aerosol sources.
Cited articles
Abramson, E., Imre, D., Beranek, J., Wilson, J., and Zelenyuk, A.: Experimental determination of chemical diffusion within secondary organic aerosol particles, Phys. Chem. Chem. Phys., 15, 2983–2991, https://doi.org/10.1039/c2cp44013j, 2013.
Adachi, K., Zaizen, Y., Kajino, M., and Igarashi, Y.: Mixing state of regionally transported soot particles and the coating effect on their size and shape at a mountain site in Japan, J. Geophys. Res.-Atmos., 119, 5386–5396, https://doi.org/10.1002/2013jd020880, 2014.
Agarwal, J. K. and Sem, G. J.: Continuous-flow, single-particle-counting condensation nucleus counter, J. Aerosol Sci., 11, 343–357, https://doi.org/10.1016/0021-8502(80)90042-7, 1980.
Andreae, M. O. and Rosenfeld, D.: Aerosol-cloud-precipitation interactions. Part 1. The nature and sources of cloud-active aerosols, Earth Sci. Rev., 89, 13–41, https://doi.org/10.1016/j.earscirev.2008.03.001, 2008.
Bateman, A. P., Belassein, H., and Martin, S. T.: Impactor apparatus for the study of particle rebound: Relative humidity and capillary forces, Aerosol Sci. Technol., 48, 42–52, https://doi.org/10.1080/02786826.2013.853866, 2014.
Bateman, A. P., Bertram, A. K., and Martin, S. T.: Hygroscopic influence on the semisolid-to-liquid transition of secondary organic materials, J. Phys. Chem. A, 119, 4386–4395, https://doi.org/10.1021/jp508521c, 2015.
Bateman, A. P., Gong, Z., Liu, P., Sato, B., Cirino, G., Zhang, Y., Artaxo, P., Bertram, A. K., Manzi, A. O., Rizzo, L. V., Souza, R. A. F., Zaveri, R. A., and Martin, S. T.: Sub-micrometre particulate matter is primarily in liquid form over Amazon rainforest, Nat. Geosci., 9, 34–37, https://doi.org/10.1038/ngeo2599, 2016.
Berkemeier, T., Shiraiwa, M., Pöschl, U., and Koop, T.: Competition between water uptake and ice nucleation by glassy organic aerosol particles, Atmos. Chem. Phys., 14, 12513–12531, https://doi.org/10.5194/acp-14-12513-2014, 2014.
Chen, Q., Farmer, D. K., Schneider, J., Zorn, S. R., Heald, C. L., Karl, T. G., Guenther, A., Allan, J. D., Robinson, N., Coe, H., Kimmel, J. R., Pauliquevis, T., Borrmann, S., Pöschl, U., Andreae, M. O., Artaxo, P., Jimenez, J. L., and Martin, S. T.: Mass spectral characterization of submicron biogenic organic particles in the Amazon basin, Geophys. Res. Lett., 36, L20806, https://doi.org/10.1029/2009gl039880, 2009.
Chen, Q., Farmer, D. K., Rizzo, L. V., Pauliquevis, T., Kuwata, M., Karl, T. G., Guenther, A., Allan, J. D., Coe, H., Andreae, M. O., Pöschl, U., Jimenez, J. L., Artaxo, P., and Martin, S. T.: Submicron particle mass concentrations and sources in the Amazonian wet season (AMAZE-08), Atmos. Chem. Phys., 15, 3687–3701, https://doi.org/10.5194/acp-15-3687-2015, 2015.
DeCarlo, P. F., Kimmel, J. R., Trimborn, A., Northway, M. J., Jayne, J. T., Aiken, A. C., Gonin, M., Fuhrer, K., Horvath, T., Docherty, K. S., Worsnop, D. R., and Jimenez, J. L.: Field-deployable, high-resolution, time-of-flight aerosol mass spectrometer, Anal. Chem., 78, 8281–8289, https://doi.org/10.1021/ac061249n, 2006.
de Sá, S. S., Palm, B. B., Campuzano-Jost, P., Day, D. A., Newburn, M. K., Hu, W., Isaacman-VanWertz, G., Yee, L. D., Thalman, R., Brito, J., Carbone, S., Artaxo, P., Goldstein, A. H., Manzi, A. O., Souza, R. A. F., Mei, F., Shilling, J. E., Springston, S. R., Wang, J., Surratt, J. D., Alexander, M. L., Jimenez, J. L., and Martin, S. T.: Influence of urban pollution on the production of organic particulate matter from isoprene epoxydiols in central Amazonia, Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2016-1020, in review, 2016.
Dusek, U., Frank, G. P., Massling, A., Zeromskiene, K., Iinuma, Y., Schmid, O., Helas, G., Hennig, T., Wiedensohler, A., and Andreae, M. O.: Water uptake by biomass burning aerosol at sub- and supersaturated conditions: closure studies and implications for the role of organics, Atmos. Chem. Phys., 11, 9519–9532, https://doi.org/10.5194/acp-11-9519-2011, 2011.
Hallquist, M., Wenger, J. C., Baltensperger, U., Rudich, Y., Simpson, D., Claeys, M., Dommen, J., Donahue, N. M., George, C., Goldstein, A. H., Hamilton, J. F., Herrmann, H., Hoffmann, T., Iinuma, Y., Jang, M., Jenkin, M. E., Jimenez, J. L., Kiendler-Scharr, A., Maenhaut, W., McFiggans, G., Mentel, Th. F., Monod, A., Prévôt, A. S. H., Seinfeld, J. H., Surratt, J. D., Szmigielski, R., and Wildt, J.: The formation, properties and impact of secondary organic aerosol: current and emerging issues, Atmos. Chem. Phys., 9, 5155–5236, https://doi.org/10.5194/acp-9-5155-2009, 2009.
Hersey, S. P., Craven, J. S., Metcalf, A. R., Lin, J., Lathem, T., Suski, K. J., Cahill, J. F., Duong, H. T., Sorooshian, A., Jonsson, H. H., Shiraiwa, M., Zuend, A., Nenes, A., Prather, K. A., Flagan, R. C., and Seinfeld, J. H.: Composition and hygroscopicity of the los angeles aerosol: Calnex, J. Geophys. Res.-Atmos., 118, 3016–3036, https://doi.org/10.1002/jgrd.50307, 2013.
Jimenez, J. L., Canagaratna, M. R., Donahue, N. M., Prevot, A. S. H., Zhang, Q., Kroll, J. H., DeCarlo, P. F., Allan, J. D., Coe, H., Ng, N. L., Aiken, A. C., Docherty, K. S., Ulbrich, I. M., Grieshop, A. P., Robinson, A. L., Duplissy, J., Smith, J. D., Wilson, K. R., Lanz, V. A., Hueglin, C., Sun, Y. L., Tian, J., Laaksonen, A., Raatikainen, T., Rautiainen, J., Vaattovaara, P., Ehn, M., Kulmala, M., Tomlinson, J. M., Collins, D. R., Cubison, M. J., Dunlea, E. J., Huffman, J. A., Onasch, T. B., Alfarra, M. R., Williams, P. I., Bower, K., Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S., Weimer, S., Demerjian, K., Salcedo, D., Cottrell, L., Griffin, R., Takami, A., Miyoshi, T., Hatakeyama, S., Shimono, A., Sun, J. Y., Zhang, Y. M., Dzepina, K., Kimmel, J. R., Sueper, D., Jayne, J. T., Herndon, S. C., Trimborn, A. M., Williams, L. R., Wood, E. C., Middlebrook, A. M., Kolb, C. E., Baltensperger, U., and Worsnop, D. R.: Evolution of organic aerosols in the atmosphere, Science, 326, 1525–1529, https://doi.org/10.1126/science.1180353, 2009.
Joung, Y. S. and Buie, C. R.: Aerosol generation by raindrop impact on soil, Nat. Commun., 6, 6083, https://doi.org/10.1038/ncomms7083, 2015.
Keiluweit, M., Nico, P. S., Johnson, M. G., and Kleber, M.: Dynamic molecular structure of plant biomass-derived black carbon (biochar), Environ. Sci. Technol., 44, 1247–1253, https://doi.org/10.1021/es9031419, 2010.
Kidd, C., Perraud, V., Wingen, L. M., and Finlayson-Pitts, B. J.: Integrating phase and composition of secondary organic aerosol from the ozonolysis of α-pinene, P. Natl. Acad. Sci. USA, 111, 7552–7557, https://doi.org/10.1073/pnas.1322558111, 2014.
Knopf, D. A., Alpert, P. A., Wang, B., O'Brien, R. E., Kelly, S. T., Laskin, A., Gilles, M. K., and Moffet, R. C.: Microspectroscopic imaging and characterization of individually identified ice nucleating particles from a case field study, J. Geophys. Res.-Atmos., 119, 365–381, https://doi.org/10.1002/2014jd021866, 2014.
Koop, T., Bookhold, J., Shiraiwa, M., and Pöschl, U.: Glass transition and phase state of organic compounds: Dependency on molecular properties and implications for secondary organic aerosols in the atmosphere, Phys. Chem. Chem. Phys., 13, 19238–19255, https://doi.org/10.1039/c1cp22617g, 2011.
Kuwata, M. and Martin, S. T.: Phase of atmospheric secondary organic material affects its reactivity, P. Natl. Acad. Sci. USA, 109, 17354–17359, https://doi.org/10.1073/pnas.1209071109, 2012.
Li, Y. J., Liu, P. F., Gong, Z. H., Wang, Y., Bateman, A. P., Bergoend, C., Bertram, A. K., and Martin, S. T.: Chemical reactivity and liquid/nonliquid states of secondary organic material, Environ. Sci. Technol., 49, 13264–13274, https://doi.org/10.1021/acs.est.5b03392, 2015.
Li, Y. J., Liu, P. F., Bergoend, C., Bateman, A. P., and Martin, S. T.: Rebounding hygroscopic inorganic aerosol particles: Liquids, gels, and hydrates, Aerosol Sci. Tech., https://doi.org/10.1080/02786826.2016.1263384, online first, 2016.
Liu, P., Li, Y. J., Wang, Y., Gilles, M. K., Zaveri, R. A., Bertram, A. K., and Martin, S. T.: Lability of secondary organic particulate matter, P. Natl. Acad. Sci. USA, 113, 12643–12648, https://doi.org/10.1073/pnas.1603138113, 2016.
Liu, P. F., Abdelmalki, N., Hung, H.-M., Wang, Y., Brune, W. H., and Martin, S. T.: Ultraviolet and visible complex refractive indices of secondary organic material produced by photooxidation of the aromatic compounds toluene and m-xylene, Atmos. Chem. Phys., 15, 1435–1446, https://doi.org/10.5194/acp-15-1435-2015, 2015.
Liu, Y., Brito, J., Dorris, M. R., Rivera-Rios, J. C., Seco, R., Bates, K. H., Artaxo, P., Duvoisin, S., Keutsch, F. N., Kim, S., Goldstein, A. H., Guenther, A. B., Manzi, A. O., Souza, R. A. F., Springston, S. R., Watson, T. B., McKinney, K. A., and Martin, S. T.: Isoprene photochemistry over the Amazon rainforest, P. Natl. Acad. Sci. USA, 113, 6125–6130, https://doi.org/10.1073/pnas.1524136113, 2016.
Martin, S. T., Andreae, M. O., Althausen, D., Artaxo, P., Baars, H., Borrmann, S., Chen, Q., Farmer, D. K., Guenther, A., Gunthe, S. S., Jimenez, J. L., Karl, T., Longo, K., Manzi, A., Müller, T., Pauliquevis, T., Petters, M. D., Prenni, A. J., Pöschl, U., Rizzo, L. V., Schneider, J., Smith, J. N., Swietlicki, E., Tota, J., Wang, J., Wiedensohler, A., and Zorn, S. R.: An overview of the Amazonian Aerosol Characterization Experiment 2008 (AMAZE-08), Atmos. Chem. Phys., 10, 11415–11438, https://doi.org/10.5194/acp-10-11415-2010, 2010.
Martin, S. T., Artaxo, P., Machado, L. A. T., Manzi, A. O., Souza, R. A. F., Schumacher, C., Wang, J., Andreae, M. O., Barbosa, H. M. J., Fan, J., Fisch, G., Goldstein, A. H., Guenther, A., Jimenez, J. L., Pöschl, U., Silva Dias, M. A., Smith, J. N., and Wendisch, M.: Introduction: Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5), Atmos. Chem. Phys., 16, 4785–4797, https://doi.org/10.5194/acp-16-4785-2016, 2016.
Massoli, P., Lambe, A. T., Ahern, A. T., Williams, L. R., Ehn, M., Mikkila, J., Canagaratna, M. R., Brune, W. H., Onasch, T. B., Jayne, J. T., Petaja, T., Kulmala, M., Laaksonen, A., Kolb, C. E., Davidovits, P., and Worsnop, D. R.: Relationship between aerosol oxidation level and hygroscopic properties of laboratory generated secondary organic aerosol (SOA) particles, Geophys. Res. Lett., 37, L24801, https://doi.org/10.1029/2010gl045258, 2010.
Mather, J. H. and Voyles, J. W.: The arm climate research facility: A review of structure and capabilities, B. Am. Meteorol. Soc., 94, 377–392, https://doi.org/10.1175/BAMS-D-11-00218.1, 2013.
Moffet, R. C., Henn, T., Laskin, A., and Gilles, M. K.: Automated chemical analysis of internally mixed aerosol particles using X-ray spectromicroscopy at the carbon K-edge, Anal. Chem., 82, 7906–7914, https://doi.org/10.1021/ac1012909, 2010a.
Moffet, R. C., Tivanski, A. V., and Gilles, M. K.: Scanning transmission X-ray microscopy, in: Fundamentals and applications in aerosol spectroscopy, CRC Press, Boca Raton, USA, 419–462, 2010b.
Moffet, R. C., Rödel, T. C., Kelly, S. T., Yu, X. Y., Carroll, G. T., Fast, J., Zaveri, R. A., Laskin, A., and Gilles, M. K.: Spectro-microscopic measurements of carbonaceous aerosol aging in Central California, Atmos. Chem. Phys., 13, 10445–10459, https://doi.org/10.5194/acp-13-10445-2013, 2013.
Moteki, N. and Kondo, Y.: Effects of mixing state on black carbon measurements by laser-induced incandescence, Aerosol Sci. Technol., 41, 398–417, https://doi.org/10.1080/02786820701199728, 2007.
O'Brien, R. E., Neu, A., Epstein, S. A., MacMillan, A. C., Wang, B. B., Kelly, S. T., Nizkorodov, S. A., Laskin, A., Moffet, R. C., and Gilles, M. K.: Physical properties of ambient and laboratory-generated secondary organic aerosol, Geophys. Res. Lett., 41, 4347–4353, https://doi.org/10.1002/2014gl060219, 2014.
Pajunoja, A., Lambe, A. T., Hakala, J., Rastak, N., Cummings, M. J., Brogan, J. F., Hao, L., Paramonov, M., Hong, J., Prisle, N. L., Malila, J., Romakkaniemi, S., Lehtinen, K. E. J., Laaksonen, A., Kulmala, M., Massoli, P., Onasch, T. B., Donahue, N. M., Riipinen, I., Davidovits, P., Worsnop, D. R., Petäjä, T., and Virtanen, A.: Adsorptive uptake of water by semisolid secondary organic aerosols, Geophys. Res. Lett., 42, 3063–3068, https://doi.org/10.1002/2015gl063142, 2015.
Pajunoja, A., Hu, W., Leong, Y. J., Taylor, N. F., Miettinen, P., Palm, B. B., Mikkonen, S., Collins, D. R., Jimenez, J. L., and Virtanen, A.: Phase state of ambient aerosol linked with water uptake and chemical aging in the southeastern US, Atmos. Chem. Phys., 16, 11163–11176, https://doi.org/10.5194/acp-16-11163-2016, 2016.
Perraud, V., Bruns, E. A., Ezell, M. J., Johnson, S. N., Yu, Y., Alexander, M. L., Zelenyuk, A., Imre, D., Chang, W. L., Dabdub, D., Pankow, J. F., and Finlayson-Pitts, B. J.: Nonequilibrium atmospheric secondary organic aerosol formation and growth, P. Natl. Acad. Sci. USA, 109, 2836–2841, https://doi.org/10.1073/pnas.1119909109, 2012.
Petters, M. D. and Kreidenweis, S. M.: A single parameter representation of hygroscopic growth and cloud condensation nucleus activity, Atmos. Chem. Phys., 7, 1961–1971, https://doi.org/10.5194/acp-7-1961-2007, 2007.
Petters, M. D., Carrico, C. M., Kreidenweis, S. M., Prenni, A. J., DeMott, P. J., Collett, J. L., and Moosmuller, H.: Cloud condensation nucleation activity of biomass burning aerosol, J. Geophys. Res.-Atmos., 114, D22205, https://doi.org/10.1029/2009jd012353, 2009.
Piens, D. S., Kelly, S. T., Harder, T. H., Petters, M. D., O'Brien, R. E., Wang, B., Teske, K., Dowell, P., Laskin, A., and Gilles, M. K.: Measuring mass-based hygroscopicity of atmospheric particles through in situ imaging, Environ. Sci. Technol., 50, 5172–5180, https://doi.org/10.1021/acs.est.6b00793, 2016.
Pöhlker, C., Wiedemann, K. T., Sinha, B., Shiraiwa, M., Gunthe, S. S., Smith, M., Su, H., Artaxo, P., Chen, Q., Cheng, Y. F., Elbert, W., Gilles, M. K., Kilcoyne, A. L. D., Moffet, R. C., Weigand, M., Martin, S. T., Pöschl, U., and Andreae, M. O.: Biogenic potassium salt particles as seeds for secondary organic aerosol in the Amazon, Science, 337, 1075–1078, https://doi.org/10.1126/science.1223264, 2012.
Pöschl, U., Martin, S. T., Sinha, B., Chen, Q., Gunthe, S. S., Huffman, J. A., Borrmann, S., Farmer, D. K., Garland, R. M., Helas, G., Jimenez, J. L., King, S. M., Manzi, A., Mikhailov, E., Pauliquevis, T., Petters, M. D., Prenni, A. J., Roldin, P., Rose, D., Schneider, J., Su, H., Zorn, S. R., Artaxo, P., and Andreae, M. O.: Rainforest aerosols as biogenic nuclei of clouds and precipitation in the Amazon, Science, 329, 1513–1516, https://doi.org/10.1126/science.1191056, 2010.
Ramanathan, V., Crutzen, P. J., Kiehl, J. T., and Rosenfeld, D.: Atmosphere – aerosols, climate, and the hydrological cycle, Science, 294, 2119–2124, https://doi.org/10.1126/science.1064034, 2001.
Renbaum-Wolff, L., Grayson, J. W., Bateman, A. P., Kuwata, M., Sellier, M., Murray, B. J., Shilling, J. E., Martin, S. T., and Bertram, A. K.: Viscosity of α-pinene secondary organic material and implications for particle growth and reactivity, P. Natl. Acad. Sci. USA, 110, 8014–8019, https://doi.org/10.1073/pnas.1219548110, 2013.
Riipinen, I., Pierce, J. R., Yli-Juuti, T., Nieminen, T., Häkkinen, S., Ehn, M., Junninen, H., Lehtipalo, K., Petäjä, T., Slowik, J., Chang, R., Shantz, N. C., Abbatt, J., Leaitch, W. R., Kerminen, V.-M., Worsnop, D. R., Pandis, S. N., Donahue, N. M., and Kulmala, M.: Organic condensation: a vital link connecting aerosol formation to cloud condensation nuclei (CCN) concentrations, Atmos. Chem. Phys., 11, 3865–3878, https://doi.org/10.5194/acp-11-3865-2011, 2011.
Riipinen, I., Yli-Juuti, T., Pierce, J. R., Petaja, T., Worsnop, D. R., Kulmala, M., and Donahue, N. M.: The contribution of organics to atmospheric nanoparticle growth, Nat. Geosci., 5, 453–458, https://doi.org/10.1038/ngeo1499, 2012.
Ruehl, C. R., Davies, J. F., and Wilson, K. R.: An interfacial mechanism for cloud droplet formation on organic aerosols, Science, 351, 1447–1450, https://doi.org/10.1126/science.aad4889, 2016.
Saukko, E., Lambe, A. T., Massoli, P., Koop, T., Wright, J. P., Croasdale, D. R., Pedernera, D. A., Onasch, T. B., Laaksonen, A., Davidovits, P., Worsnop, D. R., and Virtanen, A.: Humidity-dependent phase state of SOA particles from biogenic and anthropogenic precursors, Atmos. Chem. Phys., 12, 7517–7529, https://doi.org/10.5194/acp-12-7517-2012, 2012.
Schwarz, J. P., Gao, R. S., Fahey, D. W., Thomson, D. S., Watts, L. A., Wilson, J. C., Reeves, J. M., Darbeheshti, M., Baumgardner, D. G., Kok, G. L., Chung, S. H., Schulz, M., Hendricks, J., Lauer, A., Karcher, B., Slowik, J. G., Rosenlof, K. H., Thompson, T. L., Langford, A. O., Loewenstein, M., and Aikin, K. C.: Single-particle measurements of midlatitude black carbon and light-scattering aerosols from the boundary layer to the lower stratosphere, J. Geophys. Res.-Atmos., 111, D16207, https://doi.org/10.1029/2006jd007076, 2006.
Shiraiwa, M. and Seinfeld, J. H.: Equilibration timescale of atmospheric secondary organic aerosol partitioning, Geophys. Res. Lett., 39, L24801, https://doi.org/10.1029/2012gl054008, 2012.
Song, M., Liu, P. F., Hanna, S. J., Li, Y. J., Martin, S. T., and Bertram, A. K.: Relative humidity-dependent viscosities of isoprene-derived secondary organic material and atmospheric implications for isoprene-dominant forests, Atmos. Chem. Phys., 15, 5145–5159, https://doi.org/10.5194/acp-15-5145-2015, 2015.
Thalmann, R., de Sá, S. S., Palm, B. B., Barbosa, H. M. J., Pöhlker, M., Alexander, M. L., Brito, J., Carbone, S., Castillo, P., Day, D. A., Kuang, C., Manzi, A., Ng, N. L., Sedlacek III, A. J., Souza, R., Springston, S., Watson, T., Pöhlker, C., Pöschl, U., Andreae, M. O., Artaxo, P., Jimenez, J. L., Martin, S. T., and Wang, J.: CCN activity and organic hygroscopicity of Amazonian aerosols downwind of an urban region in central Amazonia: Seasonal and diel variations and impact of anthropogenic emissions, in preparation, 2017.
Tivanski, A. V., Hopkins, R. J., Tyliszczak, T., and Gilles, M. K.: Oxygenated interface on biomass burn tar balls determined by single particle scanning transmission X-ray microscopy, J. Phys. Chem. A, 111, 5448–5458, https://doi.org/10.1021/jp070155u, 2007.
Tsai, C. J., Pui, D. Y. H., and Liu, B. Y. H.: Capture and rebound of small particles upon impact with solid-surfaces, Aerosol Sci. Technol., 12, 497–507, https://doi.org/10.1080/02786829008959364, 1990.
Ulbrich, I. M., Canagaratna, M. R., Zhang, Q., Worsnop, D. R., and Jimenez, J. L.: Interpretation of organic components from Positive Matrix Factorization of aerosol mass spectrometric data, Atmos. Chem. Phys., 9, 2891–2918, https://doi.org/10.5194/acp-9-2891-2009, 2009.
Vaden, T. D., Imre, D., Beranek, J., Shrivastava, M., and Zelenyuk, A.: Evaporation kinetics and phase of laboratory and ambient secondary organic aerosol, P. Natl. Acad. Sci. USA, 108, 2190–2195, https://doi.org/10.1073/pnas.1013391108, 2011.
Virtanen, A., Joutsensaari, J., Koop, T., Kannosto, J., Yli-Pirila, P., Leskinen, J., Makela, J. M., Holopainen, J. K., Pöschl, U., Kulmala, M., Worsnop, D. R., and Laaksonen, A.: An amorphous solid state of biogenic secondary organic aerosol particles, Nature, 467, 824–827, https://doi.org/10.1038/nature09455, 2010.
Wang, B., Harder, T. H., Kelly, S. T., Piens, D. S., China, S., Kovarik, L., Keiluweit, M., Arey, B. W., Gilles, M. K., and Laskin, A.: Airborne soil organic particles generated by precipitation, Nat. Geosci., 9, 433–437, https://doi.org/10.1038/ngeo2705, 2016.
Zaveri, R. A., Easter, R. C., Shilling, J. E., and Seinfeld, J. H.: Modeling kinetic partitioning of secondary organic aerosol and size distribution dynamics: representing effects of volatility, phase state, and particle-phase reaction, Atmos. Chem. Phys., 14, 5153–5181, https://doi.org/10.5194/acp-14-5153-2014, 2014.
Zelenyuk, A., Imre, D., Beranek, J., Abramson, E., Wilson, J., and Shrivastava, M.: Synergy between secondary organic aerosols and long-range transport of polycyclic aromatic hydrocarbons, Environ. Sci. Technol., 46, 12459–12466, https://doi.org/10.1021/es302743z, 2012.
Short summary
The occurrence of nonliquid and liquid physical states of submicron atmospheric particulate matter (PM) downwind of an urban region in central Amazonia was investigated. Air masses representing background conditions, urban pollution, and regional- and continental-scale biomass were measured. Anthropogenic influences contributed to the presence of nonliquid PM in the atmospheric particle population, while liquid PM dominated during periods of biogenic influence.
The occurrence of nonliquid and liquid physical states of submicron atmospheric particulate...
Altmetrics
Final-revised paper
Preprint