the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Role of OH variability in the stalling of the global atmospheric CH4 growth rate from 1999 to 2006
Martyn P. Chipperfield
Manuel Gloor
Chris Wilson
Wuhu Feng
Garry D. Hayman
Matt Rigby
Paul B. Krummel
Simon O'Doherty
Ronald G. Prinn
Ray F. Weiss
Dickon Young
Ed Dlugokencky
Steve A. Montzka
Related authors
No articles found.
Clouds over the Southern Ocean are crucial to Earth's energy balance, but understanding the factors that control them is complex. Our research examines how weather patterns affect tiny particles called cloud condensation nuclei (CCN), which influence cloud properties. Using data from Kennaook / Cape Grim, we found that winter air from Antarctica brings cleaner conditions with lower CCN, while summer patterns from Australia transport more particles. Precipitation also helps reduce CCN in winter.
hydrogen economy. Here, we use the aging air found in the polar snowpack to reconstruct H2 levels over the past 100 years. We find that H2 levels increased by 30 % over Greenland and 60 % over Antarctica during the 20th century.
top-downmethods, are important to verify national inventories or produce a stand-alone estimate where no inventory exists. We present a novel top-down method to estimate emissions. This approach uses a fast method called an integrated nested Laplacian approximation to estimate how these emissions are correlated with other emissions in different locations and at different times.
nudgeto the observed winds. Here we systematically evaluate how well this technique performs across a large suite of chemistry–climate models in terms of its ability to reproduce key aspects of both the tropospheric and stratospheric circulations.
inversiontechnique. Compared with the current national inventory, our results show lower emissions for Cambridgeshire, possibly due to waste sector emission differences.
Related subject area
Our research explored changes in ozone levels in the northwest Pacific region over 30 years, revealing a significant increase in the middle-to-upper troposphere, especially during spring and summer. This rise is influenced by both stratospheric and tropospheric sources, which affect climate and air quality in East Asia. This work underscores the need for continued study to understand underlying mechanisms.