Articles | Volume 17, issue 4
https://doi.org/10.5194/acp-17-2817-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-17-2817-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Phenomenology of high-ozone episodes in NE Spain
Xavier Querol
CORRESPONDING AUTHOR
Institute of Environmental Assessment and Water Research, IDAEA-CSIC,
C/Jordi Girona 18–26, 08034 Barcelona, Spain
Gotzon Gangoiti
Escuela Técnica Superior Ingeniería de Bilbao, Departamento
Ingeniería Química y del Medio Ambiente, Universidad del País
Vasco UPV/EHU, Urkixo Zumarkalea, S/N, 48013 Bilbao, Spain
Enrique Mantilla
Centro de Estudios Ambientales del Mediterráneo, CEAM, Unidad
Asociada al CSIC, Parque Tecnológico C/Charles R. Darwin, 14 46980
Paterna, Valencia, Spain
Andrés Alastuey
Institute of Environmental Assessment and Water Research, IDAEA-CSIC,
C/Jordi Girona 18–26, 08034 Barcelona, Spain
Maria Cruz Minguillón
Institute of Environmental Assessment and Water Research, IDAEA-CSIC,
C/Jordi Girona 18–26, 08034 Barcelona, Spain
Fulvio Amato
Institute of Environmental Assessment and Water Research, IDAEA-CSIC,
C/Jordi Girona 18–26, 08034 Barcelona, Spain
Cristina Reche
Institute of Environmental Assessment and Water Research, IDAEA-CSIC,
C/Jordi Girona 18–26, 08034 Barcelona, Spain
Mar Viana
Institute of Environmental Assessment and Water Research, IDAEA-CSIC,
C/Jordi Girona 18–26, 08034 Barcelona, Spain
Teresa Moreno
Institute of Environmental Assessment and Water Research, IDAEA-CSIC,
C/Jordi Girona 18–26, 08034 Barcelona, Spain
Angeliki Karanasiou
Institute of Environmental Assessment and Water Research, IDAEA-CSIC,
C/Jordi Girona 18–26, 08034 Barcelona, Spain
Ioar Rivas
Institute of Environmental Assessment and Water Research, IDAEA-CSIC,
C/Jordi Girona 18–26, 08034 Barcelona, Spain
Noemí Pérez
Institute of Environmental Assessment and Water Research, IDAEA-CSIC,
C/Jordi Girona 18–26, 08034 Barcelona, Spain
Anna Ripoll
Institute of Environmental Assessment and Water Research, IDAEA-CSIC,
C/Jordi Girona 18–26, 08034 Barcelona, Spain
Mariola Brines
Institute of Environmental Assessment and Water Research, IDAEA-CSIC,
C/Jordi Girona 18–26, 08034 Barcelona, Spain
Marina Ealo
Institute of Environmental Assessment and Water Research, IDAEA-CSIC,
C/Jordi Girona 18–26, 08034 Barcelona, Spain
Marco Pandolfi
Institute of Environmental Assessment and Water Research, IDAEA-CSIC,
C/Jordi Girona 18–26, 08034 Barcelona, Spain
Hong-Ku Lee
Department of Mechanical Engineering, Hanyang University, Ansan
425-791, Republic of Korea
Hee-Ram Eun
Department of Mechanical Engineering, Hanyang University, Ansan
425-791, Republic of Korea
Yong-Hee Park
Department of Mechanical Engineering, Hanyang University, Ansan
425-791, Republic of Korea
Miguel Escudero
Centro Universitario de la Defensa de Zaragoza, Academia General
Militar, Ctra. de Huesca s/n, 50090 Zaragoza, Spain
David Beddows
Division of Environmental Health & Risk Management, School of
Geography, Earth & Environmental Sciences, University of Birmingham,
Edgbaston, Birmingham B15 2TT, UK
Roy M. Harrison
Division of Environmental Health & Risk Management, School of
Geography, Earth & Environmental Sciences, University of Birmingham,
Edgbaston, Birmingham B15 2TT, UK
also at: Department of Environmental Sciences/Centre for Excellence in
Environmental Studies, King Abdulaziz University, Jeddah, Saudi Arabia
Amelie Bertrand
Aix Marseille Univ, CNRS, LCE, 13331 Marseille, France
Nicolas Marchand
Aix Marseille Univ, CNRS, LCE, 13331 Marseille, France
Andrei Lyasota
Department of Astronomy and Meteorology, Faculty of Physics,
University of Barcelona, Martí I Franquès 1, 08028 Barcelona, Spain
deceased
Bernat Codina
Department of Astronomy and Meteorology, Faculty of Physics,
University of Barcelona, Martí I Franquès 1, 08028 Barcelona, Spain
Miriam Olid
Department of Astronomy and Meteorology, Faculty of Physics,
University of Barcelona, Martí I Franquès 1, 08028 Barcelona, Spain
Mireia Udina
Department of Astronomy and Meteorology, Faculty of Physics,
University of Barcelona, Martí I Franquès 1, 08028 Barcelona, Spain
Bernat Jiménez-Esteve
Department of Astronomy and Meteorology, Faculty of Physics,
University of Barcelona, Martí I Franquès 1, 08028 Barcelona, Spain
María R. Soler
Department of Astronomy and Meteorology, Faculty of Physics,
University of Barcelona, Martí I Franquès 1, 08028 Barcelona, Spain
Lucio Alonso
Escuela Técnica Superior Ingeniería de Bilbao, Departamento
Ingeniería Química y del Medio Ambiente, Universidad del País
Vasco UPV/EHU, Urkixo Zumarkalea, S/N, 48013 Bilbao, Spain
Millán Millán
Centro de Estudios Ambientales del Mediterráneo, CEAM, Unidad
Asociada al CSIC, Parque Tecnológico C/Charles R. Darwin, 14 46980
Paterna, Valencia, Spain
Kang-Ho Ahn
CORRESPONDING AUTHOR
Department of Mechanical Engineering, Hanyang University, Ansan
425-791, Republic of Korea
Related authors
Adolfo González-Romero, Cristina González-Flórez, Agnesh Panta, Jesús Yus-Díez, Patricia Córdoba, Andres Alastuey, Natalia Moreno, Melani Hernández-Chiriboga, Konrad Kandler, Martina Klose, Roger N. Clark, Bethany L. Ehlmann, Rebecca N. Greenberger, Abigail M. Keebler, Phil Brodrick, Robert Green, Paul Ginoux, Xavier Querol, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 24, 9155–9176, https://doi.org/10.5194/acp-24-9155-2024, https://doi.org/10.5194/acp-24-9155-2024, 2024
Short summary
Short summary
In this research, we studied the dust-emitting properties of crusts and aeolian ripples from the Mojave Desert. These properties are key to understanding the effect of dust upon climate. We found two different playa lakes according to the groundwater regime, which implies differences in crusts' cohesion state and mineralogy, which can affect the dust emission potential and properties. We also compare them with Moroccan Sahara crusts and Icelandic top sediments.
Xiansheng Liu, Xun Zhang, Marvin Dufresne, Tao Wang, Lijie Wu, Rosa Lara, Roger Seco , Marta Monge, Ana Maria Yáñez-Serrano, Marie Gohy, Paul Petit, Audrey Chevalier, Marie-Pierre Vagnot, Yann Fortier, Alexia Baudic, Véronique Ghersi, Grégory Gille, Ludovic Lanzi, Valérie Gros, Leïla Simon, Heidi Hellen, Stefan Reimann, Zoé Le Bras, Michelle Jessy Müller, David Beddows, Siqi Hou, Zongbo Shi, Roy M. Harrison, William Bloss, James Dernie, Stéphane Sauvage, Philip K. Hopke, Xiaoli Duan, Taicheng An, Alastair Lewis, Jim Hopkins, Eleni Liakakou, Nikolaos Mihalopoulos, Xiaohu Zhang, Andrés Alastuey, Xavier Querol, and Thérèse Salameh
EGUsphere, https://doi.org/10.5194/egusphere-2024-2309, https://doi.org/10.5194/egusphere-2024-2309, 2024
Short summary
Short summary
This study examines BTEX (benzene, toluene, ethylbenzene, xylenes) pollution in urban areas across 7 European countries. Analyzing data from 22 monitoring sites, we found traffic and industrial activities significantly impact BTEX levels, with peaks during rush hours. Despite improvements, the risk from BTEX exposure remains moderate, especially in high-traffic and industrial zones. It highlights the need for targeted air quality management to protect public health and improve urban air quality.
Hector Navarro-Barboza, Jordi Rovira, Vincenzo Obiso, Andrea Pozzer, Marta Via, Andres Alastuey, Xavier Querol, Noemi Perez, Marjan Savadkoohi, Gang Chen, Jesus Yus-Díez, Matic Ivancic, Martin Rigler, Konstantinos Eleftheriadis, Stergios Vratolis, Olga Zografou, Maria Gini, Benjamin Chazeau, Nicolas Marchand, Andre Prevot, Kaspar Dallenbach, Mikael Ehn, Krista Luoma, Tuukka Petäjä, Anna Tobler, Jaroslaw Necki, Minna Aurela, Hilkka Timonen, Jarkko Niemi, Olivier Favez, Jean-Eudes Petit, Jean-Philippe Putaud, Christoph Hueglin, Nicolas Pascal, Aurelien Chauvigné, Sebastien Conil, Marco Pandolfi, and Oriol Jorba
EGUsphere, https://doi.org/10.5194/egusphere-2024-2086, https://doi.org/10.5194/egusphere-2024-2086, 2024
Short summary
Short summary
Brown carbon (BrC) absorbs UV and visible light, affecting climate. Our study investigates BrC's imaginary refractive index (k ) using data from 12 European sites. Residential emissions are a major OA source in winter, while secondary organic aerosols (SOA) dominate in summer. We derived source-specific k values, enhancing model accuracy. This research improves understanding of BrC's climate role, emphasizing the need for source-specific constraints in atmospheric models.
Pamela A. Dominutti, Jean-Luc Jaffrezo, Anouk Marsal, Takoua Mhadhbi, Rhabira Elazzouzi, Camille Rak, Fabrizia Cavalli, Jean-Philippe Putaud, Aikaterini Bougiatioti, Nikolaos Mihalopoulos, Despina Paraskevopoulou, Ian S. Mudway, Athanasios Nenes, Kaspar R. Daellenbach, Catherine Banach, Steven J. Campbell, Hana Cigánková, Daniele Contini, Greg Evans, Maria Georgopoulou, Manuella Ghanem, Drew A. Glencross, Maria Rachele Guascito, Hartmut Herrmann, Saima Iram, Maja Jovanović, Milena Jovašević-Stojanović, Markus Kalberer, Ingeborg M. Kooter, Suzanne E. Paulson, Anil Patel, Esperanza Perdrix, Maria Chiara Pietrogrande, Pavel Mikuška, Jean-Jacques Sauvain, Aikaterina Seitanidi, Pourya Shahpoury, Eduardo J. S. Souza, Sarah Steimer, Svetlana Stevanovic, Guillaume Suarez, P. S. Ganesh Subramanian, Battist Utinger, Marloes F. van Os, Vishal Verma, Xing Wang, Rodney J. Weber, Yuhan Yang, Xavier Querol, Gerard Hoek, Roy M. Harrison, and Gaëlle Uzu
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-107, https://doi.org/10.5194/amt-2024-107, 2024
Revised manuscript accepted for AMT
Short summary
Short summary
In this work, 20 labs worldwide collaborated to evaluate the measurement of air pollution's oxidative potential (OP), a key indicator of its harmful effects. The study aimed to identify disparities in the widely used OP DTT assay and assess the consistency of OP among labs using the same protocol. The results showed that half of the labs achieved acceptable results. However, variability was also found, highlighting the need for standardization in OP procedures.
Adolfo González-Romero, Cristina González-Flórez, Agnesh Panta, Jesús Yus-Díez, Patricia Córdoba, Andres Alastuey, Natalia Moreno, Konrad Kandler, Martina Klose, Roger N. Clark, Bethany L. Ehlmann, Rebecca N. Greenberger, Abigail M. Keebler, Phil Brodrick, Robert O. Green, Xavier Querol, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 24, 6883–6910, https://doi.org/10.5194/acp-24-6883-2024, https://doi.org/10.5194/acp-24-6883-2024, 2024
Short summary
Short summary
The knowledge of properties from dust emitted in high latitudes such as in Iceland is scarce. This study focuses on the particle size, mineralogy, cohesion, and iron mode of occurrence and reflectance spectra of dust-emitting sediments. Icelandic top sediments have lower cohesion state, coarser particle size, distinctive mineralogy, and 3-fold bulk Fe content, with a large presence of magnetite compared to Saharan crusts.
Jordi Massagué, Eduardo Torre-Pascual, Cristina Carnerero, Miguel Escudero, Andrés Alastuey, Marco Pandolfi, Xavier Querol, and Gotzon Gangoiti
Atmos. Chem. Phys., 24, 4827–4850, https://doi.org/10.5194/acp-24-4827-2024, https://doi.org/10.5194/acp-24-4827-2024, 2024
Short summary
Short summary
This study analyses three acute ozone episodes in Barcelona (NE Spain) which have occurred only in recent years and are of particular concern due to the city's significant population. The findings uncover a complex interplay of factors, notably shared among episodes, including pollution transport at different scales and specific weather and emission patterns. These insights significantly enhance our understanding of these occurrences and improve predictive capabilities.
Adolfo González-Romero, Cristina González-Flórez, Agnesh Panta, Jesús Yus-Díez, Cristina Reche, Patricia Córdoba, Natalia Moreno, Andres Alastuey, Konrad Kandler, Martina Klose, Clarissa Baldo, Roger N. Clark, Zongbo Shi, Xavier Querol, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 23, 15815–15834, https://doi.org/10.5194/acp-23-15815-2023, https://doi.org/10.5194/acp-23-15815-2023, 2023
Short summary
Short summary
The effect of dust emitted from desertic surfaces upon climate and ecosystems depends on size and mineralogy, but data from soil mineral atlases of desert soils are scarce. We performed particle-size distribution, mineralogy, and Fe speciation in southern Morocco. Results show coarser particles with high quartz proportion are near the elevated areas, while in depressed areas, sizes are finer, and proportions of clays and nano-Fe oxides are higher. This difference is important for dust modelling.
Juan Andrés Casquero-Vera, Daniel Pérez-Ramírez, Hassan Lyamani, Fernando Rejano, Andrea Casans, Gloria Titos, Francisco José Olmo, Lubna Dada, Simo Hakala, Tareq Hussein, Katrianne Lehtipalo, Pauli Paasonen, Antti Hyvärinen, Noemí Pérez, Xavier Querol, Sergio Rodríguez, Nikos Kalivitis, Yenny González, Mansour A. Alghamdi, Veli-Matti Kerminen, Andrés Alastuey, Tuukka Petäjä, and Lucas Alados-Arboledas
Atmos. Chem. Phys., 23, 15795–15814, https://doi.org/10.5194/acp-23-15795-2023, https://doi.org/10.5194/acp-23-15795-2023, 2023
Short summary
Short summary
Here we present the first study of the effect of mineral dust on the inhibition/promotion of new particle formation (NPF) events in different dust-influenced areas. Unexpectedly, we show that the occurrence of NPF events is highly frequent during mineral dust outbreaks, occurring even during extreme dust outbreaks. We also show that the occurrence of NPF events during mineral dust outbreaks significantly affects the potential cloud condensation nuclei budget.
Simone Lolli, Michaël Sicard, Francesco Amato, Adolfo Comeron, Cristina Gíl-Diaz, Tony C. Landi, Constantino Munoz-Porcar, Daniel Oliveira, Federico Dios Otin, Francesc Rocadenbosch, Alejandro Rodriguez-Gomez, Andrés Alastuey, Xavier Querol, and Cristina Reche
Atmos. Chem. Phys., 23, 12887–12906, https://doi.org/10.5194/acp-23-12887-2023, https://doi.org/10.5194/acp-23-12887-2023, 2023
Short summary
Short summary
We evaluated the long-term trends and seasonal variability of the vertically resolved aerosol properties over the past 17 years in Barcelona. Results shows that air quality is improved, with a consistent drop in PM concentrations at the surface, as well as the column aerosol optical depth. The results also show that natural dust outbreaks are more likely in summer, with aerosols reaching an altitude of 5 km, while in winter, aerosols decay as an exponential with a scale height of 600 m.
Cristina González-Flórez, Martina Klose, Andrés Alastuey, Sylvain Dupont, Jerónimo Escribano, Vicken Etyemezian, Adolfo Gonzalez-Romero, Yue Huang, Konrad Kandler, George Nikolich, Agnesh Panta, Xavier Querol, Cristina Reche, Jesús Yus-Díez, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 23, 7177–7212, https://doi.org/10.5194/acp-23-7177-2023, https://doi.org/10.5194/acp-23-7177-2023, 2023
Short summary
Short summary
Atmospheric mineral dust consists of tiny mineral particles that are emitted by wind erosion from arid regions. Its particle size distribution (PSD) affects its impact on the Earth's system. Nowadays, there is an incomplete understanding of the emitted dust PSD and a lot of debate about its variability. Here, we try to address these issues based on the measurements performed during a wind erosion and dust emission field campaign in the Moroccan Sahara within the framework of FRAGMENT project.
Agnesh Panta, Konrad Kandler, Andres Alastuey, Cristina González-Flórez, Adolfo González-Romero, Martina Klose, Xavier Querol, Cristina Reche, Jesús Yus-Díez, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 23, 3861–3885, https://doi.org/10.5194/acp-23-3861-2023, https://doi.org/10.5194/acp-23-3861-2023, 2023
Short summary
Short summary
Desert dust is a major aerosol component of the Earth system and affects the climate. Dust properties are influenced by particle size, mineralogy, shape, and mixing state. This work characterizes freshly emitted individual mineral dust particles from a major source region using electron microscopy. Our new insights into critical particle-specific information will contribute to better constraining climate models that consider mineralogical variations in their representation of the dust cycle.
Jesús Yus-Díez, Marta Via, Andrés Alastuey, Angeliki Karanasiou, María Cruz Minguillón, Noemí Perez, Xavier Querol, Cristina Reche, Matic Ivančič, Martin Rigler, and Marco Pandolfi
Atmos. Chem. Phys., 22, 8439–8456, https://doi.org/10.5194/acp-22-8439-2022, https://doi.org/10.5194/acp-22-8439-2022, 2022
Short summary
Short summary
This study presents the absorption enhancement of internally and externally mixed black carbon (BC) particles in a Mediterranean city and countryside. We showed the importance of secondary organic aerosols (SOAs) and particle ageing by increasing the BC absorption enhancement. We performed a trend analysis on the absorption enhancement. We found a positive trend of the absorption enhancement at the regional station in summer driven by the increase over time of the relative contribution of SOA.
Jesús Yus-Díez, Vera Bernardoni, Griša Močnik, Andrés Alastuey, Davide Ciniglia, Matic Ivančič, Xavier Querol, Noemí Perez, Cristina Reche, Martin Rigler, Roberta Vecchi, Sara Valentini, and Marco Pandolfi
Atmos. Meas. Tech., 14, 6335–6355, https://doi.org/10.5194/amt-14-6335-2021, https://doi.org/10.5194/amt-14-6335-2021, 2021
Short summary
Short summary
Here we characterize the multiple-scattering factor, C, of the dual-spot Aethalometer AE33 and its cross-sensitivity to scattering and wavelength dependence for three background stations: urban, regional and mountaintop. C was obtained for two sets of filter tapes: M8020 and M8060. The cross-sensitivity to scattering and wavelength dependence of C were determined by inter-comparing with other absorption and scattering measurements including multi-angle off-line absorption measurements.
Dimitrios Bousiotis, Francis D. Pope, David C. S. Beddows, Manuel Dall'Osto, Andreas Massling, Jakob Klenø Nøjgaard, Claus Nordstrøm, Jarkko V. Niemi, Harri Portin, Tuukka Petäjä, Noemi Perez, Andrés Alastuey, Xavier Querol, Giorgos Kouvarakis, Nikos Mihalopoulos, Stergios Vratolis, Konstantinos Eleftheriadis, Alfred Wiedensohler, Kay Weinhold, Maik Merkel, Thomas Tuch, and Roy M. Harrison
Atmos. Chem. Phys., 21, 11905–11925, https://doi.org/10.5194/acp-21-11905-2021, https://doi.org/10.5194/acp-21-11905-2021, 2021
Short summary
Short summary
Formation of new particles is a key process in the atmosphere. New particle formation events arising from nucleation of gaseous precursors have been analysed in extensive datasets from 13 sites in five European countries in terms of frequency, nucleation rate, and particle growth rate, with several common features and many differences identified. Although nucleation frequencies are lower at roadside sites, nucleation rates and particle growth rates are typically higher.
Marta Via, María Cruz Minguillón, Cristina Reche, Xavier Querol, and Andrés Alastuey
Atmos. Chem. Phys., 21, 8323–8339, https://doi.org/10.5194/acp-21-8323-2021, https://doi.org/10.5194/acp-21-8323-2021, 2021
Short summary
Short summary
Atmospheric pollutants have been measured in an urban environment by means of state-of-the-art techniques, allowing the origin and the sources of pollution to be identified. Recent years are shown to be increasingly dominated by non-directly emitted particulate matter. Knowledge about the sources of atmospheric pollutants is necessary to design effective mitigation policies.
Dimitrios Bousiotis, James Brean, Francis D. Pope, Manuel Dall'Osto, Xavier Querol, Andrés Alastuey, Noemi Perez, Tuukka Petäjä, Andreas Massling, Jacob Klenø Nøjgaard, Claus Nordstrøm, Giorgos Kouvarakis, Stergios Vratolis, Konstantinos Eleftheriadis, Jarkko V. Niemi, Harri Portin, Alfred Wiedensohler, Kay Weinhold, Maik Merkel, Thomas Tuch, and Roy M. Harrison
Atmos. Chem. Phys., 21, 3345–3370, https://doi.org/10.5194/acp-21-3345-2021, https://doi.org/10.5194/acp-21-3345-2021, 2021
Short summary
Short summary
New particle formation events from 16 sites over Europe have been studied, and the influence of meteorological and atmospheric composition variables has been investigated. Some variables, like solar radiation intensity and temperature, have a positive effect on the occurrence of these events, while others have a negative effect, affecting different aspects such as the rate at which particles are formed or grow. This effect varies depending on the site type and magnitude of these variables.
Ana Moreno, Miguel Bartolomé, Juan Ignacio López-Moreno, Jorge Pey, Juan Pablo Corella, Jordi García-Orellana, Carlos Sancho, María Leunda, Graciela Gil-Romera, Penélope González-Sampériz, Carlos Pérez-Mejías, Francisco Navarro, Jaime Otero-García, Javier Lapazaran, Esteban Alonso-González, Cristina Cid, Jerónimo López-Martínez, Belén Oliva-Urcia, Sérgio Henrique Faria, María José Sierra, Rocío Millán, Xavier Querol, Andrés Alastuey, and José M. García-Ruíz
The Cryosphere, 15, 1157–1172, https://doi.org/10.5194/tc-15-1157-2021, https://doi.org/10.5194/tc-15-1157-2021, 2021
Short summary
Short summary
Our study of the chronological sequence of Monte Perdido Glacier in the Central Pyrenees (Spain) reveals that, although the intense warming associated with the Roman period or Medieval Climate Anomaly produced important ice mass losses, it was insufficient to make this glacier disappear. By contrast, recent global warming has melted away almost 600 years of ice accumulated since the Little Ice Age, jeopardising the survival of this and other southern European glaciers over the next few decades.
Jesús Yus-Díez, Marina Ealo, Marco Pandolfi, Noemí Perez, Gloria Titos, Griša Močnik, Xavier Querol, and Andrés Alastuey
Atmos. Chem. Phys., 21, 431–455, https://doi.org/10.5194/acp-21-431-2021, https://doi.org/10.5194/acp-21-431-2021, 2021
Short summary
Short summary
Here we describe the vertical profiles of extensive (scattering and absorption) and intensive (e.g. albedo and asymmetry parameter) aerosol optical properties from coupling ground-based measurements from two sites in north-eastern Spain and airborne measurements performed with an aircraft. We analyse different aerosol layers along the vertical profile for a regional pollution episode and a Saharan dust intrusion. The results show a change with height depending on the different measured layers.
James Brean, David C. S. Beddows, Zongbo Shi, Brice Temime-Roussel, Nicolas Marchand, Xavier Querol, Andrés Alastuey, María Cruz Minguillón, and Roy M. Harrison
Atmos. Chem. Phys., 20, 10029–10045, https://doi.org/10.5194/acp-20-10029-2020, https://doi.org/10.5194/acp-20-10029-2020, 2020
Short summary
Short summary
New particle formation is a key process influencing both local air quality and climatically active cloud condensation nuclei concentrations. This study has carried out fundamental measurements of nucleation processes in Barcelona, Spain, and concludes that a mechanism involving stabilisation of sulfuric acid clusters by low molecular weight amines is primarily responsible for new particle formation events.
Marco Pandolfi, Dennis Mooibroek, Philip Hopke, Dominik van Pinxteren, Xavier Querol, Hartmut Herrmann, Andrés Alastuey, Olivier Favez, Christoph Hüglin, Esperanza Perdrix, Véronique Riffault, Stéphane Sauvage, Eric van der Swaluw, Oksana Tarasova, and Augustin Colette
Atmos. Chem. Phys., 20, 409–429, https://doi.org/10.5194/acp-20-409-2020, https://doi.org/10.5194/acp-20-409-2020, 2020
Short summary
Short summary
In the last scientific assessment report from the LRTAP Convention, it is stated that because non-urban sources are often major contributors to urban pollution, many cities will be unable to meet WHO guideline levels for air pollutants through local action alone. Consequently, it is very important to estimate how much the local and non-local sources contribute to urban pollution in order to design global strategies to reduce the levels of pollutants in European cities.
Miguel Escudero, Arjo Segers, Richard Kranenburg, Xavier Querol, Andrés Alastuey, Rafael Borge, David de la Paz, Gotzon Gangoiti, and Martijn Schaap
Atmos. Chem. Phys., 19, 14211–14232, https://doi.org/10.5194/acp-19-14211-2019, https://doi.org/10.5194/acp-19-14211-2019, 2019
Short summary
Short summary
In this work we optimise LOTOS-EUROS CTM for simulating tropospheric O3 during summer in the Madrid metropolitan area, one of the largest conurbations in the Mediterranean. Comparing the outputs from five set-ups with different combinations of spatial resolution, meteorological data and vertical structure, we conclude that the model benefits from fine horizontal resolution and highly resolved vertical structure. Running optimized configuration run, we interpret O3 variability during July 2016.
Jaime Benavides, Michelle Snyder, Marc Guevara, Albert Soret, Carlos Pérez García-Pando, Fulvio Amato, Xavier Querol, and Oriol Jorba
Geosci. Model Dev., 12, 2811–2835, https://doi.org/10.5194/gmd-12-2811-2019, https://doi.org/10.5194/gmd-12-2811-2019, 2019
Short summary
Short summary
The NO2 annual air quality limit value is systematically exceeded in many European cities. In this context, understanding human exposure, improving policy and planning, and providing forecasts requires the development of accurate air quality models at street level. We describe CALIOPE-Urban, a system coupling an operational mesoscale air quality forecast system with an urban roadway dispersion model over Barcelona city (Spain). The methodology may be replicated for other cities in the future.
Jordi Massagué, Cristina Carnerero, Miguel Escudero, José María Baldasano, Andrés Alastuey, and Xavier Querol
Atmos. Chem. Phys., 19, 7445–7465, https://doi.org/10.5194/acp-19-7445-2019, https://doi.org/10.5194/acp-19-7445-2019, 2019
María Teresa Pay, Gotzon Gangoiti, Marc Guevara, Sergey Napelenok, Xavier Querol, Oriol Jorba, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 19, 5467–5494, https://doi.org/10.5194/acp-19-5467-2019, https://doi.org/10.5194/acp-19-5467-2019, 2019
Short summary
Short summary
The poor diagnostic of the O3 issue over southwestern Europe prevents authorities from implementing effective mitigation plans. This work is a pioneer in identifying that imported O3 is the largest input to the ground-level O3 concentration in the Iberian Peninsula, which is largely explained by vertical mixing. This study also proves that anthropogenic emissions control the severe O3 peaks during stagnant conditions. Ad hoc local actions should complement national/European strategies.
Cristina Carnerero, Noemí Pérez, Cristina Reche, Marina Ealo, Gloria Titos, Hong-Ku Lee, Hee-Ram Eun, Yong-Hee Park, Lubna Dada, Pauli Paasonen, Veli-Matti Kerminen, Enrique Mantilla, Miguel Escudero, Francisco J. Gómez-Moreno, Elisabeth Alonso-Blanco, Esther Coz, Alfonso Saiz-Lopez, Brice Temime-Roussel, Nicolas Marchand, David C. S. Beddows, Roy M. Harrison, Tuukka Petäjä, Markku Kulmala, Kang-Ho Ahn, Andrés Alastuey, and Xavier Querol
Atmos. Chem. Phys., 18, 16601–16618, https://doi.org/10.5194/acp-18-16601-2018, https://doi.org/10.5194/acp-18-16601-2018, 2018
Short summary
Short summary
The vertical distribution of new particle formation events was studied using tethered balloons carrying miniaturized instrumentation. Results show that new particle formation and growth occurs only in the lower layer of the atmosphere, where aerosols are mixed due to convection, especially when the atmosphere is clean. A comparison of urban and suburban surface stations was also made, suggesting that such events may have a significant impact on ultrafine particle concentrations in a wide area.
Xavier Querol, Andrés Alastuey, Gotzon Gangoiti, Noemí Perez, Hong K. Lee, Heeram R. Eun, Yonghee Park, Enrique Mantilla, Miguel Escudero, Gloria Titos, Lucio Alonso, Brice Temime-Roussel, Nicolas Marchand, Juan R. Moreta, M. Arantxa Revuelta, Pedro Salvador, Begoña Artíñano, Saúl García dos Santos, Mónica Anguas, Alberto Notario, Alfonso Saiz-Lopez, Roy M. Harrison, Millán Millán, and Kang-Ho Ahn
Atmos. Chem. Phys., 18, 6511–6533, https://doi.org/10.5194/acp-18-6511-2018, https://doi.org/10.5194/acp-18-6511-2018, 2018
Short summary
Short summary
We show the main drivers of high O3 episodes in and around Madrid. High levels of ultrafine particles (UFPs) are evidenced, but we demonstrate that most O3 arises from the fumigation of high atmospheric layers, whereas UFPs are generated inside the PBL. O3 contributions from the fumigation of the vertical recirculation of regional air masses, hemispheric transport, and horizontally from direct urban plume transport are shown. Complexity arises from the need to quantify them to abate surface O3.
Marina Ealo, Andrés Alastuey, Noemí Pérez, Anna Ripoll, Xavier Querol, and Marco Pandolfi
Atmos. Chem. Phys., 18, 1149–1169, https://doi.org/10.5194/acp-18-1149-2018, https://doi.org/10.5194/acp-18-1149-2018, 2018
Short summary
Short summary
This study aims to quantify the mass scattering and absorption efficiencies of different aerosol sources at urban (Barcelona), regional (Montseny) and remote (Montsec) background sites in the NW Mediterranean by analysing a source apportionment, first to PM10 and then to scattering and absorption coefficients. With this approach we addressed both the effect that aerosol sources have on air quality and their potential effect on light extinction.
Evangelia Diapouli, Manousos I. Manousakas, Stergios Vratolis, Vasiliki Vasilatou, Stella Pateraki, Kyriaki A. Bairachtari, Xavier Querol, Fulvio Amato, Andrés Alastuey, Angeliki A. Karanasiou, Franco Lucarelli, Silvia Nava, Giulia Calzolai, Vorne L. Gianelle, Cristina Colombi, Célia Alves, Danilo Custódio, Casimiro Pio, Christos Spyrou, George B. Kallos, and Konstantinos Eleftheriadis
Atmos. Chem. Phys., 17, 3673–3685, https://doi.org/10.5194/acp-17-3673-2017, https://doi.org/10.5194/acp-17-3673-2017, 2017
Short summary
Short summary
This study examined the contribution of two natural sources (long-range transport of African dust and sea salt) to the airborne particulate matter concentrations, in 5 southern European cities (Porto, Barcelona, Milan, Florence, Athens). The results demonstrated that natural sources are often expressed with high-intensity events, leading even to exceedances of the EU air quality standards. This effect was more pronounced in the case of African dust intrusions in the eastern Mediterranean area.
Marina Ealo, Andrés Alastuey, Anna Ripoll, Noemí Pérez, María Cruz Minguillón, Xavier Querol, and Marco Pandolfi
Atmos. Chem. Phys., 16, 12567–12586, https://doi.org/10.5194/acp-16-12567-2016, https://doi.org/10.5194/acp-16-12567-2016, 2016
Short summary
Short summary
The present work demonstrates the potential of in situ aerosol optical measurements, from both nephelometer and aethalometer instruments, for detecting specific air pollution scenarios in near real time. Given the high sensitivity of the intensive aerosol optical properties to characterize atmospheric aerosols, these parameters were calibrated in order to detect Saharan dust and biomass burning events at regional (Montseny) and continental (Montsec) environments in the NW Mediterranean.
Marco Pandolfi, Andrés Alastuey, Noemi Pérez, Cristina Reche, Iria Castro, Victor Shatalov, and Xavier Querol
Atmos. Chem. Phys., 16, 11787–11805, https://doi.org/10.5194/acp-16-11787-2016, https://doi.org/10.5194/acp-16-11787-2016, 2016
Short summary
Short summary
The ambient concentration of many air pollutants in Europe has decreased in these last decades thanks to the effectiveness of the pollution control measures implemented at European or regional/local levels. In this work we studied the trends of the concentrations of many different pollutants during the period 2004–2014, reporting on the type of trend, magnitude of the trend, and its statistical significance. Data from two twin sites in NE Spain (regional and urban background) were used.
Antonis Gkikas, Sara Basart, Nikos Hatzianastassiou, Eleni Marinou, Vassilis Amiridis, Stelios Kazadzis, Jorge Pey, Xavier Querol, Oriol Jorba, Santiago Gassó, and José Maria Baldasano
Atmos. Chem. Phys., 16, 8609–8642, https://doi.org/10.5194/acp-16-8609-2016, https://doi.org/10.5194/acp-16-8609-2016, 2016
Short summary
Short summary
This study presents the 3-D structures of intense Mediterranean desert dust outbreaks, over the period Mar 2000–Feb 2013. The desert dust (DD) episodes are identified through an objective and dynamic algorithm, which utilizes satellite retrievals (MODIS, TOMS and OMI) as inputs. The performance of the satellite algorithm is evaluated vs. AERONET and PM10 data. The geometrical characteristics of the identified DD episodes are analyzed using the collocated CALIOP profiles as a complementary tool.
Mariola Brines, Manuel Dall'Osto, Fulvio Amato, María Cruz Minguillón, Angeliki Karanasiou, Andrés Alastuey, and Xavier Querol
Atmos. Chem. Phys., 16, 6785–6804, https://doi.org/10.5194/acp-16-6785-2016, https://doi.org/10.5194/acp-16-6785-2016, 2016
Andrés Alastuey, Xavier Querol, Wenche Aas, Franco Lucarelli, Noemí Pérez, Teresa Moreno, Fabrizia Cavalli, Hans Areskoug, Violeta Balan, Maria Catrambone, Darius Ceburnis, José C. Cerro, Sébastien Conil, Lusine Gevorgyan, Christoph Hueglin, Kornelia Imre, Jean-Luc Jaffrezo, Sarah R. Leeson, Nikolaos Mihalopoulos, Marta Mitosinkova, Colin D. O'Dowd, Jorge Pey, Jean-Philippe Putaud, Véronique Riffault, Anna Ripoll, Jean Sciare, Karine Sellegri, Gerald Spindler, and Karl Espen Yttri
Atmos. Chem. Phys., 16, 6107–6129, https://doi.org/10.5194/acp-16-6107-2016, https://doi.org/10.5194/acp-16-6107-2016, 2016
Short summary
Short summary
Mineral dust content in PM10 was analysed at 20 regional background sites across Europe. Higher dust loadings were observed at most sites in summer, with the most elevated concentrations in the southern- and easternmost countries, due to external and regional sources. Saharan dust outbreaks impacted western and central European in summer and eastern Mediterranean sites in winter. The spatial distribution of some metals reveals the influence of specific anthropogenic sources on a regional scale.
Fulvio Amato, Andrés Alastuey, Angeliki Karanasiou, Franco Lucarelli, Silvia Nava, Giulia Calzolai, Mirko Severi, Silvia Becagli, Vorne L. Gianelle, Cristina Colombi, Celia Alves, Danilo Custódio, Teresa Nunes, Mario Cerqueira, Casimiro Pio, Konstantinos Eleftheriadis, Evangelia Diapouli, Cristina Reche, María Cruz Minguillón, Manousos-Ioannis Manousakas, Thomas Maggos, Stergios Vratolis, Roy M. Harrison, and Xavier Querol
Atmos. Chem. Phys., 16, 3289–3309, https://doi.org/10.5194/acp-16-3289-2016, https://doi.org/10.5194/acp-16-3289-2016, 2016
Short summary
Short summary
Harmonized source apportionment of atmospheric particulate matter (PM10 and PM2.5) at 5 EU cities (Barcelona, Florence, Milan, Athens and Porto) reveals that vehicle exhaust (excluding nitrate) plus non-exhaust contributes 16–32 % to PM10 and 15–36 % to PM2.5. Secondary PM represents 37–82 % of PM2.5. Biomass burning varies from < 2 to 24 % of PM10, depending on the residential heating fuel. Other sources are local dust (7–19 % of PM10), industries (4–11 % of PM10), shipping, sea salt and Saharan dust.
A. S. Fonseca, N. Talbot, J. Schwarz, J. Ondráček, V. Ždímal, J. Kozáková, M. Viana, A. Karanasiou, X. Querol, A. Alastuey, T. V. Vu, J. M. Delgado-Saborit, and R. M. Harrison
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2015-1016, https://doi.org/10.5194/acp-2015-1016, 2016
Revised manuscript not accepted
Short summary
Short summary
This work assessed the performance of 4 cascade impactors, by means of two intercomparison exercises in 2 European locations. The comparability between the different types of impactors assessed was dependent on particle size and on impactor design characteristics. Particle processes such as particle bounce, dissociation of semi volatiles in the coarser stages and/or particle shrinkage were identified as the main causes for the differences observed in particle mass across size fractions.
S. Rodríguez, E. Cuevas, J. M. Prospero, A. Alastuey, X. Querol, J. López-Solano, M. I. García, and S. Alonso-Pérez
Atmos. Chem. Phys., 15, 7471–7486, https://doi.org/10.5194/acp-15-7471-2015, https://doi.org/10.5194/acp-15-7471-2015, 2015
Short summary
Short summary
Long-term 28-year variability of Saharan dust export to the Atlantic is correlated with large-scale meteorology in North Africa, particularly with the intensity of the Saharan high to tropical low dipole-like pattern, the so-called North African Dipole. Variability in the dipole intensity is connected with winds, monsoon rain band and latitudinal shifts of the Saharan air layer. Variability in the dipole intensity suggests connections with ENSO and the Sahel drought.
M. C. Minguillón, A. Ripoll, N. Pérez, A. S. H. Prévôt, F. Canonaco, X. Querol, and A. Alastuey
Atmos. Chem. Phys., 15, 6379–6391, https://doi.org/10.5194/acp-15-6379-2015, https://doi.org/10.5194/acp-15-6379-2015, 2015
Short summary
Short summary
The study focuses on the aerosol variations found in the regional background of the western Mediterranean basin and their relation with atmospheric conditions and scenarios. An Aerosol Chemical Speciation Monitor (ACSM) was deployed for 1 year and the results were validated with co-located PM1 measurements. The organic sources were investigated and the local secondary organic aerosol (SOA) formation was estimated.
M. Brines, M. Dall'Osto, D. C. S. Beddows, R. M. Harrison, F. Gómez-Moreno, L. Núñez, B. Artíñano, F. Costabile, G. P. Gobbi, F. Salimi, L. Morawska, C. Sioutas, and X. Querol
Atmos. Chem. Phys., 15, 5929–5945, https://doi.org/10.5194/acp-15-5929-2015, https://doi.org/10.5194/acp-15-5929-2015, 2015
A. Ripoll, M. C. Minguillón, J. Pey, J. L. Jimenez, D. A. Day, Y. Sosedova, F. Canonaco, A. S. H. Prévôt, X. Querol, and A. Alastuey
Atmos. Chem. Phys., 15, 2935–2951, https://doi.org/10.5194/acp-15-2935-2015, https://doi.org/10.5194/acp-15-2935-2015, 2015
Short summary
Short summary
Real-time measurements of inorganic (sulfate, nitrate, ammonium, chloride and black carbon (BC)) and organic submicron aerosols from a continental background site (Montsec, MSC, 1570m a.s.l.) in the western Mediterranean Basin (WMB) were conducted for 10 months (July 2011 - April 2012) with an aerosol chemical speciation monitor (ACSM). The ACSM was co-located with other online and offline PM1 measurements. Analyses of the hourly, diurnal, and seasonal variations are presented here.
A. Ripoll, M. C. Minguillón, J. Pey, N. Pérez, X. Querol, and A. Alastuey
Atmos. Chem. Phys., 15, 1129–1145, https://doi.org/10.5194/acp-15-1129-2015, https://doi.org/10.5194/acp-15-1129-2015, 2015
Short summary
Short summary
The complete chemical compositions of atmospheric particulate matter (PM1 and PM10) from a continental (Montsec, 1570 m a.s.l.) and a regional (Montseny, 720 m a.s.l) background site in the western Mediterranean Basin were jointly studied for the first time over a relatively long-term period (January 2010-March 2013). Results revealed a) a high relevance of African dust transport and regional dust resuspension; b) low biomass burning contribution; and c) high organic matter contribution.
P. Salvador, S. Alonso-Pérez, J. Pey, B. Artíñano, J. J. de Bustos, A. Alastuey, and X. Querol
Atmos. Chem. Phys., 14, 6759–6775, https://doi.org/10.5194/acp-14-6759-2014, https://doi.org/10.5194/acp-14-6759-2014, 2014
M. Pandolfi, A. Ripoll, X. Querol, and A. Alastuey
Atmos. Chem. Phys., 14, 6443–6460, https://doi.org/10.5194/acp-14-6443-2014, https://doi.org/10.5194/acp-14-6443-2014, 2014
M. Viana, I. Rivas, X. Querol, A. Alastuey, J. Sunyer, M. Álvarez-Pedrerol, L. Bouso, and C. Sioutas
Atmos. Chem. Phys., 14, 4459–4472, https://doi.org/10.5194/acp-14-4459-2014, https://doi.org/10.5194/acp-14-4459-2014, 2014
A. Ripoll, J. Pey, M. C. Minguillón, N. Pérez, M. Pandolfi, X. Querol, and A. Alastuey
Atmos. Chem. Phys., 14, 4279–4295, https://doi.org/10.5194/acp-14-4279-2014, https://doi.org/10.5194/acp-14-4279-2014, 2014
F. Amato, A. Alastuey, J. de la Rosa, Y. Gonzalez Castanedo, A. M. Sánchez de la Campa, M. Pandolfi, A. Lozano, J. Contreras González, and X. Querol
Atmos. Chem. Phys., 14, 3533–3544, https://doi.org/10.5194/acp-14-3533-2014, https://doi.org/10.5194/acp-14-3533-2014, 2014
M. Brines, M. Dall'Osto, D.C.S. Beddows, R. M. Harrison, and X. Querol
Atmos. Chem. Phys., 14, 2973–2986, https://doi.org/10.5194/acp-14-2973-2014, https://doi.org/10.5194/acp-14-2973-2014, 2014
A. Gkikas, N. Hatzianastassiou, N. Mihalopoulos, V. Katsoulis, S. Kazadzis, J. Pey, X. Querol, and O. Torres
Atmos. Chem. Phys., 13, 12135–12154, https://doi.org/10.5194/acp-13-12135-2013, https://doi.org/10.5194/acp-13-12135-2013, 2013
M. Alier, B. L. van Drooge, M. Dall'Osto, X. Querol, J. O. Grimalt, and R. Tauler
Atmos. Chem. Phys., 13, 10353–10371, https://doi.org/10.5194/acp-13-10353-2013, https://doi.org/10.5194/acp-13-10353-2013, 2013
M. Dall'Osto, X. Querol, A. Alastuey, M. C. Minguillon, M. Alier, F. Amato, M. Brines, M. Cusack, J. O. Grimalt, A. Karanasiou, T. Moreno, M. Pandolfi, J. Pey, C. Reche, A. Ripoll, R. Tauler, B. L. Van Drooge, M. Viana, R. M. Harrison, J. Gietl, D. Beddows, W. Bloss, C. O'Dowd, D. Ceburnis, G. Martucci, N. L. Ng, D. Worsnop, J. Wenger, E. Mc Gillicuddy, J. Sodeau, R. Healy, F. Lucarelli, S. Nava, J. L. Jimenez, F. Gomez Moreno, B. Artinano, A. S. H. Prévôt, L. Pfaffenberger, S. Frey, F. Wilsenack, D. Casabona, P. Jiménez-Guerrero, D. Gross, and N. Cots
Atmos. Chem. Phys., 13, 8991–9019, https://doi.org/10.5194/acp-13-8991-2013, https://doi.org/10.5194/acp-13-8991-2013, 2013
X. Querol, A. Alastuey, M. Viana, T. Moreno, C. Reche, M. C. Minguillón, A. Ripoll, M. Pandolfi, F. Amato, A. Karanasiou, N. Pérez, J. Pey, M. Cusack, R. Vázquez, F. Plana, M. Dall'Osto, J. de la Rosa, A. Sánchez de la Campa, R. Fernández-Camacho, S. Rodríguez, C. Pio, L. Alados-Arboledas, G. Titos, B. Artíñano, P. Salvador, S. García Dos Santos, and R. Fernández Patier
Atmos. Chem. Phys., 13, 6185–6206, https://doi.org/10.5194/acp-13-6185-2013, https://doi.org/10.5194/acp-13-6185-2013, 2013
M. Cusack, N. Pérez, J. Pey, A. Alastuey, and X. Querol
Atmos. Chem. Phys., 13, 5173–5187, https://doi.org/10.5194/acp-13-5173-2013, https://doi.org/10.5194/acp-13-5173-2013, 2013
M. Pandolfi, G. Martucci, X. Querol, A. Alastuey, F. Wilsenack, S. Frey, C. D. O'Dowd, and M. Dall'Osto
Atmos. Chem. Phys., 13, 4983–4996, https://doi.org/10.5194/acp-13-4983-2013, https://doi.org/10.5194/acp-13-4983-2013, 2013
M. Dall'Osto, X. Querol, F. Amato, A. Karanasiou, F. Lucarelli, S. Nava, G. Calzolai, and M. Chiari
Atmos. Chem. Phys., 13, 4375–4392, https://doi.org/10.5194/acp-13-4375-2013, https://doi.org/10.5194/acp-13-4375-2013, 2013
J. Pey, X. Querol, A. Alastuey, F. Forastiere, and M. Stafoggia
Atmos. Chem. Phys., 13, 1395–1410, https://doi.org/10.5194/acp-13-1395-2013, https://doi.org/10.5194/acp-13-1395-2013, 2013
M. Dall'Osto, X. Querol, A. Alastuey, C. O'Dowd, R. M. Harrison, J. Wenger, and F. J. Gómez-Moreno
Atmos. Chem. Phys., 13, 741–759, https://doi.org/10.5194/acp-13-741-2013, https://doi.org/10.5194/acp-13-741-2013, 2013
Hasna Chebaicheb, Joel F. de Brito, Tanguy Amodeo, Florian Couvidat, Jean-Eudes Petit, Emmanuel Tison, Gregory Abbou, Alexia Baudic, Mélodie Chatain, Benjamin Chazeau, Nicolas Marchand, Raphaële Falhun, Florie Francony, Cyril Ratier, Didier Grenier, Romain Vidaud, Shouwen Zhang, Gregory Gille, Laurent Meunier, Caroline Marchand, Véronique Riffault, and Olivier Favez
Earth Syst. Sci. Data, 16, 5089–5109, https://doi.org/10.5194/essd-16-5089-2024, https://doi.org/10.5194/essd-16-5089-2024, 2024
Short summary
Short summary
Long-term (2015–2021) quasi-continuous measurements have been obtained at 13 French urban sites using online mass spectrometry, to acquire the comprehensive chemical composition of submicron particulate matter. The results show their spatial and temporal differences and confirm the predominance of organics in France (40–60 %). These measurements can be used for many future studies, such as trend and epidemiological analyses, or comparisons with chemical transport models.
Lise Le Berre, Brice Temime-Roussel, Grazia Maria Lanzafame, Barbara D’Anna, Nicolas Marchand, Stéphane Sauvage, Marvin Dufresne, Liselotte Tinel, Thierry Leonardis, Joel Ferreira de Brito, Alexandre Armengaud, Grégory Gille, Ludovic Lanzi, Romain Bourjot, and Henri Wortham
EGUsphere, https://doi.org/10.5194/egusphere-2024-2903, https://doi.org/10.5194/egusphere-2024-2903, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
A summer campaign in a Mediterranean port examined pollution caused by ships. Two stations in the port measured pollution levels and captured over 350 ship plumes to study their chemical composition. Results showed that pollution levels, like ultra-fine particles, were higher in the port than in the city and offer a strong support to improve emission inventories. These findings may also serve as reference for assessing the benefits of a Sulphur Emission Control Area in the Mediterranean in 2025.
Alex Rowell, James Brean, David C. S. Beddows, Zongbo Shi, Avinash Kumar, Matti Rissanen, Miikka Dal Maso, Peter Mettke, Kay Weinhold, Maik Merkel, and Roy M. Harrison
Atmos. Chem. Phys., 24, 10349–10361, https://doi.org/10.5194/acp-24-10349-2024, https://doi.org/10.5194/acp-24-10349-2024, 2024
Short summary
Short summary
Ions enhance the formation and growth rates of new particles, affecting the Earth's radiation budget. Despite these effects, there is little published data exploring the sources of ions in the urban environment and their role in new particle formation (NPF). Here we show that natural ion sources dominate in urban environments, while traffic is a secondary source. Ions contribute up to 12.7 % of the formation rate of particles, indicating that they are important for forming urban PM.
Alex Rowell, James Brean, David C. S. Beddows, Tuukka Petäjä, Máté Vörösmarty, Imre Salma, Jarkko V. Niemi, Hanna E. Manninen, Dominik van Pinxteren, Thomas Tuch, Kay Weinhold, Zongbo Shi, and Roy M. Harrison
Atmos. Chem. Phys., 24, 9515–9531, https://doi.org/10.5194/acp-24-9515-2024, https://doi.org/10.5194/acp-24-9515-2024, 2024
Short summary
Short summary
Different sources of airborne particles in the atmospheres of four European cities were distinguished by recognising their particle size distributions using a statistical procedure, positive matrix factorisation. The various sources responded differently to the changes in emissions associated with COVID-19 lockdowns, and the reasons are investigated. While traffic emissions generally decreased, particles formed from reactions of atmospheric gases decreased in some cities but increased in others.
Adolfo González-Romero, Cristina González-Flórez, Agnesh Panta, Jesús Yus-Díez, Patricia Córdoba, Andres Alastuey, Natalia Moreno, Melani Hernández-Chiriboga, Konrad Kandler, Martina Klose, Roger N. Clark, Bethany L. Ehlmann, Rebecca N. Greenberger, Abigail M. Keebler, Phil Brodrick, Robert Green, Paul Ginoux, Xavier Querol, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 24, 9155–9176, https://doi.org/10.5194/acp-24-9155-2024, https://doi.org/10.5194/acp-24-9155-2024, 2024
Short summary
Short summary
In this research, we studied the dust-emitting properties of crusts and aeolian ripples from the Mojave Desert. These properties are key to understanding the effect of dust upon climate. We found two different playa lakes according to the groundwater regime, which implies differences in crusts' cohesion state and mineralogy, which can affect the dust emission potential and properties. We also compare them with Moroccan Sahara crusts and Icelandic top sediments.
Xiansheng Liu, Xun Zhang, Marvin Dufresne, Tao Wang, Lijie Wu, Rosa Lara, Roger Seco , Marta Monge, Ana Maria Yáñez-Serrano, Marie Gohy, Paul Petit, Audrey Chevalier, Marie-Pierre Vagnot, Yann Fortier, Alexia Baudic, Véronique Ghersi, Grégory Gille, Ludovic Lanzi, Valérie Gros, Leïla Simon, Heidi Hellen, Stefan Reimann, Zoé Le Bras, Michelle Jessy Müller, David Beddows, Siqi Hou, Zongbo Shi, Roy M. Harrison, William Bloss, James Dernie, Stéphane Sauvage, Philip K. Hopke, Xiaoli Duan, Taicheng An, Alastair Lewis, Jim Hopkins, Eleni Liakakou, Nikolaos Mihalopoulos, Xiaohu Zhang, Andrés Alastuey, Xavier Querol, and Thérèse Salameh
EGUsphere, https://doi.org/10.5194/egusphere-2024-2309, https://doi.org/10.5194/egusphere-2024-2309, 2024
Short summary
Short summary
This study examines BTEX (benzene, toluene, ethylbenzene, xylenes) pollution in urban areas across 7 European countries. Analyzing data from 22 monitoring sites, we found traffic and industrial activities significantly impact BTEX levels, with peaks during rush hours. Despite improvements, the risk from BTEX exposure remains moderate, especially in high-traffic and industrial zones. It highlights the need for targeted air quality management to protect public health and improve urban air quality.
Hector Navarro-Barboza, Jordi Rovira, Vincenzo Obiso, Andrea Pozzer, Marta Via, Andres Alastuey, Xavier Querol, Noemi Perez, Marjan Savadkoohi, Gang Chen, Jesus Yus-Díez, Matic Ivancic, Martin Rigler, Konstantinos Eleftheriadis, Stergios Vratolis, Olga Zografou, Maria Gini, Benjamin Chazeau, Nicolas Marchand, Andre Prevot, Kaspar Dallenbach, Mikael Ehn, Krista Luoma, Tuukka Petäjä, Anna Tobler, Jaroslaw Necki, Minna Aurela, Hilkka Timonen, Jarkko Niemi, Olivier Favez, Jean-Eudes Petit, Jean-Philippe Putaud, Christoph Hueglin, Nicolas Pascal, Aurelien Chauvigné, Sebastien Conil, Marco Pandolfi, and Oriol Jorba
EGUsphere, https://doi.org/10.5194/egusphere-2024-2086, https://doi.org/10.5194/egusphere-2024-2086, 2024
Short summary
Short summary
Brown carbon (BrC) absorbs UV and visible light, affecting climate. Our study investigates BrC's imaginary refractive index (k ) using data from 12 European sites. Residential emissions are a major OA source in winter, while secondary organic aerosols (SOA) dominate in summer. We derived source-specific k values, enhancing model accuracy. This research improves understanding of BrC's climate role, emphasizing the need for source-specific constraints in atmospheric models.
Pamela A. Dominutti, Jean-Luc Jaffrezo, Anouk Marsal, Takoua Mhadhbi, Rhabira Elazzouzi, Camille Rak, Fabrizia Cavalli, Jean-Philippe Putaud, Aikaterini Bougiatioti, Nikolaos Mihalopoulos, Despina Paraskevopoulou, Ian S. Mudway, Athanasios Nenes, Kaspar R. Daellenbach, Catherine Banach, Steven J. Campbell, Hana Cigánková, Daniele Contini, Greg Evans, Maria Georgopoulou, Manuella Ghanem, Drew A. Glencross, Maria Rachele Guascito, Hartmut Herrmann, Saima Iram, Maja Jovanović, Milena Jovašević-Stojanović, Markus Kalberer, Ingeborg M. Kooter, Suzanne E. Paulson, Anil Patel, Esperanza Perdrix, Maria Chiara Pietrogrande, Pavel Mikuška, Jean-Jacques Sauvain, Aikaterina Seitanidi, Pourya Shahpoury, Eduardo J. S. Souza, Sarah Steimer, Svetlana Stevanovic, Guillaume Suarez, P. S. Ganesh Subramanian, Battist Utinger, Marloes F. van Os, Vishal Verma, Xing Wang, Rodney J. Weber, Yuhan Yang, Xavier Querol, Gerard Hoek, Roy M. Harrison, and Gaëlle Uzu
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-107, https://doi.org/10.5194/amt-2024-107, 2024
Revised manuscript accepted for AMT
Short summary
Short summary
In this work, 20 labs worldwide collaborated to evaluate the measurement of air pollution's oxidative potential (OP), a key indicator of its harmful effects. The study aimed to identify disparities in the widely used OP DTT assay and assess the consistency of OP among labs using the same protocol. The results showed that half of the labs achieved acceptable results. However, variability was also found, highlighting the need for standardization in OP procedures.
Natalie M. Mahowald, Longlei Li, Julius Vira, Marje Prank, Douglas S. Hamilton, Hitoshi Matsui, Ron L. Miller, Louis Lu, Ezgi Akyuz, Daphne Meidan, Peter G. Hess, Heikki Lihavainen, Christine Wiedinmyer, Jenny Hand, Maria Grazia Alaimo, Célia Alves, Andres Alastuey, Paulo Artaxo, Africa Barreto, Francisco Barraza, Silvia Becagli, Giulia Calzolai, Shankararaman Chellam, Ying Chen, Patrick Chuang, David D. Cohen, Cristina Colombi, Evangelia Diapouli, Gaetano Dongarra, Konstantinos Eleftheriadis, Johann Engelbrecht, Corinne Galy-Lacaux, Cassandra Gaston, Dario Gomez, Yenny González Ramos, Roy M. Harrison, Chris Heyes, Barak Herut, Philip Hopke, Christoph Hüglin, Maria Kanakidou, Zsofia Kertesz, Zbigniew Klimont, Katriina Kyllönen, Fabrice Lambert, Xiaohong Liu, Remi Losno, Franco Lucarelli, Willy Maenhaut, Beatrice Marticorena, Randall V. Martin, Nikolaos Mihalopoulos, Yasser Morera-Gomez, Adina Paytan, Joseph Prospero, Sergio Rodríguez, Patricia Smichowski, Daniela Varrica, Brenna Walsh, Crystal Weagle, and Xi Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2024-1617, https://doi.org/10.5194/egusphere-2024-1617, 2024
Short summary
Short summary
Aerosol particles are an important part of the Earth system, but their concentrations are spatially and temporally heterogeneous, as well as variable in size and composition. Here we present a new compilation of PM2.5 and PM10 aerosol observations, focusing on the spatial variability across different observational stations, including composition, and demonstrate a method for comparing the datasets to model output.
Adolfo González-Romero, Cristina González-Flórez, Agnesh Panta, Jesús Yus-Díez, Patricia Córdoba, Andres Alastuey, Natalia Moreno, Konrad Kandler, Martina Klose, Roger N. Clark, Bethany L. Ehlmann, Rebecca N. Greenberger, Abigail M. Keebler, Phil Brodrick, Robert O. Green, Xavier Querol, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 24, 6883–6910, https://doi.org/10.5194/acp-24-6883-2024, https://doi.org/10.5194/acp-24-6883-2024, 2024
Short summary
Short summary
The knowledge of properties from dust emitted in high latitudes such as in Iceland is scarce. This study focuses on the particle size, mineralogy, cohesion, and iron mode of occurrence and reflectance spectra of dust-emitting sediments. Icelandic top sediments have lower cohesion state, coarser particle size, distinctive mineralogy, and 3-fold bulk Fe content, with a large presence of magnetite compared to Saharan crusts.
Marco Paglione, David C. S. Beddows, Anna Jones, Thomas Lachlan-Cope, Matteo Rinaldi, Stefano Decesari, Francesco Manarini, Mara Russo, Karam Mansour, Roy M. Harrison, Andrea Mazzanti, Emilio Tagliavini, and Manuel Dall'Osto
Atmos. Chem. Phys., 24, 6305–6322, https://doi.org/10.5194/acp-24-6305-2024, https://doi.org/10.5194/acp-24-6305-2024, 2024
Short summary
Short summary
Applying factor analysis techniques to H-NMR spectra, we present the organic aerosol (OA) source apportionment of PM1 samples collected in parallel at two Antarctic stations, namely Signy and Halley, allowing investigation of aerosol–climate interactions in an unperturbed atmosphere. Our results show remarkable differences between pelagic (open-ocean) and sympagic (sea-ice-influenced) air masses and indicate that various sources and processes are controlling Antarctic aerosols.
Jianghao Li, Alastair C. Lewis, Jim R. Hopkins, Stephen J. Andrews, Tim Murrells, Neil Passant, Ben Richmond, Siqi Hou, William J. Bloss, Roy M. Harrison, and Zongbo Shi
Atmos. Chem. Phys., 24, 6219–6231, https://doi.org/10.5194/acp-24-6219-2024, https://doi.org/10.5194/acp-24-6219-2024, 2024
Short summary
Short summary
A summertime ozone event at an urban site in Birmingham is sensitive to volatile organic compounds (VOCs) – particularly those of oxygenated VOCs. The roles of anthropogenic VOC sources in urban ozone chemistry are examined by integrating the 1990–2019 national atmospheric emission inventory into model scenarios. Road transport remains the most powerful means of further reducing ozone in this case study, but the benefits may be offset if solvent emissions of VOCs continue to increase.
Fernando Rejano, Andrea Casans, Marta Via, Juan Andrés Casquero-Vera, Sonia Castillo, Hassan Lyamani, Alberto Cazorla, Elisabeth Andrews, Daniel Pérez-Ramírez, Andrés Alastuey, Francisco Javier Gómez-Moreno, Lucas Alados-Arboledas, Francisco José Olmo, and Gloria Titos
EGUsphere, https://doi.org/10.5194/egusphere-2024-1059, https://doi.org/10.5194/egusphere-2024-1059, 2024
Short summary
Short summary
This study provides valuable insights to improve cloud condensation nuclei (CCN) estimations at a high-altitude remote site which is influenced by nearby urban pollution. Understanding the factors that affect CCN estimations is essential to improve the CCN data coverage worldwide and assess aerosol-cloud interactions in a global scale. This is crucial for improving climate models since aerosol-cloud interactions are the most important source of uncertainty in climate projections.
James Brean, David C. S. Beddows, Eija Asmi, Ari Virkkula, Lauriane L. J. Quéléver, Mikko Sipilä, Floortje Van Den Heuvel, Thomas Lachlan-Cope, Anna Jones, Markus Frey, Angelo Lupi, Jiyeon Park, Young Jun Yoon, Ralf Weller, Giselle L. Marincovich, Gabriela C. Mulena, Roy M. Harrison, and Manuel Dall´Osto
EGUsphere, https://doi.org/10.5194/egusphere-2024-987, https://doi.org/10.5194/egusphere-2024-987, 2024
Short summary
Short summary
Our results emphasize how understanding the geographical variation in surface types across the Antarctic is key to understanding secondary aerosol sources.
Jordi Massagué, Eduardo Torre-Pascual, Cristina Carnerero, Miguel Escudero, Andrés Alastuey, Marco Pandolfi, Xavier Querol, and Gotzon Gangoiti
Atmos. Chem. Phys., 24, 4827–4850, https://doi.org/10.5194/acp-24-4827-2024, https://doi.org/10.5194/acp-24-4827-2024, 2024
Short summary
Short summary
This study analyses three acute ozone episodes in Barcelona (NE Spain) which have occurred only in recent years and are of particular concern due to the city's significant population. The findings uncover a complex interplay of factors, notably shared among episodes, including pollution transport at different scales and specific weather and emission patterns. These insights significantly enhance our understanding of these occurrences and improve predictive capabilities.
Celia Herrero del Barrio, Roberto Román, Ramiro González, Alberto Cazorla, Marcos Herreras-Giralda, Juan Carlos Antuña-Sánchez, Francisco Molero, Francisco Navas-Guzmán, Antonio Serrano, María Ángeles Obregón, Yolanda Sola, Marco Pandolfi, Sara Herrero-Anta, Daniel González-Fernández, Jorge Muñiz-Rosado, David Mateos, Abel Calle, Carlos Toledano, Victoria Eugenia Cachorro, and Ángel Máximo de Frutos
EGUsphere, https://doi.org/10.5194/egusphere-2024-581, https://doi.org/10.5194/egusphere-2024-581, 2024
Preprint withdrawn
Short summary
Short summary
Introducing CAECENET, a novel system that combines sun-sky photometer and ceilometer data, enabling the continuous monitoring and automatic retrieval of both vertical and columnar aerosol properties in near real-time. A case study on a Saharan dust outbreak illustrates it's efficacy in tracking aerosol events. Additionally, the analysis of Canadian wildfires' long-range transport is presented, showing it's utility in monitoring event propagation, aerosol concentration, and optical properties.
Julie Camman, Benjamin Chazeau, Nicolas Marchand, Amandine Durand, Grégory Gille, Ludovic Lanzi, Jean-Luc Jaffrezo, Henri Wortham, and Gaëlle Uzu
Atmos. Chem. Phys., 24, 3257–3278, https://doi.org/10.5194/acp-24-3257-2024, https://doi.org/10.5194/acp-24-3257-2024, 2024
Short summary
Short summary
Fine particle (PM1) pollution is a major health issue in the city of Marseille, which is subject to numerous pollution sources. Sampling carried out during the summer enabled a fine characterization of the PM1 sources and their oxidative potential, a promising new metric as a proxy for health impact. PM1 came mainly from combustion sources, secondary ammonium sulfate, and organic nitrate, while the oxidative potential of PM1 came from these sources and from resuspended dust in the atmosphere.
C. Isabel Moreno, Radovan Krejci, Jean-Luc Jaffrezo, Gaëlle Uzu, Andrés Alastuey, Marcos F. Andrade, Valeria Mardóñez, Alkuin Maximilian Koenig, Diego Aliaga, Claudia Mohr, Laura Ticona, Fernando Velarde, Luis Blacutt, Ricardo Forno, David N. Whiteman, Alfred Wiedensohler, Patrick Ginot, and Paolo Laj
Atmos. Chem. Phys., 24, 2837–2860, https://doi.org/10.5194/acp-24-2837-2024, https://doi.org/10.5194/acp-24-2837-2024, 2024
Short summary
Short summary
Aerosol chemical composition (ions, sugars, carbonaceous matter) from 2011 to 2020 was studied at Mt. Chacaltaya (5380 m a.s.l., Bolivian Andes). Minimum concentrations occur in the rainy season with maxima in the dry and transition seasons. The origins of the aerosol are located in a radius of hundreds of kilometers: nearby urban and rural areas, natural biogenic emissions, vegetation burning from Amazonia and Chaco, Pacific Ocean emissions, soil dust, and Peruvian volcanism.
Natalie M. Mahowald, Longlei Li, Julius Vira, Marje Prank, Douglas S. Hamilton, Hitoshi Matsui, Ron L. Miller, Louis Lu, Ezgi Akyuz, Daphne Meidan, Peter Hess, Heikki Lihavainen, Christine Wiedinmyer, Jenny Hand, Maria Grazia Alaimo, Célia Alves, Andres Alastuey, Paulo Artaxo, Africa Barreto, Francisco Barraza, Silvia Becagli, Giulia Calzolai, Shankarararman Chellam, Ying Chen, Patrick Chuang, David D. Cohen, Cristina Colombi, Evangelia Diapouli, Gaetano Dongarra, Konstantinos Eleftheriadis, Corinne Galy-Lacaux, Cassandra Gaston, Dario Gomez, Yenny González Ramos, Hannele Hakola, Roy M. Harrison, Chris Heyes, Barak Herut, Philip Hopke, Christoph Hüglin, Maria Kanakidou, Zsofia Kertesz, Zbiginiw Klimont, Katriina Kyllönen, Fabrice Lambert, Xiaohong Liu, Remi Losno, Franco Lucarelli, Willy Maenhaut, Beatrice Marticorena, Randall V. Martin, Nikolaos Mihalopoulos, Yasser Morera-Gomez, Adina Paytan, Joseph Prospero, Sergio Rodríguez, Patricia Smichowski, Daniela Varrica, Brenna Walsh, Crystal Weagle, and Xi Zhao
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-1, https://doi.org/10.5194/essd-2024-1, 2024
Preprint withdrawn
Short summary
Short summary
Aerosol particles can interact with incoming solar radiation and outgoing long wave radiation, change cloud properties, affect photochemistry, impact surface air quality, and when deposited impact surface albedo of snow and ice, and modulate carbon dioxide uptake by the land and ocean. Here we present a new compilation of aerosol observations including composition, a methodology for comparing the datasets to model output, and show the implications of these results using one model.
Adolfo González-Romero, Cristina González-Flórez, Agnesh Panta, Jesús Yus-Díez, Cristina Reche, Patricia Córdoba, Natalia Moreno, Andres Alastuey, Konrad Kandler, Martina Klose, Clarissa Baldo, Roger N. Clark, Zongbo Shi, Xavier Querol, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 23, 15815–15834, https://doi.org/10.5194/acp-23-15815-2023, https://doi.org/10.5194/acp-23-15815-2023, 2023
Short summary
Short summary
The effect of dust emitted from desertic surfaces upon climate and ecosystems depends on size and mineralogy, but data from soil mineral atlases of desert soils are scarce. We performed particle-size distribution, mineralogy, and Fe speciation in southern Morocco. Results show coarser particles with high quartz proportion are near the elevated areas, while in depressed areas, sizes are finer, and proportions of clays and nano-Fe oxides are higher. This difference is important for dust modelling.
Juan Andrés Casquero-Vera, Daniel Pérez-Ramírez, Hassan Lyamani, Fernando Rejano, Andrea Casans, Gloria Titos, Francisco José Olmo, Lubna Dada, Simo Hakala, Tareq Hussein, Katrianne Lehtipalo, Pauli Paasonen, Antti Hyvärinen, Noemí Pérez, Xavier Querol, Sergio Rodríguez, Nikos Kalivitis, Yenny González, Mansour A. Alghamdi, Veli-Matti Kerminen, Andrés Alastuey, Tuukka Petäjä, and Lucas Alados-Arboledas
Atmos. Chem. Phys., 23, 15795–15814, https://doi.org/10.5194/acp-23-15795-2023, https://doi.org/10.5194/acp-23-15795-2023, 2023
Short summary
Short summary
Here we present the first study of the effect of mineral dust on the inhibition/promotion of new particle formation (NPF) events in different dust-influenced areas. Unexpectedly, we show that the occurrence of NPF events is highly frequent during mineral dust outbreaks, occurring even during extreme dust outbreaks. We also show that the occurrence of NPF events during mineral dust outbreaks significantly affects the potential cloud condensation nuclei budget.
Simone Lolli, Michaël Sicard, Francesco Amato, Adolfo Comeron, Cristina Gíl-Diaz, Tony C. Landi, Constantino Munoz-Porcar, Daniel Oliveira, Federico Dios Otin, Francesc Rocadenbosch, Alejandro Rodriguez-Gomez, Andrés Alastuey, Xavier Querol, and Cristina Reche
Atmos. Chem. Phys., 23, 12887–12906, https://doi.org/10.5194/acp-23-12887-2023, https://doi.org/10.5194/acp-23-12887-2023, 2023
Short summary
Short summary
We evaluated the long-term trends and seasonal variability of the vertically resolved aerosol properties over the past 17 years in Barcelona. Results shows that air quality is improved, with a consistent drop in PM concentrations at the surface, as well as the column aerosol optical depth. The results also show that natural dust outbreaks are more likely in summer, with aerosols reaching an altitude of 5 km, while in winter, aerosols decay as an exponential with a scale height of 600 m.
Valeria Mardoñez, Marco Pandolfi, Lucille Joanna S. Borlaza, Jean-Luc Jaffrezo, Andrés Alastuey, Jean-Luc Besombes, Isabel Moreno R., Noemi Perez, Griša Močnik, Patrick Ginot, Radovan Krejci, Vladislav Chrastny, Alfred Wiedensohler, Paolo Laj, Marcos Andrade, and Gaëlle Uzu
Atmos. Chem. Phys., 23, 10325–10347, https://doi.org/10.5194/acp-23-10325-2023, https://doi.org/10.5194/acp-23-10325-2023, 2023
Short summary
Short summary
La Paz and El Alto are two fast-growing, high-altitude Bolivian cities forming the second-largest metropolitan area in the country. The sources of particulate matter (PM) in this conurbation were not previously investigated. This study identified 11 main sources of PM, of which dust and vehicular emissions stand out as the main ones. The influence of regional biomass combustion and local waste combustion was also observed, with the latter being a major source of hazardous compounds.
Jean-Philippe Putaud, Enrico Pisoni, Alexander Mangold, Christoph Hueglin, Jean Sciare, Michael Pikridas, Chrysanthos Savvides, Jakub Ondracek, Saliou Mbengue, Alfred Wiedensohler, Kay Weinhold, Maik Merkel, Laurent Poulain, Dominik van Pinxteren, Hartmut Herrmann, Andreas Massling, Claus Nordstroem, Andrés Alastuey, Cristina Reche, Noemí Pérez, Sonia Castillo, Mar Sorribas, Jose Antonio Adame, Tuukka Petaja, Katrianne Lehtipalo, Jarkko Niemi, Véronique Riffault, Joel F. de Brito, Augustin Colette, Olivier Favez, Jean-Eudes Petit, Valérie Gros, Maria I. Gini, Stergios Vratolis, Konstantinos Eleftheriadis, Evangelia Diapouli, Hugo Denier van der Gon, Karl Espen Yttri, and Wenche Aas
Atmos. Chem. Phys., 23, 10145–10161, https://doi.org/10.5194/acp-23-10145-2023, https://doi.org/10.5194/acp-23-10145-2023, 2023
Short summary
Short summary
Many European people are still exposed to levels of air pollution that can affect their health. COVID-19 lockdowns in 2020 were used to assess the impact of the reduction in human mobility on air pollution across Europe by comparing measurement data with values that would be expected if no lockdown had occurred. We show that lockdown measures did not lead to consistent decreases in the concentrations of fine particulate matter suspended in the air, and we investigate why.
Clarissa Baldo, Paola Formenti, Claudia Di Biagio, Gongda Lu, Congbo Song, Mathieu Cazaunau, Edouard Pangui, Jean-Francois Doussin, Pavla Dagsson-Waldhauserova, Olafur Arnalds, David Beddows, A. Robert MacKenzie, and Zongbo Shi
Atmos. Chem. Phys., 23, 7975–8000, https://doi.org/10.5194/acp-23-7975-2023, https://doi.org/10.5194/acp-23-7975-2023, 2023
Short summary
Short summary
This paper presents new shortwave spectral complex refractive index and single scattering albedo data for Icelandic dust. Our results show that the imaginary part of the complex refractive index of Icelandic dust is at the upper end of the range of low-latitude dust. Furthermore, we observed that Icelandic dust is more absorbing towards the near-infrared, which we attribute to its high magnetite content. These findings are important for modeling dust aerosol radiative effects in the Arctic.
Jonas Elm, Aladár Czitrovszky, Andreas Held, Annele Virtanen, Astrid Kiendler-Scharr, Benjamin J. Murray, Daniel McCluskey, Daniele Contini, David Broday, Eirini Goudeli, Hilkka Timonen, Joan Rosell-Llompart, Jose L. Castillo, Evangelia Diapouli, Mar Viana, Maria E. Messing, Markku Kulmala, Naděžda Zíková, and Sebastian H. Schmitt
Aerosol Research, 1, 13–16, https://doi.org/10.5194/ar-1-13-2023, https://doi.org/10.5194/ar-1-13-2023, 2023
Cristina González-Flórez, Martina Klose, Andrés Alastuey, Sylvain Dupont, Jerónimo Escribano, Vicken Etyemezian, Adolfo Gonzalez-Romero, Yue Huang, Konrad Kandler, George Nikolich, Agnesh Panta, Xavier Querol, Cristina Reche, Jesús Yus-Díez, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 23, 7177–7212, https://doi.org/10.5194/acp-23-7177-2023, https://doi.org/10.5194/acp-23-7177-2023, 2023
Short summary
Short summary
Atmospheric mineral dust consists of tiny mineral particles that are emitted by wind erosion from arid regions. Its particle size distribution (PSD) affects its impact on the Earth's system. Nowadays, there is an incomplete understanding of the emitted dust PSD and a lot of debate about its variability. Here, we try to address these issues based on the measurements performed during a wind erosion and dust emission field campaign in the Moroccan Sahara within the framework of FRAGMENT project.
Joanna E. Dyson, Lisa K. Whalley, Eloise J. Slater, Robert Woodward-Massey, Chunxiang Ye, James D. Lee, Freya Squires, James R. Hopkins, Rachel E. Dunmore, Marvin Shaw, Jacqueline F. Hamilton, Alastair C. Lewis, Stephen D. Worrall, Asan Bacak, Archit Mehra, Thomas J. Bannan, Hugh Coe, Carl J. Percival, Bin Ouyang, C. Nicholas Hewitt, Roderic L. Jones, Leigh R. Crilley, Louisa J. Kramer, W. Joe F. Acton, William J. Bloss, Supattarachai Saksakulkrai, Jingsha Xu, Zongbo Shi, Roy M. Harrison, Simone Kotthaus, Sue Grimmond, Yele Sun, Weiqi Xu, Siyao Yue, Lianfang Wei, Pingqing Fu, Xinming Wang, Stephen R. Arnold, and Dwayne E. Heard
Atmos. Chem. Phys., 23, 5679–5697, https://doi.org/10.5194/acp-23-5679-2023, https://doi.org/10.5194/acp-23-5679-2023, 2023
Short summary
Short summary
The hydroxyl (OH) and closely coupled hydroperoxyl (HO2) radicals are vital for their role in the removal of atmospheric pollutants. In less polluted regions, atmospheric models over-predict HO2 concentrations. In this modelling study, the impact of heterogeneous uptake of HO2 onto aerosol surfaces on radical concentrations and the ozone production regime in Beijing in the summertime is investigated, and the implications for emissions policies across China are considered.
Agnesh Panta, Konrad Kandler, Andres Alastuey, Cristina González-Flórez, Adolfo González-Romero, Martina Klose, Xavier Querol, Cristina Reche, Jesús Yus-Díez, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 23, 3861–3885, https://doi.org/10.5194/acp-23-3861-2023, https://doi.org/10.5194/acp-23-3861-2023, 2023
Short summary
Short summary
Desert dust is a major aerosol component of the Earth system and affects the climate. Dust properties are influenced by particle size, mineralogy, shape, and mixing state. This work characterizes freshly emitted individual mineral dust particles from a major source region using electron microscopy. Our new insights into critical particle-specific information will contribute to better constraining climate models that consider mineralogical variations in their representation of the dust cycle.
James Brean, David C. S. Beddows, Roy M. Harrison, Congbo Song, Peter Tunved, Johan Ström, Radovan Krejci, Eyal Freud, Andreas Massling, Henrik Skov, Eija Asmi, Angelo Lupi, and Manuel Dall'Osto
Atmos. Chem. Phys., 23, 2183–2198, https://doi.org/10.5194/acp-23-2183-2023, https://doi.org/10.5194/acp-23-2183-2023, 2023
Short summary
Short summary
Our results emphasize how understanding the geographical variation in surface types across the Arctic is key to understanding secondary aerosol sources. We provide a harmonised analysis of new particle formation across the Arctic.
Matthew Boyer, Diego Aliaga, Jakob Boyd Pernov, Hélène Angot, Lauriane L. J. Quéléver, Lubna Dada, Benjamin Heutte, Manuel Dall'Osto, David C. S. Beddows, Zoé Brasseur, Ivo Beck, Silvia Bucci, Marina Duetsch, Andreas Stohl, Tiia Laurila, Eija Asmi, Andreas Massling, Daniel Charles Thomas, Jakob Klenø Nøjgaard, Tak Chan, Sangeeta Sharma, Peter Tunved, Radovan Krejci, Hans Christen Hansson, Federico Bianchi, Katrianne Lehtipalo, Alfred Wiedensohler, Kay Weinhold, Markku Kulmala, Tuukka Petäjä, Mikko Sipilä, Julia Schmale, and Tuija Jokinen
Atmos. Chem. Phys., 23, 389–415, https://doi.org/10.5194/acp-23-389-2023, https://doi.org/10.5194/acp-23-389-2023, 2023
Short summary
Short summary
The Arctic is a unique environment that is warming faster than other locations on Earth. We evaluate measurements of aerosol particles, which can influence climate, over the central Arctic Ocean for a full year and compare the data to land-based measurement stations across the Arctic. Our measurements show that the central Arctic has similarities to but also distinct differences from the stations further south. We note that this may change as the Arctic warms and sea ice continues to decline.
Marta Via, Gang Chen, Francesco Canonaco, Kaspar R. Daellenbach, Benjamin Chazeau, Hasna Chebaicheb, Jianhui Jiang, Hannes Keernik, Chunshui Lin, Nicolas Marchand, Cristina Marin, Colin O'Dowd, Jurgita Ovadnevaite, Jean-Eudes Petit, Michael Pikridas, Véronique Riffault, Jean Sciare, Jay G. Slowik, Leïla Simon, Jeni Vasilescu, Yunjiang Zhang, Olivier Favez, André S. H. Prévôt, Andrés Alastuey, and María Cruz Minguillón
Atmos. Meas. Tech., 15, 5479–5495, https://doi.org/10.5194/amt-15-5479-2022, https://doi.org/10.5194/amt-15-5479-2022, 2022
Short summary
Short summary
This work presents the differences resulting from two techniques (rolling and seasonal) of the positive matrix factorisation model that can be run for organic aerosol source apportionment. The current state of the art suggests that the rolling technique is more accurate, but no proof of its effectiveness has been provided yet. This paper tackles this issue in the context of a synthetic dataset and a multi-site real-world comparison.
Dimitrios Bousiotis, David C. S. Beddows, Ajit Singh, Molly Haugen, Sebastián Diez, Pete M. Edwards, Adam Boies, Roy M. Harrison, and Francis D. Pope
Atmos. Meas. Tech., 15, 4047–4061, https://doi.org/10.5194/amt-15-4047-2022, https://doi.org/10.5194/amt-15-4047-2022, 2022
Short summary
Short summary
In the last decade, low-cost sensors have revolutionised the field of air quality monitoring. This paper extends the ability of low-cost sensors to not only measure air pollution, but also to understand where the pollution comes from. This "source apportionment" is a critical step in air quality management to allow for the mitigation of air pollution. The techniques developed in this paper have the potential for great impact in both research and industrial applications.
Jesús Yus-Díez, Marta Via, Andrés Alastuey, Angeliki Karanasiou, María Cruz Minguillón, Noemí Perez, Xavier Querol, Cristina Reche, Matic Ivančič, Martin Rigler, and Marco Pandolfi
Atmos. Chem. Phys., 22, 8439–8456, https://doi.org/10.5194/acp-22-8439-2022, https://doi.org/10.5194/acp-22-8439-2022, 2022
Short summary
Short summary
This study presents the absorption enhancement of internally and externally mixed black carbon (BC) particles in a Mediterranean city and countryside. We showed the importance of secondary organic aerosols (SOAs) and particle ageing by increasing the BC absorption enhancement. We performed a trend analysis on the absorption enhancement. We found a positive trend of the absorption enhancement at the regional station in summer driven by the increase over time of the relative contribution of SOA.
Varun Kumar, Stamatios Giannoukos, Sophie L. Haslett, Yandong Tong, Atinderpal Singh, Amelie Bertrand, Chuan Ping Lee, Dongyu S. Wang, Deepika Bhattu, Giulia Stefenelli, Jay S. Dave, Joseph V. Puthussery, Lu Qi, Pawan Vats, Pragati Rai, Roberto Casotto, Rangu Satish, Suneeti Mishra, Veronika Pospisilova, Claudia Mohr, David M. Bell, Dilip Ganguly, Vishal Verma, Neeraj Rastogi, Urs Baltensperger, Sachchida N. Tripathi, André S. H. Prévôt, and Jay G. Slowik
Atmos. Chem. Phys., 22, 7739–7761, https://doi.org/10.5194/acp-22-7739-2022, https://doi.org/10.5194/acp-22-7739-2022, 2022
Short summary
Short summary
Here we present source apportionment results from the first field deployment in Delhi of an extractive electrospray ionization time-of-flight mass spectrometer (EESI-TOF). The EESI-TOF is a recently developed instrument capable of providing uniquely detailed online chemical characterization of organic aerosol (OA), in particular the secondary OA (SOA) fraction. Here, we are able to apportion not only primary OA but also SOA to specific sources, which is performed for the first time in Delhi.
Ajit Ahlawat, Kay Weinhold, Jesus Marval, Paolo Tronville, Ari Leskinen, Mika Komppula, Holger Gerwig, Lars Gerling, Stephan Weber, Rikke Bramming Jørgensen, Thomas Nørregaard Jensen, Marouane Merizak, Ulrich Vogt, Carla Ribalta, Mar Viana, Andre Schmitz, Maria Chiesa, Giacomo Gerosa, Lothar Keck, Markus Pesch, Gerhard Steiner, Thomas Krinke, Torsten Tritscher, Wolfram Birmili, and Alfred Wiedensohler
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-155, https://doi.org/10.5194/amt-2022-155, 2022
Revised manuscript not accepted
Short summary
Short summary
Measurements of ultrafine particles must be done with quality-assured instruments. The performance of portable instruments such as NanoScan SMPS, and GRIMM Mini WRAS spectrometer measuring the particle number size distribution in the range from 10 to 200 nm were investigated. The influence of different aerosol types and maintenance activities on these instruments were explored. The results show that these portable instruments are suitable for mobile UFP measurements for source identification.
M. Dolores Andrés Hernández, Andreas Hilboll, Helmut Ziereis, Eric Förster, Ovid O. Krüger, Katharina Kaiser, Johannes Schneider, Francesca Barnaba, Mihalis Vrekoussis, Jörg Schmidt, Heidi Huntrieser, Anne-Marlene Blechschmidt, Midhun George, Vladyslav Nenakhov, Theresa Harlass, Bruna A. Holanda, Jennifer Wolf, Lisa Eirenschmalz, Marc Krebsbach, Mira L. Pöhlker, Anna B. Kalisz Hedegaard, Linlu Mei, Klaus Pfeilsticker, Yangzhuoran Liu, Ralf Koppmann, Hans Schlager, Birger Bohn, Ulrich Schumann, Andreas Richter, Benjamin Schreiner, Daniel Sauer, Robert Baumann, Mariano Mertens, Patrick Jöckel, Markus Kilian, Greta Stratmann, Christopher Pöhlker, Monica Campanelli, Marco Pandolfi, Michael Sicard, José L. Gómez-Amo, Manuel Pujadas, Katja Bigge, Flora Kluge, Anja Schwarz, Nikos Daskalakis, David Walter, Andreas Zahn, Ulrich Pöschl, Harald Bönisch, Stephan Borrmann, Ulrich Platt, and John P. Burrows
Atmos. Chem. Phys., 22, 5877–5924, https://doi.org/10.5194/acp-22-5877-2022, https://doi.org/10.5194/acp-22-5877-2022, 2022
Short summary
Short summary
EMeRGe provides a unique set of in situ and remote sensing airborne measurements of trace gases and aerosol particles along selected flight routes in the lower troposphere over Europe. The interpretation uses also complementary collocated ground-based and satellite measurements. The collected data help to improve the current understanding of the complex spatial distribution of trace gases and aerosol particles resulting from mixing, transport, and transformation of pollution plumes over Europe.
Ülkü Alver Şahin, Roy M. Harrison, Mohammed S. Alam, David C. S. Beddows, Dimitrios Bousiotis, Zongbo Shi, Leigh R. Crilley, William Bloss, James Brean, Isha Khanna, and Rulan Verma
Atmos. Chem. Phys., 22, 5415–5433, https://doi.org/10.5194/acp-22-5415-2022, https://doi.org/10.5194/acp-22-5415-2022, 2022
Short summary
Short summary
Wide-range particle size spectra have been measured in three seasons in Delhi and are interpreted in terms of sources and processes. Condensational growth is a major feature of the fine fraction, and a coarse fraction contributes substantially – but only in summer.
Yingze Tian, Xiaoning Wang, Peng Zhao, Zongbo Shi, and Roy M. Harrison
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-1007, https://doi.org/10.5194/acp-2021-1007, 2022
Revised manuscript not accepted
Short summary
Short summary
Chemical mass balance (CMB) is a widely used method to apportion the sources of PM2.5. We explore the sensitivity of CMB results to input data of organic markers only (OM-CMB) with a combination of organic and inorganic markers (IOM-CMB), as well as using different chemical profiles for sources. Our results indicate the superiority of combining inorganic and organic tracers and using locally-relevant source profiles in source apportionment of PM.
Clémence Rose, Martine Collaud Coen, Elisabeth Andrews, Yong Lin, Isaline Bossert, Cathrine Lund Myhre, Thomas Tuch, Alfred Wiedensohler, Markus Fiebig, Pasi Aalto, Andrés Alastuey, Elisabeth Alonso-Blanco, Marcos Andrade, Begoña Artíñano, Todor Arsov, Urs Baltensperger, Susanne Bastian, Olaf Bath, Johan Paul Beukes, Benjamin T. Brem, Nicolas Bukowiecki, Juan Andrés Casquero-Vera, Sébastien Conil, Konstantinos Eleftheriadis, Olivier Favez, Harald Flentje, Maria I. Gini, Francisco Javier Gómez-Moreno, Martin Gysel-Beer, Anna Gannet Hallar, Ivo Kalapov, Nikos Kalivitis, Anne Kasper-Giebl, Melita Keywood, Jeong Eun Kim, Sang-Woo Kim, Adam Kristensson, Markku Kulmala, Heikki Lihavainen, Neng-Huei Lin, Hassan Lyamani, Angela Marinoni, Sebastiao Martins Dos Santos, Olga L. Mayol-Bracero, Frank Meinhardt, Maik Merkel, Jean-Marc Metzger, Nikolaos Mihalopoulos, Jakub Ondracek, Marco Pandolfi, Noemi Pérez, Tuukka Petäjä, Jean-Eudes Petit, David Picard, Jean-Marc Pichon, Veronique Pont, Jean-Philippe Putaud, Fabienne Reisen, Karine Sellegri, Sangeeta Sharma, Gerhard Schauer, Patrick Sheridan, James Patrick Sherman, Andreas Schwerin, Ralf Sohmer, Mar Sorribas, Junying Sun, Pierre Tulet, Ville Vakkari, Pieter Gideon van Zyl, Fernando Velarde, Paolo Villani, Stergios Vratolis, Zdenek Wagner, Sheng-Hsiang Wang, Kay Weinhold, Rolf Weller, Margarita Yela, Vladimir Zdimal, and Paolo Laj
Atmos. Chem. Phys., 21, 17185–17223, https://doi.org/10.5194/acp-21-17185-2021, https://doi.org/10.5194/acp-21-17185-2021, 2021
Short summary
Short summary
Aerosol particles are a complex component of the atmospheric system the effects of which are among the most uncertain in climate change projections. Using data collected at 62 stations, this study provides the most up-to-date picture of the spatial distribution of particle number concentration and size distribution worldwide, with the aim of contributing to better representation of aerosols and their interactions with clouds in models and, therefore, better evaluation of their impact on climate.
Deepchandra Srivastava, Jingsha Xu, Tuan V. Vu, Di Liu, Linjie Li, Pingqing Fu, Siqi Hou, Natalia Moreno Palmerola, Zongbo Shi, and Roy M. Harrison
Atmos. Chem. Phys., 21, 14703–14724, https://doi.org/10.5194/acp-21-14703-2021, https://doi.org/10.5194/acp-21-14703-2021, 2021
Short summary
Short summary
This study presents the source apportionment of PM2.5 performed by positive matrix factorization (PMF) at urban and rural sites in Beijing. These factors are interpreted as traffic emissions, biomass burning, road and soil dust, coal and oil combustion, and secondary inorganics. PMF failed to resolve some sources identified by CMB and AMS and appears to overestimate the dust sources. Comparison with earlier PMF studies from the Beijing area highlights inconsistent findings using this method.
Jesús Yus-Díez, Vera Bernardoni, Griša Močnik, Andrés Alastuey, Davide Ciniglia, Matic Ivančič, Xavier Querol, Noemí Perez, Cristina Reche, Martin Rigler, Roberta Vecchi, Sara Valentini, and Marco Pandolfi
Atmos. Meas. Tech., 14, 6335–6355, https://doi.org/10.5194/amt-14-6335-2021, https://doi.org/10.5194/amt-14-6335-2021, 2021
Short summary
Short summary
Here we characterize the multiple-scattering factor, C, of the dual-spot Aethalometer AE33 and its cross-sensitivity to scattering and wavelength dependence for three background stations: urban, regional and mountaintop. C was obtained for two sets of filter tapes: M8020 and M8060. The cross-sensitivity to scattering and wavelength dependence of C were determined by inter-comparing with other absorption and scattering measurements including multi-angle off-line absorption measurements.
Beth S. Nelson, Gareth J. Stewart, Will S. Drysdale, Mike J. Newland, Adam R. Vaughan, Rachel E. Dunmore, Pete M. Edwards, Alastair C. Lewis, Jacqueline F. Hamilton, W. Joe Acton, C. Nicholas Hewitt, Leigh R. Crilley, Mohammed S. Alam, Ülkü A. Şahin, David C. S. Beddows, William J. Bloss, Eloise Slater, Lisa K. Whalley, Dwayne E. Heard, James M. Cash, Ben Langford, Eiko Nemitz, Roberto Sommariva, Sam Cox, Shivani, Ranu Gadi, Bhola R. Gurjar, James R. Hopkins, Andrew R. Rickard, and James D. Lee
Atmos. Chem. Phys., 21, 13609–13630, https://doi.org/10.5194/acp-21-13609-2021, https://doi.org/10.5194/acp-21-13609-2021, 2021
Short summary
Short summary
Ozone production at an urban site in Delhi is sensitive to volatile organic compound (VOC) concentrations, particularly those of the aromatic, monoterpene, and alkene VOC classes. The change in ozone production by varying atmospheric pollutants according to their sources, as defined in an emissions inventory, is investigated. The study suggests that reducing road transport emissions alone does not reduce reactive VOCs in the atmosphere enough to perturb an increase in ozone production.
Dimitrios Bousiotis, Francis D. Pope, David C. S. Beddows, Manuel Dall'Osto, Andreas Massling, Jakob Klenø Nøjgaard, Claus Nordstrøm, Jarkko V. Niemi, Harri Portin, Tuukka Petäjä, Noemi Perez, Andrés Alastuey, Xavier Querol, Giorgos Kouvarakis, Nikos Mihalopoulos, Stergios Vratolis, Konstantinos Eleftheriadis, Alfred Wiedensohler, Kay Weinhold, Maik Merkel, Thomas Tuch, and Roy M. Harrison
Atmos. Chem. Phys., 21, 11905–11925, https://doi.org/10.5194/acp-21-11905-2021, https://doi.org/10.5194/acp-21-11905-2021, 2021
Short summary
Short summary
Formation of new particles is a key process in the atmosphere. New particle formation events arising from nucleation of gaseous precursors have been analysed in extensive datasets from 13 sites in five European countries in terms of frequency, nucleation rate, and particle growth rate, with several common features and many differences identified. Although nucleation frequencies are lower at roadside sites, nucleation rates and particle growth rates are typically higher.
Congbo Song, Manuel Dall'Osto, Angelo Lupi, Mauro Mazzola, Rita Traversi, Silvia Becagli, Stefania Gilardoni, Stergios Vratolis, Karl Espen Yttri, David C. S. Beddows, Julia Schmale, James Brean, Agung Ghani Kramawijaya, Roy M. Harrison, and Zongbo Shi
Atmos. Chem. Phys., 21, 11317–11335, https://doi.org/10.5194/acp-21-11317-2021, https://doi.org/10.5194/acp-21-11317-2021, 2021
Short summary
Short summary
We present a cluster analysis of relatively long-term (2015–2019) aerosol aerodynamic volume size distributions up to 20 μm in the Arctic for the first time. The study found that anthropogenic and natural aerosols comprised 27 % and 73 % of the occurrence of the coarse-mode aerosols, respectively. Our study shows that about two-thirds of the coarse-mode aerosols are related to two sea-spray-related aerosol clusters, indicating that sea spray aerosol may more complex in the Arctic environment.
Jose Antonio Benavent-Oltra, Juan Andrés Casquero-Vera, Roberto Román, Hassan Lyamani, Daniel Pérez-Ramírez, María José Granados-Muñoz, Milagros Herrera, Alberto Cazorla, Gloria Titos, Pablo Ortiz-Amezcua, Andrés Esteban Bedoya-Velásquez, Gregori de Arruda Moreira, Noemí Pérez, Andrés Alastuey, Oleg Dubovik, Juan Luis Guerrero-Rascado, Francisco José Olmo-Reyes, and Lucas Alados-Arboledas
Atmos. Chem. Phys., 21, 9269–9287, https://doi.org/10.5194/acp-21-9269-2021, https://doi.org/10.5194/acp-21-9269-2021, 2021
Short summary
Short summary
In this paper, we use the GRASP algorithm combining different remote sensing measurements to obtain the aerosol vertical and column properties during the SLOPE I and II campaigns. We show an overview of aerosol properties retrieved by GRASP during these campaigns and evaluate the retrievals of aerosol properties using the in situ measurements performed at a high-altitude station and airborne flights. For the first time we present an evaluation of the absorption coefficient by GRASP.
Dimitrios Bousiotis, Ajit Singh, Molly Haugen, David C. S. Beddows, Sebastián Diez, Killian L. Murphy, Pete M. Edwards, Adam Boies, Roy M. Harrison, and Francis D. Pope
Atmos. Meas. Tech., 14, 4139–4155, https://doi.org/10.5194/amt-14-4139-2021, https://doi.org/10.5194/amt-14-4139-2021, 2021
Short summary
Short summary
Measurement and source apportionment of atmospheric pollutants are crucial for the assessment of air quality and the implementation of policies for their improvement. This study highlights the current capability of low-cost sensors in source identification and differentiation using clustering approaches. Future directions towards particulate matter source apportionment using low-cost OPCs are highlighted.
Marta Via, María Cruz Minguillón, Cristina Reche, Xavier Querol, and Andrés Alastuey
Atmos. Chem. Phys., 21, 8323–8339, https://doi.org/10.5194/acp-21-8323-2021, https://doi.org/10.5194/acp-21-8323-2021, 2021
Short summary
Short summary
Atmospheric pollutants have been measured in an urban environment by means of state-of-the-art techniques, allowing the origin and the sources of pollution to be identified. Recent years are shown to be increasingly dominated by non-directly emitted particulate matter. Knowledge about the sources of atmospheric pollutants is necessary to design effective mitigation policies.
Siqi Hou, Di Liu, Jingsha Xu, Tuan V. Vu, Xuefang Wu, Deepchandra Srivastava, Pingqing Fu, Linjie Li, Yele Sun, Athanasia Vlachou, Vaios Moschos, Gary Salazar, Sönke Szidat, André S. H. Prévôt, Roy M. Harrison, and Zongbo Shi
Atmos. Chem. Phys., 21, 8273–8292, https://doi.org/10.5194/acp-21-8273-2021, https://doi.org/10.5194/acp-21-8273-2021, 2021
Short summary
Short summary
This study provides a newly developed method which combines radiocarbon (14C) with organic tracers to enable source apportionment of primary and secondary fossil vs. non-fossil sources of carbonaceous aerosols at an urban and a rural site of Beijing. The source apportionment results were compared with those by chemical mass balance and AMS/ACSM-PMF methods. Correlations of WINSOC and WSOC with different sources of OC were also performed to elucidate the formation mechanisms of SOC.
Vincent Michoud, Elise Hallemans, Laura Chiappini, Eva Leoz-Garziandia, Aurélie Colomb, Sébastien Dusanter, Isabelle Fronval, François Gheusi, Jean-Luc Jaffrezo, Thierry Léonardis, Nadine Locoge, Nicolas Marchand, Stéphane Sauvage, Jean Sciare, and Jean-François Doussin
Atmos. Chem. Phys., 21, 8067–8088, https://doi.org/10.5194/acp-21-8067-2021, https://doi.org/10.5194/acp-21-8067-2021, 2021
Short summary
Short summary
A multiphasic molecular characterization of oxygenated compounds has been carried out during the ChArMEx field campaign using offline analysis. It leads to the identification of 97 different compounds in the gas and aerosol phases and reveals the important contribution of organic acids to organic aerosol. In addition, comparison between experimental and theoretical partitioning coefficients revealed in most cases a large underestimation by the theory reaching 1 to 7 orders of magnitude.
Benjamin Chazeau, Brice Temime-Roussel, Grégory Gille, Boualem Mesbah, Barbara D'Anna, Henri Wortham, and Nicolas Marchand
Atmos. Chem. Phys., 21, 7293–7319, https://doi.org/10.5194/acp-21-7293-2021, https://doi.org/10.5194/acp-21-7293-2021, 2021
Short summary
Short summary
The temporal trends in the chemical composition and particle number of the submicron aerosols in a Mediterranean city, Marseille, are investigated over 14 months. Fifteen days were found to exceed the WHO PM2.5 daily limit (25 µg m−3) only during the cold period, with two distinct origins: local pollution events with an increased fraction of the carbonaceous fraction due to domestic wood burning and long-range pollution events with a high level of oxygenated organic aerosol and ammonium nitrate.
Jingsha Xu, Di Liu, Xuefang Wu, Tuan V. Vu, Yanli Zhang, Pingqing Fu, Yele Sun, Weiqi Xu, Bo Zheng, Roy M. Harrison, and Zongbo Shi
Atmos. Chem. Phys., 21, 7321–7341, https://doi.org/10.5194/acp-21-7321-2021, https://doi.org/10.5194/acp-21-7321-2021, 2021
Short summary
Short summary
Source apportionment of fine aerosols in an urban site of Beijing used a chemical mass balance (CMB) model. Seven primary sources (industrial/residential coal burning, biomass burning, gasoline/diesel vehicles, cooking and vegetative detritus) explained an average of 75.7 % and 56.1 % of fine OC in winter and summer, respectively. CMB was found to resolve more primary OA sources than AMS-PMF, but the latter apportioned more secondary OA sources.
Andrea Cuesta-Mosquera, Griša Močnik, Luka Drinovec, Thomas Müller, Sascha Pfeifer, María Cruz Minguillón, Björn Briel, Paul Buckley, Vadimas Dudoitis, Javier Fernández-García, María Fernández-Amado, Joel Ferreira De Brito, Veronique Riffault, Harald Flentje, Eimear Heffernan, Nikolaos Kalivitis, Athina-Cerise Kalogridis, Hannes Keernik, Luminita Marmureanu, Krista Luoma, Angela Marinoni, Michael Pikridas, Gerhard Schauer, Norbert Serfozo, Henri Servomaa, Gloria Titos, Jesús Yus-Díez, Natalia Zioła, and Alfred Wiedensohler
Atmos. Meas. Tech., 14, 3195–3216, https://doi.org/10.5194/amt-14-3195-2021, https://doi.org/10.5194/amt-14-3195-2021, 2021
Short summary
Short summary
Measurements of black carbon must be conducted with instruments operating in quality-checked and assured conditions to generate reliable and comparable data. Here, 23 Aethalometers monitoring black carbon mass concentrations in European networks were characterized and intercompared. The influence of different aerosol sources, maintenance activities, and the filter material on the instrumental variabilities were investigated. Good agreement and in general low deviations were seen.
Steven J. Campbell, Kate Wolfer, Battist Utinger, Joe Westwood, Zhi-Hui Zhang, Nicolas Bukowiecki, Sarah S. Steimer, Tuan V. Vu, Jingsha Xu, Nicholas Straw, Steven Thomson, Atallah Elzein, Yele Sun, Di Liu, Linjie Li, Pingqing Fu, Alastair C. Lewis, Roy M. Harrison, William J. Bloss, Miranda Loh, Mark R. Miller, Zongbo Shi, and Markus Kalberer
Atmos. Chem. Phys., 21, 5549–5573, https://doi.org/10.5194/acp-21-5549-2021, https://doi.org/10.5194/acp-21-5549-2021, 2021
Short summary
Short summary
In this study, we quantify PM2.5 oxidative potential (OP), a metric widely suggested as a potential measure of particle toxicity, in Beijing in summer and winter using four acellular assays. We correlate PM2.5 OP with a comprehensive range of atmospheric and particle composition measurements, demonstrating inter-assay differences and seasonal variation of PM2.5 OP. Using multivariate statistical analysis, we highlight specific particle chemical components and sources that influence OP.
Jianhui Jiang, Imad El Haddad, Sebnem Aksoyoglu, Giulia Stefenelli, Amelie Bertrand, Nicolas Marchand, Francesco Canonaco, Jean-Eudes Petit, Olivier Favez, Stefania Gilardoni, Urs Baltensperger, and André S. H. Prévôt
Geosci. Model Dev., 14, 1681–1697, https://doi.org/10.5194/gmd-14-1681-2021, https://doi.org/10.5194/gmd-14-1681-2021, 2021
Short summary
Short summary
We developed a box model with a volatility basis set to simulate organic aerosol (OA) from biomass burning and optimized the vapor-wall-loss-corrected OA yields with a genetic algorithm. The optimized parameterizations were then implemented in the air quality model CAMx v6.5. Comparisons with ambient measurements indicate that the vapor-wall-loss-corrected parameterization effectively improves the model performance in predicting OA, which reduced the mean fractional bias from −72.9 % to −1.6 %.
Saehee Lim, Meehye Lee, Paolo Laj, Sang-Woo Kim, Kang-Ho Ahn, Junsoo Gil, Xiaona Shang, Marco Zanatta, and Kyeong-Sik Kang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1247, https://doi.org/10.5194/acp-2020-1247, 2021
Preprint withdrawn
Short summary
Short summary
This study identifies the main drivers of the formation and transformation processes of submicron particles and highlights that the thick coating of rBC was a result of active conversion of hygroscopic inorganic salts leading to fine aerosol pollution. Consequently, we suggest BC particles as a key contributor to PM2.5 mass increase, which implies that BC reduction is an effective mitigation against haze pollution as well as climate change in Northeast Asia.
Dimitrios Bousiotis, James Brean, Francis D. Pope, Manuel Dall'Osto, Xavier Querol, Andrés Alastuey, Noemi Perez, Tuukka Petäjä, Andreas Massling, Jacob Klenø Nøjgaard, Claus Nordstrøm, Giorgos Kouvarakis, Stergios Vratolis, Konstantinos Eleftheriadis, Jarkko V. Niemi, Harri Portin, Alfred Wiedensohler, Kay Weinhold, Maik Merkel, Thomas Tuch, and Roy M. Harrison
Atmos. Chem. Phys., 21, 3345–3370, https://doi.org/10.5194/acp-21-3345-2021, https://doi.org/10.5194/acp-21-3345-2021, 2021
Short summary
Short summary
New particle formation events from 16 sites over Europe have been studied, and the influence of meteorological and atmospheric composition variables has been investigated. Some variables, like solar radiation intensity and temperature, have a positive effect on the occurrence of these events, while others have a negative effect, affecting different aspects such as the rate at which particles are formed or grow. This effect varies depending on the site type and magnitude of these variables.
Ana Moreno, Miguel Bartolomé, Juan Ignacio López-Moreno, Jorge Pey, Juan Pablo Corella, Jordi García-Orellana, Carlos Sancho, María Leunda, Graciela Gil-Romera, Penélope González-Sampériz, Carlos Pérez-Mejías, Francisco Navarro, Jaime Otero-García, Javier Lapazaran, Esteban Alonso-González, Cristina Cid, Jerónimo López-Martínez, Belén Oliva-Urcia, Sérgio Henrique Faria, María José Sierra, Rocío Millán, Xavier Querol, Andrés Alastuey, and José M. García-Ruíz
The Cryosphere, 15, 1157–1172, https://doi.org/10.5194/tc-15-1157-2021, https://doi.org/10.5194/tc-15-1157-2021, 2021
Short summary
Short summary
Our study of the chronological sequence of Monte Perdido Glacier in the Central Pyrenees (Spain) reveals that, although the intense warming associated with the Roman period or Medieval Climate Anomaly produced important ice mass losses, it was insufficient to make this glacier disappear. By contrast, recent global warming has melted away almost 600 years of ice accumulated since the Little Ice Age, jeopardising the survival of this and other southern European glaciers over the next few decades.
Nikolaos Evangeliou, Stephen M. Platt, Sabine Eckhardt, Cathrine Lund Myhre, Paolo Laj, Lucas Alados-Arboledas, John Backman, Benjamin T. Brem, Markus Fiebig, Harald Flentje, Angela Marinoni, Marco Pandolfi, Jesus Yus-Dìez, Natalia Prats, Jean P. Putaud, Karine Sellegri, Mar Sorribas, Konstantinos Eleftheriadis, Stergios Vratolis, Alfred Wiedensohler, and Andreas Stohl
Atmos. Chem. Phys., 21, 2675–2692, https://doi.org/10.5194/acp-21-2675-2021, https://doi.org/10.5194/acp-21-2675-2021, 2021
Short summary
Short summary
Following the transmission of SARS-CoV-2 to Europe, social distancing rules were introduced to prevent further spread. We investigate the impacts of the European lockdowns on black carbon (BC) emissions by means of in situ observations and inverse modelling. BC emissions declined by 23 kt in Europe during the lockdowns as compared with previous years and by 11 % as compared to the period prior to lockdowns. Residential combustion prevailed in Eastern Europe, as confirmed by remote sensing data.
Jesús Yus-Díez, Marina Ealo, Marco Pandolfi, Noemí Perez, Gloria Titos, Griša Močnik, Xavier Querol, and Andrés Alastuey
Atmos. Chem. Phys., 21, 431–455, https://doi.org/10.5194/acp-21-431-2021, https://doi.org/10.5194/acp-21-431-2021, 2021
Short summary
Short summary
Here we describe the vertical profiles of extensive (scattering and absorption) and intensive (e.g. albedo and asymmetry parameter) aerosol optical properties from coupling ground-based measurements from two sites in north-eastern Spain and airborne measurements performed with an aircraft. We analyse different aerosol layers along the vertical profile for a regional pollution episode and a Saharan dust intrusion. The results show a change with height depending on the different measured layers.
Jingsha Xu, Shaojie Song, Roy M. Harrison, Congbo Song, Lianfang Wei, Qiang Zhang, Yele Sun, Lu Lei, Chao Zhang, Xiaohong Yao, Dihui Chen, Weijun Li, Miaomiao Wu, Hezhong Tian, Lining Luo, Shengrui Tong, Weiran Li, Junling Wang, Guoliang Shi, Yanqi Huangfu, Yingze Tian, Baozhu Ge, Shaoli Su, Chao Peng, Yang Chen, Fumo Yang, Aleksandra Mihajlidi-Zelić, Dragana Đorđević, Stefan J. Swift, Imogen Andrews, Jacqueline F. Hamilton, Ye Sun, Agung Kramawijaya, Jinxiu Han, Supattarachai Saksakulkrai, Clarissa Baldo, Siqi Hou, Feixue Zheng, Kaspar R. Daellenbach, Chao Yan, Yongchun Liu, Markku Kulmala, Pingqing Fu, and Zongbo Shi
Atmos. Meas. Tech., 13, 6325–6341, https://doi.org/10.5194/amt-13-6325-2020, https://doi.org/10.5194/amt-13-6325-2020, 2020
Short summary
Short summary
An interlaboratory comparison was conducted for the first time to examine differences in water-soluble inorganic ions (WSIIs) measured by 10 labs using ion chromatography (IC) and by two online aerosol chemical speciation monitor (ACSM) methods. Major ions including SO42−, NO3− and NH4+ agreed well in 10 IC labs and correlated well with ACSM data. WSII interlab variability strongly affected aerosol acidity results based on ion balance, but aerosol pH computed by ISORROPIA II was very similar.
Atallah Elzein, Gareth J. Stewart, Stefan J. Swift, Beth S. Nelson, Leigh R. Crilley, Mohammed S. Alam, Ernesto Reyes-Villegas, Ranu Gadi, Roy M. Harrison, Jacqueline F. Hamilton, and Alastair C. Lewis
Atmos. Chem. Phys., 20, 14303–14319, https://doi.org/10.5194/acp-20-14303-2020, https://doi.org/10.5194/acp-20-14303-2020, 2020
Short summary
Short summary
We collected high-frequency air particle samples (PM2.5) in Beijing (China) and Delhi (India) and measured the concentration of PAHs in daytime and night-time. PAHs were higher in Delhi than in Beijing, and the five-ring PAHs contribute the most to the total PAH concentration. We compared the emission sources and identified the major sectors that could be subject to mitigation measures. The adverse health effects from inhalation exposure to PAHs in Delhi are 2.2 times higher than in Beijing.
Henrik Skov, Jens Hjorth, Claus Nordstrøm, Bjarne Jensen, Christel Christoffersen, Maria Bech Poulsen, Jesper Baldtzer Liisberg, David Beddows, Manuel Dall'Osto, and Jesper Heile Christensen
Atmos. Chem. Phys., 20, 13253–13265, https://doi.org/10.5194/acp-20-13253-2020, https://doi.org/10.5194/acp-20-13253-2020, 2020
Short summary
Short summary
Mercury is toxic in all its forms. It bioaccumulates in food webs, is ubiquitous in the atmosphere, and atmospheric transport is an important source for this element in the Arctic. Measurements of gaseous elemental mercury have been carried out at the Villum Research Station at Station Nord in northern Greenland since 1999. The measurements are compared with model results from the Danish Eulerian Hemispheric Model. In this way, the dynamics of mercury are investigated.
Sarah S. Steimer, Daniel J. Patton, Tuan V. Vu, Marios Panagi, Paul S. Monks, Roy M. Harrison, Zoë L. Fleming, Zongbo Shi, and Markus Kalberer
Atmos. Chem. Phys., 20, 13303–13318, https://doi.org/10.5194/acp-20-13303-2020, https://doi.org/10.5194/acp-20-13303-2020, 2020
Short summary
Short summary
Air pollution is of growing concern due to its negative effect on public health, especially in low- and middle-income countries. This study investigates how the chemical composition of particles in Beijing changes under different measurement conditions (pollution levels, season) to get a better understanding of the sources of this form of air pollution.
James Brean, David C. S. Beddows, Zongbo Shi, Brice Temime-Roussel, Nicolas Marchand, Xavier Querol, Andrés Alastuey, María Cruz Minguillón, and Roy M. Harrison
Atmos. Chem. Phys., 20, 10029–10045, https://doi.org/10.5194/acp-20-10029-2020, https://doi.org/10.5194/acp-20-10029-2020, 2020
Short summary
Short summary
New particle formation is a key process influencing both local air quality and climatically active cloud condensation nuclei concentrations. This study has carried out fundamental measurements of nucleation processes in Barcelona, Spain, and concludes that a mechanism involving stabilisation of sulfuric acid clusters by low molecular weight amines is primarily responsible for new particle formation events.
Paolo Laj, Alessandro Bigi, Clémence Rose, Elisabeth Andrews, Cathrine Lund Myhre, Martine Collaud Coen, Yong Lin, Alfred Wiedensohler, Michael Schulz, John A. Ogren, Markus Fiebig, Jonas Gliß, Augustin Mortier, Marco Pandolfi, Tuukka Petäja, Sang-Woo Kim, Wenche Aas, Jean-Philippe Putaud, Olga Mayol-Bracero, Melita Keywood, Lorenzo Labrador, Pasi Aalto, Erik Ahlberg, Lucas Alados Arboledas, Andrés Alastuey, Marcos Andrade, Begoña Artíñano, Stina Ausmeel, Todor Arsov, Eija Asmi, John Backman, Urs Baltensperger, Susanne Bastian, Olaf Bath, Johan Paul Beukes, Benjamin T. Brem, Nicolas Bukowiecki, Sébastien Conil, Cedric Couret, Derek Day, Wan Dayantolis, Anna Degorska, Konstantinos Eleftheriadis, Prodromos Fetfatzis, Olivier Favez, Harald Flentje, Maria I. Gini, Asta Gregorič, Martin Gysel-Beer, A. Gannet Hallar, Jenny Hand, Andras Hoffer, Christoph Hueglin, Rakesh K. Hooda, Antti Hyvärinen, Ivo Kalapov, Nikos Kalivitis, Anne Kasper-Giebl, Jeong Eun Kim, Giorgos Kouvarakis, Irena Kranjc, Radovan Krejci, Markku Kulmala, Casper Labuschagne, Hae-Jung Lee, Heikki Lihavainen, Neng-Huei Lin, Gunter Löschau, Krista Luoma, Angela Marinoni, Sebastiao Martins Dos Santos, Frank Meinhardt, Maik Merkel, Jean-Marc Metzger, Nikolaos Mihalopoulos, Nhat Anh Nguyen, Jakub Ondracek, Noemi Pérez, Maria Rita Perrone, Jean-Eudes Petit, David Picard, Jean-Marc Pichon, Veronique Pont, Natalia Prats, Anthony Prenni, Fabienne Reisen, Salvatore Romano, Karine Sellegri, Sangeeta Sharma, Gerhard Schauer, Patrick Sheridan, James Patrick Sherman, Maik Schütze, Andreas Schwerin, Ralf Sohmer, Mar Sorribas, Martin Steinbacher, Junying Sun, Gloria Titos, Barbara Toczko, Thomas Tuch, Pierre Tulet, Peter Tunved, Ville Vakkari, Fernando Velarde, Patricio Velasquez, Paolo Villani, Sterios Vratolis, Sheng-Hsiang Wang, Kay Weinhold, Rolf Weller, Margarita Yela, Jesus Yus-Diez, Vladimir Zdimal, Paul Zieger, and Nadezda Zikova
Atmos. Meas. Tech., 13, 4353–4392, https://doi.org/10.5194/amt-13-4353-2020, https://doi.org/10.5194/amt-13-4353-2020, 2020
Short summary
Short summary
The paper establishes the fiducial reference of the GAW aerosol network providing the fully characterized value chain to the provision of four climate-relevant aerosol properties from ground-based sites. Data from almost 90 stations worldwide are reported for a reference year, 2017, providing a unique and very robust view of the variability of these variables worldwide. Current gaps in the GAW network are analysed and requirements for the Global Climate Monitoring System are proposed.
Yingze Tian, Yinchang Feng, Yongli Liang, Yixuan Li, Qianqian Xue, Zongbo Shi, Jingsha Xu, and Roy M. Harrison
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-507, https://doi.org/10.5194/acp-2020-507, 2020
Revised manuscript not accepted
Short summary
Short summary
Size distributions of inorganic and organic components in particulate matter (PM) can provide critical information on sources and pollution processes. Ions, elements, carbon fractions, n-alkanes, PAHs, hopanes and steranes in size-resolved PM were analyzed during one year in a northern Chinese megacity. Results reveal that size distributions of inorganic and organic aerosol components are dependent on seasons and pollution levels as a result of differing sources and physicochemical processes.
Martine Collaud Coen, Elisabeth Andrews, Andrés Alastuey, Todor Petkov Arsov, John Backman, Benjamin T. Brem, Nicolas Bukowiecki, Cédric Couret, Konstantinos Eleftheriadis, Harald Flentje, Markus Fiebig, Martin Gysel-Beer, Jenny L. Hand, András Hoffer, Rakesh Hooda, Christoph Hueglin, Warren Joubert, Melita Keywood, Jeong Eun Kim, Sang-Woo Kim, Casper Labuschagne, Neng-Huei Lin, Yong Lin, Cathrine Lund Myhre, Krista Luoma, Hassan Lyamani, Angela Marinoni, Olga L. Mayol-Bracero, Nikos Mihalopoulos, Marco Pandolfi, Natalia Prats, Anthony J. Prenni, Jean-Philippe Putaud, Ludwig Ries, Fabienne Reisen, Karine Sellegri, Sangeeta Sharma, Patrick Sheridan, James Patrick Sherman, Junying Sun, Gloria Titos, Elvis Torres, Thomas Tuch, Rolf Weller, Alfred Wiedensohler, Paul Zieger, and Paolo Laj
Atmos. Chem. Phys., 20, 8867–8908, https://doi.org/10.5194/acp-20-8867-2020, https://doi.org/10.5194/acp-20-8867-2020, 2020
Short summary
Short summary
Long-term trends of aerosol radiative properties (52 stations) prove that aerosol load has significantly decreased over the last 20 years. Scattering trends are negative in Europe (EU) and North America (NA), not ss in Asia, and show a mix of positive and negative trends at polar stations. Absorption has mainly negative trends. The single scattering albedo has positive trends in Asia and eastern EU and negative in western EU and NA, leading to a global positive median trend of 0.02 % per year.
Daniel J. Bryant, William J. Dixon, James R. Hopkins, Rachel E. Dunmore, Kelly L. Pereira, Marvin Shaw, Freya A. Squires, Thomas J. Bannan, Archit Mehra, Stephen D. Worrall, Asan Bacak, Hugh Coe, Carl J. Percival, Lisa K. Whalley, Dwayne E. Heard, Eloise J. Slater, Bin Ouyang, Tianqu Cui, Jason D. Surratt, Di Liu, Zongbo Shi, Roy Harrison, Yele Sun, Weiqi Xu, Alastair C. Lewis, James D. Lee, Andrew R. Rickard, and Jacqueline F. Hamilton
Atmos. Chem. Phys., 20, 7531–7552, https://doi.org/10.5194/acp-20-7531-2020, https://doi.org/10.5194/acp-20-7531-2020, 2020
Short summary
Short summary
Using the chemical composition of offline filter samples, we report that a large share of oxidized organic aerosol in Beijing during summer is due to isoprene secondary organic aerosol (iSOA). iSOA organosulfates showed a strong correlation with the product of ozone and particulate sulfate. This highlights the role of both photochemistry and the availability of particulate sulfate in heterogeneous reactions and further demonstrates that iSOA formation is controlled by anthropogenic emissions.
Thomas Lachlan-Cope, David C. S. Beddows, Neil Brough, Anna E. Jones, Roy M. Harrison, Angelo Lupi, Young Jun Yoon, Aki Virkkula, and Manuel Dall'Osto
Atmos. Chem. Phys., 20, 4461–4476, https://doi.org/10.5194/acp-20-4461-2020, https://doi.org/10.5194/acp-20-4461-2020, 2020
Short summary
Short summary
We present a statistical cluster analysis of the physical characteristics of particle size distributions collected at Halley (Antarctica) for the year 2015. Complex interactions between multiple ecosystems, coupled with different atmospheric circulation, result in very different aerosol size distributions populating the Southern Hemisphere.
Hong Ku Lee, Handol Lee, and Kang-Ho Ahn
Atmos. Meas. Tech., 13, 1551–1562, https://doi.org/10.5194/amt-13-1551-2020, https://doi.org/10.5194/amt-13-1551-2020, 2020
Short summary
Short summary
We developed a nanoparticle sizer (NPS), consisting of a multi-port differential mobility analyzer (MP-DMA) with 12 sampling ports and multi-condensation particle counters (M-CPCs) for fast measurement of particle size distribution. The NPS can successfully capture the changes in particle size distribution under fast-changing particle concentration conditions. In this study, particle emissions from cooking activity are analyzed as an exemplary real-world application.
Pragati Rai, Markus Furger, Jay G. Slowik, Francesco Canonaco, Roman Fröhlich, Christoph Hüglin, María Cruz Minguillón, Krag Petterson, Urs Baltensperger, and André S. H. Prévôt
Atmos. Chem. Phys., 20, 1657–1674, https://doi.org/10.5194/acp-20-1657-2020, https://doi.org/10.5194/acp-20-1657-2020, 2020
Short summary
Short summary
A source apportionment study of hourly resolved elements in PM10 measured at a traffic-influenced site in Härkingen, Switzerland, using positive matrix factorization (PMF) and multilinear engine-2 (ME-2) offered resolution of robust and unambiguous factor profiles and contributions. We show that the rotational control available in ME-2 provides a means for treating extreme events such as fireworks within a PMF analysis.
Marco Pandolfi, Dennis Mooibroek, Philip Hopke, Dominik van Pinxteren, Xavier Querol, Hartmut Herrmann, Andrés Alastuey, Olivier Favez, Christoph Hüglin, Esperanza Perdrix, Véronique Riffault, Stéphane Sauvage, Eric van der Swaluw, Oksana Tarasova, and Augustin Colette
Atmos. Chem. Phys., 20, 409–429, https://doi.org/10.5194/acp-20-409-2020, https://doi.org/10.5194/acp-20-409-2020, 2020
Short summary
Short summary
In the last scientific assessment report from the LRTAP Convention, it is stated that because non-urban sources are often major contributors to urban pollution, many cities will be unable to meet WHO guideline levels for air pollutants through local action alone. Consequently, it is very important to estimate how much the local and non-local sources contribute to urban pollution in order to design global strategies to reduce the levels of pollutants in European cities.
Jianhui Jiang, Sebnem Aksoyoglu, Imad El-Haddad, Giancarlo Ciarelli, Hugo A. C. Denier van der Gon, Francesco Canonaco, Stefania Gilardoni, Marco Paglione, María Cruz Minguillón, Olivier Favez, Yunjiang Zhang, Nicolas Marchand, Liqing Hao, Annele Virtanen, Kalliopi Florou, Colin O'Dowd, Jurgita Ovadnevaite, Urs Baltensperger, and André S. H. Prévôt
Atmos. Chem. Phys., 19, 15247–15270, https://doi.org/10.5194/acp-19-15247-2019, https://doi.org/10.5194/acp-19-15247-2019, 2019
Short summary
Short summary
We use an air quality model with a modified organic aerosol (OA) module based on chamber experiments to identify the OA sources and their contributions in Europe. Comparisons with long-term measurements at nine sites in 2011 show an improvement in OA simulation. Our results suggest that the biomass burning and biogenic emissions are the dominant sources in winter and summer, respectively. Contributions of diesel and gasoline vehicles are relatively small compared to a previous study in the US.
James Brean, Roy M. Harrison, Zongbo Shi, David C. S. Beddows, W. Joe F. Acton, C. Nicholas Hewitt, Freya A. Squires, and James Lee
Atmos. Chem. Phys., 19, 14933–14947, https://doi.org/10.5194/acp-19-14933-2019, https://doi.org/10.5194/acp-19-14933-2019, 2019
Short summary
Short summary
Measurements of highly oxidized molecules measured during a summer campaign in Beijing are presented. These molecules represent an intermediary between gas-phase chemicals from which they are formed and airborne particles which form from them. Conclusions are drawn as to the factors affecting the formation of new particles within the Beijing atmosphere.
Aurélien Chauvigné, Diego Aliaga, Karine Sellegri, Nadège Montoux, Radovan Krejci, Griša Močnik, Isabel Moreno, Thomas Müller, Marco Pandolfi, Fernando Velarde, Kay Weinhold, Patrick Ginot, Alfred Wiedensohler, Marcos Andrade, and Paolo Laj
Atmos. Chem. Phys., 19, 14805–14824, https://doi.org/10.5194/acp-19-14805-2019, https://doi.org/10.5194/acp-19-14805-2019, 2019
Short summary
Short summary
The study presents for the first time the analysis of aerosol optical properties at the unique high-altitude station of Chacaltaya, Bolivia. Ideally located, the station allows us to better understand influences of urban areas and the Amazon Forest on tropospheric properties. An emerging method is applied to characterize aerosol origins and permits us to illustrate evidence of natural and anthropogenic influences.
Miguel Escudero, Arjo Segers, Richard Kranenburg, Xavier Querol, Andrés Alastuey, Rafael Borge, David de la Paz, Gotzon Gangoiti, and Martijn Schaap
Atmos. Chem. Phys., 19, 14211–14232, https://doi.org/10.5194/acp-19-14211-2019, https://doi.org/10.5194/acp-19-14211-2019, 2019
Short summary
Short summary
In this work we optimise LOTOS-EUROS CTM for simulating tropospheric O3 during summer in the Madrid metropolitan area, one of the largest conurbations in the Mediterranean. Comparing the outputs from five set-ups with different combinations of spatial resolution, meteorological data and vertical structure, we conclude that the model benefits from fine horizontal resolution and highly resolved vertical structure. Running optimized configuration run, we interpret O3 variability during July 2016.
Giulia Stefenelli, Jianhui Jiang, Amelie Bertrand, Emily A. Bruns, Simone M. Pieber, Urs Baltensperger, Nicolas Marchand, Sebnem Aksoyoglu, André S. H. Prévôt, Jay G. Slowik, and Imad El Haddad
Atmos. Chem. Phys., 19, 11461–11484, https://doi.org/10.5194/acp-19-11461-2019, https://doi.org/10.5194/acp-19-11461-2019, 2019
Short summary
Short summary
Box model simulations, based on the volatility basis set approach, of smog chamber wood combustion experiments conducted at different temperatures (−10 °C, 2 °C, 15 °C), emission loads, combustion conditions (flaming and smoldering) and residential stoves fabricated in the last 2 decades. Novel parameterization methods based on a genetic algorithm approach allowed estimation of precursor class contributions to SOA and evaluation of the effect of emission variability on SOA yield predictions.
Tuan V. Vu, Zongbo Shi, Jing Cheng, Qiang Zhang, Kebin He, Shuxiao Wang, and Roy M. Harrison
Atmos. Chem. Phys., 19, 11303–11314, https://doi.org/10.5194/acp-19-11303-2019, https://doi.org/10.5194/acp-19-11303-2019, 2019
Short summary
Short summary
A 5-year Clean Air Action Plan was implemented in 2013 to improve ambient air quality in Beijing. Here, we applied a novel machine-learning-based model to determine the real trend in air quality from 2013 to 2017 in Beijing to assess the efficacy of the plan. We showed that the action plan led to a major reduction in primary emissions and significant improvement in air quality. The marked decrease in PM2.5 and SO2 is largely attributable to a reduction in coal combustion.
Ruihe Lyu, Zongbo Shi, Mohammed Salim Alam, Xuefang Wu, Di Liu, Tuan V. Vu, Christopher Stark, Pingqing Fu, Yinchang Feng, and Roy M. Harrison
Atmos. Chem. Phys., 19, 10865–10881, https://doi.org/10.5194/acp-19-10865-2019, https://doi.org/10.5194/acp-19-10865-2019, 2019
Short summary
Short summary
Severe pollution of the Beijing atmosphere is a frequent occurrence. The airborne particles which characterize the episodes of haze contain a wide range of chemical constituents but organic compounds make up a substantial proportion. In this study individual compounds are analysed under both haze and non-haze conditions, and the measurements are compared with samples collected in London, where the air pollution climate and sources are very different.
Abdoulaye Samaké, Jean-Luc Jaffrezo, Olivier Favez, Samuël Weber, Véronique Jacob, Trishalee Canete, Alexandre Albinet, Aurélie Charron, Véronique Riffault, Esperanza Perdrix, Antoine Waked, Benjamin Golly, Dalia Salameh, Florie Chevrier, Diogo Miguel Oliveira, Jean-Luc Besombes, Jean M. F. Martins, Nicolas Bonnaire, Sébastien Conil, Géraldine Guillaud, Boualem Mesbah, Benoit Rocq, Pierre-Yves Robic, Agnès Hulin, Sébastien Le Meur, Maxence Descheemaecker, Eve Chretien, Nicolas Marchand, and Gaëlle Uzu
Atmos. Chem. Phys., 19, 11013–11030, https://doi.org/10.5194/acp-19-11013-2019, https://doi.org/10.5194/acp-19-11013-2019, 2019
Short summary
Short summary
We conducted a large study focusing on the daily (24 h) PM10 sugar compound (SC) concentrations for 16 increasing space-scale sites in France (local to nationwide) over at least 1 complete year. Our main results clearly show distance-dependent covariation patterns, with SC concentrations being highly synchronous at an urban city scale and remaining well correlated throughout the same geographic regions. However, sampling sites located in two distinct geographic areas are poorly correlated.
Jesús Yus-Díez, Mireia Udina, Maria Rosa Soler, Marie Lothon, Erik Nilsson, Joan Bech, and Jielun Sun
Atmos. Chem. Phys., 19, 9495–9514, https://doi.org/10.5194/acp-19-9495-2019, https://doi.org/10.5194/acp-19-9495-2019, 2019
Short summary
Short summary
This study helps improve the understanding of the turbulence description and the interactions occurring in the lower part of the boundary layer. It is carried out at an orographically influenced site close to the Pyrenees to explore the hockey-stick transition (HOST) theory. HOST is seen to be strongly dependent on both the meteorological conditions and the orographic features. Examples of intermittent turbulence events that lead to transitions between the turbulence regimes are also identified.
Jaime Benavides, Michelle Snyder, Marc Guevara, Albert Soret, Carlos Pérez García-Pando, Fulvio Amato, Xavier Querol, and Oriol Jorba
Geosci. Model Dev., 12, 2811–2835, https://doi.org/10.5194/gmd-12-2811-2019, https://doi.org/10.5194/gmd-12-2811-2019, 2019
Short summary
Short summary
The NO2 annual air quality limit value is systematically exceeded in many European cities. In this context, understanding human exposure, improving policy and planning, and providing forecasts requires the development of accurate air quality models at street level. We describe CALIOPE-Urban, a system coupling an operational mesoscale air quality forecast system with an urban roadway dispersion model over Barcelona city (Spain). The methodology may be replicated for other cities in the future.
Gloria Titos, Marina Ealo, Roberto Román, Alberto Cazorla, Yolanda Sola, Oleg Dubovik, Andrés Alastuey, and Marco Pandolfi
Atmos. Meas. Tech., 12, 3255–3267, https://doi.org/10.5194/amt-12-3255-2019, https://doi.org/10.5194/amt-12-3255-2019, 2019
Short summary
Short summary
We present new results of vertically resolved extensive aerosol optical properties (backscattering, scattering and extinction) and volume concentrations retrieved with the GRASP algorithm from ceilometer and photometer measurements. Long-term evaluation with in situ data gathered at the Montsec mountaintop observatory (northeastern Spain) shows good agreement, being a step forward towards a better representation of aerosol vertical distribution with wide spatial coverage.
Zongbo Shi, Tuan Vu, Simone Kotthaus, Roy M. Harrison, Sue Grimmond, Siyao Yue, Tong Zhu, James Lee, Yiqun Han, Matthias Demuzere, Rachel E. Dunmore, Lujie Ren, Di Liu, Yuanlin Wang, Oliver Wild, James Allan, W. Joe Acton, Janet Barlow, Benjamin Barratt, David Beddows, William J. Bloss, Giulia Calzolai, David Carruthers, David C. Carslaw, Queenie Chan, Lia Chatzidiakou, Yang Chen, Leigh Crilley, Hugh Coe, Tie Dai, Ruth Doherty, Fengkui Duan, Pingqing Fu, Baozhu Ge, Maofa Ge, Daobo Guan, Jacqueline F. Hamilton, Kebin He, Mathew Heal, Dwayne Heard, C. Nicholas Hewitt, Michael Hollaway, Min Hu, Dongsheng Ji, Xujiang Jiang, Rod Jones, Markus Kalberer, Frank J. Kelly, Louisa Kramer, Ben Langford, Chun Lin, Alastair C. Lewis, Jie Li, Weijun Li, Huan Liu, Junfeng Liu, Miranda Loh, Keding Lu, Franco Lucarelli, Graham Mann, Gordon McFiggans, Mark R. Miller, Graham Mills, Paul Monk, Eiko Nemitz, Fionna O'Connor, Bin Ouyang, Paul I. Palmer, Carl Percival, Olalekan Popoola, Claire Reeves, Andrew R. Rickard, Longyi Shao, Guangyu Shi, Dominick Spracklen, David Stevenson, Yele Sun, Zhiwei Sun, Shu Tao, Shengrui Tong, Qingqing Wang, Wenhua Wang, Xinming Wang, Xuejun Wang, Zifang Wang, Lianfang Wei, Lisa Whalley, Xuefang Wu, Zhijun Wu, Pinhua Xie, Fumo Yang, Qiang Zhang, Yanli Zhang, Yuanhang Zhang, and Mei Zheng
Atmos. Chem. Phys., 19, 7519–7546, https://doi.org/10.5194/acp-19-7519-2019, https://doi.org/10.5194/acp-19-7519-2019, 2019
Short summary
Short summary
APHH-Beijing is a collaborative international research programme to study the sources, processes and health effects of air pollution in Beijing. This introduction to the special issue provides an overview of (i) the APHH-Beijing programme, (ii) the measurement and modelling activities performed as part of it and (iii) the air quality and meteorological conditions during joint intensive field campaigns as a core activity within APHH-Beijing.
Jordi Massagué, Cristina Carnerero, Miguel Escudero, José María Baldasano, Andrés Alastuey, and Xavier Querol
Atmos. Chem. Phys., 19, 7445–7465, https://doi.org/10.5194/acp-19-7445-2019, https://doi.org/10.5194/acp-19-7445-2019, 2019
Manuel Dall'Osto, David C. S. Beddows, Peter Tunved, Roy M. Harrison, Angelo Lupi, Vito Vitale, Silvia Becagli, Rita Traversi, Ki-Tae Park, Young Jun Yoon, Andreas Massling, Henrik Skov, Robert Lange, Johan Strom, and Radovan Krejci
Atmos. Chem. Phys., 19, 7377–7395, https://doi.org/10.5194/acp-19-7377-2019, https://doi.org/10.5194/acp-19-7377-2019, 2019
Short summary
Short summary
We present a cluster analysis of particle size distributions simultaneously collected from three European high Arctic sites centred in the Fram Strait during a 3-year period. Confined for longer time periods by consolidated pack sea ice regions, the Greenland site shows lower ultrafine-mode aerosol concentrations during summer relative to the Svalbard sites. Our study supports international environmental cooperation concerning the Arctic region.
Athanasia Vlachou, Anna Tobler, Houssni Lamkaddam, Francesco Canonaco, Kaspar R. Daellenbach, Jean-Luc Jaffrezo, María Cruz Minguillón, Marek Maasikmets, Erik Teinemaa, Urs Baltensperger, Imad El Haddad, and André S. H. Prévôt
Atmos. Chem. Phys., 19, 7279–7295, https://doi.org/10.5194/acp-19-7279-2019, https://doi.org/10.5194/acp-19-7279-2019, 2019
Short summary
Short summary
The resolution of rotational ambiguity in positive matrix factorization (PMF) models is a major challenge. Here, we developed a method based on bootstrapping and correlations to extract environmentally meaningful solutions from PMF analysis based on offline aerosol mass spectrometry data. The method has been tested on a dataset that covers 1 full year of filter samples collected at three different sites in Estonia.
Yue Liu, Mei Zheng, Mingyuan Yu, Xuhui Cai, Huiyun Du, Jie Li, Tian Zhou, Caiqing Yan, Xuesong Wang, Zongbo Shi, Roy M. Harrison, Qiang Zhang, and Kebin He
Atmos. Chem. Phys., 19, 6595–6609, https://doi.org/10.5194/acp-19-6595-2019, https://doi.org/10.5194/acp-19-6595-2019, 2019
Short summary
Short summary
This study is part of the UK–China APHH campaign. To identify both source types and source regions at the same time, this study developed a combined method including receptor model, footprint model, and air quality model for the first time to investigate sources of PM2.5 during haze episodes in Beijing. It is an expansion of the application of the receptor model and is helpful for formulating effective control strategies to improve air quality in this region.
Dimitrios Bousiotis, Manuel Dall'Osto, David C. S. Beddows, Francis D. Pope, and Roy M. Harrison
Atmos. Chem. Phys., 19, 5679–5694, https://doi.org/10.5194/acp-19-5679-2019, https://doi.org/10.5194/acp-19-5679-2019, 2019
Short summary
Short summary
New particle formation events are identified at three sites in southern England, including a roadside and urban background site within London and a rural regional background site. The conditions favouring new particle formation events are identified and compared between the sites. Although a higher degree of pollution presents a greater condensation sink, it appears to be largely compensated for by faster particle growth rates.
María Teresa Pay, Gotzon Gangoiti, Marc Guevara, Sergey Napelenok, Xavier Querol, Oriol Jorba, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 19, 5467–5494, https://doi.org/10.5194/acp-19-5467-2019, https://doi.org/10.5194/acp-19-5467-2019, 2019
Short summary
Short summary
The poor diagnostic of the O3 issue over southwestern Europe prevents authorities from implementing effective mitigation plans. This work is a pioneer in identifying that imported O3 is the largest input to the ground-level O3 concentration in the Iberian Peninsula, which is largely explained by vertical mixing. This study also proves that anthropogenic emissions control the severe O3 peaks during stagnant conditions. Ad hoc local actions should complement national/European strategies.
Aurélie Charron, Lucie Polo-Rehn, Jean-Luc Besombes, Benjamin Golly, Christine Buisson, Hervé Chanut, Nicolas Marchand, Géraldine Guillaud, and Jean-Luc Jaffrezo
Atmos. Chem. Phys., 19, 5187–5207, https://doi.org/10.5194/acp-19-5187-2019, https://doi.org/10.5194/acp-19-5187-2019, 2019
Short summary
Short summary
This research quantified particulate species that could be used to trace non-exhaust and exhaust traffic emissions. Results showed the important contribution of heavy metals from brake wear to total particulate traffic emissions. In France the traffic largely dominated by diesel vehicles led to important emissions of elemental carbon, as well as significant emissions of low-molecular-weight polycyclic aromatic compounds.
David C. S. Beddows and Roy M. Harrison
Atmos. Chem. Phys., 19, 4863–4876, https://doi.org/10.5194/acp-19-4863-2019, https://doi.org/10.5194/acp-19-4863-2019, 2019
Short summary
Short summary
Airborne particles are a cause of illness and premature death. Cost-effective control of particles in the atmosphere depends upon a reliable knowledge of their sources. This paper proposes and tests a new method for attributing particles quantitatively to the sources responsible for their emission or atmospheric formation.
Jianhui Jiang, Sebnem Aksoyoglu, Giancarlo Ciarelli, Emmanouil Oikonomakis, Imad El-Haddad, Francesco Canonaco, Colin O'Dowd, Jurgita Ovadnevaite, María Cruz Minguillón, Urs Baltensperger, and André S. H. Prévôt
Atmos. Chem. Phys., 19, 3747–3768, https://doi.org/10.5194/acp-19-3747-2019, https://doi.org/10.5194/acp-19-3747-2019, 2019
Short summary
Short summary
Biogenic volatile organic compound (BVOC) emissions from vegetation are essential inputs for air quality models but their uncertainties are very high. In this study we show the importance of BVOC emissions for modelled ozone and aerosol concentrations in Europe. Using different biogenic emissions from MEGAN and PSI models significantly affected organic aerosols (smaller effect on ozone), indicating the importance of harmonising the BVOC emissions in the model inter-comparison studies.
Abdoulaye Samaké, Jean-Luc Jaffrezo, Olivier Favez, Samuël Weber, Véronique Jacob, Alexandre Albinet, Véronique Riffault, Esperanza Perdrix, Antoine Waked, Benjamin Golly, Dalia Salameh, Florie Chevrier, Diogo Miguel Oliveira, Nicolas Bonnaire, Jean-Luc Besombes, Jean M. F. Martins, Sébastien Conil, Géraldine Guillaud, Boualem Mesbah, Benoit Rocq, Pierre-Yves Robic, Agnès Hulin, Sébastien Le Meur, Maxence Descheemaecker, Eve Chretien, Nicolas Marchand, and Gaëlle Uzu
Atmos. Chem. Phys., 19, 3357–3374, https://doi.org/10.5194/acp-19-3357-2019, https://doi.org/10.5194/acp-19-3357-2019, 2019
Short summary
Short summary
The contribution of primary biogenic organic aerosols to PM is barely documented. This work provides a broad overview of the spatiotemporal evolution of concentrations and contributions to OM of dominant primary sugar alcohols and saccharides for a large selection of environmental conditions in France (28 sites and more than 5 340 samples). These chemicals are ubiquitous, and are associated with coarse aerosols. Their concentrations display site-to-site and clear seasonal variations.
Ruihe Lyu, Mohammed S. Alam, Christopher Stark, Ruixin Xu, Zongbo Shi, Yinchang Feng, and Roy M. Harrison
Atmos. Chem. Phys., 19, 2233–2246, https://doi.org/10.5194/acp-19-2233-2019, https://doi.org/10.5194/acp-19-2233-2019, 2019
Short summary
Short summary
Organic matter comprises a substantial proportion of the mass of toxic airborne particles which cause poor health and premature death. In this paper, new measurements of three important groups of organic compounds are reported and are analysed to infer their sources and their contributions to airborne particle concentrations.
Roy M. Harrison, David C. S. Beddows, Mohammed S. Alam, Ajit Singh, James Brean, Ruixin Xu, Simone Kotthaus, and Sue Grimmond
Atmos. Chem. Phys., 19, 39–55, https://doi.org/10.5194/acp-19-39-2019, https://doi.org/10.5194/acp-19-39-2019, 2019
Short summary
Short summary
Particle number size distributions were measured simultaneously at five sites in London during a campaign. Observations are interpreted in terms of both evaporative shrinkage of traffic-generated particles and condensational growth, probably of traffic-generated particles under cool nocturnal conditions, as well as the influence of particles emitted from Heathrow Airport at a distance of about 22 km. The work highlights the highly dynamic behaviour of nanoparticles within the urban atmosphere.
Irina Nikolova, Xiaoming Cai, Mohammed Salim Alam, Soheil Zeraati-Rezaei, Jian Zhong, A. Rob MacKenzie, and Roy M. Harrison
Atmos. Chem. Phys., 18, 17143–17155, https://doi.org/10.5194/acp-18-17143-2018, https://doi.org/10.5194/acp-18-17143-2018, 2018
Short summary
Short summary
There are increasing health concerns about the smallest airborne particles found in polluted urban atmospheres. These particles are composed of a mixture of oil-derived substances, but the exact composition is not known and is likely to be very complicated. We provide a way to compute how these particles change as their chemical make-up changes. We also outline the range of particle compositions that reproduce the behaviour of the smallest particles seen in field measurements.
Cristina Carnerero, Noemí Pérez, Cristina Reche, Marina Ealo, Gloria Titos, Hong-Ku Lee, Hee-Ram Eun, Yong-Hee Park, Lubna Dada, Pauli Paasonen, Veli-Matti Kerminen, Enrique Mantilla, Miguel Escudero, Francisco J. Gómez-Moreno, Elisabeth Alonso-Blanco, Esther Coz, Alfonso Saiz-Lopez, Brice Temime-Roussel, Nicolas Marchand, David C. S. Beddows, Roy M. Harrison, Tuukka Petäjä, Markku Kulmala, Kang-Ho Ahn, Andrés Alastuey, and Xavier Querol
Atmos. Chem. Phys., 18, 16601–16618, https://doi.org/10.5194/acp-18-16601-2018, https://doi.org/10.5194/acp-18-16601-2018, 2018
Short summary
Short summary
The vertical distribution of new particle formation events was studied using tethered balloons carrying miniaturized instrumentation. Results show that new particle formation and growth occurs only in the lower layer of the atmosphere, where aerosols are mixed due to convection, especially when the atmosphere is clean. A comparison of urban and suburban surface stations was also made, suggesting that such events may have a significant impact on ultrafine particle concentrations in a wide area.
Tuomo Nieminen, Veli-Matti Kerminen, Tuukka Petäjä, Pasi P. Aalto, Mikhail Arshinov, Eija Asmi, Urs Baltensperger, David C. S. Beddows, Johan Paul Beukes, Don Collins, Aijun Ding, Roy M. Harrison, Bas Henzing, Rakesh Hooda, Min Hu, Urmas Hõrrak, Niku Kivekäs, Kaupo Komsaare, Radovan Krejci, Adam Kristensson, Lauri Laakso, Ari Laaksonen, W. Richard Leaitch, Heikki Lihavainen, Nikolaos Mihalopoulos, Zoltán Németh, Wei Nie, Colin O'Dowd, Imre Salma, Karine Sellegri, Birgitta Svenningsson, Erik Swietlicki, Peter Tunved, Vidmantas Ulevicius, Ville Vakkari, Marko Vana, Alfred Wiedensohler, Zhijun Wu, Annele Virtanen, and Markku Kulmala
Atmos. Chem. Phys., 18, 14737–14756, https://doi.org/10.5194/acp-18-14737-2018, https://doi.org/10.5194/acp-18-14737-2018, 2018
Short summary
Short summary
Atmospheric aerosols have diverse effects on air quality, human health, and global climate. One important source of aerosols is their formation via nucleation and growth in the atmosphere. We have analyzed long-term observations of regional new particle formation events around the globe and provide a comprehensive view on the characteristics of this phenomenon in diverse environments. The results are useful in developing more realistic representation of atmospheric aerosols in global models.
Martine Collaud Coen, Elisabeth Andrews, Diego Aliaga, Marcos Andrade, Hristo Angelov, Nicolas Bukowiecki, Marina Ealo, Paulo Fialho, Harald Flentje, A. Gannet Hallar, Rakesh Hooda, Ivo Kalapov, Radovan Krejci, Neng-Huei Lin, Angela Marinoni, Jing Ming, Nhat Anh Nguyen, Marco Pandolfi, Véronique Pont, Ludwig Ries, Sergio Rodríguez, Gerhard Schauer, Karine Sellegri, Sangeeta Sharma, Junying Sun, Peter Tunved, Patricio Velasquez, and Dominique Ruffieux
Atmos. Chem. Phys., 18, 12289–12313, https://doi.org/10.5194/acp-18-12289-2018, https://doi.org/10.5194/acp-18-12289-2018, 2018
Short summary
Short summary
High altitude stations are often emphasized as free tropospheric measuring sites but they remain influenced by atmospheric boundary layer. An ABL-TopoIndex is defined from a topography analysis around the stations. This new index allows ranking stations as a function of the ABL influence due to topography or help to choose a new site to sample FT. The ABL-TopoIndex is validated by aerosol optical properties and number concentration measured at 29 high altitude stations of five continents.
Kelly L. Pereira, Rachel Dunmore, James Whitehead, M. Rami Alfarra, James D. Allan, Mohammed S. Alam, Roy M. Harrison, Gordon McFiggans, and Jacqueline F. Hamilton
Atmos. Chem. Phys., 18, 11073–11096, https://doi.org/10.5194/acp-18-11073-2018, https://doi.org/10.5194/acp-18-11073-2018, 2018
Short summary
Short summary
Exhaust emissions from a light-duty diesel engine were introduced into an atmospheric simulation chamber which was used as a holding-cell for sampling, allowing instruments capable of providing detailed chemical speciation of exhaust gas emissions to be used. The effect of different engine conditions on the exhaust gas composition was investigated. The exhaust composition changed considerably due to two influencing factors, engine combustion and diesel oxidative catalyst efficiency.
Amelie Bertrand, Giulia Stefenelli, Simone M. Pieber, Emily A. Bruns, Brice Temime-Roussel, Jay G. Slowik, Henri Wortham, André S. H. Prévôt, Imad El Haddad, and Nicolas Marchand
Atmos. Chem. Phys., 18, 10915–10930, https://doi.org/10.5194/acp-18-10915-2018, https://doi.org/10.5194/acp-18-10915-2018, 2018
Short summary
Short summary
We model the evolution of several BBOA markers including levoglucosan during aging experiments conducted in an atmospheric Teflon chamber, in order to evaluate the influence of vapor wall loss on the determination of the rate constants of the compounds with hydroxyl radicals (OH).
Mounir Chrit, Karine Sartelet, Jean Sciare, Jorge Pey, José B. Nicolas, Nicolas Marchand, Evelyn Freney, Karine Sellegri, Matthias Beekmann, and François Dulac
Atmos. Chem. Phys., 18, 9631–9659, https://doi.org/10.5194/acp-18-9631-2018, https://doi.org/10.5194/acp-18-9631-2018, 2018
Short summary
Short summary
Fine particulate matter (PM) in the atmosphere is of concern due to its effects on health, climate, ecosystems and biological cycles, and visibility.
These effects are especially important in the Mediterranean region. In this study, the air quality model Polyphemus is used to understand the
sources of inorganic and organic particles in the western Mediterranean and evaluate the uncertainties linked to the model parameters and hypotheses related to condensation/evaporation in the model.
Marco Pandolfi, Lucas Alados-Arboledas, Andrés Alastuey, Marcos Andrade, Christo Angelov, Begoña Artiñano, John Backman, Urs Baltensperger, Paolo Bonasoni, Nicolas Bukowiecki, Martine Collaud Coen, Sébastien Conil, Esther Coz, Vincent Crenn, Vadimas Dudoitis, Marina Ealo, Kostas Eleftheriadis, Olivier Favez, Prodromos Fetfatzis, Markus Fiebig, Harald Flentje, Patrick Ginot, Martin Gysel, Bas Henzing, Andras Hoffer, Adela Holubova Smejkalova, Ivo Kalapov, Nikos Kalivitis, Giorgos Kouvarakis, Adam Kristensson, Markku Kulmala, Heikki Lihavainen, Chris Lunder, Krista Luoma, Hassan Lyamani, Angela Marinoni, Nikos Mihalopoulos, Marcel Moerman, José Nicolas, Colin O'Dowd, Tuukka Petäjä, Jean-Eudes Petit, Jean Marc Pichon, Nina Prokopciuk, Jean-Philippe Putaud, Sergio Rodríguez, Jean Sciare, Karine Sellegri, Erik Swietlicki, Gloria Titos, Thomas Tuch, Peter Tunved, Vidmantas Ulevicius, Aditya Vaishya, Milan Vana, Aki Virkkula, Stergios Vratolis, Ernest Weingartner, Alfred Wiedensohler, and Paolo Laj
Atmos. Chem. Phys., 18, 7877–7911, https://doi.org/10.5194/acp-18-7877-2018, https://doi.org/10.5194/acp-18-7877-2018, 2018
Short summary
Short summary
This investigation presents the variability in near-surface in situ aerosol particle light-scattering measurements obtained over the past decade at 28 measuring atmospheric observatories which are part of the ACTRIS Research Infrastructure, and most of them belong to the GAW network. This paper provides a comprehensive picture of the spatial and temporal variability of aerosol particles optical properties in Europe.
Amelie Bertrand, Giulia Stefenelli, Coty N. Jen, Simone M. Pieber, Emily A. Bruns, Haiyan Ni, Brice Temime-Roussel, Jay G. Slowik, Allen H. Goldstein, Imad El Haddad, Urs Baltensperger, André S. H. Prévôt, Henri Wortham, and Nicolas Marchand
Atmos. Chem. Phys., 18, 7607–7624, https://doi.org/10.5194/acp-18-7607-2018, https://doi.org/10.5194/acp-18-7607-2018, 2018
Short summary
Short summary
A thermal desorption aerosol gas chromatograph coupled to an aerosol mass spectrometer (TAG–AMS) is connected to an atmospheric chamber. The setup serves the quantitative study of the impact of combustion conditions and atmospheric aging on the chemical fingerprint at the molecular level of biomass burning organic aerosol.
Mohammed S. Alam, Soheil Zeraati-Rezaei, Zhirong Liang, Christopher Stark, Hongming Xu, A. Rob MacKenzie, and Roy M. Harrison
Atmos. Meas. Tech., 11, 3047–3058, https://doi.org/10.5194/amt-11-3047-2018, https://doi.org/10.5194/amt-11-3047-2018, 2018
Short summary
Short summary
Diesel fuel, lubricating oil and diesel exhaust emissions all contain a very complex mixture of chemical compounds with diverse molecular structures. The GC × GC-ToF-MS analytical method is a very powerful way of separating and identifying those compounds. This paper describes the allocation of compounds into groups with similar molecular structures and chemical properties, which facilitates the intercomparison of very complex mixtures such as are found in diesel fuel, oil and emissions.
Arineh Cholakian, Matthias Beekmann, Augustin Colette, Isabelle Coll, Guillaume Siour, Jean Sciare, Nicolas Marchand, Florian Couvidat, Jorge Pey, Valerie Gros, Stéphane Sauvage, Vincent Michoud, Karine Sellegri, Aurélie Colomb, Karine Sartelet, Helen Langley DeWitt, Miriam Elser, André S. H. Prévot, Sonke Szidat, and François Dulac
Atmos. Chem. Phys., 18, 7287–7312, https://doi.org/10.5194/acp-18-7287-2018, https://doi.org/10.5194/acp-18-7287-2018, 2018
Short summary
Short summary
In this work, four schemes for the simulation of organic aerosols in the western Mediterranean basin are added to the CHIMERE chemistry–transport model; the resulting simulations are then compared to measurements obtained from ChArMEx. It is concluded that the scheme taking into account the fragmentation and the formation of nonvolatile organic aerosols corresponds better to measurements; the major source of this aerosol in the western Mediterranean is found to be of biogenic origin.
Jun Zhou, Peter Zotter, Emily A. Bruns, Giulia Stefenelli, Deepika Bhattu, Samuel Brown, Amelie Bertrand, Nicolas Marchand, Houssni Lamkaddam, Jay G. Slowik, André S. H. Prévôt, Urs Baltensperger, Thomas Nussbaumer, Imad El-Haddad, and Josef Dommen
Atmos. Chem. Phys., 18, 6985–7000, https://doi.org/10.5194/acp-18-6985-2018, https://doi.org/10.5194/acp-18-6985-2018, 2018
Short summary
Short summary
We thoroughly studied the reactive oxygen species (ROS) generation potential of particulate wood combustion emissions, from different combustion technologies, fuel types, operation methods, combustion regimes and phases. ROS from automatically operated combustion devices under optimal conditions were much lower than those from manually operated appliances. We examined the impact of atmospheric aging on ROS content in SOA and determined the controlling parameters, by using an online ROS analyzer.
Xavier Querol, Andrés Alastuey, Gotzon Gangoiti, Noemí Perez, Hong K. Lee, Heeram R. Eun, Yonghee Park, Enrique Mantilla, Miguel Escudero, Gloria Titos, Lucio Alonso, Brice Temime-Roussel, Nicolas Marchand, Juan R. Moreta, M. Arantxa Revuelta, Pedro Salvador, Begoña Artíñano, Saúl García dos Santos, Mónica Anguas, Alberto Notario, Alfonso Saiz-Lopez, Roy M. Harrison, Millán Millán, and Kang-Ho Ahn
Atmos. Chem. Phys., 18, 6511–6533, https://doi.org/10.5194/acp-18-6511-2018, https://doi.org/10.5194/acp-18-6511-2018, 2018
Short summary
Short summary
We show the main drivers of high O3 episodes in and around Madrid. High levels of ultrafine particles (UFPs) are evidenced, but we demonstrate that most O3 arises from the fumigation of high atmospheric layers, whereas UFPs are generated inside the PBL. O3 contributions from the fumigation of the vertical recirculation of regional air masses, hemispheric transport, and horizontally from direct urban plume transport are shown. Complexity arises from the need to quantify them to abate surface O3.
Marina Ealo, Andrés Alastuey, Noemí Pérez, Anna Ripoll, Xavier Querol, and Marco Pandolfi
Atmos. Chem. Phys., 18, 1149–1169, https://doi.org/10.5194/acp-18-1149-2018, https://doi.org/10.5194/acp-18-1149-2018, 2018
Short summary
Short summary
This study aims to quantify the mass scattering and absorption efficiencies of different aerosol sources at urban (Barcelona), regional (Montseny) and remote (Montsec) background sites in the NW Mediterranean by analysing a source apportionment, first to PM10 and then to scattering and absorption coefficients. With this approach we addressed both the effect that aerosol sources have on air quality and their potential effect on light extinction.
Allison N. Schwier, Karine Sellegri, Sébastien Mas, Bruno Charrière, Jorge Pey, Clémence Rose, Brice Temime-Roussel, Jean-Luc Jaffrezo, David Parin, David Picard, Mickael Ribeiro, Greg Roberts, Richard Sempéré, Nicolas Marchand, and Barbara D'Anna
Atmos. Chem. Phys., 17, 14645–14660, https://doi.org/10.5194/acp-17-14645-2017, https://doi.org/10.5194/acp-17-14645-2017, 2017
Short summary
Short summary
In the present paper, we quantify sea-to-air emission fluxes of aerosol to the atmosphere and characterize their physical and chemical properties as a function of the seawater biochemical and physical properties. Fluxes are evaluated with an original approach, a "lab in the field" experiment that preserves the seawater and atmospheric complexity while isolating air-to-sea exchanges from their surroundings. We show different features of the aerosol emission fluxes compared to previous findings.
Mounir Chrit, Karine Sartelet, Jean Sciare, Jorge Pey, Nicolas Marchand, Florian Couvidat, Karine Sellegri, and Matthias Beekmann
Atmos. Chem. Phys., 17, 12509–12531, https://doi.org/10.5194/acp-17-12509-2017, https://doi.org/10.5194/acp-17-12509-2017, 2017
Mauro Masiol, Roy M. Harrison, Tuan V. Vu, and David C. S. Beddows
Atmos. Chem. Phys., 17, 12379–12403, https://doi.org/10.5194/acp-17-12379-2017, https://doi.org/10.5194/acp-17-12379-2017, 2017
Short summary
Short summary
Measurements of airborne particulate matter have been conducted using a scanning mobility particle sizer at a site in the vicinity of Heathrow Airport, London. The measured particle size distributions have been assessed both by k means clustering and PMF analysis in conjunction with measurements of meteorological variables and chemical composition. The results give a quantitative estimate of the impact of aircraft and airport emissions on local air quality.
Alberto Cazorla, Juan Andrés Casquero-Vera, Roberto Román, Juan Luis Guerrero-Rascado, Carlos Toledano, Victoria E. Cachorro, José Antonio G. Orza, María Luisa Cancillo, Antonio Serrano, Gloria Titos, Marco Pandolfi, Andres Alastuey, Natalie Hanrieder, and Lucas Alados-Arboledas
Atmos. Chem. Phys., 17, 11861–11876, https://doi.org/10.5194/acp-17-11861-2017, https://doi.org/10.5194/acp-17-11861-2017, 2017
Short summary
Short summary
This work presents a method for the calibration and automated quality assurance of inversion of ceilometer profiles that is applied to the Iberian Ceilometer Network (ICENET). A cast study during an unusually intense dust outbreak affecting the Iberian Peninsula is shown. Results reveal that it is possible to obtain a quantitative optical aerosol characterization with ceilometers over large areas, and this information has a great potential for alert systems and model assimilation and evaluation.
Claudia Di Biagio, Paola Formenti, Mathieu Cazaunau, Edouard Pangui, Nicolas Marchand, and Jean-François Doussin
Atmos. Meas. Tech., 10, 2923–2939, https://doi.org/10.5194/amt-10-2923-2017, https://doi.org/10.5194/amt-10-2923-2017, 2017
Short summary
Short summary
Mineral dust is one of the most abundant aerosol species at the global scale and an accurate estimation of its absorption at solar wavelengths is crucial to assess its impact on climate. In this work we provide an estimate of the Aethalometer multiple scattering correction for mineral dust aerosols at 450 and 660 nm. Our results suggest that the use of an optimized correction factor can lead to up to 11 % higher absorption coefficient and to 3 % higher single scattering albedo for mineral dust.
Kevin Berland, Clémence Rose, Jorge Pey, Anais Culot, Evelyn Freney, Nikolaos Kalivitis, Giorgios Kouvarakis, José Carlos Cerro, Marc Mallet, Karine Sartelet, Matthias Beckmann, Thierry Bourriane, Greg Roberts, Nicolas Marchand, Nikolaos Mihalopoulos, and Karine Sellegri
Atmos. Chem. Phys., 17, 9567–9583, https://doi.org/10.5194/acp-17-9567-2017, https://doi.org/10.5194/acp-17-9567-2017, 2017
Short summary
Short summary
New particle formation (NPF) from gas-phase precursors is a process that is expected to drive the total number concentration of particles in the atmosphere. Here we use measurements performed simultaneously in Corsica, Crete and Mallorca to show that the spatial extent of the NPF events are several hundreds of kilometers large. Airborne measurements additionally show that nanoparticles in the marine atmosphere can either be of marine origin or from higher altitudes above the continent.
M. Isabel García, Barend L. van Drooge, Sergio Rodríguez, and Andrés Alastuey
Atmos. Chem. Phys., 17, 8939–8958, https://doi.org/10.5194/acp-17-8939-2017, https://doi.org/10.5194/acp-17-8939-2017, 2017
Short summary
Short summary
Speciation of organic aerosol was performed in the westerlies and in the Saharan Air Layer, where biogenic secondary organic aerosol (oxidation of isoprene and alpha-pinene) and primary combustion compounds (hopanes and PAHs) were observed. In the Saharan Air Layer, species (saccharides) linked to soil emission – plant tissues and microorganisms – in the inner Sahara were also identified, whereas in the westerlies biomass burning compounds (e.g. levoglucosan) from North America also occurred.
Vincent Michoud, Jean Sciare, Stéphane Sauvage, Sébastien Dusanter, Thierry Léonardis, Valérie Gros, Cerise Kalogridis, Nora Zannoni, Anaïs Féron, Jean-Eudes Petit, Vincent Crenn, Dominique Baisnée, Roland Sarda-Estève, Nicolas Bonnaire, Nicolas Marchand, H. Langley DeWitt, Jorge Pey, Aurélie Colomb, François Gheusi, Sonke Szidat, Iasonas Stavroulas, Agnès Borbon, and Nadine Locoge
Atmos. Chem. Phys., 17, 8837–8865, https://doi.org/10.5194/acp-17-8837-2017, https://doi.org/10.5194/acp-17-8837-2017, 2017
Short summary
Short summary
The ChArMEx SOP2 field campaign took place from 15 July to 5 August 2013 in the western Mediterranean Basin at Ersa, a remote site in Cape Corse. Exhaustive descriptions of the chemical composition of air masses in gas and aerosol phase were performed. An analysis of these measurements was performed using various source-receptor approaches. This led to the identification of several factors linked to primary sources but also to secondary processes of both biogenic and anthropogenic origin.
Carlo Bozzetti, Imad El Haddad, Dalia Salameh, Kaspar Rudolf Daellenbach, Paola Fermo, Raquel Gonzalez, María Cruz Minguillón, Yoshiteru Iinuma, Laurent Poulain, Miriam Elser, Emanuel Müller, Jay Gates Slowik, Jean-Luc Jaffrezo, Urs Baltensperger, Nicolas Marchand, and André Stephan Henry Prévôt
Atmos. Chem. Phys., 17, 8247–8268, https://doi.org/10.5194/acp-17-8247-2017, https://doi.org/10.5194/acp-17-8247-2017, 2017
Short summary
Short summary
We present the first long-term organic aerosol source apportionment in an environment influenced by anthropogenic emissions including biomass burning and industrial processes and an active photochemistry. Online and offline aerosol mass spectrometry were used to characterize these emissions and their transformation. Measurements of organic markers provided insights into the origin of biomass smoke in this area, with different seasonal contributions from domestic heating and agricultural burning.
M. Isabel García, Sergio Rodríguez, and Andrés Alastuey
Atmos. Chem. Phys., 17, 7387–7404, https://doi.org/10.5194/acp-17-7387-2017, https://doi.org/10.5194/acp-17-7387-2017, 2017
Short summary
Short summary
We measured the composition of the aerosols linked to transatlantic transport from North America to Izaña Observatory, Tenerife. The eastward-moving depressions prompt aerosols export. The seasonal shift of the westerlies stream over the aerosol sources prompts seasonality in the aerosol composition. High loads of dust, organics and sulfate occur in spring and elemental carbon occurs in summer. Aerosol population in the westerly winds over the North Atlantic is dominated by dust and organics.
Jovanna Arndt, Jean Sciare, Marc Mallet, Greg C. Roberts, Nicolas Marchand, Karine Sartelet, Karine Sellegri, François Dulac, Robert M. Healy, and John C. Wenger
Atmos. Chem. Phys., 17, 6975–7001, https://doi.org/10.5194/acp-17-6975-2017, https://doi.org/10.5194/acp-17-6975-2017, 2017
Short summary
Short summary
The chemical composition of individual PM2.5 particles was measured at a background site on Corsica in the Mediterranean to determine the contribution of different sources to background aerosol in the region. Most of the particles were from fossil fuel combustion and biomass burning, transported to the site from France, Italy and eastern Europe, and also accumulated other species en route. This work shows that largest impact on air quality in the Mediterranean is from anthropogenic emissions.
Markus Furger, María Cruz Minguillón, Varun Yadav, Jay G. Slowik, Christoph Hüglin, Roman Fröhlich, Krag Petterson, Urs Baltensperger, and André S. H. Prévôt
Atmos. Meas. Tech., 10, 2061–2076, https://doi.org/10.5194/amt-10-2061-2017, https://doi.org/10.5194/amt-10-2061-2017, 2017
Short summary
Short summary
An Xact 625 Ambient Metals Monitor was tested during a 3-week summer field campaign at a rural, traffic-influenced site in Switzerland. The objective was to characterize the operation of the instrument, evaluate the data quality by intercomparison with other independent measurements, and test its applicability for aerosol source quantification. The results demonstrate significant advantages compared to traditional elemental analysis methods, with some desirable improvements.
Evangelia Diapouli, Manousos I. Manousakas, Stergios Vratolis, Vasiliki Vasilatou, Stella Pateraki, Kyriaki A. Bairachtari, Xavier Querol, Fulvio Amato, Andrés Alastuey, Angeliki A. Karanasiou, Franco Lucarelli, Silvia Nava, Giulia Calzolai, Vorne L. Gianelle, Cristina Colombi, Célia Alves, Danilo Custódio, Casimiro Pio, Christos Spyrou, George B. Kallos, and Konstantinos Eleftheriadis
Atmos. Chem. Phys., 17, 3673–3685, https://doi.org/10.5194/acp-17-3673-2017, https://doi.org/10.5194/acp-17-3673-2017, 2017
Short summary
Short summary
This study examined the contribution of two natural sources (long-range transport of African dust and sea salt) to the airborne particulate matter concentrations, in 5 southern European cities (Porto, Barcelona, Milan, Florence, Athens). The results demonstrated that natural sources are often expressed with high-intensity events, leading even to exceedances of the EU air quality standards. This effect was more pronounced in the case of African dust intrusions in the eastern Mediterranean area.
Emily A. Bruns, Jay G. Slowik, Imad El Haddad, Dogushan Kilic, Felix Klein, Josef Dommen, Brice Temime-Roussel, Nicolas Marchand, Urs Baltensperger, and André S. H. Prévôt
Atmos. Chem. Phys., 17, 705–720, https://doi.org/10.5194/acp-17-705-2017, https://doi.org/10.5194/acp-17-705-2017, 2017
Short summary
Short summary
We characterize primary and aged gaseous emissions from residential wood combustion using proton transfer reaction time-of-flight mass spectrometry. This approach allows for improved characterization, particularly of oxygenated gases, which are a considerable fraction of the total gaseous mass emitted during residential wood combustion. This study is the first thorough characterization of organic gases from this source and provides a benchmark for future studies.
Suad S. Al-Kindi, Francis D. Pope, David C. Beddows, William J. Bloss, and Roy M. Harrison
Atmos. Chem. Phys., 16, 15561–15579, https://doi.org/10.5194/acp-16-15561-2016, https://doi.org/10.5194/acp-16-15561-2016, 2016
Short summary
Short summary
Oleic acid is a chemical substance which is emitted from cooking processes and is present as tiny particles in the atmosphere. The oleic acid in the particles reacts chemically with atmospheric ozone, causing substantial changes to the composition of the particles. This paper uses new techniques to explore these chemical reactions and the effect of humidity upon them. The significance of the results for the atmosphere is considered.
Marina Ealo, Andrés Alastuey, Anna Ripoll, Noemí Pérez, María Cruz Minguillón, Xavier Querol, and Marco Pandolfi
Atmos. Chem. Phys., 16, 12567–12586, https://doi.org/10.5194/acp-16-12567-2016, https://doi.org/10.5194/acp-16-12567-2016, 2016
Short summary
Short summary
The present work demonstrates the potential of in situ aerosol optical measurements, from both nephelometer and aethalometer instruments, for detecting specific air pollution scenarios in near real time. Given the high sensitivity of the intensive aerosol optical properties to characterize atmospheric aerosols, these parameters were calibrated in order to detect Saharan dust and biomass burning events at regional (Montseny) and continental (Montsec) environments in the NW Mediterranean.
Marco Pandolfi, Andrés Alastuey, Noemi Pérez, Cristina Reche, Iria Castro, Victor Shatalov, and Xavier Querol
Atmos. Chem. Phys., 16, 11787–11805, https://doi.org/10.5194/acp-16-11787-2016, https://doi.org/10.5194/acp-16-11787-2016, 2016
Short summary
Short summary
The ambient concentration of many air pollutants in Europe has decreased in these last decades thanks to the effectiveness of the pollution control measures implemented at European or regional/local levels. In this work we studied the trends of the concentrations of many different pollutants during the period 2004–2014, reporting on the type of trend, magnitude of the trend, and its statistical significance. Data from two twin sites in NE Spain (regional and urban background) were used.
Manuel Dall'Osto, David C. S. Beddows, Eoin J. McGillicuddy, Johanna K. Esser-Gietl, Roy M. Harrison, and John C. Wenger
Atmos. Chem. Phys., 16, 9693–9710, https://doi.org/10.5194/acp-16-9693-2016, https://doi.org/10.5194/acp-16-9693-2016, 2016
Short summary
Short summary
The aerosol time-of-flight mass spectrometer (ATOFMS) provides size resolved information on the chemical composition of single particles with high time resolution. Within SAPUSS (Solving Aerosol Problems by Using Synergistic Strategies), continuous measurements of ambient particles were made simultaneously at two urban locations in the city of Barcelona (Spain). We find that organic nitrogen is a considerable fraction of the single particles detected, especially at the traffic-dominated site.
Yvonne Boose, Berko Sierau, M. Isabel García, Sergio Rodríguez, Andrés Alastuey, Claudia Linke, Martin Schnaiter, Piotr Kupiszewski, Zamin A. Kanji, and Ulrike Lohmann
Atmos. Chem. Phys., 16, 9067–9087, https://doi.org/10.5194/acp-16-9067-2016, https://doi.org/10.5194/acp-16-9067-2016, 2016
Short summary
Short summary
Mineral dust is known to be among the most prevalent ice-nucleating particles (INPs) in the atmosphere, playing a crucial role for ice cloud formation. We present 2 months of ground-based in situ measurements of INP concentrations in the free troposphere close to the largest global dust source, the Sahara. We find that some atmospheric processes such as mixing with biological particles and ammonium increase the dust INP ability. This is important when predicting INPs based on emissions.
Antonis Gkikas, Sara Basart, Nikos Hatzianastassiou, Eleni Marinou, Vassilis Amiridis, Stelios Kazadzis, Jorge Pey, Xavier Querol, Oriol Jorba, Santiago Gassó, and José Maria Baldasano
Atmos. Chem. Phys., 16, 8609–8642, https://doi.org/10.5194/acp-16-8609-2016, https://doi.org/10.5194/acp-16-8609-2016, 2016
Short summary
Short summary
This study presents the 3-D structures of intense Mediterranean desert dust outbreaks, over the period Mar 2000–Feb 2013. The desert dust (DD) episodes are identified through an objective and dynamic algorithm, which utilizes satellite retrievals (MODIS, TOMS and OMI) as inputs. The performance of the satellite algorithm is evaluated vs. AERONET and PM10 data. The geometrical characteristics of the identified DD episodes are analyzed using the collocated CALIOP profiles as a complementary tool.
Mariola Brines, Manuel Dall'Osto, Fulvio Amato, María Cruz Minguillón, Angeliki Karanasiou, Andrés Alastuey, and Xavier Querol
Atmos. Chem. Phys., 16, 6785–6804, https://doi.org/10.5194/acp-16-6785-2016, https://doi.org/10.5194/acp-16-6785-2016, 2016
Andrés Alastuey, Xavier Querol, Wenche Aas, Franco Lucarelli, Noemí Pérez, Teresa Moreno, Fabrizia Cavalli, Hans Areskoug, Violeta Balan, Maria Catrambone, Darius Ceburnis, José C. Cerro, Sébastien Conil, Lusine Gevorgyan, Christoph Hueglin, Kornelia Imre, Jean-Luc Jaffrezo, Sarah R. Leeson, Nikolaos Mihalopoulos, Marta Mitosinkova, Colin D. O'Dowd, Jorge Pey, Jean-Philippe Putaud, Véronique Riffault, Anna Ripoll, Jean Sciare, Karine Sellegri, Gerald Spindler, and Karl Espen Yttri
Atmos. Chem. Phys., 16, 6107–6129, https://doi.org/10.5194/acp-16-6107-2016, https://doi.org/10.5194/acp-16-6107-2016, 2016
Short summary
Short summary
Mineral dust content in PM10 was analysed at 20 regional background sites across Europe. Higher dust loadings were observed at most sites in summer, with the most elevated concentrations in the southern- and easternmost countries, due to external and regional sources. Saharan dust outbreaks impacted western and central European in summer and eastern Mediterranean sites in winter. The spatial distribution of some metals reveals the influence of specific anthropogenic sources on a regional scale.
Alex Montornès, Bernat Codina, John W. Zack, and Yolanda Sola
Atmos. Chem. Phys., 16, 5949–5967, https://doi.org/10.5194/acp-16-5949-2016, https://doi.org/10.5194/acp-16-5949-2016, 2016
Short summary
Short summary
This paper documents a new package for the Weather Research and Forecasting--Advanced Research WRF (WRF-ARW) model that can simulate any partial, total or hybrid solar eclipse for the period 1950–2050 and is also extensible to a longer period. First, a description of the implementation together with a validation for the period 1950–2050 of all solar eclipse trajectories is presented. Second, the model response is analyzed in four total solar eclipse episodes. Global horizontal irradiance (GHI) outcomes are validated with respect to ground-based measurements.
Fulvio Amato, Andrés Alastuey, Angeliki Karanasiou, Franco Lucarelli, Silvia Nava, Giulia Calzolai, Mirko Severi, Silvia Becagli, Vorne L. Gianelle, Cristina Colombi, Celia Alves, Danilo Custódio, Teresa Nunes, Mario Cerqueira, Casimiro Pio, Konstantinos Eleftheriadis, Evangelia Diapouli, Cristina Reche, María Cruz Minguillón, Manousos-Ioannis Manousakas, Thomas Maggos, Stergios Vratolis, Roy M. Harrison, and Xavier Querol
Atmos. Chem. Phys., 16, 3289–3309, https://doi.org/10.5194/acp-16-3289-2016, https://doi.org/10.5194/acp-16-3289-2016, 2016
Short summary
Short summary
Harmonized source apportionment of atmospheric particulate matter (PM10 and PM2.5) at 5 EU cities (Barcelona, Florence, Milan, Athens and Porto) reveals that vehicle exhaust (excluding nitrate) plus non-exhaust contributes 16–32 % to PM10 and 15–36 % to PM2.5. Secondary PM represents 37–82 % of PM2.5. Biomass burning varies from < 2 to 24 % of PM10, depending on the residential heating fuel. Other sources are local dust (7–19 % of PM10), industries (4–11 % of PM10), shipping, sea salt and Saharan dust.
A. S. Fonseca, N. Talbot, J. Schwarz, J. Ondráček, V. Ždímal, J. Kozáková, M. Viana, A. Karanasiou, X. Querol, A. Alastuey, T. V. Vu, J. M. Delgado-Saborit, and R. M. Harrison
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2015-1016, https://doi.org/10.5194/acp-2015-1016, 2016
Revised manuscript not accepted
Short summary
Short summary
This work assessed the performance of 4 cascade impactors, by means of two intercomparison exercises in 2 European locations. The comparability between the different types of impactors assessed was dependent on particle size and on impactor design characteristics. Particle processes such as particle bounce, dissociation of semi volatiles in the coarser stages and/or particle shrinkage were identified as the main causes for the differences observed in particle mass across size fractions.
V. Crenn, J. Sciare, P. L. Croteau, S. Verlhac, R. Fröhlich, C. A. Belis, W. Aas, M. Äijälä, A. Alastuey, B. Artiñano, D. Baisnée, N. Bonnaire, M. Bressi, M. Canagaratna, F. Canonaco, C. Carbone, F. Cavalli, E. Coz, M. J. Cubison, J. K. Esser-Gietl, D. C. Green, V. Gros, L. Heikkinen, H. Herrmann, C. Lunder, M. C. Minguillón, G. Močnik, C. D. O'Dowd, J. Ovadnevaite, J.-E. Petit, E. Petralia, L. Poulain, M. Priestman, V. Riffault, A. Ripoll, R. Sarda-Estève, J. G. Slowik, A. Setyan, A. Wiedensohler, U. Baltensperger, A. S. H. Prévôt, J. T. Jayne, and O. Favez
Atmos. Meas. Tech., 8, 5063–5087, https://doi.org/10.5194/amt-8-5063-2015, https://doi.org/10.5194/amt-8-5063-2015, 2015
Short summary
Short summary
A large intercomparison study of 13 Q-ACSM was conducted for a 3-week period in the region of Paris to evaluate the performance of this instrument and to monitor the major NR-PM1 chemical components. Reproducibility expanded uncertainties of Q-ACSM concentration measurements were found to be 9, 15, 19, 28, and 36% for NR-PM1, NO3, OM, SO4, and NH4, respectively. Some recommendations regarding best calibration practices, standardized data processing and data treatment are also provided.
A. Karanasiou, M. C. Minguillón, M. Viana, A. Alastuey, J.-P. Putaud, W. Maenhaut, P. Panteliadis, G. Močnik, O. Favez, and T. A. J. Kuhlbusch
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amtd-8-9649-2015, https://doi.org/10.5194/amtd-8-9649-2015, 2015
Revised manuscript not accepted
D. C. S. Beddows, R. M. Harrison, D. C. Green, and G. W. Fuller
Atmos. Chem. Phys., 15, 10107–10125, https://doi.org/10.5194/acp-15-10107-2015, https://doi.org/10.5194/acp-15-10107-2015, 2015
Short summary
Short summary
Particles in the air of London have been assessed both by weight and by number. They have also been subject to chemical analysis. The data from 2 years of sampling have been used to investigate the sources contributing to the measured concentrations both in terms of the weight of the particles and the number of particles.
M. Beekmann, A. S. H. Prévôt, F. Drewnick, J. Sciare, S. N. Pandis, H. A. C. Denier van der Gon, M. Crippa, F. Freutel, L. Poulain, V. Ghersi, E. Rodriguez, S. Beirle, P. Zotter, S.-L. von der Weiden-Reinmüller, M. Bressi, C. Fountoukis, H. Petetin, S. Szidat, J. Schneider, A. Rosso, I. El Haddad, A. Megaritis, Q. J. Zhang, V. Michoud, J. G. Slowik, S. Moukhtar, P. Kolmonen, A. Stohl, S. Eckhardt, A. Borbon, V. Gros, N. Marchand, J. L. Jaffrezo, A. Schwarzenboeck, A. Colomb, A. Wiedensohler, S. Borrmann, M. Lawrence, A. Baklanov, and U. Baltensperger
Atmos. Chem. Phys., 15, 9577–9591, https://doi.org/10.5194/acp-15-9577-2015, https://doi.org/10.5194/acp-15-9577-2015, 2015
Short summary
Short summary
A detailed characterization of air quality in the Paris (France) agglomeration, a megacity, during two summer and winter intensive campaigns and from additional 1-year observations, revealed that about 70% of the fine particulate matter (PM) at urban background is transported into the megacity from upwind regions. Unexpectedly, a major part of organic PM is of modern origin (woodburning and cooking activities, secondary formation from biogenic VOC).
S. Rodríguez, E. Cuevas, J. M. Prospero, A. Alastuey, X. Querol, J. López-Solano, M. I. García, and S. Alonso-Pérez
Atmos. Chem. Phys., 15, 7471–7486, https://doi.org/10.5194/acp-15-7471-2015, https://doi.org/10.5194/acp-15-7471-2015, 2015
Short summary
Short summary
Long-term 28-year variability of Saharan dust export to the Atlantic is correlated with large-scale meteorology in North Africa, particularly with the intensity of the Saharan high to tropical low dipole-like pattern, the so-called North African Dipole. Variability in the dipole intensity is connected with winds, monsoon rain band and latitudinal shifts of the Saharan air layer. Variability in the dipole intensity suggests connections with ENSO and the Sahel drought.
R. Fröhlich, V. Crenn, A. Setyan, C. A. Belis, F. Canonaco, O. Favez, V. Riffault, J. G. Slowik, W. Aas, M. Aijälä, A. Alastuey, B. Artiñano, N. Bonnaire, C. Bozzetti, M. Bressi, C. Carbone, E. Coz, P. L. Croteau, M. J. Cubison, J. K. Esser-Gietl, D. C. Green, V. Gros, L. Heikkinen, H. Herrmann, J. T. Jayne, C. R. Lunder, M. C. Minguillón, G. Močnik, C. D. O'Dowd, J. Ovadnevaite, E. Petralia, L. Poulain, M. Priestman, A. Ripoll, R. Sarda-Estève, A. Wiedensohler, U. Baltensperger, J. Sciare, and A. S. H. Prévôt
Atmos. Meas. Tech., 8, 2555–2576, https://doi.org/10.5194/amt-8-2555-2015, https://doi.org/10.5194/amt-8-2555-2015, 2015
Short summary
Short summary
Source apportionment (SA) of organic aerosol mass spectrometric data measured with the Aerodyne ACSM using PMF/ME2 is a frequently used technique in the AMS/ACSM community. ME2 uncertainties due to instrument-to-instrument variations are elucidated by performing SA on ambient data from 14 individual, co-located ACSMs, recorded during the first ACTRIS ACSM intercomparison study at SIRTA near Paris (France). The mean uncertainty was 17.2%. Recommendations for future studies using ME2 are provided.
D. E. Young, J. D. Allan, P. I. Williams, D. C. Green, M. J. Flynn, R. M. Harrison, J. Yin, M. W. Gallagher, and H. Coe
Atmos. Chem. Phys., 15, 6351–6366, https://doi.org/10.5194/acp-15-6351-2015, https://doi.org/10.5194/acp-15-6351-2015, 2015
Short summary
Short summary
For the first time, the behaviour of non-refractory inorganic and organic submicron particulates through an entire annual cycle is investigated at a UK urban background site. We show secondary aerosols account for a significant fraction of the submicron aerosol burden, high concentration events are governed by different factors depending on season, and on an annual basis there is no variability in the extent of secondary organic aerosol oxidation.
M. C. Minguillón, A. Ripoll, N. Pérez, A. S. H. Prévôt, F. Canonaco, X. Querol, and A. Alastuey
Atmos. Chem. Phys., 15, 6379–6391, https://doi.org/10.5194/acp-15-6379-2015, https://doi.org/10.5194/acp-15-6379-2015, 2015
Short summary
Short summary
The study focuses on the aerosol variations found in the regional background of the western Mediterranean basin and their relation with atmospheric conditions and scenarios. An Aerosol Chemical Speciation Monitor (ACSM) was deployed for 1 year and the results were validated with co-located PM1 measurements. The organic sources were investigated and the local secondary organic aerosol (SOA) formation was estimated.
M. Brines, M. Dall'Osto, D. C. S. Beddows, R. M. Harrison, F. Gómez-Moreno, L. Núñez, B. Artíñano, F. Costabile, G. P. Gobbi, F. Salimi, L. Morawska, C. Sioutas, and X. Querol
Atmos. Chem. Phys., 15, 5929–5945, https://doi.org/10.5194/acp-15-5929-2015, https://doi.org/10.5194/acp-15-5929-2015, 2015
H. L. DeWitt, S. Hellebust, B. Temime-Roussel, S. Ravier, L. Polo, V. Jacob, C. Buisson, A. Charron, M. André, A. Pasquier, J. L. Besombes, J. L. Jaffrezo, H. Wortham, and N. Marchand
Atmos. Chem. Phys., 15, 4373–4387, https://doi.org/10.5194/acp-15-4373-2015, https://doi.org/10.5194/acp-15-4373-2015, 2015
Short summary
Short summary
By performing source-apportionment modeling, the amount of primary and secondary organic emissions was resolved from a bulk aerosol data set measured adjacent to a major highway in France. Over 70% of vehicles on this highway were diesel, and a high concentration of BC and NOx were measured. Even close to a major highway, the bulk of the aerosol mass was secondary in nature. Radiocarbon data revealed that most of the fossil organic carbon was from primary vehicular emissions and not from SOA.
L. R. Crilley, W. J. Bloss, J. Yin, D. C. S. Beddows, R. M. Harrison, J. D. Allan, D. E. Young, M. Flynn, P. Williams, P. Zotter, A. S. H. Prevot, M. R. Heal, J. F. Barlow, C. H. Halios, J. D. Lee, S. Szidat, and C. Mohr
Atmos. Chem. Phys., 15, 3149–3171, https://doi.org/10.5194/acp-15-3149-2015, https://doi.org/10.5194/acp-15-3149-2015, 2015
Short summary
Short summary
Wood is a renewable fuel but its combustion for residential heating releases a number of locally acting air pollutants, most notably particulate matter known to have adverse effects on human health. This paper used chemical tracers for wood smoke to estimate the contribution that burning wood makes to concentrations of airborne particles in the atmosphere of southern England and most particularly in London.
A. Ripoll, M. C. Minguillón, J. Pey, J. L. Jimenez, D. A. Day, Y. Sosedova, F. Canonaco, A. S. H. Prévôt, X. Querol, and A. Alastuey
Atmos. Chem. Phys., 15, 2935–2951, https://doi.org/10.5194/acp-15-2935-2015, https://doi.org/10.5194/acp-15-2935-2015, 2015
Short summary
Short summary
Real-time measurements of inorganic (sulfate, nitrate, ammonium, chloride and black carbon (BC)) and organic submicron aerosols from a continental background site (Montsec, MSC, 1570m a.s.l.) in the western Mediterranean Basin (WMB) were conducted for 10 months (July 2011 - April 2012) with an aerosol chemical speciation monitor (ACSM). The ACSM was co-located with other online and offline PM1 measurements. Analyses of the hourly, diurnal, and seasonal variations are presented here.
A. Montornès, B. Codina, and J. W. Zack
Atmos. Chem. Phys., 15, 2693–2707, https://doi.org/10.5194/acp-15-2693-2015, https://doi.org/10.5194/acp-15-2693-2015, 2015
D. E. Young, J. D. Allan, P. I. Williams, D. C. Green, R. M. Harrison, J. Yin, M. J. Flynn, M. W. Gallagher, and H. Coe
Atmos. Chem. Phys., 15, 2429–2443, https://doi.org/10.5194/acp-15-2429-2015, https://doi.org/10.5194/acp-15-2429-2015, 2015
Short summary
Short summary
Two solid fuel organic aerosol (SFOA) factors, both associated with domestic space heating activities, were derived from positive matrix factorisation (PMF) applied to organic aerosol data from an aerosol mass spectrometer (AMS) deployed at an urban background site in London during winter 2012. The factors controlling the split between the two SFOA factors were assessed, and it is concluded the split is likely governed predominantly by differences in burn conditions.
J. Yin, S. A. Cumberland, R. M. Harrison, J. Allan, D. E. Young, P. I. Williams, and H. Coe
Atmos. Chem. Phys., 15, 2139–2158, https://doi.org/10.5194/acp-15-2139-2015, https://doi.org/10.5194/acp-15-2139-2015, 2015
Short summary
Short summary
Breathing particles from polluted air is known to cause increased health complaints and higher death rates. Airborne particles come from a range of sources; in order to implement cost-effective control measures, it is necessary to understand the amount contributed by each. In this paper, two advanced procedures for estimating the contributions of particle sources in London are compared with one another, revealing a wide range of sources including traffic, woodsmoke and cooking particles.
P. Panteliadis, T. Hafkenscheid, B. Cary, E. Diapouli, A. Fischer, O. Favez, P. Quincey, M. Viana, R. Hitzenberger, R. Vecchi, D. Saraga, J. Sciare, J. L. Jaffrezo, A. John, J. Schwarz, M. Giannoni, J. Novak, A. Karanasiou, P. Fermo, and W. Maenhaut
Atmos. Meas. Tech., 8, 779–792, https://doi.org/10.5194/amt-8-779-2015, https://doi.org/10.5194/amt-8-779-2015, 2015
A. Ripoll, M. C. Minguillón, J. Pey, N. Pérez, X. Querol, and A. Alastuey
Atmos. Chem. Phys., 15, 1129–1145, https://doi.org/10.5194/acp-15-1129-2015, https://doi.org/10.5194/acp-15-1129-2015, 2015
Short summary
Short summary
The complete chemical compositions of atmospheric particulate matter (PM1 and PM10) from a continental (Montsec, 1570 m a.s.l.) and a regional (Montseny, 720 m a.s.l) background site in the western Mediterranean Basin were jointly studied for the first time over a relatively long-term period (January 2010-March 2013). Results revealed a) a high relevance of African dust transport and regional dust resuspension; b) low biomass burning contribution; and c) high organic matter contribution.
S. Decesari, J. Allan, C. Plass-Duelmer, B. J. Williams, M. Paglione, M. C. Facchini, C. O'Dowd, R. M. Harrison, J. K. Gietl, H. Coe, L. Giulianelli, G. P. Gobbi, C. Lanconelli, C. Carbone, D. Worsnop, A. T. Lambe, A. T. Ahern, F. Moretti, E. Tagliavini, T. Elste, S. Gilge, Y. Zhang, and M. Dall'Osto
Atmos. Chem. Phys., 14, 12109–12132, https://doi.org/10.5194/acp-14-12109-2014, https://doi.org/10.5194/acp-14-12109-2014, 2014
Short summary
Short summary
We made use of multiple spectrometric techniques for characterizing the aerosol chemical composition and mixing in the Po Valley in the summer.
The oxygenated organic aerosol (OOA) concentrations were correlated with simple tracers for recirculated planetary boundary layer air.
A full internal mixing between black carbon (BC) and the non-refractory aerosol components was never observed. Local sources in the Po Valley were responsible for the production of organic particles unmixed with BC.
D. Liu, J. D. Allan, D. E. Young, H. Coe, D. Beddows, Z. L. Fleming, M. J. Flynn, M. W. Gallagher, R. M. Harrison, J. Lee, A. S. H. Prevot, J. W. Taylor, J. Yin, P. I. Williams, and P. Zotter
Atmos. Chem. Phys., 14, 10061–10084, https://doi.org/10.5194/acp-14-10061-2014, https://doi.org/10.5194/acp-14-10061-2014, 2014
P. Salvador, S. Alonso-Pérez, J. Pey, B. Artíñano, J. J. de Bustos, A. Alastuey, and X. Querol
Atmos. Chem. Phys., 14, 6759–6775, https://doi.org/10.5194/acp-14-6759-2014, https://doi.org/10.5194/acp-14-6759-2014, 2014
M. Pandolfi, A. Ripoll, X. Querol, and A. Alastuey
Atmos. Chem. Phys., 14, 6443–6460, https://doi.org/10.5194/acp-14-6443-2014, https://doi.org/10.5194/acp-14-6443-2014, 2014
G. W. Mann, K. S. Carslaw, C. L. Reddington, K. J. Pringle, M. Schulz, A. Asmi, D. V. Spracklen, D. A. Ridley, M. T. Woodhouse, L. A. Lee, K. Zhang, S. J. Ghan, R. C. Easter, X. Liu, P. Stier, Y. H. Lee, P. J. Adams, H. Tost, J. Lelieveld, S. E. Bauer, K. Tsigaridis, T. P. C. van Noije, A. Strunk, E. Vignati, N. Bellouin, M. Dalvi, C. E. Johnson, T. Bergman, H. Kokkola, K. von Salzen, F. Yu, G. Luo, A. Petzold, J. Heintzenberg, A. Clarke, J. A. Ogren, J. Gras, U. Baltensperger, U. Kaminski, S. G. Jennings, C. D. O'Dowd, R. M. Harrison, D. C. S. Beddows, M. Kulmala, Y. Viisanen, V. Ulevicius, N. Mihalopoulos, V. Zdimal, M. Fiebig, H.-C. Hansson, E. Swietlicki, and J. S. Henzing
Atmos. Chem. Phys., 14, 4679–4713, https://doi.org/10.5194/acp-14-4679-2014, https://doi.org/10.5194/acp-14-4679-2014, 2014
M. Viana, I. Rivas, X. Querol, A. Alastuey, J. Sunyer, M. Álvarez-Pedrerol, L. Bouso, and C. Sioutas
Atmos. Chem. Phys., 14, 4459–4472, https://doi.org/10.5194/acp-14-4459-2014, https://doi.org/10.5194/acp-14-4459-2014, 2014
A. Ripoll, J. Pey, M. C. Minguillón, N. Pérez, M. Pandolfi, X. Querol, and A. Alastuey
Atmos. Chem. Phys., 14, 4279–4295, https://doi.org/10.5194/acp-14-4279-2014, https://doi.org/10.5194/acp-14-4279-2014, 2014
D. C. S. Beddows, M. Dall'Osto, R. M. Harrison, M. Kulmala, A. Asmi, A. Wiedensohler, P. Laj, A.M. Fjaeraa, K. Sellegri, W. Birmili, N. Bukowiecki, E. Weingartner, U. Baltensperger, V. Zdimal, N. Zikova, J.-P. Putaud, A. Marinoni, P. Tunved, H.-C. Hansson, M. Fiebig, N. Kivekäs, E. Swietlicki, H. Lihavainen, E. Asmi, V. Ulevicius, P. P. Aalto, N. Mihalopoulos, N. Kalivitis, I. Kalapov, G. Kiss, G. de Leeuw, B. Henzing, C. O'Dowd, S. G. Jennings, H. Flentje, F. Meinhardt, L. Ries, H. A. C. Denier van der Gon, and A. J. H. Visschedijk
Atmos. Chem. Phys., 14, 4327–4348, https://doi.org/10.5194/acp-14-4327-2014, https://doi.org/10.5194/acp-14-4327-2014, 2014
F. Amato, A. Alastuey, J. de la Rosa, Y. Gonzalez Castanedo, A. M. Sánchez de la Campa, M. Pandolfi, A. Lozano, J. Contreras González, and X. Querol
Atmos. Chem. Phys., 14, 3533–3544, https://doi.org/10.5194/acp-14-3533-2014, https://doi.org/10.5194/acp-14-3533-2014, 2014
M. Brines, M. Dall'Osto, D.C.S. Beddows, R. M. Harrison, and X. Querol
Atmos. Chem. Phys., 14, 2973–2986, https://doi.org/10.5194/acp-14-2973-2014, https://doi.org/10.5194/acp-14-2973-2014, 2014
M. S. Alam, J. M. Delgado-Saborit, C. Stark, and R. M. Harrison
Atmos. Chem. Phys., 14, 2467–2477, https://doi.org/10.5194/acp-14-2467-2014, https://doi.org/10.5194/acp-14-2467-2014, 2014
A. Gkikas, N. Hatzianastassiou, N. Mihalopoulos, V. Katsoulis, S. Kazadzis, J. Pey, X. Querol, and O. Torres
Atmos. Chem. Phys., 13, 12135–12154, https://doi.org/10.5194/acp-13-12135-2013, https://doi.org/10.5194/acp-13-12135-2013, 2013
M. Alier, B. L. van Drooge, M. Dall'Osto, X. Querol, J. O. Grimalt, and R. Tauler
Atmos. Chem. Phys., 13, 10353–10371, https://doi.org/10.5194/acp-13-10353-2013, https://doi.org/10.5194/acp-13-10353-2013, 2013
S. M. Platt, I. El Haddad, A. A. Zardini, M. Clairotte, C. Astorga, R. Wolf, J. G. Slowik, B. Temime-Roussel, N. Marchand, I. Ježek, L. Drinovec, G. Močnik, O. Möhler, R. Richter, P. Barmet, F. Bianchi, U. Baltensperger, and A. S. H. Prévôt
Atmos. Chem. Phys., 13, 9141–9158, https://doi.org/10.5194/acp-13-9141-2013, https://doi.org/10.5194/acp-13-9141-2013, 2013
M. Dall'Osto, X. Querol, A. Alastuey, M. C. Minguillon, M. Alier, F. Amato, M. Brines, M. Cusack, J. O. Grimalt, A. Karanasiou, T. Moreno, M. Pandolfi, J. Pey, C. Reche, A. Ripoll, R. Tauler, B. L. Van Drooge, M. Viana, R. M. Harrison, J. Gietl, D. Beddows, W. Bloss, C. O'Dowd, D. Ceburnis, G. Martucci, N. L. Ng, D. Worsnop, J. Wenger, E. Mc Gillicuddy, J. Sodeau, R. Healy, F. Lucarelli, S. Nava, J. L. Jimenez, F. Gomez Moreno, B. Artinano, A. S. H. Prévôt, L. Pfaffenberger, S. Frey, F. Wilsenack, D. Casabona, P. Jiménez-Guerrero, D. Gross, and N. Cots
Atmos. Chem. Phys., 13, 8991–9019, https://doi.org/10.5194/acp-13-8991-2013, https://doi.org/10.5194/acp-13-8991-2013, 2013
J. Genberg, H. A. C. Denier van der Gon, D. Simpson, E. Swietlicki, H. Areskoug, D. Beddows, D. Ceburnis, M. Fiebig, H. C. Hansson, R. M. Harrison, S. G. Jennings, S. Saarikoski, G. Spindler, A. J. H. Visschedijk, A. Wiedensohler, K. E. Yttri, and R. Bergström
Atmos. Chem. Phys., 13, 8719–8738, https://doi.org/10.5194/acp-13-8719-2013, https://doi.org/10.5194/acp-13-8719-2013, 2013
M. Crippa, F. Canonaco, J. G. Slowik, I. El Haddad, P. F. DeCarlo, C. Mohr, M. F. Heringa, R. Chirico, N. Marchand, B. Temime-Roussel, E. Abidi, L. Poulain, A. Wiedensohler, U. Baltensperger, and A. S. H. Prévôt
Atmos. Chem. Phys., 13, 8411–8426, https://doi.org/10.5194/acp-13-8411-2013, https://doi.org/10.5194/acp-13-8411-2013, 2013
I. El Haddad, B. D'Anna, B. Temime-Roussel, M. Nicolas, A. Boreave, O. Favez, D. Voisin, J. Sciare, C. George, J.-L. Jaffrezo, H. Wortham, and N. Marchand
Atmos. Chem. Phys., 13, 7875–7894, https://doi.org/10.5194/acp-13-7875-2013, https://doi.org/10.5194/acp-13-7875-2013, 2013
X. Querol, A. Alastuey, M. Viana, T. Moreno, C. Reche, M. C. Minguillón, A. Ripoll, M. Pandolfi, F. Amato, A. Karanasiou, N. Pérez, J. Pey, M. Cusack, R. Vázquez, F. Plana, M. Dall'Osto, J. de la Rosa, A. Sánchez de la Campa, R. Fernández-Camacho, S. Rodríguez, C. Pio, L. Alados-Arboledas, G. Titos, B. Artíñano, P. Salvador, S. García Dos Santos, and R. Fernández Patier
Atmos. Chem. Phys., 13, 6185–6206, https://doi.org/10.5194/acp-13-6185-2013, https://doi.org/10.5194/acp-13-6185-2013, 2013
M. Laborde, M. Crippa, T. Tritscher, Z. Jurányi, P. F. Decarlo, B. Temime-Roussel, N. Marchand, S. Eckhardt, A. Stohl, U. Baltensperger, A. S. H. Prévôt, E. Weingartner, and M. Gysel
Atmos. Chem. Phys., 13, 5831–5856, https://doi.org/10.5194/acp-13-5831-2013, https://doi.org/10.5194/acp-13-5831-2013, 2013
M. Cusack, N. Pérez, J. Pey, A. Alastuey, and X. Querol
Atmos. Chem. Phys., 13, 5173–5187, https://doi.org/10.5194/acp-13-5173-2013, https://doi.org/10.5194/acp-13-5173-2013, 2013
M. Pandolfi, G. Martucci, X. Querol, A. Alastuey, F. Wilsenack, S. Frey, C. D. O'Dowd, and M. Dall'Osto
Atmos. Chem. Phys., 13, 4983–4996, https://doi.org/10.5194/acp-13-4983-2013, https://doi.org/10.5194/acp-13-4983-2013, 2013
M. Dall'Osto, X. Querol, F. Amato, A. Karanasiou, F. Lucarelli, S. Nava, G. Calzolai, and M. Chiari
Atmos. Chem. Phys., 13, 4375–4392, https://doi.org/10.5194/acp-13-4375-2013, https://doi.org/10.5194/acp-13-4375-2013, 2013
A. Guillon, K. Le Ménach, P.-M. Flaud, N. Marchand, H. Budzinski, and E. Villenave
Atmos. Chem. Phys., 13, 2703–2719, https://doi.org/10.5194/acp-13-2703-2013, https://doi.org/10.5194/acp-13-2703-2013, 2013
A. Charron, C. Degrendele, B. Laongsri, and R. M. Harrison
Atmos. Chem. Phys., 13, 1879–1894, https://doi.org/10.5194/acp-13-1879-2013, https://doi.org/10.5194/acp-13-1879-2013, 2013
T. Moreno, T. Kojima, F. Amato, F. Lucarelli, J. de la Rosa, G. Calzolai, S. Nava, M. Chiari, A. Alastuey, X. Querol, and W. Gibbons
Atmos. Chem. Phys., 13, 1411–1424, https://doi.org/10.5194/acp-13-1411-2013, https://doi.org/10.5194/acp-13-1411-2013, 2013
J. Pey, X. Querol, A. Alastuey, F. Forastiere, and M. Stafoggia
Atmos. Chem. Phys., 13, 1395–1410, https://doi.org/10.5194/acp-13-1395-2013, https://doi.org/10.5194/acp-13-1395-2013, 2013
M. Crippa, P. F. DeCarlo, J. G. Slowik, C. Mohr, M. F. Heringa, R. Chirico, L. Poulain, F. Freutel, J. Sciare, J. Cozic, C. F. Di Marco, M. Elsasser, J. B. Nicolas, N. Marchand, E. Abidi, A. Wiedensohler, F. Drewnick, J. Schneider, S. Borrmann, E. Nemitz, R. Zimmermann, J.-L. Jaffrezo, A. S. H. Prévôt, and U. Baltensperger
Atmos. Chem. Phys., 13, 961–981, https://doi.org/10.5194/acp-13-961-2013, https://doi.org/10.5194/acp-13-961-2013, 2013
F. Couvidat, Y. Kim, K. Sartelet, C. Seigneur, N. Marchand, and J. Sciare
Atmos. Chem. Phys., 13, 983–996, https://doi.org/10.5194/acp-13-983-2013, https://doi.org/10.5194/acp-13-983-2013, 2013
M. Dall'Osto, X. Querol, A. Alastuey, C. O'Dowd, R. M. Harrison, J. Wenger, and F. J. Gómez-Moreno
Atmos. Chem. Phys., 13, 741–759, https://doi.org/10.5194/acp-13-741-2013, https://doi.org/10.5194/acp-13-741-2013, 2013
O. Hertel, C. A. Skjøth, S. Reis, A. Bleeker, R. M. Harrison, J. N. Cape, D. Fowler, U. Skiba, D. Simpson, T. Jickells, M. Kulmala, S. Gyldenkærne, L. L. Sørensen, J. W. Erisman, and M. A. Sutton
Biogeosciences, 9, 4921–4954, https://doi.org/10.5194/bg-9-4921-2012, https://doi.org/10.5194/bg-9-4921-2012, 2012
Related subject area
Subject: Gases | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Interannual variations in the Δ(17O) signature of atmospheric CO2 at two mid-latitude sites suggest a close link to stratosphere–troposphere exchange
Atmospheric NH3 in urban Beijing: long-term variations and implications for secondary inorganic aerosol control
How rainfall events modify trace gas mixing ratios in central Amazonia
Uncertainty in continuous ΔCO-based ΔffCO2 estimates derived from 14C flask and bottom-up ΔCO ∕ ΔffCO2 ratios
Dynamical drivers of free-tropospheric ozone increases over equatorial Southeast Asia
Air mass transport to the tropical western Pacific troposphere inferred from ozone and relative humidity balloon observations above Palau
Mixing-layer-height-referenced ozone vertical distribution in the lower troposphere of Chinese megacities: stratification, classification, and meteorological and photochemical mechanisms
Six years of continuous carbon isotope composition measurements of methane in Heidelberg (Germany) – a study of source contributions and comparison to emission inventories
What caused large ozone variabilities in three megacity clusters in eastern China during 2015–2020?
Atmospheric turbulence observed during a fuel-bed-scale low-intensity surface fire
Fingerprints of the COVID-19 economic downturn and recovery on ozone anomalies at high-elevation sites in North America and western Europe
Ozone in the boreal forest in the Alberta Oil Sands Region
Zugspitze ozone 1970–2020: the role of stratosphere–troposphere transport
High sulfur dioxide deposition velocities measured with the flux–gradient technique in a boreal forest in the Alberta Oil Sands Region
Quantification of methane emissions in Hamburg using a network of FTIR spectrometers and an inverse modeling approach
Local-to-regional methane emissions from the Upper Silesian Coal Basin (USCB) quantified using UAV-based atmospheric measurements
Transport pathways of carbon monoxide from Indonesian fire pollution to a subtropical high-altitude mountain site in the western North Pacific
Global warming will largely increase waste treatment CH4 emissions in Chinese megacities: insight from the first city-scale CH4 concentration observation network in Hangzhou, China
Disentangling methane and carbon dioxide sources and transport across the Russian Arctic from aircraft measurements
Airborne glyoxal measurements in the marine and continental atmosphere: comparison with TROPOMI observations and EMAC simulations
Mercury in the free troposphere and bidirectional atmosphere–vegetation exchanges – insights from Maïdo mountain observatory in the Southern Hemisphere tropics
Diurnal variability of atmospheric O2, CO2, and their exchange ratio above a boreal forest in southern Finland
How adequately are elevated moist layers represented in reanalysis and satellite observations?
Quantitative impacts of vertical transport on the long-term trend of nocturnal ozone increase over the Pearl River Delta region during 2006–2019
Factors influencing the temporal variability of atmospheric methane emissions from Upper Silesia coal mines: a case study from the CoMet mission
Enhanced natural releases of mercury in response to the reduction in anthropogenic emissions during the COVID-19 lockdown by explainable machine learning
Temporal variability of tropospheric ozone and ozone profiles in the Korean Peninsula during the East Asian summer monsoon: insights from multiple measurements and reanalysis datasets
Retrieving CH4-emission rates from coal mine ventilation shafts using UAV-based AirCore observations and the genetic algorithm–interior point penalty function (GA-IPPF) model
Measurement report: Atmospheric mercury in a coastal city of Southeast China – inter-annual variations and influencing factors
Tropospheric and stratospheric ozone profiles during the 2019 TROpomi vaLIdation eXperiment (TROLIX-19)
Evaluation of correlated Pandora column NO2 and in situ surface NO2 measurements during GMAP campaign
Transport of substantial stratospheric ozone to the surface by a dying typhoon and shallow convection
Observational constraints on methane emissions from Polish coal mines using a ground-based remote sensing network
Continuous CH4 and δ13CH4 measurements in London demonstrate under-reported natural gas leakage
Long-term fluxes of carbonyl sulfide and their seasonality and interannual variability in a boreal forest
Declines and peaks in NO2 pollution during the multiple waves of the COVID-19 pandemic in the New York metropolitan area
Measurement report: Characterization of uncertainties in fluxes and fuel sulfur content from ship emissions in the Baltic Sea
Limitations of the radon tracer method (RTM) to estimate regional greenhouse gas (GHG) emissions – a case study for methane in Heidelberg
Positive and negative influences of typhoons on tropospheric ozone over southern China
Spatial and temporal variations of CO2 mole fractions observed at Beijing, Xianghe, and Xinglong in North China
The CO2 integral emission by the megacity of St Petersburg as quantified from ground-based FTIR measurements combined with dispersion modelling
Anthropogenic and natural controls on atmospheric δ13C-CO2 variations in the Yangtze River delta: insights from a carbon isotope modeling framework
Quantifying variability, source, and transport of CO in the urban areas over the Himalayas and Tibetan Plateau
New methodology shows short atmospheric lifetimes of oxidized sulfur and nitrogen due to dry deposition
Uncertainties in eddy covariance air–sea CO2 flux measurements and implications for gas transfer velocity parameterisations
Convergent evidence for the pervasive but limited contribution of biomass burning to atmospheric ammonia in peninsular Southeast Asia
Concurrent variation in oil and gas methane emissions and oil price during the COVID-19 pandemic
Ozone variability induced by synoptic weather patterns in warm seasons of 2014–2018 over the Yangtze River Delta region, China
Seasonal patterns of atmospheric mercury in tropical South America as inferred by a continuous total gaseous mercury record at Chacaltaya station (5240 m) in Bolivia
A mass-weighted isentropic coordinate for mapping chemical tracers and computing atmospheric inventories
Pharahilda M. Steur, Hubertus A. Scheeren, Gerbrand Koren, Getachew A. Adnew, Wouter Peters, and Harro A. J. Meijer
Atmos. Chem. Phys., 24, 11005–11027, https://doi.org/10.5194/acp-24-11005-2024, https://doi.org/10.5194/acp-24-11005-2024, 2024
Short summary
Short summary
We present records of the triple oxygen isotope signature (Δ(17O)) of atmospheric CO2 obtained with laser absorption spectroscopy from two mid-latitude stations. Significant interannual variability is observed in both records. A model sensitivity study suggests that stratosphere–troposphere exchange, which carries high-Δ(17O) CO2 from the stratosphere into the troposphere, causes most of the variability. This makes Δ(17O) a potential tracer for stratospheric intrusions into the troposphere.
Ziru Lan, Xiaoyi Zhang, Weili Lin, Xiaobin Xu, Zhiqiang Ma, Jun Jin, Lingyan Wu, and Yangmei Zhang
Atmos. Chem. Phys., 24, 9355–9368, https://doi.org/10.5194/acp-24-9355-2024, https://doi.org/10.5194/acp-24-9355-2024, 2024
Short summary
Short summary
Our study examined the long-term trends of atmospheric ammonia in urban Beijing from 2009 to 2020. We found that the trends did not match satellite data or emission estimates, revealing complexities in ammonia sources. While seasonal variations in ammonia were temperature-dependent, daily variations were correlated with water vapor. We also found an increasing contribution of ammonia reduction, emphasizing its importance in mitigating the effects of fine particulate matter in Beijing.
Luiz A. T. Machado, Jürgen Kesselmeier, Santiago Botía, Hella van Asperen, Meinrat O. Andreae, Alessandro C. de Araújo, Paulo Artaxo, Achim Edtbauer, Rosaria R. Ferreira, Marco A. Franco, Hartwig Harder, Sam P. Jones, Cléo Q. Dias-Júnior, Guido G. Haytzmann, Carlos A. Quesada, Shujiro Komiya, Jost Lavric, Jos Lelieveld, Ingeborg Levin, Anke Nölscher, Eva Pfannerstill, Mira L. Pöhlker, Ulrich Pöschl, Akima Ringsdorf, Luciana Rizzo, Ana M. Yáñez-Serrano, Susan Trumbore, Wanda I. D. Valenti, Jordi Vila-Guerau de Arellano, David Walter, Jonathan Williams, Stefan Wolff, and Christopher Pöhlker
Atmos. Chem. Phys., 24, 8893–8910, https://doi.org/10.5194/acp-24-8893-2024, https://doi.org/10.5194/acp-24-8893-2024, 2024
Short summary
Short summary
Composite analysis of gas concentration before and after rainfall, during the day and night, gives insight into the complex relationship between trace gas variability and precipitation. The analysis helps us to understand the sources and sinks of trace gases within a forest ecosystem. It elucidates processes that are not discernible under undisturbed conditions and contributes to a deeper understanding of the trace gas life cycle and its intricate interactions with cloud dynamics in the Amazon.
Fabian Maier, Ingeborg Levin, Sébastien Conil, Maksym Gachkivskyi, Hugo Denier van der Gon, and Samuel Hammer
Atmos. Chem. Phys., 24, 8205–8223, https://doi.org/10.5194/acp-24-8205-2024, https://doi.org/10.5194/acp-24-8205-2024, 2024
Short summary
Short summary
We assess the uncertainty in continuous fossil fuel carbon dioxide (ffCO2) estimates derived from carbon monoxide (CO) observations and radiocarbon (14CO2) flask measurements from an urban and a rural site. This study provides the basis for using continuous CO-based ffCO2 observations in atmospheric transport inversion frameworks to derive ffCO2 emission estimates. We also compare the flask-based CO / ffCO2 ratios with modeled ratios to validate an emission inventory for central Europe.
Ryan M. Stauffer, Anne M. Thompson, Debra E. Kollonige, Ninong Komala, Habib Khirzin Al-Ghazali, Dian Yudha Risdianto, Ambun Dindang, Ahmad Fairudz bin Jamaluddin, Mohan Kumar Sammathuria, Norazura Binti Zakaria, Bryan J. Johnson, and Patrick D. Cullis
Atmos. Chem. Phys., 24, 5221–5234, https://doi.org/10.5194/acp-24-5221-2024, https://doi.org/10.5194/acp-24-5221-2024, 2024
Short summary
Short summary
SHADOZ balloon-borne ozone measurements over equatorial Southeast Asia from 1998–2022 reveal that ozone increases during the early months of the year are linked to reduced convective storm activity, which typically redistributes and cleans the atmosphere of ozone. These findings challenge models to replicate the trends produced by the SHADOZ and meteorological observations and emphasize the importance of studying monthly or seasonal instead of annual changes for understanding ozone trends.
Katrin Müller, Peter von der Gathen, and Markus Rex
Atmos. Chem. Phys., 24, 4693–4716, https://doi.org/10.5194/acp-24-4693-2024, https://doi.org/10.5194/acp-24-4693-2024, 2024
Short summary
Short summary
The transport history of tropospheric air masses above the tropical western Pacific is studied by local ozone and relative humidity profile measurements from Palau. A prominent anti-correlation between both tracers separates air masses of different origin and genesis. Back trajectories confirm a local convective origin of the year-round humid ozone-poor background. Anomalously dry ozone-rich air is generated in tropical Asia by pollution and dehydrated during transport via radiative cooling.
Zhiheng Liao, Meng Gao, Jinqiang Zhang, Jiaren Sun, Jiannong Quan, Xingcan Jia, Yubing Pan, and Shaojia Fan
Atmos. Chem. Phys., 24, 3541–3557, https://doi.org/10.5194/acp-24-3541-2024, https://doi.org/10.5194/acp-24-3541-2024, 2024
Short summary
Short summary
This study collected 1897 ozonesondes from two Chinese megacities (Beijing and Hong Kong) in 2000–2022 to investigate the climatological vertical heterogeneity of lower-tropospheric ozone distribution with a mixing-layer-height-referenced (h-referenced) vertical coordinate system. This vertical coordinate system highlighted O3 stratification features existing at the mixing layer–free troposphere interface and provided a better understanding of O3 pollution in urban regions.
Antje Hoheisel and Martina Schmidt
Atmos. Chem. Phys., 24, 2951–2969, https://doi.org/10.5194/acp-24-2951-2024, https://doi.org/10.5194/acp-24-2951-2024, 2024
Short summary
Short summary
In Heidelberg, Germany, methane and its stable carbon isotope composition have been measured continuously with a cavity ring-down spectroscopy (CRDS) analyser since April 2014. These 6-year time series are analysed with the Keeling plot method for the isotopic composition of the sources, as well as seasonal variations and trends in methane emissions. The source contributions derived from atmospheric measurements were used to evaluate global and regional emission inventories of methane.
Tingting Hu, Yu Lin, Run Liu, Yuepeng Xu, Shanshan Ouyang, Boguang Wang, Yuanhang Zhang, and Shaw Chen Liu
Atmos. Chem. Phys., 24, 1607–1626, https://doi.org/10.5194/acp-24-1607-2024, https://doi.org/10.5194/acp-24-1607-2024, 2024
Short summary
Short summary
We hypothesize that the cause of the worsening O3 trends in the Beijing–Tianjin–Hebei region, the Yangtze River Delta, and Pearl River Delta from 2015 to 2020 is attributable to the increased occurrence of meteorological conditions of high solar radiation and a positive temperature anomaly under the influence of West Pacific subtropical high, tropical cyclones, and mid–high-latitude wave activities.
Joseph Seitz, Shiyuan Zhong, Joseph J. Charney, Warren E. Heilman, Kenneth L. Clark, Xindi Bian, Nicholas S. Skowronski, Michael R. Gallagher, Matthew Patterson, Jason Cole, Michael T. Kiefer, Rory Hadden, and Eric Mueller
Atmos. Chem. Phys., 24, 1119–1142, https://doi.org/10.5194/acp-24-1119-2024, https://doi.org/10.5194/acp-24-1119-2024, 2024
Short summary
Short summary
Atmospheric turbulence affects wildland fire behaviors and heat and smoke transfer. Turbulence data collected during an experimental fire on a 10 m x 10 m densely instrumented burn plot are analyzed, and the results reveal substantial heterogeneity in fire-induced turbulence characteristics across the small plot, which highlights the necessity for coupled atmosphere–fire behavior models to have 1–2 m grid spacing so that adequate simulations of fire behavior and smoke transfer can be achieved.
Davide Putero, Paolo Cristofanelli, Kai-Lan Chang, Gaëlle Dufour, Gregory Beachley, Cédric Couret, Peter Effertz, Daniel A. Jaffe, Dagmar Kubistin, Jason Lynch, Irina Petropavlovskikh, Melissa Puchalski, Timothy Sharac, Barkley C. Sive, Martin Steinbacher, Carlos Torres, and Owen R. Cooper
Atmos. Chem. Phys., 23, 15693–15709, https://doi.org/10.5194/acp-23-15693-2023, https://doi.org/10.5194/acp-23-15693-2023, 2023
Short summary
Short summary
We investigated the impact of societal restriction measures during the COVID-19 pandemic on surface ozone at 41 high-elevation sites worldwide. Negative ozone anomalies were observed for spring and summer 2020 for all of the regions considered. In 2021, negative anomalies continued for Europe and partially for the eastern US, while western US sites showed positive anomalies due to wildfires. IASI satellite data and the Carbon Monitor supported emission reductions as a cause of the anomalies.
Xuanyi Zhang, Mark Gordon, Paul A. Makar, Timothy Jiang, Jonathan Davies, and David Tarasick
Atmos. Chem. Phys., 23, 13647–13664, https://doi.org/10.5194/acp-23-13647-2023, https://doi.org/10.5194/acp-23-13647-2023, 2023
Short summary
Short summary
Measurements of ozone in the atmosphere were made in a forest downwind of oil sands mining and production facilities in northern Alberta. These measurements show that the emissions of other pollutants from oil sands production and processing reduce the amount of ozone in the forest. By using an atmospheric model combined with measurements, we find that the rate at which ozone is absorbed by the forest is lower than typical rates from similar measurements in other forests.
Thomas Trickl, Cédric Couret, Ludwig Ries, and Hannes Vogelmann
Atmos. Chem. Phys., 23, 8403–8427, https://doi.org/10.5194/acp-23-8403-2023, https://doi.org/10.5194/acp-23-8403-2023, 2023
Short summary
Short summary
Downward atmospheric transport from the stratosphere (STT) is the most important natural source of tropospheric ozone. We analyse the stratospheric influence on the long-term series of ozone and carbon monoxide measured on the Zugspitze in the Bavarian Alps (2962 m a.s.l.). Since the 1970s, there has been a pronounced ozone rise that has been ascribed to an increase in STT. We determine the stratospheric influence from the observational data alone (humidity and 7Be).
Mark Gordon, Dane Blanchard, Timothy Jiang, Paul A. Makar, Ralf M. Staebler, Julian Aherne, Cris Mihele, and Xuanyi Zhang
Atmos. Chem. Phys., 23, 7241–7255, https://doi.org/10.5194/acp-23-7241-2023, https://doi.org/10.5194/acp-23-7241-2023, 2023
Short summary
Short summary
Measurements of the gas sulfur dioxide (SO2) were made in a forest downwind of oil sands mining and production facilities in northern Alberta. These measurements tell us the rate at which SO2 is absorbed by the forest. The measured rate is much higher than what is currently used by air quality models, which is supported by a previous study in this region. This suggests that SO2 may have a much shorter lifetime in the atmosphere at this location than currently predicted by models.
Andreas Forstmaier, Jia Chen, Florian Dietrich, Juan Bettinelli, Hossein Maazallahi, Carsten Schneider, Dominik Winkler, Xinxu Zhao, Taylor Jones, Carina van der Veen, Norman Wildmann, Moritz Makowski, Aydin Uzun, Friedrich Klappenbach, Hugo Denier van der Gon, Stefan Schwietzke, and Thomas Röckmann
Atmos. Chem. Phys., 23, 6897–6922, https://doi.org/10.5194/acp-23-6897-2023, https://doi.org/10.5194/acp-23-6897-2023, 2023
Short summary
Short summary
Large cities emit greenhouse gases which contribute to global warming. In this study, we measured the release of one important green house gas, methane, in Hamburg. Multiple sources that contribute to methane emissions were located and quantified. Methane sources were found to be mainly caused by human activity (e.g., by release from oil and gas refineries). Moreover, potential natural sources have been located, such as the Elbe River and lakes.
Truls Andersen, Zhao Zhao, Marcel de Vries, Jaroslaw Necki, Justyna Swolkien, Malika Menoud, Thomas Röckmann, Anke Roiger, Andreas Fix, Wouter Peters, and Huilin Chen
Atmos. Chem. Phys., 23, 5191–5216, https://doi.org/10.5194/acp-23-5191-2023, https://doi.org/10.5194/acp-23-5191-2023, 2023
Short summary
Short summary
The Upper Silesian Coal Basin, Poland, is one of the hot spots of methane emissions in Europe. Using an uncrewed aerial vehicle (UAV), we performed atmospheric measurements of methane concentrations downwind of five ventilation shafts in this region and determined the emission rates from the individual shafts. We found a strong correlation between quantified shaft-averaged emission rates and hourly inventory data, which also allows us to estimate the methane emissions from the entire region.
Saginela Ravindra Babu, Chang-Feng Ou-Yang, Stephen M. Griffith, Shantanu Kumar Pani, Steven Soon-Kai Kong, and Neng-Huei Lin
Atmos. Chem. Phys., 23, 4727–4740, https://doi.org/10.5194/acp-23-4727-2023, https://doi.org/10.5194/acp-23-4727-2023, 2023
Short summary
Short summary
In October 2006 and 2015, extensive fire episodes occurred in Indonesia, releasing an enormous amount of CO emissions. By combining in situ and satellite CO measurements and reanalysis products, we reported plausible transport pathways of CO from Indonesia to the Lulin Atmospheric Background Station (LABS; 23.47° N, 120.87° E; 2862 m a.s.l.) in Taiwan. We identified (i) horizontal transport in the free troposphere and (ii) vertical transport through the Hadley circulation.
Cheng Hu, Junqing Zhang, Bing Qi, Rongguang Du, Xiaofei Xu, Haoyu Xiong, Huili Liu, Xinyue Ai, Yiyi Peng, and Wei Xiao
Atmos. Chem. Phys., 23, 4501–4520, https://doi.org/10.5194/acp-23-4501-2023, https://doi.org/10.5194/acp-23-4501-2023, 2023
Short summary
Short summary
We build the first city-scale tower-based atmospheric CH4 concentration observation network in China. The a priori total annual anthropogenic CH4 emissions and emissions from waste treatment were overestimated by 36.0 % and 47.1 %, respectively, in Hangzhou. Global warming will largely enhance the CH4 emission factor of waste treatment, which will increase by 17.6 %, 9.6 %, 5.6 % and 4.0 % for Representative Concentration Pathway (RCP) 8.5, RCP6.0, RCP4.5 and RCP2.6, respectively, by 2100.
Clément Narbaud, Jean-Daniel Paris, Sophie Wittig, Antoine Berchet, Marielle Saunois, Philippe Nédélec, Boris D. Belan, Mikhail Y. Arshinov, Sergei B. Belan, Denis Davydov, Alexander Fofonov, and Artem Kozlov
Atmos. Chem. Phys., 23, 2293–2314, https://doi.org/10.5194/acp-23-2293-2023, https://doi.org/10.5194/acp-23-2293-2023, 2023
Short summary
Short summary
We measured CH4 and CO2 from aircraft over the Russian Arctic. Analyzing our data with the Lagrangian model FLEXPART, we find a sharp east–west gradient in atmospheric composition. Western Siberia is influenced by strong wetland CH4 emissions, deep CO2 gradient from biospheric uptake, and long-range transport from Europe and North America. Eastern flights document less variability. Over the Arctic Ocean, we find a small influence from marine CH4 emissions compatible with reasonable inventories.
Flora Kluge, Tilman Hüneke, Christophe Lerot, Simon Rosanka, Meike K. Rotermund, Domenico Taraborrelli, Benjamin Weyland, and Klaus Pfeilsticker
Atmos. Chem. Phys., 23, 1369–1401, https://doi.org/10.5194/acp-23-1369-2023, https://doi.org/10.5194/acp-23-1369-2023, 2023
Short summary
Short summary
Using airborne glyoxal concentration and vertical column density measurements, vertical profiles are inferred for eight global regions in aged biomass burning plumes and the tropical marine boundary layer. Using TROPOMI observations, an analysis of space- and airborne measurements is performed. A comparison to EMAC simulations shows a general glyoxal underprediction, which points to various missing sources and precursors from anthropogenic activities, biomass burning, and the sea surface.
Alkuin M. Koenig, Olivier Magand, Bert Verreyken, Jerome Brioude, Crist Amelynck, Niels Schoon, Aurélie Colomb, Beatriz Ferreira Araujo, Michel Ramonet, Mahesh K. Sha, Jean-Pierre Cammas, Jeroen E. Sonke, and Aurélien Dommergue
Atmos. Chem. Phys., 23, 1309–1328, https://doi.org/10.5194/acp-23-1309-2023, https://doi.org/10.5194/acp-23-1309-2023, 2023
Short summary
Short summary
The global distribution of mercury, a potent neurotoxin, depends on atmospheric transport, chemistry, and interactions between the Earth’s surface and the air. Our understanding of these processes is still hampered by insufficient observations. Here, we present new data from a mountain observatory in the Southern Hemisphere. We give insights into mercury concentrations in air masses coming from aloft, and we show that tropical mountain vegetation may be a daytime source of mercury to the air.
Kim A. P. Faassen, Linh N. T. Nguyen, Eadin R. Broekema, Bert A. M. Kers, Ivan Mammarella, Timo Vesala, Penelope A. Pickers, Andrew C. Manning, Jordi Vilà-Guerau de Arellano, Harro A. J. Meijer, Wouter Peters, and Ingrid T. Luijkx
Atmos. Chem. Phys., 23, 851–876, https://doi.org/10.5194/acp-23-851-2023, https://doi.org/10.5194/acp-23-851-2023, 2023
Short summary
Short summary
The exchange ratio (ER) between atmospheric O2 and CO2 provides a useful tracer for separately estimating photosynthesis and respiration processes in the forest carbon balance. This is highly relevant to better understand the expected biosphere sink, which determines future atmospheric CO2 levels. We therefore measured O2, CO2, and their ER above a boreal forest in Finland and investigated their diurnal behaviour for a representative day, and we show the most suitable way to determine the ER.
Marc Prange, Stefan A. Buehler, and Manfred Brath
Atmos. Chem. Phys., 23, 725–741, https://doi.org/10.5194/acp-23-725-2023, https://doi.org/10.5194/acp-23-725-2023, 2023
Short summary
Short summary
We investigate the representation of elevated moist layers (EMLs) in two satellite retrieval products and ERA5 reanalysis. EMLs occur in the vicinity of tropical convective storms and are thought to have an impact on their evolution through radiative heating. We provide a first dedicated assessment of EMLs in long-term data products in terms of moist layer strength, vertical thickness and altitude by comparing to collocated radiosondes over the western Pacific, a region where EMLs often occur.
Yongkang Wu, Weihua Chen, Yingchang You, Qianqian Xie, Shiguo Jia, and Xuemei Wang
Atmos. Chem. Phys., 23, 453–469, https://doi.org/10.5194/acp-23-453-2023, https://doi.org/10.5194/acp-23-453-2023, 2023
Short summary
Short summary
Relying on observed and simulated data, we determine the spatiotemporal characteristics of nocturnal O3 increase (NOI) events in the Pearl River Delta region during 2006–2019. Low-level jets and convective storms are the main meteorological processes causing NOI. Daytime O3 is another essential influencing factor. More importantly, a more prominent role of meteorological processes in NOI has been demonstrated. Our study highlights the important role of meteorology in nocturnal O3 pollution.
Justyna Swolkień, Andreas Fix, and Michał Gałkowski
Atmos. Chem. Phys., 22, 16031–16052, https://doi.org/10.5194/acp-22-16031-2022, https://doi.org/10.5194/acp-22-16031-2022, 2022
Short summary
Short summary
Determination of emissions from coal mines on a local scale requires instantaneous data. We analysed temporal emission data for ventilation shafts and factors influencing their variability. They were saturation of the seams with methane, the permeability of the rock mass, and coal output. The data for the verification should reflect the actual values of emissions from point sources. It is recommended to achieve this by using a standardised emission measurement system for all coal mines.
Xiaofei Qin, Shengqian Zhou, Hao Li, Guochen Wang, Cheng Chen, Chengfeng Liu, Xiaohao Wang, Juntao Huo, Yanfen Lin, Jia Chen, Qingyan Fu, Yusen Duan, Kan Huang, and Congrui Deng
Atmos. Chem. Phys., 22, 15851–15865, https://doi.org/10.5194/acp-22-15851-2022, https://doi.org/10.5194/acp-22-15851-2022, 2022
Short summary
Short summary
Using artificial neural network modeling and an explainable analysis approach, natural surface emissions (NSEs) were identified as a main driver of gaseous elemental mercury (GEM) variations during the COVID-19 lockdown. A sharp drop in GEM concentrations due to a significant reduction in anthropogenic emissions may disrupt the surface–air exchange balance of Hg, leading to increases in NSEs. This implies that NSEs may pose challenges to the future control of Hg pollution.
Juseon Bak, Eun-Ji Song, Hyo-Jung Lee, Xiong Liu, Ja-Ho Koo, Joowan Kim, Wonbae Jeon, Jae-Hwan Kim, and Cheol-Hee Kim
Atmos. Chem. Phys., 22, 14177–14187, https://doi.org/10.5194/acp-22-14177-2022, https://doi.org/10.5194/acp-22-14177-2022, 2022
Short summary
Short summary
Our study investigates the temporal variations of ozone profiles at Pohang in the Korean Peninsula from multiple ozone products. We discuss the quantitative relationships between daily surface measurements and key meteorological variables, different seasonality of ozone between the troposphere and stratosphere, and interannual changes in the lower tropospheric ozone, linked by the weather pattern driven by the East Asian summer monsoon.
Tianqi Shi, Zeyu Han, Ge Han, Xin Ma, Huilin Chen, Truls Andersen, Huiqin Mao, Cuihong Chen, Haowei Zhang, and Wei Gong
Atmos. Chem. Phys., 22, 13881–13896, https://doi.org/10.5194/acp-22-13881-2022, https://doi.org/10.5194/acp-22-13881-2022, 2022
Short summary
Short summary
CH4 works as the second-most important greenhouse gas, its reported emission inventories being far less than CO2. In this study, we developed a self-adjusted model to estimate the CH4 emission rate from strong point sources by the UAV-based AirCore system. This model would reduce the uncertainty in CH4 emission rate quantification accrued by errors in measurements of wind and concentration. Actual measurements on Pniówek coal demonstrate the high accuracy and stability of our developed model.
Jiayan Shi, Yuping Chen, Lingling Xu, Youwei Hong, Mengren Li, Xiaolong Fan, Liqian Yin, Yanting Chen, Chen Yang, Gaojie Chen, Taotao Liu, Xiaoting Ji, and Jinsheng Chen
Atmos. Chem. Phys., 22, 11187–11202, https://doi.org/10.5194/acp-22-11187-2022, https://doi.org/10.5194/acp-22-11187-2022, 2022
Short summary
Short summary
Gaseous elemental mercury (GEM) was observed in Southeast China over the period 2012–2020. The observed GEM concentrations showed no distinct inter-annual variation trends. The interpretation rate of transportation and meteorology on GEM variations displayed an increasing trend. In contrast, anthropogenic emissions have shown a decreasing interpretation rate since 2012, indicating the effectiveness of emission mitigation measures in reducing GEM concentrations in the study region.
John T. Sullivan, Arnoud Apituley, Nora Mettig, Karin Kreher, K. Emma Knowland, Marc Allaart, Ankie Piters, Michel Van Roozendael, Pepijn Veefkind, Jerry R. Ziemke, Natalya Kramarova, Mark Weber, Alexei Rozanov, Laurence Twigg, Grant Sumnicht, and Thomas J. McGee
Atmos. Chem. Phys., 22, 11137–11153, https://doi.org/10.5194/acp-22-11137-2022, https://doi.org/10.5194/acp-22-11137-2022, 2022
Short summary
Short summary
A TROPOspheric Monitoring Instrument (TROPOMI) validation campaign (TROLIX-19) was held in the Netherlands in September 2019. The research presented here focuses on using ozone lidars from NASA’s Goddard Space Flight Center to better evaluate the characterization of ozone throughout TROLIX-19 as compared to balloon-borne, space-borne and ground-based passive measurements, as well as a global coupled chemistry meteorology model.
Lim-Seok Chang, Donghee Kim, Hyunkee Hong, Deok-Rae Kim, Jeong-Ah Yu, Kwangyul Lee, Hanlim Lee, Daewon Kim, Jinkyu Hong, Hyun-Young Jo, and Cheol-Hee Kim
Atmos. Chem. Phys., 22, 10703–10720, https://doi.org/10.5194/acp-22-10703-2022, https://doi.org/10.5194/acp-22-10703-2022, 2022
Short summary
Short summary
Our study explored the synergy of combined column and surface measurements during GMAP (GEMS Map of Air Pollution) campaign. It has several points to note for vertical distribution analysis. Particularly under prevailing local wind meteorological conditions, Pandora-based vertical structures sometimes showed negative correlations between column and surface measurements. Vertical analysis should be done carefully in some local meteorological conditions when employing either surface or columns.
Zhixiong Chen, Jane Liu, Xiushu Qie, Xugeng Cheng, Yukun Shen, Mengmiao Yang, Rubin Jiang, and Xiangke Liu
Atmos. Chem. Phys., 22, 8221–8240, https://doi.org/10.5194/acp-22-8221-2022, https://doi.org/10.5194/acp-22-8221-2022, 2022
Short summary
Short summary
A vigorous surface ozone surge event of stratospheric origin occurred in the North China Plain at night. Surface ozone concentrations were 40–50 ppbv higher than the corresponding monthly mean, whereas surface carbon monoxide concentrations declined abruptly, which confirmed the direct stratospheric intrusions to the surface. We further addressed the notion that a combined effect of the dying typhoon and mesoscale convective systems was responsible for this vigorous ozone surge.
Andreas Luther, Julian Kostinek, Ralph Kleinschek, Sara Defratyka, Mila Stanisavljević, Andreas Forstmaier, Alexandru Dandocsi, Leon Scheidweiler, Darko Dubravica, Norman Wildmann, Frank Hase, Matthias M. Frey, Jia Chen, Florian Dietrich, Jarosław Nȩcki, Justyna Swolkień, Christoph Knote, Sanam N. Vardag, Anke Roiger, and André Butz
Atmos. Chem. Phys., 22, 5859–5876, https://doi.org/10.5194/acp-22-5859-2022, https://doi.org/10.5194/acp-22-5859-2022, 2022
Short summary
Short summary
Coal mining is an extensive source of anthropogenic methane emissions. In order to reduce and mitigate methane emissions, it is important to know how much and where the methane is emitted. We estimated coal mining methane emissions in Poland based on atmospheric methane measurements and particle dispersion modeling. In general, our emission estimates suggest higher emissions than expected by previous annual emission reports.
Eric Saboya, Giulia Zazzeri, Heather Graven, Alistair J. Manning, and Sylvia Englund Michel
Atmos. Chem. Phys., 22, 3595–3613, https://doi.org/10.5194/acp-22-3595-2022, https://doi.org/10.5194/acp-22-3595-2022, 2022
Short summary
Short summary
Continuous measurements of atmospheric methane concentrations and its carbon-13 isotope have been made in central London since early 2018. These measurements were used to evaluate methane emissions reported in global and UK-specific emission inventories for the London area. Compared to atmospheric methane measurements from March 2018 to October 2020, both inventories are under-reporting natural gas leakage for the London area.
Timo Vesala, Kukka-Maaria Kohonen, Linda M. J. Kooijmans, Arnaud P. Praplan, Lenka Foltýnová, Pasi Kolari, Markku Kulmala, Jaana Bäck, David Nelson, Dan Yakir, Mark Zahniser, and Ivan Mammarella
Atmos. Chem. Phys., 22, 2569–2584, https://doi.org/10.5194/acp-22-2569-2022, https://doi.org/10.5194/acp-22-2569-2022, 2022
Short summary
Short summary
Carbonyl sulfide (COS) provides new insights into carbon cycle research. We present an easy-to-use flux parameterization and the longest existing time series of forest–atmosphere COS exchange measurements, which allow us to study both seasonal and interannual variability. We observed only uptake of COS by the forest on an annual basis, with 37 % variability between years. Upscaling the boreal COS uptake using a biosphere model indicates a significant missing COS sink at high latitudes.
Maria Tzortziou, Charlotte F. Kwong, Daniel Goldberg, Luke Schiferl, Róisín Commane, Nader Abuhassan, James J. Szykman, and Lukas C. Valin
Atmos. Chem. Phys., 22, 2399–2417, https://doi.org/10.5194/acp-22-2399-2022, https://doi.org/10.5194/acp-22-2399-2022, 2022
Short summary
Short summary
The COVID-19 pandemic created an extreme natural experiment in which sudden changes in human behavior significantly impacted urban air quality. Using a combination of model, satellite, and ground-based data, we examine the impact of multiple waves and phases of the pandemic on atmospheric nitrogen pollution in the New York metropolitan area, and address the role of weather as a key driver of high pollution episodes observed even during – and despite – the stringent early lockdowns.
Jari Walden, Liisa Pirjola, Tuomas Laurila, Juha Hatakka, Heidi Pettersson, Tuomas Walden, Jukka-Pekka Jalkanen, Harri Nordlund, Toivo Truuts, Miika Meretoja, and Kimmo K. Kahma
Atmos. Chem. Phys., 21, 18175–18194, https://doi.org/10.5194/acp-21-18175-2021, https://doi.org/10.5194/acp-21-18175-2021, 2021
Short summary
Short summary
Ship emissions play an important role in the deposition of gaseous compounds and nanoparticles (Ntot), affecting climate, human health (especially in coastal areas), and eutrophication. Micrometeorological methods showed that ship emissions were mainly responsible for the deposition of Ntot, whereas they only accounted for a minor proportion of CO2 deposition. An uncertainty analysis applied to the fluxes and fuel sulfur content results demonstrated the reliability of the results.
Ingeborg Levin, Ute Karstens, Samuel Hammer, Julian DellaColetta, Fabian Maier, and Maksym Gachkivskyi
Atmos. Chem. Phys., 21, 17907–17926, https://doi.org/10.5194/acp-21-17907-2021, https://doi.org/10.5194/acp-21-17907-2021, 2021
Short summary
Short summary
The radon tracer method is applied to atmospheric methane and radon observations from the upper Rhine valley to independently estimate methane emissions from the region. Comparison of our top-down results with bottom-up inventory data requires high-resolution footprint modelling and representative radon flux data. In agreement with inventories, observed emissions decreased, but only until 2005. A limitation of this method is that point-source emissions are not captured or not fully captured.
Zhixiong Chen, Jane Liu, Xugeng Cheng, Mengmiao Yang, and Hong Wang
Atmos. Chem. Phys., 21, 16911–16923, https://doi.org/10.5194/acp-21-16911-2021, https://doi.org/10.5194/acp-21-16911-2021, 2021
Short summary
Short summary
Using a large ensemble of typhoons, we investigate the impacts of evolving typhoons on tropospheric ozone and address the linkages between typhoon-affected meteorological conditions and ozone variations. The influences of typhoon-induced stratospheric intrusions on lower-troposphere ozone are also quantified. Thus, the results obtained in this study have important implications for a full understanding of the multifaced roles of typhoons in modulating tropospheric ozone variation.
Yang Yang, Minqiang Zhou, Ting Wang, Bo Yao, Pengfei Han, Denghui Ji, Wei Zhou, Yele Sun, Gengchen Wang, and Pucai Wang
Atmos. Chem. Phys., 21, 11741–11757, https://doi.org/10.5194/acp-21-11741-2021, https://doi.org/10.5194/acp-21-11741-2021, 2021
Short summary
Short summary
This study introduces the in situ CO2 measurement system installed in Beijing (urban), Xianghe (suburban), and Xinglong (rural) in North China for the first time. The spatial and temporal variations in CO2 mole fractions at the three sites between June 2018 and April 2020 are discussed on both seasonal and diurnal scales.
Dmitry V. Ionov, Maria V. Makarova, Frank Hase, Stefani C. Foka, Vladimir S. Kostsov, Carlos Alberti, Thomas Blumenstock, Thorsten Warneke, and Yana A. Virolainen
Atmos. Chem. Phys., 21, 10939–10963, https://doi.org/10.5194/acp-21-10939-2021, https://doi.org/10.5194/acp-21-10939-2021, 2021
Short summary
Short summary
Megacities are a significant source of emissions of various substances in the atmosphere, including carbon dioxide, which is the most important anthropogenic greenhouse gas. In 2019–2020, the Emission Monitoring Mobile Experiment was carried out in St Petersburg, which is the second-largest industrial city in Russia. The results of this experiment, coupled with numerical modelling, helped to estimate the amount of CO2 emitted by the city. This value was twice as high as predicted.
Cheng Hu, Jiaping Xu, Cheng Liu, Yan Chen, Dong Yang, Wenjing Huang, Lichen Deng, Shoudong Liu, Timothy J. Griffis, and Xuhui Lee
Atmos. Chem. Phys., 21, 10015–10037, https://doi.org/10.5194/acp-21-10015-2021, https://doi.org/10.5194/acp-21-10015-2021, 2021
Short summary
Short summary
Seventy percent of global CO2 emissions were emitted from urban landscapes. The Yangtze River delta (YRD) ranks as one of the most densely populated regions in the world and is an anthropogenic CO2 hotspot. Besides anthropogenic factors, natural ecosystems and croplands act as significant CO2 sinks and sources. Independent quantification of the fossil and cement CO2 emission and assessment of their impact on atmospheric δ13C-CO2 have potential to improve our understanding of urban CO2 cycling.
Youwen Sun, Hao Yin, Yuan Cheng, Qianggong Zhang, Bo Zheng, Justus Notholt, Xiao Lu, Cheng Liu, Yuan Tian, and Jianguo Liu
Atmos. Chem. Phys., 21, 9201–9222, https://doi.org/10.5194/acp-21-9201-2021, https://doi.org/10.5194/acp-21-9201-2021, 2021
Short summary
Short summary
We quantified the variability, source, and transport of urban CO over the Himalayas and Tibetan Plateau (HTP) by using measurement, model simulation, and the analysis of meteorological fields. Urban CO over the HTP is dominated by anthropogenic and biomass burning emissions from local, South Asia and East Asia, and oxidation sources. The decreasing trends in surface CO since 2015 in most cities over the HTP are attributed to the reduction in local and transported CO emissions in recent years.
Katherine Hayden, Shao-Meng Li, Paul Makar, John Liggio, Samar G. Moussa, Ayodeji Akingunola, Robert McLaren, Ralf M. Staebler, Andrea Darlington, Jason O'Brien, Junhua Zhang, Mengistu Wolde, and Leiming Zhang
Atmos. Chem. Phys., 21, 8377–8392, https://doi.org/10.5194/acp-21-8377-2021, https://doi.org/10.5194/acp-21-8377-2021, 2021
Short summary
Short summary
We developed a method using aircraft measurements to determine lifetimes with respect to dry deposition for oxidized sulfur and nitrogen compounds over the boreal forest in Alberta, Canada. Atmospheric lifetimes were significantly shorter than derived from chemical transport models with differences related to modelled dry deposition velocities. The shorter lifetimes suggest models need to reassess dry deposition treatment and predictions of sulfur and nitrogen in the atmosphere and ecosystems.
Yuanxu Dong, Mingxi Yang, Dorothee C. E. Bakker, Vassilis Kitidis, and Thomas G. Bell
Atmos. Chem. Phys., 21, 8089–8110, https://doi.org/10.5194/acp-21-8089-2021, https://doi.org/10.5194/acp-21-8089-2021, 2021
Short summary
Short summary
Eddy covariance (EC) is the most direct method for measuring air–sea CO2 flux from ships. However, uncertainty in EC air–sea CO2 fluxes has not been well quantified. Here we show that with the state-of-the-art gas analysers, instrumental noise no longer contributes significantly to the CO2 flux uncertainty. Applying an appropriate averaging timescale (1–3 h) and suitable air–sea CO2 fugacity threshold (at least 20 µatm) to EC flux data enables an optimal analysis of the gas transfer velocity.
Yunhua Chang, Yan-Lin Zhang, Sawaeng Kawichai, Qian Wang, Martin Van Damme, Lieven Clarisse, Tippawan Prapamontol, and Moritz F. Lehmann
Atmos. Chem. Phys., 21, 7187–7198, https://doi.org/10.5194/acp-21-7187-2021, https://doi.org/10.5194/acp-21-7187-2021, 2021
Short summary
Short summary
In this study, we integrated satellite constraints on atmospheric NH3 levels and fire intensity, discrete NH3 concentration measurement, and N isotopic analysis of NH3 in order to assess the regional-scale contribution of biomass burning to ambient atmospheric NH3 in the heartland of Southeast Asia. The combined approach provides a valuable cross-validation framework for source apportioning of NH3 in the lower atmosphere and will thus help to ameliorate predictions of biomass burning emissions.
David R. Lyon, Benjamin Hmiel, Ritesh Gautam, Mark Omara, Katherine A. Roberts, Zachary R. Barkley, Kenneth J. Davis, Natasha L. Miles, Vanessa C. Monteiro, Scott J. Richardson, Stephen Conley, Mackenzie L. Smith, Daniel J. Jacob, Lu Shen, Daniel J. Varon, Aijun Deng, Xander Rudelis, Nikhil Sharma, Kyle T. Story, Adam R. Brandt, Mary Kang, Eric A. Kort, Anthony J. Marchese, and Steven P. Hamburg
Atmos. Chem. Phys., 21, 6605–6626, https://doi.org/10.5194/acp-21-6605-2021, https://doi.org/10.5194/acp-21-6605-2021, 2021
Short summary
Short summary
The Permian Basin (USA) is the world’s largest oil field. We use tower- and aircraft-based approaches to measure how methane emissions in the Permian Basin changed throughout 2020. In early 2020, 3.3 % of the region’s gas was emitted; then in spring 2020, the loss rate temporarily dropped to 1.9 % as oil price crashed. We find this short-term reduction to be a result of reduced well development, less gas flaring, and fewer abnormal events despite minimal reductions in oil and gas production.
Da Gao, Min Xie, Jane Liu, Tijian Wang, Chaoqun Ma, Haokun Bai, Xing Chen, Mengmeng Li, Bingliang Zhuang, and Shu Li
Atmos. Chem. Phys., 21, 5847–5864, https://doi.org/10.5194/acp-21-5847-2021, https://doi.org/10.5194/acp-21-5847-2021, 2021
Short summary
Short summary
O3 has been increasing in recent years over the Yangtze River Delta region of China and is closely associated with dominant weather systems. Still, the study on the impact of changes in synoptic weather patterns (SWPs) on O3 variation is quite limited. This work aims to reveal the unique features of changes in each SWP under O3 variation and quantifies the effects of meteorological conditions on O3 variation. Our findings could be helpful in strategy planning for O3 pollution control.
Alkuin Maximilian Koenig, Olivier Magand, Paolo Laj, Marcos Andrade, Isabel Moreno, Fernando Velarde, Grover Salvatierra, René Gutierrez, Luis Blacutt, Diego Aliaga, Thomas Reichler, Karine Sellegri, Olivier Laurent, Michel Ramonet, and Aurélien Dommergue
Atmos. Chem. Phys., 21, 3447–3472, https://doi.org/10.5194/acp-21-3447-2021, https://doi.org/10.5194/acp-21-3447-2021, 2021
Short summary
Short summary
The environmental cycling of atmospheric mercury, a harmful global contaminant, is still not sufficiently constrained, partly due to missing data in remote regions. Here, we address this issue by presenting 20 months of atmospheric mercury measurements, sampled in the Bolivian Andes. We observe a significant seasonal pattern, whose key features we explore. Moreover, we deduce ratios to constrain South American biomass burning mercury emissions and the mercury uptake by the Amazon rainforest.
Yuming Jin, Ralph F. Keeling, Eric J. Morgan, Eric Ray, Nicholas C. Parazoo, and Britton B. Stephens
Atmos. Chem. Phys., 21, 217–238, https://doi.org/10.5194/acp-21-217-2021, https://doi.org/10.5194/acp-21-217-2021, 2021
Short summary
Short summary
We propose a new atmospheric coordinate (Mθe) based on equivalent potential temperature (θe) but with mass as the unit. This coordinate is useful in studying the spatial and temporal distribution of long-lived chemical tracers (CO2, CH4, O2 / N2, etc.) from sparse data, like airborne observation. Using this coordinate and sparse airborne observation (HIPPO and ATom), we resolve the Northern Hemisphere mass-weighted average CO2 seasonal cycle with high accuracy.
Cited articles
Ajuntament de Barcelona: Annual Statistics of the Barcelona City, available at: http://www.bcn.cat/estadistica/catala/dades/anuari/cap15/index.htm (last access: 7 September 2016), 2015.
Barros, N., Borrego, C., Toll, I., Soriano, C., Jiménez, P., and Baldasano, J. M.: Urban Photochemical Pollution in the Iberian Peninsula: Lisbon and Barcelona Airsheds, J. Air Waste Manage., 53, 347–359, 2003.
Byun, D. W. and Ching, J. K. S.: Science algorithms of the EPA Models-3 Community Multiscale Air Quality (CMAQ) modeling system, National Exposure Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC: Atmospheric Modelling Division, 27711, 1999.
Carslaw, D. C.: The openair manual – open-source tools for analysing air pollution data, Manual for version 0.7-0, King's College, London, 2012.
Carslaw, D. C., Murrells, T. P., Andersson, J., and Keenan, M.: Have vehicle emissions of primary NO2 peaked?, Faraday Discuss., 189, 439–454, 2016.
Castell, N., Mantilla, E., and Millán, M. M.: Analysis of tropospheric ozone concentration on a Western Mediterranean site: Castellon (Spain), Environ. Monit. Assess., 136, 3–11, 2008a.
Castell, N., Stein, A. F., Salvador, R., Mantilla, E., and Millán, M. M.: The impact of biogenic VOC emissions on photochemical ozone formation during a high ozone pollution episode in the Iberian Peninsula in the 2003 summer season, Adv. Sci. Res., 2, 9–15, 2008b.
Castell, N., Tellez, L., and Mantilla, E.: Daily, seasonal and monthly variations in ozone levels recorded at the Turia river basin in Valencia (Eastern Spain), Environ. Sci. Pollut. R., 19, 3461–3480, 2012.
Cusack, M., Pérez, N., Pey, J., Alastuey, A., and Querol, X.: Source apportionment of fine PM and sub-micron particle number concentrations at a regional background site in the western Mediterranean: a 2.5 year study, Atmos. Chem. Phys., 13, 5173–5187, https://doi.org/10.5194/acp-13-5173-2013, 2013.
DGT: Dirección General de Tráfico: Anuario Estadístico General, available at: http://www.dgt.es/es/seguridad-vial/estadisticas-e-indicadores/publicaciones/anuario-estadistico-general/ (last access: 6 December 2015), 2014.
Dieguez, J. J., Millán, M., Padilla, L., and Palau, J. L.: Estudio y evaluación de la contaminación atmosférica por ozono troposférico en España, CEAM Report for the Ministry of Agriculture, Food and Environment, INF FIN/O3/2009, 372 pp., available at: http://origin.magrama.gob.es/es/calidad-y-evaluacion-ambiental/temas/atmosfera-y-calidad-del-aire/8_A_Informe_final_ozono-ceam_Julio_2009_tcm7-438818.pdf (last access: 14 February 2017), 2009.
Dieguez, J. J., Calatayud, V., and Mantilla, E.: CEAM Report for the Ministry of Agriculture, Food and Environment, Fundación Biodiversidad, Informe Final, Memoria Técnica Proyecto CONOZE, CONtaminación por OZono en España, 137 pp., available at: http://www.mapama.gob.es/es/calidad-y-evaluacion-ambiental/temas/atmosfera-y-calidad-del-aire/Informe_t%C3%A9cnico_CONOZE[1]_tcm7-330956.pdf (last access: 14 February 2017), 2014.
Doherty, R. M., Wild, O., Shindell, D. T., Zeng, G., Collins, W. J., MacKenzie, I. A., Fiore, A. M., Stevenson, D. S. Dentener, F. J., Schultz, M. G., Hess, P., Derwent, R. G., and Keating, T. J.: Impacts of climate change on surface ozone and intercontinental ozone pollution: A multi-model study, J. Geophys. Res., 118, 3744–3763, 2013.
Doval, M., Castell, N., Téllez, L., and Mantilla, E.: The use of experimental data and their uncertainty for assessing ozone photochemistry in the Eastern Iberian Peninsula, Chemosphere, 89, 796–804, 2012.
EC: European Commission Decision of 19 March 2004, Concerning guidance for implementation of Directive 2002/3/EC of the European Parliament and the Council relating to ozone in ambient air (2004/279/EC), Official Journal of the European Union L87/50, 2004.
EEA: Air quality in Europe-2015 report, EEA Report, No 5/2015, ISSN 1977-8449, 2015.
Escudero, M., Lozano, A., Hierro, J., del Valle, J., and Mantilla, E.: Urban influence on increasing ozone concentrations in a characteristic Mediterranean agglomeration, Atmos. Environ., 99, 322–332, 2014.
Gangoiti, G., Millán, M. M., Salvador, R., and Mantilla, E.: Long-range transport and re-circulation of pollutants in the western Mediterranean during the project Regional Cycles of Air Pollution in the West-Central Mediterranean Area, Atmos. Environ., 35, 6267–6276, 2001.
Gangoiti, G., Alonso, L., Navazo, M., García, J. A., and Millán, M. M.: North African soil dust and European pollution transport to America during the warm season: Hidden links shown by a passive tracer simulation, J. Geophys. Res., 111, D10109, https://doi.org/10.1029/2005JD005941, 2006.
Geiger, R., Aron, R. H., and Todhunter P.: The Climate Near the Ground. Rowman & Littelefield Publishers Inc., 6th Edn., ISBN 0-7425-1857-4, Lonham, US, 561 pp., 1992.
Gonçalves, M., Jiménez-Guerrero, P., and Baldasano, J. M.: Contribution of atmospheric processes affecting the dynamics of air pollution in South-Western Europe during a typical summertime photochemical episode, Atmos. Chem. Phys., 9, 849–864, https://doi.org/10.5194/acp-9-849-2009, 2009.
Hertel, O., Skjøth, C. A., Reis, S., Bleeker, A., Harrison, R. M., Cape, J. N., Fowler, D., Skiba, U., Simpson, D., Jickells, T., Kulmala, M., Gyldenkærne, S., Sørensen, L. L., Erisman, J. W., and Sutton, M. A.: Governing processes for reactive nitrogen compounds in the European atmosphere, Biogeosciences, 9, 4921–4954, https://doi.org/10.5194/bg-9-4921-2012, 2012.
Hewson, E. W.: Industrial Air Pollution Meteorology, Meteorological Laboratories of the College of Engineering, The University of Michigan, Ann Arbor, MI, 191 pp., 1964.
Kley, D. and Geiss, H.: Tropospheric ozone at elevated sites and precursor emissions in the United States and Europe, Atmos. Environ., 8, 149–158, 1994.
Lee, H.-K., Hwang, I.-K., and Ahn, K.-H.: Development and Evaluation of Hy-CPC, Particle and Aerosol Research, 10, 93–97, 2014.
Lee, H.-K., Eun, H.-R., Lee, G.-H., and Ahn, K.-H.: Development and evaluation of Hy-SMPS, Particle and Aerosol Research, 11, 57–61, 2015.
Mantilla, E., Millán, M. M., Sanz, M. J., Salvador, R., and Carratalá, A.: Influence of mesometeorological processes on the evolution of ozone levels registered in the Valencian Community, in: I Technical workshop on ozone pollution in southern Europe, Valencia, 1997.
Millán, M. M. (Ed.): Ozone Dynamics in the Mediterranean Basin: A collection of scientific papers resulting from the MECAPIP, RECAPMA and SECAP Projects, European Commission (DG RTD I.2) Air Pollution Research Report 78, available from CEAM, Valencia, Spain, 287 pp., 2002.
Millán, M. M.: Extreme hydrometeorological events and climate change predictions in Europe, J. Hydrol., 518, 206–224, 2014.
Millán, M. M. and Sanz, M. J.: Ozone in Mountainous regions and in Southern Europe, in: Ad hoc Working group on Ozone Directive and Reduction Strategy Development, Ozone Position Paper, 145–150, European Commission, Brussels, 1999.
Millán, M. M., Artiñano, B., Alonso, L., Navazo, M., and Castro, M.: The effect of meso-scale flows on regional and long-range atmospheric transport in the Western Mediterranean area, Atmos. Environ., 25, 949–963, 1991.
Millán, M. M., Salvador, R., Mantilla, E., and Artiñano, B.: Meteorology and photochemical air pollution in southern Europe: experimental results from EC research projects, Atmos. Environ., 30, 1909–1924, 1996a.
Millán, M. M., Mantilla, E., Salvador, R., and Kallos, G.: Regional and long-range transport scenarios for photo-oxidants on the Mediterranean basin in summer, Ninth joint conference on applications of air pollution meteorology, 438–441, American Meteorological Society, Boston, 1996b.
Millán, M. M., Salvador, R., and Mantilla, E.: Mesoscale processes and photo-oxidants cycles on the Spanish Mediterranean coast, Ninth joint conference on applications of air pollution meteorology, 434–437, American Meteorological Society, Boston, 1996c.
Millán, M. M., Salvador, R., Mantilla, E., and Kallos, G.: Photooxidant dynamics in the Mediterranean basin in summer: Results from European research projects, J. Geophys. Res., 102, 8811–8823, 1997.
Millán, M. M., Mantilla, E., Salvador, R., Carratalá, A., Sanz, M. J., Alonso, L., Gangoiti, G., and Navazo, M.: Ozone Cycles in the Western Mediterranean Basin: Interpretation of Monitoring Data in Complex Coastal Terrain, J. Appl. Meteorol., 39, 487–508, 2000.
Millán, M. M., Sanz, M. J., Salvador, R., and Mantilla, E.: Atmospheric dynamics and ozone cycles related to nitrogen deposition in the western Mediterranean, Environ. Pollut., 118, 167–186, 2002.
Minguillón, M. C., Brines, M., Pérez, N., Reche, C., Pandolfi, M., Fonseca, A. S., Amato, F., Alastuey, A., Lyasota, A., Codina, B., Lee, H.-K., Eun, H.-R., Ahn, K.-H., and Querol, X.: New particle formation at ground level and in the vertical column over the Barcelona area, Atmos. Res., 164–165, 118–130, 2015.
Monks, P. S., Archibald, A. T., Colette, A., Cooper, O., Coyle, M., Derwent, R., Fowler, D., Granier, C., Law, K. S., Mills, G. E., Stevenson, D. S., Tarasova, O., Thouret, V., von Schneidemesser, E., Sommariva, R., Wild, O., and Williams, M. L.: Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer, Atmos. Chem. Phys., 15, 8889–8973, https://doi.org/10.5194/acp-15-8889-2015, 2015.
Palacios, M., Kirchner, F., Martilli, A., Clappier, A., Martín, F., and Rodríguez, M. E.: Summer ozone episodes in the Greater Madrid area. Analyzing the ozone response to abatement strategies by modelling, Atmos. Environ., 36, 5323–5333, 2002.
Pay, M. T., Valverde, V., Baldasano, J. M., Kwok, R., Napelenok, S., and Baker, K.: PhotochemicalModeling to Attributing Source and Source Regions to Ozone Exceedances in Spain, 13th Annual CMAS Conference, Chapel Hill, NC, October 27–29, available at: https://www.cmascenter.org/conference/2014/slides/maria_pay_photochemical_modeling_2014.pptx (last access: 14 February 2017), 2014.
Querol, X., Alastuey, A., Rodríguez, S., Plana, F., Ruiz, C. R., Cots, N., Massagué, G., and Puig, O.: PM10 and PM2.5 source apportionment in the Barcelona Metropolitan Area, Catalonia, Spain, Atmos. Environ., 35/36, 6407–6419, 2001.
Querol, X., Alastuey, A., Orio, A., Pallares, M., Reina, F., Dieguez, J. J., Mantilla, E., Escudero, M., Alonso, L., Gangoiti, G., and Millán, M.: On the origin of the highest ozone episodes in Spain, Sci. Total Environ., 572, 379-389, 2016.
Rodríguez, S., Querol, X., Alastuey, A., and Mantilla, E.: Origin of high summer PM10 and TSP concentrations at rural sites in Eastern Spain, Atmos. Environ., 36, 3101–3112, 2002.
Salvador, R., Millán, M. M., Mantilla, E., and Baldasano, J. M.: Mesoscale modelling of atmospheric processes over the western Mediterranean area during summer, Int. J. Environ. Poll., 8, 513–528, 1997.
Salvador, R., Millán, M. M., and Calbo, J.: Horizontal Grid Size Selection and its influence on Mesoscale Model Simulations, J. Appl. Meteorol., 38, 1311–1329, 1999.
Seco, R., Peñuelas, J., Filella, I., Llusià, J., Molowny-Horas, R., Schallhart, S., Metzger, A., Müller, M., and Hansel, A.: Contrasting winter and summer VOC mixing ratios at a forest site in the Western Mediterranean Basin: the effect of local biogenic emissions, Atmos. Chem. Phys., 11, 13161–13179, https://doi.org/10.5194/acp-11-13161-2011, 2011.
Skamarock, W. C., Klemp, J. B., Gill, D. O., Barker, D. M., and Powers, J. G.: A description of the advanced research WRF version 3, NCAR. Tech. Note NCAR/TN-468+STR, 88 pp., NCAR, Boulder, Colorado, USA, 2008.
Soler, M. R., Hinojosa, J., Bravo, M., Pino, D., and Vilà Guerau de Arellano, J.: Analyzing the basic features of different complex terrain flows by means a Doppler Sodar and a numerical model: Some implications to air pollution problems, Meteorol. Atmos. Phys., 1–3, 141–154, 2004.
Soler, M. R., Arasa, A., Merino, M., Olid, M., and Ortega, S.: High vertical resolution numerical simulation of the sea-breeze flow in Catalonia. Implications to spatial and temporal variability of ozone and PM10 levels, Bound.-Lay. Meteorol., 140, 37–56, 2011.
Soler, R. M., Gámez, P., and Olid, M.: Aramis a regional air quality model for air pollution management: evaluation and validation, Física de la Tierra, 27, 111–136, 2015.
Stein, A. F., Mantilla, E., and Millán, M. M.: Ozone formation downwind an industrial complex in the western Mediterranean, in: 13th World Clean Air and Environmental Protection, 22–27 August, London, UK, 2004.
Stein, A. F., Mantilla, E., and Millán, M. M.: Using measured and modelled indicators to assess ozone-NOx-VOC sensitivity in a western Mediterranean coastal environment, Atmos. Environ., 39, 7167–7180, 2005.
Tang, Y. S., Cape, J. N., and Sutton, M. A.: Development and types of passive samplers for NH3 and NOx, in: Proceedings of the International Symposium on Passive Sampling of Gaseous Pollutants in Ecological Research, Science World, Vol. 1, 513–529, 2001.
Toll, I. and Baldasano, J. M.: Modeling of photochemical air pollution in the Barcelona area with highly disaggregated anthropogenic and biogenic emissions, Atmos. Environ., 34, 3069–3084, 2000.
UNECE: Hemispheric transport of air pollution 2010, Part A: ozone and particulate matter, Air pollution studies, 17. UNECE, LRTAP, Task Force on Hemispheric Transport of Pollutants HTAP 2010: Part A. Ozone and Particulate Matter, 278 pp., ECE/EB.AIR/100, available at: http://www.htap.org/publications/2010_report/2010_Final_Report/HTAP 2010 Part A 110407.pdf (last access: 14 February 2017), 2010.
Valverde, V., Pay, M. T., and Baldasano, J. M.: Ozone attributed to Madrid and Barcelona on-road transport emissions: Characterization of plume dynamics over the Iberian Peninsula, Sci. Total Environ., 543, 670–682, 2016.
Short summary
High summer O3 episodes in NE Spain were analysed. We evidence the relevance of local emission of precursors in meteorological scenarios of vertical air mass recirculations, when transboundary contributions are also significant. Forecasting these scenarios and sensitivity analysis of possible O3 precursors drop are key for potential abatement strategies. However, this is a very difficult task due to the complexity of scenarios, the external contributions, and the complex O3 production reactions.
High summer O3 episodes in NE Spain were analysed. We evidence the relevance of local emission...
Altmetrics
Final-revised paper
Preprint