Preprints
https://doi.org/10.5194/acp-2015-1016
https://doi.org/10.5194/acp-2015-1016
19 Jan 2016
 | 19 Jan 2016
Status: this preprint was under review for the journal ACP but the revision was not accepted.

Intercomparison of four different cascade impactors for fine and ultrafine particle sampling in two European locations

A. S. Fonseca, N. Talbot, J. Schwarz, J. Ondráček, V. Ždímal, J. Kozáková, M. Viana, A. Karanasiou, X. Querol, A. Alastuey, T. V. Vu, J. M. Delgado-Saborit, and R. M. Harrison

Abstract. Due to the need to better characterise the ultrafine particles fraction and related personal exposure, several impactors have been developed to enable the collection of ultrafine particles (<100 nm). However, to the authors’ kno wledge there have been no field campaigns to-date intercomparing impactor collection of ultrafine particles. The purpose of this study was two-fold: 1) to assess the performance of a number of conventional and nano-range cascade impactors with regard to the particle mass size distribution under different environmental conditions and aerosol loads and types, and 2) to characterise aerosol size distributions including ultrafine particles using impactors in 2 European locations. The impactors used were: (i) Berner low-pressure impactor (BLPI; 26 nm - 13.5 μm), (ii) nano-Berner low-pressure impactor (nano-BLPI; 11 nm - 1.95 μm) and (iii) Nano-microorifice uniform deposit impactor (nano-Moudi; 10 nm-18 μm), and (iv) Personal cascade impactor Sioutas (PCIS; <250 nm - 10 μm). Taking the BLPI as an internal reference, the best agreement regarding mass size distributions was obtained with the nano-BLPI, independently of the aerosol load and aerosol chemical composition. The nano-Moudi showed a good agreement for part icle sizes >320 nm, whereas for particle diameters <320 nm this instrument recorded larger mass concentrations in outdoor air than the internal reference. This difference could be due to particle bounce, to the dissociation of semi volatiles in the coarser stages and/or to particle shrinkage during transport through the impactor due to higher temperature inside this impactor. Further research is needed to understand this behaviour. With regard to the PCIS, their size-resolved mass concentrations were compar able with other impactors for PM1, PM2 and PM10, but the cut-off at 250 nm did not seem to be consistent with that of the internal reference.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
A. S. Fonseca, N. Talbot, J. Schwarz, J. Ondráček, V. Ždímal, J. Kozáková, M. Viana, A. Karanasiou, X. Querol, A. Alastuey, T. V. Vu, J. M. Delgado-Saborit, and R. M. Harrison
 
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
 
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
A. S. Fonseca, N. Talbot, J. Schwarz, J. Ondráček, V. Ždímal, J. Kozáková, M. Viana, A. Karanasiou, X. Querol, A. Alastuey, T. V. Vu, J. M. Delgado-Saborit, and R. M. Harrison
A. S. Fonseca, N. Talbot, J. Schwarz, J. Ondráček, V. Ždímal, J. Kozáková, M. Viana, A. Karanasiou, X. Querol, A. Alastuey, T. V. Vu, J. M. Delgado-Saborit, and R. M. Harrison

Viewed

Total article views: 2,387 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
1,441 837 109 2,387 199 97 122
  • HTML: 1,441
  • PDF: 837
  • XML: 109
  • Total: 2,387
  • Supplement: 199
  • BibTeX: 97
  • EndNote: 122
Views and downloads (calculated since 19 Jan 2016)
Cumulative views and downloads (calculated since 19 Jan 2016)

Cited

Latest update: 12 Nov 2024
Download
Short summary
This work assessed the performance of 4 cascade impactors, by means of two intercomparison exercises in 2 European locations. The comparability between the different types of impactors assessed was dependent on particle size and on impactor design characteristics. Particle processes such as particle bounce, dissociation of semi volatiles in the coarser stages and/or particle shrinkage were identified as the main causes for the differences observed in particle mass across size fractions.
Altmetrics