Articles | Volume 20, issue 23
https://doi.org/10.5194/acp-20-15101-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-20-15101-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Surface–atmosphere fluxes of volatile organic compounds in Beijing
W. Joe F. Acton
CORRESPONDING AUTHOR
Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
now at: School of Geography Earth and Environmental Sciences, the
University of Birmingham,
Birmingham, B15 2TT, UK
Zhonghui Huang
State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of
Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry,
Chinese Academy of Sciences, Guangzhou 510640, China
now at: State Environmental Protection Key Laboratory of Environmental Pollution Health Risk
Assessment, South China Institute of Environmental Science, Ministry of Ecology and Environment,
Guangzhou 510655, China
Brian Davison
Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
Will S. Drysdale
Department of Chemistry, Wolfson Atmospheric Chemistry Laboratories, University of York,
York, YO10 5DD, UK
National Centre for Atmospheric Science, University of York, York, YO10 5DD, UK
Pingqing Fu
Chinese Academy of Sciences, Institute of Atmospheric Physics, Huayanli 40, Chaoyang District,
Beijing 100029, China
Michael Hollaway
Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
UK Centre for Ecology & Hydrology, Library Ave, Bailrigg, Lancaster LA1 4AP, UK
Ben Langford
UK Centre for Ecology & Hydrology, Bush Estate, Penicuik, Midlothian,
EH26 0QB, UK
James Lee
Department of Chemistry, Wolfson Atmospheric Chemistry Laboratories, University of York,
York, YO10 5DD, UK
National Centre for Atmospheric Science, University of York, York, YO10 5DD, UK
Yanhui Liu
Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences,
University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
Peking University, 5 Yiheyuan Road, Haidian District, Beijing 100871, China
Stefan Metzger
National Ecological Observatory Network Program, Battelle, 1685 38th Street, Boulder,
CO 80301, USA
Department of Atmospheric and Oceanic Sciences, University of Wisconsin – Madison,
1225 West DaytonStreet, Madison, WI 53706, USA
Neil Mullinger
UK Centre for Ecology & Hydrology, Bush Estate, Penicuik, Midlothian,
EH26 0QB, UK
Eiko Nemitz
UK Centre for Ecology & Hydrology, Bush Estate, Penicuik, Midlothian,
EH26 0QB, UK
Claire E. Reeves
Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences,
University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
Freya A. Squires
Department of Chemistry, Wolfson Atmospheric Chemistry Laboratories, University of York,
York, YO10 5DD, UK
Adam R. Vaughan
Department of Chemistry, Wolfson Atmospheric Chemistry Laboratories, University of York,
York, YO10 5DD, UK
Xinming Wang
State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of
Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry,
Chinese Academy of Sciences, Guangzhou 510640, China
Zhaoyi Wang
State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of
Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry,
Chinese Academy of Sciences, Guangzhou 510640, China
Oliver Wild
Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
Qiang Zhang
Department of Earth System Science, Ministry of Education Key Laboratory for Earth
System Modelling, Tsinghua University, Beijing 100084, China
Yanli Zhang
State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of
Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry,
Chinese Academy of Sciences, Guangzhou 510640, China
C. Nicholas Hewitt
Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
Related authors
Joanna E. Dyson, Lisa K. Whalley, Eloise J. Slater, Robert Woodward-Massey, Chunxiang Ye, James D. Lee, Freya Squires, James R. Hopkins, Rachel E. Dunmore, Marvin Shaw, Jacqueline F. Hamilton, Alastair C. Lewis, Stephen D. Worrall, Asan Bacak, Archit Mehra, Thomas J. Bannan, Hugh Coe, Carl J. Percival, Bin Ouyang, C. Nicholas Hewitt, Roderic L. Jones, Leigh R. Crilley, Louisa J. Kramer, W. Joe F. Acton, William J. Bloss, Supattarachai Saksakulkrai, Jingsha Xu, Zongbo Shi, Roy M. Harrison, Simone Kotthaus, Sue Grimmond, Yele Sun, Weiqi Xu, Siyao Yue, Lianfang Wei, Pingqing Fu, Xinming Wang, Stephen R. Arnold, and Dwayne E. Heard
Atmos. Chem. Phys., 23, 5679–5697, https://doi.org/10.5194/acp-23-5679-2023, https://doi.org/10.5194/acp-23-5679-2023, 2023
Short summary
Short summary
The hydroxyl (OH) and closely coupled hydroperoxyl (HO2) radicals are vital for their role in the removal of atmospheric pollutants. In less polluted regions, atmospheric models over-predict HO2 concentrations. In this modelling study, the impact of heterogeneous uptake of HO2 onto aerosol surfaces on radical concentrations and the ozone production regime in Beijing in the summertime is investigated, and the implications for emissions policies across China are considered.
Daniel J. Bryant, Beth S. Nelson, Stefan J. Swift, Sri Hapsari Budisulistiorini, Will S. Drysdale, Adam R. Vaughan, Mike J. Newland, James R. Hopkins, James M. Cash, Ben Langford, Eiko Nemitz, W. Joe F. Acton, C. Nicholas Hewitt, Tuhin Mandal, Bhola R. Gurjar, Shivani, Ranu Gadi, James D. Lee, Andrew R. Rickard, and Jacqueline F. Hamilton
Atmos. Chem. Phys., 23, 61–83, https://doi.org/10.5194/acp-23-61-2023, https://doi.org/10.5194/acp-23-61-2023, 2023
Short summary
Short summary
This paper investigates the sources of isoprene and monoterpene compounds and their particulate-phase oxidation products in Delhi, India. This was done to improve our understanding of the sources, concentrations, and fate of volatile emissions in megacities. By studying the chemical composition of offline filter samples, we report that a significant share of the oxidised organic aerosol in Delhi is from isoprene and monoterpenes. This has implications for human health and policy development.
Beth S. Nelson, Gareth J. Stewart, Will S. Drysdale, Mike J. Newland, Adam R. Vaughan, Rachel E. Dunmore, Pete M. Edwards, Alastair C. Lewis, Jacqueline F. Hamilton, W. Joe Acton, C. Nicholas Hewitt, Leigh R. Crilley, Mohammed S. Alam, Ülkü A. Şahin, David C. S. Beddows, William J. Bloss, Eloise Slater, Lisa K. Whalley, Dwayne E. Heard, James M. Cash, Ben Langford, Eiko Nemitz, Roberto Sommariva, Sam Cox, Shivani, Ranu Gadi, Bhola R. Gurjar, James R. Hopkins, Andrew R. Rickard, and James D. Lee
Atmos. Chem. Phys., 21, 13609–13630, https://doi.org/10.5194/acp-21-13609-2021, https://doi.org/10.5194/acp-21-13609-2021, 2021
Short summary
Short summary
Ozone production at an urban site in Delhi is sensitive to volatile organic compound (VOC) concentrations, particularly those of the aromatic, monoterpene, and alkene VOC classes. The change in ozone production by varying atmospheric pollutants according to their sources, as defined in an emissions inventory, is investigated. The study suggests that reducing road transport emissions alone does not reduce reactive VOCs in the atmosphere enough to perturb an increase in ozone production.
Ernesto Reyes-Villegas, Upasana Panda, Eoghan Darbyshire, James M. Cash, Rutambhara Joshi, Ben Langford, Chiara F. Di Marco, Neil J. Mullinger, Mohammed S. Alam, Leigh R. Crilley, Daniel J. Rooney, W. Joe F. Acton, Will Drysdale, Eiko Nemitz, Michael Flynn, Aristeidis Voliotis, Gordon McFiggans, Hugh Coe, James Lee, C. Nicholas Hewitt, Mathew R. Heal, Sachin S. Gunthe, Tuhin K. Mandal, Bhola R. Gurjar, Shivani, Ranu Gadi, Siddhartha Singh, Vijay Soni, and James D. Allan
Atmos. Chem. Phys., 21, 11655–11667, https://doi.org/10.5194/acp-21-11655-2021, https://doi.org/10.5194/acp-21-11655-2021, 2021
Short summary
Short summary
This paper shows the first multisite online measurements of PM1 in Delhi, India, with measurements over different seasons in Old Delhi and New Delhi in 2018. Organic aerosol (OA) source apportionment was performed using positive matrix factorisation (PMF). Traffic was the main primary aerosol source for both OAs and black carbon, seen with PMF and Aethalometer model analysis, indicating that control of primary traffic exhaust emissions would make a significant reduction to Delhi air pollution.
James M. Cash, Ben Langford, Chiara Di Marco, Neil J. Mullinger, James Allan, Ernesto Reyes-Villegas, Ruthambara Joshi, Mathew R. Heal, W. Joe F. Acton, C. Nicholas Hewitt, Pawel K. Misztal, Will Drysdale, Tuhin K. Mandal, Shivani, Ranu Gadi, Bhola Ram Gurjar, and Eiko Nemitz
Atmos. Chem. Phys., 21, 10133–10158, https://doi.org/10.5194/acp-21-10133-2021, https://doi.org/10.5194/acp-21-10133-2021, 2021
Short summary
Short summary
We present the first real-time composition of submicron particulate matter (PM1) in Old Delhi using high-resolution aerosol mass spectrometry. Seasonal analysis shows peak concentrations occur during the post-monsoon, and novel-tracers reveal the largest sources are a combination of local open and regional crop residue burning. Strong links between increased chloride aerosol concentrations and burning sources of PM1 suggest burning sources are responsible for the post-monsoon chloride peak.
Claire E. Reeves, Graham P. Mills, Lisa K. Whalley, W. Joe F. Acton, William J. Bloss, Leigh R. Crilley, Sue Grimmond, Dwayne E. Heard, C. Nicholas Hewitt, James R. Hopkins, Simone Kotthaus, Louisa J. Kramer, Roderic L. Jones, James D. Lee, Yanhui Liu, Bin Ouyang, Eloise Slater, Freya Squires, Xinming Wang, Robert Woodward-Massey, and Chunxiang Ye
Atmos. Chem. Phys., 21, 6315–6330, https://doi.org/10.5194/acp-21-6315-2021, https://doi.org/10.5194/acp-21-6315-2021, 2021
Short summary
Short summary
The impact of isoprene on atmospheric chemistry is dependent on how its oxidation products interact with other pollutants, specifically nitrogen oxides. Such interactions can lead to isoprene nitrates. We made measurements of the concentrations of individual isoprene nitrate isomers in Beijing and used a model to test current understanding of their chemistry. We highlight areas of uncertainty in understanding, in particular the chemistry following oxidation of isoprene by the nitrate radical.
Gareth J. Stewart, Beth S. Nelson, W. Joe F. Acton, Adam R. Vaughan, Naomi J. Farren, James R. Hopkins, Martyn W. Ward, Stefan J. Swift, Rahul Arya, Arnab Mondal, Ritu Jangirh, Sakshi Ahlawat, Lokesh Yadav, Sudhir K. Sharma, Siti S. M. Yunus, C. Nicholas Hewitt, Eiko Nemitz, Neil Mullinger, Ranu Gadi, Lokesh K. Sahu, Nidhi Tripathi, Andrew R. Rickard, James D. Lee, Tuhin K. Mandal, and Jacqueline F. Hamilton
Atmos. Chem. Phys., 21, 2407–2426, https://doi.org/10.5194/acp-21-2407-2021, https://doi.org/10.5194/acp-21-2407-2021, 2021
Short summary
Short summary
Biomass burning releases many lower-molecular-weight organic species which are difficult to analyse but important for the formation of organic aerosol. This study examined a new high-resolution technique to better characterise these difficult-to-analyse organic components. Some burning sources analysed in this study, such as cow dung cake and municipal solid waste, released extremely complex mixtures containing many thousands of different lower-volatility organic compounds.
Gareth J. Stewart, W. Joe F. Acton, Beth S. Nelson, Adam R. Vaughan, James R. Hopkins, Rahul Arya, Arnab Mondal, Ritu Jangirh, Sakshi Ahlawat, Lokesh Yadav, Sudhir K. Sharma, Rachel E. Dunmore, Siti S. M. Yunus, C. Nicholas Hewitt, Eiko Nemitz, Neil Mullinger, Ranu Gadi, Lokesh K. Sahu, Nidhi Tripathi, Andrew R. Rickard, James D. Lee, Tuhin K. Mandal, and Jacqueline F. Hamilton
Atmos. Chem. Phys., 21, 2383–2406, https://doi.org/10.5194/acp-21-2383-2021, https://doi.org/10.5194/acp-21-2383-2021, 2021
Short summary
Short summary
Biomass burning is a major source of trace gases to the troposphere; however, the composition and quantity of emissions vary greatly between different fuel types. This work provided near-total quantitation of non-methane volatile organic compounds from combustion of biofuels from India. Emissions from cow dung cake combustion were significantly larger than conventional fuelwood combustion, potentially indicating that this source has a disproportionately large impact on regional air quality.
Lisa K. Whalley, Eloise J. Slater, Robert Woodward-Massey, Chunxiang Ye, James D. Lee, Freya Squires, James R. Hopkins, Rachel E. Dunmore, Marvin Shaw, Jacqueline F. Hamilton, Alastair C. Lewis, Archit Mehra, Stephen D. Worrall, Asan Bacak, Thomas J. Bannan, Hugh Coe, Carl J. Percival, Bin Ouyang, Roderic L. Jones, Leigh R. Crilley, Louisa J. Kramer, William J. Bloss, Tuan Vu, Simone Kotthaus, Sue Grimmond, Yele Sun, Weiqi Xu, Siyao Yue, Lujie Ren, W. Joe F. Acton, C. Nicholas Hewitt, Xinming Wang, Pingqing Fu, and Dwayne E. Heard
Atmos. Chem. Phys., 21, 2125–2147, https://doi.org/10.5194/acp-21-2125-2021, https://doi.org/10.5194/acp-21-2125-2021, 2021
Short summary
Short summary
To understand how emission controls will impact ozone, an understanding of the sources and sinks of OH and the chemical cycling between peroxy radicals is needed. This paper presents measurements of OH, HO2 and total RO2 taken in central Beijing. The radical observations are compared to a detailed chemistry model, which shows that under low NO conditions, there is a missing OH source. Under high NOx conditions, the model under-predicts RO2 and impacts our ability to model ozone.
Mike J. Newland, Daniel J. Bryant, Rachel E. Dunmore, Thomas J. Bannan, W. Joe F. Acton, Ben Langford, James R. Hopkins, Freya A. Squires, William Dixon, William S. Drysdale, Peter D. Ivatt, Mathew J. Evans, Peter M. Edwards, Lisa K. Whalley, Dwayne E. Heard, Eloise J. Slater, Robert Woodward-Massey, Chunxiang Ye, Archit Mehra, Stephen D. Worrall, Asan Bacak, Hugh Coe, Carl J. Percival, C. Nicholas Hewitt, James D. Lee, Tianqu Cui, Jason D. Surratt, Xinming Wang, Alastair C. Lewis, Andrew R. Rickard, and Jacqueline F. Hamilton
Atmos. Chem. Phys., 21, 1613–1625, https://doi.org/10.5194/acp-21-1613-2021, https://doi.org/10.5194/acp-21-1613-2021, 2021
Short summary
Short summary
We report the formation of secondary pollutants in the urban megacity of Beijing that are typically associated with remote regions such as rainforests. This is caused by extremely low levels of nitric oxide (NO), typically expected to be high in urban areas, observed in the afternoon. This work has significant implications for how we understand atmospheric chemistry in the urban environment and thus for how to implement effective policies to improve urban air quality.
Eloise J. Slater, Lisa K. Whalley, Robert Woodward-Massey, Chunxiang Ye, James D. Lee, Freya Squires, James R. Hopkins, Rachel E. Dunmore, Marvin Shaw, Jacqueline F. Hamilton, Alastair C. Lewis, Leigh R. Crilley, Louisa Kramer, William Bloss, Tuan Vu, Yele Sun, Weiqi Xu, Siyao Yue, Lujie Ren, W. Joe F. Acton, C. Nicholas Hewitt, Xinming Wang, Pingqing Fu, and Dwayne E. Heard
Atmos. Chem. Phys., 20, 14847–14871, https://doi.org/10.5194/acp-20-14847-2020, https://doi.org/10.5194/acp-20-14847-2020, 2020
Short summary
Short summary
The paper details atmospheric chemistry in a megacity (Beijing), focussing on radicals which mediate the formation of secondary pollutants such as ozone and particles. Highly polluted conditions were experienced, including the highest ever levels of nitric oxide (NO), with simultaneous radical measurements. Radical concentrations were large during "haze" events, demonstrating active photochemistry. Modelling showed that our understanding of the chemistry at high NOx levels is incomplete.
Freya A. Squires, Eiko Nemitz, Ben Langford, Oliver Wild, Will S. Drysdale, W. Joe F. Acton, Pingqing Fu, C. Sue B. Grimmond, Jacqueline F. Hamilton, C. Nicholas Hewitt, Michael Hollaway, Simone Kotthaus, James Lee, Stefan Metzger, Natchaya Pingintha-Durden, Marvin Shaw, Adam R. Vaughan, Xinming Wang, Ruili Wu, Qiang Zhang, and Yanli Zhang
Atmos. Chem. Phys., 20, 8737–8761, https://doi.org/10.5194/acp-20-8737-2020, https://doi.org/10.5194/acp-20-8737-2020, 2020
Short summary
Short summary
Significant air quality problems exist in megacities like Beijing, China. To manage air pollution, legislators need a clear understanding of pollutant emissions. However, emissions inventories have large uncertainties, and reliable field measurements of pollutant emissions are required to constrain them. This work presents the first measurements of traffic-dominated emissions in Beijing which suggest that inventories overestimate these emissions in the region during both winter and summer.
James Brean, Roy M. Harrison, Zongbo Shi, David C. S. Beddows, W. Joe F. Acton, C. Nicholas Hewitt, Freya A. Squires, and James Lee
Atmos. Chem. Phys., 19, 14933–14947, https://doi.org/10.5194/acp-19-14933-2019, https://doi.org/10.5194/acp-19-14933-2019, 2019
Short summary
Short summary
Measurements of highly oxidized molecules measured during a summer campaign in Beijing are presented. These molecules represent an intermediary between gas-phase chemicals from which they are formed and airborne particles which form from them. Conclusions are drawn as to the factors affecting the formation of new particles within the Beijing atmosphere.
Rupert Holzinger, W. Joe F. Acton, William J. Bloss, Martin Breitenlechner, Leigh R. Crilley, Sébastien Dusanter, Marc Gonin, Valerie Gros, Frank N. Keutsch, Astrid Kiendler-Scharr, Louisa J. Kramer, Jordan E. Krechmer, Baptiste Languille, Nadine Locoge, Felipe Lopez-Hilfiker, Dušan Materić, Sergi Moreno, Eiko Nemitz, Lauriane L. J. Quéléver, Roland Sarda Esteve, Stéphane Sauvage, Simon Schallhart, Roberto Sommariva, Ralf Tillmann, Sergej Wedel, David R. Worton, Kangming Xu, and Alexander Zaytsev
Atmos. Meas. Tech., 12, 6193–6208, https://doi.org/10.5194/amt-12-6193-2019, https://doi.org/10.5194/amt-12-6193-2019, 2019
Zongbo Shi, Tuan Vu, Simone Kotthaus, Roy M. Harrison, Sue Grimmond, Siyao Yue, Tong Zhu, James Lee, Yiqun Han, Matthias Demuzere, Rachel E. Dunmore, Lujie Ren, Di Liu, Yuanlin Wang, Oliver Wild, James Allan, W. Joe Acton, Janet Barlow, Benjamin Barratt, David Beddows, William J. Bloss, Giulia Calzolai, David Carruthers, David C. Carslaw, Queenie Chan, Lia Chatzidiakou, Yang Chen, Leigh Crilley, Hugh Coe, Tie Dai, Ruth Doherty, Fengkui Duan, Pingqing Fu, Baozhu Ge, Maofa Ge, Daobo Guan, Jacqueline F. Hamilton, Kebin He, Mathew Heal, Dwayne Heard, C. Nicholas Hewitt, Michael Hollaway, Min Hu, Dongsheng Ji, Xujiang Jiang, Rod Jones, Markus Kalberer, Frank J. Kelly, Louisa Kramer, Ben Langford, Chun Lin, Alastair C. Lewis, Jie Li, Weijun Li, Huan Liu, Junfeng Liu, Miranda Loh, Keding Lu, Franco Lucarelli, Graham Mann, Gordon McFiggans, Mark R. Miller, Graham Mills, Paul Monk, Eiko Nemitz, Fionna O'Connor, Bin Ouyang, Paul I. Palmer, Carl Percival, Olalekan Popoola, Claire Reeves, Andrew R. Rickard, Longyi Shao, Guangyu Shi, Dominick Spracklen, David Stevenson, Yele Sun, Zhiwei Sun, Shu Tao, Shengrui Tong, Qingqing Wang, Wenhua Wang, Xinming Wang, Xuejun Wang, Zifang Wang, Lianfang Wei, Lisa Whalley, Xuefang Wu, Zhijun Wu, Pinhua Xie, Fumo Yang, Qiang Zhang, Yanli Zhang, Yuanhang Zhang, and Mei Zheng
Atmos. Chem. Phys., 19, 7519–7546, https://doi.org/10.5194/acp-19-7519-2019, https://doi.org/10.5194/acp-19-7519-2019, 2019
Short summary
Short summary
APHH-Beijing is a collaborative international research programme to study the sources, processes and health effects of air pollution in Beijing. This introduction to the special issue provides an overview of (i) the APHH-Beijing programme, (ii) the measurement and modelling activities performed as part of it and (iii) the air quality and meteorological conditions during joint intensive field campaigns as a core activity within APHH-Beijing.
Ben Langford, James Cash, W. Joe F. Acton, Amy C. Valach, C. Nicholas Hewitt, Silvano Fares, Ignacio Goded, Carsten Gruening, Emily House, Athina-Cerise Kalogridis, Valérie Gros, Richard Schafers, Rick Thomas, Mark Broadmeadow, and Eiko Nemitz
Biogeosciences, 14, 5571–5594, https://doi.org/10.5194/bg-14-5571-2017, https://doi.org/10.5194/bg-14-5571-2017, 2017
Short summary
Short summary
Isoprene flux measurements made above five European oak forests were reviewed to generate new emission potentials. Six variations of the Guenther algorithms were inverted to back out time series of isoprene emission potential, and then an “average” emission potential was determined using one of four commonly used approaches. Our results show that emission potentials can vary by up to a factor of 4 and highlight the need for the community to now harmonize their approach to reduce uncertainty.
W. Joe F. Acton, Simon Schallhart, Ben Langford, Amy Valach, Pekka Rantala, Silvano Fares, Giulia Carriero, Ralf Tillmann, Sam J. Tomlinson, Ulrike Dragosits, Damiano Gianelle, C. Nicholas Hewitt, and Eiko Nemitz
Atmos. Chem. Phys., 16, 7149–7170, https://doi.org/10.5194/acp-16-7149-2016, https://doi.org/10.5194/acp-16-7149-2016, 2016
Short summary
Short summary
Volatile organic compounds (VOCs) represent a large source of reactive carbon in the atmosphere and hence have a significant impact on air quality. It is therefore important that we can accurately quantify their emission. In this paper we use three methods to determine the fluxes of reactive VOCs from a woodland canopy. We show that two different canopy-scale measurement methods give good agreement, whereas estimates based on leaf-level-based emission underestimate isoprene fluxes.
B. Langford, W. Acton, C. Ammann, A. Valach, and E. Nemitz
Atmos. Meas. Tech., 8, 4197–4213, https://doi.org/10.5194/amt-8-4197-2015, https://doi.org/10.5194/amt-8-4197-2015, 2015
Nicholas Cowan, Toby Roberts, Mark Hanlon, Aurelia Bezanger, Galina Toteva, Alex Tweedie, Karen Yeung, Ajinkya Deshpande, Peter Levy, Ute Skiba, Eiko Nemitz, and Julia Drewer
EGUsphere, https://doi.org/10.5194/egusphere-2024-3654, https://doi.org/10.5194/egusphere-2024-3654, 2024
Short summary
Short summary
We measured soil hydrogen (H2) fluxes from two field sites, a managed grassland and a planted deciduous woodland, with flux measurements of H2 covering full seasonal cycles. We estimate annual H2 uptake of -3.1 ± 0.1 and -12.0 ± 0.4 kg H2 ha-1 yr-1 for the grassland and woodland sites, respectively. Soil moisture was found to be the primary driver of H2 uptake, with the clay content of the soils providing a physical barrier which limited H2 uptake.
Hongyi Li, Ting Yang, Lars Nerger, Dawei Zhang, Di Zhang, Guigang Tang, Haibo Wang, Yele Sun, Pingqing Fu, Hang Su, and Zifa Wang
Geosci. Model Dev., 17, 8495–8519, https://doi.org/10.5194/gmd-17-8495-2024, https://doi.org/10.5194/gmd-17-8495-2024, 2024
Short summary
Short summary
To accurately characterize the spatiotemporal distribution of particulate matter <2.5 µm chemical components, we developed the Nested Air Quality Prediction Model System with the Parallel Data Assimilation Framework (NAQPMS-PDAF) v2.0 for chemical components with non-Gaussian and nonlinear properties. NAQPMS-PDAF v2.0 has better computing efficiency, excels when used with a small ensemble size, and can significantly improve the simulation performance of chemical components.
Xiaolin Duan, Guangjie Zheng, Chuchu Chen, Qiang Zhang, and Kebin He
EGUsphere, https://doi.org/10.5194/egusphere-2024-3584, https://doi.org/10.5194/egusphere-2024-3584, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Aerosol acidity is an important parameter in atmospheric chemistry, while its driving factors, especially chemical profiles versus meteorological conditions, are not yet fully understood. Here, we established a hierarchical quantitative analysis framework to understand the driving factors of aerosol acidity on different time scales. Its application in Changzhou, China revealed distinct driving factors and corresponding mechanisms of aerosol acidity from annual trends to random residues.
Jacob A. Nelson, Sophia Walther, Fabian Gans, Basil Kraft, Ulrich Weber, Kimberly Novick, Nina Buchmann, Mirco Migliavacca, Georg Wohlfahrt, Ladislav Šigut, Andreas Ibrom, Dario Papale, Mathias Göckede, Gregory Duveiller, Alexander Knohl, Lukas Hörtnagl, Russell L. Scott, Weijie Zhang, Zayd Mahmoud Hamdi, Markus Reichstein, Sergio Aranda-Barranco, Jonas Ardö, Maarten Op de Beeck, Dave Billesbach, David Bowling, Rosvel Bracho, Christian Brümmer, Gustau Camps-Valls, Shiping Chen, Jamie Rose Cleverly, Ankur Desai, Gang Dong, Tarek S. El-Madany, Eugenie Susanne Euskirchen, Iris Feigenwinter, Marta Galvagno, Giacomo A. Gerosa, Bert Gielen, Ignacio Goded, Sarah Goslee, Christopher Michael Gough, Bernard Heinesch, Kazuhito Ichii, Marcin Antoni Jackowicz-Korczynski, Anne Klosterhalfen, Sara Knox, Hideki Kobayashi, Kukka-Maaria Kohonen, Mika Korkiakoski, Ivan Mammarella, Mana Gharun, Riccardo Marzuoli, Roser Matamala, Stefan Metzger, Leonardo Montagnani, Giacomo Nicolini, Thomas O'Halloran, Jean-Marc Ourcival, Matthias Peichl, Elise Pendall, Borja Ruiz Reverter, Marilyn Roland, Simone Sabbatini, Torsten Sachs, Marius Schmidt, Christopher R. Schwalm, Ankit Shekhar, Richard Silberstein, Maria Lucia Silveira, Donatella Spano, Torbern Tagesson, Gianluca Tramontana, Carlo Trotta, Fabio Turco, Timo Vesala, Caroline Vincke, Domenico Vitale, Enrique R. Vivoni, Yi Wang, William Woodgate, Enrico A. Yepez, Junhui Zhang, Donatella Zona, and Martin Jung
Biogeosciences, 21, 5079–5115, https://doi.org/10.5194/bg-21-5079-2024, https://doi.org/10.5194/bg-21-5079-2024, 2024
Short summary
Short summary
The movement of water, carbon, and energy from the Earth's surface to the atmosphere, or flux, is an important process to understand because it impacts our lives. Here, we outline a method called FLUXCOM-X to estimate global water and CO2 fluxes based on direct measurements from sites around the world. We go on to demonstrate how these new estimates of net CO2 uptake/loss, gross CO2 uptake, total water evaporation, and transpiration from plants compare to previous and independent estimates.
Zhige Wang, Ce Zhang, Kejian Shi, Yulin Shangguan, Bifeng Hu, Xueyao Chen, Danqing Wei, Songchao Chen, Peter M. Atkinson, and Qiang Zhang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-315, https://doi.org/10.5194/essd-2024-315, 2024
Preprint under review for ESSD
Short summary
Short summary
The irreversible trend in global warming underscores the necessity for accurate monitoring of atmospheric carbon dynamics on a global scale. This study generated a global dataset of column-averaged dry-air mole fraction of CO2 (XCO2) at 0.05° resolution with full coverage using carbon satellite data and a deep learning model. The dataset accurately depicts global and regional XCO2 patterns, advancing the monitoring of carbon emissions and understanding of global carbon dynamics.
Hanzheng Zhu, Yaman Liu, Man Yue, Shihui Feng, Pingqing Fu, Kan Huang, Xinyi Dong, and Minghuai Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2293, https://doi.org/10.5194/egusphere-2024-2293, 2024
Short summary
Short summary
Dust soluble iron deposition from East Asia plays an important role in the marine ecology of the Northwest Pacific. Using the developed model, our findings highlight a dual trend: a decrease in the overall deposition of soluble iron from dust, but an increase in the solubility of the iron itself due to the enhanced atmospheric processing. It underscores the critical roles of both dust emission and atmospheric processing in soluble iron deposition and marine ecology.
Zhouxing Zou, Tianshu Chen, Qianjie Chen, Weihang Sun, Shichun Han, Zhuoyue Ren, Xinyi Li, Wei Song, Aoqi Ge, Qi Wang, Xiao Tian, Chenglei Pei, Xinming Wang, Yanli Zhang, and Tao Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-3210, https://doi.org/10.5194/egusphere-2024-3210, 2024
Short summary
Short summary
We measured ambient OH and HO2 concentrations at a subtropical rural site and compared our observations with model results. During warm periods, the model overestimated the concentrations of OH and HO2, leading to overestimation of ozone and nitric acid production. Our findings highlight the need to better understand how OH and HO2are formed and removed, which is important for accurate air quality and climate predictions.
Liu Yan, Qiang Zhang, Bo Zheng, and Kebin He
Earth Syst. Sci. Data, 16, 4497–4509, https://doi.org/10.5194/essd-16-4497-2024, https://doi.org/10.5194/essd-16-4497-2024, 2024
Short summary
Short summary
A new database of fuel-, vehicle-type-, and age-specific CO2 emissions from global on-road vehicles from 1970 to 2020 is developed with the fleet turnover model built in this study. Based on this database, the evolution of the global vehicle stock over 50 years is analyzed, the dominant emission contributors by vehicle and fuel type are identified, and the age distribution of on-road CO2 emissions is characterized further.
Yuan Cheng, Xu-bing Cao, Sheng-qiang Zhu, Zhi-qing Zhang, Jiu-meng Liu, Hong-liang Zhang, Qiang Zhang, and Ke-bin He
Atmos. Chem. Phys., 24, 9869–9883, https://doi.org/10.5194/acp-24-9869-2024, https://doi.org/10.5194/acp-24-9869-2024, 2024
Short summary
Short summary
The agreement between observational and modeling results is essential for the development of efficient air pollution control strategies. Here we constrained the modeling results of carbonaceous aerosols by field observation in Northeast China, a historically overlooked but recently targeted region of national clean-air actions. Our study suggested that the simulation of agricultural fire emissions and secondary organic aerosols remains challenging.
Pierluigi Renan Guaita, Riccardo Marzuoli, Leiming Zhang, Steven Turnock, Gerbrand Koren, Oliver Wild, Paola Crippa, and Giacomo Alessandro Gerosa
EGUsphere, https://doi.org/10.5194/egusphere-2024-2573, https://doi.org/10.5194/egusphere-2024-2573, 2024
Short summary
Short summary
This study assesses the global impact of tropospheric ozone on wheat crops in the 21st century under various climate scenarios. The research highlights that ozone damage to wheat varies by region and depends on both ozone levels and climate. Vulnerable regions include East Asia, Northern Europe, and the Southern and Eastern edges of the Tibetan Plateau. Our results emphasize the need of policies to reduce ozone levels and mitigate climate change to protect global food security.
Cynthia H. Whaley, Tim Butler, Jose A. Adame, Rupal Ambulkar, Stephen R. Arnold, Rebecca R. Buchholz, Benjamin Gaubert, Douglas S. Hamilton, Min Huang, Hayley Hung, Johannes W. Kaiser, Jacek W. Kaminski, Christophe Knote, Gerbrand Koren, Jean-Luc Kouassi, Meiyun Lin, Tianjia Liu, Jianmin Ma, Kasemsan Manomaiphiboon, Elisa Bergas Masso, Jessica L. McCarty, Mariano Mertens, Mark Parrington, Helene Peiro, Pallavi Saxena, Saurabh Sonwani, Vanisa Surapipith, Damaris Tan, Wenfu Tang, Veerachai Tanpipat, Kostas Tsigaridis, Christine Wiedinmyer, Oliver Wild, Yuanyu Xie, and Paquita Zuidema
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-126, https://doi.org/10.5194/gmd-2024-126, 2024
Preprint under review for GMD
Short summary
Short summary
The multi-model experiment design of the HTAP3 Fires project takes a multi-pollutant approach to improving our understanding of transboundary transport of wildland fire and agricultural burning emissions and their impacts. The experiments are designed with the goal of answering science policy questions related to fires. The options for the multi-model approach, including inputs, outputs, and model set up are discussed, and the official recommendations for the project are presented.
Tianle Pan, Andrew T. Lambe, Weiwei Hu, Yicong He, Minghao Hu, Huaishan Zhou, Xinming Wang, Qingqing Hu, Hui Chen, Yue Zhao, Yuanlong Huang, Doug R. Worsnop, Zhe Peng, Melissa A. Morris, Douglas A. Day, Pedro Campuzano-Jost, Jose-Luis Jimenez, and Shantanu H. Jathar
Atmos. Meas. Tech., 17, 4915–4939, https://doi.org/10.5194/amt-17-4915-2024, https://doi.org/10.5194/amt-17-4915-2024, 2024
Short summary
Short summary
This study systematically characterizes the temperature enhancement in the lamp-enclosed oxidation flow reactor (OFR). The enhancement varied multiple dimensional factors, emphasizing the complexity of temperature inside of OFR. The effects of temperature on the flow field and gas- or particle-phase reaction inside OFR were also evaluated with experiments and model simulations. Finally, multiple mitigation strategies were demonstrated to minimize this temperature increase.
Beth S. Nelson, Zhenze Liu, Freya A. Squires, Marvin Shaw, James R. Hopkins, Jacqueline F. Hamilton, Andrew R. Rickard, Alastair C. Lewis, Zongbo Shi, and James D. Lee
Atmos. Chem. Phys., 24, 9031–9044, https://doi.org/10.5194/acp-24-9031-2024, https://doi.org/10.5194/acp-24-9031-2024, 2024
Short summary
Short summary
The impact of combined air quality and carbon neutrality policies on O3 formation in Beijing was investigated. Emissions inventory data were used to estimate future pollutant mixing ratios relative to ground-level observations. O3 production was found to be most sensitive to changes in alkenes, but large reductions in less reactive compounds led to larger reductions in future O3 production. This study highlights the importance of understanding the emissions of organic pollutants.
Yuanyuan Qin, Xinghua Zhang, Wei Huang, Juanjuan Qin, Xiaoyu Hu, Yuxuan Cao, Tianyi Zhao, Yang Zhang, Jihua Tan, Ziyin Zhang, Xinming Wang, and Zhenzhen Wang
Atmos. Chem. Phys., 24, 8737–8750, https://doi.org/10.5194/acp-24-8737-2024, https://doi.org/10.5194/acp-24-8737-2024, 2024
Short summary
Short summary
Environmental persistent free radicals (EPFRs) and reactive oxygen species (ROSs) play an active role in the atmosphere. Despite control measures having effectively reduced their emissions, reductions were less than in PM2.5. Emission control measures performed well in achieving Parade Blue, but reducing the impact of the atmosphere on human health remains challenging. Thus, there is a need to reassess emission control measures to better address the challenges posed by EPFRs and ROSs.
Inge Wiekenkamp, Anna Katharina Lehmann, Alexander Bütow, Jörg Hartmann, Stefan Metzger, Thomas Ruhtz, Christian Wille, Mathias Zöllner, and Torsten Sachs
EGUsphere, https://doi.org/10.5194/egusphere-2024-1586, https://doi.org/10.5194/egusphere-2024-1586, 2024
Short summary
Short summary
Airborne eddy covariance platforms are crucial, as they measure the three-dimension wind, and turbulent transport of matter and energy between the surface and the atmosphere at larger scales. In this study we introduce the new ASK-16 eddy covariance platform that is able to accurately measure turbulent fluxes and wind vectors. Data from this platform can help to build bridges between local tower measurements and regional remote sensing fluxes or inversion products.
Juanjuan Qin, Leiming Zhang, Yuanyuan Qin, Shaoxuan Shi, Jingnan Li, Zhao Shu, Yuwei Gao, Ting Qi, Jihua Tan, and Xinming Wang
Atmos. Chem. Phys., 24, 7575–7589, https://doi.org/10.5194/acp-24-7575-2024, https://doi.org/10.5194/acp-24-7575-2024, 2024
Short summary
Short summary
The present research unveiled that acidity dominates while transition metal ions harmonize with the light absorption properties of humic-like substances (HULIS). Cu2+ has quenching effects on HULIS by complexation, hydrogen substitution, or electrostatic adsorption, with aromatic structures of HULIS. Such effects are less pronounced if from Mn2+, Ni2+, Zn2+, and Cu2+. Oxidized HULIS might contain electron-donating groups, whereas N-containing compounds might contain electron-withdrawing groups.
Rui Jin, Wei Hu, Peimin Duan, Ming Sheng, Dandan Liu, Ziye Huang, Mutong Niu, Libin Wu, Junjun Deng, and Pingqing Fu
EGUsphere, https://doi.org/10.5194/egusphere-2024-1880, https://doi.org/10.5194/egusphere-2024-1880, 2024
Short summary
Short summary
The metabolic capacity of atmospheric microorganisms after settling into habitats is poorly understood. We studied the molecular composition of exometabolites for cultured typical airborne microbes and traced their metabolic processes. Bacteria and fungi produce highly oxidized exometabolite and have significant variations in metabolism among different strains. These insights are pivotal for assessing the biogeochemical impacts of atmospheric microorganisms following their deposition.
Nana Wu, Guannan Geng, Ruochong Xu, Shigan Liu, Xiaodong Liu, Qinren Shi, Ying Zhou, Yu Zhao, Huan Liu, Yu Song, Junyu Zheng, Qiang Zhang, and Kebin He
Earth Syst. Sci. Data, 16, 2893–2915, https://doi.org/10.5194/essd-16-2893-2024, https://doi.org/10.5194/essd-16-2893-2024, 2024
Short summary
Short summary
The commonly used method for developing large-scale air pollutant emission datasets for China faces challenges due to limited availability of detailed parameter information. In this study, we develop an efficient integrated framework to gather such information by harmonizing seven heterogeneous inventories from five research institutions. Emission characterizations are analyzed and validated, demonstrating that the dataset provides more accurate emission magnitudes and spatiotemporal patterns.
Wei Sun, Xiaodong Hu, Yuzhen Fu, Guohua Zhang, Yujiao Zhu, Xinfeng Wang, Caiqing Yan, Likun Xue, He Meng, Bin Jiang, Yuhong Liao, Xinming Wang, Ping'an Peng, and Xinhui Bi
Atmos. Chem. Phys., 24, 6987–6999, https://doi.org/10.5194/acp-24-6987-2024, https://doi.org/10.5194/acp-24-6987-2024, 2024
Short summary
Short summary
The formation pathways of nitrogen-containing compounds (NOCs) in the atmosphere remain unclear. We investigated the composition of aerosols and fog water by state-of-the-art mass spectrometry and compared the formation pathways of NOCs. We found that NOCs in aerosols were mainly formed through nitration reaction, while ammonia addition played a more important role in fog water. The results deepen our understanding of the processes of organic particulate pollution.
Zhichao Dong, Chandra Mouli Pavuluri, Peisen Li, Zhanjie Xu, Junjun Deng, Xueyan Zhao, Xiaomai Zhao, Pingqing Fu, and Cong-Qiang Liu
Atmos. Chem. Phys., 24, 5887–5905, https://doi.org/10.5194/acp-24-5887-2024, https://doi.org/10.5194/acp-24-5887-2024, 2024
Short summary
Short summary
Comprehensive study of optical properties of brown carbon (BrC) in fine aerosols from Tianjin, China, implied that biological emissions are major sources of BrC in summer, whereas fossil fuel combustion and biomass burning emissions are in cold periods. The direct radiation absorption caused by BrC in short wavelengths contributed about 40 % to that caused by BrC in 300–700 nm. Water-insoluble but methanol-soluble BrC contains more protein-like chromophores (PLOM) than that of water-soluble BrC.
Ping Liu, Xiang Ding, Bo-Xuan Li, Yu-Qing Zhang, Daniel J. Bryant, and Xin-Ming Wang
Atmos. Meas. Tech., 17, 3067–3079, https://doi.org/10.5194/amt-17-3067-2024, https://doi.org/10.5194/amt-17-3067-2024, 2024
Short summary
Short summary
In this paper, we further optimize the measurement of atmospheric organosulfates by hydrophilic interaction liquid chromatography (HILIC), offering an improved method for quantifying and speciating atmospheric organosulfates. These efforts will contribute to a deeper understanding of secondary organic aerosol precursors, formation mechanisms, and the contribution of organosulfate to atmospheric aerosols, ultimately guiding research in the field of air pollution prevention and control.
Changxing Lan, Matthias Mauder, Stavros Stagakis, Benjamin Loubet, Claudio D'Onofrio, Stefan Metzger, David Durden, and Pedro-Henrique Herig-Coimbra
Atmos. Meas. Tech., 17, 2649–2669, https://doi.org/10.5194/amt-17-2649-2024, https://doi.org/10.5194/amt-17-2649-2024, 2024
Short summary
Short summary
Using eddy-covariance systems deployed in three cities, we aimed to elucidate the sources of discrepancies in flux estimations from different software packages. One crucial finding is the impact of low-frequency spectral loss corrections on tall-tower flux estimations. Our findings emphasize the significance of a standardized measurement setup and consistent postprocessing configurations in minimizing the systematic flux uncertainty resulting from the usage of different software packages.
Wenjie Wang, Bin Yuan, Hang Su, Yafang Cheng, Jipeng Qi, Sihang Wang, Wei Song, Xinming Wang, Chaoyang Xue, Chaoqun Ma, Fengxia Bao, Hongli Wang, Shengrong Lou, and Min Shao
Atmos. Chem. Phys., 24, 4017–4027, https://doi.org/10.5194/acp-24-4017-2024, https://doi.org/10.5194/acp-24-4017-2024, 2024
Short summary
Short summary
This study investigates the important role of unmeasured volatile organic compounds (VOCs) in ozone formation. Based on results in a megacity of China, we show that unmeasured VOCs can contribute significantly to ozone fomation and also influence the determination of ozone control strategy. Our results show that these unmeasured VOCs are mainly from human sources.
Meng Li, Junichi Kurokawa, Qiang Zhang, Jung-Hun Woo, Tazuko Morikawa, Satoru Chatani, Zifeng Lu, Yu Song, Guannan Geng, Hanwen Hu, Jinseok Kim, Owen R. Cooper, and Brian C. McDonald
Atmos. Chem. Phys., 24, 3925–3952, https://doi.org/10.5194/acp-24-3925-2024, https://doi.org/10.5194/acp-24-3925-2024, 2024
Short summary
Short summary
In this work, we developed MIXv2, a mosaic Asian emission inventory for 2010–2017. With high spatial (0.1°) and monthly temporal resolution, MIXv2 integrates anthropogenic and open biomass burning emissions across seven sectors following a mosaic methodology. It provides CO2 emissions data alongside nine key pollutants and three chemical mechanisms. Our publicly accessible gridded monthly emissions data can facilitate long-term atmospheric and climate model analyses.
Jiawei Li, Zhiwei Han, Pingqing Fu, Xiaohong Yao, and Mingjie Liang
Atmos. Chem. Phys., 24, 3129–3161, https://doi.org/10.5194/acp-24-3129-2024, https://doi.org/10.5194/acp-24-3129-2024, 2024
Short summary
Short summary
Organic aerosols of marine origin are important for aerosol climatic effects but are poorly understood. For the first time, an online coupled regional chemistry–climate model is applied to explore the characteristics of emission, distribution, and direct and indirect radiative effects of marine organic aerosols over the western Pacific, which reveals an important role of marine organic aerosols in perturbing cloud and radiation and promotes understanding of global aerosol climatic impact.
Kyoung-Min Kim, Si-Wan Kim, Seunghwan Seo, Donald R. Blake, Seogju Cho, James H. Crawford, Louisa K. Emmons, Alan Fried, Jay R. Herman, Jinkyu Hong, Jinsang Jung, Gabriele G. Pfister, Andrew J. Weinheimer, Jung-Hun Woo, and Qiang Zhang
Geosci. Model Dev., 17, 1931–1955, https://doi.org/10.5194/gmd-17-1931-2024, https://doi.org/10.5194/gmd-17-1931-2024, 2024
Short summary
Short summary
Three emission inventories were evaluated for East Asia using data acquired during a field campaign in 2016. The inventories successfully reproduced the daily variations of ozone and nitrogen dioxide. However, the spatial distributions of model ozone did not fully agree with the observations. Additionally, all simulations underestimated carbon monoxide and volatile organic compound (VOC) levels. Increasing VOC emissions over South Korea resulted in improved ozone simulations.
Alexander T. Archibald, Bablu Sinha, Maria Russo, Emily Matthews, Freya Squires, N. Luke Abraham, Stephane Bauguitte, Thomas Bannan, Thomas Bell, David Berry, Lucy Carpenter, Hugh Coe, Andrew Coward, Peter Edwards, Daniel Feltham, Dwayne Heard, Jim Hopkins, James Keeble, Elizabeth C. Kent, Brian King, Isobel R. Lawrence, James Lee, Claire R. Macintosh, Alex Megann, Ben I. Moat, Katie Read, Chris Reed, Malcolm Roberts, Reinhard Schiemann, David Schroeder, Tim Smyth, Loren Temple, Navaneeth Thamban, Lisa Whalley, Simon Williams, Huihui Wu, and Ming-Xi Yang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-405, https://doi.org/10.5194/essd-2023-405, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Here we present an overview of the data generated as part of the North Atlantic Climate System Integrated Studies (ACSIS) programme which are available through dedicated repositories at the Centre for Environmental Data Analysis (CEDA, www.ceda.ac.uk) and the British Oceanographic Data Centre (BODC, bodc.ac.uk). ACSIS data cover the full North Atlantic System comprising: the North Atlantic Ocean, the atmosphere above it including its composition, Arctic Sea Ice and the Greenland Ice Sheet.
Hua Fang, Ting Wu, Shutan Ma, Qina Jia, Fengyu Zan, Juan Zhao, Jintao Zhang, Zhi Yang, Hongling Xu, Yuzhe Huang, and Xinming Wang
EGUsphere, https://doi.org/10.5194/egusphere-2023-2998, https://doi.org/10.5194/egusphere-2023-2998, 2024
Preprint archived
Short summary
Short summary
Using in situ VOC flux measurements, we reveal that the freshwater wetland is a potential source of atmospheric VOCs and that litter decomposition enhances net VOC emission. Ambient temperature is the key factor driving the seasonal variation of net VOC flux. Notably, the release or uptake of VOCs varies depending on chemical groups and is jointly controlled by biotic and abiotic processes.
Magdalena Pühl, Anke Roiger, Alina Fiehn, Alan M. Gorchov Negron, Eric A. Kort, Stefan Schwietzke, Ignacio Pisso, Amy Foulds, James Lee, James L. France, Anna E. Jones, Dave Lowry, Rebecca E. Fisher, Langwen Huang, Jacob Shaw, Prudence Bateson, Stephen Andrews, Stuart Young, Pamela Dominutti, Tom Lachlan-Cope, Alexandra Weiss, and Grant Allen
Atmos. Chem. Phys., 24, 1005–1024, https://doi.org/10.5194/acp-24-1005-2024, https://doi.org/10.5194/acp-24-1005-2024, 2024
Short summary
Short summary
In April–May 2019 we carried out an airborne field campaign in the southern North Sea with the aim of studying methane emissions of offshore gas installations. We determined methane emissions from elevated methane measured downstream of the sampled installations. We compare our measured methane emissions with estimated methane emissions from national and global annual inventories. As a result, we find inconsistencies of inventories and large discrepancies between measurements and inventories.
Ailish M. Graham, Richard J. Pope, Martyn P. Chipperfield, Sandip S. Dhomse, Matilda Pimlott, Wuhu Feng, Vikas Singh, Ying Chen, Oliver Wild, Ranjeet Sokhi, and Gufran Beig
Atmos. Chem. Phys., 24, 789–806, https://doi.org/10.5194/acp-24-789-2024, https://doi.org/10.5194/acp-24-789-2024, 2024
Short summary
Short summary
Our paper uses novel satellite datasets and high-resolution emissions datasets alongside a back-trajectory model to investigate the balance of local and external sources influencing NOx air pollution changes in Delhi. We find in the post-monsoon season that NOx from local and non-local transport emissions contributes most to poor air quality in Delhi. Therefore, air quality mitigation strategies in Delhi and surrounding regions are used to control this issue.
Xuewei Hou, Oliver Wild, Bin Zhu, and James Lee
Atmos. Chem. Phys., 23, 15395–15411, https://doi.org/10.5194/acp-23-15395-2023, https://doi.org/10.5194/acp-23-15395-2023, 2023
Short summary
Short summary
In response to the climate crisis, many countries have committed to net zero in a certain future year. The impacts of net-zero scenarios on tropospheric O3 are less well studied and remain unclear. In this study, we quantified the changes of tropospheric O3 budgets, spatiotemporal distributions of future surface O3 in east Asia and regional O3 source contributions for 2060 under a net-zero scenario using the NCAR Community Earth System Model (CESM) and online O3-tagging methods.
Mutong Niu, Shu Huang, Wei Hu, Yajie Wang, Wanyun Xu, Wan Wei, Qiang Zhang, Zihan Wang, Donghuan Zhang, Rui Jin, Libin Wu, Junjun Deng, Fangxia Shen, and Pingqing Fu
Biogeosciences, 20, 4915–4930, https://doi.org/10.5194/bg-20-4915-2023, https://doi.org/10.5194/bg-20-4915-2023, 2023
Short summary
Short summary
Sugar compounds in air can trace the source of bioaerosols that affect public health and climate. In rural north China, we observed increased fungal activity at night and less variable bacterial community diversity. Certain night-increasing sugar compounds were more closely related to fungi than bacteria. The fungal community greatly influenced sugar compounds, while bacteria played a limited role. Caution is advised when using sugar compounds to trace airborne microbes, particularly bacteria.
Lehui Cui, Yunting Xiao, Wei Hu, Lei Song, Yujue Wang, Chao Zhang, Pingqing Fu, and Jialei Zhu
Earth Syst. Sci. Data, 15, 5403–5425, https://doi.org/10.5194/essd-15-5403-2023, https://doi.org/10.5194/essd-15-5403-2023, 2023
Short summary
Short summary
Isoprene is a crucial non-methane biogenic volatile organic compound with the largest global emissions, which has high chemical reactivity and serves as the primary source of natural secondary organic aerosols. This study built a module to present a 20-year global hourly dataset of marine phytoplankton-generated biological and photochemistry-generated isoprene emissions in the sea microlayers based on the latest advancements in biological, physical, and chemical processes.
Jingjing Meng, Yachen Wang, Yuanyuan Li, Tonglin Huang, Zhifei Wang, Yiqiu Wang, Min Chen, Zhanfang Hou, Houhua Zhou, Keding Lu, Kimitaka Kawamura, and Pingqing Fu
Atmos. Chem. Phys., 23, 14481–14503, https://doi.org/10.5194/acp-23-14481-2023, https://doi.org/10.5194/acp-23-14481-2023, 2023
Short summary
Short summary
This study investigated the effect of COVID-19 lockdown (LCD) measures on the formation and evolutionary process of diacids and related compounds from field observations. Results demonstrate that more aged organic aerosols are observed during the LCD due to the enhanced photochemical oxidation. Our study also found that the reactivity of 13C was higher than that of 12C in the gaseous photochemical oxidation, leading to higher δ13C values of C2 during the LCD than before the LCD.
Robert Woodward-Massey, Roberto Sommariva, Lisa K. Whalley, Danny R. Cryer, Trevor Ingham, William J. Bloss, Stephen M. Ball, Sam Cox, James D. Lee, Chris P. Reed, Leigh R. Crilley, Louisa J. Kramer, Brian J. Bandy, Grant L. Forster, Claire E. Reeves, Paul S. Monks, and Dwayne E. Heard
Atmos. Chem. Phys., 23, 14393–14424, https://doi.org/10.5194/acp-23-14393-2023, https://doi.org/10.5194/acp-23-14393-2023, 2023
Short summary
Short summary
Measurements of OH, HO2 and RO2 radicals and also OH reactivity were made at a UK coastal site and compared to calculations from a constrained box model utilising the Master Chemical Mechanism. The model agreement displayed a strong dependence on the NO concentration. An experimental budget analysis for OH, HO2, RO2 and total ROx demonstrated significant imbalances between HO2 and RO2 production rates. Ozone production rates were calculated from measured radicals and compared to modelled values.
Zhenze Liu, Oliver Wild, Ruth M. Doherty, Fiona M. O'Connor, and Steven T. Turnock
Atmos. Chem. Phys., 23, 13755–13768, https://doi.org/10.5194/acp-23-13755-2023, https://doi.org/10.5194/acp-23-13755-2023, 2023
Short summary
Short summary
We investigate the impact of net-zero policies on surface ozone pollution in China. A chemistry–climate model is used to simulate ozone changes driven by local and external emissions, methane, and warmer climates. A deep learning model is applied to generate more robust ozone projection, and we find that the benefits of net-zero policies may be overestimated with the chemistry–climate model. Nevertheless, it is clear that the policies can still substantially reduce ozone pollution in future.
Li Wu, Hyo-Jin Eom, Hanjin Yoo, Dhrubajyoti Gupta, Hye-Rin Cho, Pingqing Fu, and Chul-Un Ro
Atmos. Chem. Phys., 23, 12571–12588, https://doi.org/10.5194/acp-23-12571-2023, https://doi.org/10.5194/acp-23-12571-2023, 2023
Short summary
Short summary
Hygroscopicity of ambient marine aerosols is of critical relevance to investigate their atmospheric impacts, which, however, remain uncertain due to their complex compositions and mixing states. Therefore, a study on the hygroscopic behavior of ambient marine aerosols for understanding the phase states when interacting with water vapor at different RH levels and their subsequent impacts on the heterogeneous chemical reactions, atmospheric environment, and human health is of vital importance.
Bojiang Su, Xinhui Bi, Zhou Zhang, Yue Liang, Congbo Song, Tao Wang, Yaohao Hu, Lei Li, Zhen Zhou, Jinpei Yan, Xinming Wang, and Guohua Zhang
Atmos. Chem. Phys., 23, 10697–10711, https://doi.org/10.5194/acp-23-10697-2023, https://doi.org/10.5194/acp-23-10697-2023, 2023
Short summary
Short summary
During the R/V Xuelong cruise observation over the Ross Sea, Antarctica, the mass concentrations of water-soluble Ca2+ and the mass spectra of individual calcareous particles were measured. Our results indicated that lower temperature, lower wind speed, and the presence of sea ice may facilitate Ca2+ enrichment in sea spray aerosols and highlighted the potential contribution of organically complexed calcium to calcium enrichment, which is inaccurate based solely on water-soluble Ca2+ estimation.
Qi Yuan, Yuanyuan Wang, Yixin Chen, Siyao Yue, Jian Zhang, Yinxiao Zhang, Liang Xu, Wei Hu, Dantong Liu, Pingqing Fu, Huiwang Gao, and Weijun Li
Atmos. Chem. Phys., 23, 9385–9399, https://doi.org/10.5194/acp-23-9385-2023, https://doi.org/10.5194/acp-23-9385-2023, 2023
Short summary
Short summary
This study for the first time found large amounts of liquid–liquid phase separation particles with soot redistributing in organic coatings instead of sulfate cores in the eastern Tibetan Plateau atmosphere. The particle size and the ratio of the organic matter coating thickness to soot size are two of the major possible factors that likely affect the soot redistribution process. The soot redistribution process promoted the morphological compaction of soot particles.
Yiyu Cai, Chenshuo Ye, Wei Chen, Weiwei Hu, Wei Song, Yuwen Peng, Shan Huang, Jipeng Qi, Sihang Wang, Chaomin Wang, Caihong Wu, Zelong Wang, Baolin Wang, Xiaofeng Huang, Lingyan He, Sasho Gligorovski, Bin Yuan, Min Shao, and Xinming Wang
Atmos. Chem. Phys., 23, 8855–8877, https://doi.org/10.5194/acp-23-8855-2023, https://doi.org/10.5194/acp-23-8855-2023, 2023
Short summary
Short summary
We studied the variability and molecular composition of ambient oxidized organic nitrogen (OON) in both gas and particle phases using a state-of-the-art online mass spectrometer in urban air. Biomass burning and secondary formation were found to be the two major sources of OON. Daytime nitrate radical chemistry for OON formation was more important than previously thought. Our results improved the understanding of the sources and molecular composition of OON in the polluted urban atmosphere.
Dandan Liu, Yun Zhang, Shujun Zhong, Shuang Chen, Qiaorong Xie, Donghuan Zhang, Qiang Zhang, Wei Hu, Junjun Deng, Libin Wu, Chao Ma, Haijie Tong, and Pingqing Fu
Atmos. Chem. Phys., 23, 8383–8402, https://doi.org/10.5194/acp-23-8383-2023, https://doi.org/10.5194/acp-23-8383-2023, 2023
Short summary
Short summary
Based on ultra-high-resolution mass spectrometry analysis, we found that β-pinene oxidation-derived highly oxygenated organic molecules (HOMs) exhibit higher yield at high ozone concentration, while limonene oxidation-derived HOMs exhibit higher yield at moderate ozone concentration. The distinct molecular response of HOMs and low-volatile species in different biogenic secondary organic aerosols to ozone concentrations provides a new clue for more accurate air quality prediction and management.
Lei Kong, Xiao Tang, Jiang Zhu, Zifa Wang, Yele Sun, Pingqing Fu, Meng Gao, Huangjian Wu, Miaomiao Lu, Qian Wu, Shuyuan Huang, Wenxuan Sui, Jie Li, Xiaole Pan, Lin Wu, Hajime Akimoto, and Gregory R. Carmichael
Atmos. Chem. Phys., 23, 6217–6240, https://doi.org/10.5194/acp-23-6217-2023, https://doi.org/10.5194/acp-23-6217-2023, 2023
Short summary
Short summary
A multi-air-pollutant inversion system has been developed in this study to estimate emission changes in China during COVID-19 lockdown. The results demonstrate that the lockdown is largely a nationwide road traffic control measure with NOx emissions decreasing by ~40 %. Emissions of other species only decreased by ~10 % due to smaller effects of lockdown on other sectors. Assessment results further indicate that the lockdown only had limited effects on the control of PM2.5 and O3 in China.
Ernesto Reyes-Villegas, Douglas Lowe, Jill S. Johnson, Kenneth S. Carslaw, Eoghan Darbyshire, Michael Flynn, James D. Allan, Hugh Coe, Ying Chen, Oliver Wild, Scott Archer-Nicholls, Alex Archibald, Siddhartha Singh, Manish Shrivastava, Rahul A. Zaveri, Vikas Singh, Gufran Beig, Ranjeet Sokhi, and Gordon McFiggans
Atmos. Chem. Phys., 23, 5763–5782, https://doi.org/10.5194/acp-23-5763-2023, https://doi.org/10.5194/acp-23-5763-2023, 2023
Short summary
Short summary
Organic aerosols (OAs), their sources and their processes remain poorly understood. The volatility basis set (VBS) approach, implemented in air quality models such as WRF-Chem, can be a useful tool to describe primary OA (POA) production and aging. However, the main disadvantage is its complexity. We used a Gaussian process simulator to reproduce model results and to estimate the sources of model uncertainty. We do this by comparing the outputs with OA observations made at Delhi, India, in 2018.
Joanna E. Dyson, Lisa K. Whalley, Eloise J. Slater, Robert Woodward-Massey, Chunxiang Ye, James D. Lee, Freya Squires, James R. Hopkins, Rachel E. Dunmore, Marvin Shaw, Jacqueline F. Hamilton, Alastair C. Lewis, Stephen D. Worrall, Asan Bacak, Archit Mehra, Thomas J. Bannan, Hugh Coe, Carl J. Percival, Bin Ouyang, C. Nicholas Hewitt, Roderic L. Jones, Leigh R. Crilley, Louisa J. Kramer, W. Joe F. Acton, William J. Bloss, Supattarachai Saksakulkrai, Jingsha Xu, Zongbo Shi, Roy M. Harrison, Simone Kotthaus, Sue Grimmond, Yele Sun, Weiqi Xu, Siyao Yue, Lianfang Wei, Pingqing Fu, Xinming Wang, Stephen R. Arnold, and Dwayne E. Heard
Atmos. Chem. Phys., 23, 5679–5697, https://doi.org/10.5194/acp-23-5679-2023, https://doi.org/10.5194/acp-23-5679-2023, 2023
Short summary
Short summary
The hydroxyl (OH) and closely coupled hydroperoxyl (HO2) radicals are vital for their role in the removal of atmospheric pollutants. In less polluted regions, atmospheric models over-predict HO2 concentrations. In this modelling study, the impact of heterogeneous uptake of HO2 onto aerosol surfaces on radical concentrations and the ozone production regime in Beijing in the summertime is investigated, and the implications for emissions policies across China are considered.
Amelia M. H. Bond, Markus M. Frey, Jan Kaiser, Jörg Kleffmann, Anna E. Jones, and Freya A. Squires
Atmos. Chem. Phys., 23, 5533–5550, https://doi.org/10.5194/acp-23-5533-2023, https://doi.org/10.5194/acp-23-5533-2023, 2023
Short summary
Short summary
Atmospheric nitrous acid (HONO) amount fractions measured at Halley Research Station, Antarctica, were found to be low. Vertical fluxes of HONO from the snow were also measured and agree with the estimated HONO production rate from photolysis of snow nitrate. In a simple box model of HONO sources and sinks, there was good agreement between the measured flux and amount fraction. HONO was found to be an important OH radical source at Halley.
Shixian Zhai, Daniel J. Jacob, Drew C. Pendergrass, Nadia K. Colombi, Viral Shah, Laura Hyesung Yang, Qiang Zhang, Shuxiao Wang, Hwajin Kim, Yele Sun, Jin-Soo Choi, Jin-Soo Park, Gan Luo, Fangqun Yu, Jung-Hun Woo, Younha Kim, Jack E. Dibb, Taehyoung Lee, Jin-Seok Han, Bruce E. Anderson, Ke Li, and Hong Liao
Atmos. Chem. Phys., 23, 4271–4281, https://doi.org/10.5194/acp-23-4271-2023, https://doi.org/10.5194/acp-23-4271-2023, 2023
Short summary
Short summary
Anthropogenic fugitive dust in East Asia not only causes severe coarse particulate matter air pollution problems, but also affects fine particulate nitrate. Due to emission control efforts, coarse PM decreased steadily. We find that the decrease of coarse PM is a major driver for a lack of decrease of fine particulate nitrate, as it allows more nitric acid to form fine particulate nitrate. The continuing decrease of coarse PM requires more stringent ammonia and nitrogen oxides emission controls.
Huanhuan Zhang, Rui Li, Chengpeng Huang, Xiaofei Li, Shuwei Dong, Fu Wang, Tingting Li, Yizhu Chen, Guohua Zhang, Yan Ren, Qingcai Chen, Ru-jin Huang, Siyu Chen, Tao Xue, Xinming Wang, and Mingjin Tang
Atmos. Chem. Phys., 23, 3543–3559, https://doi.org/10.5194/acp-23-3543-2023, https://doi.org/10.5194/acp-23-3543-2023, 2023
Short summary
Short summary
This work investigated the seasonal variation of aerosol Fe solubility for coarse and fine particles in Xi’an, a megacity in northwestern China severely affected by anthropogenic emission and desert dust aerosol. In addition, we discussed in depth what controlled aerosol Fe solubility at different seasons for coarse and fine particles.
Peng Wang, Ruhan Zhang, Shida Sun, Meng Gao, Bo Zheng, Dan Zhang, Yanli Zhang, Gregory R. Carmichael, and Hongliang Zhang
Atmos. Chem. Phys., 23, 2983–2996, https://doi.org/10.5194/acp-23-2983-2023, https://doi.org/10.5194/acp-23-2983-2023, 2023
Short summary
Short summary
In China, the number of vehicles has jumped significantly in the last decade. This caused severe traffic congestion and aggravated air pollution. In this study, we developed a new temporal allocation approach to quantify the impacts of traffic congestion. We found that traffic congestion worsens air quality and the health burden across China, especially in the urban clusters. More effective and comprehensive vehicle emission control policies should be implemented to improve air quality in China.
Zixuan Jia, Carlos Ordóñez, Ruth M. Doherty, Oliver Wild, Steven T. Turnock, and Fiona M. O'Connor
Atmos. Chem. Phys., 23, 2829–2842, https://doi.org/10.5194/acp-23-2829-2023, https://doi.org/10.5194/acp-23-2829-2023, 2023
Short summary
Short summary
This study investigates the influence of the winter large-scale circulation on daily concentrations of PM2.5 and their sensitivity to emissions. The new proposed circulation index can effectively distinguish different levels of air pollution and explain changes in PM2.5 sensitivity to emissions from local and surrounding regions. We then project future changes in PM2.5 concentrations using this index and find an increase in PM2.5 concentrations over the region due to climate change.
Samuel J. Cliff, Will Drysdale, James D. Lee, Carole Helfter, Eiko Nemitz, Stefan Metzger, and Janet F. Barlow
Atmos. Chem. Phys., 23, 2315–2330, https://doi.org/10.5194/acp-23-2315-2023, https://doi.org/10.5194/acp-23-2315-2023, 2023
Short summary
Short summary
Emissions of nitrogen oxides (NOx) to the atmosphere are an ongoing air quality issue. This study directly measures emissions of NOx and carbon dioxide from a tall tower in central London during the coronavirus pandemic. It was found that transport NOx emissions had reduced by >73 % since 2017 as a result of air quality policy and reduced congestion during coronavirus restrictions. During this period, central London was thought to be dominated by point-source heat and power generation emissions.
Zhichao Dong, Chandra Mouli Pavuluri, Zhanjie Xu, Yu Wang, Peisen Li, Pingqing Fu, and Cong-Qiang Liu
Atmos. Chem. Phys., 23, 2119–2143, https://doi.org/10.5194/acp-23-2119-2023, https://doi.org/10.5194/acp-23-2119-2023, 2023
Short summary
Short summary
This study has provided comprehensive baseline data of carbonaceous and inorganic aerosols as well as their isotope ratios in the Tianjin region, North China, found that Tianjin aerosols were derived from coal combustion, biomass burning and photochemical reactions of VOCs, and also implied that the Tianjin aerosols were more aged during long-range atmospheric transport in summer via carbonaceous and isotope data analysis.
Shujun Zhong, Shuang Chen, Junjun Deng, Yanbing Fan, Qiang Zhang, Qiaorong Xie, Yulin Qi, Wei Hu, Libin Wu, Xiaodong Li, Chandra Mouli Pavuluri, Jialei Zhu, Xin Wang, Di Liu, Xiaole Pan, Yele Sun, Zifa Wang, Yisheng Xu, Haijie Tong, Hang Su, Yafang Cheng, Kimitaka Kawamura, and Pingqing Fu
Atmos. Chem. Phys., 23, 2061–2077, https://doi.org/10.5194/acp-23-2061-2023, https://doi.org/10.5194/acp-23-2061-2023, 2023
Short summary
Short summary
This study investigated the role of the secondary organic aerosol (SOA) loading on the molecular composition of wintertime urban aerosols by ultrahigh-resolution mass spectrometry. Results demonstrate that the SOA loading is an important factor associated with the oxidation degree, nitrate group content, and chemodiversity of nitrooxy–organosulfates. Our study also found that the hydrolysis of nitrooxy–organosulfates is a possible pathway for the formation of organosulfates.
Jacob T. Shaw, Amy Foulds, Shona Wilde, Patrick Barker, Freya A. Squires, James Lee, Ruth Purvis, Ralph Burton, Ioana Colfescu, Stephen Mobbs, Samuel Cliff, Stéphane J.-B. Bauguitte, Stuart Young, Stefan Schwietzke, and Grant Allen
Atmos. Chem. Phys., 23, 1491–1509, https://doi.org/10.5194/acp-23-1491-2023, https://doi.org/10.5194/acp-23-1491-2023, 2023
Short summary
Short summary
Flaring is used by the oil and gas sector to dispose of unwanted natural gas or for safety. However, few studies have assessed the efficiency with which the gas is combusted. We sampled flaring emissions from offshore facilities in the North Sea. Average measured flaring efficiencies were ~ 98 % but with a skewed distribution, including many flares of lower efficiency. NOx and ethane emissions were also measured. Inefficient flaring practices could be a target for mitigating carbon emissions.
Tingting Feng, Yingkun Wang, Weiwei Hu, Ming Zhu, Wei Song, Wei Chen, Yanyan Sang, Zheng Fang, Wei Deng, Hua Fang, Xu Yu, Cheng Wu, Bin Yuan, Shan Huang, Min Shao, Xiaofeng Huang, Lingyan He, Young Ro Lee, Lewis Gregory Huey, Francesco Canonaco, Andre S. H. Prevot, and Xinming Wang
Atmos. Chem. Phys., 23, 611–636, https://doi.org/10.5194/acp-23-611-2023, https://doi.org/10.5194/acp-23-611-2023, 2023
Short summary
Short summary
To investigate the impact of aging processes on organic aerosols (OA), we conducted a comprehensive field study at a continental remote site using an on-line mass spectrometer. The results show that OA in the Chinese outflows were strongly influenced by upwind anthropogenic emissions. The aging processes can significantly decrease the OA volatility and result in a varied viscosity of OA under different circumstances, signifying the complex physiochemical properties of OA in aged plumes.
Pooja V. Pawar, Sachin D. Ghude, Gaurav Govardhan, Prodip Acharja, Rachana Kulkarni, Rajesh Kumar, Baerbel Sinha, Vinayak Sinha, Chinmay Jena, Preeti Gunwani, Tapan Kumar Adhya, Eiko Nemitz, and Mark A. Sutton
Atmos. Chem. Phys., 23, 41–59, https://doi.org/10.5194/acp-23-41-2023, https://doi.org/10.5194/acp-23-41-2023, 2023
Short summary
Short summary
In this study, for the first time in South Asia we compare simulated ammonia, ammonium, and total ammonia using the WRF-Chem model and MARGA measurements during winter in the Indo-Gangetic Plain region. Since observations show HCl promotes the fraction of high chlorides in Delhi, we added HCl / Cl emissions to the model. We conducted three sensitivity experiments with changes in HCl emissions, and improvements are reported in accurately simulating ammonia, ammonium, and total ammonia.
Daniel J. Bryant, Beth S. Nelson, Stefan J. Swift, Sri Hapsari Budisulistiorini, Will S. Drysdale, Adam R. Vaughan, Mike J. Newland, James R. Hopkins, James M. Cash, Ben Langford, Eiko Nemitz, W. Joe F. Acton, C. Nicholas Hewitt, Tuhin Mandal, Bhola R. Gurjar, Shivani, Ranu Gadi, James D. Lee, Andrew R. Rickard, and Jacqueline F. Hamilton
Atmos. Chem. Phys., 23, 61–83, https://doi.org/10.5194/acp-23-61-2023, https://doi.org/10.5194/acp-23-61-2023, 2023
Short summary
Short summary
This paper investigates the sources of isoprene and monoterpene compounds and their particulate-phase oxidation products in Delhi, India. This was done to improve our understanding of the sources, concentrations, and fate of volatile emissions in megacities. By studying the chemical composition of offline filter samples, we report that a significant share of the oxidised organic aerosol in Delhi is from isoprene and monoterpenes. This has implications for human health and policy development.
Simone T. Andersen, Beth S. Nelson, Katie A. Read, Shalini Punjabi, Luis Neves, Matthew J. Rowlinson, James Hopkins, Tomás Sherwen, Lisa K. Whalley, James D. Lee, and Lucy J. Carpenter
Atmos. Chem. Phys., 22, 15747–15765, https://doi.org/10.5194/acp-22-15747-2022, https://doi.org/10.5194/acp-22-15747-2022, 2022
Short summary
Short summary
The cycling of NO and NO2 is important to understand to be able to predict O3 concentrations in the atmosphere. We have used long-term measurements from the Cape Verde Atmospheric Observatory together with model outputs to investigate the cycling of nitrogen oxide (NO) and nitrogen dioxide (NO2) in very clean marine air. This study shows that we understand the processes occurring in very clean air, but with small amounts of pollution in the air, known chemistry cannot explain what is observed.
Marsailidh M. Twigg, Augustinus J. C. Berkhout, Nicholas Cowan, Sabine Crunaire, Enrico Dammers, Volker Ebert, Vincent Gaudion, Marty Haaima, Christoph Häni, Lewis John, Matthew R. Jones, Bjorn Kamps, John Kentisbeer, Thomas Kupper, Sarah R. Leeson, Daiana Leuenberger, Nils O. B. Lüttschwager, Ulla Makkonen, Nicholas A. Martin, David Missler, Duncan Mounsor, Albrecht Neftel, Chad Nelson, Eiko Nemitz, Rutger Oudwater, Celine Pascale, Jean-Eudes Petit, Andrea Pogany, Nathalie Redon, Jörg Sintermann, Amy Stephens, Mark A. Sutton, Yuk S. Tang, Rens Zijlmans, Christine F. Braban, and Bernhard Niederhauser
Atmos. Meas. Tech., 15, 6755–6787, https://doi.org/10.5194/amt-15-6755-2022, https://doi.org/10.5194/amt-15-6755-2022, 2022
Short summary
Short summary
Ammonia (NH3) gas in the atmosphere impacts the environment, human health, and, indirectly, climate. Historic NH3 monitoring was labour intensive, and the instruments were complicated. Over the last decade, there has been a rapid technology development, including “plug-and-play” instruments. This study is an extensive field comparison of the currently available technologies and provides evidence that for routine monitoring, standard operating protocols are required for datasets to be comparable.
Alfred W. Mayhew, Ben H. Lee, Joel A. Thornton, Thomas J. Bannan, James Brean, James R. Hopkins, James D. Lee, Beth S. Nelson, Carl Percival, Andrew R. Rickard, Marvin D. Shaw, Peter M. Edwards, and Jaqueline F. Hamilton
Atmos. Chem. Phys., 22, 14783–14798, https://doi.org/10.5194/acp-22-14783-2022, https://doi.org/10.5194/acp-22-14783-2022, 2022
Short summary
Short summary
Isoprene nitrates are chemical species commonly found in the atmosphere that are important for their impacts on air quality and climate. This paper compares 3 different representations of the chemistry of isoprene nitrates in computational models highlighting cases where the choice of chemistry included has significant impacts on the concentration and composition of the modelled nitrates. Calibration of mass spectrometers is also shown to be an important factor when analysing isoprene nitrates.
David S. Stevenson, Richard G. Derwent, Oliver Wild, and William J. Collins
Atmos. Chem. Phys., 22, 14243–14252, https://doi.org/10.5194/acp-22-14243-2022, https://doi.org/10.5194/acp-22-14243-2022, 2022
Short summary
Short summary
Atmospheric methane’s growth rate rose by 50 % in 2020 relative to 2019. Lower nitrogen oxide (NOx) emissions tend to increase methane’s atmospheric residence time; lower carbon monoxide (CO) and non-methane volatile organic compound (NMVOC) emissions decrease its lifetime. Combining model sensitivities with emission changes, we find that COVID-19 lockdown emission reductions can explain over half the observed increases in methane in 2020.
Xiaoying Niu, Wei Pu, Pingqing Fu, Yang Chen, Yuxuan Xing, Dongyou Wu, Ziqi Chen, Tenglong Shi, Yue Zhou, Hui Wen, and Xin Wang
Atmos. Chem. Phys., 22, 14075–14094, https://doi.org/10.5194/acp-22-14075-2022, https://doi.org/10.5194/acp-22-14075-2022, 2022
Short summary
Short summary
In this study, we do the first investigation of WSOC in seasonal snow of northeastern China. The results revealed the regional-specific compositions and sources of WSOC due to different natural environments and anthropogenic activities. The abundant concentrations of WSOC and its absorption properties contributed to a crucial impact on the snow albedo and radiative effect. We established that our study could raise awareness of carbon cycling processes, hydrological processes, and climate change.
Johana Romero-Alvarez, Aurelia Lupaşcu, Douglas Lowe, Alba Badia, Scott Archer-Nicholls, Steve Dorling, Claire E. Reeves, and Tim Butler
Atmos. Chem. Phys., 22, 13797–13815, https://doi.org/10.5194/acp-22-13797-2022, https://doi.org/10.5194/acp-22-13797-2022, 2022
Short summary
Short summary
As ozone can be transported across countries, efficient air quality management and regulatory policies rely on the assessment of local ozone production vs. transport. In our study, we investigate the origin of surface ozone in the UK and the contribution of the different source regions to regulatory ozone metrics. It is shown that emission controls would be necessary over western Europe to improve health-related metrics and over larger areas to reduce impacts on ecosystems.
Qingyang Xiao, Guannan Geng, Shigan Liu, Jiajun Liu, Xia Meng, and Qiang Zhang
Atmos. Chem. Phys., 22, 13229–13242, https://doi.org/10.5194/acp-22-13229-2022, https://doi.org/10.5194/acp-22-13229-2022, 2022
Short summary
Short summary
We provided complete coverage PM2.5 concentrations at a 1-km resolution from 2000 to the present, carefully considering the significant changes in land use characteristics in China. This high-resolution PM2.5 data successfully revealed the local-scale PM2.5 variations. We noticed changes in PM2.5 spatial patterns in association with the clean air policies, with the pollution hotspots having transferred from urban centers to rural regions with limited air quality monitoring.
Zhenze Liu, Ruth M. Doherty, Oliver Wild, Fiona M. O'Connor, and Steven T. Turnock
Atmos. Chem. Phys., 22, 12543–12557, https://doi.org/10.5194/acp-22-12543-2022, https://doi.org/10.5194/acp-22-12543-2022, 2022
Short summary
Short summary
Weaknesses in process representation in chemistry–climate models lead to biases in simulating surface ozone and to uncertainty in projections of future ozone change. We develop a deep learning model to demonstrate the feasibility of ozone bias correction and show its capability in providing improved assessments of the impacts of climate and emission changes on future air quality, along with valuable information to guide future model development.
Zhiqiang Zhang, Yele Sun, Chun Chen, Bo You, Aodong Du, Weiqi Xu, Yan Li, Zhijie Li, Lu Lei, Wei Zhou, Jiaxing Sun, Yanmei Qiu, Lianfang Wei, Pingqing Fu, and Zifa Wang
Atmos. Chem. Phys., 22, 10409–10423, https://doi.org/10.5194/acp-22-10409-2022, https://doi.org/10.5194/acp-22-10409-2022, 2022
Short summary
Short summary
We present a comprehensive characterization of water-soluble organic aerosol and the first mass spectral characterization of water-insoluble organic aerosol in the cold season in Beijing by integrating online and offline aerosol mass spectrometer measurements. WSOA comprised dominantly secondary OA and showed large changes during the transition season from autumn to winter. WIOA was characterized by prominent hydrocarbon ions series, low oxidation states, and significant day–night differences.
Xueyin Ruan, Chun Zhao, Rahul A. Zaveri, Pengzhen He, Xinming Wang, Jingyuan Shao, and Lei Geng
Geosci. Model Dev., 15, 6143–6164, https://doi.org/10.5194/gmd-15-6143-2022, https://doi.org/10.5194/gmd-15-6143-2022, 2022
Short summary
Short summary
Accurate prediction of aerosol pH in chemical transport models is essential to aerosol modeling. This study examines the performance of the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) on aerosol pH predictions and the sensitivities to emissions of nonvolatile cations and NH3, aerosol-phase state assumption, and heterogeneous sulfate production. Temporal evolution of aerosol pH during haze cycles in Beijing and the driving factors are also presented and discussed.
Guohua Zhang, Xiaodong Hu, Wei Sun, Yuxiang Yang, Ziyong Guo, Yuzhen Fu, Haichao Wang, Shengzhen Zhou, Lei Li, Mingjin Tang, Zongbo Shi, Duohong Chen, Xinhui Bi, and Xinming Wang
Atmos. Chem. Phys., 22, 9571–9582, https://doi.org/10.5194/acp-22-9571-2022, https://doi.org/10.5194/acp-22-9571-2022, 2022
Short summary
Short summary
We show a significant enhancement of nitrate mass fraction in cloud water and relative intensity of nitrate in the cloud residual particles and highlight that hydrolysis of N2O5 serves as the critical route for the in-cloud formation of nitrate, even during the daytime. Given that N2O5 hydrolysis acts as a major sink of NOx in the atmosphere, further model updates may improve our understanding about the processes contributing to nitrate production in cloud and the cycling of odd nitrogen.
Will S. Drysdale, Adam R. Vaughan, Freya A. Squires, Sam J. Cliff, Stefan Metzger, David Durden, Natchaya Pingintha-Durden, Carole Helfter, Eiko Nemitz, C. Sue B. Grimmond, Janet Barlow, Sean Beevers, Gregor Stewart, David Dajnak, Ruth M. Purvis, and James D. Lee
Atmos. Chem. Phys., 22, 9413–9433, https://doi.org/10.5194/acp-22-9413-2022, https://doi.org/10.5194/acp-22-9413-2022, 2022
Short summary
Short summary
Measurements of NOx emissions are important for a good understanding of air quality. While there are many direct measurements of NOx concentration, there are very few measurements of its emission. Measurements of emissions provide constraints on emissions inventories and air quality models. This article presents measurements of NOx emission from the BT Tower in central London in 2017 and compares them with inventories, finding that they underestimate by a factor of ∼1.48.
Yihang Yu, Peng Cheng, Huirong Li, Wenda Yang, Baobin Han, Wei Song, Weiwei Hu, Xinming Wang, Bin Yuan, Min Shao, Zhijiong Huang, Zhen Li, Junyu Zheng, Haichao Wang, and Xiaofang Yu
Atmos. Chem. Phys., 22, 8951–8971, https://doi.org/10.5194/acp-22-8951-2022, https://doi.org/10.5194/acp-22-8951-2022, 2022
Short summary
Short summary
We have investigated the budget of HONO at an urban site in Guangzhou. Budget and comprehensive uncertainty analysis suggest that at such locations as ours, HONO direct emissions and NO + OH can become comparable or even surpass other HONO sources that typically receive greater attention and interest, such as the NO2 heterogeneous source and the unknown daytime photolytic source. Our findings emphasize the need to reduce the uncertainties of both conventional and novel HONO sources and sinks.
Le Yuan, Olalekan A. M. Popoola, Christina Hood, David Carruthers, Roderic L. Jones, Haitong Zhe Sun, Huan Liu, Qiang Zhang, and Alexander T. Archibald
Atmos. Chem. Phys., 22, 8617–8637, https://doi.org/10.5194/acp-22-8617-2022, https://doi.org/10.5194/acp-22-8617-2022, 2022
Short summary
Short summary
Emission estimates represent a major source of uncertainty in air quality modelling. We developed a novel approach to improve emission estimates from existing inventories using air quality models and routine in situ observations. Using this approach, we derived improved estimates of NOx emissions from the transport sector in Beijing in 2016. This approach has great potential in deriving timely updates of emissions for other pollutants, particularly in regions undergoing rapid emission changes.
Marios Panagi, Roberto Sommariva, Zoë L. Fleming, Paul S. Monks, Gongda Lu, Eloise A. Marais, James R. Hopkins, Alastair C. Lewis, Qiang Zhang, James D. Lee, Freya A. Squires, Lisa K. Whalley, Eloise J. Slater, Dwayne E. Heard, Robert Woodward-Massey, Chunxiang Ye, and Joshua D. Vande Hey
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-379, https://doi.org/10.5194/acp-2022-379, 2022
Revised manuscript not accepted
Short summary
Short summary
A dispersion model and a box model were combined to investigate the evolution of VOCs in Beijing once they are emitted from anthropogenic sources. It was determined that during the winter time the VOC concentrations in Beijing are driven predominantly by sources within Beijing and by a combination of transport and chemistry during the summer. Furthermore, the results in the paper highlight the need for a season specific policy.
Jiaxing Sun, Yele Sun, Conghui Xie, Weiqi Xu, Chun Chen, Zhe Wang, Lei Li, Xubing Du, Fugui Huang, Yan Li, Zhijie Li, Xiaole Pan, Nan Ma, Wanyun Xu, Pingqing Fu, and Zifa Wang
Atmos. Chem. Phys., 22, 7619–7630, https://doi.org/10.5194/acp-22-7619-2022, https://doi.org/10.5194/acp-22-7619-2022, 2022
Short summary
Short summary
We analyzed the chemical composition and mixing state of BC-containing particles at urban and rural sites in winter in the North China Plain and evaluated their impact on light absorption enhancement. BC was dominantly mixed with organic carbon, nitrate, and sulfate, and the mixing state evolved significantly as a function of relative humidity (RH) at both sites. The absorption enhancement depended strongly on coated secondary inorganic aerosol and was up to ~1.3–1.4 during aging processes.
Lu Chen, Fang Zhang, Dongmei Zhang, Xinming Wang, Wei Song, Jieyao Liu, Jingye Ren, Sihui Jiang, Xue Li, and Zhanqing Li
Atmos. Chem. Phys., 22, 6773–6786, https://doi.org/10.5194/acp-22-6773-2022, https://doi.org/10.5194/acp-22-6773-2022, 2022
Short summary
Short summary
Aerosol hygroscopicity is critical when evaluating its effect on visibility and climate. Here, the size-resolved particle hygroscopicity at five sites in China is characterized using field measurements. We show the distinct behavior of hygroscopic particles during pollution evolution among the five sites. Moreover, different hygroscopic behavior during NPF events were also observed. The dataset is helpful for understanding the spatial variability in particle composition and formation mechanisms.
Zixuan Jia, Ruth M. Doherty, Carlos Ordóñez, Chaofan Li, Oliver Wild, Shipra Jain, and Xiao Tang
Atmos. Chem. Phys., 22, 6471–6487, https://doi.org/10.5194/acp-22-6471-2022, https://doi.org/10.5194/acp-22-6471-2022, 2022
Short summary
Short summary
This study investigates the modulation of daily PM2.5 over three major populated regions in China by regional meteorology and large-scale circulation during winter. These results demonstrate the benefits of considering the large-scale circulation for air quality studies. The novel circulation indices proposed here can explain a considerable fraction of the day-to-day variability of PM2.5 and can be combined with regional meteorology to improve our capability to predict the variability of PM2.5.
Junjun Deng, Hao Ma, Xinfeng Wang, Shujun Zhong, Zhimin Zhang, Jialei Zhu, Yanbing Fan, Wei Hu, Libin Wu, Xiaodong Li, Lujie Ren, Chandra Mouli Pavuluri, Xiaole Pan, Yele Sun, Zifa Wang, Kimitaka Kawamura, and Pingqing Fu
Atmos. Chem. Phys., 22, 6449–6470, https://doi.org/10.5194/acp-22-6449-2022, https://doi.org/10.5194/acp-22-6449-2022, 2022
Short summary
Short summary
Light-absorbing brown carbon (BrC) plays an important role in climate change and atmospheric chemistry. Here we investigated the seasonal and diurnal variations in water-soluble BrC in PM2.5 in the megacity Tianjin in coastal China. Results of the source apportionments from the combination with organic molecular compositions and optical properties of water-soluble BrC reveal a large contribution from primary bioaerosol particles to BrC in the urban atmosphere.
Hannah Walker, Daniel Stone, Trevor Ingham, Sina Hackenberg, Danny Cryer, Shalini Punjabi, Katie Read, James Lee, Lisa Whalley, Dominick V. Spracklen, Lucy J. Carpenter, Steve R. Arnold, and Dwayne E. Heard
Atmos. Chem. Phys., 22, 5535–5557, https://doi.org/10.5194/acp-22-5535-2022, https://doi.org/10.5194/acp-22-5535-2022, 2022
Short summary
Short summary
Glyoxal is a ubiquitous reactive organic compound in the atmosphere, which may form organic aerosol and impact the atmosphere's oxidising capacity. There are limited measurements of glyoxal's abundance in the remote marine atmosphere. We made new measurements of glyoxal using a highly sensitive technique over two 4-week periods in the tropical Atlantic atmosphere. We show that daytime measurements are mostly consistent with our chemical understanding but a potential missing source at night.
Ziyong Guo, Yuxiang Yang, Xiaodong Hu, Xiaocong Peng, Yuzhen Fu, Wei Sun, Guohua Zhang, Duohong Chen, Xinhui Bi, Xinming Wang, and Ping'an Peng
Atmos. Chem. Phys., 22, 4827–4839, https://doi.org/10.5194/acp-22-4827-2022, https://doi.org/10.5194/acp-22-4827-2022, 2022
Short summary
Short summary
We show that in-cloud aqueous processing facilitates the formation of brown carbon (BrC), based on the simultaneous measurements of the light-absorption properties of the cloud residuals, cloud interstitial, and cloud-free particles. While extensive laboratory evidence indicated the formation of BrC in aqueous phase, our study represents the first attempt to show the possibility in real clouds, which would have potential implications in the atmospheric evolution and radiation forcing of BrC.
Robert Woodward-Massey, Roberto Sommariva, Lisa K. Whalley, Danny R. Cryer, Trevor Ingham, William J1 Bloss, Sam Cox, James D. Lee, Chris P. Reed, Leigh R. Crilley, Louisa J. Kramer, Brian J. Bandy, Grant L. Forster, Claire E. Reeves, Paul S. Monks, and Dwayne E. Heard
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-207, https://doi.org/10.5194/acp-2022-207, 2022
Preprint withdrawn
Short summary
Short summary
We measured radicals (OH, HO2, RO2) and OH reactivity at a UK coastal site and compared our observations to the predictions of an MCMv3.3.1 box model. We find variable agreement between measured and modelled radical concentrations and OH reactivity, where the levels of agreement for individual species display strong dependences on NO concentrations. The most substantial disagreement is found for RO2 at high NO (> 1 ppbv), when RO2 levels are underpredicted by a factor of ~10–30.
Suxia Yang, Bin Yuan, Yuwen Peng, Shan Huang, Wei Chen, Weiwei Hu, Chenglei Pei, Jun Zhou, David D. Parrish, Wenjie Wang, Xianjun He, Chunlei Cheng, Xiao-Bing Li, Xiaoyun Yang, Yu Song, Haichao Wang, Jipeng Qi, Baolin Wang, Chen Wang, Chaomin Wang, Zelong Wang, Tiange Li, E Zheng, Sihang Wang, Caihong Wu, Mingfu Cai, Chenshuo Ye, Wei Song, Peng Cheng, Duohong Chen, Xinming Wang, Zhanyi Zhang, Xuemei Wang, Junyu Zheng, and Min Shao
Atmos. Chem. Phys., 22, 4539–4556, https://doi.org/10.5194/acp-22-4539-2022, https://doi.org/10.5194/acp-22-4539-2022, 2022
Short summary
Short summary
We use a model constrained using observations to study the formation of nitrate aerosol in and downwind of a representative megacity. We found different contributions of various chemical reactions to ground-level nitrate concentrations between urban and suburban regions. We also show that controlling VOC emissions are effective for decreasing nitrate formation in both urban and regional environments, although VOCs are not direct precursors of nitrate aerosol.
Amy Foulds, Grant Allen, Jacob T. Shaw, Prudence Bateson, Patrick A. Barker, Langwen Huang, Joseph R. Pitt, James D. Lee, Shona E. Wilde, Pamela Dominutti, Ruth M. Purvis, David Lowry, James L. France, Rebecca E. Fisher, Alina Fiehn, Magdalena Pühl, Stéphane J. B. Bauguitte, Stephen A. Conley, Mackenzie L. Smith, Tom Lachlan-Cope, Ignacio Pisso, and Stefan Schwietzke
Atmos. Chem. Phys., 22, 4303–4322, https://doi.org/10.5194/acp-22-4303-2022, https://doi.org/10.5194/acp-22-4303-2022, 2022
Short summary
Short summary
We measured CH4 emissions from 21 offshore oil and gas facilities in the Norwegian Sea in 2019. Measurements compared well with operator-reported emissions but were greatly underestimated when compared with a 2016 global fossil fuel inventory. This study demonstrates the need for up-to-date and accurate inventories for use in research and policy and the important benefits of best-practice reporting methods by operators. Airborne measurements are an effective tool to validate such inventories.
Wenjie Wang, Bin Yuan, Yuwen Peng, Hang Su, Yafang Cheng, Suxia Yang, Caihong Wu, Jipeng Qi, Fengxia Bao, Yibo Huangfu, Chaomin Wang, Chenshuo Ye, Zelong Wang, Baolin Wang, Xinming Wang, Wei Song, Weiwei Hu, Peng Cheng, Manni Zhu, Junyu Zheng, and Min Shao
Atmos. Chem. Phys., 22, 4117–4128, https://doi.org/10.5194/acp-22-4117-2022, https://doi.org/10.5194/acp-22-4117-2022, 2022
Short summary
Short summary
From thorough measurements of numerous oxygenated volatile organic compounds, we show that their photodissociation can be important for radical production and ozone formation in the atmosphere. This effect was underestimated in previous studies, as measurements of them were lacking.
Yanhong Zhu, Weijun Li, Yue Wang, Jian Zhang, Lei Liu, Liang Xu, Jingsha Xu, Jinhui Shi, Longyi Shao, Pingqing Fu, Daizhou Zhang, and Zongbo Shi
Atmos. Chem. Phys., 22, 2191–2202, https://doi.org/10.5194/acp-22-2191-2022, https://doi.org/10.5194/acp-22-2191-2022, 2022
Short summary
Short summary
The solubilities of iron in fine particles in a megacity in Eastern China were studied under haze, fog, dust, clear, and rain weather conditions. For the first time, a receptor model was used to quantify the sources of dissolved and total iron aerosol. Microscopic analysis further confirmed the aging of iron aerosol during haze and fog conditions that facilitated dissolution of insoluble iron.
Yaqing Zhou, Nan Ma, Qiaoqiao Wang, Zhibin Wang, Chunrong Chen, Jiangchuan Tao, Juan Hong, Long Peng, Yao He, Linhong Xie, Shaowen Zhu, Yuxuan Zhang, Guo Li, Wanyun Xu, Peng Cheng, Uwe Kuhn, Guangsheng Zhou, Pingqing Fu, Qiang Zhang, Hang Su, and Yafang Cheng
Atmos. Chem. Phys., 22, 2029–2047, https://doi.org/10.5194/acp-22-2029-2022, https://doi.org/10.5194/acp-22-2029-2022, 2022
Short summary
Short summary
This study characterizes size-resolved particle effective densities and their evolution associated with emissions and aging processes in a rural area of the North China Plain. Particle effective density exhibits a high-frequency bimodal distribution, and two density modes exhibit opposite trends with increasing particle size. SIA and BC mass fractions are key factors of particle effective density, and a value of 0.6 g cm−3 is appropriate to represent BC effective density in bulk particles.
Haichao Wang, Chao Peng, Xuan Wang, Shengrong Lou, Keding Lu, Guicheng Gan, Xiaohong Jia, Xiaorui Chen, Jun Chen, Hongli Wang, Shaojia Fan, Xinming Wang, and Mingjin Tang
Atmos. Chem. Phys., 22, 1845–1859, https://doi.org/10.5194/acp-22-1845-2022, https://doi.org/10.5194/acp-22-1845-2022, 2022
Short summary
Short summary
Via combining laboratory and modeling work, we found that heterogeneous reaction of N2O5 with saline mineral dust aerosol could be an important source of tropospheric ClNO2 in inland regions.
Zhenze Liu, Ruth M. Doherty, Oliver Wild, Fiona M. O'Connor, and Steven T. Turnock
Atmos. Chem. Phys., 22, 1209–1227, https://doi.org/10.5194/acp-22-1209-2022, https://doi.org/10.5194/acp-22-1209-2022, 2022
Short summary
Short summary
Tropospheric ozone is important to future air quality and climate, and changing emissions and climate influence ozone. We investigate the evolution of ozone and ozone sensitivity from the present day (2004–2014) to the future (2045–2055) and explore the main drivers of ozone changes from global and regional perspectives. This helps guide suitable emission control strategies to mitigate ozone pollution.
Jiaxing Sun, Zhe Wang, Wei Zhou, Conghui Xie, Cheng Wu, Chun Chen, Tingting Han, Qingqing Wang, Zhijie Li, Jie Li, Pingqing Fu, Zifa Wang, and Yele Sun
Atmos. Chem. Phys., 22, 561–575, https://doi.org/10.5194/acp-22-561-2022, https://doi.org/10.5194/acp-22-561-2022, 2022
Short summary
Short summary
We analyzed 9-year measurements of BC and aerosol optical properties from 2012 to 2020 in Beijing, China. Our results showed large reductions in BC and light extinction coefficient due to the Clean Air Action Plan. As a response, both SSA and mass extinction efficiency (MEE) showed considerable increases, demonstrating a future challenge in visibility improvement. The primary and secondary BrC was also separated and quantified, and the changes in radiative forcing of BC and BrC were estimated.
Juanjuan Qin, Jihua Tan, Xueming Zhou, Yanrong Yang, Yuanyuan Qin, Xiaobo Wang, Shaoxuan Shi, Kang Xiao, and Xinming Wang
Atmos. Chem. Phys., 22, 465–479, https://doi.org/10.5194/acp-22-465-2022, https://doi.org/10.5194/acp-22-465-2022, 2022
Short summary
Short summary
Water-soluble organic compounds (WSOCs) play important roles in atmospheric particle formation, migration, and transformation processes. In this work, size-segregated atmospheric particles were collected in a rural area of Beijing, and 3D fluorescence spectroscopy was used to investigate the optical properties of WSOCs as a means of inferring information about their atmospheric sources. It was found that these data could efficiently reveal the secondary transformation processes of WSOCs.
Jianqiang Zeng, Yanli Zhang, Huina Zhang, Wei Song, Zhenfeng Wu, and Xinming Wang
Atmos. Meas. Tech., 15, 79–93, https://doi.org/10.5194/amt-15-79-2022, https://doi.org/10.5194/amt-15-79-2022, 2022
Short summary
Short summary
The emission of biogenic volatile organic compounds (BVOCs) from plant leaves is an essential part of biosphere–atmosphere interactions. Here we demonstrate how a dynamic chamber for measuring branch-scale BVOC emissions could be characterized both in the lab for adsorptive losses and in the field for ambient–enclosure environmental differences. The results also imply emission factors for terpenes might be underestimated if measured using dynamic chambers without certified transfer efficiencies.
Leigh R. Crilley, Louisa J. Kramer, Francis D. Pope, Chris Reed, James D. Lee, Lucy J. Carpenter, Lloyd D. J. Hollis, Stephen M. Ball, and William J. Bloss
Atmos. Chem. Phys., 21, 18213–18225, https://doi.org/10.5194/acp-21-18213-2021, https://doi.org/10.5194/acp-21-18213-2021, 2021
Short summary
Short summary
Nitrous acid (HONO) is a key source of atmospheric oxidants. We evaluate if the ocean surface is a source of HONO for the marine boundary layer, using measurements from two contrasting coastal locations. We observed no evidence for a night-time ocean surface source, in contrast to previous work. This points to significant geographical variation in the predominant HONO formation mechanisms in marine environments, reflecting possible variability in the sea-surface microlayer composition.
Yuting Zhang, Hang Liu, Shandong Lei, Wanyun Xu, Yu Tian, Weijie Yao, Xiaoyong Liu, Qi Liao, Jie Li, Chun Chen, Yele Sun, Pingqing Fu, Jinyuan Xin, Junji Cao, Xiaole Pan, and Zifa Wang
Atmos. Chem. Phys., 21, 17631–17648, https://doi.org/10.5194/acp-21-17631-2021, https://doi.org/10.5194/acp-21-17631-2021, 2021
Short summary
Short summary
In this study, the authors used a single-particle soot photometer (SP2) to characterize the particle size, mixing state, and optical properties of black carbon aerosols in rural areas of the North China Plain in winter. Relatively warm and high-RH environments (RH > 50 %, −4° < T < 4 °) were more favorable to rBC aging than dry and cold environments (RH < 60 %, T < −8°). The paper emphasizes the importance of meteorological parameters in the mixing state of black carbon.
Shixian Zhai, Daniel J. Jacob, Jared F. Brewer, Ke Li, Jonathan M. Moch, Jhoon Kim, Seoyoung Lee, Hyunkwang Lim, Hyun Chul Lee, Su Keun Kuk, Rokjin J. Park, Jaein I. Jeong, Xuan Wang, Pengfei Liu, Gan Luo, Fangqun Yu, Jun Meng, Randall V. Martin, Katherine R. Travis, Johnathan W. Hair, Bruce E. Anderson, Jack E. Dibb, Jose L. Jimenez, Pedro Campuzano-Jost, Benjamin A. Nault, Jung-Hun Woo, Younha Kim, Qiang Zhang, and Hong Liao
Atmos. Chem. Phys., 21, 16775–16791, https://doi.org/10.5194/acp-21-16775-2021, https://doi.org/10.5194/acp-21-16775-2021, 2021
Short summary
Short summary
Geostationary satellite aerosol optical depth (AOD) has tremendous potential for monitoring surface fine particulate matter (PM2.5). Our study explored the physical relationship between AOD and PM2.5 by integrating data from surface networks, aircraft, and satellites with the GEOS-Chem chemical transport model. We quantitatively showed that accurate simulation of aerosol size distributions, boundary layer depths, relative humidity, coarse particles, and diurnal variations in PM2.5 are essential.
Wei Sun, Yuzhen Fu, Guohua Zhang, Yuxiang Yang, Feng Jiang, Xiufeng Lian, Bin Jiang, Yuhong Liao, Xinhui Bi, Duohong Chen, Jianmin Chen, Xinming Wang, Jie Ou, Ping'an Peng, and Guoying Sheng
Atmos. Chem. Phys., 21, 16631–16644, https://doi.org/10.5194/acp-21-16631-2021, https://doi.org/10.5194/acp-21-16631-2021, 2021
Short summary
Short summary
We sampled cloud water at a remote mountain site and investigated the molecular characteristics. CHON and CHO are dominant in cloud water. No statistical difference in the oxidation state is observed between cloud water and interstitial PM2.5. Most of the formulas are aliphatic and olefinic species. CHON, with aromatic structures and organosulfates, are abundant, especially in nighttime samples. The in-cloud and multi-phase dark reactions likely contribute significantly.
Mark F. Lunt, Alistair J. Manning, Grant Allen, Tim Arnold, Stéphane J.-B. Bauguitte, Hartmut Boesch, Anita L. Ganesan, Aoife Grant, Carole Helfter, Eiko Nemitz, Simon J. O'Doherty, Paul I. Palmer, Joseph R. Pitt, Chris Rennick, Daniel Say, Kieran M. Stanley, Ann R. Stavert, Dickon Young, and Matt Rigby
Atmos. Chem. Phys., 21, 16257–16276, https://doi.org/10.5194/acp-21-16257-2021, https://doi.org/10.5194/acp-21-16257-2021, 2021
Short summary
Short summary
We present an evaluation of the UK's methane emissions between 2013 and 2020 using a network of tall tower measurement sites. We find emissions that are consistent in both magnitude and trend with the UK's reported emissions, with a declining trend driven by a decrease in emissions from England. The impact of various components of the modelling set-up on these findings are explored through a number of sensitivity studies.
Wedad Alahamade, Iain Lake, Claire E. Reeves, and Beatriz De La Iglesia
Geosci. Instrum. Method. Data Syst., 10, 265–285, https://doi.org/10.5194/gi-10-265-2021, https://doi.org/10.5194/gi-10-265-2021, 2021
Short summary
Short summary
The goal is to reduce the uncertainty in air quality assessment by imputing all missing pollutants in monitoring stations and identify where more measurements can be beneficial. The proposed approach is based on spatial or temporal similarity between stations. Our proposed approach enables us to impute and estimate plausible concentrations of multiple pollutants at stations across the UK, and the modelled concentrations from the selected models correlated well with the observed concentrations.
Stefan Metzger, David Durden, Sreenath Paleri, Matthias Sühring, Brian J. Butterworth, Christopher Florian, Matthias Mauder, David M. Plummer, Luise Wanner, Ke Xu, and Ankur R. Desai
Atmos. Meas. Tech., 14, 6929–6954, https://doi.org/10.5194/amt-14-6929-2021, https://doi.org/10.5194/amt-14-6929-2021, 2021
Short summary
Short summary
The key points are the following. (i) Integrative observing system design can multiply the information gain of surface–atmosphere field measurements. (ii) Catalyzing numerical simulations and first-principles machine learning open up observing system simulation experiments to novel applications. (iii) Use cases include natural climate solutions, emission inventory validation, urban air quality, and industry leak detection.
Yuqiang Zhang, Drew Shindell, Karl Seltzer, Lu Shen, Jean-Francois Lamarque, Qiang Zhang, Bo Zheng, Jia Xing, Zhe Jiang, and Lei Zhang
Atmos. Chem. Phys., 21, 16051–16065, https://doi.org/10.5194/acp-21-16051-2021, https://doi.org/10.5194/acp-21-16051-2021, 2021
Short summary
Short summary
In this study, we use a global chemical transport model to simulate the effects on global air quality and human health due to emission changes in China from 2010 to 2017. By performing sensitivity analysis, we found that the air pollution control policies not only decrease the air pollutant concentration but also bring significant co-benefits in air quality to downwind regions. The benefits for the improved air pollution are dominated by PM2.5.
Adam R. Vaughan, James D. Lee, Stefan Metzger, David Durden, Alastair C. Lewis, Marvin D. Shaw, Will S. Drysdale, Ruth M. Purvis, Brian Davison, and C. Nicholas Hewitt
Atmos. Chem. Phys., 21, 15283–15298, https://doi.org/10.5194/acp-21-15283-2021, https://doi.org/10.5194/acp-21-15283-2021, 2021
Short summary
Short summary
Validating emissions estimates of atmospheric pollutants is a vital pathway towards reducing urban concentrations of air pollution and ensuring effective legislative controls are implemented. The work presented here highlights a strategy capable of quantifying and spatially disaggregating NOx emissions over challenging urban terrain. This work shows great scope as a tool for emission inventory validation and independent generation of high-resolution surface emissions on a city-wide scale.
Yuan Cheng, Qin-qin Yu, Jiu-meng Liu, Xu-bing Cao, Ying-jie Zhong, Zhen-yu Du, Lin-lin Liang, Guan-nan Geng, Wan-li Ma, Hong Qi, Qiang Zhang, and Ke-bin He
Atmos. Chem. Phys., 21, 15199–15211, https://doi.org/10.5194/acp-21-15199-2021, https://doi.org/10.5194/acp-21-15199-2021, 2021
Short summary
Short summary
Open burning policies in Heilongjiang Province experienced a rapid transition during 2018 to 2020. This study evaluated the responses of PM2.5 pollution to this transition and suggested that neither of the policies could be considered successful. In addition, heterogeneous reactions were found to be at play in secondary aerosol formation, even in the frigid atmosphere in Heilongjiang. The unique haze in northeast China deserves more attention.
Deepchandra Srivastava, Jingsha Xu, Tuan V. Vu, Di Liu, Linjie Li, Pingqing Fu, Siqi Hou, Natalia Moreno Palmerola, Zongbo Shi, and Roy M. Harrison
Atmos. Chem. Phys., 21, 14703–14724, https://doi.org/10.5194/acp-21-14703-2021, https://doi.org/10.5194/acp-21-14703-2021, 2021
Short summary
Short summary
This study presents the source apportionment of PM2.5 performed by positive matrix factorization (PMF) at urban and rural sites in Beijing. These factors are interpreted as traffic emissions, biomass burning, road and soil dust, coal and oil combustion, and secondary inorganics. PMF failed to resolve some sources identified by CMB and AMS and appears to overestimate the dust sources. Comparison with earlier PMF studies from the Beijing area highlights inconsistent findings using this method.
Michael Biggart, Jenny Stocker, Ruth M. Doherty, Oliver Wild, David Carruthers, Sue Grimmond, Yiqun Han, Pingqing Fu, and Simone Kotthaus
Atmos. Chem. Phys., 21, 13687–13711, https://doi.org/10.5194/acp-21-13687-2021, https://doi.org/10.5194/acp-21-13687-2021, 2021
Short summary
Short summary
Heat-related illnesses are of increasing concern in China given its rapid urbanisation and our ever-warming climate. We examine the relative impacts that land surface properties and anthropogenic heat have on the urban heat island (UHI) in Beijing using ADMS-Urban. Air temperature measurements and satellite-derived land surface temperatures provide valuable means of evaluating modelled spatiotemporal variations. This work provides critical information for urban planners and UHI mitigation.
Beth S. Nelson, Gareth J. Stewart, Will S. Drysdale, Mike J. Newland, Adam R. Vaughan, Rachel E. Dunmore, Pete M. Edwards, Alastair C. Lewis, Jacqueline F. Hamilton, W. Joe Acton, C. Nicholas Hewitt, Leigh R. Crilley, Mohammed S. Alam, Ülkü A. Şahin, David C. S. Beddows, William J. Bloss, Eloise Slater, Lisa K. Whalley, Dwayne E. Heard, James M. Cash, Ben Langford, Eiko Nemitz, Roberto Sommariva, Sam Cox, Shivani, Ranu Gadi, Bhola R. Gurjar, James R. Hopkins, Andrew R. Rickard, and James D. Lee
Atmos. Chem. Phys., 21, 13609–13630, https://doi.org/10.5194/acp-21-13609-2021, https://doi.org/10.5194/acp-21-13609-2021, 2021
Short summary
Short summary
Ozone production at an urban site in Delhi is sensitive to volatile organic compound (VOC) concentrations, particularly those of the aromatic, monoterpene, and alkene VOC classes. The change in ozone production by varying atmospheric pollutants according to their sources, as defined in an emissions inventory, is investigated. The study suggests that reducing road transport emissions alone does not reduce reactive VOCs in the atmosphere enough to perturb an increase in ozone production.
Edmund Ryan and Oliver Wild
Geosci. Model Dev., 14, 5373–5391, https://doi.org/10.5194/gmd-14-5373-2021, https://doi.org/10.5194/gmd-14-5373-2021, 2021
Short summary
Short summary
Atmospheric chemistry transport models are important tools to investigate the local, regional and global controls on atmospheric composition and air quality. In this study, we estimate some of the model parameters using machine learning and statistics. Our findings identify the level of error and spatial coverage in the O2 and CO data that are needed to achieve good parameter estimates. We also highlight the benefits of using multiple constraints to calibrate atmospheric chemistry models.
Hong Ren, Wei Hu, Lianfang Wei, Siyao Yue, Jian Zhao, Linjie Li, Libin Wu, Wanyu Zhao, Lujie Ren, Mingjie Kang, Qiaorong Xie, Sihui Su, Xiaole Pan, Zifa Wang, Yele Sun, Kimitaka Kawamura, and Pingqing Fu
Atmos. Chem. Phys., 21, 12949–12963, https://doi.org/10.5194/acp-21-12949-2021, https://doi.org/10.5194/acp-21-12949-2021, 2021
Short summary
Short summary
This study presents vertical profiles of biogenic and anthropogenic secondary organic aerosols (SOAs) in the urban boundary layer based on a 325 m tower in Beijing in late summer. The increases in the isoprene and toluene SOAs with height were found to be more related to regional transport, whereas the decrease in those from monoterpenes and sesquiterpene were more subject to local emissions. Such complicated vertical distributions of SOA should be considered in future modeling work.
Ernesto Reyes-Villegas, Upasana Panda, Eoghan Darbyshire, James M. Cash, Rutambhara Joshi, Ben Langford, Chiara F. Di Marco, Neil J. Mullinger, Mohammed S. Alam, Leigh R. Crilley, Daniel J. Rooney, W. Joe F. Acton, Will Drysdale, Eiko Nemitz, Michael Flynn, Aristeidis Voliotis, Gordon McFiggans, Hugh Coe, James Lee, C. Nicholas Hewitt, Mathew R. Heal, Sachin S. Gunthe, Tuhin K. Mandal, Bhola R. Gurjar, Shivani, Ranu Gadi, Siddhartha Singh, Vijay Soni, and James D. Allan
Atmos. Chem. Phys., 21, 11655–11667, https://doi.org/10.5194/acp-21-11655-2021, https://doi.org/10.5194/acp-21-11655-2021, 2021
Short summary
Short summary
This paper shows the first multisite online measurements of PM1 in Delhi, India, with measurements over different seasons in Old Delhi and New Delhi in 2018. Organic aerosol (OA) source apportionment was performed using positive matrix factorisation (PMF). Traffic was the main primary aerosol source for both OAs and black carbon, seen with PMF and Aethalometer model analysis, indicating that control of primary traffic exhaust emissions would make a significant reduction to Delhi air pollution.
Gongda Lu, Eloise A. Marais, Tuan V. Vu, Jingsha Xu, Zongbo Shi, James D. Lee, Qiang Zhang, Lu Shen, Gan Luo, and Fangqun Yu
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-428, https://doi.org/10.5194/acp-2021-428, 2021
Revised manuscript not accepted
Short summary
Short summary
Emission controls were imposed in Beijing-Tianjin-Hebei in northern China in autumn-winter 2017. We find that regional PM2.5 targets (15 % decrease relative to previous year) were exceeded. Our analysis shows that decline in precursor emissions only leads to less than half (43 %) the improved air quality. Most of the change (57 %) is due to interannual variability in meteorology. Stricter emission controls may be necessary in years with unfavourable meteorology.
Qiaorong Xie, Sihui Su, Jing Chen, Yuqing Dai, Siyao Yue, Hang Su, Haijie Tong, Wanyu Zhao, Lujie Ren, Yisheng Xu, Dong Cao, Ying Li, Yele Sun, Zifa Wang, Cong-Qiang Liu, Kimitaka Kawamura, Guibin Jiang, Yafang Cheng, and Pingqing Fu
Atmos. Chem. Phys., 21, 11453–11465, https://doi.org/10.5194/acp-21-11453-2021, https://doi.org/10.5194/acp-21-11453-2021, 2021
Short summary
Short summary
This study investigated the role of nighttime chemistry during Chinese New Year's Eve that enhances the formation of nitrooxy organosulfates in the aerosol phase. Results show that anthropogenic precursors, together with biogenic ones, considerably contribute to the formation of low-volatility nitrooxy OSs. Our study provides detailed molecular composition of firework-related aerosols, which gives new insights into the physicochemical properties and potential health effects of urban aerosols.
Kyle B. Delwiche, Sara Helen Knox, Avni Malhotra, Etienne Fluet-Chouinard, Gavin McNicol, Sarah Feron, Zutao Ouyang, Dario Papale, Carlo Trotta, Eleonora Canfora, You-Wei Cheah, Danielle Christianson, Ma. Carmelita R. Alberto, Pavel Alekseychik, Mika Aurela, Dennis Baldocchi, Sheel Bansal, David P. Billesbach, Gil Bohrer, Rosvel Bracho, Nina Buchmann, David I. Campbell, Gerardo Celis, Jiquan Chen, Weinan Chen, Housen Chu, Higo J. Dalmagro, Sigrid Dengel, Ankur R. Desai, Matteo Detto, Han Dolman, Elke Eichelmann, Eugenie Euskirchen, Daniela Famulari, Kathrin Fuchs, Mathias Goeckede, Sébastien Gogo, Mangaliso J. Gondwe, Jordan P. Goodrich, Pia Gottschalk, Scott L. Graham, Martin Heimann, Manuel Helbig, Carole Helfter, Kyle S. Hemes, Takashi Hirano, David Hollinger, Lukas Hörtnagl, Hiroki Iwata, Adrien Jacotot, Gerald Jurasinski, Minseok Kang, Kuno Kasak, John King, Janina Klatt, Franziska Koebsch, Ken W. Krauss, Derrick Y. F. Lai, Annalea Lohila, Ivan Mammarella, Luca Belelli Marchesini, Giovanni Manca, Jaclyn Hatala Matthes, Trofim Maximov, Lutz Merbold, Bhaskar Mitra, Timothy H. Morin, Eiko Nemitz, Mats B. Nilsson, Shuli Niu, Walter C. Oechel, Patricia Y. Oikawa, Keisuke Ono, Matthias Peichl, Olli Peltola, Michele L. Reba, Andrew D. Richardson, William Riley, Benjamin R. K. Runkle, Youngryel Ryu, Torsten Sachs, Ayaka Sakabe, Camilo Rey Sanchez, Edward A. Schuur, Karina V. R. Schäfer, Oliver Sonnentag, Jed P. Sparks, Ellen Stuart-Haëntjens, Cove Sturtevant, Ryan C. Sullivan, Daphne J. Szutu, Jonathan E. Thom, Margaret S. Torn, Eeva-Stiina Tuittila, Jessica Turner, Masahito Ueyama, Alex C. Valach, Rodrigo Vargas, Andrej Varlagin, Alma Vazquez-Lule, Joseph G. Verfaillie, Timo Vesala, George L. Vourlitis, Eric J. Ward, Christian Wille, Georg Wohlfahrt, Guan Xhuan Wong, Zhen Zhang, Donatella Zona, Lisamarie Windham-Myers, Benjamin Poulter, and Robert B. Jackson
Earth Syst. Sci. Data, 13, 3607–3689, https://doi.org/10.5194/essd-13-3607-2021, https://doi.org/10.5194/essd-13-3607-2021, 2021
Short summary
Short summary
Methane is an important greenhouse gas, yet we lack knowledge about its global emissions and drivers. We present FLUXNET-CH4, a new global collection of methane measurements and a critical resource for the research community. We use FLUXNET-CH4 data to quantify the seasonality of methane emissions from freshwater wetlands, finding that methane seasonality varies strongly with latitude. Our new database and analysis will improve wetland model accuracy and inform greenhouse gas budgets.
Meng Gao, Yang Yang, Hong Liao, Bin Zhu, Yuxuan Zhang, Zirui Liu, Xiao Lu, Chen Wang, Qiming Zhou, Yuesi Wang, Qiang Zhang, Gregory R. Carmichael, and Jianlin Hu
Atmos. Chem. Phys., 21, 11405–11421, https://doi.org/10.5194/acp-21-11405-2021, https://doi.org/10.5194/acp-21-11405-2021, 2021
Short summary
Short summary
Light absorption and radiative forcing of black carbon (BC) is influenced by both BC itself and its interactions with other aerosol chemical compositions. In this study, we used the online coupled WRF-Chem model to examine how emission control measures during the Asian-Pacific Economic Cooperation (APEC) conference affect the mixing state and light absorption of BC and the associated implications for BC-PBL interactions.
Toprak Aslan, Olli Peltola, Andreas Ibrom, Eiko Nemitz, Üllar Rannik, and Ivan Mammarella
Atmos. Meas. Tech., 14, 5089–5106, https://doi.org/10.5194/amt-14-5089-2021, https://doi.org/10.5194/amt-14-5089-2021, 2021
Short summary
Short summary
Vertical turbulent fluxes of gases measured by the eddy covariance (EC) technique are subject to high-frequency losses. There are different methods used to describe this low-pass filtering effect and to correct the measured fluxes. In this study, we analysed the systematic uncertainty related to this correction for various attenuation and signal-to-noise ratios. A new and robust transfer function method is finally proposed.
Olli Peltola, Toprak Aslan, Andreas Ibrom, Eiko Nemitz, Üllar Rannik, and Ivan Mammarella
Atmos. Meas. Tech., 14, 5071–5088, https://doi.org/10.5194/amt-14-5071-2021, https://doi.org/10.5194/amt-14-5071-2021, 2021
Short summary
Short summary
Gas fluxes measured by the eddy covariance (EC) technique are subject to filtering due to non-ideal instrumentation. For linear first-order systems this filtering causes also a time lag between vertical wind speed and gas signal which is additional to the gas travel time in the sampling line. The effect of this additional time lag on EC fluxes is ignored in current EC data processing routines. Here we show that this oversight biases EC fluxes and hence propose an approach to rectify this bias.
Benjamin A. Nault, Duseong S. Jo, Brian C. McDonald, Pedro Campuzano-Jost, Douglas A. Day, Weiwei Hu, Jason C. Schroder, James Allan, Donald R. Blake, Manjula R. Canagaratna, Hugh Coe, Matthew M. Coggon, Peter F. DeCarlo, Glenn S. Diskin, Rachel Dunmore, Frank Flocke, Alan Fried, Jessica B. Gilman, Georgios Gkatzelis, Jacqui F. Hamilton, Thomas F. Hanisco, Patrick L. Hayes, Daven K. Henze, Alma Hodzic, James Hopkins, Min Hu, L. Greggory Huey, B. Thomas Jobson, William C. Kuster, Alastair Lewis, Meng Li, Jin Liao, M. Omar Nawaz, Ilana B. Pollack, Jeffrey Peischl, Bernhard Rappenglück, Claire E. Reeves, Dirk Richter, James M. Roberts, Thomas B. Ryerson, Min Shao, Jacob M. Sommers, James Walega, Carsten Warneke, Petter Weibring, Glenn M. Wolfe, Dominique E. Young, Bin Yuan, Qiang Zhang, Joost A. de Gouw, and Jose L. Jimenez
Atmos. Chem. Phys., 21, 11201–11224, https://doi.org/10.5194/acp-21-11201-2021, https://doi.org/10.5194/acp-21-11201-2021, 2021
Short summary
Short summary
Secondary organic aerosol (SOA) is an important aspect of poor air quality for urban regions around the world, where a large fraction of the population lives. However, there is still large uncertainty in predicting SOA in urban regions. Here, we used data from 11 urban campaigns and show that the variability in SOA production in these regions is predictable and is explained by key emissions. These results are used to estimate the premature mortality associated with SOA in urban regions.
Zhenze Liu, Ruth M. Doherty, Oliver Wild, Michael Hollaway, and Fiona M. O’Connor
Atmos. Chem. Phys., 21, 10689–10706, https://doi.org/10.5194/acp-21-10689-2021, https://doi.org/10.5194/acp-21-10689-2021, 2021
Short summary
Short summary
Surface ozone (O3) has become the main cause of atmospheric pollution in the summertime in China since 2013. We find that 70 % reductions in NOx emissions are required to reduce O3 pollution in most of industrial regions of China, and controls in VOC emissions are very important. The new chemical scheme developed for a global chemistry–climate model not only captures the regional air pollution but also benefits the future studies of regional air-quality–climate interactions.
Haijie Tong, Fobang Liu, Alexander Filippi, Jake Wilson, Andrea M. Arangio, Yun Zhang, Siyao Yue, Steven Lelieveld, Fangxia Shen, Helmi-Marja K. Keskinen, Jing Li, Haoxuan Chen, Ting Zhang, Thorsten Hoffmann, Pingqing Fu, William H. Brune, Tuukka Petäjä, Markku Kulmala, Maosheng Yao, Thomas Berkemeier, Manabu Shiraiwa, and Ulrich Pöschl
Atmos. Chem. Phys., 21, 10439–10455, https://doi.org/10.5194/acp-21-10439-2021, https://doi.org/10.5194/acp-21-10439-2021, 2021
Short summary
Short summary
We measured radical yields of aqueous PM2.5 extracts and found lower yields at higher concentrations of PM2.5. Abundances of water-soluble transition metals and aromatics in PM2.5 were positively correlated with the relative fraction of •OH but negatively correlated with the relative fraction of C-centered radicals among detected radicals. Composition-dependent reactive species yields may explain differences in the reactivity and health effects of PM2.5 in clean versus polluted air.
Peng Wang, Juanyong Shen, Men Xia, Shida Sun, Yanli Zhang, Hongliang Zhang, and Xinming Wang
Atmos. Chem. Phys., 21, 10347–10356, https://doi.org/10.5194/acp-21-10347-2021, https://doi.org/10.5194/acp-21-10347-2021, 2021
Short summary
Short summary
Ozone (O3) pollution has received extensive attention due to worsening air quality and rising health risks. The Chinese National Day holiday (CNDH), which is associated with intensive commercial and tourist activities, serves as a valuable experiment to evaluate the O3 response during the holiday. We find sharply increasing trends of observed O3 concentrations throughout China during the CNDH, leading to 33 % additional total daily deaths.
James M. Cash, Ben Langford, Chiara Di Marco, Neil J. Mullinger, James Allan, Ernesto Reyes-Villegas, Ruthambara Joshi, Mathew R. Heal, W. Joe F. Acton, C. Nicholas Hewitt, Pawel K. Misztal, Will Drysdale, Tuhin K. Mandal, Shivani, Ranu Gadi, Bhola Ram Gurjar, and Eiko Nemitz
Atmos. Chem. Phys., 21, 10133–10158, https://doi.org/10.5194/acp-21-10133-2021, https://doi.org/10.5194/acp-21-10133-2021, 2021
Short summary
Short summary
We present the first real-time composition of submicron particulate matter (PM1) in Old Delhi using high-resolution aerosol mass spectrometry. Seasonal analysis shows peak concentrations occur during the post-monsoon, and novel-tracers reveal the largest sources are a combination of local open and regional crop residue burning. Strong links between increased chloride aerosol concentrations and burning sources of PM1 suggest burning sources are responsible for the post-monsoon chloride peak.
Daniel P. Phillips, Frances E. Hopkins, Thomas G. Bell, Peter S. Liss, Philip D. Nightingale, Claire E. Reeves, Charel Wohl, and Mingxi Yang
Atmos. Chem. Phys., 21, 10111–10132, https://doi.org/10.5194/acp-21-10111-2021, https://doi.org/10.5194/acp-21-10111-2021, 2021
Short summary
Short summary
We present the first measurements of the rate of transfer (flux) of three gases between the atmosphere and the ocean, using a direct flux measurement technique, at a coastal site. We show greater atmospheric loss of acetone and acetaldehyde into the ocean than estimated by global models for the open water; importantly, the acetaldehyde transfer direction is opposite to the model estimates. Measured dimethylsulfide fluxes agreed with a recent model. Isoprene fluxes were too weak to be measured.
Hua Fang, Xiaoqing Huang, Yanli Zhang, Chenglei Pei, Zuzhao Huang, Yujun Wang, Yanning Chen, Jianhong Yan, Jianqiang Zeng, Shaoxuan Xiao, Shilu Luo, Sheng Li, Jun Wang, Ming Zhu, Xuewei Fu, Zhenfeng Wu, Runqi Zhang, Wei Song, Guohua Zhang, Weiwei Hu, Mingjin Tang, Xiang Ding, Xinhui Bi, and Xinming Wang
Atmos. Chem. Phys., 21, 10005–10013, https://doi.org/10.5194/acp-21-10005-2021, https://doi.org/10.5194/acp-21-10005-2021, 2021
Short summary
Short summary
A tunnel test was initiated to measure the vehicular IVOC emissions under real-world driving conditions. Higher SOA formation estimated from vehicular IVOCs compared to those from traditional VOCs emphasized the greater importance of IVOCs in modulating urban SOA. The results also revealed that non-road diesel-fueled engines greatly contributed to IVOCs in China.
Qingyang Xiao, Yixuan Zheng, Guannan Geng, Cuihong Chen, Xiaomeng Huang, Huizheng Che, Xiaoye Zhang, Kebin He, and Qiang Zhang
Atmos. Chem. Phys., 21, 9475–9496, https://doi.org/10.5194/acp-21-9475-2021, https://doi.org/10.5194/acp-21-9475-2021, 2021
Short summary
Short summary
We used both statistical methods and a chemical transport model to assess the contribution of meteorology and emissions to PM2.5 during 2000–2018. Both methods revealed that emissions dominated the long-term PM2.5 trend with notable meteorological effects ranged up to 37.9 % of regional annual average PM2.5. The meteorological contribution became more beneficial to PM2.5 control in southern China but more unfavorable in northern China during the studied period.
Baozhu Ge, Danhui Xu, Oliver Wild, Xuefeng Yao, Junhua Wang, Xueshun Chen, Qixin Tan, Xiaole Pan, and Zifa Wang
Atmos. Chem. Phys., 21, 9441–9454, https://doi.org/10.5194/acp-21-9441-2021, https://doi.org/10.5194/acp-21-9441-2021, 2021
Short summary
Short summary
In this study, an improved sequential sampling method is developed and implemented to estimate the contribution of below-cloud and in-cloud wet deposition over four years of measurements in Beijing. We find that the contribution of below-cloud scavenging for Ca2+, SO4 2–, and NH4+ decreases from above 50 % in 2014 to below 40 % in 2017. This suggests that the Action Plan has mitigated particulate matter pollution in the surface layer and hence decreased scavenging due to the washout process.
Huihui Wu, Jonathan W. Taylor, Justin M. Langridge, Chenjie Yu, James D. Allan, Kate Szpek, Michael I. Cotterell, Paul I. Williams, Michael Flynn, Patrick Barker, Cathryn Fox, Grant Allen, James Lee, and Hugh Coe
Atmos. Chem. Phys., 21, 9417–9440, https://doi.org/10.5194/acp-21-9417-2021, https://doi.org/10.5194/acp-21-9417-2021, 2021
Short summary
Short summary
Seasonal biomass burning over West Africa is a globally significant source of carbonaceous particles in the atmosphere, which have important climate impacts but are poorly constrained. We conducted in situ airborne measurements to investigate the evolution of smoke aerosol properties in this region. We observed absorption enhancement for both black carbon and brown carbon after emission, which provides new field results and constraints on aerosol parameterizations for future climate models.
Bo Zheng, Qiang Zhang, Guannan Geng, Cuihong Chen, Qinren Shi, Mengshi Cui, Yu Lei, and Kebin He
Earth Syst. Sci. Data, 13, 2895–2907, https://doi.org/10.5194/essd-13-2895-2021, https://doi.org/10.5194/essd-13-2895-2021, 2021
Short summary
Short summary
Here we report the monthly anthropogenic pollutant emissions in China during the COVID-19 pandemic by using a bottom-up approach based on near-real-time data. The COVID lockdowns were estimated to have reduced China's emissions substantially between January and March in 2020, with the largest reduction in February. With the spread of coronavirus controlled, China's anthropogenic emissions rebounded in April and since then returned to levels comparable to those of 2019 through December 2020.
Anke Mutzel, Yanli Zhang, Olaf Böge, Maria Rodigast, Agata Kolodziejczyk, Xinming Wang, and Hartmut Herrmann
Atmos. Chem. Phys., 21, 8479–8498, https://doi.org/10.5194/acp-21-8479-2021, https://doi.org/10.5194/acp-21-8479-2021, 2021
Short summary
Short summary
This study investigates secondary organic aerosol (SOA) formation and particle growth from α-pinene, limonene, and m-cresol oxidation through NO3 and OH radicals and the effect of relative humidity. The formed SOA is comprehensively characterized with respect to the content of OC / EC, WSOC, SOA-bound peroxides, and SOA marker compounds. The findings present new insights and implications of nighttime chemistry, which can form SOA more efficiently than OH radical reaction during daytime.
Chenshuo Ye, Bin Yuan, Yi Lin, Zelong Wang, Weiwei Hu, Tiange Li, Wei Chen, Caihong Wu, Chaomin Wang, Shan Huang, Jipeng Qi, Baolin Wang, Chen Wang, Wei Song, Xinming Wang, E Zheng, Jordan E. Krechmer, Penglin Ye, Zhanyi Zhang, Xuemei Wang, Douglas R. Worsnop, and Min Shao
Atmos. Chem. Phys., 21, 8455–8478, https://doi.org/10.5194/acp-21-8455-2021, https://doi.org/10.5194/acp-21-8455-2021, 2021
Short summary
Short summary
We performed measurements of gaseous and particulate organic compounds using a state-of-the-art online mass spectrometer in urban air. Using the dataset, we provide a holistic chemical characterization of oxygenated organic compounds in the polluted urban atmosphere, which can serve as a reference for the future field measurements of organic compounds in cities.
Siqi Hou, Di Liu, Jingsha Xu, Tuan V. Vu, Xuefang Wu, Deepchandra Srivastava, Pingqing Fu, Linjie Li, Yele Sun, Athanasia Vlachou, Vaios Moschos, Gary Salazar, Sönke Szidat, André S. H. Prévôt, Roy M. Harrison, and Zongbo Shi
Atmos. Chem. Phys., 21, 8273–8292, https://doi.org/10.5194/acp-21-8273-2021, https://doi.org/10.5194/acp-21-8273-2021, 2021
Short summary
Short summary
This study provides a newly developed method which combines radiocarbon (14C) with organic tracers to enable source apportionment of primary and secondary fossil vs. non-fossil sources of carbonaceous aerosols at an urban and a rural site of Beijing. The source apportionment results were compared with those by chemical mass balance and AMS/ACSM-PMF methods. Correlations of WINSOC and WSOC with different sources of OC were also performed to elucidate the formation mechanisms of SOC.
Jingsha Xu, Di Liu, Xuefang Wu, Tuan V. Vu, Yanli Zhang, Pingqing Fu, Yele Sun, Weiqi Xu, Bo Zheng, Roy M. Harrison, and Zongbo Shi
Atmos. Chem. Phys., 21, 7321–7341, https://doi.org/10.5194/acp-21-7321-2021, https://doi.org/10.5194/acp-21-7321-2021, 2021
Short summary
Short summary
Source apportionment of fine aerosols in an urban site of Beijing used a chemical mass balance (CMB) model. Seven primary sources (industrial/residential coal burning, biomass burning, gasoline/diesel vehicles, cooking and vegetative detritus) explained an average of 75.7 % and 56.1 % of fine OC in winter and summer, respectively. CMB was found to resolve more primary OA sources than AMS-PMF, but the latter apportioned more secondary OA sources.
Chao Peng, Patricia N. Razafindrambinina, Kotiba A. Malek, Lanxiadi Chen, Weigang Wang, Ru-Jin Huang, Yuqing Zhang, Xiang Ding, Maofa Ge, Xinming Wang, Akua A. Asa-Awuku, and Mingjin Tang
Atmos. Chem. Phys., 21, 7135–7148, https://doi.org/10.5194/acp-21-7135-2021, https://doi.org/10.5194/acp-21-7135-2021, 2021
Short summary
Short summary
Organosulfates are important constituents in tropospheric aerosol particles, but their hygroscopic properties and cloud condensation nuclei activities are not well understood. In our work, three complementary techniques were employed to investigate the interactions of 11 organosulfates with water vapor under sub- and supersaturated conditions.
Robbie Ramsay, Chiara F. Di Marco, Mathew R. Heal, Matthias Sörgel, Paulo Artaxo, Meinrat O. Andreae, and Eiko Nemitz
Biogeosciences, 18, 2809–2825, https://doi.org/10.5194/bg-18-2809-2021, https://doi.org/10.5194/bg-18-2809-2021, 2021
Short summary
Short summary
The exchange of the gas ammonia between the atmosphere and the surface is an important biogeochemical process, but little is known of this exchange for certain ecosystems, such as the Amazon rainforest. This study took measurements of ammonia exchange over an Amazon rainforest site and subsequently modelled the observed deposition and emission patterns. We observed emissions of ammonia from the rainforest, which can be simulated accurately by using a canopy resistance modelling approach.
Claire E. Reeves, Graham P. Mills, Lisa K. Whalley, W. Joe F. Acton, William J. Bloss, Leigh R. Crilley, Sue Grimmond, Dwayne E. Heard, C. Nicholas Hewitt, James R. Hopkins, Simone Kotthaus, Louisa J. Kramer, Roderic L. Jones, James D. Lee, Yanhui Liu, Bin Ouyang, Eloise Slater, Freya Squires, Xinming Wang, Robert Woodward-Massey, and Chunxiang Ye
Atmos. Chem. Phys., 21, 6315–6330, https://doi.org/10.5194/acp-21-6315-2021, https://doi.org/10.5194/acp-21-6315-2021, 2021
Short summary
Short summary
The impact of isoprene on atmospheric chemistry is dependent on how its oxidation products interact with other pollutants, specifically nitrogen oxides. Such interactions can lead to isoprene nitrates. We made measurements of the concentrations of individual isoprene nitrate isomers in Beijing and used a model to test current understanding of their chemistry. We highlight areas of uncertainty in understanding, in particular the chemistry following oxidation of isoprene by the nitrate radical.
Simone T. Andersen, Lucy J. Carpenter, Beth S. Nelson, Luis Neves, Katie A. Read, Chris Reed, Martyn Ward, Matthew J. Rowlinson, and James D. Lee
Atmos. Meas. Tech., 14, 3071–3085, https://doi.org/10.5194/amt-14-3071-2021, https://doi.org/10.5194/amt-14-3071-2021, 2021
Short summary
Short summary
NOx has been measured in remote marine air via chemiluminescence detection using two different methods for NO2 to NO photolytic conversion: (a) internal diodes and a reaction chamber made of Teflon-like barium-doped material, which causes a NO2 artefact, and (b) external diodes and a quartz photolysis cell. Once corrections are made for the artefact of (a), the two converters are shown to give comparable NO2 mixing ratios, giving confidence in the quantitative measurement of NOx at low levels.
Philippe Massicotte, Rainer M. W. Amon, David Antoine, Philippe Archambault, Sergio Balzano, Simon Bélanger, Ronald Benner, Dominique Boeuf, Annick Bricaud, Flavienne Bruyant, Gwenaëlle Chaillou, Malik Chami, Bruno Charrière, Jing Chen, Hervé Claustre, Pierre Coupel, Nicole Delsaut, David Doxaran, Jens Ehn, Cédric Fichot, Marie-Hélène Forget, Pingqing Fu, Jonathan Gagnon, Nicole Garcia, Beat Gasser, Jean-François Ghiglione, Gaby Gorsky, Michel Gosselin, Priscillia Gourvil, Yves Gratton, Pascal Guillot, Hermann J. Heipieper, Serge Heussner, Stanford B. Hooker, Yannick Huot, Christian Jeanthon, Wade Jeffrey, Fabien Joux, Kimitaka Kawamura, Bruno Lansard, Edouard Leymarie, Heike Link, Connie Lovejoy, Claudie Marec, Dominique Marie, Johannie Martin, Jacobo Martín, Guillaume Massé, Atsushi Matsuoka, Vanessa McKague, Alexandre Mignot, William L. Miller, Juan-Carlos Miquel, Alfonso Mucci, Kaori Ono, Eva Ortega-Retuerta, Christos Panagiotopoulos, Tim Papakyriakou, Marc Picheral, Louis Prieur, Patrick Raimbault, Joséphine Ras, Rick A. Reynolds, André Rochon, Jean-François Rontani, Catherine Schmechtig, Sabine Schmidt, Richard Sempéré, Yuan Shen, Guisheng Song, Dariusz Stramski, Eri Tachibana, Alexandre Thirouard, Imma Tolosa, Jean-Éric Tremblay, Mickael Vaïtilingom, Daniel Vaulot, Frédéric Vaultier, John K. Volkman, Huixiang Xie, Guangming Zheng, and Marcel Babin
Earth Syst. Sci. Data, 13, 1561–1592, https://doi.org/10.5194/essd-13-1561-2021, https://doi.org/10.5194/essd-13-1561-2021, 2021
Short summary
Short summary
The MALINA oceanographic expedition was conducted in the Mackenzie River and the Beaufort Sea systems. The sampling was performed across seven shelf–basin transects to capture the meridional gradient between the estuary and the open ocean. The main goal of this research program was to better understand how processes such as primary production are influencing the fate of organic matter originating from the surrounding terrestrial landscape during its transition toward the Arctic Ocean.
Steven J. Campbell, Kate Wolfer, Battist Utinger, Joe Westwood, Zhi-Hui Zhang, Nicolas Bukowiecki, Sarah S. Steimer, Tuan V. Vu, Jingsha Xu, Nicholas Straw, Steven Thomson, Atallah Elzein, Yele Sun, Di Liu, Linjie Li, Pingqing Fu, Alastair C. Lewis, Roy M. Harrison, William J. Bloss, Miranda Loh, Mark R. Miller, Zongbo Shi, and Markus Kalberer
Atmos. Chem. Phys., 21, 5549–5573, https://doi.org/10.5194/acp-21-5549-2021, https://doi.org/10.5194/acp-21-5549-2021, 2021
Short summary
Short summary
In this study, we quantify PM2.5 oxidative potential (OP), a metric widely suggested as a potential measure of particle toxicity, in Beijing in summer and winter using four acellular assays. We correlate PM2.5 OP with a comprehensive range of atmospheric and particle composition measurements, demonstrating inter-assay differences and seasonal variation of PM2.5 OP. Using multivariate statistical analysis, we highlight specific particle chemical components and sources that influence OP.
Long Peng, Lei Li, Guohua Zhang, Xubing Du, Xinming Wang, Ping'an Peng, Guoying Sheng, and Xinhui Bi
Atmos. Chem. Phys., 21, 5605–5613, https://doi.org/10.5194/acp-21-5605-2021, https://doi.org/10.5194/acp-21-5605-2021, 2021
Short summary
Short summary
We build a novel system that utilizes an aerodynamic aerosol classifier (AAC) combined with a single-particle aerosol mass spectrometry (SPAMS) to simultaneously characterize the volume equivalent diameter (Dve), chemical compositions, and effective density (ρe) of individual particles in real time. A test of the AAC-SPAMS with both spherical and aspherical particles shows that the deviations between the measured and theoretical values are less than 6 %.
Weiqi Xu, Chun Chen, Yanmei Qiu, Ying Li, Zhiqiang Zhang, Eleni Karnezi, Spyros N. Pandis, Conghui Xie, Zhijie Li, Jiaxing Sun, Nan Ma, Wanyun Xu, Pingqing Fu, Zifa Wang, Jiang Zhu, Douglas R. Worsnop, Nga Lee Ng, and Yele Sun
Atmos. Chem. Phys., 21, 5463–5476, https://doi.org/10.5194/acp-21-5463-2021, https://doi.org/10.5194/acp-21-5463-2021, 2021
Short summary
Short summary
Here aerosol volatility and viscosity at a rural site (Gucheng) and an urban site (Beijing) in the North China Plain (NCP) were investigated in summer and winter. Our results showed that organic aerosol (OA) in winter in the NCP is more volatile than that in summer due to enhanced primary emissions from coal combustion and biomass burning. We also found that OA existed mainly as a solid in winter in Beijing but as semisolids in Beijing in summer and Gucheng in winter.
Santosh Kumar Verma, Kimitaka Kawamura, Fei Yang, Pingqing Fu, Yugo Kanaya, and Zifa Wang
Atmos. Chem. Phys., 21, 4959–4978, https://doi.org/10.5194/acp-21-4959-2021, https://doi.org/10.5194/acp-21-4959-2021, 2021
Short summary
Short summary
We studied aerosol samples collected in autumn 2007 with day and night intervals in a rural site of Mangshan, north of Beijing, for sugar compounds (SCs) that are abundant organic aerosol components and can influence the air quality and climate. We found higher concentrations of biomass burning (BB) products at nighttime than daytime, whereas pollen tracers and other SCs showed an opposite diurnal trend, because this site is meteorologically characterized by a mountain/valley breeze.
Tabish Umar Ansari, Oliver Wild, Edmund Ryan, Ying Chen, Jie Li, and Zifa Wang
Atmos. Chem. Phys., 21, 4471–4485, https://doi.org/10.5194/acp-21-4471-2021, https://doi.org/10.5194/acp-21-4471-2021, 2021
Short summary
Short summary
We use novel modelling approaches to quantify the lingering effects of 1 d local and regional emission controls on subsequent days, the effects of longer continuous emission controls of individual sectors over different regions, and the effects of combined emission controls of multiple sectors and regions on air quality in Beijing under varying weather conditions to inform precise short-term emission control policies for avoiding heavy haze pollution in Beijing.
Paul T. Griffiths, Lee T. Murray, Guang Zeng, Youngsub Matthew Shin, N. Luke Abraham, Alexander T. Archibald, Makoto Deushi, Louisa K. Emmons, Ian E. Galbally, Birgit Hassler, Larry W. Horowitz, James Keeble, Jane Liu, Omid Moeini, Vaishali Naik, Fiona M. O'Connor, Naga Oshima, David Tarasick, Simone Tilmes, Steven T. Turnock, Oliver Wild, Paul J. Young, and Prodromos Zanis
Atmos. Chem. Phys., 21, 4187–4218, https://doi.org/10.5194/acp-21-4187-2021, https://doi.org/10.5194/acp-21-4187-2021, 2021
Short summary
Short summary
We analyse the CMIP6 Historical and future simulations for tropospheric ozone, a species which is important for many aspects of atmospheric chemistry. We show that the current generation of models agrees well with observations, being particularly successful in capturing trends in surface ozone and its vertical distribution in the troposphere. We analyse the factors that control ozone and show that they evolve over the period of the CMIP6 experiments.
Stuart K. Grange, James D. Lee, Will S. Drysdale, Alastair C. Lewis, Christoph Hueglin, Lukas Emmenegger, and David C. Carslaw
Atmos. Chem. Phys., 21, 4169–4185, https://doi.org/10.5194/acp-21-4169-2021, https://doi.org/10.5194/acp-21-4169-2021, 2021
Short summary
Short summary
The changes in mobility across Europe due to the COVID-19 lockdowns had consequences for air quality. We compare what was experienced to estimates of "what would have been" without the lockdowns. Nitrogen dioxide (NO2), an important vehicle-sourced pollutant, decreased by a third. However, ozone (O3) increased in response to lower NO2. Because NO2 is decreasing over time, increases in O3 can be expected in European urban areas and will require management to avoid future negative outcomes.
Shona E. Wilde, Pamela A. Dominutti, Grant Allen, Stephen J. Andrews, Prudence Bateson, Stephane J.-B. Bauguitte, Ralph R. Burton, Ioana Colfescu, James France, James R. Hopkins, Langwen Huang, Anna E. Jones, Tom Lachlan-Cope, James D. Lee, Alastair C. Lewis, Stephen D. Mobbs, Alexandra Weiss, Stuart Young, and Ruth M. Purvis
Atmos. Chem. Phys., 21, 3741–3762, https://doi.org/10.5194/acp-21-3741-2021, https://doi.org/10.5194/acp-21-3741-2021, 2021
Short summary
Short summary
We use airborne measurements to evaluate the speciation of volatile organic compound (VOC) emissions from offshore oil and gas (O&G) installations in the North Sea. The composition of emissions varied across regions associated with either gas, condensate or oil extraction, demonstrating that VOC emissions are not uniform across the whole O&G sector. We compare our results to VOC source profiles in the UK emissions inventory, showing these emissions are not currently fully characterized.
Gareth J. Stewart, Beth S. Nelson, W. Joe F. Acton, Adam R. Vaughan, Naomi J. Farren, James R. Hopkins, Martyn W. Ward, Stefan J. Swift, Rahul Arya, Arnab Mondal, Ritu Jangirh, Sakshi Ahlawat, Lokesh Yadav, Sudhir K. Sharma, Siti S. M. Yunus, C. Nicholas Hewitt, Eiko Nemitz, Neil Mullinger, Ranu Gadi, Lokesh K. Sahu, Nidhi Tripathi, Andrew R. Rickard, James D. Lee, Tuhin K. Mandal, and Jacqueline F. Hamilton
Atmos. Chem. Phys., 21, 2407–2426, https://doi.org/10.5194/acp-21-2407-2021, https://doi.org/10.5194/acp-21-2407-2021, 2021
Short summary
Short summary
Biomass burning releases many lower-molecular-weight organic species which are difficult to analyse but important for the formation of organic aerosol. This study examined a new high-resolution technique to better characterise these difficult-to-analyse organic components. Some burning sources analysed in this study, such as cow dung cake and municipal solid waste, released extremely complex mixtures containing many thousands of different lower-volatility organic compounds.
Gareth J. Stewart, W. Joe F. Acton, Beth S. Nelson, Adam R. Vaughan, James R. Hopkins, Rahul Arya, Arnab Mondal, Ritu Jangirh, Sakshi Ahlawat, Lokesh Yadav, Sudhir K. Sharma, Rachel E. Dunmore, Siti S. M. Yunus, C. Nicholas Hewitt, Eiko Nemitz, Neil Mullinger, Ranu Gadi, Lokesh K. Sahu, Nidhi Tripathi, Andrew R. Rickard, James D. Lee, Tuhin K. Mandal, and Jacqueline F. Hamilton
Atmos. Chem. Phys., 21, 2383–2406, https://doi.org/10.5194/acp-21-2383-2021, https://doi.org/10.5194/acp-21-2383-2021, 2021
Short summary
Short summary
Biomass burning is a major source of trace gases to the troposphere; however, the composition and quantity of emissions vary greatly between different fuel types. This work provided near-total quantitation of non-methane volatile organic compounds from combustion of biofuels from India. Emissions from cow dung cake combustion were significantly larger than conventional fuelwood combustion, potentially indicating that this source has a disproportionately large impact on regional air quality.
Lei Liu, Jian Zhang, Yinxiao Zhang, Yuanyuan Wang, Liang Xu, Qi Yuan, Dantong Liu, Yele Sun, Pingqing Fu, Zongbo Shi, and Weijun Li
Atmos. Chem. Phys., 21, 2251–2265, https://doi.org/10.5194/acp-21-2251-2021, https://doi.org/10.5194/acp-21-2251-2021, 2021
Short summary
Short summary
We found that large numbers of light-absorbing primary organic particles with high viscosity, especially tarballs, from domestic coal and biomass burning occurred in rural and even urban hazes in the winter of North China. For the first time, we characterized the atmospheric aging process of these burning-related primary organic particles by microscopic analysis and further evaluated their light absorption enhancement resulting from the “lensing effect” of secondary inorganic coatings.
Lisa K. Whalley, Eloise J. Slater, Robert Woodward-Massey, Chunxiang Ye, James D. Lee, Freya Squires, James R. Hopkins, Rachel E. Dunmore, Marvin Shaw, Jacqueline F. Hamilton, Alastair C. Lewis, Archit Mehra, Stephen D. Worrall, Asan Bacak, Thomas J. Bannan, Hugh Coe, Carl J. Percival, Bin Ouyang, Roderic L. Jones, Leigh R. Crilley, Louisa J. Kramer, William J. Bloss, Tuan Vu, Simone Kotthaus, Sue Grimmond, Yele Sun, Weiqi Xu, Siyao Yue, Lujie Ren, W. Joe F. Acton, C. Nicholas Hewitt, Xinming Wang, Pingqing Fu, and Dwayne E. Heard
Atmos. Chem. Phys., 21, 2125–2147, https://doi.org/10.5194/acp-21-2125-2021, https://doi.org/10.5194/acp-21-2125-2021, 2021
Short summary
Short summary
To understand how emission controls will impact ozone, an understanding of the sources and sinks of OH and the chemical cycling between peroxy radicals is needed. This paper presents measurements of OH, HO2 and total RO2 taken in central Beijing. The radical observations are compared to a detailed chemistry model, which shows that under low NO conditions, there is a missing OH source. Under high NOx conditions, the model under-predicts RO2 and impacts our ability to model ozone.
Mike J. Newland, Daniel J. Bryant, Rachel E. Dunmore, Thomas J. Bannan, W. Joe F. Acton, Ben Langford, James R. Hopkins, Freya A. Squires, William Dixon, William S. Drysdale, Peter D. Ivatt, Mathew J. Evans, Peter M. Edwards, Lisa K. Whalley, Dwayne E. Heard, Eloise J. Slater, Robert Woodward-Massey, Chunxiang Ye, Archit Mehra, Stephen D. Worrall, Asan Bacak, Hugh Coe, Carl J. Percival, C. Nicholas Hewitt, James D. Lee, Tianqu Cui, Jason D. Surratt, Xinming Wang, Alastair C. Lewis, Andrew R. Rickard, and Jacqueline F. Hamilton
Atmos. Chem. Phys., 21, 1613–1625, https://doi.org/10.5194/acp-21-1613-2021, https://doi.org/10.5194/acp-21-1613-2021, 2021
Short summary
Short summary
We report the formation of secondary pollutants in the urban megacity of Beijing that are typically associated with remote regions such as rainforests. This is caused by extremely low levels of nitric oxide (NO), typically expected to be high in urban areas, observed in the afternoon. This work has significant implications for how we understand atmospheric chemistry in the urban environment and thus for how to implement effective policies to improve urban air quality.
Jun Liu, Dan Tong, Yixuan Zheng, Jing Cheng, Xinying Qin, Qinren Shi, Liu Yan, Yu Lei, and Qiang Zhang
Atmos. Chem. Phys., 21, 1627–1647, https://doi.org/10.5194/acp-21-1627-2021, https://doi.org/10.5194/acp-21-1627-2021, 2021
Short summary
Short summary
In this study, we investigated the decadal changes in carbon dioxide and air pollutant emissions in China's cement industry for the period 1990–2015 based on intensive unit-based information. We found that from 1990 to 2015, accompanied by a 10.3-fold increase in cement production, CO2, SO2, and NOx emissions from China's cement industry increased by 627 %, 56 %, and 659 %, whereas CO, PM2.5, and PM10 emissions decreased by 9 %, 63 %, and 59 %, respectively.
Y. Sim Tang, Chris R. Flechard, Ulrich Dämmgen, Sonja Vidic, Vesna Djuricic, Marta Mitosinkova, Hilde T. Uggerud, Maria J. Sanz, Ivan Simmons, Ulrike Dragosits, Eiko Nemitz, Marsailidh Twigg, Netty van Dijk, Yannick Fauvel, Francisco Sanz, Martin Ferm, Cinzia Perrino, Maria Catrambone, David Leaver, Christine F. Braban, J. Neil Cape, Mathew R. Heal, and Mark A. Sutton
Atmos. Chem. Phys., 21, 875–914, https://doi.org/10.5194/acp-21-875-2021, https://doi.org/10.5194/acp-21-875-2021, 2021
Short summary
Short summary
The DELTA® approach provided speciated, monthly data on reactive gases (NH3, HNO3, SO2, HCl) and aerosols (NH4+, NO3−, SO42−, Cl−, Na+) across Europe (2006–2010). Differences in spatial and temporal concentrations and patterns between geographic regions and four ecosystem types were captured. NH3 and NH4NO3 were dominant components, highlighting their growing relative importance in ecosystem impacts (acidification, eutrophication) and human health effects (NH3 as a precursor to PM2.5) in Europe.
Rutambhara Joshi, Dantong Liu, Eiko Nemitz, Ben Langford, Neil Mullinger, Freya Squires, James Lee, Yunfei Wu, Xiaole Pan, Pingqing Fu, Simone Kotthaus, Sue Grimmond, Qiang Zhang, Ruili Wu, Oliver Wild, Michael Flynn, Hugh Coe, and James Allan
Atmos. Chem. Phys., 21, 147–162, https://doi.org/10.5194/acp-21-147-2021, https://doi.org/10.5194/acp-21-147-2021, 2021
Short summary
Short summary
Black carbon (BC) is a component of particulate matter which has significant effects on climate and human health. Sources of BC include biomass burning, transport, industry and domestic cooking and heating. In this study, we measured BC emissions in Beijing, finding a dominance of traffic emissions over all other sources. The quantitative method presented here has benefits for revising widely used emissions inventories and for understanding BC sources with impacts on air quality and climate.
James L. France, Prudence Bateson, Pamela Dominutti, Grant Allen, Stephen Andrews, Stephane Bauguitte, Max Coleman, Tom Lachlan-Cope, Rebecca E. Fisher, Langwen Huang, Anna E. Jones, James Lee, David Lowry, Joseph Pitt, Ruth Purvis, John Pyle, Jacob Shaw, Nicola Warwick, Alexandra Weiss, Shona Wilde, Jonathan Witherstone, and Stuart Young
Atmos. Meas. Tech., 14, 71–88, https://doi.org/10.5194/amt-14-71-2021, https://doi.org/10.5194/amt-14-71-2021, 2021
Short summary
Short summary
Measuring emission rates of methane from installations is tricky, and it is even more so when those installations are located offshore. Here, we show the aircraft set-up and demonstrate an effective methodology for surveying emissions from UK and Dutch offshore oil and gas installations. We present example data collected from two campaigns to demonstrate the challenges and solutions encountered during these surveys.
David C. Loades, Mingxi Yang, Thomas G. Bell, Adam R. Vaughan, Ryan J. Pound, Stefan Metzger, James D. Lee, and Lucy J. Carpenter
Atmos. Meas. Tech., 13, 6915–6931, https://doi.org/10.5194/amt-13-6915-2020, https://doi.org/10.5194/amt-13-6915-2020, 2020
Short summary
Short summary
The loss of ozone to the sea surface was measured from the south coast of the UK and was found to be more rapid than previous observations over the open ocean. This is likely a consequence of different chemistry and biology in coastal environments. Strong winds appeared to speed up the loss of ozone. A better understanding of what influences ozone loss over the sea will lead to better model estimates of total ozone in the troposphere.
James D. Lee, Will S. Drysdale, Doug P. Finch, Shona E. Wilde, and Paul I. Palmer
Atmos. Chem. Phys., 20, 15743–15759, https://doi.org/10.5194/acp-20-15743-2020, https://doi.org/10.5194/acp-20-15743-2020, 2020
Short summary
Short summary
Efforts to prevent the COVID-19 virus spreading across the globe have included travel restrictions and the closure of workplaces, leading to a significant drop in emissions of primary air pollutants. This provides for a unique opportunity to examine how air pollutant concentrations respond to an abrupt and prolonged reduction. We examine how NO2 and O3 have been affected at several urban measurement sites in the UK. We look at the change in NO2 compared to previous years and the effect on O3.
Robbie Ramsay, Chiara F. Di Marco, Matthias Sörgel, Mathew R. Heal, Samara Carbone, Paulo Artaxo, Alessandro C. de Araùjo, Marta Sá, Christopher Pöhlker, Jost Lavric, Meinrat O. Andreae, and Eiko Nemitz
Atmos. Chem. Phys., 20, 15551–15584, https://doi.org/10.5194/acp-20-15551-2020, https://doi.org/10.5194/acp-20-15551-2020, 2020
Short summary
Short summary
The Amazon rainforest is a unique
laboratoryto study the processes which govern the exchange of gases and aerosols to and from the atmosphere. This study investigated these processes by measuring the atmospheric concentrations of trace gases and particles at the Amazon Tall Tower Observatory. We found that the long-range transport of pollutants can affect the atmospheric composition above the Amazon rainforest and that the gases ammonia and nitrous acid can be emitted from the rainforest.
Patrick A. Barker, Grant Allen, Martin Gallagher, Joseph R. Pitt, Rebecca E. Fisher, Thomas Bannan, Euan G. Nisbet, Stéphane J.-B. Bauguitte, Dominika Pasternak, Samuel Cliff, Marina B. Schimpf, Archit Mehra, Keith N. Bower, James D. Lee, Hugh Coe, and Carl J. Percival
Atmos. Chem. Phys., 20, 15443–15459, https://doi.org/10.5194/acp-20-15443-2020, https://doi.org/10.5194/acp-20-15443-2020, 2020
Short summary
Short summary
Africa is estimated to account for approximately 52 % of global biomass burning (BB) carbon emissions. Despite this, there has been little previous in situ study of African BB emissions. This work presents BB emission factors for various atmospheric trace gases sampled from an aircraft in two distinct areas of Africa (Senegal and Uganda). Intracontinental variability in biomass burning methane emission is identified, which is attributed to difference in the specific fuel mixtures burnt.
Yarong Peng, Hongli Wang, Qian Wang, Shengao Jing, Jingyu An, Yaqin Gao, Cheng Huang, Rusha Yan, Haixia Dai, Tiantao Cheng, Qiang Zhang, Meng Li, Li Li, Shengrong Lou, Shikang Tao, Qinyao Hu, Jun Lu, and Changhong Chen
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1108, https://doi.org/10.5194/acp-2020-1108, 2020
Revised manuscript not accepted
Short summary
Short summary
The evolution of NMHCs emissions and the effectiveness of control measures were investigated based on long term measurements in a megacity of China. Discrepancies between measurements and emission inventories emphasized the need for emission validation both in speciation and sources. Varied trends of NMHCs speciation and sources suggested the differential effect of the past control measures, which provided new insights into future clean air policies in polluted region including China.
Caihong Wu, Chaomin Wang, Sihang Wang, Wenjie Wang, Bin Yuan, Jipeng Qi, Baolin Wang, Hongli Wang, Chen Wang, Wei Song, Xinming Wang, Weiwei Hu, Shengrong Lou, Chenshuo Ye, Yuwen Peng, Zelong Wang, Yibo Huangfu, Yan Xie, Manni Zhu, Junyu Zheng, Xuemei Wang, Bin Jiang, Zhanyi Zhang, and Min Shao
Atmos. Chem. Phys., 20, 14769–14785, https://doi.org/10.5194/acp-20-14769-2020, https://doi.org/10.5194/acp-20-14769-2020, 2020
Short summary
Short summary
Based on measurements from an online mass spectrometer, we quantify volatile organic compound (VOC) concentrations from numerous ions of the mass spectrometer, using information from laboratory-obtained calibration results. We find that most VOC concentrations are from oxygenated VOCs (OVOCs). We further show that these OVOCs also contribute significantly to OH reactivity. Our results suggest the important role of OVOCs in VOC emissions and chemistry in urban air.
Eloise J. Slater, Lisa K. Whalley, Robert Woodward-Massey, Chunxiang Ye, James D. Lee, Freya Squires, James R. Hopkins, Rachel E. Dunmore, Marvin Shaw, Jacqueline F. Hamilton, Alastair C. Lewis, Leigh R. Crilley, Louisa Kramer, William Bloss, Tuan Vu, Yele Sun, Weiqi Xu, Siyao Yue, Lujie Ren, W. Joe F. Acton, C. Nicholas Hewitt, Xinming Wang, Pingqing Fu, and Dwayne E. Heard
Atmos. Chem. Phys., 20, 14847–14871, https://doi.org/10.5194/acp-20-14847-2020, https://doi.org/10.5194/acp-20-14847-2020, 2020
Short summary
Short summary
The paper details atmospheric chemistry in a megacity (Beijing), focussing on radicals which mediate the formation of secondary pollutants such as ozone and particles. Highly polluted conditions were experienced, including the highest ever levels of nitric oxide (NO), with simultaneous radical measurements. Radical concentrations were large during "haze" events, demonstrating active photochemistry. Modelling showed that our understanding of the chemistry at high NOx levels is incomplete.
Qingqing Yu, Xiang Ding, Quanfu He, Weiqiang Yang, Ming Zhu, Sheng Li, Runqi Zhang, Ruqin Shen, Yanli Zhang, Xinhui Bi, Yuesi Wang, Ping'an Peng, and Xinming Wang
Atmos. Chem. Phys., 20, 14581–14595, https://doi.org/10.5194/acp-20-14581-2020, https://doi.org/10.5194/acp-20-14581-2020, 2020
Short summary
Short summary
We carried out a 1-year PM concurrent observation at 12 sites across six regions of China, and size-segregated PAHs were measured. We found both PAHs and BaPeq were concentrated in PM1.1, and northern China had higher PAHs' pollution and inhalation cancer risk than southern China. Nationwide increases in both PAH levels and inhalation cancer risk occurred in winter. We suggest reducing coal and biofuel consumption in the residential sector is an important option to mitigate PAHs' health risks.
Junjun Deng, Hao Guo, Hongliang Zhang, Jialei Zhu, Xin Wang, and Pingqing Fu
Atmos. Chem. Phys., 20, 14419–14435, https://doi.org/10.5194/acp-20-14419-2020, https://doi.org/10.5194/acp-20-14419-2020, 2020
Short summary
Short summary
One-year source apportionment of BC aerosols in a coastal city in China was conducted with the light-absorption observation-based method and source-oriented model. Source contributions identified by the two source apportionment methods were compared. Temporal variability, potential sources and transport pathways of BC from fossil fuel and biomass burning were characterized. Significant influence of biomass burning in North and East–Central China on BC in the region was highlighted.
Jingsha Xu, Shaojie Song, Roy M. Harrison, Congbo Song, Lianfang Wei, Qiang Zhang, Yele Sun, Lu Lei, Chao Zhang, Xiaohong Yao, Dihui Chen, Weijun Li, Miaomiao Wu, Hezhong Tian, Lining Luo, Shengrui Tong, Weiran Li, Junling Wang, Guoliang Shi, Yanqi Huangfu, Yingze Tian, Baozhu Ge, Shaoli Su, Chao Peng, Yang Chen, Fumo Yang, Aleksandra Mihajlidi-Zelić, Dragana Đorđević, Stefan J. Swift, Imogen Andrews, Jacqueline F. Hamilton, Ye Sun, Agung Kramawijaya, Jinxiu Han, Supattarachai Saksakulkrai, Clarissa Baldo, Siqi Hou, Feixue Zheng, Kaspar R. Daellenbach, Chao Yan, Yongchun Liu, Markku Kulmala, Pingqing Fu, and Zongbo Shi
Atmos. Meas. Tech., 13, 6325–6341, https://doi.org/10.5194/amt-13-6325-2020, https://doi.org/10.5194/amt-13-6325-2020, 2020
Short summary
Short summary
An interlaboratory comparison was conducted for the first time to examine differences in water-soluble inorganic ions (WSIIs) measured by 10 labs using ion chromatography (IC) and by two online aerosol chemical speciation monitor (ACSM) methods. Major ions including SO42−, NO3− and NH4+ agreed well in 10 IC labs and correlated well with ACSM data. WSII interlab variability strongly affected aerosol acidity results based on ion balance, but aerosol pH computed by ISORROPIA II was very similar.
Chaomin Wang, Bin Yuan, Caihong Wu, Sihang Wang, Jipeng Qi, Baolin Wang, Zelong Wang, Weiwei Hu, Wei Chen, Chenshuo Ye, Wenjie Wang, Yele Sun, Chen Wang, Shan Huang, Wei Song, Xinming Wang, Suxia Yang, Shenyang Zhang, Wanyun Xu, Nan Ma, Zhanyi Zhang, Bin Jiang, Hang Su, Yafang Cheng, Xuemei Wang, and Min Shao
Atmos. Chem. Phys., 20, 14123–14138, https://doi.org/10.5194/acp-20-14123-2020, https://doi.org/10.5194/acp-20-14123-2020, 2020
Short summary
Short summary
We utilized a novel online mass spectrometry method to measure the total concentration of higher alkanes at each carbon number at two different sites in China, allowing us to take into account SOA contributions from all isomers for higher alkanes. We found that higher alkanes account for significant fractions of SOA formation at the two sites. The contributions are comparable to or even higher than single-ring aromatics, the most-recognized SOA precursors in urban air.
Yuzhen Fu, Qinhao Lin, Guohua Zhang, Yuxiang Yang, Yiping Yang, Xiufeng Lian, Long Peng, Feng Jiang, Xinhui Bi, Lei Li, Yuanyuan Wang, Duohong Chen, Jie Ou, Xinming Wang, Ping'an Peng, Jianxi Zhu, and Guoying Sheng
Atmos. Chem. Phys., 20, 14063–14075, https://doi.org/10.5194/acp-20-14063-2020, https://doi.org/10.5194/acp-20-14063-2020, 2020
Short summary
Short summary
Based on the analysis of the morphology and mixing structure of the activated and unactivated particles, our results emphasize the role of in-cloud processes in the chemistry and microphysical properties of individual activated particles. Given that organic coatings may determine the particle hygroscopicity and heterogeneous chemical reactivity, the increase of OM-shelled particles upon in-cloud processes should have considerable implications for their evolution and climate impact.
Junfeng Wang, Jianhuai Ye, Dantong Liu, Yangzhou Wu, Jian Zhao, Weiqi Xu, Conghui Xie, Fuzhen Shen, Jie Zhang, Paul E. Ohno, Yiming Qin, Xiuyong Zhao, Scot T. Martin, Alex K. Y. Lee, Pingqing Fu, Daniel J. Jacob, Qi Zhang, Yele Sun, Mindong Chen, and Xinlei Ge
Atmos. Chem. Phys., 20, 14091–14102, https://doi.org/10.5194/acp-20-14091-2020, https://doi.org/10.5194/acp-20-14091-2020, 2020
Short summary
Short summary
We compared the organics in total submicron matter and those coated on BC cores during summertime in Beijing and found large differences between them. Traffic-related OA was associated significantly with BC, while cooking-related OA did not coat BC. In addition, a factor likely originated from primary biomass burning OA was only identified in BC-containing particles. Such a unique BBOA requires further field and laboratory studies to verify its presence and elucidate its properties and impacts.
Chao Peng, Yu Wang, Zhijun Wu, Lanxiadi Chen, Ru-Jin Huang, Weigang Wang, Zhe Wang, Weiwei Hu, Guohua Zhang, Maofa Ge, Min Hu, Xinming Wang, and Mingjin Tang
Atmos. Chem. Phys., 20, 13877–13903, https://doi.org/10.5194/acp-20-13877-2020, https://doi.org/10.5194/acp-20-13877-2020, 2020
Lanxiadi Chen, Chao Peng, Wenjun Gu, Hanjing Fu, Xing Jian, Huanhuan Zhang, Guohua Zhang, Jianxi Zhu, Xinming Wang, and Mingjin Tang
Atmos. Chem. Phys., 20, 13611–13626, https://doi.org/10.5194/acp-20-13611-2020, https://doi.org/10.5194/acp-20-13611-2020, 2020
Short summary
Short summary
We investigated hygroscopic properties of a number of mineral dust particles in a quantitative manner, via measuring the sample mass at different relative humidities. The robust and comprehensive data obtained would significantly improve our knowledge of hygroscopicity of mineral dust and its impacts on atmospheric chemistry and climate.
Mohammed S. Alam, Leigh R. Crilley, James D. Lee, Louisa J. Kramer, Christian Pfrang, Mónica Vázquez-Moreno, Milagros Ródenas, Amalia Muñoz, and William J. Bloss
Atmos. Meas. Tech., 13, 5977–5991, https://doi.org/10.5194/amt-13-5977-2020, https://doi.org/10.5194/amt-13-5977-2020, 2020
Short summary
Short summary
We report on the interference arising in measurements of nitrogen oxides (NOx) from the presence of a range of alkenes in sampled air when using the most widespread air quality monitoring technique for chemiluminescence detection. Interferences of up to 11 % are reported, depending upon the alkene present and conditions used. Such interferences may be of substantial importance for the interpretation of ambient NOx data, particularly for high volatile organic compound and low NOx environments.
Ruqian Miao, Qi Chen, Yan Zheng, Xi Cheng, Yele Sun, Paul I. Palmer, Manish Shrivastava, Jianping Guo, Qiang Zhang, Yuhan Liu, Zhaofeng Tan, Xuefei Ma, Shiyi Chen, Limin Zeng, Keding Lu, and Yuanhang Zhang
Atmos. Chem. Phys., 20, 12265–12284, https://doi.org/10.5194/acp-20-12265-2020, https://doi.org/10.5194/acp-20-12265-2020, 2020
Short summary
Short summary
In this study we evaluated the model performances for simulating secondary inorganic aerosol (SIA) and organic aerosol (OA) in PM2.5 in China against comprehensive datasets. The potential biases from factors related to meteorology, emission, chemistry, and atmospheric removal are systematically investigated. This study provides a comprehensive understanding of modeling PM2.5, which is important for studies on the effectiveness of emission control strategies.
Jiawei Li, Zhiwei Han, Pingqing Fu, and Xiaohong Yao
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1016, https://doi.org/10.5194/acp-2020-1016, 2020
Revised manuscript not accepted
Short summary
Short summary
Organic aerosols of marine origin are so far poorly understood. An on-line coupled regional chemistry-climate model is developed to firstly explore and characterize the seasonality and annual feature of emission, distribution and radiative effects of marine organic aerosols specifically for the western Pacific over East Asia. This study reveals an important role of marine organic aerosols in radiation and cloud and would be valuable for climate research at both regional and global scales.
Wei Tao, Hang Su, Guangjie Zheng, Jiandong Wang, Chao Wei, Lixia Liu, Nan Ma, Meng Li, Qiang Zhang, Ulrich Pöschl, and Yafang Cheng
Atmos. Chem. Phys., 20, 11729–11746, https://doi.org/10.5194/acp-20-11729-2020, https://doi.org/10.5194/acp-20-11729-2020, 2020
Short summary
Short summary
We simulated the thermodynamic and multiphase reactions in aerosol water during a wintertime haze event over the North China Plain. It was found that aerosol pH exhibited a strong spatiotemporal variability, and multiple oxidation pathways were predominant for particulate sulfate formation in different locations. Sensitivity tests further showed that ammonia, crustal particles, and dissolved transition metal ions were important factors for multiphase chemistry during haze episodes.
Pengfei Han, Ning Zeng, Tom Oda, Xiaohui Lin, Monica Crippa, Dabo Guan, Greet Janssens-Maenhout, Xiaolin Ma, Zhu Liu, Yuli Shan, Shu Tao, Haikun Wang, Rong Wang, Lin Wu, Xiao Yun, Qiang Zhang, Fang Zhao, and Bo Zheng
Atmos. Chem. Phys., 20, 11371–11385, https://doi.org/10.5194/acp-20-11371-2020, https://doi.org/10.5194/acp-20-11371-2020, 2020
Short summary
Short summary
An accurate estimation of China’s fossil-fuel CO2 emissions (FFCO2) is significant for quantification of carbon budget and emissions reductions towards the Paris Agreement goals. Here we assessed 9 global and regional inventories. Our findings highlight the significance of using locally measured coal emission factors. We call on the enhancement of physical measurements for validation and provide comprehensive information for inventory, monitoring, modeling, assimilation, and reducing emissions.
Wei Hu, Kotaro Murata, Chunlan Fan, Shu Huang, Hiromi Matsusaki, Pingqing Fu, and Daizhou Zhang
Biogeosciences, 17, 4477–4487, https://doi.org/10.5194/bg-17-4477-2020, https://doi.org/10.5194/bg-17-4477-2020, 2020
Short summary
Short summary
This paper reports the first estimate of the status of bacteria in long-distance-transported Asian dust, demonstrating that airborne dust, which can carry viable and nonviable bacteria on particle surfaces, is an efficient medium for constantly spreading bacteria at regional and even global scales. Such data are essential to better model and understand the roles and activities of bioaerosols in environmental evolution and climate change and the potential risks of bioaerosols to human health.
Wanyu Zhao, Hong Ren, Kimitaka Kawamura, Huiyun Du, Xueshun Chen, Siyao Yue, Qiaorong Xie, Lianfang Wei, Ping Li, Xin Zeng, Shaofei Kong, Yele Sun, Zifa Wang, and Pingqing Fu
Atmos. Chem. Phys., 20, 10331–10350, https://doi.org/10.5194/acp-20-10331-2020, https://doi.org/10.5194/acp-20-10331-2020, 2020
Short summary
Short summary
Our observations provide detailed information on the abundance and vertical distribution of dicarboxylic acids, oxoacids and α-dicarbonyls in PM2.5 collected at three heights based on a 325 m meteorological tower in Beijing in summer. Our results demonstrate that organic acids at the ground surface are largely associated with local traffic emissions, while long-range atmospheric transport followed by photochemical ageing contributes more in the urban boundary layer than the ground surface.
Amir H. Souri, Caroline R. Nowlan, Gonzalo González Abad, Lei Zhu, Donald R. Blake, Alan Fried, Andrew J. Weinheimer, Armin Wisthaler, Jung-Hun Woo, Qiang Zhang, Christopher E. Chan Miller, Xiong Liu, and Kelly Chance
Atmos. Chem. Phys., 20, 9837–9854, https://doi.org/10.5194/acp-20-9837-2020, https://doi.org/10.5194/acp-20-9837-2020, 2020
Short summary
Short summary
For the first time, we provide a joint nonlinear optimal estimate of NOx and NMVOC emissions during the KORUS-AQ campaign by simultaneously incorporating SAO's new product of HCHO columns from OMPS and OMI tropospheric NO2 columns into a regional model. Results demonstrate a promising improvement in the performance of the model in terms of HCHO and NO2 concentrations, which in turn enables us to quantify the impact of the emission changes on different pathways of ozone formation and loss.
Yang Chen, Jing Cai, Zhichao Wang, Chao Peng, Xiaojiang Yao, Mi Tian, Yiqun Han, Guangming Shi, Zongbo Shi, Yue Liu, Xi Yang, Mei Zheng, Tong Zhu, Kebin He, Qiang Zhang, and Fumo Yang
Atmos. Chem. Phys., 20, 9231–9247, https://doi.org/10.5194/acp-20-9231-2020, https://doi.org/10.5194/acp-20-9231-2020, 2020
Short summary
Short summary
Patterns of particle transport, accumulation, and evolution in both urban and rural areas of Beijing are investigated. The two sites shared 17 common particle types in different stages of atmospheric processing.
Yang Chen, Guangming Shi, Jing Cai, Zongbo Shi, Zhichao Wang, Xiaojiang Yao, Mi Tian, Chao Peng, Yiqun Han, Tong Zhu, Yue Liu, Xi Yang, Mei Zheng, Fumo Yang, Qiang Zhang, and Kebin He
Atmos. Chem. Phys., 20, 9249–9263, https://doi.org/10.5194/acp-20-9249-2020, https://doi.org/10.5194/acp-20-9249-2020, 2020
Short summary
Short summary
Individual particles were observed in two field studies during winter 2016 in the urban and rural areas of Beijing. An online single-particle chemical composition analysis was used as a tracing system to investigate the impact of heating activities and the formation of haze events. During the pollution events, a pattern of transport and accumulation was found with evidence of single particles. The transport from Pinggu to Peking University was significant but PKU to PG occurred occasionally.
Freya A. Squires, Eiko Nemitz, Ben Langford, Oliver Wild, Will S. Drysdale, W. Joe F. Acton, Pingqing Fu, C. Sue B. Grimmond, Jacqueline F. Hamilton, C. Nicholas Hewitt, Michael Hollaway, Simone Kotthaus, James Lee, Stefan Metzger, Natchaya Pingintha-Durden, Marvin Shaw, Adam R. Vaughan, Xinming Wang, Ruili Wu, Qiang Zhang, and Yanli Zhang
Atmos. Chem. Phys., 20, 8737–8761, https://doi.org/10.5194/acp-20-8737-2020, https://doi.org/10.5194/acp-20-8737-2020, 2020
Short summary
Short summary
Significant air quality problems exist in megacities like Beijing, China. To manage air pollution, legislators need a clear understanding of pollutant emissions. However, emissions inventories have large uncertainties, and reliable field measurements of pollutant emissions are required to constrain them. This work presents the first measurements of traffic-dominated emissions in Beijing which suggest that inventories overestimate these emissions in the region during both winter and summer.
Haipeng Lin, Xu Feng, Tzung-May Fu, Heng Tian, Yaping Ma, Lijuan Zhang, Daniel J. Jacob, Robert M. Yantosca, Melissa P. Sulprizio, Elizabeth W. Lundgren, Jiawei Zhuang, Qiang Zhang, Xiao Lu, Lin Zhang, Lu Shen, Jianping Guo, Sebastian D. Eastham, and Christoph A. Keller
Geosci. Model Dev., 13, 3241–3265, https://doi.org/10.5194/gmd-13-3241-2020, https://doi.org/10.5194/gmd-13-3241-2020, 2020
Short summary
Short summary
Online coupling of meteorology and chemistry models often presents maintenance issues with hard-wired coding. We present WRF-GC, an one-way online coupling of the WRF meteorological model and GEOS-Chem atmospheric chemistry model for regional atmospheric chemistry and air quality modeling. Our coupling structure allows future versions of either parent model to be immediately integrated into WRF-GC. The WRF-GC model was able to well reproduce regional PM2.5 with greater computational efficiency.
Yi Ji, L. Gregory Huey, David J. Tanner, Young Ro Lee, Patrick R. Veres, J. Andrew Neuman, Yuhang Wang, and Xinming Wang
Atmos. Meas. Tech., 13, 3683–3696, https://doi.org/10.5194/amt-13-3683-2020, https://doi.org/10.5194/amt-13-3683-2020, 2020
Short summary
Short summary
A common way of measuring trace gases in the atmosphere is chemical ionization mass spectrometry. One large drawback of these instruments is that they require radioactive ion sources. In this work we demonstrate a simple ion source that uses a small krypton lamp that can be used to replace a radioactive source.
Jun Liu, Yixuan Zheng, Guannan Geng, Chaopeng Hong, Meng Li, Xin Li, Fei Liu, Dan Tong, Ruili Wu, Bo Zheng, Kebin He, and Qiang Zhang
Atmos. Chem. Phys., 20, 7783–7799, https://doi.org/10.5194/acp-20-7783-2020, https://doi.org/10.5194/acp-20-7783-2020, 2020
Short summary
Short summary
Ambient PM2.5 pollution contributed substantially to premature mortality in China. The contributions of various sectors to anthropogenic PM2.5-related premature mortality have changed substantially during 1990–2015. In 1990, the residential sector was the leading source, followed by industry, power, agriculture, and transportation, whereas in 2015, the industrial sector became the largest contributor, followed by the residential sector, agriculture, transportation, and power.
Junchen Guo, Shengzhen Zhou, Mingfu Cai, Jun Zhao, Wei Song, Weixiong Zhao, Weiwei Hu, Yele Sun, Yao He, Chengqiang Yang, Xuezhe Xu, Zhisheng Zhang, Peng Cheng, Qi Fan, Jian Hang, Shaojia Fan, Xinming Wang, and Xuemei Wang
Atmos. Chem. Phys., 20, 7595–7615, https://doi.org/10.5194/acp-20-7595-2020, https://doi.org/10.5194/acp-20-7595-2020, 2020
Short summary
Short summary
We characterized non-refractory submicron particulate matter (PM1.0) during winter in Guangzhou, south China. Chemical composition and key sources of ambient PM1.0 are revealed, highlighting the significant role of SOA. The relationship with SOA and peroxy radicals indicated gas-phase oxidation contributed predominantly to SOA formation during non-pollution periods, while heterogeneous/multiphase reactions played more important roles in SOA formation during pollution periods.
Daniel J. Bryant, William J. Dixon, James R. Hopkins, Rachel E. Dunmore, Kelly L. Pereira, Marvin Shaw, Freya A. Squires, Thomas J. Bannan, Archit Mehra, Stephen D. Worrall, Asan Bacak, Hugh Coe, Carl J. Percival, Lisa K. Whalley, Dwayne E. Heard, Eloise J. Slater, Bin Ouyang, Tianqu Cui, Jason D. Surratt, Di Liu, Zongbo Shi, Roy Harrison, Yele Sun, Weiqi Xu, Alastair C. Lewis, James D. Lee, Andrew R. Rickard, and Jacqueline F. Hamilton
Atmos. Chem. Phys., 20, 7531–7552, https://doi.org/10.5194/acp-20-7531-2020, https://doi.org/10.5194/acp-20-7531-2020, 2020
Short summary
Short summary
Using the chemical composition of offline filter samples, we report that a large share of oxidized organic aerosol in Beijing during summer is due to isoprene secondary organic aerosol (iSOA). iSOA organosulfates showed a strong correlation with the product of ozone and particulate sulfate. This highlights the role of both photochemistry and the availability of particulate sulfate in heterogeneous reactions and further demonstrates that iSOA formation is controlled by anthropogenic emissions.
Jingyi Li, Haowen Zhang, Qi Ying, Zhijun Wu, Yanli Zhang, Xinming Wang, Xinghua Li, Yele Sun, Min Hu, Yuanhang Zhang, and Jianlin Hu
Atmos. Chem. Phys., 20, 7291–7306, https://doi.org/10.5194/acp-20-7291-2020, https://doi.org/10.5194/acp-20-7291-2020, 2020
Short summary
Short summary
Large gaps still exist in modeled and observed secondary organic aerosol (SOA) mass loading and properties. Here we investigated the impacts of water partitioning into organic aerosol and nonideality of the organic–water mixture on SOA over eastern China using a regional 3D model. SOA is increased more significantly in humid and hot environments. Increases in SOA further cause an enhancement of the cooling effects of aerosols. It is crucial to consider the above processes in modeling SOA.
Kirsti Ashworth, Silvia Bucci, Peter J. Gallimore, Junghwa Lee, Beth S. Nelson, Alberto Sanchez-Marroquín, Marina B. Schimpf, Paul D. Smith, Will S. Drysdale, Jim R. Hopkins, James D. Lee, Joe R. Pitt, Piero Di Carlo, Radovan Krejci, and James B. McQuaid
Atmos. Chem. Phys., 20, 7193–7216, https://doi.org/10.5194/acp-20-7193-2020, https://doi.org/10.5194/acp-20-7193-2020, 2020
Short summary
Short summary
In July 2017 we flew three research flights around London during European Facility for Airborne Research (EUFAR) training. We made continuous measurements of concentrations of key pollutants (ozone, NOx, aerosol particles, CO, CO2 and methane) and meteorology, and we collected periodic samples of air to analyse for volatile organic compounds. We saw evidence that plumes of pollution from the city, strong local emissions and pollution from distant sources all contribute to regional pollution.
Weiqi Xu, Yao He, Yanmei Qiu, Chun Chen, Conghui Xie, Lu Lei, Zhijie Li, Jiaxing Sun, Junyao Li, Pingqing Fu, Zifa Wang, Douglas R. Worsnop, and Yele Sun
Atmos. Meas. Tech., 13, 3205–3219, https://doi.org/10.5194/amt-13-3205-2020, https://doi.org/10.5194/amt-13-3205-2020, 2020
Short summary
Short summary
We characterized mass spectral features of organic aerosol (OA) and water-soluble OA (WSOA) from 21 cooking, crop straw, wood, and coal burning experiments using aerosol mass spectrometers with standard and capture vaporizers, and we demonstrated the applications of source spectral profiles in improving source apportionment of ambient OA at a highly polluted rural site in the North China Plain in winter.
Jing Yang, Wanyu Zhao, Lianfang Wei, Qiang Zhang, Yue Zhao, Wei Hu, Libin Wu, Xiaodong Li, Chandra Mouli Pavuluri, Xiaole Pan, Yele Sun, Zifa Wang, Cong-Qiang Liu, Kimitaka Kawamura, and Pingqing Fu
Atmos. Chem. Phys., 20, 6841–6860, https://doi.org/10.5194/acp-20-6841-2020, https://doi.org/10.5194/acp-20-6841-2020, 2020
Short summary
Short summary
Our observations provide novel detailed information on the atmospheric abundances and spatial distributions of dicarboxylic acids, oxoacids, and α-dicarbonyls in marine aerosols collected from the South China Sea to the East Indian Ocean. Our results demonstrate that the continental outflow of both biogenic and anthropogenic precursors followed by photochemical aging is one of the main sources and formation processes of marine organic aerosols over the tropical oceanic regions.
Qiaorong Xie, Sihui Su, Shuang Chen, Yisheng Xu, Dong Cao, Jing Chen, Lujie Ren, Siyao Yue, Wanyu Zhao, Yele Sun, Zifa Wang, Haijie Tong, Hang Su, Yafang Cheng, Kimitaka Kawamura, Guibin Jiang, Cong-Qiang Liu, and Pingqing Fu
Atmos. Chem. Phys., 20, 6803–6820, https://doi.org/10.5194/acp-20-6803-2020, https://doi.org/10.5194/acp-20-6803-2020, 2020
Short summary
Short summary
Current knowledge on firework-related organic aerosols is very limited. Here the detailed molecular composition of organics in urban aerosols was characterized using ultrahigh-resolution FT-ICR mass spectrometry. Our findings highlight that firework emission leads to a sharp increase in CHO, CHNO, and CHOS containing high-molecular-weight species, particularly aromatic-like substances, which affect the physicochemical properties such as the light absorption and health effects of urban aerosols.
Shengzhen Zhou, Luolin Wu, Junchen Guo, Weihua Chen, Xuemei Wang, Jun Zhao, Yafang Cheng, Zuzhao Huang, Jinpu Zhang, Yele Sun, Pingqing Fu, Shiguo Jia, Jun Tao, Yanning Chen, and Junxia Kuang
Atmos. Chem. Phys., 20, 6435–6453, https://doi.org/10.5194/acp-20-6435-2020, https://doi.org/10.5194/acp-20-6435-2020, 2020
Short summary
Short summary
In this work, measurements of size-segregated aerosols were conducted at three altitudes (ground level, 118 m, and 488 m) on the 610 m high Canton Tower in southern China. Vertical variations of PM and size-segregated chemical compositions were investigated. The results indicated that meteorological parameters and atmospheric aqueous and heterogeneous reactions together led to aerosol formation and haze episodes in the Pearl River Delta region during the measurement periods.
Jing Cai, Xiangying Zeng, Guorui Zhi, Sasho Gligorovski, Guoying Sheng, Zhiqiang Yu, Xinming Wang, and Ping'an Peng
Atmos. Chem. Phys., 20, 6115–6128, https://doi.org/10.5194/acp-20-6115-2020, https://doi.org/10.5194/acp-20-6115-2020, 2020
Short summary
Short summary
The composition and light-induced evolution of a water-soluble organic carbon mixture from fresh biomass burning aerosols was investigated with direct infusion electrospray ionisation high-resolution mass spectrometry (HRMS) and liquid chromatography coupled with HRMS. Our findings indicate that the water-soluble organic fraction of combustion-derived aerosols has the potential to form more oxidised organic matter, contributing to the highly oxygenated nature of atmospheric organic aerosols.
Tao Ma, Hiroshi Furutani, Fengkui Duan, Takashi Kimoto, Jingkun Jiang, Qiang Zhang, Xiaobin Xu, Ying Wang, Jian Gao, Guannan Geng, Meng Li, Shaojie Song, Yongliang Ma, Fei Che, Jie Wang, Lidan Zhu, Tao Huang, Michisato Toyoda, and Kebin He
Atmos. Chem. Phys., 20, 5887–5897, https://doi.org/10.5194/acp-20-5887-2020, https://doi.org/10.5194/acp-20-5887-2020, 2020
Short summary
Short summary
The formation mechanisms of organic matter and sulfate in winter haze in the North China Plain remain unclear. This paper presents the identification and quantification of hydroxymethanesulfonate (HMS) in PM2.5 in Beijing winter and elucidates the heterogeneous HMS chemistry in favorable winter haze conditions. We show that the HMS not only contributes a substantial mass of organic matter, but also leads to an overestimation of sulfate in conventional measurements.
Hang Liu, Xiaole Pan, Dantong Liu, Xiaoyong Liu, Xueshun Chen, Yu Tian, Yele Sun, Pingqing Fu, and Zifa Wang
Atmos. Chem. Phys., 20, 5771–5785, https://doi.org/10.5194/acp-20-5771-2020, https://doi.org/10.5194/acp-20-5771-2020, 2020
Short summary
Short summary
The bare black carbon (BC) was in a fractal structure. With coating thickness increasing, BC changed from a fractal structure to a core–shell structure. In the ambient atmosphere, plenty of BC particles were not in a perfect core–shell structure. This study brought attention to the combined effects of morphology and coating thickness on the absorption enhancement of BC-containing particles, which is helpful for determining the climatic effects of BC.
Dan Tong, Jing Cheng, Yang Liu, Sha Yu, Liu Yan, Chaopeng Hong, Yu Qin, Hongyan Zhao, Yixuan Zheng, Guannan Geng, Meng Li, Fei Liu, Yuxuan Zhang, Bo Zheng, Leon Clarke, and Qiang Zhang
Atmos. Chem. Phys., 20, 5729–5757, https://doi.org/10.5194/acp-20-5729-2020, https://doi.org/10.5194/acp-20-5729-2020, 2020
Short summary
Short summary
Future trends in air pollution and greenhouse gas emissions in China are of great concern to the community. Here we developed a sophisticated dynamic projection model to understand 2015–2050 emission pathways under a range of socio-economic, climate policy, and pollution control scenarios. By coupling strong low-carbon transitions and clean air policy, emissions of major air pollutants in China will be reduced by 58–87 % during 2015–2050. This work can support future co-governance policy design.
William T. Morgan, James D. Allan, Stéphane Bauguitte, Eoghan Darbyshire, Michael J. Flynn, James Lee, Dantong Liu, Ben Johnson, Jim Haywood, Karla M. Longo, Paulo E. Artaxo, and Hugh Coe
Atmos. Chem. Phys., 20, 5309–5326, https://doi.org/10.5194/acp-20-5309-2020, https://doi.org/10.5194/acp-20-5309-2020, 2020
Short summary
Short summary
We flew a large atmospheric research aircraft across a number of different environments in the Amazon basin during the 2012 biomass burning season. Smoke from fires builds up and has a significant impact on weather, climate, health and natural ecosystems. Our goal was to quantify changes in the properties of the smoke emitted by fires as it is transported through the atmosphere. We found that the major control on the properties of the smoke was due to differences in the fires themselves.
Fanhao Meng, Min Qin, Ke Tang, Jun Duan, Wu Fang, Shuaixi Liang, Kaidi Ye, Pinhua Xie, Yele Sun, Conghui Xie, Chunxiang Ye, Pingqing Fu, Jianguo Liu, and Wenqing Liu
Atmos. Chem. Phys., 20, 5071–5092, https://doi.org/10.5194/acp-20-5071-2020, https://doi.org/10.5194/acp-20-5071-2020, 2020
Short summary
Short summary
Nitrous acid (HONO), a major precursor of the OH radical, plays a key role in atmospheric chemistry, but its sources are still debated. The first high-resolution vertical measurements of HONO and NO2 were conducted in Beijing to investigate the nocturnal sources of HONO at different stages of pollution. The ground surface dominated HONO production by heterogeneous conversion of NO2 during clean episodes, but the aerosol production was an important nighttime HONO source during haze episodes.
Elise S. Droste, Karina E. Adcock, Matthew J. Ashfold, Charles Chou, Zoë Fleming, Paul J. Fraser, Lauren J. Gooch, Andrew J. Hind, Ray L. Langenfelds, Emma C. Leedham Elvidge, Norfazrin Mohd Hanif, Simon O'Doherty, David E. Oram, Chang-Feng Ou-Yang, Marios Panagi, Claire E. Reeves, William T. Sturges, and Johannes C. Laube
Atmos. Chem. Phys., 20, 4787–4807, https://doi.org/10.5194/acp-20-4787-2020, https://doi.org/10.5194/acp-20-4787-2020, 2020
Short summary
Short summary
We update the tropospheric trends and emissions of six perfluorocarbon (PFC) gases, including separate isomers. Trends for these strong greenhouse gases are still increasing, but at slower rates than previously. The lack of natural sinks results in the global accumulation of 833 million metric tonnes of CO2 equivalent for these six PFCs by 2017. Modelling results indicate potential source regions and types in East Asia, but we find that many emissions are unaccounted for in emission reports.
Haixu Zhang, Chunrong Chen, Weijia Yan, Nana Wu, Yu Bo, Qiang Zhang, and Kebin He
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-280, https://doi.org/10.5194/acp-2020-280, 2020
Revised manuscript not accepted
Short summary
Short summary
In this work, we provide first-hand information on VOC characters in a central Chinese city. Although benzenoids has the largest SOA formation potential, their weight decline with the aggravation of pollution, while the role of VOCs as oxidant producers of SOA formation is critical, especially in hazy periods. Furthermore, solvent evaporation is estimated as the top source for SOA formation considering the above dual roles of VOCs, which would assist to mitigate pollution in China.
Oliver Wild, Apostolos Voulgarakis, Fiona O'Connor, Jean-François Lamarque, Edmund M. Ryan, and Lindsay Lee
Atmos. Chem. Phys., 20, 4047–4058, https://doi.org/10.5194/acp-20-4047-2020, https://doi.org/10.5194/acp-20-4047-2020, 2020
Short summary
Short summary
Global models of tropospheric chemistry and transport show a persistent diversity in results that has not been fully explained. We demonstrate the first use of global sensitivity analysis consistently across three independent models to explore these differences and reveal both clear similarities and surprising differences which have important implications for our assessment of future atmospheric composition change.
Chenjie Yu, Dantong Liu, Kurtis Broda, Rutambhara Joshi, Jason Olfert, Yele Sun, Pingqing Fu, Hugh Coe, and James D. Allan
Atmos. Chem. Phys., 20, 3645–3661, https://doi.org/10.5194/acp-20-3645-2020, https://doi.org/10.5194/acp-20-3645-2020, 2020
Short summary
Short summary
This study presents the first atmospheric application of a new morphology-independent measurement for the quantification of the mixing state of rBC-containing particles in urban Beijing as part of the UK–China APHH campaign. An inversion method has been applied for better quantification of rBC mixing state. The mass-resolved rBC mixing state information presented here has implications for detailed models of BC, its optical properties and its atmospheric life cycle.
Chris R. Flechard, Andreas Ibrom, Ute M. Skiba, Wim de Vries, Marcel van Oijen, David R. Cameron, Nancy B. Dise, Janne F. J. Korhonen, Nina Buchmann, Arnaud Legout, David Simpson, Maria J. Sanz, Marc Aubinet, Denis Loustau, Leonardo Montagnani, Johan Neirynck, Ivan A. Janssens, Mari Pihlatie, Ralf Kiese, Jan Siemens, André-Jean Francez, Jürgen Augustin, Andrej Varlagin, Janusz Olejnik, Radosław Juszczak, Mika Aurela, Daniel Berveiller, Bogdan H. Chojnicki, Ulrich Dämmgen, Nicolas Delpierre, Vesna Djuricic, Julia Drewer, Eric Dufrêne, Werner Eugster, Yannick Fauvel, David Fowler, Arnoud Frumau, André Granier, Patrick Gross, Yannick Hamon, Carole Helfter, Arjan Hensen, László Horváth, Barbara Kitzler, Bart Kruijt, Werner L. Kutsch, Raquel Lobo-do-Vale, Annalea Lohila, Bernard Longdoz, Michal V. Marek, Giorgio Matteucci, Marta Mitosinkova, Virginie Moreaux, Albrecht Neftel, Jean-Marc Ourcival, Kim Pilegaard, Gabriel Pita, Francisco Sanz, Jan K. Schjoerring, Maria-Teresa Sebastià, Y. Sim Tang, Hilde Uggerud, Marek Urbaniak, Netty van Dijk, Timo Vesala, Sonja Vidic, Caroline Vincke, Tamás Weidinger, Sophie Zechmeister-Boltenstern, Klaus Butterbach-Bahl, Eiko Nemitz, and Mark A. Sutton
Biogeosciences, 17, 1583–1620, https://doi.org/10.5194/bg-17-1583-2020, https://doi.org/10.5194/bg-17-1583-2020, 2020
Short summary
Short summary
Experimental evidence from a network of 40 monitoring sites in Europe suggests that atmospheric nitrogen deposition to forests and other semi-natural vegetation impacts the carbon sequestration rates in ecosystems, as well as the net greenhouse gas balance including other greenhouse gases such as nitrous oxide and methane. Excess nitrogen deposition in polluted areas also leads to other environmental impacts such as nitrogen leaching to groundwater and other pollutant gaseous emissions.
Chris R. Flechard, Marcel van Oijen, David R. Cameron, Wim de Vries, Andreas Ibrom, Nina Buchmann, Nancy B. Dise, Ivan A. Janssens, Johan Neirynck, Leonardo Montagnani, Andrej Varlagin, Denis Loustau, Arnaud Legout, Klaudia Ziemblińska, Marc Aubinet, Mika Aurela, Bogdan H. Chojnicki, Julia Drewer, Werner Eugster, André-Jean Francez, Radosław Juszczak, Barbara Kitzler, Werner L. Kutsch, Annalea Lohila, Bernard Longdoz, Giorgio Matteucci, Virginie Moreaux, Albrecht Neftel, Janusz Olejnik, Maria J. Sanz, Jan Siemens, Timo Vesala, Caroline Vincke, Eiko Nemitz, Sophie Zechmeister-Boltenstern, Klaus Butterbach-Bahl, Ute M. Skiba, and Mark A. Sutton
Biogeosciences, 17, 1621–1654, https://doi.org/10.5194/bg-17-1621-2020, https://doi.org/10.5194/bg-17-1621-2020, 2020
Short summary
Short summary
Nitrogen deposition from the atmosphere to unfertilized terrestrial vegetation such as forests can increase carbon dioxide uptake and favour carbon sequestration by ecosystems. However the data from observational networks are difficult to interpret in terms of a carbon-to-nitrogen response, because there are a number of other confounding factors, such as climate, soil physical properties and fertility, and forest age. We propose a model-based method to untangle the different influences.
Shaofeng Xu, Lujie Ren, Yunchao Lang, Shengjie Hou, Hong Ren, Lianfang Wei, Libin Wu, Junjun Deng, Wei Hu, Xiaole Pan, Yele Sun, Zifa Wang, Hang Su, Yafang Cheng, and Pingqing Fu
Atmos. Chem. Phys., 20, 3623–3644, https://doi.org/10.5194/acp-20-3623-2020, https://doi.org/10.5194/acp-20-3623-2020, 2020
Short summary
Short summary
Current knowledge on the size distribution of biogenic primary organic aerosols in urban regions with heavy haze pollution is very limited. Here we performed a year-round study focusing on the organic molecular composition of size-segregated aerosol samples collected in urban Beijing during haze and non-haze days to elucidate the seasonal contributions of biomass burning, fungal spores, and plant debris to organic carbon as well as the influences from local emissions and long-range transport.
Alexander T. Archibald, Fiona M. O'Connor, Nathan Luke Abraham, Scott Archer-Nicholls, Martyn P. Chipperfield, Mohit Dalvi, Gerd A. Folberth, Fraser Dennison, Sandip S. Dhomse, Paul T. Griffiths, Catherine Hardacre, Alan J. Hewitt, Richard S. Hill, Colin E. Johnson, James Keeble, Marcus O. Köhler, Olaf Morgenstern, Jane P. Mulcahy, Carlos Ordóñez, Richard J. Pope, Steven T. Rumbold, Maria R. Russo, Nicholas H. Savage, Alistair Sellar, Marc Stringer, Steven T. Turnock, Oliver Wild, and Guang Zeng
Geosci. Model Dev., 13, 1223–1266, https://doi.org/10.5194/gmd-13-1223-2020, https://doi.org/10.5194/gmd-13-1223-2020, 2020
Short summary
Short summary
Here we present a description and evaluation of the UKCA stratosphere–troposphere chemistry scheme (StratTrop vn 1.0) implemented in the UK Earth System Model (UKESM1). UKCA StratTrop represents a substantial step forward compared to previous versions of UKCA. We show here that it is fully suited to the challenges of representing interactions in a coupled Earth system model and identify key areas and components for future development that will make it even better in the future.
Leigh R. Crilley, Ajit Singh, Louisa J. Kramer, Marvin D. Shaw, Mohammed S. Alam, Joshua S. Apte, William J. Bloss, Lea Hildebrandt Ruiz, Pingqing Fu, Weiqi Fu, Shahzad Gani, Michael Gatari, Evgenia Ilyinskaya, Alastair C. Lewis, David Ng'ang'a, Yele Sun, Rachel C. W. Whitty, Siyao Yue, Stuart Young, and Francis D. Pope
Atmos. Meas. Tech., 13, 1181–1193, https://doi.org/10.5194/amt-13-1181-2020, https://doi.org/10.5194/amt-13-1181-2020, 2020
Short summary
Short summary
There is considerable interest in using low-cost optical particle counters (OPCs) for particle mass measurements; however, there is no agreed upon method with respect to calibration. Here we exploit a number of datasets globally to demonstrate that particle composition and relative humidity are the key factors affecting measured concentrations from a low-cost OPC, and we present a simple correction methodology that corrects for this influence.
Lu Lei, Conghui Xie, Dawei Wang, Yao He, Qingqing Wang, Wei Zhou, Wei Hu, Pingqing Fu, Yong Chen, Xiaole Pan, Zifa Wang, Douglas R. Worsnop, and Yele Sun
Atmos. Chem. Phys., 20, 2877–2890, https://doi.org/10.5194/acp-20-2877-2020, https://doi.org/10.5194/acp-20-2877-2020, 2020
Short summary
Short summary
We characterized aerosol composition and sources near two steel plants in a coastal region in fall and spring seasons. Our results showed substantially different aerosol composition and sources between the two seasons. We observed significant impacts of steel plant emissions on aerosol chemistry nearby, and we found that aerosol particles emitted from the steel plants were dominated by ammonium sulfate/bisulfate; NOx/CO and NOx/SO2 were distinct from those in the absence of industrial plumes.
Qiuyan Du, Chun Zhao, Mingshuai Zhang, Xue Dong, Yu Chen, Zhen Liu, Zhiyuan Hu, Qiang Zhang, Yubin Li, Renmin Yuan, and Shiguang Miao
Atmos. Chem. Phys., 20, 2839–2863, https://doi.org/10.5194/acp-20-2839-2020, https://doi.org/10.5194/acp-20-2839-2020, 2020
Short summary
Short summary
Simulated diurnal PM2.5 with WRF-Chem is primarily controlled by planetary boundary layer (PBL) mixing and emission variations. Modeling bias is likely primarily due to inefficient PBL mixing of primary PM2.5 during the night. The increase in PBL mixing strength during the night can significantly reduce biases. This study underscores that more effort is needed to improve the boundary mixing processes of pollutants in models with observations of PBL structure and mixing fluxes besides PBL height.
Marios Panagi, Zoë L. Fleming, Paul S. Monks, Matthew J. Ashfold, Oliver Wild, Michael Hollaway, Qiang Zhang, Freya A. Squires, and Joshua D. Vande Hey
Atmos. Chem. Phys., 20, 2825–2838, https://doi.org/10.5194/acp-20-2825-2020, https://doi.org/10.5194/acp-20-2825-2020, 2020
Short summary
Short summary
In this paper, using dispersion modelling with emission inventories it was determined that on average 45 % of the total CO pollution that affects Beijing is transported from other areas. About half of the CO comes from beyond the immediate surrounding areas. Finally three classification types of pollution were identified and used to analyse the APHH winter campaign. The results can inform targeted control measures to be implemented in Beijing and the other regions to tackle air quality problems.
Michael Biggart, Jenny Stocker, Ruth M. Doherty, Oliver Wild, Michael Hollaway, David Carruthers, Jie Li, Qiang Zhang, Ruili Wu, Simone Kotthaus, Sue Grimmond, Freya A. Squires, James Lee, and Zongbo Shi
Atmos. Chem. Phys., 20, 2755–2780, https://doi.org/10.5194/acp-20-2755-2020, https://doi.org/10.5194/acp-20-2755-2020, 2020
Short summary
Short summary
Ambient air pollution is a major cause of premature death in China. We examine the street-scale variation of pollutant levels in Beijing using air pollution dispersion and chemistry model ADMS-Urban. Campaign measurements are compared with simulated pollutant levels, providing a valuable means of evaluating the impact of key processes on urban air quality. Air quality modelling at such fine scales is essential for human exposure studies and for informing choices on future emission controls.
Zhenfeng Wu, Yanli Zhang, Junjie He, Hongzhan Chen, Xueliang Huang, Yujun Wang, Xu Yu, Weiqiang Yang, Runqi Zhang, Ming Zhu, Sheng Li, Hua Fang, Zhou Zhang, and Xinming Wang
Atmos. Chem. Phys., 20, 1887–1900, https://doi.org/10.5194/acp-20-1887-2020, https://doi.org/10.5194/acp-20-1887-2020, 2020
Short summary
Short summary
As ship emissions impact air quality in coastal areas, ships are required to switch their fuel from high-sulfur residual fuel oil to
low-sulfur diesel or heavy oil in emission control areas (ECA). Our study reveals that while this policy did result in a large drop in ship emissions of particulate matter and sulfur dioxide, emissions of volatile organic compounds (VOCs), however, became over 10 times larger and therefore risks ozone pollution control in harbor cities.
Meng Gao, Zirui Liu, Bo Zheng, Dongsheng Ji, Peter Sherman, Shaojie Song, Jinyuan Xin, Cheng Liu, Yuesi Wang, Qiang Zhang, Jia Xing, Jingkun Jiang, Zifa Wang, Gregory R. Carmichael, and Michael B. McElroy
Atmos. Chem. Phys., 20, 1497–1505, https://doi.org/10.5194/acp-20-1497-2020, https://doi.org/10.5194/acp-20-1497-2020, 2020
Short summary
Short summary
We quantified the relative influences of anthropogenic emissions and meteorological conditions on PM2.5 concentrations in Beijing over the winters of 2002–2016. Meteorological conditions over the study period would have led to an increase of haze in Beijing, but the strict emission control measures have suppressed the unfavorable influences of the recent climate.
Viral Shah, Daniel J. Jacob, Ke Li, Rachel F. Silvern, Shixian Zhai, Mengyao Liu, Jintai Lin, and Qiang Zhang
Atmos. Chem. Phys., 20, 1483–1495, https://doi.org/10.5194/acp-20-1483-2020, https://doi.org/10.5194/acp-20-1483-2020, 2020
Short summary
Short summary
We analyze 15 years of satellite observations of nitrogen dioxide (NO2) and use an atmospheric chemistry model to understand the seasonal changes and trends in nitrogen oxides (NOx) over China. We show that the seasonal changes in NO2 occur due to changes in the NOx oxidation lifetime. We find that Chinese NOx emissions peaked in 2011 and had decreased by about 25 % by 2018. But the decrease in NO2 in winter was larger, likely because of a simultaneous decrease in the NOx oxidation lifetime.
Guohua Zhang, Xiufeng Lian, Yuzhen Fu, Qinhao Lin, Lei Li, Wei Song, Zhanyong Wang, Mingjin Tang, Duohong Chen, Xinhui Bi, Xinming Wang, and Guoying Sheng
Atmos. Chem. Phys., 20, 1469–1481, https://doi.org/10.5194/acp-20-1469-2020, https://doi.org/10.5194/acp-20-1469-2020, 2020
Short summary
Short summary
Seasonal atmospheric processing of NOCs was investigated using single-particle mass spectrometry in urban Guangzhou. The abundance of NOCs was found to be strongly enhanced by internal mixing with photochemically produced secondary oxidized organics. A multiple linear regression analysis and a positive matrix factorization analysis were performed to predict the relative abundance of NOCs. More than 70 % of observed NOCs could be well explained by oxidized organics and ammonium.
Meng Gao, Zhiwei Han, Zhining Tao, Jiawei Li, Jeong-Eon Kang, Kan Huang, Xinyi Dong, Bingliang Zhuang, Shu Li, Baozhu Ge, Qizhong Wu, Hyo-Jung Lee, Cheol-Hee Kim, Joshua S. Fu, Tijian Wang, Mian Chin, Meng Li, Jung-Hun Woo, Qiang Zhang, Yafang Cheng, Zifa Wang, and Gregory R. Carmichael
Atmos. Chem. Phys., 20, 1147–1161, https://doi.org/10.5194/acp-20-1147-2020, https://doi.org/10.5194/acp-20-1147-2020, 2020
Short summary
Short summary
Topic 3 of the Model Inter-Comparison Study for Asia (MICS-Asia) Phase III examines how online coupled air quality models perform in simulating high aerosol pollution in the North China Plain region during wintertime haze events and evaluates the importance of aerosol radiative feedbacks. This paper discusses the estimates of aerosol radiative forcing, aerosol feedbacks, and possible causes for the differences among the models.
Ying Chen, Oliver Wild, Edmund Ryan, Saroj Kumar Sahu, Douglas Lowe, Scott Archer-Nicholls, Yu Wang, Gordon McFiggans, Tabish Ansari, Vikas Singh, Ranjeet S. Sokhi, Alex Archibald, and Gufran Beig
Atmos. Chem. Phys., 20, 499–514, https://doi.org/10.5194/acp-20-499-2020, https://doi.org/10.5194/acp-20-499-2020, 2020
Short summary
Short summary
PM2.5 and O3 are two major air pollutants. Some mitigation strategies focusing on reducing PM2.5 may lead to substantial increase in O3. We use statistical emulation combined with atmospheric transport model to perform thousands of sensitivity numerical studies to identify the major sources of PM2.5 and O3 and to develop strategies targeted at both pollutants. Our scientific evidence suggests that regional coordinated emission control is required to mitigate PM2.5 whilst preventing O3 increase.
Yanbing Fan, Cong-Qiang Liu, Linjie Li, Lujie Ren, Hong Ren, Zhimin Zhang, Qinkai Li, Shuang Wang, Wei Hu, Junjun Deng, Libin Wu, Shujun Zhong, Yue Zhao, Chandra Mouli Pavuluri, Xiaodong Li, Xiaole Pan, Yele Sun, Zifa Wang, Kimitaka Kawamura, Zongbo Shi, and Pingqing Fu
Atmos. Chem. Phys., 20, 117–137, https://doi.org/10.5194/acp-20-117-2020, https://doi.org/10.5194/acp-20-117-2020, 2020
Short summary
Short summary
This study provides useful knowledge on the abundance, sources, and formation processes of organic aerosols in the coastal megacity of Tianjin, North China, based on the investigation of the molecular composition, diurnal variation, and winter/summer differences under the influence of land/sea breezes and the Asian summer monsoon.
James Brean, Roy M. Harrison, Zongbo Shi, David C. S. Beddows, W. Joe F. Acton, C. Nicholas Hewitt, Freya A. Squires, and James Lee
Atmos. Chem. Phys., 19, 14933–14947, https://doi.org/10.5194/acp-19-14933-2019, https://doi.org/10.5194/acp-19-14933-2019, 2019
Short summary
Short summary
Measurements of highly oxidized molecules measured during a summer campaign in Beijing are presented. These molecules represent an intermediary between gas-phase chemicals from which they are formed and airborne particles which form from them. Conclusions are drawn as to the factors affecting the formation of new particles within the Beijing atmosphere.
Hang Liu, Xiaole Pan, Yu Wu, Dawei Wang, Yu Tian, Xiaoyong Liu, Lu Lei, Yele Sun, Pingqing Fu, and Zifa Wang
Atmos. Chem. Phys., 19, 14791–14804, https://doi.org/10.5194/acp-19-14791-2019, https://doi.org/10.5194/acp-19-14791-2019, 2019
Short summary
Short summary
The relationship among the effective density, rBC's coating thickness, and rBC's morphology was investigated. rBC with larger effective density adopted a more regular shape due to more coating thickness. The effective density distribution of ambient rBC was also measured. From the information of effective density, the ambient rBC mainly adopts an irregular shape, which can cause large uncertainties in the rBC's optical properties.
Yu-Qing Zhang, Duo-Hong Chen, Xiang Ding, Jun Li, Tao Zhang, Jun-Qi Wang, Qian Cheng, Hao Jiang, Wei Song, Yu-Bo Ou, Peng-Lin Ye, Gan Zhang, and Xin-Ming Wang
Atmos. Chem. Phys., 19, 14403–14415, https://doi.org/10.5194/acp-19-14403-2019, https://doi.org/10.5194/acp-19-14403-2019, 2019
Short summary
Short summary
BSOA formation is affected by human activities, which are not well understood in polluted areas. In the polluted PRD region, we find that monoterpene SOA is aged, which probably results from high Ox and sulfate levels. NOx levels significantly affect isoprene SOA formation pathways. An unexpected increase of β-caryophyllene SOA in winter is also highly associated with enhanced biomass burning, Ox, and sulfate. Our results indicate that BSOA could be reduced by lowering anthropogenic emissions.
Rupert Holzinger, W. Joe F. Acton, William J. Bloss, Martin Breitenlechner, Leigh R. Crilley, Sébastien Dusanter, Marc Gonin, Valerie Gros, Frank N. Keutsch, Astrid Kiendler-Scharr, Louisa J. Kramer, Jordan E. Krechmer, Baptiste Languille, Nadine Locoge, Felipe Lopez-Hilfiker, Dušan Materić, Sergi Moreno, Eiko Nemitz, Lauriane L. J. Quéléver, Roland Sarda Esteve, Stéphane Sauvage, Simon Schallhart, Roberto Sommariva, Ralf Tillmann, Sergej Wedel, David R. Worton, Kangming Xu, and Alexander Zaytsev
Atmos. Meas. Tech., 12, 6193–6208, https://doi.org/10.5194/amt-12-6193-2019, https://doi.org/10.5194/amt-12-6193-2019, 2019
Mingjin Tang, Chak K. Chan, Yong Jie Li, Hang Su, Qingxin Ma, Zhijun Wu, Guohua Zhang, Zhe Wang, Maofa Ge, Min Hu, Hong He, and Xinming Wang
Atmos. Chem. Phys., 19, 12631–12686, https://doi.org/10.5194/acp-19-12631-2019, https://doi.org/10.5194/acp-19-12631-2019, 2019
Short summary
Short summary
Hygroscopicity is one of the most important properties of aerosol particles, and a number of experimental techniques, which differ largely in principles, configurations and cost, have been developed to investigate hygroscopic properties of atmospherically relevant particles. Our paper provides a comprehensive and critical review of available techniques for aerosol hygroscopicity studies.
Haiyan Li, Jing Cheng, Qiang Zhang, Bo Zheng, Yuxuan Zhang, Guangjie Zheng, and Kebin He
Atmos. Chem. Phys., 19, 11485–11499, https://doi.org/10.5194/acp-19-11485-2019, https://doi.org/10.5194/acp-19-11485-2019, 2019
Short summary
Short summary
We combined the online observations of aerosol components and a regional chemical transport model to investigate the response of aerosol chemistry to the stringent clean air actions in Beijing. We found a rapid transition in winter aerosol composition from 2014 to 2017 with decreased sulfate contribution and increased nitrate fraction and evaluated the underlying drivers. The anthropogenic emission reductions in Beijing and its surrounding regions are identified to play a major role.
Tuan V. Vu, Zongbo Shi, Jing Cheng, Qiang Zhang, Kebin He, Shuxiao Wang, and Roy M. Harrison
Atmos. Chem. Phys., 19, 11303–11314, https://doi.org/10.5194/acp-19-11303-2019, https://doi.org/10.5194/acp-19-11303-2019, 2019
Short summary
Short summary
A 5-year Clean Air Action Plan was implemented in 2013 to improve ambient air quality in Beijing. Here, we applied a novel machine-learning-based model to determine the real trend in air quality from 2013 to 2017 in Beijing to assess the efficacy of the plan. We showed that the action plan led to a major reduction in primary emissions and significant improvement in air quality. The marked decrease in PM2.5 and SO2 is largely attributable to a reduction in coal combustion.
Lia Chatzidiakou, Anika Krause, Olalekan A. M. Popoola, Andrea Di Antonio, Mike Kellaway, Yiqun Han, Freya A. Squires, Teng Wang, Hanbin Zhang, Qi Wang, Yunfei Fan, Shiyi Chen, Min Hu, Jennifer K. Quint, Benjamin Barratt, Frank J. Kelly, Tong Zhu, and Roderic L. Jones
Atmos. Meas. Tech., 12, 4643–4657, https://doi.org/10.5194/amt-12-4643-2019, https://doi.org/10.5194/amt-12-4643-2019, 2019
Short summary
Short summary
This study validates the performance of a personal air quality monitor that integrates miniaturised sensors that measure physical and chemical parameters. Overall, the air pollution sensors showed excellent agreement with standard instrumentation in outdoor, indoor and commuting environments across seasons and different geographical settings. Hence, novel sensing technologies like the ones demonstrated here can revolutionise health studies by providing highly resolved reliable exposure metrics.
Ruihe Lyu, Zongbo Shi, Mohammed Salim Alam, Xuefang Wu, Di Liu, Tuan V. Vu, Christopher Stark, Pingqing Fu, Yinchang Feng, and Roy M. Harrison
Atmos. Chem. Phys., 19, 10865–10881, https://doi.org/10.5194/acp-19-10865-2019, https://doi.org/10.5194/acp-19-10865-2019, 2019
Short summary
Short summary
Severe pollution of the Beijing atmosphere is a frequent occurrence. The airborne particles which characterize the episodes of haze contain a wide range of chemical constituents but organic compounds make up a substantial proportion. In this study individual compounds are analysed under both haze and non-haze conditions, and the measurements are compared with samples collected in London, where the air pollution climate and sources are very different.
Qinhao Lin, Yuxiang Yang, Yuzhen Fu, Guohua Zhang, Feng Jiang, Long Peng, Xiufeng Lian, Fengxian Liu, Xinhui Bi, Lei Li, Duohong Chen, Mei Li, Jie Ou, Mingjin Tang, Xinming Wang, Ping'an Peng, and Guoying Sheng
Atmos. Chem. Phys., 19, 10469–10479, https://doi.org/10.5194/acp-19-10469-2019, https://doi.org/10.5194/acp-19-10469-2019, 2019
Short summary
Short summary
The effects of the chemical composition and size of sea-salt-containing particles on their cloud condensation nuclei activity are incompletely understood. Our results showed that submicron sea-salt-containing particles can enrich in small cloud droplets, likely due to change in the chemical composition, while supermicron sea-salt-containing particles tended in the large cloud droplets less affected by chemical composition. This difference might further influence their atmospheric residence time.
Weiqi Xu, Conghui Xie, Eleni Karnezi, Qi Zhang, Junfeng Wang, Spyros N. Pandis, Xinlei Ge, Jingwei Zhang, Junling An, Qingqing Wang, Jian Zhao, Wei Du, Yanmei Qiu, Wei Zhou, Yao He, Ying Li, Jie Li, Pingqing Fu, Zifa Wang, Douglas R. Worsnop, and Yele Sun
Atmos. Chem. Phys., 19, 10205–10216, https://doi.org/10.5194/acp-19-10205-2019, https://doi.org/10.5194/acp-19-10205-2019, 2019
Short summary
Short summary
We present the first aerosol volatility measurements in Beijing in summer using a thermodenuder coupled with aerosol mass spectrometers. Our results showed that organic aerosol (OA) comprised mainly semi-volatile organic compounds in summer, and the freshly oxidized secondary OA was the most volatile component. We also found quite different volatility distributions in black-carbon-containing primary and secondary OA, ambient OA, ambient secondary OA and the WRF-Chem model.
Michael Hollaway, Oliver Wild, Ting Yang, Yele Sun, Weiqi Xu, Conghui Xie, Lisa Whalley, Eloise Slater, Dwayne Heard, and Dantong Liu
Atmos. Chem. Phys., 19, 9699–9714, https://doi.org/10.5194/acp-19-9699-2019, https://doi.org/10.5194/acp-19-9699-2019, 2019
Short summary
Short summary
This study, for the first time, uses combinations of aerosol and lidar data to drive an offline photolysis scheme. Absorbing species are shown to have the greatest impact on photolysis rate constants in the winter and scattering aerosol are shown to dominate responses in the summer. During haze episodes, aerosols are shown to produce a greater impact than cloud cover. The findings demonstrate the potential photochemical impacts of haze pollution in a highly polluted urban environment.
Yuxuan Zhang, Meng Li, Yafang Cheng, Guannan Geng, Chaopeng Hong, Haiyan Li, Xin Li, Dan Tong, Nana Wu, Xin Zhang, Bo Zheng, Yixuan Zheng, Yu Bo, Hang Su, and Qiang Zhang
Atmos. Chem. Phys., 19, 9663–9680, https://doi.org/10.5194/acp-19-9663-2019, https://doi.org/10.5194/acp-19-9663-2019, 2019
Short summary
Short summary
In this work, we developed a new approach to simulate BC mixing state based on an emissions inventory and back-trajectory analysis. The model tracks the evolution of BC aging degree during atmospheric transport. Our simulations identified the important roles of extensive emission regions in the BC aging process during atmospheric transport, which provided more clues for improving air pollution and climate change.
Huiyun Du, Jie Li, Xueshun Chen, Zifa Wang, Yele Sun, Pingqing Fu, Jianjun Li, Jian Gao, and Ying Wei
Atmos. Chem. Phys., 19, 9351–9370, https://doi.org/10.5194/acp-19-9351-2019, https://doi.org/10.5194/acp-19-9351-2019, 2019
Short summary
Short summary
Regional transport and heterogeneous reactions play crucial roles in haze formation. Using a chemical transport model, we found that chemical transformation of SO2 along the transport pathway from source regions to Beijing was the major source of sulfate. Heterogeneous chemistry had a stronger effect under high humidity and high pollution levels. Aerosols underwent aging during transport which altered the aerosol size and the degree of aging.
Joseph R. Pitt, Grant Allen, Stéphane J.-B. Bauguitte, Martin W. Gallagher, James D. Lee, Will Drysdale, Beth Nelson, Alistair J. Manning, and Paul I. Palmer
Atmos. Chem. Phys., 19, 8931–8945, https://doi.org/10.5194/acp-19-8931-2019, https://doi.org/10.5194/acp-19-8931-2019, 2019
Short summary
Short summary
This paper presents a new method to assess inventory estimates of greenhouse gas and air pollutant emissions for large cities and their surrounding regions. A case study using data sampled by a research aircraft around London was used to test the method. We found that the UK national inventory agrees with our observations for CO but needed lower emissions for CH4 to agree with the measured data. Repeated studies could help determine how these emissions vary on different timescales.
Meng Li, Qiang Zhang, Bo Zheng, Dan Tong, Yu Lei, Fei Liu, Chaopeng Hong, Sicong Kang, Liu Yan, Yuxuan Zhang, Yu Bo, Hang Su, Yafang Cheng, and Kebin He
Atmos. Chem. Phys., 19, 8897–8913, https://doi.org/10.5194/acp-19-8897-2019, https://doi.org/10.5194/acp-19-8897-2019, 2019
Short summary
Short summary
A long-term non-methane volatile organic compound (NMVOC) emission inventory is crucial for air quality management but still absent in China. We estimated China’s NMVOCs during 1990–2017 with speciation based on updated databases and investigated the trend of ozone formation potential (OFP) for the same period. Persistent growth of emissions and OFP highlights the need of control measures for solvent use and industrial sources and the importance of designing multi-pollutant control strategies.
Tabish Umar Ansari, Oliver Wild, Jie Li, Ting Yang, Weiqi Xu, Yele Sun, and Zifa Wang
Atmos. Chem. Phys., 19, 8651–8668, https://doi.org/10.5194/acp-19-8651-2019, https://doi.org/10.5194/acp-19-8651-2019, 2019
Short summary
Short summary
We explore the effectiveness of short-term emission controls on haze events in Beijing in October–November 2014 with high-resolution model studies. The model captures observed hourly variation in key pollutants well, but representation of boundary layer processes remains a key constraint. The controls contributed to improved air quality in early November but would not have been sufficient had the meteorology been less favourable. We quantify the much more stringent controls needed in that case.
Jonathan W. Taylor, Sophie L. Haslett, Keith Bower, Michael Flynn, Ian Crawford, James Dorsey, Tom Choularton, Paul J. Connolly, Valerian Hahn, Christiane Voigt, Daniel Sauer, Régis Dupuy, Joel Brito, Alfons Schwarzenboeck, Thierry Bourriane, Cyrielle Denjean, Phil Rosenberg, Cyrille Flamant, James D. Lee, Adam R. Vaughan, Peter G. Hill, Barbara Brooks, Valéry Catoire, Peter Knippertz, and Hugh Coe
Atmos. Chem. Phys., 19, 8503–8522, https://doi.org/10.5194/acp-19-8503-2019, https://doi.org/10.5194/acp-19-8503-2019, 2019
Short summary
Short summary
Low-level clouds cover a wide area of southern West Africa (SWA) and play an important role in the region's climate, reflecting sunlight away from the surface. We performed aircraft measurements of aerosols and clouds over SWA during the 2016 summer monsoon and found pollution, and polluted clouds, across the whole region. Smoke from biomass burning in Central Africa is transported to West Africa, causing a polluted background which limits the effect of local pollution on cloud properties.
Xiao Lu, Lin Zhang, Youfan Chen, Mi Zhou, Bo Zheng, Ke Li, Yiming Liu, Jintai Lin, Tzung-May Fu, and Qiang Zhang
Atmos. Chem. Phys., 19, 8339–8361, https://doi.org/10.5194/acp-19-8339-2019, https://doi.org/10.5194/acp-19-8339-2019, 2019
Short summary
Short summary
Severe and deteriorating surface ozone pollution over major Chinese cities has become an emerging environmental concern in China. This study assesses the source contributions (including anthropogenic, background, and individual natural sources) and meteorological influences of surface ozone over China in 2016–2017 using the GEOS-Chem chemical transport model at high horizontal resolution with the most up-to-date Chinese anthropogenic emission inventory.
Weijun Li, Lei Liu, Qi Yuan, Liang Xu, Yanhong Zhu, Bingbing Wang, Hua Yu, Xiaokun Ding, Jian Zhang, Dao Huang, Dantong Liu, Wei Hu, Daizhou Zhang, Pingqing Fu, Maosheng Yao, Min Hu, Xiaoye Zhang, and Zongbo Shi
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-539, https://doi.org/10.5194/acp-2019-539, 2019
Preprint withdrawn
Short summary
Short summary
The real state of individual primary biological aerosol particles (PBAPs) derived from natural sources is under mystery, although many studies well evaluate the morphology, mixing state, and elemental composition of anthropogenic particles. It induces that some studies mislead some anthropogenic particles into biological particles through electron microscopy. Here we firstly estimate the full database of individual PBAPs through two microscopic instruments. The database is good for research.
Zongbo Shi, Tuan Vu, Simone Kotthaus, Roy M. Harrison, Sue Grimmond, Siyao Yue, Tong Zhu, James Lee, Yiqun Han, Matthias Demuzere, Rachel E. Dunmore, Lujie Ren, Di Liu, Yuanlin Wang, Oliver Wild, James Allan, W. Joe Acton, Janet Barlow, Benjamin Barratt, David Beddows, William J. Bloss, Giulia Calzolai, David Carruthers, David C. Carslaw, Queenie Chan, Lia Chatzidiakou, Yang Chen, Leigh Crilley, Hugh Coe, Tie Dai, Ruth Doherty, Fengkui Duan, Pingqing Fu, Baozhu Ge, Maofa Ge, Daobo Guan, Jacqueline F. Hamilton, Kebin He, Mathew Heal, Dwayne Heard, C. Nicholas Hewitt, Michael Hollaway, Min Hu, Dongsheng Ji, Xujiang Jiang, Rod Jones, Markus Kalberer, Frank J. Kelly, Louisa Kramer, Ben Langford, Chun Lin, Alastair C. Lewis, Jie Li, Weijun Li, Huan Liu, Junfeng Liu, Miranda Loh, Keding Lu, Franco Lucarelli, Graham Mann, Gordon McFiggans, Mark R. Miller, Graham Mills, Paul Monk, Eiko Nemitz, Fionna O'Connor, Bin Ouyang, Paul I. Palmer, Carl Percival, Olalekan Popoola, Claire Reeves, Andrew R. Rickard, Longyi Shao, Guangyu Shi, Dominick Spracklen, David Stevenson, Yele Sun, Zhiwei Sun, Shu Tao, Shengrui Tong, Qingqing Wang, Wenhua Wang, Xinming Wang, Xuejun Wang, Zifang Wang, Lianfang Wei, Lisa Whalley, Xuefang Wu, Zhijun Wu, Pinhua Xie, Fumo Yang, Qiang Zhang, Yanli Zhang, Yuanhang Zhang, and Mei Zheng
Atmos. Chem. Phys., 19, 7519–7546, https://doi.org/10.5194/acp-19-7519-2019, https://doi.org/10.5194/acp-19-7519-2019, 2019
Short summary
Short summary
APHH-Beijing is a collaborative international research programme to study the sources, processes and health effects of air pollution in Beijing. This introduction to the special issue provides an overview of (i) the APHH-Beijing programme, (ii) the measurement and modelling activities performed as part of it and (iii) the air quality and meteorological conditions during joint intensive field campaigns as a core activity within APHH-Beijing.
Dantong Liu, Rutambhara Joshi, Junfeng Wang, Chenjie Yu, James D. Allan, Hugh Coe, Michael J. Flynn, Conghui Xie, James Lee, Freya Squires, Simone Kotthaus, Sue Grimmond, Xinlei Ge, Yele Sun, and Pingqing Fu
Atmos. Chem. Phys., 19, 6749–6769, https://doi.org/10.5194/acp-19-6749-2019, https://doi.org/10.5194/acp-19-6749-2019, 2019
Short summary
Short summary
This study provides source attribution and characterization of BC in the Beijing urban environment in both winter and summer. For the first time, the physically and chemically based source apportionments are compared to evaluate the primary source contribution and secondary processing of BC-containing particles. A method is proposed to isolate the BC from the transportation sector and coal combustion sources.
Yue Liu, Mei Zheng, Mingyuan Yu, Xuhui Cai, Huiyun Du, Jie Li, Tian Zhou, Caiqing Yan, Xuesong Wang, Zongbo Shi, Roy M. Harrison, Qiang Zhang, and Kebin He
Atmos. Chem. Phys., 19, 6595–6609, https://doi.org/10.5194/acp-19-6595-2019, https://doi.org/10.5194/acp-19-6595-2019, 2019
Short summary
Short summary
This study is part of the UK–China APHH campaign. To identify both source types and source regions at the same time, this study developed a combined method including receptor model, footprint model, and air quality model for the first time to investigate sources of PM2.5 during haze episodes in Beijing. It is an expansion of the application of the receptor model and is helpful for formulating effective control strategies to improve air quality in this region.
Jing Cheng, Jingping Su, Tong Cui, Xiang Li, Xin Dong, Feng Sun, Yanyan Yang, Dan Tong, Yixuan Zheng, Yanshun Li, Jinxiang Li, Qiang Zhang, and Kebin He
Atmos. Chem. Phys., 19, 6125–6146, https://doi.org/10.5194/acp-19-6125-2019, https://doi.org/10.5194/acp-19-6125-2019, 2019
Short summary
Short summary
We attribute Beijing’s PM2.5 abatement in 2017 (compared to 2013) to the following factors: meteorology changes (3.8 μg m−3, 12.1 % of total), regional emission reduction (7.1 μg m−3, 22.5 %), and seven specific categories of control measures in Beijing (20.6 μg m−3, 65.4 %). Our study confirms the effectiveness of clean air actions in Beijing and its surrounding regions and reveals a new generation of control measures, and strengthened regional joint protection measures should be implemented.
Yuqing Ye, Zhouqing Xie, Ming Zhu, and Xinming Wang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-410, https://doi.org/10.5194/acp-2019-410, 2019
Preprint withdrawn
Short summary
Short summary
Aerosol samples from the Arctic Ocean and Antarctic atmosphere were analysed by ultrahigh resolution mass spectrometry coupled with negative ion mode electrospray ionization. Hundreds of organic compounds, including organosulfates, nitrooxy-organosulfates, organonitrates and oxygenated hydrocarbons, were detected. Our study presents the first overview of OSs and ONs in the polar regions and promotes the understanding of their characteristics and sources.
Alba Badia, Claire E. Reeves, Alex R. Baker, Alfonso Saiz-Lopez, Rainer Volkamer, Theodore K. Koenig, Eric C. Apel, Rebecca S. Hornbrook, Lucy J. Carpenter, Stephen J. Andrews, Tomás Sherwen, and Roland von Glasow
Atmos. Chem. Phys., 19, 3161–3189, https://doi.org/10.5194/acp-19-3161-2019, https://doi.org/10.5194/acp-19-3161-2019, 2019
Short summary
Short summary
The oceans have an impact on the composition and reactivity of the troposphere through the emission of gases and particles. Thus, a quantitative understanding of the marine atmosphere is crucial to examine the oxidative capacity and climate forcing. This study investigates the impact of halogens in the tropical troposphere and explores the sensitivity of this to uncertainties in the fluxes and their chemical processing. Our modelled tropospheric Ox loss due to halogens ranges from 20 % to 60 %.
Carole Helfter, Neil Mullinger, Massimo Vieno, Simon O'Doherty, Michel Ramonet, Paul I. Palmer, and Eiko Nemitz
Atmos. Chem. Phys., 19, 3043–3063, https://doi.org/10.5194/acp-19-3043-2019, https://doi.org/10.5194/acp-19-3043-2019, 2019
Short summary
Short summary
We present a novel approach to estimate the annual budgets of carbon dioxide (881.0 ± 128.5 Tg) and methane (2.55 ± 0.48 Tg) of the British Isles from shipborne measurements taken over a 3-year period (2015–2017). This study brings independent verification of the emission budgets estimated using alternative products and investigates the seasonality of these emissions, which is usually not possible.
Kate R. Smith, Peter M. Edwards, Peter D. Ivatt, James D. Lee, Freya Squires, Chengliang Dai, Richard E. Peltier, Mat J. Evans, Yele Sun, and Alastair C. Lewis
Atmos. Meas. Tech., 12, 1325–1336, https://doi.org/10.5194/amt-12-1325-2019, https://doi.org/10.5194/amt-12-1325-2019, 2019
Short summary
Short summary
Clusters of low-cost, low-power atmospheric gas sensors were built into a sensor instrument to monitor NO2 and O3 in Beijing, alongside reference instruments, aiming to improve the reliability of sensor measurements. Clustering identical sensors and using the median sensor signal was used to minimize drift over short and medium timescales. Three different machine learning techniques were used for all the sensor data in an attempt to correct for cross-interferences, which worked to some degree.
Mingjin Tang, Wenjun Gu, Qingxin Ma, Yong Jie Li, Cheng Zhong, Sheng Li, Xin Yin, Ru-Jin Huang, Hong He, and Xinming Wang
Atmos. Chem. Phys., 19, 2247–2258, https://doi.org/10.5194/acp-19-2247-2019, https://doi.org/10.5194/acp-19-2247-2019, 2019
Liya Guo, Wenjun Gu, Chao Peng, Weigang Wang, Yong Jie Li, Taomou Zong, Yujing Tang, Zhijun Wu, Qinhao Lin, Maofa Ge, Guohua Zhang, Min Hu, Xinhui Bi, Xinming Wang, and Mingjin Tang
Atmos. Chem. Phys., 19, 2115–2133, https://doi.org/10.5194/acp-19-2115-2019, https://doi.org/10.5194/acp-19-2115-2019, 2019
Short summary
Short summary
In this work, hygroscopic properties of eight Ca- and Mg-containing salts were systematically investigated using two complementary techniques. The results largely improve our knowledge of the physicochemical properties of mineral dust and sea salt aerosols.
Qinhao Lin, Xinhui Bi, Guohua Zhang, Yuxiang Yang, Long Peng, Xiufeng Lian, Yuzhen Fu, Mei Li, Duohong Chen, Mark Miller, Ji Ou, Mingjin Tang, Xinming Wang, Ping'an Peng, Guoying Sheng, and Zhen Zhou
Atmos. Chem. Phys., 19, 1195–1206, https://doi.org/10.5194/acp-19-1195-2019, https://doi.org/10.5194/acp-19-1195-2019, 2019
Junfeng Wang, Dantong Liu, Xinlei Ge, Yangzhou Wu, Fuzhen Shen, Mindong Chen, Jian Zhao, Conghui Xie, Qingqing Wang, Weiqi Xu, Jie Zhang, Jianlin Hu, James Allan, Rutambhara Joshi, Pingqing Fu, Hugh Coe, and Yele Sun
Atmos. Chem. Phys., 19, 447–458, https://doi.org/10.5194/acp-19-447-2019, https://doi.org/10.5194/acp-19-447-2019, 2019
Short summary
Short summary
This work is part of the UK-China APHH campaign. We used a laser-only Aerodyne soot particle aerosol mass spectrometer, for the first time, to investigate the concentrations, size distributions and chemical compositions for those ambient submicron aerosol particles only with black carbon as cores. Our findings are valuable to understand the BC properties and processes in the densely populated megacities.
Qiang Huang, Jiubin Chen, Weilin Huang, John R. Reinfelder, Pingqing Fu, Shengliu Yuan, Zhongwei Wang, Wei Yuan, Hongming Cai, Hong Ren, Yele Sun, and Li He
Atmos. Chem. Phys., 19, 315–325, https://doi.org/10.5194/acp-19-315-2019, https://doi.org/10.5194/acp-19-315-2019, 2019
Short summary
Short summary
Although the specific reactions and mechanisms in fine aerosols could not be explicitly determined from this field study, our results provide isotopic evidence that local daily photochemical reduction of divalent Hg is of critical importance to the fate of PM2.5-Hg in urban atmospheres and that, in addition to variation in sources, photochemical reduction appears to be an important process that affects both the particle mass-specific abundance and isotopic composition of PM2.5-Hg.
Xiaole Pan, Baozhu Ge, Zhe Wang, Yu Tian, Hang Liu, Lianfang Wei, Siyao Yue, Itsushi Uno, Hiroshi Kobayashi, Tomoaki Nishizawa, Atsushi Shimizu, Pingqing Fu, and Zifa Wang
Atmos. Chem. Phys., 19, 219–232, https://doi.org/10.5194/acp-19-219-2019, https://doi.org/10.5194/acp-19-219-2019, 2019
Conghui Xie, Weiqi Xu, Junfeng Wang, Qingqing Wang, Dantong Liu, Guiqian Tang, Ping Chen, Wei Du, Jian Zhao, Yingjie Zhang, Wei Zhou, Tingting Han, Qingyun Bian, Jie Li, Pingqing Fu, Zifa Wang, Xinlei Ge, James Allan, Hugh Coe, and Yele Sun
Atmos. Chem. Phys., 19, 165–179, https://doi.org/10.5194/acp-19-165-2019, https://doi.org/10.5194/acp-19-165-2019, 2019
Short summary
Short summary
We present the first simultaneous real-time online measurements of aerosol optical properties at ground level and at 260 m on a meteorological tower in urban Beijing in winter. The vertical similarities and differences in scattering and absorption coefficients were characterized. The increases in MAC of BC were mainly associated with the coating materials on rBC. Coal combustion was the dominant source contribution of brown carbon followed by biomass burning and SOA in winter in Beijing.
Ting Wang, Pucai Wang, Nicolas Theys, Dan Tong, François Hendrick, Qiang Zhang, and Michel Van Roozendael
Atmos. Chem. Phys., 18, 18063–18078, https://doi.org/10.5194/acp-18-18063-2018, https://doi.org/10.5194/acp-18-18063-2018, 2018
Short summary
Short summary
In the last decade, four temporal regimes of SO2 in China have been identified. After an initial rise, SO2 undergoes two sharp drops in 2007–2008 and 2014–2016, during which 5-year rebounding is sustained. Different mechanisms are tied to North and South China. The industrial emission is responsible for SO2 variation in North China, while in South China the meteorological conditions make a large contribution. The result is crucial to the understanding of SO2 changes and future polices.
Angelo Finco, Mhairi Coyle, Eiko Nemitz, Riccardo Marzuoli, Maria Chiesa, Benjamin Loubet, Silvano Fares, Eugenio Diaz-Pines, Rainer Gasche, and Giacomo Gerosa
Atmos. Chem. Phys., 18, 17945–17961, https://doi.org/10.5194/acp-18-17945-2018, https://doi.org/10.5194/acp-18-17945-2018, 2018
Short summary
Short summary
A 1-month field campaign of ozone (O3) flux measurements along a five-level vertical profile of a mature broadleaf forest highlighted that the biosphere–atmosphere exchange of this pollutant is modulated by complex diel dynamics occurring within and below the canopy. The canopy removed nearly 80 % of the O3 deposited to the forest; only a minor part was removed by the soil and the understorey (2 %), while the remaining 18.2 % was removed by chemical reactions with NO mostly emitted from soil.
Mingxu Liu, Xin Huang, Yu Song, Tingting Xu, Shuxiao Wang, Zhijun Wu, Min Hu, Lin Zhang, Qiang Zhang, Yuepeng Pan, Xuejun Liu, and Tong Zhu
Atmos. Chem. Phys., 18, 17933–17943, https://doi.org/10.5194/acp-18-17933-2018, https://doi.org/10.5194/acp-18-17933-2018, 2018
Lu Shen, Daniel J. Jacob, Loretta J. Mickley, Yuxuan Wang, and Qiang Zhang
Atmos. Chem. Phys., 18, 17489–17496, https://doi.org/10.5194/acp-18-17489-2018, https://doi.org/10.5194/acp-18-17489-2018, 2018
Robbie Ramsay, Chiara F. Di Marco, Mathew R. Heal, Marsailidh M. Twigg, Nicholas Cowan, Matthew R. Jones, Sarah R. Leeson, William J. Bloss, Louisa J. Kramer, Leigh Crilley, Matthias Sörgel, Meinrat Andreae, and Eiko Nemitz
Atmos. Chem. Phys., 18, 16953–16978, https://doi.org/10.5194/acp-18-16953-2018, https://doi.org/10.5194/acp-18-16953-2018, 2018
Short summary
Short summary
Understanding the impact of agricultural activities on the atmosphere requires more measurements of inorganic trace gases and associated aerosol counterparts. This research presents 1 month of measurements above agricultural grassland during a period of fertiliser application. It was found that emissions of the important trace gases ammonia and nitrous acid peaked after fertiliser use and that the velocity at which the measured aerosols were deposited was dependent upon their size.
Arlene M. Fiore, Emily V. Fischer, George P. Milly, Shubha Pandey Deolal, Oliver Wild, Daniel A. Jaffe, Johannes Staehelin, Olivia E. Clifton, Dan Bergmann, William Collins, Frank Dentener, Ruth M. Doherty, Bryan N. Duncan, Bernd Fischer, Stefan Gilge, Peter G. Hess, Larry W. Horowitz, Alexandru Lupu, Ian A. MacKenzie, Rokjin Park, Ludwig Ries, Michael G. Sanderson, Martin G. Schultz, Drew T. Shindell, Martin Steinbacher, David S. Stevenson, Sophie Szopa, Christoph Zellweger, and Guang Zeng
Atmos. Chem. Phys., 18, 15345–15361, https://doi.org/10.5194/acp-18-15345-2018, https://doi.org/10.5194/acp-18-15345-2018, 2018
Short summary
Short summary
We demonstrate a proof-of-concept approach for applying northern midlatitude mountaintop peroxy acetyl nitrate (PAN) measurements and a multi-model ensemble during April to constrain the influence of continental-scale anthropogenic precursor emissions on PAN. Our findings imply a role for carefully coordinated multi-model ensembles in helping identify observations for discriminating among widely varying (and poorly constrained) model responses of atmospheric constituents to changes in emissions.
Hansen Cao, Tzung-May Fu, Lin Zhang, Daven K. Henze, Christopher Chan Miller, Christophe Lerot, Gonzalo González Abad, Isabelle De Smedt, Qiang Zhang, Michel van Roozendael, François Hendrick, Kelly Chance, Jie Li, Junyu Zheng, and Yuanhong Zhao
Atmos. Chem. Phys., 18, 15017–15046, https://doi.org/10.5194/acp-18-15017-2018, https://doi.org/10.5194/acp-18-15017-2018, 2018
Short summary
Short summary
Our top-down estimates for annual total Chinese NMVOC emissions was 30.7 to 49.5 Tg y−1, including 16.4 to 23.6 Tg y−1 from anthropogenic sources, 12.2 to 22.8 Tg y−1 from biogenic sources, and 2.08 to 3.13 Tg y−1 from biomass burning. Our four inversions consistently showed that the emissions of Chinese anthropogenic NMVOC precursors of glyoxal were larger than the a priori estimates. The glyoxal and formaldehyde constraints helped distinguish the NMVOC species from different sources.
Yingjie Zhang, Wei Du, Yuying Wang, Qingqing Wang, Haofei Wang, Haitao Zheng, Fang Zhang, Hongrong Shi, Yuxuan Bian, Yongxiang Han, Pingqing Fu, Francesco Canonaco, André S. H. Prévôt, Tong Zhu, Pucai Wang, Zhanqing Li, and Yele Sun
Atmos. Chem. Phys., 18, 14637–14651, https://doi.org/10.5194/acp-18-14637-2018, https://doi.org/10.5194/acp-18-14637-2018, 2018
Short summary
Short summary
We have a comprehensive characterization of aerosol chemistry and particle growth events at a downwind site of a highly polluted city in the North China Plain. Aerosol particles at the urban downwind site were highly aged and mainly from secondary formation. New particle growth events were also frequently observed on both clean and polluted days. While both sulfate and SOA played important roles in particle growth during clean periods, SOA was more important than sulfate during polluted events.
Lei Liu, Jian Zhang, Liang Xu, Qi Yuan, Dao Huang, Jianmin Chen, Zongbo Shi, Yele Sun, Pingqing Fu, Zifa Wang, Daizhou Zhang, and Weijun Li
Atmos. Chem. Phys., 18, 14681–14693, https://doi.org/10.5194/acp-18-14681-2018, https://doi.org/10.5194/acp-18-14681-2018, 2018
Short summary
Short summary
Using transmission electron microscopy, we studied individual cloud droplet residual and interstitial particles collected in cloud events at Mt. Tai in the polluted North China region. We found that individual cloud droplets were an extremely complicated mixture containing abundant refractory soot (i.e., black carbon), fly ash, and metals. The complicated cloud droplets have not been reported in clean continental or marine air before.
Bo Zheng, Dan Tong, Meng Li, Fei Liu, Chaopeng Hong, Guannan Geng, Haiyan Li, Xin Li, Liqun Peng, Ji Qi, Liu Yan, Yuxuan Zhang, Hongyan Zhao, Yixuan Zheng, Kebin He, and Qiang Zhang
Atmos. Chem. Phys., 18, 14095–14111, https://doi.org/10.5194/acp-18-14095-2018, https://doi.org/10.5194/acp-18-14095-2018, 2018
Short summary
Short summary
To tackle the problem of severe air pollution, China has implemented active clean air policies in recent years. We quantified China’s anthropogenic emissions during 2010–2017 and identified the major driving forces of these trends by using a combination of bottom-up emission inventory and index decomposition analysis (IDA) approaches. The major air pollutants have reduced their emissions by 17–62 % during 2010–2017. The IDA results suggest that emission control measures are the main drivers.
Mingjie Kang, Pingqing Fu, Kimitaka Kawamura, Fan Yang, Hongliang Zhang, Zhengchen Zang, Hong Ren, Lujie Ren, Ye Zhao, Yele Sun, and Zifa Wang
Atmos. Chem. Phys., 18, 13947–13967, https://doi.org/10.5194/acp-18-13947-2018, https://doi.org/10.5194/acp-18-13947-2018, 2018
Short summary
Short summary
Molecular characterization and spatial distribution of biogenic primary organic aerosol (POA) and secondary organic aerosol (SOA) in the marine atmosphere are not well known. Here, we analysed the organic molecular composition of marine aerosols collected during a marine cruise in the East China Sea during May–June 2014. Our results suggest that the Asian continent can be a natural emitter of biogenic POA and SOA, which can be transported to the downwind marine atmosphere.
Mengyao Liu, Jintai Lin, Yuchen Wang, Yang Sun, Bo Zheng, Jingyuan Shao, Lulu Chen, Yixuan Zheng, Jinxuan Chen, Tzung-May Fu, Yingying Yan, Qiang Zhang, and Zhaohua Wu
Atmos. Chem. Phys., 18, 12933–12952, https://doi.org/10.5194/acp-18-12933-2018, https://doi.org/10.5194/acp-18-12933-2018, 2018
Short summary
Short summary
Eastern China is heavily polluted by NO2, PM2.5, and other air pollutants. Our study uses EOF–EEMD to analyze the spatiotemporal variability of ground-level NO2, PM2.5, and their associations with meteorological processes. Their regular diurnal cycles are mainly affected by human activities, while irregular day-to-day variations are dominated by weather processes representing synchronous variation or north–south opposing changes over Eastern China.
Fernando Santos, Karla Longo, Alex Guenther, Saewung Kim, Dasa Gu, Dave Oram, Grant Forster, James Lee, James Hopkins, Joel Brito, and Saulo Freitas
Atmos. Chem. Phys., 18, 12715–12734, https://doi.org/10.5194/acp-18-12715-2018, https://doi.org/10.5194/acp-18-12715-2018, 2018
Short summary
Short summary
We investigated the impact of biomass burning on the chemical composition of trace gases in the Amazon. The findings corroborate the influence of biomass burning activity not only on direct emissions of particulate matter but also on the oxidative capacity to produce secondary organic aerosol. The scientists plan to use this information to improve the numerical model simulation with a better representativeness of the chemical processes, which can impact on global climate prediction.
Weiqiang Yang, Yanli Zhang, Xinming Wang, Sheng Li, Ming Zhu, Qingqing Yu, Guanghui Li, Zhonghui Huang, Huina Zhang, Zhenfeng Wu, Wei Song, Jihua Tan, and Min Shao
Atmos. Chem. Phys., 18, 12663–12682, https://doi.org/10.5194/acp-18-12663-2018, https://doi.org/10.5194/acp-18-12663-2018, 2018
Short summary
Short summary
We present observation-based evaluations of the reduction of ambient VOCs under intervention control measures during APEC China 2014 in Beijing and the contributions of emissions from domestic solid fuel burning to ambient VOCs during winter heating. Controlling vehicle exhaust and solvent use was found to be effective in reducing ambient VOCs in non-heating periods, and controlling emissions from residential burning of solid fuels became much more important during winter heating.
Paul I. Palmer, Simon O'Doherty, Grant Allen, Keith Bower, Hartmut Bösch, Martyn P. Chipperfield, Sarah Connors, Sandip Dhomse, Liang Feng, Douglas P. Finch, Martin W. Gallagher, Emanuel Gloor, Siegfried Gonzi, Neil R. P. Harris, Carole Helfter, Neil Humpage, Brian Kerridge, Diane Knappett, Roderic L. Jones, Michael Le Breton, Mark F. Lunt, Alistair J. Manning, Stephan Matthiesen, Jennifer B. A. Muller, Neil Mullinger, Eiko Nemitz, Sebastian O'Shea, Robert J. Parker, Carl J. Percival, Joseph Pitt, Stuart N. Riddick, Matthew Rigby, Harjinder Sembhi, Richard Siddans, Robert L. Skelton, Paul Smith, Hannah Sonderfeld, Kieran Stanley, Ann R. Stavert, Angelina Wenger, Emily White, Christopher Wilson, and Dickon Young
Atmos. Chem. Phys., 18, 11753–11777, https://doi.org/10.5194/acp-18-11753-2018, https://doi.org/10.5194/acp-18-11753-2018, 2018
Short summary
Short summary
This paper provides an overview of the Greenhouse gAs Uk and Global Emissions (GAUGE) experiment. GAUGE was designed to quantify nationwide GHG emissions of the UK, bringing together measurements and atmospheric transport models. This novel experiment is the first of its kind. We anticipate it will inform the blueprint for countries that are building a measurement infrastructure in preparation for global stocktakes, which are a key part of the Paris Agreement.
Wei Zhou, Jian Zhao, Bin Ouyang, Archit Mehra, Weiqi Xu, Yuying Wang, Thomas J. Bannan, Stephen D. Worrall, Michael Priestley, Asan Bacak, Qi Chen, Conghui Xie, Qingqing Wang, Junfeng Wang, Wei Du, Yingjie Zhang, Xinlei Ge, Penglin Ye, James D. Lee, Pingqing Fu, Zifa Wang, Douglas Worsnop, Roderic Jones, Carl J. Percival, Hugh Coe, and Yele Sun
Atmos. Chem. Phys., 18, 11581–11597, https://doi.org/10.5194/acp-18-11581-2018, https://doi.org/10.5194/acp-18-11581-2018, 2018
Short summary
Short summary
We present measurements of gas-phase N2O5 and ClNO2 by ToF-CIMS during summer in urban Beijing as part of the APHH campaign. High reactivity of N2O5 indicative of active nocturnal chemistry was observed. The lifetime of N2O5 as a function of aerosol surface area and relative humidity was characterized, and N2O5 uptake coefficients were estimated. We also found that the N2O5 loss in this study is mainly attributed to its indirect loss via reactions of NO3 with VOCs and NO.
Tengyu Liu, Zhaoyi Wang, Xinming Wang, and Chak K. Chan
Atmos. Chem. Phys., 18, 11363–11374, https://doi.org/10.5194/acp-18-11363-2018, https://doi.org/10.5194/acp-18-11363-2018, 2018
Short summary
Short summary
POA and SOA from seven heated cooking oil emissions were investigated in a smog chamber. We found that PMF analysis separated POA and SOA better than the residual spectrum method and the traditional method, assuming first-order POA loss. The PMF factors mass spectra were compared with those of ambient PMF factors. Our results suggest that COA source analysis from ambient data is likely complicated by the cooking style and atmospheric oxidation conditions.
Prasad Kasibhatla, Tomás Sherwen, Mathew J. Evans, Lucy J. Carpenter, Chris Reed, Becky Alexander, Qianjie Chen, Melissa P. Sulprizio, James D. Lee, Katie A. Read, William Bloss, Leigh R. Crilley, William C. Keene, Alexander A. P. Pszenny, and Alma Hodzic
Atmos. Chem. Phys., 18, 11185–11203, https://doi.org/10.5194/acp-18-11185-2018, https://doi.org/10.5194/acp-18-11185-2018, 2018
Short summary
Short summary
Recent measurements of NOx and HONO suggest that photolysis of particulate nitrate in sea-salt aerosols is important in terms of marine boundary layer oxidant chemistry. We present the first global-scale assessment of the significance of this new chemical pathway for NOx, O3, and OH in the marine boundary layer. We also present a preliminary assessment of the potential impact of photolysis of particulate nitrate associated with other aerosol types on continental boundary layer chemistry.
Edmund Ryan, Oliver Wild, Apostolos Voulgarakis, and Lindsay Lee
Geosci. Model Dev., 11, 3131–3146, https://doi.org/10.5194/gmd-11-3131-2018, https://doi.org/10.5194/gmd-11-3131-2018, 2018
Short summary
Short summary
Global sensitivity analysis (GSA) identifies which parameters of a model most affect its output. We performed GSA using statistical emulators as surrogates of two slow-running atmospheric chemistry transport models. Due to the high dimension of the model outputs, we considered two alternative methods: one that reduced the output dimension and one that did not require an emulator. The alternative methods accurately performed the GSA but were significantly faster than the emulator-only method.
Jörg Hartmann, Martin Gehrmann, Katrin Kohnert, Stefan Metzger, and Torsten Sachs
Atmos. Meas. Tech., 11, 4567–4581, https://doi.org/10.5194/amt-11-4567-2018, https://doi.org/10.5194/amt-11-4567-2018, 2018
Short summary
Short summary
We present new in-flight calibration procedures for airborne turbulence measurements that exploit suitable regular flight legs without the need for dedicated calibration patterns. Furthermore we estimate the accuracy of the airborne wind measurement and of the turbulent fluxes of the traces gases methane and carbon dioxide.
Yuxuan Zhang, Xin Li, Meng Li, Yixuan Zheng, Guannan Geng, Chaopeng Hong, Haiyan Li, Dan Tong, Xin Zhang, Yafang Cheng, Hang Su, Kebin He, and Qiang Zhang
Atmos. Chem. Phys., 18, 10275–10287, https://doi.org/10.5194/acp-18-10275-2018, https://doi.org/10.5194/acp-18-10275-2018, 2018
Short summary
Short summary
When emission controls were implemented during APEC, we found that the reduction in BC light absorption was driven by simultaneously reducing the mass concentration and light-absorption capability of BC. The weakening of BC light-absorption capability could be attributed to less coating material on BC surfaces due to the decreased chemical production of secondary aerosols. Our results imply that a synergetic reduction in multiple-pollutant emissions could benefit both air quality and climate.
Yuxuan Zhang, Qiang Zhang, Yafang Cheng, Hang Su, Haiyan Li, Meng Li, Xin Zhang, Aijun Ding, and Kebin He
Atmos. Chem. Phys., 18, 9879–9896, https://doi.org/10.5194/acp-18-9879-2018, https://doi.org/10.5194/acp-18-9879-2018, 2018
Short summary
Short summary
The light absorption of BC-containing particles strongly depends on their aging process in the atmosphere. Whether and how the aging degree and light absorption capability of BC-containing particles will change with air pollution development is still unclear. Our results reveal that under a more polluted environment, the BC-containing particles are characterized not only by higher BC mass concentrations but also by more coating materials on BC surfaces and thus higher light absorption capacity.
Andrei Serafimovich, Stefan Metzger, Jörg Hartmann, Katrin Kohnert, Donatella Zona, and Torsten Sachs
Atmos. Chem. Phys., 18, 10007–10023, https://doi.org/10.5194/acp-18-10007-2018, https://doi.org/10.5194/acp-18-10007-2018, 2018
Short summary
Short summary
In order to support the evaluation of coupled atmospheric–land-surface models we investigated spatial patterns of energy fluxes in relation to land-surface properties and upscaled airborne flux measurements to high resolution flux maps. A machine learning technique allows us to estimate environmental response functions between spatially and temporally resolved flux observations and corresponding biophysical and meteorological drivers.
Steven T. Turnock, Oliver Wild, Frank J. Dentener, Yanko Davila, Louisa K. Emmons, Johannes Flemming, Gerd A. Folberth, Daven K. Henze, Jan E. Jonson, Terry J. Keating, Sudo Kengo, Meiyun Lin, Marianne Lund, Simone Tilmes, and Fiona M. O'Connor
Atmos. Chem. Phys., 18, 8953–8978, https://doi.org/10.5194/acp-18-8953-2018, https://doi.org/10.5194/acp-18-8953-2018, 2018
Short summary
Short summary
A simple parameterisation was developed in this study to provide a rapid assessment of the impacts and uncertainties associated with future emission control strategies by predicting changes to surface ozone air quality and near-term climate forcing of ozone. Future emissions scenarios based on currently implemented legislation are shown to worsen surface ozone air quality and enhance near-term climate warming, with changes in methane becoming increasingly important in the future.
Yele Sun, Weiqi Xu, Qi Zhang, Qi Jiang, Francesco Canonaco, André S. H. Prévôt, Pingqing Fu, Jie Li, John Jayne, Douglas R. Worsnop, and Zifa Wang
Atmos. Chem. Phys., 18, 8469–8489, https://doi.org/10.5194/acp-18-8469-2018, https://doi.org/10.5194/acp-18-8469-2018, 2018
Short summary
Short summary
We present a 2–year analysis of organic aerosol (OA) from highly time–resolved measurements by an aerosol chemical speciation monitor in the megacity of Beijing. The sources of OA were analyzed with the advanced factor analysis of a multilinear engine (ME-2). Our results showed very different seasonal patterns, relative humidity and temperature dependence, and sources regions among different OA factors. The sources and processes of OA factors, and their roles in haze pollution are elucidated.
Nan Li, Qingyang He, Jim Greenberg, Alex Guenther, Jingyi Li, Junji Cao, Jun Wang, Hong Liao, Qiyuan Wang, and Qiang Zhang
Atmos. Chem. Phys., 18, 7489–7507, https://doi.org/10.5194/acp-18-7489-2018, https://doi.org/10.5194/acp-18-7489-2018, 2018
Short summary
Short summary
O3 pollution has been increasing in most Chinese cities in recent years. Our study reveals that the synergistic impact of individual source contributions to O3 formation should be considered in the formation of air pollution control strategies, especially for big cities in the vicinity of forests.
Fernando Iglesias-Suarez, Douglas E. Kinnison, Alexandru Rap, Amanda C. Maycock, Oliver Wild, and Paul J. Young
Atmos. Chem. Phys., 18, 6121–6139, https://doi.org/10.5194/acp-18-6121-2018, https://doi.org/10.5194/acp-18-6121-2018, 2018
Short summary
Short summary
This study explores future ozone radiative forcing (RF) and the relative contribution due to different drivers. Climate-induced ozone RF is largely the result of the interplay between lightning-produced ozone and enhanced ozone destruction in a warmer and wetter atmosphere. These results demonstrate the importance of stratospheric–tropospheric interactions and the stratosphere as a key region controlling a large fraction of the tropospheric ozone RF.
Amy K. Hodgson, William T. Morgan, Sebastian O'Shea, Stéphane Bauguitte, James D. Allan, Eoghan Darbyshire, Michael J. Flynn, Dantong Liu, James Lee, Ben Johnson, Jim M. Haywood, Karla M. Longo, Paulo E. Artaxo, and Hugh Coe
Atmos. Chem. Phys., 18, 5619–5638, https://doi.org/10.5194/acp-18-5619-2018, https://doi.org/10.5194/acp-18-5619-2018, 2018
Short summary
Short summary
We flew a large atmospheric research aircraft across a number of different biomass burning environments in the Amazon Basin in September and October 2012. In this paper, we focus on smoke sampled very close to fresh fires (only 600–900 m above the fires and smoke that was 4–6 min old) to examine the chemical components that make up the smoke and their abundance. We found substantial differences in the emitted smoke that are due to the fuel type and combustion processes driving the fires.
Di Liu, Matthias Vonwiller, Jun Li, Junwen Liu, Sönke Szidat, Yanlin Zhang, Chongguo Tian, Yinjun Chen, Zhineng Cheng, Guangcai Zhong, Pingqing Fu, and Gan Zhang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-295, https://doi.org/10.5194/acp-2018-295, 2018
Revised manuscript not accepted
Silvia Bucci, Paolo Cristofanelli, Stefano Decesari, Angela Marinoni, Silvia Sandrini, Johannes Größ, Alfred Wiedensohler, Chiara F. Di Marco, Eiko Nemitz, Francesco Cairo, Luca Di Liberto, and Federico Fierli
Atmos. Chem. Phys., 18, 5371–5389, https://doi.org/10.5194/acp-18-5371-2018, https://doi.org/10.5194/acp-18-5371-2018, 2018
Short summary
Short summary
This paper analyses some of the processes affecting PM levels over the Po Valley, one of the most polluted regions of Europe, during the 2012 summer campaigns. Under conditions of air transport from the Sahara, data show that desert dust can rapidly penetrate into the lower atmosphere, directly affecting the PM concentration at the ground. Processes of particles growth in high relative humidity and uplift of local soil particles, potentially affecting PM level, are also analysed.
Haiyan Li, Qiang Zhang, Bo Zheng, Chunrong Chen, Nana Wu, Hongyu Guo, Yuxuan Zhang, Yixuan Zheng, Xin Li, and Kebin He
Atmos. Chem. Phys., 18, 5293–5306, https://doi.org/10.5194/acp-18-5293-2018, https://doi.org/10.5194/acp-18-5293-2018, 2018
Short summary
Short summary
This study revealed the driving role of nitrate in urban haze development in the North China Plain (NCP) during summertime. Several factors favoring the rapid nitrate formation were investigated in detail. The higher concentration and, in particular, the higher contribution of nitrate in PM1 suggest an urgent need to initiate ammonia emission control measures and further reduce NOx emissions over the NCP region.
Meng Gao, Zhiwei Han, Zirui Liu, Meng Li, Jinyuan Xin, Zhining Tao, Jiawei Li, Jeong-Eon Kang, Kan Huang, Xinyi Dong, Bingliang Zhuang, Shu Li, Baozhu Ge, Qizhong Wu, Yafang Cheng, Yuesi Wang, Hyo-Jung Lee, Cheol-Hee Kim, Joshua S. Fu, Tijian Wang, Mian Chin, Jung-Hun Woo, Qiang Zhang, Zifa Wang, and Gregory R. Carmichael
Atmos. Chem. Phys., 18, 4859–4884, https://doi.org/10.5194/acp-18-4859-2018, https://doi.org/10.5194/acp-18-4859-2018, 2018
Short summary
Short summary
Topic 3 of the Model Inter-Comparison Study for Asia (MICS-Asia) Phase III examines how online coupled air quality models perform in simulating high aerosol pollution in the North China Plain region during wintertime haze events and evaluates the importance of aerosol radiative and microphysical feedbacks. A comprehensive overview of the MICS-ASIA III Topic 3 study design is presented.
Karina E. Adcock, Claire E. Reeves, Lauren J. Gooch, Emma C. Leedham Elvidge, Matthew J. Ashfold, Carl A. M. Brenninkmeijer, Charles Chou, Paul J. Fraser, Ray L. Langenfelds, Norfazrin Mohd Hanif, Simon O'Doherty, David E. Oram, Chang-Feng Ou-Yang, Siew Moi Phang, Azizan Abu Samah, Thomas Röckmann, William T. Sturges, and Johannes C. Laube
Atmos. Chem. Phys., 18, 4737–4751, https://doi.org/10.5194/acp-18-4737-2018, https://doi.org/10.5194/acp-18-4737-2018, 2018
Felix A. Mackenzie-Rae, Helen J. Wallis, Andrew R. Rickard, Kelly L. Pereira, Sandra M. Saunders, Xinming Wang, and Jacqueline F. Hamilton
Atmos. Chem. Phys., 18, 4673–4693, https://doi.org/10.5194/acp-18-4673-2018, https://doi.org/10.5194/acp-18-4673-2018, 2018
Short summary
Short summary
Native to Australasia, the remarkable adaptability, rapid growth rates and high quality wood of eucalypt trees has led to them the most widely planted hardwood forest trees in the world. In contrast to boreal and tropical forests, there has been little study of aerosol formation in these regions. Here, we study the secondary organic aerosol formation from the very fast reaction of α-phellandrene, emitted from eucalypts, and identify key products and reaction pathways.
Riinu Ots, Mathew R. Heal, Dominique E. Young, Leah R. Williams, James D. Allan, Eiko Nemitz, Chiara Di Marco, Anais Detournay, Lu Xu, Nga L. Ng, Hugh Coe, Scott C. Herndon, Ian A. Mackenzie, David C. Green, Jeroen J. P. Kuenen, Stefan Reis, and Massimo Vieno
Atmos. Chem. Phys., 18, 4497–4518, https://doi.org/10.5194/acp-18-4497-2018, https://doi.org/10.5194/acp-18-4497-2018, 2018
Short summary
Short summary
The main hypothesis of this paper is that people who live in large cities in the UK disobey the
smoke control lawas it has not been actively enforced for decades now. However, the use of wood in residential heating has increased, partly due to renewable energy targets, but also for discretionary (i.e. pleasant fireplaces) reasons. Our study is based mainly in London, but similar struggles with urban air quality due to residential wood and coal burning are seen in other major European cities.
Hao Wang, Xiaopu Lyu, Hai Guo, Yu Wang, Shichun Zou, Zhenhao Ling, Xinming Wang, Fei Jiang, Yangzong Zeren, Wenzhuo Pan, Xiaobo Huang, and Jin Shen
Atmos. Chem. Phys., 18, 4277–4295, https://doi.org/10.5194/acp-18-4277-2018, https://doi.org/10.5194/acp-18-4277-2018, 2018
Short summary
Short summary
While oceanic air is generally thought to be clean, the air pollution over waters in proximity to the coasts is not well recognized. This research indicated that ozone was higher over South China Sea (SCS) than that in the adjacent continental area, while continental anticyclone, tropical cyclone and land breeze favored O3 formation over SCS. In addition, weaker NO titration and stronger atmospheric oxidative capacity led to higher O3 production efficiency over SCS.
James D. Lee, Stephen D. Mobbs, Axel Wellpott, Grant Allen, Stephane J.-B. Bauguitte, Ralph R. Burton, Richard Camilli, Hugh Coe, Rebecca E. Fisher, James L. France, Martin Gallagher, James R. Hopkins, Mathias Lanoiselle, Alastair C. Lewis, David Lowry, Euan G. Nisbet, Ruth M. Purvis, Sebastian O'Shea, John A. Pyle, and Thomas B. Ryerson
Atmos. Meas. Tech., 11, 1725–1739, https://doi.org/10.5194/amt-11-1725-2018, https://doi.org/10.5194/amt-11-1725-2018, 2018
Short summary
Short summary
This work describes measurements, made from an aircraft platform, of the emission of methane and other organic gases from an uncontrolled leak from an oil platform in the North Sea (Total Elgin). The measurements made helped the platform operators to devise a strategy for repairing the leak and serve as a methodology for assessing future similar incidents.
Wei Zhou, Qingqing Wang, Xiujuan Zhao, Weiqi Xu, Chen Chen, Wei Du, Jian Zhao, Francesco Canonaco, André S. H. Prévôt, Pingqing Fu, Zifa Wang, Douglas R. Worsnop, and Yele Sun
Atmos. Chem. Phys., 18, 3951–3968, https://doi.org/10.5194/acp-18-3951-2018, https://doi.org/10.5194/acp-18-3951-2018, 2018
Short summary
Short summary
We present a 3-month analysis of submicron aerosols that were measured at 260 m on a meteorological tower in Beijing, China. The sources of organic aerosol (OA) were analyzed by using a multi-linear engine (ME-2). Our results showed significant changes in both primary and secondary OA composition from the non-heating season to the heating season. We also observed a considerable contribution (10–13%) of cooking OA at 260 m and very different OA composition between ground level and 260 m.
Daniel Stone, Tomás Sherwen, Mathew J. Evans, Stewart Vaughan, Trevor Ingham, Lisa K. Whalley, Peter M. Edwards, Katie A. Read, James D. Lee, Sarah J. Moller, Lucy J. Carpenter, Alastair C. Lewis, and Dwayne E. Heard
Atmos. Chem. Phys., 18, 3541–3561, https://doi.org/10.5194/acp-18-3541-2018, https://doi.org/10.5194/acp-18-3541-2018, 2018
Short summary
Short summary
Halogen chemistry in the troposphere impacts oxidising capacity, but model studies assessing the nature of these impacts can vary according to the model framework used. In this work we present simulations of OH and HO2 radicals using both box and global model frameworks, and compare to observations made at the Cape Verde Atmospheric Observatory. We highlight, and rationalise, differences between the model frameworks.
Meng Li, Zbigniew Klimont, Qiang Zhang, Randall V. Martin, Bo Zheng, Chris Heyes, Janusz Cofala, Yuxuan Zhang, and Kebin He
Atmos. Chem. Phys., 18, 3433–3456, https://doi.org/10.5194/acp-18-3433-2018, https://doi.org/10.5194/acp-18-3433-2018, 2018
Short summary
Short summary
In this paper, we conducted a comprehensive evaluation of two widely used anthropogenic emission inventories over China, ECLIPSE and MIX, to explore the potential sources of uncertainties and find clues to improving emission inventories. We found that SO2 emission estimates are consistent between the two inventories (with 1 % differences), while NOx emissions in ECLIPSE's estimates are 16 % lower than those in MIX. Discrepancies at the sector and provincial levels are much higher.
Wanyu Zhao, Kimitaka Kawamura, Siyao Yue, Lianfang Wei, Hong Ren, Yu Yan, Mingjie Kang, Linjie Li, Lujie Ren, Senchao Lai, Jie Li, Yele Sun, Zifa Wang, and Pingqing Fu
Atmos. Chem. Phys., 18, 2749–2767, https://doi.org/10.5194/acp-18-2749-2018, https://doi.org/10.5194/acp-18-2749-2018, 2018
Short summary
Short summary
In this paper, we investigate the seasonal trends in concentrations and compound-specific stable carbon isotope ratios of low molecular weight dicarboxylic acids (C2–C12) and related compounds in fine aerosols (PM2.5) in Beijing. Our study demonstrates that, in addition to the production via photo-oxidation, high abundances of diacids and related compounds in Beijing are largely associated with anthropogenic primary emissions such as biomass burning, fossil fuel combustion and plastic burning.
Lisa K. Whalley, Daniel Stone, Rachel Dunmore, Jacqueline Hamilton, James R. Hopkins, James D. Lee, Alastair C. Lewis, Paul Williams, Jörg Kleffmann, Sebastian Laufs, Robert Woodward-Massey, and Dwayne E. Heard
Atmos. Chem. Phys., 18, 2547–2571, https://doi.org/10.5194/acp-18-2547-2018, https://doi.org/10.5194/acp-18-2547-2018, 2018
Short summary
Short summary
This paper presents the first radical observations made in London and subsequent model comparisons. This work highlights that there are uncertainties in the degradation mechanism of complex biogenic and diesel-related VOC species under low-NOx conditions and under high-NOx conditions there is a missing source of RO2 radicals. The impact of these model uncertainties on in situ ozone production as a function of NOx is discussed.
Tianyi Fan, Xiaohong Liu, Po-Lun Ma, Qiang Zhang, Zhanqing Li, Yiquan Jiang, Fang Zhang, Chuanfeng Zhao, Xin Yang, Fang Wu, and Yuying Wang
Atmos. Chem. Phys., 18, 1395–1417, https://doi.org/10.5194/acp-18-1395-2018, https://doi.org/10.5194/acp-18-1395-2018, 2018
Short summary
Short summary
We found that 22–28 % of the low AOD bias in eastern China simulated by the Community Atmosphere Model version 5 can be improved by using a new emission inventory. The concentrations of primary aerosols are closely related to the emission, while the seasonal variations of secondary aerosols depend more on atmospheric processes. This study highlights the importance of improving both the emission and atmospheric processes in modeling the atmospheric aerosols and their radiative effects.
Rachel M. Hoesly, Steven J. Smith, Leyang Feng, Zbigniew Klimont, Greet Janssens-Maenhout, Tyler Pitkanen, Jonathan J. Seibert, Linh Vu, Robert J. Andres, Ryan M. Bolt, Tami C. Bond, Laura Dawidowski, Nazar Kholod, June-ichi Kurokawa, Meng Li, Liang Liu, Zifeng Lu, Maria Cecilia P. Moura, Patrick R. O'Rourke, and Qiang Zhang
Geosci. Model Dev., 11, 369–408, https://doi.org/10.5194/gmd-11-369-2018, https://doi.org/10.5194/gmd-11-369-2018, 2018
Short summary
Short summary
Historical emission trends are key inputs to Earth systems and atmospheric chemistry models. We present a new data set of historical (1750–2014) anthropogenic gases (CO, CH4, NH3, NOx, SO2, NMVOCs, BC, OC, and CO2) developed with the Community Emissions Data System (CEDS). This improves on existing inventories as it uses consistent methods and data across emissions species, has annual resolution for a longer and more recent time series, and is designed to be transparent and reproducible.
Santosh Kumar Verma, Kimitaka Kawamura, Jing Chen, and Pingqing Fu
Atmos. Chem. Phys., 18, 81–101, https://doi.org/10.5194/acp-18-81-2018, https://doi.org/10.5194/acp-18-81-2018, 2018
Short summary
Short summary
East Asia has experienced rapid economic development in the last several decades, of which activities emit bioaerosols. The atmospheric particles are transported to downwind regions in the Pacific. To understand the atmospheric transport of bioaerosols, we conducted long-term observations of sugar components over Chichijima Island from 2001 to 2013. We found that atmospheric circulations significantly affect the seasonal variation of bioaerosol distributions over the western North Pacific.
Guohua Zhang, Qinhao Lin, Long Peng, Xinhui Bi, Duohong Chen, Mei Li, Lei Li, Fred J. Brechtel, Jianxin Chen, Weijun Yan, Xinming Wang, Ping'an Peng, Guoying Sheng, and Zhen Zhou
Atmos. Chem. Phys., 17, 14975–14985, https://doi.org/10.5194/acp-17-14975-2017, https://doi.org/10.5194/acp-17-14975-2017, 2017
Short summary
Short summary
The mixing state of black carbon (BC)-containing particles and the mass scavenging efficiency of BC in cloud were investigated at a mountain site (1690 m a.s.l.) in southern China. The measured BC-containing particles were internally mixed extensively with sulfate, and thus the number fraction of scavenged BC-containing particles is close to that of all the measured particles. BC-containing particles with higher fractions of organics were scavenged relatively less.
Mary C. Ockenden, Wlodek Tych, Keith J. Beven, Adrian L. Collins, Robert Evans, Peter D. Falloon, Kirsty J. Forber, Kevin M. Hiscock, Michael J. Hollaway, Ron Kahana, Christopher J. A. Macleod, Martha L. Villamizar, Catherine Wearing, Paul J. A. Withers, Jian G. Zhou, Clare McW. H. Benskin, Sean Burke, Richard J. Cooper, Jim E. Freer, and Philip M. Haygarth
Hydrol. Earth Syst. Sci., 21, 6425–6444, https://doi.org/10.5194/hess-21-6425-2017, https://doi.org/10.5194/hess-21-6425-2017, 2017
Short summary
Short summary
This paper describes simple models of phosphorus load which are identified for three catchments in the UK. The models use new hourly observations of phosphorus load, which capture the dynamics of phosphorus transfer in small catchments that are often missed by models with a longer time step. Unlike more complex, process-based models, very few parameters are required, leading to low parameter uncertainty. Interpretation of the dominant phosphorus transfer modes is made based solely on the data.
Zheng Fang, Wei Deng, Yanli Zhang, Xiang Ding, Mingjin Tang, Tengyu Liu, Qihou Hu, Ming Zhu, Zhaoyi Wang, Weiqiang Yang, Zhonghui Huang, Wei Song, Xinhui Bi, Jianmin Chen, Yele Sun, Christian George, and Xinming Wang
Atmos. Chem. Phys., 17, 14821–14839, https://doi.org/10.5194/acp-17-14821-2017, https://doi.org/10.5194/acp-17-14821-2017, 2017
Short summary
Short summary
Primary emissions and aging of open straw burning plumes were characterized in ambient dilution conditions in a chamber. Rich in alkenes, the plumes have high O3 formation potential. The emissions of specific particulate and gaseous compounds were less when the straws were fully burned. Organic aerosol (OA) mass increased by a factor of 2–8 with 3–9 h photo-oxidation, yet > 70 % of the mass cannot be explained by the known precursors. OA gained more O- and N-containing compounds during aging.
Ben Langford, James Cash, W. Joe F. Acton, Amy C. Valach, C. Nicholas Hewitt, Silvano Fares, Ignacio Goded, Carsten Gruening, Emily House, Athina-Cerise Kalogridis, Valérie Gros, Richard Schafers, Rick Thomas, Mark Broadmeadow, and Eiko Nemitz
Biogeosciences, 14, 5571–5594, https://doi.org/10.5194/bg-14-5571-2017, https://doi.org/10.5194/bg-14-5571-2017, 2017
Short summary
Short summary
Isoprene flux measurements made above five European oak forests were reviewed to generate new emission potentials. Six variations of the Guenther algorithms were inverted to back out time series of isoprene emission potential, and then an “average” emission potential was determined using one of four commonly used approaches. Our results show that emission potentials can vary by up to a factor of 4 and highlight the need for the community to now harmonize their approach to reduce uncertainty.
Ruth M. Doherty, Clara Orbe, Guang Zeng, David A. Plummer, Michael J. Prather, Oliver Wild, Meiyun Lin, Drew T. Shindell, and Ian A. Mackenzie
Atmos. Chem. Phys., 17, 14219–14237, https://doi.org/10.5194/acp-17-14219-2017, https://doi.org/10.5194/acp-17-14219-2017, 2017
Short summary
Short summary
We investigate how climate change impacts global air pollution transport. To study transport changes, we use a carbon monoxide (CO) tracer species emitted from global sources. We find robust and consistent changes in CO-tracer distributions in climate change simulations performed by four chemistry–climate models in different seasons. We highlight the importance of the co-location of emission source regions and controlling transport processes in determining future pollution transport.
Guohua Zhang, Qinhao Lin, Long Peng, Yuxiang Yang, Yuzhen Fu, Xinhui Bi, Mei Li, Duohong Chen, Jianxin Chen, Zhang Cai, Xinming Wang, Ping'an Peng, Guoying Sheng, and Zhen Zhou
Atmos. Chem. Phys., 17, 13891–13901, https://doi.org/10.5194/acp-17-13891-2017, https://doi.org/10.5194/acp-17-13891-2017, 2017
Short summary
Short summary
We first reported the size-resolved mixing state of oxalate in the cloud droplet residual, the cloud interstitial, and cloud-free particles by single particle mass spectrometry. Individual particle analysis provides unique insight into the formation and evolution of oxalate during in-cloud processing. The data show that in-cloud aqueous reactions dramatically improved the formation of oxalate from organic acids that were strongly associated with the aged biomass burning particles.
Jianlin Hu, Xun Li, Lin Huang, Qi Ying, Qiang Zhang, Bin Zhao, Shuxiao Wang, and Hongliang Zhang
Atmos. Chem. Phys., 17, 13103–13118, https://doi.org/10.5194/acp-17-13103-2017, https://doi.org/10.5194/acp-17-13103-2017, 2017
Short summary
Short summary
The model performance of CMAQ with WRF using four different emission inventories in China was validated and compared to obtain the best air pollutants prediction for health effect studies of severe air pollution. The differences in performance of chemical transport model were analyzed for different months and regions in the vast part of China and ensemble predictions were firstly obtained from different inventories for health analysis with minimized errors for pollutants including PM2.5 and O3.
Huan Liu, Hanyang Man, Hongyang Cui, Yanjun Wang, Fanyuan Deng, Yue Wang, Xiaofan Yang, Qian Xiao, Qiang Zhang, Yan Ding, and Kebin He
Atmos. Chem. Phys., 17, 12709–12724, https://doi.org/10.5194/acp-17-12709-2017, https://doi.org/10.5194/acp-17-12709-2017, 2017
Short summary
Short summary
The VOC emission inventory has large uncertainties. An updated VOC emission inventory of vehicles in China was developed based on a set of state-of-the-art methods and big data. Exhausts and evaporation were taken into account. Our results narrowed the gap between inventories and the real emissions. Detailed speciation reveals the chemical characteristics of emissions, which has the potential to improve the understanding of atmospheric chemical processes in polluted regions.
Wenjun Gu, Yongjie Li, Jianxi Zhu, Xiaohong Jia, Qinhao Lin, Guohua Zhang, Xiang Ding, Wei Song, Xinhui Bi, Xinming Wang, and Mingjin Tang
Atmos. Meas. Tech., 10, 3821–3832, https://doi.org/10.5194/amt-10-3821-2017, https://doi.org/10.5194/amt-10-3821-2017, 2017
Short summary
Short summary
In this work we describe a method to directly quantify water adsorption and mass hygroscopic growth of atmospheric particles as a function of RH at different temperature, using a commercial vapor sorption analyzer. We have demonstrated that this commercial instrument provides a simple, sensitive, and robust method to determine water adsorption and hygroscopicity of atmospheric particles.
Qing Mu, Gerhard Lammel, Christian N. Gencarelli, Ian M. Hedgecock, Ying Chen, Petra Přibylová, Monique Teich, Yuxuan Zhang, Guangjie Zheng, Dominik van Pinxteren, Qiang Zhang, Hartmut Herrmann, Manabu Shiraiwa, Peter Spichtinger, Hang Su, Ulrich Pöschl, and Yafang Cheng
Atmos. Chem. Phys., 17, 12253–12267, https://doi.org/10.5194/acp-17-12253-2017, https://doi.org/10.5194/acp-17-12253-2017, 2017
Short summary
Short summary
Polycyclic aromatic hydrocarbons (PAHs) are hazardous pollutants with the largest emissions in East Asia. The regional WRF-Chem-PAH model has been developed to reflect the state-of-the-art understanding of current PAHs studies with several new or updated features. It is able to reasonably well simulate the concentration levels and particulate mass fractions of PAHs near the sources and at a remote outflow region of East Asia, in high spatial and temporal resolutions.
Mingjin Tang, Xin Huang, Keding Lu, Maofa Ge, Yongjie Li, Peng Cheng, Tong Zhu, Aijun Ding, Yuanhang Zhang, Sasho Gligorovski, Wei Song, Xiang Ding, Xinhui Bi, and Xinming Wang
Atmos. Chem. Phys., 17, 11727–11777, https://doi.org/10.5194/acp-17-11727-2017, https://doi.org/10.5194/acp-17-11727-2017, 2017
Short summary
Short summary
We provide a comprehensive and critical review of laboratory studies of heterogeneous uptake of OH, NO3, O3, and their directly related species by mineral dust particles. The atmospheric importance of heterogeneous uptake as sinks for these species is also assessed. In addition, we have outlined major open questions and challenges in this field and discussed research strategies to address them.
Miguel D. Mahecha, Fabian Gans, Sebastian Sippel, Jonathan F. Donges, Thomas Kaminski, Stefan Metzger, Mirco Migliavacca, Dario Papale, Anja Rammig, and Jakob Zscheischler
Biogeosciences, 14, 4255–4277, https://doi.org/10.5194/bg-14-4255-2017, https://doi.org/10.5194/bg-14-4255-2017, 2017
Short summary
Short summary
We investigate the likelihood of ecological in situ networks to detect and monitor the impact of extreme events in the terrestrial biosphere.
Andrea Móring, Massimo Vieno, Ruth M. Doherty, Celia Milford, Eiko Nemitz, Marsailidh M. Twigg, László Horváth, and Mark A. Sutton
Biogeosciences, 14, 4161–4193, https://doi.org/10.5194/bg-14-4161-2017, https://doi.org/10.5194/bg-14-4161-2017, 2017
Short summary
Short summary
This study describes and evaluates a new ammonia (NH3) exchange model for grazed fields (GAG_field). GAG_field is able to simulate the main features of the observed NH3 fluxes. A sensitivity analysis for the non-meteorological model parameters showed that the sensitivity of the NH3 fluxes to a parameter varies among urine patches. Moreover, the fluxes modelled with a dynamic soil pH are similar if a constant pH 7.5 is used, suggesting a useful simplification for regional-scale model application.
Hongyan Zhao, Xin Li, Qiang Zhang, Xujia Jiang, Jintai Lin, Glen P. Peters, Meng Li, Guannan Geng, Bo Zheng, Hong Huo, Lin Zhang, Haikun Wang, Steven J. Davis, and Kebin He
Atmos. Chem. Phys., 17, 10367–10381, https://doi.org/10.5194/acp-17-10367-2017, https://doi.org/10.5194/acp-17-10367-2017, 2017
Short summary
Short summary
Effective and efficient control of air pollution relies upon an understanding of the pollution sources. We conduct an interdisciplinary study and find that 33 % of China’s PM2.5-related premature mortality in 2010 were caused by production emission in other regions; 56 % of the mortality was related to consumption in other regions. Multilateral and multi-stage cooperation under a regional sustainable development framework is in urgent need to mitigate air pollution and related health impacts.
Stefan Metzger, David Durden, Cove Sturtevant, Hongyan Luo, Natchaya Pingintha-Durden, Torsten Sachs, Andrei Serafimovich, Jörg Hartmann, Jiahong Li, Ke Xu, and Ankur R. Desai
Geosci. Model Dev., 10, 3189–3206, https://doi.org/10.5194/gmd-10-3189-2017, https://doi.org/10.5194/gmd-10-3189-2017, 2017
Short summary
Short summary
We apply the
development and systems operationssoftware development model to create the eddy4R–Docker open-source, flexible, and modular eddy-covariance data processing environment. Test applications to aircraft and tower data, as well as a software cross validation demonstrate its efficiency and consistency. Key improvements in accessibility, extensibility, and reproducibility build the foundation for deploying complex scientific algorithms in an effective and scalable manner.
Jieying Ding, Kazuyuki Miyazaki, Ronald Johannes van der A, Bas Mijling, Jun-ichi Kurokawa, SeogYeon Cho, Greet Janssens-Maenhout, Qiang Zhang, Fei Liu, and Pieternel Felicitas Levelt
Atmos. Chem. Phys., 17, 10125–10141, https://doi.org/10.5194/acp-17-10125-2017, https://doi.org/10.5194/acp-17-10125-2017, 2017
Short summary
Short summary
To evaluate the quality of the satellite-derived NOx emissions, we compare nine emission inventories of nitrogen oxides including four satellite-derived NOx inventories and bottom-up inventories for East Asia. The temporal and spatial distribution of NOx emissions over East Asia are evaluated. We analyse the differences in satellite-derived emissions from two different inversion methods. The paper ends with recommendations for future improvements of emission estimates.
Sarah A. Monks, Stephen R. Arnold, Michael J. Hollaway, Richard J. Pope, Chris Wilson, Wuhu Feng, Kathryn M. Emmerson, Brian J. Kerridge, Barry L. Latter, Georgina M. Miles, Richard Siddans, and Martyn P. Chipperfield
Geosci. Model Dev., 10, 3025–3057, https://doi.org/10.5194/gmd-10-3025-2017, https://doi.org/10.5194/gmd-10-3025-2017, 2017
Short summary
Short summary
The TOMCAT chemical transport model has been updated with the chemical degradation of ethene, propene, toluene, butane and monoterpenes. The tropospheric chemical mechanism is documented and the model is evaluated against surface, balloon, aircraft and satellite data. The model is generally able to capture the main spatial and seasonal features of carbon monoxide, ozone, volatile organic compounds and reactive nitrogen. However,
some model biases are found that require further investigation.
Li Zhang, Qinyi Li, Tao Wang, Ravan Ahmadov, Qiang Zhang, Meng Li, and Mengyao Lv
Atmos. Chem. Phys., 17, 9733–9750, https://doi.org/10.5194/acp-17-9733-2017, https://doi.org/10.5194/acp-17-9733-2017, 2017
Short summary
Short summary
Little is known of the integrated impacts of HONO and ClNO2 on lower-tropospheric ozone so far. In this study, we updated WRF-Chem with the CBMZ_ReNOM module, which considers both the sources and chemistry of HONO and ClNO2. The revised model revealed that the two reactive nitrogen compounds significantly affected the oxidation capacity and ozone formation at the surface and within the lower troposphere over polluted regions and noticeably improved summertime O3 predictions over China.
Fei Liu, Steffen Beirle, Qiang Zhang, Ronald J. van der A, Bo Zheng, Dan Tong, and Kebin He
Atmos. Chem. Phys., 17, 9261–9275, https://doi.org/10.5194/acp-17-9261-2017, https://doi.org/10.5194/acp-17-9261-2017, 2017
Short summary
Short summary
We assess NOx emission trends over Chinese cities based on satellite NO2 observations using a method independent of chemical transport models. NOx emissions over 48 Chinese cities have decreased significantly since 2011. Cities with different dominant emission sources (i.e. power, industrial, and transportation sectors) showed variable emission decline timelines that corresponded to the schedules for emission control in different sectors.
Guannan Geng, Qiang Zhang, Dan Tong, Meng Li, Yixuan Zheng, Siwen Wang, and Kebin He
Atmos. Chem. Phys., 17, 9187–9203, https://doi.org/10.5194/acp-17-9187-2017, https://doi.org/10.5194/acp-17-9187-2017, 2017
Short summary
Short summary
We presented the characteristics of PM2.5 chemical composition over China during 2005–2012 by synthesis of in situ measurement data and satellite-based estimates. We also investigated the driving forces behind the changes by examining the changes in precursor emissions. We found that the decrease in sulfate is partly offset by the increase in nitrate. The results indicate that the synchronized abatement of emissions for multipollutants is necessary for reducing ambient PM2.5 over China.
Qinhao Lin, Guohua Zhang, Long Peng, Xinhui Bi, Xinming Wang, Fred J. Brechtel, Mei Li, Duohong Chen, Ping'an Peng, Guoying Sheng, and Zhen Zhou
Atmos. Chem. Phys., 17, 8473–8488, https://doi.org/10.5194/acp-17-8473-2017, https://doi.org/10.5194/acp-17-8473-2017, 2017
Short summary
Short summary
A ground-based counterflow virtual impactor coupled with a single-particle aerosol mass spectrometer (SPAMS) was used to assess the mixing state of individual cloud residue particles. Abundant aged EC cloud residues that internally mixed with inorganic salts were found in air masses from northerly polluted areas. K-rich cloud residues significantly increased within southwesterly air masses. This study increases our understanding of the impacts of aerosols on cloud droplets in southern China.
Mike J. Newland, Patricia Martinerie, Emmanuel Witrant, Detlev Helmig, David R. Worton, Chris Hogan, William T. Sturges, and Claire E. Reeves
Atmos. Chem. Phys., 17, 8269–8283, https://doi.org/10.5194/acp-17-8269-2017, https://doi.org/10.5194/acp-17-8269-2017, 2017
Short summary
Short summary
We report increasing levels of alkyl nitrates in the Northern Hemisphere atmosphere between 1960 and the mid-1990s. These increases are symptomatic of large-scale changes to the chemical composition of the atmosphere, particularly with regards to the amounts of short-lived, reactive species. The observed increases are likely driven by increasing levels of nitrogen oxides. These changes have direct implications for the lifetimes of climate-relevant species in the atmosphere, such as methane.
Chaopeng Hong, Qiang Zhang, Yang Zhang, Youhua Tang, Daniel Tong, and Kebin He
Geosci. Model Dev., 10, 2447–2470, https://doi.org/10.5194/gmd-10-2447-2017, https://doi.org/10.5194/gmd-10-2447-2017, 2017
Short summary
Short summary
A regional coupled climate–chemistry modeling system using the dynamical downscaling technique was established and evaluated. The modeling system performed well for both the climatological and the short-term air quality applications over east Asia. Regional models outperformed global models in regional climate and air quality predictions. The coupled modeling system improved the model performance, although some biases remained in the aerosol–cloud–radiation variables.
Wei Du, Jian Zhao, Yuying Wang, Yingjie Zhang, Qingqing Wang, Weiqi Xu, Chen Chen, Tingting Han, Fang Zhang, Zhanqing Li, Pingqing Fu, Jie Li, Zifa Wang, and Yele Sun
Atmos. Chem. Phys., 17, 6797–6811, https://doi.org/10.5194/acp-17-6797-2017, https://doi.org/10.5194/acp-17-6797-2017, 2017
Short summary
Short summary
We conducted the first simultaneous measurements of size-resolved particle number concentrations at ground level and 260 m in urban Beijing. The vertical differences strongly depend on particle sizes, with accumulation-mode particles being highly correlated at the two heights. We further demonstrated that regional emission controls have a dominant impact on accumulation-mode particles, while the influences on Aitken particles were much smaller due to the enhanced NPF events.
Felix A. Mackenzie-Rae, Tengyu Liu, Wei Deng, Sandra M. Saunders, Zheng Fang, Yanli Zhang, and Xinming Wang
Atmos. Chem. Phys., 17, 6583–6609, https://doi.org/10.5194/acp-17-6583-2017, https://doi.org/10.5194/acp-17-6583-2017, 2017
Short summary
Short summary
The atmospheric decomposition of the biogenic α-phellandrene with ozone is characterised by conducting carefully controlled experiments in a smog chamber. Major gas-phase products are identified based on theoretical/mechanism insight, with yields quantified. Meanwhile, a significant amount of aerosol is formed and characterised, with Criegee intermediates found to be important for new particle formation. It is concluded that α-phellandrene contributes to aerosol formation/growth where emitted.
Eri Saikawa, Hankyul Kim, Min Zhong, Alexander Avramov, Yu Zhao, Greet Janssens-Maenhout, Jun-ichi Kurokawa, Zbigniew Klimont, Fabian Wagner, Vaishali Naik, Larry W. Horowitz, and Qiang Zhang
Atmos. Chem. Phys., 17, 6393–6421, https://doi.org/10.5194/acp-17-6393-2017, https://doi.org/10.5194/acp-17-6393-2017, 2017
Short summary
Short summary
We analyze differences in existing air pollutant emission estimates to better understand the magnitude of emissions as well as the source regions and sectors of air pollution in China. We find large disagreements among the inventories, and we show that these differences have a significant impact on regional air quality simulations. Better understanding of air pollutant emissions at more disaggregated levels is essential for air pollution mitigation in China.
Stephanie K. Jones, Carole Helfter, Margaret Anderson, Mhairi Coyle, Claire Campbell, Daniela Famulari, Chiara Di Marco, Netty van Dijk, Y. Sim Tang, Cairistiona F. E. Topp, Ralf Kiese, Reimo Kindler, Jan Siemens, Marion Schrumpf, Klaus Kaiser, Eiko Nemitz, Peter E. Levy, Robert M. Rees, Mark A. Sutton, and Ute M. Skiba
Biogeosciences, 14, 2069–2088, https://doi.org/10.5194/bg-14-2069-2017, https://doi.org/10.5194/bg-14-2069-2017, 2017
Short summary
Short summary
We assessed the nitrogen (N), carbon (C) and greenhouse gas (GHG) budget from an intensively managed grassland in southern Scotland using flux budget calculations as well as changes in soil N and C pools over time. Estimates from flux budget calculations indicated that N and C were sequestered, whereas soil stock measurements indicated a smaller N storage and a loss of C from the ecosystem. The GHG sink strength of the net CO2 ecosystem exchange was strongly affected by CH4 and N2O emissions.
Yuxuan Zhang, Hang Su, Simonas Kecorius, Zhibin Wang, Min Hu, Tong Zhu, Kebin He, Alfred Wiedensohler, Qiang Zhang, and Yafang Cheng
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-222, https://doi.org/10.5194/acp-2017-222, 2017
Revised manuscript not accepted
Short summary
Short summary
The light absorption of black carbon (BC) strongly depends on their mixing state. By now, the BC mixing state in the atmosphere is still unclear. In this work, we have investigated the comprehensive characterization of BC mixing state at a polluted regional background site of the North China Plain (NCP) based on in site measurements. we found that BC aerosols of the NCP were fully aged, suggesting a strong optical and climate effect of BC on the regional scale in northern China.
Chunlin Li, Yunjie Hu, Fei Zhang, Jianmin Chen, Zhen Ma, Xingnan Ye, Xin Yang, Lin Wang, Xingfu Tang, Renhe Zhang, Mu Mu, Guihua Wang, Haidong Kan, Xinming Wang, and Abdelwahid Mellouki
Atmos. Chem. Phys., 17, 4957–4988, https://doi.org/10.5194/acp-17-4957-2017, https://doi.org/10.5194/acp-17-4957-2017, 2017
Short summary
Short summary
Detailed emission factors for smoke particulate species in PM2.5 and PM1.0 were derived from laboratory simulation of crop straw burning using aerosol chamber systems. Based on this, emissions for crop residue field burning in China were calculated and characterized with respect to five different burning scenarios. Moreover, health effects and health-related economic loss from smoke particle exposure were assessed; a practical emission control policy for agricultural field burning was proposed.
Haiyan Li, Qi Zhang, Qiang Zhang, Chunrong Chen, Litao Wang, Zhe Wei, Shan Zhou, Caroline Parworth, Bo Zheng, Francesco Canonaco, André S. H. Prévôt, Ping Chen, Hongliang Zhang, Timothy J. Wallington, and Kebin He
Atmos. Chem. Phys., 17, 4751–4768, https://doi.org/10.5194/acp-17-4751-2017, https://doi.org/10.5194/acp-17-4751-2017, 2017
Short summary
Short summary
The sources and aerosol evolution processes of severe pollution episodes were investigated in Handan during wintertime using real-time measurements. An in-depth analysis of the data uncovered that primary emissions from coal combustion and biomass burning together with secondary formation of sulfate (mainly from SO2 emitted by coal combustion) are important driving factors for haze evolution. Our findings provide useful insights into air pollution control in heavily polluted regions.
Guannan Geng, Qiang Zhang, Randall V. Martin, Jintai Lin, Hong Huo, Bo Zheng, Siwen Wang, and Kebin He
Atmos. Chem. Phys., 17, 4131–4145, https://doi.org/10.5194/acp-17-4131-2017, https://doi.org/10.5194/acp-17-4131-2017, 2017
Short summary
Short summary
We investigated the impact of spatial proxies on the representation of gridded emissions by comparing six gridded NOx emission datasets over China developed from the same magnitude of emissions and different spatial proxies. GEOS-Chem-modeled NO2 columns from the six gridded emissions are compared with satellite-based columns from OMI. Results show that differences between modeled and satellite-based NO2 columns are sensitive to the spatial proxies used in the gridded emission inventories.
Chris Reed, Mathew J. Evans, Leigh R. Crilley, William J. Bloss, Tomás Sherwen, Katie A. Read, James D. Lee, and Lucy J. Carpenter
Atmos. Chem. Phys., 17, 4081–4092, https://doi.org/10.5194/acp-17-4081-2017, https://doi.org/10.5194/acp-17-4081-2017, 2017
Short summary
Short summary
The source of ozone-depleting compounds in the remote troposphere has been thought to be long-range transport of secondary pollutants such as organic nitrates. Processing of organic nitrates to nitric acid and subsequent deposition on surfaces in the atmosphere was thought to remove these nitrates from the ozone–NOx–HOx cycle. We found through observation of NOx in the remote tropical troposphere at the Cape Verde Observatory that surface nitrates can be released back into the atmosphere.
Guohui Li, Naifang Bei, Junji Cao, Rujin Huang, Jiarui Wu, Tian Feng, Yichen Wang, Suixin Liu, Qiang Zhang, Xuexi Tie, and Luisa T. Molina
Atmos. Chem. Phys., 17, 3301–3316, https://doi.org/10.5194/acp-17-3301-2017, https://doi.org/10.5194/acp-17-3301-2017, 2017
Jian Zhao, Wei Du, Yingjie Zhang, Qingqing Wang, Chen Chen, Weiqi Xu, Tingting Han, Yuying Wang, Pingqing Fu, Zifa Wang, Zhanqing Li, and Yele Sun
Atmos. Chem. Phys., 17, 3215–3232, https://doi.org/10.5194/acp-17-3215-2017, https://doi.org/10.5194/acp-17-3215-2017, 2017
Short summary
Short summary
We conducted aerosol particle composition measurements at ground level and 260 m with two aerosol mass spectrometers in Beijing during the 2015 China Victory Day parade. Our results showed a stronger impact of emission controls on inorganic aerosol than OA. A larger decrease in more oxidized SOA than the less oxidized one during the control period was also observed. Our results indicate that emission controls and the changes in meteorological conditions have affected SOA formation mechanisms.
Jiarui Wu, Guohui Li, Junji Cao, Naifang Bei, Yichen Wang, Tian Feng, Rujin Huang, Suixin Liu, Qiang Zhang, and Xuexi Tie
Atmos. Chem. Phys., 17, 2035–2051, https://doi.org/10.5194/acp-17-2035-2017, https://doi.org/10.5194/acp-17-2035-2017, 2017
Shurui Chen, Liang Xu, Yinxiao Zhang, Bing Chen, Xinfeng Wang, Xiaoye Zhang, Mei Zheng, Jianmin Chen, Wenxing Wang, Yele Sun, Pingqing Fu, Zifa Wang, and Weijun Li
Atmos. Chem. Phys., 17, 1259–1270, https://doi.org/10.5194/acp-17-1259-2017, https://doi.org/10.5194/acp-17-1259-2017, 2017
Short summary
Short summary
Many studies have focused on the unusually severe hazes instead of the more frequent light and moderate hazes (22–63 %) in winter in the North China Plain (NCP). The morphology, mixing state, and size of organic aerosols in the L & M hazes were characterized. We conclude that the direct emissions from residential coal stoves without any pollution controls in rural and urban outskirts contribute large amounts of primary OM particles to the regional L & M hazes in winter in the NCP.
Chaopeng Hong, Qiang Zhang, Kebin He, Dabo Guan, Meng Li, Fei Liu, and Bo Zheng
Atmos. Chem. Phys., 17, 1227–1239, https://doi.org/10.5194/acp-17-1227-2017, https://doi.org/10.5194/acp-17-1227-2017, 2017
Short summary
Short summary
We found that the apparent uncertainties in China’s energy consumption increased from 2004 to 2012. SO2 emissions are most sensitive to energy uncertainties because of the high contributions from industrial coal combustion. The energy-induced emission uncertainties for some species are comparable to total uncertainties of emissions as estimated by previous studies, indicating variations in energy consumption could be an important source of China’s emission uncertainties.
Meng Li, Qiang Zhang, Jun-ichi Kurokawa, Jung-Hun Woo, Kebin He, Zifeng Lu, Toshimasa Ohara, Yu Song, David G. Streets, Gregory R. Carmichael, Yafang Cheng, Chaopeng Hong, Hong Huo, Xujia Jiang, Sicong Kang, Fei Liu, Hang Su, and Bo Zheng
Atmos. Chem. Phys., 17, 935–963, https://doi.org/10.5194/acp-17-935-2017, https://doi.org/10.5194/acp-17-935-2017, 2017
Short summary
Short summary
An anthropogenic emission inventory for Asia is developed for the years 2008 and 2010 to support the Model Inter-Comparison Study for Asia (MICS-Asia) and the Task Force on Hemispheric Transport of Air Pollution (TF HTAP) projects by a mosaic of up-to-date regional emission inventories. The total Asian emissions in 2010 are estimated as follows: 51.3 Tg SO2, 52.1 Tg NOx, 336.5 Tg CO, 67.0 Tg NMVOC, 28.7 Tg NH3, 31.7 Tg PM10, 22.7 Tg PM2.5, 3.5 Tg BC, 8.3 Tg OC, and 17.3 Pg CO2.
Bo Zheng, Qiang Zhang, Dan Tong, Chuchu Chen, Chaopeng Hong, Meng Li, Guannan Geng, Yu Lei, Hong Huo, and Kebin He
Atmos. Chem. Phys., 17, 921–933, https://doi.org/10.5194/acp-17-921-2017, https://doi.org/10.5194/acp-17-921-2017, 2017
Short summary
Short summary
The resolution dependence of uncertainties in proxy-based gridded inventories can be explained by the decoupling of emission facility locations from spatial proxies on fine scales. We conclude that proxy-based inventories are of sufficient quality to support regional and global models (larger than 0.25° in this case study); however, to support urban-scale models with accurate emission inputs, bottom-up inventories incorporating exact locations of emitting facilities have to be developed instead.
Yaduan Zhou, Yu Zhao, Pan Mao, Qiang Zhang, Jie Zhang, Liping Qiu, and Yang Yang
Atmos. Chem. Phys., 17, 211–233, https://doi.org/10.5194/acp-17-211-2017, https://doi.org/10.5194/acp-17-211-2017, 2017
Short summary
Short summary
A high-resolution emission inventory was developed for Jiangsu, China, using the bottom-up approach. Through comparisons with other national and regional inventories, the best agreement between available ground observation and air quality simulation was found when the provincial inventory was applied. The result implied the advantage of improved emission inventory at local scale for high-resolution air quality modeling.
Johannes C. Laube, Norfazrin Mohd Hanif, Patricia Martinerie, Eileen Gallacher, Paul J. Fraser, Ray Langenfelds, Carl A. M. Brenninkmeijer, Jakob Schwander, Emmanuel Witrant, Jia-Lin Wang, Chang-Feng Ou-Yang, Lauren J. Gooch, Claire E. Reeves, William T. Sturges, and David E. Oram
Atmos. Chem. Phys., 16, 15347–15358, https://doi.org/10.5194/acp-16-15347-2016, https://doi.org/10.5194/acp-16-15347-2016, 2016
Rémi Dupas, Jordy Salmon-Monviola, Keith J. Beven, Patrick Durand, Philip M. Haygarth, Michael J. Hollaway, and Chantal Gascuel-Odoux
Hydrol. Earth Syst. Sci., 20, 4819–4835, https://doi.org/10.5194/hess-20-4819-2016, https://doi.org/10.5194/hess-20-4819-2016, 2016
Short summary
Short summary
We developed a parsimonious topography-based hydrologic model coupled with a soil biogeochemistry sub-model in order to improve understanding and prediction of soluble reactive phosphorus (SRP) transfer in agricultural headwater catchments. The modelling approach includes an analysis of the information contained in the calibration data and propagation of uncertainty in model predictions using a GLUE "limits of acceptability" framework.
Long Cui, Zhou Zhang, Yu Huang, Shun Cheng Lee, Donald Ray Blake, Kin Fai Ho, Bei Wang, Yuan Gao, Xin Ming Wang, and Peter Kwok Keung Louie
Atmos. Meas. Tech., 9, 5763–5779, https://doi.org/10.5194/amt-9-5763-2016, https://doi.org/10.5194/amt-9-5763-2016, 2016
Short summary
Short summary
In this manuscript, the effect of ambient RH and T on HCHO measurements by PTR-MS was investigated, and the Poly 2-D regression was found to be a good nonlinear surface simulation of R (RH, T) for correcting measured HCHO concentration. Intercomparisons between PTR-MS and other OVOC and VOC measuring techniques were conducted through a field study in urban roadside areas of Hong Kong primarily, and good agreements were found between these different techniques.
Qinyi Li, Li Zhang, Tao Wang, Yee Jun Tham, Ravan Ahmadov, Likun Xue, Qiang Zhang, and Junyu Zheng
Atmos. Chem. Phys., 16, 14875–14890, https://doi.org/10.5194/acp-16-14875-2016, https://doi.org/10.5194/acp-16-14875-2016, 2016
Short summary
Short summary
The regional distributions and impacts of N2O5 and ClNO2 remain poorly understood. To address the problem, we developed a chemical transport model further and conducted the first high-resolution simulation of the distributions of the two species. Our research demonstrated the significant impacts of the two gases on the lifetime of nitrogen oxides, secondary nitrate production and ozone formation in southern China and highlighted the necessity of considering this chemistry in air quality models.
Eleonora Aruffo, Fabio Biancofiore, Piero Di Carlo, Marcella Busilacchio, Marco Verdecchia, Barbara Tomassetti, Cesare Dari-Salisburgo, Franco Giammaria, Stephane Bauguitte, James Lee, Sarah Moller, James Hopkins, Shalini Punjabi, Stephen J. Andrews, Alistair C. Lewis, Paul I. Palmer, Edward Hyer, Michael Le Breton, and Carl Percival
Atmos. Meas. Tech., 9, 5591–5606, https://doi.org/10.5194/amt-9-5591-2016, https://doi.org/10.5194/amt-9-5591-2016, 2016
Short summary
Short summary
During the BORTAS aircraft campaign, we measured NO2 and their oxidtation products (as peroxy nitrates) with a custom laser-induced fluorescence instrument. Because of the high correlation between known pyrogenic tracers (i.e., carbon monoxide) and peroxy nitrates, we provide two methods to use these species for the identification of biomass burning (BB) plumes. Using an artifical neural network, we improved the BB identification taking into account of a meteorological parameter (pressure).
Riinu Ots, Massimo Vieno, James D. Allan, Stefan Reis, Eiko Nemitz, Dominique E. Young, Hugh Coe, Chiara Di Marco, Anais Detournay, Ian A. Mackenzie, David C. Green, and Mathew R. Heal
Atmos. Chem. Phys., 16, 13773–13789, https://doi.org/10.5194/acp-16-13773-2016, https://doi.org/10.5194/acp-16-13773-2016, 2016
Short summary
Short summary
Emissions of cooking organic aerosol (COA; from charbroiling, frying, etc.) are currently absent in European emissions inventories yet measurements have pointed to significant COA concentrations. In this study, emissions of COA were developed for the UK by model iteration against year-long measurements at two sites in London. Modelled COA dropped rapidly outside of major urban areas, suggesting that although a notable component in UK urban air, COA does not have a significant effect on rural PM.
Qiang Huang, Jiubin Chen, Weilin Huang, Pingqing Fu, Benjamin Guinot, Xinbin Feng, Lihai Shang, Zhuhong Wang, Zhongwei Wang, Shengliu Yuan, Hongming Cai, Lianfang Wei, and Ben Yu
Atmos. Chem. Phys., 16, 11773–11786, https://doi.org/10.5194/acp-16-11773-2016, https://doi.org/10.5194/acp-16-11773-2016, 2016
Short summary
Short summary
Atmospheric airborne mercury is of particular concern because, once inhaled, both Hg and its vectors might have adverse effects on human beings. In this study, we attempted to identify the sources of PM2.5-Hg in Beijing, China, using Hg isotopic composition. Large range and seasonal variations in both mass-dependent and mass-independent fractionations of Hg isotopes in haze particles demonstrate the usefulness of Hg isotopes for directly tracing the sources and its vectors in the atmosphere.
Graham P. Mills, Glyn D. Hiatt-Gipson, Sean P. Bew, and Claire E. Reeves
Atmos. Meas. Tech., 9, 4533–4545, https://doi.org/10.5194/amt-9-4533-2016, https://doi.org/10.5194/amt-9-4533-2016, 2016
Short summary
Short summary
The paper describes the development of an instrument to measure isoprene-derived nitrates in the atmosphere, compounds that are crucial to understanding the impact of biogenic hydrocarbons on ozone production. The instrument is suitable for deployment in field studies.
Marsailidh M. Twigg, Evgenia Ilyinskaya, Sonya Beccaceci, David C. Green, Matthew R. Jones, Ben Langford, Sarah R. Leeson, Justin J. N. Lingard, Gloria M. Pereira, Heather Carter, Jan Poskitt, Andreas Richter, Stuart Ritchie, Ivan Simmons, Ron I. Smith, Y. Sim Tang, Netty Van Dijk, Keith Vincent, Eiko Nemitz, Massimo Vieno, and Christine F. Braban
Atmos. Chem. Phys., 16, 11415–11431, https://doi.org/10.5194/acp-16-11415-2016, https://doi.org/10.5194/acp-16-11415-2016, 2016
Short summary
Short summary
This study integrates high and low resolution temporal measurements to assess the impact of the Holuhraun effusive eruption in 2014 across the UK. Measurements, modelling and satellite analysis provides details on the transport and chemistry of both gases and particulates during this unique event. The results of the study can be used verify existing atmospheric chemistry models of volcano plumes in order to carry improved risk assessments for future volcanic eruptions.
A. M. Yáñez-Serrano, A. C. Nölscher, E. Bourtsoukidis, B. Derstroff, N. Zannoni, V. Gros, M. Lanza, J. Brito, S. M. Noe, E. House, C. N. Hewitt, B. Langford, E. Nemitz, T. Behrendt, J. Williams, P. Artaxo, M. O. Andreae, and J. Kesselmeier
Atmos. Chem. Phys., 16, 10965–10984, https://doi.org/10.5194/acp-16-10965-2016, https://doi.org/10.5194/acp-16-10965-2016, 2016
Short summary
Short summary
This paper provides a general overview of methyl ethyl ketone (MEK) ambient observations in different ecosystems around the world in order to provide insights into the sources, sink and role of MEK in the atmosphere.
Carole Helfter, Anja H. Tremper, Christoforos H. Halios, Simone Kotthaus, Alex Bjorkegren, C. Sue B. Grimmond, Janet F. Barlow, and Eiko Nemitz
Atmos. Chem. Phys., 16, 10543–10557, https://doi.org/10.5194/acp-16-10543-2016, https://doi.org/10.5194/acp-16-10543-2016, 2016
Short summary
Short summary
There are relatively few long-term, direct measurements of pollutant emissions in urban settings. We present over 3 years of measurements of fluxes of CO, CO2 and CH4, study their respective temporal and spatial dynamics and offer an independent verification of the London Atmospheric Emissions Inventory. CO and CO2 were strongly controlled by traffic and well characterised by the inventory whilst measured CH4 was two-fold larger and linked to natural gas usage and perhaps biogenic sources.
Giancarlo Ciarelli, Sebnem Aksoyoglu, Monica Crippa, Jose-Luis Jimenez, Eriko Nemitz, Karine Sellegri, Mikko Äijälä, Samara Carbone, Claudia Mohr, Colin O'Dowd, Laurent Poulain, Urs Baltensperger, and André S. H. Prévôt
Atmos. Chem. Phys., 16, 10313–10332, https://doi.org/10.5194/acp-16-10313-2016, https://doi.org/10.5194/acp-16-10313-2016, 2016
Short summary
Short summary
Recent studies based on aerosol mass spectrometer measurements revealed that the organic fraction dominates the non-refractory PM1 composition. However its representation in chemical transport models is still very challenging due to uncertainties in emission sources and formation pathways. In this study, a novel organic aerosol scheme was tested in the regional air quality model CAMx and results were compared with ambient measurements at 11 different sites in Europe.
Graydon Snider, Crystal L. Weagle, Kalaivani K. Murdymootoo, Amanda Ring, Yvonne Ritchie, Emily Stone, Ainsley Walsh, Clement Akoshile, Nguyen Xuan Anh, Rajasekhar Balasubramanian, Jeff Brook, Fatimah D. Qonitan, Jinlu Dong, Derek Griffith, Kebin He, Brent N. Holben, Ralph Kahn, Nofel Lagrosas, Puji Lestari, Zongwei Ma, Amit Misra, Leslie K. Norford, Eduardo J. Quel, Abdus Salam, Bret Schichtel, Lior Segev, Sachchida Tripathi, Chien Wang, Chao Yu, Qiang Zhang, Yuxuan Zhang, Michael Brauer, Aaron Cohen, Mark D. Gibson, Yang Liu, J. Vanderlei Martins, Yinon Rudich, and Randall V. Martin
Atmos. Chem. Phys., 16, 9629–9653, https://doi.org/10.5194/acp-16-9629-2016, https://doi.org/10.5194/acp-16-9629-2016, 2016
Short summary
Short summary
We examine the chemical composition of fine particulate matter (PM2.5) collected on filters at traditionally undersampled, globally dispersed urban locations. Several PM2.5 chemical components (e.g. ammonium sulfate, ammonium nitrate, and black carbon) vary by more than an order of magnitude between sites while aerosol hygroscopicity varies by a factor of 2. Enhanced anthropogenic dust fractions in large urban areas are apparent from high Zn : Al ratios.
Yele Sun, Wei Du, Pingqing Fu, Qingqing Wang, Jie Li, Xinlei Ge, Qi Zhang, Chunmao Zhu, Lujie Ren, Weiqi Xu, Jian Zhao, Tingting Han, Douglas R. Worsnop, and Zifa Wang
Atmos. Chem. Phys., 16, 8309–8329, https://doi.org/10.5194/acp-16-8309-2016, https://doi.org/10.5194/acp-16-8309-2016, 2016
Short summary
Short summary
We have a comprehensive characterization of the sources, variations and processes of submicron aerosols in Beijing in winter using HR-AMS and GC/MS measurements. The primary sources including traffic, cooking, biomass burning and coal combustion emissions, and secondary components were separated and quantified with PMF. Our results elucidated the important roles of primary emissions, particularly coal combustion, and aqueous-phase processing in the formation of severe air pollution in winter.
Amy P. Sullivan, Natasha Hodas, Barbara J. Turpin, Kate Skog, Frank N. Keutsch, Stefania Gilardoni, Marco Paglione, Matteo Rinaldi, Stefano Decesari, Maria Cristina Facchini, Laurent Poulain, Hartmut Herrmann, Alfred Wiedensohler, Eiko Nemitz, Marsailidh M. Twigg, and Jeffrey L. Collett Jr.
Atmos. Chem. Phys., 16, 8095–8108, https://doi.org/10.5194/acp-16-8095-2016, https://doi.org/10.5194/acp-16-8095-2016, 2016
Short summary
Short summary
This paper presents the results from our measurements and approach for the investigation of aqueous secondary organic aerosol (aqSOA) formation in the ambient atmosphere. When local aqSOA formation was observed, a correlation of water-soluble organic carbon with organic aerosol, aerosol liquid water, relative humidity, and aerosol nitrate was found. Key factors of local aqSOA production include air mass stagnation, formation of local nitrate overnight, and significant amounts of ammonia.
D. L. Finney, R. M. Doherty, O. Wild, and N. L. Abraham
Atmos. Chem. Phys., 16, 7507–7522, https://doi.org/10.5194/acp-16-7507-2016, https://doi.org/10.5194/acp-16-7507-2016, 2016
Short summary
Short summary
Lightning is a source of nitric oxide (NO) and, through chemical reactions of NO, impacts ozone production. A new method for modelling global lightning markedly alters ozone concentration in the upper troposphere and frequency characteristics of ozone production compared to earlier treatments. Simulated lightning and ozone concentrations now better match observations. Reducing uncertainties associated with lightning NO is important for understanding atmospheric composition and radiative forcing.
Simon Schallhart, Pekka Rantala, Eiko Nemitz, Ditte Taipale, Ralf Tillmann, Thomas F. Mentel, Benjamin Loubet, Giacomo Gerosa, Angelo Finco, Janne Rinne, and Taina M. Ruuskanen
Atmos. Chem. Phys., 16, 7171–7194, https://doi.org/10.5194/acp-16-7171-2016, https://doi.org/10.5194/acp-16-7171-2016, 2016
Short summary
Short summary
We present ecosystem exchange fluxes from a mixed oak–hornbeam forest in the Po Valley, Italy. Detectable fluxes were observed for 29 compounds, dominated by isoprene, which comprised over 60 % of the upward flux. Methanol seemed to be deposited to dew, as the deposition happened in the early morning. We estimated that up to 30 % of the upward flux of methyl vinyl ketone and methacrolein originated from atmospheric oxidation of isoprene.
W. Joe F. Acton, Simon Schallhart, Ben Langford, Amy Valach, Pekka Rantala, Silvano Fares, Giulia Carriero, Ralf Tillmann, Sam J. Tomlinson, Ulrike Dragosits, Damiano Gianelle, C. Nicholas Hewitt, and Eiko Nemitz
Atmos. Chem. Phys., 16, 7149–7170, https://doi.org/10.5194/acp-16-7149-2016, https://doi.org/10.5194/acp-16-7149-2016, 2016
Short summary
Short summary
Volatile organic compounds (VOCs) represent a large source of reactive carbon in the atmosphere and hence have a significant impact on air quality. It is therefore important that we can accurately quantify their emission. In this paper we use three methods to determine the fluxes of reactive VOCs from a woodland canopy. We show that two different canopy-scale measurement methods give good agreement, whereas estimates based on leaf-level-based emission underestimate isoprene fluxes.
Chris Reed, Charlotte A. Brumby, Leigh R. Crilley, Louisa J. Kramer, William J. Bloss, Paul W. Seakins, James D. Lee, and Lucy J. Carpenter
Atmos. Meas. Tech., 9, 2483–2495, https://doi.org/10.5194/amt-9-2483-2016, https://doi.org/10.5194/amt-9-2483-2016, 2016
Short summary
Short summary
A new method of measuring nitrous acid (HONO), a potent mediator of air quality in the atmosphere as well as an important indoor pollutant, is presented. The new method relies on simple, proven techniques already widely applied to other atmospheric compounds. The technique can be retrofitted to existing analysers at minimal cost, or developed into instruments capable of very fast measurement which allow for more complex analysis of the behaviour of HONO.
Riinu Ots, Dominique E. Young, Massimo Vieno, Lu Xu, Rachel E. Dunmore, James D. Allan, Hugh Coe, Leah R. Williams, Scott C. Herndon, Nga L. Ng, Jacqueline F. Hamilton, Robert Bergström, Chiara Di Marco, Eiko Nemitz, Ian A. Mackenzie, Jeroen J. P. Kuenen, David C. Green, Stefan Reis, and Mathew R. Heal
Atmos. Chem. Phys., 16, 6453–6473, https://doi.org/10.5194/acp-16-6453-2016, https://doi.org/10.5194/acp-16-6453-2016, 2016
Short summary
Short summary
This study investigates the contribution of diesel vehicle emissions to organic aerosol formation and particulate matter concentrations in London. Comparisons of simulated pollutant concentrations with observations show good agreement and give confidence in the skill of the model applied. The contribution of diesel vehicle emissions, which are currently not included in official emissions inventories, is demonstrated to be substantial, indicating that more research on this topic is required.
Yan-Lin Zhang, Kimitaka Kawamura, Ping Qing Fu, Suresh K. R. Boreddy, Tomomi Watanabe, Shiro Hatakeyama, Akinori Takami, and Wei Wang
Atmos. Chem. Phys., 16, 6407–6419, https://doi.org/10.5194/acp-16-6407-2016, https://doi.org/10.5194/acp-16-6407-2016, 2016
Short summary
Short summary
Here, based on three aircraft measurements over East Asia, we demonstrate an aqueous-phase mechanism for enhanced SOA production in the troposphere following correlation analysis of oxalic acid in tropospheric aerosols with other measured chemical variables including its precursors and its intermediate as well as biogenic-derived SOA from isoprene, monoterpenes and β-caryophyllene.
Fei Liu, Steffen Beirle, Qiang Zhang, Steffen Dörner, Kebin He, and Thomas Wagner
Atmos. Chem. Phys., 16, 5283–5298, https://doi.org/10.5194/acp-16-5283-2016, https://doi.org/10.5194/acp-16-5283-2016, 2016
Short summary
Short summary
We present a new method to quantify NOx emissions and corresponding atmospheric lifetimes from OMI NO2 observations together with ECMWF wind fields without further model input for sources located in polluted background. The derived NOx emissions show generally good agreement with bottom-up inventories for power plants and cities. Global inventory significantly underestimated NOx emissions in Chinese cities, most likely due to uncertainties associated with downscaling approaches.
Yuxuan Zhang, Qiang Zhang, Yafang Cheng, Hang Su, Simonas Kecorius, Zhibin Wang, Zhijun Wu, Min Hu, Tong Zhu, Alfred Wiedensohler, and Kebin He
Atmos. Meas. Tech., 9, 1833–1843, https://doi.org/10.5194/amt-9-1833-2016, https://doi.org/10.5194/amt-9-1833-2016, 2016
Short summary
Short summary
We develop a novel method in this work for in situ measurements of the morphology and effective density of ambient In-BC cores using a volatility tandem differential mobility analyzer and a single-particle soot photometer. We find that In-BC cores hardly transform the morphology of BC into a void-free sphere. Taking the morphology and density of ambient In-BC cores into account, our work provides a new insight into the enhancement of light absorption for In-BC particles in the atmosphere.
Rebecca M. McKenzie, Mustafa Z. Özel, J. Neil Cape, Julia Drewer, Kerry J. Dinsmore, Eiko Nemitz, Y. Sim Tang, Netty van Dijk, Margaret Anderson, Jacqueline F. Hamilton, Mark A. Sutton, Martin W. Gallagher, and Ute Skiba
Biogeosciences, 13, 2353–2365, https://doi.org/10.5194/bg-13-2353-2016, https://doi.org/10.5194/bg-13-2353-2016, 2016
Short summary
Short summary
Dissolved organic nitrogen (DON) contributes significantly to the overall nitrogen budget and can potentially be biologically available as a source of N. Despite this it is not routinely measured. This study found that DON contributed up to 10 % of the total dissolved nitrogen (TDN) found in precipitation and was the most dominant fraction in soil water (99 %) and stream water (75 %).
Chris Reed, Mathew J. Evans, Piero Di Carlo, James D. Lee, and Lucy J. Carpenter
Atmos. Chem. Phys., 16, 4707–4724, https://doi.org/10.5194/acp-16-4707-2016, https://doi.org/10.5194/acp-16-4707-2016, 2016
Short summary
Short summary
The self-cleaning capacity of the atmosphere in places like Antarctica can be measured by quantifying very low amounts of combustion products that exist in a well-known ratio. When this ratio deviates from 1 it points to the existence of unknown compounds. Several unknown compounds have been theorized to exist but never measured. We have found the method for measuring the ratio of combustion products suffers a bias in remote places, which when taken into account disproves any unknown compounds.
Stefan Metzger, George Burba, Sean P. Burns, Peter D. Blanken, Jiahong Li, Hongyan Luo, and Rommel C. Zulueta
Atmos. Meas. Tech., 9, 1341–1359, https://doi.org/10.5194/amt-9-1341-2016, https://doi.org/10.5194/amt-9-1341-2016, 2016
Short summary
Short summary
Enclosed infrared gas analyzers utilize a gas sampling system, which can substantially increase spectral corrections for eddy covariance applications. Here, we show that a requirements-based design can reduce high-frequency attenuation for H2O by ≈ 3/4, with the remaining flux correction not exceeding 3 %. The resulting gas sampling system can be used across a wide range of ecoclimates and site layouts, and enables more automated and comparable eddy covariance data processing across sites.
Marcella Busilacchio, Piero Di Carlo, Eleonora Aruffo, Fabio Biancofiore, Cesare Dari Salisburgo, Franco Giammaria, Stephane Bauguitte, James Lee, Sarah Moller, James Hopkins, Shalini Punjabi, Stephen Andrews, Alistair C. Lewis, Mark Parrington, Paul I. Palmer, Edward Hyer, and Glenn M. Wolfe
Atmos. Chem. Phys., 16, 3485–3497, https://doi.org/10.5194/acp-16-3485-2016, https://doi.org/10.5194/acp-16-3485-2016, 2016
Short summary
Short summary
Boreal fire emissions have little effect on ozone concentrations but evident impact on some NOx reservoirs as peroxy nitrates that we quantified. This should be taken into account since NOx reservoirs can be efficiently transported and may influence the ozone budget far away from the fire emission.
The study is based on observations carried out on board the BAe 146 aircraft during BORTAS in Canada. We used a custom laser-induced fluorescence system to measure NO2 and NOx reservoirs.
Xuekun Fang, Min Shao, Andreas Stohl, Qiang Zhang, Junyu Zheng, Hai Guo, Chen Wang, Ming Wang, Jiamin Ou, Rona L. Thompson, and Ronald G. Prinn
Atmos. Chem. Phys., 16, 3369–3382, https://doi.org/10.5194/acp-16-3369-2016, https://doi.org/10.5194/acp-16-3369-2016, 2016
Short summary
Short summary
This is the first study reporting top-down estimates of benzene and toluene emissions in southern China using atmospheric measurement data from a rural site in the area, an atmospheric transport model and an inverse modeling method. This study shows in detail the temporal and spatial differences between the inversion estimate and four different bottom-up emission inventories (RCP, REAS, MEIC; Yin et al., 2015). We propose that more observations are urgently needed in future.
Junwen Liu, Jun Li, Di Liu, Ping Ding, Chengde Shen, Yangzhi Mo, Xinming Wang, Chunling Luo, Zhineng Cheng, Sönke Szidat, Yanlin Zhang, Yingjun Chen, and Gan Zhang
Atmos. Chem. Phys., 16, 2985–2996, https://doi.org/10.5194/acp-16-2985-2016, https://doi.org/10.5194/acp-16-2985-2016, 2016
Short summary
Short summary
Many Chinese cities now are suffering the high loadings of fine particular matters, which can bring a lot of negative impacts on air quality, human health, and the climate system. The Chinese government generally focuses on the control of the emissions from vehicles and industry. Our results evidently show that the burning of biomass materials such as wood and agricultural residues can lead to the urban air pollution in China. The characteristic of haze covering China is distinct from regions.
J. D. Lee, L. K. Whalley, D. E. Heard, D. Stone, R. E. Dunmore, J. F. Hamilton, D. E. Young, J. D. Allan, S. Laufs, and J. Kleffmann
Atmos. Chem. Phys., 16, 2747–2764, https://doi.org/10.5194/acp-16-2747-2016, https://doi.org/10.5194/acp-16-2747-2016, 2016
Short summary
Short summary
This paper presents field measurements of HONO and a range of other gas phase and particulate species from an urban background site in London. The measured daytime HONO cannot be reproduced with a simple box model and thus a significant daytime missing source of HONO is present. We show that this missing source could be responsible for 40 % of the OH radical source and 57 % of the OH initiation; hence its potential importance for atmospheric oxidation and ozone production.
Guohua Zhang, Xinhui Bi, Ning Qiu, Bingxue Han, Qinhao Lin, Long Peng, Duohong Chen, Xinming Wang, Ping'an Peng, Guoying Sheng, and Zhen Zhou
Atmos. Chem. Phys., 16, 2631–2640, https://doi.org/10.5194/acp-16-2631-2016, https://doi.org/10.5194/acp-16-2631-2016, 2016
Short summary
Short summary
This paper first presents an estimate of the real part of the refractive indices and effective densities of chemically segregated aerosols in China. The results indicate the presence of spherical or nearly spherical shape for the majority of particle types. While sharing refractive index in a narrow range (1.47–1.53), they exhibited a wide range of effective density (0.87–1.51). Detailed relationship between physical and chemical properties benefits future research on visibility and climate.
Wei Deng, Qihou Hu, Tengyu Liu, Xinming Wang, Yanli Zhang, Xiang Ding, Yele Sun, Xinhui Bi, Jianzhen Yu, Weiqiang Yang, Xinyu Huang, Zhou Zhang, Zhonghui Huang, Quanfu He, A. Mellouki, and Christian George
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2016-50, https://doi.org/10.5194/acp-2016-50, 2016
Revised manuscript not accepted
Yuli Shan, Dabo Guan, Jianghua Liu, Zhu Liu, Jingru Liu, Heike Schroeder, Yang Chen, Shuai Shao, Zhifu Mi, and Qiang Zhang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2016-176, https://doi.org/10.5194/acp-2016-176, 2016
Revised manuscript not accepted
Short summary
Short summary
Cities contribute 85 % of the total CO2 emissions in China and thus are considered the key areas for implementing policies designed for climate change adaption and CO2 emission mitigation. This study presents a method for constructing a CO2 emissions inventory for Chinese cities in terms of the definition provided by the IPCC territorial emission accounting approach. We apply this method to compile CO2 emissions inventories for 20 Chinese cities and analyse their emission characteristic.
Lisa K. Whalley, Daniel Stone, Brian Bandy, Rachel Dunmore, Jacqueline F. Hamilton, James Hopkins, James D. Lee, Alastair C. Lewis, and Dwayne E. Heard
Atmos. Chem. Phys., 16, 2109–2122, https://doi.org/10.5194/acp-16-2109-2016, https://doi.org/10.5194/acp-16-2109-2016, 2016
Yaning Kang, Mingxu Liu, Yu Song, Xin Huang, Huan Yao, Xuhui Cai, Hongsheng Zhang, Ling Kang, Xuejun Liu, Xiaoyuan Yan, Hong He, Qiang Zhang, Min Shao, and Tong Zhu
Atmos. Chem. Phys., 16, 2043–2058, https://doi.org/10.5194/acp-16-2043-2016, https://doi.org/10.5194/acp-16-2043-2016, 2016
Short summary
Short summary
The multi-year (1980–2012) comprehensive ammonia emissions inventories were compiled for China on 1 km × 1 km grid.
Various realistic parameters (ambient temperature, wind speed, soil acidity, synthetic fertilizer types, etc.) were considered in these inventories to synthetically refine the emission factors of ammonia volatilization according to local agricultural practice.
This paper shows the interannual trend and spatial distribution of ammonia emissions in details over recent decades.
T. Liu, X. Wang, Q. Hu, W. Deng, Y. Zhang, X. Ding, X. Fu, F. Bernard, Z. Zhang, S. Lü, Q. He, X. Bi, J. Chen, Y. Sun, J. Yu, P. Peng, G. Sheng, and J. Fu
Atmos. Chem. Phys., 16, 675–689, https://doi.org/10.5194/acp-16-675-2016, https://doi.org/10.5194/acp-16-675-2016, 2016
Short summary
Short summary
The formation of SOA and sulfate aerosols from the photooxidation of gasoline vehicle exhaust (GVE) when mixing with SO2 was investigated in a smog chamber. We found that the presence of GVE enhanced the conversion of SO2 to sulfate predominantly through reactions with stabilized Criegee intermediates. On the other hand, the elevated particle acidity enhanced the SOA production from GVE. This study indicated that SO2 and GVE could enhance each other in forming secondary aerosols.
S. Kundu, K. Kawamura, M. Kobayashi, E. Tachibana, M. Lee, P. Q. Fu, and J. Jung
Atmos. Chem. Phys., 16, 585–596, https://doi.org/10.5194/acp-16-585-2016, https://doi.org/10.5194/acp-16-585-2016, 2016
Short summary
Short summary
Chemistry-transport models have predicted a change in secondary organic aerosols (SOA) in the future atmosphere with a large uncertainty. This study measures diacids, major water-soluble surrogates of SOA, on a sub-decadal scale in atmospheric aerosols in eastern Asia. Diacids are observed to increase by 3.9–47.4 % per year. The increases in the water-soluble organic acid fraction could modify the aerosol organic composition and its sensitivity to climate-relevant physical properties.
F. Iglesias-Suarez, P. J. Young, and O. Wild
Atmos. Chem. Phys., 16, 343–363, https://doi.org/10.5194/acp-16-343-2016, https://doi.org/10.5194/acp-16-343-2016, 2016
D. Fowler, C. E. Steadman, D. Stevenson, M. Coyle, R. M. Rees, U. M. Skiba, M. A. Sutton, J. N. Cape, A. J. Dore, M. Vieno, D. Simpson, S. Zaehle, B. D. Stocker, M. Rinaldi, M. C. Facchini, C. R. Flechard, E. Nemitz, M. Twigg, J. W. Erisman, K. Butterbach-Bahl, and J. N. Galloway
Atmos. Chem. Phys., 15, 13849–13893, https://doi.org/10.5194/acp-15-13849-2015, https://doi.org/10.5194/acp-15-13849-2015, 2015
W. Q. Xu, Y. L. Sun, C. Chen, W. Du, T. T. Han, Q. Q. Wang, P. Q. Fu, Z. F. Wang, X. J. Zhao, L. B. Zhou, D. S. Ji, P. C. Wang, and D. R. Worsnop
Atmos. Chem. Phys., 15, 13681–13698, https://doi.org/10.5194/acp-15-13681-2015, https://doi.org/10.5194/acp-15-13681-2015, 2015
Short summary
Short summary
We have investigated the response of aerosol composition, size distributions, and oxidation properties to emission controls during the 2014 Asia- Pacific Economic Cooperation (APEC) summit in Beijing. Our results showed substantial changes of aerosol bulk composition during APEC with the most reductions in secondary aerosols in large accumulation modes, demonstrating that that emission controls over regional scales can substantially reduce secondary particulates.
F. Liu, Q. Zhang, D. Tong, B. Zheng, M. Li, H. Huo, and K. B. He
Atmos. Chem. Phys., 15, 13299–13317, https://doi.org/10.5194/acp-15-13299-2015, https://doi.org/10.5194/acp-15-13299-2015, 2015
Short summary
Short summary
This is the first study in which emissions from China’s coal-fired power plants were estimated at unit level for a 20-year period. This new emission inventory is constructed from a unit-based database compiled in this work, named the China coal-fired Power plant Emissions Database (CPED), which includes detailed information on the technologies, activity data, operation situation, emission factors, and locations of individual units.
J.-W. Xu, R. V. Martin, A. van Donkelaar, J. Kim, M. Choi, Q. Zhang, G. Geng, Y. Liu, Z. Ma, L. Huang, Y. Wang, H. Chen, H. Che, P. Lin, and N. Lin
Atmos. Chem. Phys., 15, 13133–13144, https://doi.org/10.5194/acp-15-13133-2015, https://doi.org/10.5194/acp-15-13133-2015, 2015
Short summary
Short summary
1. GOCI (Geostationary Ocean Color Imager) retrieval of AOD is consistent with AERONET AOD (RMSE=0.08-0.1)
2. GOCI-derived PM2.5 is in significant agreement with in situ observations (r2=0.66, rRMSE=18.3%)
3. Population-weighted GOCI-derived PM2.5 over eastern China for 2013 is 53.8 μg/m3, threatening the health of its more than 400 million residents
4. Secondary inorganics (SO42-, NO3-, NH4+) & organic matter are the most significant components of GOCI-derived PM2.5.
C. Chen, Y. L. Sun, W. Q. Xu, W. Du, L. B. Zhou, T. T. Han, Q. Q. Wang, P. Q. Fu, Z. F. Wang, Z. Q. Gao, Q. Zhang, and D. R. Worsnop
Atmos. Chem. Phys., 15, 12879–12895, https://doi.org/10.5194/acp-15-12879-2015, https://doi.org/10.5194/acp-15-12879-2015, 2015
Short summary
Short summary
A comprehensive characterization of submicron aerosol composition and sources at 260m in urban Beijing during APEC 2014 is presented. Aerosol species were shown to decrease substantially by 40–80% during APEC, whereas the bulk composition was relatively similar to the result of synergetic controls of secondary precursors. Our results elucidated that the good air quality during APEC was the combined result of emission controls and meteorological effects, with the former playing the dominant role.
Y. Zhao, L. P. Qiu, R. Y. Xu, F. J. Xie, Q. Zhang, Y. Y. Yu, C. P. Nielsen, H. X. Qin, H. K. Wang, X. C. Wu, W. Q. Li, and J. Zhang
Atmos. Chem. Phys., 15, 12623–12644, https://doi.org/10.5194/acp-15-12623-2015, https://doi.org/10.5194/acp-15-12623-2015, 2015
Short summary
Short summary
A high-resolution emission inventory of air pollutants and CO2 for Nanjing, a typical city in eastern China, is developed, incorporating the best available local information from on-site surveys. The temporal and spatial distribution of the emissions and the correlation between specific species of the inventory are assessed by comparisons with observations and other inventories at larger spatial scale. The emission inventory provides a basis to consider the quality of instrumental observations.
G. Janssens-Maenhout, M. Crippa, D. Guizzardi, F. Dentener, M. Muntean, G. Pouliot, T. Keating, Q. Zhang, J. Kurokawa, R. Wankmüller, H. Denier van der Gon, J. J. P. Kuenen, Z. Klimont, G. Frost, S. Darras, B. Koffi, and M. Li
Atmos. Chem. Phys., 15, 11411–11432, https://doi.org/10.5194/acp-15-11411-2015, https://doi.org/10.5194/acp-15-11411-2015, 2015
Short summary
Short summary
This paper provides monthly emission grid maps at 0.1deg x 0.1deg resolution with global coverage for air pollutants and aerosols anthropogenic emissions in 2008 and 2010.
Countries are consistently inter-compared with sector-specific implied emission factors, per capita emissions and emissions per unit of GDP.
The emission grid maps compose the reference emissions data set for the community modelling hemispheric transport of air pollution (HTAP).
B. Langford, W. Acton, C. Ammann, A. Valach, and E. Nemitz
Atmos. Meas. Tech., 8, 4197–4213, https://doi.org/10.5194/amt-8-4197-2015, https://doi.org/10.5194/amt-8-4197-2015, 2015
S. Visser, J. G. Slowik, M. Furger, P. Zotter, N. Bukowiecki, F. Canonaco, U. Flechsig, K. Appel, D. C. Green, A. H. Tremper, D. E. Young, P. I. Williams, J. D. Allan, H. Coe, L. R. Williams, C. Mohr, L. Xu, N. L. Ng, E. Nemitz, J. F. Barlow, C. H. Halios, Z. L. Fleming, U. Baltensperger, and A. S. H. Prévôt
Atmos. Chem. Phys., 15, 11291–11309, https://doi.org/10.5194/acp-15-11291-2015, https://doi.org/10.5194/acp-15-11291-2015, 2015
Short summary
Short summary
Trace element measurements in three particle size ranges (PM10-2.5, PM2.5-1.0 and PM1.0-0.3) were performed with 2h time resolution at kerbside, urban background and rural sites during the ClearfLo winter 2012 campaign in London. The environment-dependent variability of emissions was characterized using the Multilinear Engine implementation of the positive matrix factorization model. A total of nine different factors were resolved from local, regional and natural origin.
L. Zhang, D. K. Henze, G. A. Grell, G. R. Carmichael, N. Bousserez, Q. Zhang, O. Torres, C. Ahn, Z. Lu, J. Cao, and Y. Mao
Atmos. Chem. Phys., 15, 10281–10308, https://doi.org/10.5194/acp-15-10281-2015, https://doi.org/10.5194/acp-15-10281-2015, 2015
Short summary
Short summary
We attempt to reduce uncertainties in BC emissions and improve BC model simulations by developing top-down, spatially resolved, estimates of BC emissions through assimilation of OMI observations of aerosol absorption optical depth (AAOD) with the GEOS-Chem model and its adjoint for April and October of 2006. Despite the limitations and uncertainties, using OMI AAOD to constrain BC sources we are able to improve model representation of BC distributions, particularly over China.
H. S. Chen, Z. F. Wang, J. Li, X. Tang, B. Z. Ge, X. L. Wu, O. Wild, and G. R. Carmichael
Geosci. Model Dev., 8, 2857–2876, https://doi.org/10.5194/gmd-8-2857-2015, https://doi.org/10.5194/gmd-8-2857-2015, 2015
Short summary
Short summary
A new global nested atmospheric mercury transport model was developed and introduced. Model performance was found significantly better in North America and Europe than in East Asia. Nested simulation has been conducted in East Asia and shows improved skill at capturing the high spatial variability of Hg concentrations and deposition. The trans-boundary transport of Chinese primary anthropogenic mercury emissions was quantified for the first time.
Y. L. Sun, Z. F. Wang, W. Du, Q. Zhang, Q. Q. Wang, P. Q. Fu, X. L. Pan, J. Li, J. Jayne, and D. R. Worsnop
Atmos. Chem. Phys., 15, 10149–10165, https://doi.org/10.5194/acp-15-10149-2015, https://doi.org/10.5194/acp-15-10149-2015, 2015
Short summary
Short summary
We conducted the first long-term real-time measurement of submicron aerosol composition in Beijing using an ACSM for 1 year. The seasonal variations of mass concentrations and chemical composition of submicron aerosol were investigated in detail, and the meteorological effects on aerosol chemistry, particularly temperature and relative humidity, were elucidated. Finally, the potential source areas of aerosol species during four seasons were identified.
R. E. Dunmore, J. R. Hopkins, R. T. Lidster, J. D. Lee, M. J. Evans, A. R. Rickard, A. C. Lewis, and J. F. Hamilton
Atmos. Chem. Phys., 15, 9983–9996, https://doi.org/10.5194/acp-15-9983-2015, https://doi.org/10.5194/acp-15-9983-2015, 2015
Short summary
Short summary
Technological shifts between fuel sources have had unexpected impacts on atmospheric composition and these significant changes can go undetected if source-specific monitoring infrastructure is not in place. We present chemically comprehensive, continuous measurements of organic compounds in a developed megacity (London), that show diesel-related hydrocarbons can dominate reactive carbon and ozone formation potential, highlighting a serious underestimation of this source in emission inventories.
J. G. Levine, A. R. MacKenzie, O. J. Squire, A. T. Archibald, P. T. Griffiths, N. L. Abraham, J. A. Pyle, D. E. Oram, G. Forster, J. F. Brito, J. D. Lee, J. R. Hopkins, A. C. Lewis, S. J. B. Bauguitte, C. F. Demarco, P. Artaxo, P. Messina, J. Lathière, D. A. Hauglustaine, E. House, C. N. Hewitt, and E. Nemitz
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-15-24251-2015, https://doi.org/10.5194/acpd-15-24251-2015, 2015
Revised manuscript has not been submitted
Short summary
Short summary
This study explores our ability to simulate atmospheric chemistry stemming from isoprene emissions—a reactive gas emitted from vegetation—in pristine and polluted regions of the Amazon basin. We explore how two contrasting models fare in reproducing recent airborne measurements in the region. Their differing treatments of transport and mixing are found to: profoundly affect their performance; and yield very different pictures of the exposure of the rainforest to harmful ozone concentrations.
C. M. Pavuluri, K. Kawamura, and P. Q. Fu
Atmos. Chem. Phys., 15, 9883–9896, https://doi.org/10.5194/acp-15-9883-2015, https://doi.org/10.5194/acp-15-9883-2015, 2015
T. Liu, X. Wang, W. Deng, Q. Hu, X. Ding, Y. Zhang, Q. He, Z. Zhang, S. Lü, X. Bi, J. Chen, and J. Yu
Atmos. Chem. Phys., 15, 9049–9062, https://doi.org/10.5194/acp-15-9049-2015, https://doi.org/10.5194/acp-15-9049-2015, 2015
P. S. Monks, A. T. Archibald, A. Colette, O. Cooper, M. Coyle, R. Derwent, D. Fowler, C. Granier, K. S. Law, G. E. Mills, D. S. Stevenson, O. Tarasova, V. Thouret, E. von Schneidemesser, R. Sommariva, O. Wild, and M. L. Williams
Atmos. Chem. Phys., 15, 8889–8973, https://doi.org/10.5194/acp-15-8889-2015, https://doi.org/10.5194/acp-15-8889-2015, 2015
Short summary
Short summary
Ozone holds a certain fascination in atmospheric science. It is ubiquitous in the atmosphere, central to tropospheric oxidation chemistry, and yet harmful to human and ecosystem health as well as being an important greenhouse gas. It is not emitted into the atmosphere but is a byproduct of the very oxidation chemistry it largely initiates. This review examines current understanding of the processes regulating tropospheric ozone at global to local scales from both measurements and models.
R.-Q. Shen, X. Ding, Q.-F. He, Z.-Y. Cong, Q.-Q. Yu, and X.-M. Wang
Atmos. Chem. Phys., 15, 8781–8793, https://doi.org/10.5194/acp-15-8781-2015, https://doi.org/10.5194/acp-15-8781-2015, 2015
Short summary
Short summary
1) Seasonal trends of SOA tracers and origins were studied in the remote TP for the first time.
2) Seasonal variation of isoprene SOA tracers was mainly influenced by emission.
3) Due to the transport of air pollutants from the Indian subcontinent, aromatics SOA tracer presented relatively higher levels in the summer and elevated mass fractions in the winter.
4) Biogenic SOC dominated over anthropogenic SOC in the remote TP.
W. Tao, J. Liu, G. A. Ban-Weiss, D. A. Hauglustaine, L. Zhang, Q. Zhang, Y. Cheng, Y. Yu, and S. Tao
Atmos. Chem. Phys., 15, 8597–8614, https://doi.org/10.5194/acp-15-8597-2015, https://doi.org/10.5194/acp-15-8597-2015, 2015
Short summary
Short summary
We examine the responses of a range of meteorological and air quality indicators to the expansion of urban land using WRF/Chem. Sensitivity studies indicate that the responses of pollutant concentrations to the spatial extent of urbanization are linear near the surface but nonlinear at higher altitudes. The results of process analysis demonstrate that urban heat island circulation and a deeper boundary layer with stronger turbulent intensities play a significant role in relocating pollutants.
S. Fuzzi, U. Baltensperger, K. Carslaw, S. Decesari, H. Denier van der Gon, M. C. Facchini, D. Fowler, I. Koren, B. Langford, U. Lohmann, E. Nemitz, S. Pandis, I. Riipinen, Y. Rudich, M. Schaap, J. G. Slowik, D. V. Spracklen, E. Vignati, M. Wild, M. Williams, and S. Gilardoni
Atmos. Chem. Phys., 15, 8217–8299, https://doi.org/10.5194/acp-15-8217-2015, https://doi.org/10.5194/acp-15-8217-2015, 2015
Short summary
Short summary
Particulate matter (PM) constitutes one of the most challenging problems both for air quality and climate change policies. This paper reviews the most recent scientific results on the issue and the policy needs that have driven much of the increase in monitoring and mechanistic research over the last 2 decades. The synthesis reveals many new processes and developments in the science underpinning climate-PM interactions and the effects of PM on human health and the environment.
H. M. Walker, D. Stone, T. Ingham, S. Vaughan, M. Cain, R. L. Jones, O. J. Kennedy, M. McLeod, B. Ouyang, J. Pyle, S. Bauguitte, B. Bandy, G. Forster, M. J. Evans, J. F. Hamilton, J. R. Hopkins, J. D. Lee, A. C. Lewis, R. T. Lidster, S. Punjabi, W. T. Morgan, and D. E. Heard
Atmos. Chem. Phys., 15, 8179–8200, https://doi.org/10.5194/acp-15-8179-2015, https://doi.org/10.5194/acp-15-8179-2015, 2015
M. M. Twigg, C. F. Di Marco, S. Leeson, N. van Dijk, M. R. Jones, I. D. Leith, E. Morrison, M. Coyle, R. Proost, A. N. M. Peeters, E. Lemon, T. Frelink, C. F. Braban, E. Nemitz, and J. N. Cape
Atmos. Chem. Phys., 15, 8131–8145, https://doi.org/10.5194/acp-15-8131-2015, https://doi.org/10.5194/acp-15-8131-2015, 2015
Short summary
Short summary
Hourly inorganic composition of UK background particulate matter (PM10 and PM2.5) has been studied for a 6.5-year period at Auchencorth Moss, Scotland. Long-range transport of both anthropogenic secondary and natural primary PM is observed, driven primarily by meteorology. The importance of nitrate, sulfate and ammonium during pollution events in the UK is demonstrated.
K. P. Wyche, P. S. Monks, K. L. Smallbone, J. F. Hamilton, M. R. Alfarra, A. R. Rickard, G. B. McFiggans, M. E. Jenkin, W. J. Bloss, A. C. Ryan, C. N. Hewitt, and A. R. MacKenzie
Atmos. Chem. Phys., 15, 8077–8100, https://doi.org/10.5194/acp-15-8077-2015, https://doi.org/10.5194/acp-15-8077-2015, 2015
Short summary
Short summary
This paper describes a new ensemble methodology for the statistical analysis of atmospheric gas- & particle-phase composition data sets. The methodology reduces the huge amount of data derived from many chamber experiments to show that organic reactivity & resultant particle formation can be mapped into unique clusters in statistical space. The model generated is used to map more realistic plant mesocosm oxidation data, the projection of which gives insight into reactive pathways & precursors.
A. C. Valach, B. Langford, E. Nemitz, A. R. MacKenzie, and C. N. Hewitt
Atmos. Chem. Phys., 15, 7777–7796, https://doi.org/10.5194/acp-15-7777-2015, https://doi.org/10.5194/acp-15-7777-2015, 2015
Short summary
Short summary
Concentrations and fluxes of selected volatile organic compounds were measured over a 5-month period in central London as part of the ClearfLo project using a proton transfer reaction mass spectrometer. Emission sources within the city were inferred from spatio-temporal patterns and showed a detectable biogenic source during warmer months, which was modelled using the Guenther 95 algorithm. Comparisons were made with the local emissions inventories showing mostly underestimated emissions.
C. C. Hoerger, A. Claude, C. Plass-Duelmer, S. Reimann, E. Eckart, R. Steinbrecher, J. Aalto, J. Arduini, N. Bonnaire, J. N. Cape, A. Colomb, R. Connolly, J. Diskova, P. Dumitrean, C. Ehlers, V. Gros, H. Hakola, M. Hill, J. R. Hopkins, J. Jäger, R. Junek, M. K. Kajos, D. Klemp, M. Leuchner, A. C. Lewis, N. Locoge, M. Maione, D. Martin, K. Michl, E. Nemitz, S. O'Doherty, P. Pérez Ballesta, T. M. Ruuskanen, S. Sauvage, N. Schmidbauer, T. G. Spain, E. Straube, M. Vana, M. K. Vollmer, R. Wegener, and A. Wenger
Atmos. Meas. Tech., 8, 2715–2736, https://doi.org/10.5194/amt-8-2715-2015, https://doi.org/10.5194/amt-8-2715-2015, 2015
Short summary
Short summary
The performance of 20 European laboratories involved in long-term non-methane hydrocarbon (NMHC) measurements was assessed with respect to ACTRIS and GAW data quality objectives. The participants were asked to measure both a 30-component NMHC mixture in nitrogen and whole air. The NMHCs were analysed either by GC-FID or GC-MS. Most systems performed well for the NMHC in nitrogen, whereas in air more scatter was observed. Reasons for this are explained in the paper.
C. Hardacre, O. Wild, and L. Emberson
Atmos. Chem. Phys., 15, 6419–6436, https://doi.org/10.5194/acp-15-6419-2015, https://doi.org/10.5194/acp-15-6419-2015, 2015
Short summary
Short summary
The dry deposition of ozone to the Earth's surface is an important process as it controls both the removal of this potent pollutant from the atmosphere and its uptake by vegetation. It is necessary to use numerical models to study this process at the global scale, but many models to represent dry deposition lag behind current understanding. In this paper we study the dry deposition process in global models and highlight measures that will allow these models to be critically evaluated.
H. Y. Zhao, Q. Zhang, D. B. Guan, S. J. Davis, Z. Liu, H. Huo, J. T. Lin, W. D. Liu, and K. B. He
Atmos. Chem. Phys., 15, 5443–5456, https://doi.org/10.5194/acp-15-5443-2015, https://doi.org/10.5194/acp-15-5443-2015, 2015
M. D. Shaw, J. D. Lee, B. Davison, A. Vaughan, R. M. Purvis, A. Harvey, A. C. Lewis, and C. N. Hewitt
Atmos. Chem. Phys., 15, 5083–5097, https://doi.org/10.5194/acp-15-5083-2015, https://doi.org/10.5194/acp-15-5083-2015, 2015
Short summary
Short summary
This paper presents the first highly spatially resolved simultaneous mixing ratios of VOCs, NOx and O3 in the atmospheric boundary layer above Greater London (UK) using an research aircraft. Average mixing ratios measured at 360±10 m agl over outer London were always lower than over inner London, indicative of strong local vehicular sources. The comparison of airborne mixing ratio with LAQN air quality ground monitoring stations suggests that the mixing ratios were characteristic of the surface.
L. R. Crilley, W. J. Bloss, J. Yin, D. C. S. Beddows, R. M. Harrison, J. D. Allan, D. E. Young, M. Flynn, P. Williams, P. Zotter, A. S. H. Prevot, M. R. Heal, J. F. Barlow, C. H. Halios, J. D. Lee, S. Szidat, and C. Mohr
Atmos. Chem. Phys., 15, 3149–3171, https://doi.org/10.5194/acp-15-3149-2015, https://doi.org/10.5194/acp-15-3149-2015, 2015
Short summary
Short summary
Wood is a renewable fuel but its combustion for residential heating releases a number of locally acting air pollutants, most notably particulate matter known to have adverse effects on human health. This paper used chemical tracers for wood smoke to estimate the contribution that burning wood makes to concentrations of airborne particles in the atmosphere of southern England and most particularly in London.
C. Helfter, C. Campbell, K. J. Dinsmore, J. Drewer, M. Coyle, M. Anderson, U. Skiba, E. Nemitz, M. F. Billett, and M. A. Sutton
Biogeosciences, 12, 1799–1811, https://doi.org/10.5194/bg-12-1799-2015, https://doi.org/10.5194/bg-12-1799-2015, 2015
Short summary
Short summary
The CO2 sink strength of a temperate peatland in SE Scotland exhibited large inter-annual variability which was well-correlated to the length of the growing season. Mean winter air temperature explained 87% of the inter-annual variability in the sink strength of the following summer, indicating a phenological memory effect. Autotrophic respiration is thought to be dominant, but heterotrophic processes might have been enhanced during dry spells increasing the loss of CO2 to the atmosphere.
S. Dai, X. Bi, L. Y. Chan, J. He, B. Wang, X. Wang, P. Peng, G. Sheng, and J. Fu
Atmos. Chem. Phys., 15, 3097–3108, https://doi.org/10.5194/acp-15-3097-2015, https://doi.org/10.5194/acp-15-3097-2015, 2015
G. J. Zheng, F. K. Duan, H. Su, Y. L. Ma, Y. Cheng, B. Zheng, Q. Zhang, T. Huang, T. Kimoto, D. Chang, U. Pöschl, Y. F. Cheng, and K. B. He
Atmos. Chem. Phys., 15, 2969–2983, https://doi.org/10.5194/acp-15-2969-2015, https://doi.org/10.5194/acp-15-2969-2015, 2015
B. Zheng, Q. Zhang, Y. Zhang, K. B. He, K. Wang, G. J. Zheng, F. K. Duan, Y. L. Ma, and T. Kimoto
Atmos. Chem. Phys., 15, 2031–2049, https://doi.org/10.5194/acp-15-2031-2015, https://doi.org/10.5194/acp-15-2031-2015, 2015
Z. Cong, S. Kang, K. Kawamura, B. Liu, X. Wan, Z. Wang, S. Gao, and P. Fu
Atmos. Chem. Phys., 15, 1573–1584, https://doi.org/10.5194/acp-15-1573-2015, https://doi.org/10.5194/acp-15-1573-2015, 2015
M. Wang, M. Shao, W. Chen, S. Lu, Y. Liu, B. Yuan, Q. Zhang, Q. Zhang, C.-C. Chang, B. Wang, L. Zeng, M. Hu, Y. Yang, and Y. Li
Atmos. Chem. Phys., 15, 1489–1502, https://doi.org/10.5194/acp-15-1489-2015, https://doi.org/10.5194/acp-15-1489-2015, 2015
G. Snider, C. L. Weagle, R. V. Martin, A. van Donkelaar, K. Conrad, D. Cunningham, C. Gordon, M. Zwicker, C. Akoshile, P. Artaxo, N. X. Anh, J. Brook, J. Dong, R. M. Garland, R. Greenwald, D. Griffith, K. He, B. N. Holben, R. Kahn, I. Koren, N. Lagrosas, P. Lestari, Z. Ma, J. Vanderlei Martins, E. J. Quel, Y. Rudich, A. Salam, S. N. Tripathi, C. Yu, Q. Zhang, Y. Zhang, M. Brauer, A. Cohen, M. D. Gibson, and Y. Liu
Atmos. Meas. Tech., 8, 505–521, https://doi.org/10.5194/amt-8-505-2015, https://doi.org/10.5194/amt-8-505-2015, 2015
Short summary
Short summary
We have initiated a global network of ground-level monitoring stations to measure concentrations of fine aerosols in urban environments. Our findings include major ions species, total mass, and total scatter at three wavelengths. Results will be used to further evaluate and enhance satellite remote sensing estimates.
J. W. Taylor, J. D. Allan, G. Allen, H. Coe, P. I. Williams, M. J. Flynn, M. Le Breton, J. B. A. Muller, C. J. Percival, D. Oram, G. Forster, J. D. Lee, A. R. Rickard, M. Parrington, and P. I. Palmer
Atmos. Chem. Phys., 14, 13755–13771, https://doi.org/10.5194/acp-14-13755-2014, https://doi.org/10.5194/acp-14-13755-2014, 2014
Short summary
Short summary
We present a case study of BC wet removal by examining aerosol properties in three biomass burning plumes, one of which passed through a precipitating cloud. Nucleation scavenging preferentially removed the largest and most coated BC-containing particles. Calculated single-scattering albedo (SSA) showed little variation, as a large number of non-BC particles were also present in the precipitation-affected plume.
G. Allen, S. M. Illingworth, S. J. O'Shea, S. Newman, A. Vance, S. J.-B. Bauguitte, F. Marenco, J. Kent, K. Bower, M. W. Gallagher, J. Muller, C. J. Percival, C. Harlow, J. Lee, and J. P. Taylor
Atmos. Meas. Tech., 7, 4401–4416, https://doi.org/10.5194/amt-7-4401-2014, https://doi.org/10.5194/amt-7-4401-2014, 2014
Short summary
Short summary
This paper presents a validated method and data set for new retrievals of trace gas concentrations and temperature from the ARIES infrared spectrometer instrument on the UK Atmospheric Research Aircraft (www.faam.ac.uk). This new capability for the aircraft will allow new science to be done because of the way it can sense information about the atmosphere without having to physically pass through it (remote sensing). This will allow us to better understand the make-up of the lower atmosphere.
K. P. Wyche, A. C. Ryan, C. N. Hewitt, M. R. Alfarra, G. McFiggans, T. Carr, P. S. Monks, K. L. Smallbone, G. Capes, J. F. Hamilton, T. A. M. Pugh, and A. R. MacKenzie
Atmos. Chem. Phys., 14, 12781–12801, https://doi.org/10.5194/acp-14-12781-2014, https://doi.org/10.5194/acp-14-12781-2014, 2014
S. Nordmann, Y. F. Cheng, G. R. Carmichael, M. Yu, H. A. C. Denier van der Gon, Q. Zhang, P. E. Saide, U. Pöschl, H. Su, W. Birmili, and A. Wiedensohler
Atmos. Chem. Phys., 14, 12683–12699, https://doi.org/10.5194/acp-14-12683-2014, https://doi.org/10.5194/acp-14-12683-2014, 2014
D. L. Finney, R. M. Doherty, O. Wild, H. Huntrieser, H. C. Pumphrey, and A. M. Blyth
Atmos. Chem. Phys., 14, 12665–12682, https://doi.org/10.5194/acp-14-12665-2014, https://doi.org/10.5194/acp-14-12665-2014, 2014
Short summary
Short summary
Lightning is important in atmospheric chemistry models as a source of
nitrogen oxides which affect the greenhouse gases ozone and methane. We
present a new approach to modelling lightning using the upward movement of
ice in clouds, an essential part of the charging mechanism in thunderstorms.
The new approach performs well compared to those already in use and provides
a novel, physically based scheme that has the potential to improve the
robustness of simulated flash rates and emissions.
J. D. Allan, W. T. Morgan, E. Darbyshire, M. J. Flynn, P. I. Williams, D. E. Oram, P. Artaxo, J. Brito, J. D. Lee, and H. Coe
Atmos. Chem. Phys., 14, 11393–11407, https://doi.org/10.5194/acp-14-11393-2014, https://doi.org/10.5194/acp-14-11393-2014, 2014
C. Kalogridis, V. Gros, R. Sarda-Esteve, B. Langford, B. Loubet, B. Bonsang, N. Bonnaire, E. Nemitz, A.-C. Genard, C. Boissard, C. Fernandez, E. Ormeño, D. Baisnée, I. Reiter, and J. Lathière
Atmos. Chem. Phys., 14, 10085–10102, https://doi.org/10.5194/acp-14-10085-2014, https://doi.org/10.5194/acp-14-10085-2014, 2014
D. Liu, J. D. Allan, D. E. Young, H. Coe, D. Beddows, Z. L. Fleming, M. J. Flynn, M. W. Gallagher, R. M. Harrison, J. Lee, A. S. H. Prevot, J. W. Taylor, J. Yin, P. I. Williams, and P. Zotter
Atmos. Chem. Phys., 14, 10061–10084, https://doi.org/10.5194/acp-14-10061-2014, https://doi.org/10.5194/acp-14-10061-2014, 2014
B. Zheng, H. Huo, Q. Zhang, Z. L. Yao, X. T. Wang, X. F. Yang, H. Liu, and K. B. He
Atmos. Chem. Phys., 14, 9787–9805, https://doi.org/10.5194/acp-14-9787-2014, https://doi.org/10.5194/acp-14-9787-2014, 2014
C. Fountoukis, A. G. Megaritis, K. Skyllakou, P. E. Charalampidis, C. Pilinis, H. A. C. Denier van der Gon, M. Crippa, F. Canonaco, C. Mohr, A. S. H. Prévôt, J. D. Allan, L. Poulain, T. Petäjä, P. Tiitta, S. Carbone, A. Kiendler-Scharr, E. Nemitz, C. O'Dowd, E. Swietlicki, and S. N. Pandis
Atmos. Chem. Phys., 14, 9061–9076, https://doi.org/10.5194/acp-14-9061-2014, https://doi.org/10.5194/acp-14-9061-2014, 2014
J. E. Franklin, J. R. Drummond, D. Griffin, J. R. Pierce, D. L. Waugh, P. I. Palmer, M. Parrington, J. D. Lee, A. C. Lewis, A. R. Rickard, J. W. Taylor, J. D. Allan, H. Coe, K. A. Walker, L. Chisholm, T. J. Duck, J. T. Hopper, Y. Blanchard, M. D. Gibson, K. R. Curry, K. M. Sakamoto, G. Lesins, L. Dan, J. Kliever, and A. Saha
Atmos. Chem. Phys., 14, 8449–8460, https://doi.org/10.5194/acp-14-8449-2014, https://doi.org/10.5194/acp-14-8449-2014, 2014
E. A. Marais, D. J. Jacob, A. Guenther, K. Chance, T. P. Kurosu, J. G. Murphy, C. E. Reeves, and H. O. T. Pye
Atmos. Chem. Phys., 14, 7693–7703, https://doi.org/10.5194/acp-14-7693-2014, https://doi.org/10.5194/acp-14-7693-2014, 2014
C. He, Q. B. Li, K. N. Liou, J. Zhang, L. Qi, Y. Mao, M. Gao, Z. Lu, D. G. Streets, Q. Zhang, M. M. Sarin, and K. Ram
Atmos. Chem. Phys., 14, 7091–7112, https://doi.org/10.5194/acp-14-7091-2014, https://doi.org/10.5194/acp-14-7091-2014, 2014
R. T. Lidster, J. F. Hamilton, J. D. Lee, A. C. Lewis, J. R. Hopkins, S. Punjabi, A. R. Rickard, and J. C. Young
Atmos. Chem. Phys., 14, 6677–6693, https://doi.org/10.5194/acp-14-6677-2014, https://doi.org/10.5194/acp-14-6677-2014, 2014
M. Crippa, F. Canonaco, V. A. Lanz, M. Äijälä, J. D. Allan, S. Carbone, G. Capes, D. Ceburnis, M. Dall'Osto, D. A. Day, P. F. DeCarlo, M. Ehn, A. Eriksson, E. Freney, L. Hildebrandt Ruiz, R. Hillamo, J. L. Jimenez, H. Junninen, A. Kiendler-Scharr, A.-M. Kortelainen, M. Kulmala, A. Laaksonen, A. A. Mensah, C. Mohr, E. Nemitz, C. O'Dowd, J. Ovadnevaite, S. N. Pandis, T. Petäjä, L. Poulain, S. Saarikoski, K. Sellegri, E. Swietlicki, P. Tiitta, D. R. Worsnop, U. Baltensperger, and A. S. H. Prévôt
Atmos. Chem. Phys., 14, 6159–6176, https://doi.org/10.5194/acp-14-6159-2014, https://doi.org/10.5194/acp-14-6159-2014, 2014
O. Peltola, A. Hensen, C. Helfter, L. Belelli Marchesini, F. C. Bosveld, W. C. M. van den Bulk, J. A. Elbers, S. Haapanala, J. Holst, T. Laurila, A. Lindroth, E. Nemitz, T. Röckmann, A. T. Vermeulen, and I. Mammarella
Biogeosciences, 11, 3163–3186, https://doi.org/10.5194/bg-11-3163-2014, https://doi.org/10.5194/bg-11-3163-2014, 2014
M. Wang, M. Shao, W. Chen, B. Yuan, S. Lu, Q. Zhang, L. Zeng, and Q. Wang
Atmos. Chem. Phys., 14, 5871–5891, https://doi.org/10.5194/acp-14-5871-2014, https://doi.org/10.5194/acp-14-5871-2014, 2014
M. Li, Q. Zhang, D. G. Streets, K. B. He, Y. F. Cheng, L. K. Emmons, H. Huo, S. C. Kang, Z. Lu, M. Shao, H. Su, X. Yu, and Y. Zhang
Atmos. Chem. Phys., 14, 5617–5638, https://doi.org/10.5194/acp-14-5617-2014, https://doi.org/10.5194/acp-14-5617-2014, 2014
P. Q. Fu, K. Kawamura, Y. F. Cheng, S. Hatakeyama, A. Takami, H. Li, and W. Wang
Atmos. Chem. Phys., 14, 4185–4199, https://doi.org/10.5194/acp-14-4185-2014, https://doi.org/10.5194/acp-14-4185-2014, 2014
L. T. Wang, Z. Wei, J. Yang, Y. Zhang, F. F. Zhang, J. Su, C. C. Meng, and Q. Zhang
Atmos. Chem. Phys., 14, 3151–3173, https://doi.org/10.5194/acp-14-3151-2014, https://doi.org/10.5194/acp-14-3151-2014, 2014
N. Niedermeier, A. Held, T. Müller, B. Heinold, K. Schepanski, I. Tegen, K. Kandler, M. Ebert, S. Weinbruch, K. Read, J. Lee, K. W. Fomba, K. Müller, H. Herrmann, and A. Wiedensohler
Atmos. Chem. Phys., 14, 2245–2266, https://doi.org/10.5194/acp-14-2245-2014, https://doi.org/10.5194/acp-14-2245-2014, 2014
D. Stone, M. J. Evans, H. Walker, T. Ingham, S. Vaughan, B. Ouyang, O. J. Kennedy, M. W. McLeod, R. L. Jones, J. Hopkins, S. Punjabi, R. Lidster, J. F. Hamilton, J. D. Lee, A. C. Lewis, L. J. Carpenter, G. Forster, D. E. Oram, C. E. Reeves, S. Bauguitte, W. Morgan, H. Coe, E. Aruffo, C. Dari-Salisburgo, F. Giammaria, P. Di Carlo, and D. E. Heard
Atmos. Chem. Phys., 14, 1299–1321, https://doi.org/10.5194/acp-14-1299-2014, https://doi.org/10.5194/acp-14-1299-2014, 2014
X. Wang, T. Liu, F. Bernard, X. Ding, S. Wen, Y. Zhang, Z. Zhang, Q. He, S. Lü, J. Chen, S. Saunders, and J. Yu
Atmos. Meas. Tech., 7, 301–313, https://doi.org/10.5194/amt-7-301-2014, https://doi.org/10.5194/amt-7-301-2014, 2014
O. J. Squire, A. T. Archibald, N. L. Abraham, D. J. Beerling, C. N. Hewitt, J. Lathière, R. C. Pike, P. J. Telford, and J. A. Pyle
Atmos. Chem. Phys., 14, 1011–1024, https://doi.org/10.5194/acp-14-1011-2014, https://doi.org/10.5194/acp-14-1011-2014, 2014
B. Mijling, R. J. van der A, and Q. Zhang
Atmos. Chem. Phys., 13, 12003–12012, https://doi.org/10.5194/acp-13-12003-2013, https://doi.org/10.5194/acp-13-12003-2013, 2013
S. Situ, A. Guenther, X. Wang, X. Jiang, A. Turnipseed, Z. Wu, J. Bai, and X. Wang
Atmos. Chem. Phys., 13, 11803–11817, https://doi.org/10.5194/acp-13-11803-2013, https://doi.org/10.5194/acp-13-11803-2013, 2013
J. J. Li, G. H. Wang, J. J. Cao, X. M. Wang, and R. J. Zhang
Atmos. Chem. Phys., 13, 11535–11549, https://doi.org/10.5194/acp-13-11535-2013, https://doi.org/10.5194/acp-13-11535-2013, 2013
N. Unger, K. Harper, Y. Zheng, N. Y. Kiang, I. Aleinov, A. Arneth, G. Schurgers, C. Amelynck, A. Goldstein, A. Guenther, B. Heinesch, C. N. Hewitt, T. Karl, Q. Laffineur, B. Langford, K. A. McKinney, P. Misztal, M. Potosnak, J. Rinne, S. Pressley, N. Schoon, and D. Serça
Atmos. Chem. Phys., 13, 10243–10269, https://doi.org/10.5194/acp-13-10243-2013, https://doi.org/10.5194/acp-13-10243-2013, 2013
P. M. Edwards, M. J. Evans, K. L. Furneaux, J. Hopkins, T. Ingham, C. Jones, J. D. Lee, A. C. Lewis, S. J. Moller, D. Stone, L. K. Whalley, and D. E. Heard
Atmos. Chem. Phys., 13, 9497–9514, https://doi.org/10.5194/acp-13-9497-2013, https://doi.org/10.5194/acp-13-9497-2013, 2013
N. J. Warwick, A. T. Archibald, K. Ashworth, J. Dorsey, P. M. Edwards, D. E. Heard, B. Langford, J. Lee, P. K. Misztal, L. K. Whalley, and J. A. Pyle
Atmos. Chem. Phys., 13, 9183–9194, https://doi.org/10.5194/acp-13-9183-2013, https://doi.org/10.5194/acp-13-9183-2013, 2013
T. Stavrakou, J.-F. Müller, K. F. Boersma, R. J. van der A, J. Kurokawa, T. Ohara, and Q. Zhang
Atmos. Chem. Phys., 13, 9057–9082, https://doi.org/10.5194/acp-13-9057-2013, https://doi.org/10.5194/acp-13-9057-2013, 2013
F. Ziska, B. Quack, K. Abrahamsson, S. D. Archer, E. Atlas, T. Bell, J. H. Butler, L. J. Carpenter, C. E. Jones, N. R. P. Harris, H. Hepach, K. G. Heumann, C. Hughes, J. Kuss, K. Krüger, P. Liss, R. M. Moore, A. Orlikowska, S. Raimund, C. E. Reeves, W. Reifenhäuser, A. D. Robinson, C. Schall, T. Tanhua, S. Tegtmeier, S. Turner, L. Wang, D. Wallace, J. Williams, H. Yamamoto, S. Yvon-Lewis, and Y. Yokouchi
Atmos. Chem. Phys., 13, 8915–8934, https://doi.org/10.5194/acp-13-8915-2013, https://doi.org/10.5194/acp-13-8915-2013, 2013
J. Schmale, J. Schneider, E. Nemitz, Y. S. Tang, U. Dragosits, T. D. Blackall, P. N. Trathan, G. J. Phillips, M. Sutton, and C. F. Braban
Atmos. Chem. Phys., 13, 8669–8694, https://doi.org/10.5194/acp-13-8669-2013, https://doi.org/10.5194/acp-13-8669-2013, 2013
Y. Kanaya, H. Akimoto, Z.-F. Wang, P. Pochanart, K. Kawamura, Y. Liu, J. Li, Y. Komazaki, H. Irie, X.-L. Pan, F. Taketani, K. Yamaji, H. Tanimoto, S. Inomata, S. Kato, J. Suthawaree, K. Okuzawa, G. Wang, S. G. Aggarwal, P. Q. Fu, T. Wang, J. Gao, Y. Wang, and G. Zhuang
Atmos. Chem. Phys., 13, 8265–8283, https://doi.org/10.5194/acp-13-8265-2013, https://doi.org/10.5194/acp-13-8265-2013, 2013
M. Parrington, P. I. Palmer, A. C. Lewis, J. D. Lee, A. R. Rickard, P. Di Carlo, J. W. Taylor, J. R. Hopkins, S. Punjabi, D. E. Oram, G. Forster, E. Aruffo, S. J. Moller, S. J.-B. Bauguitte, J. D. Allan, H. Coe, and R. J. Leigh
Atmos. Chem. Phys., 13, 7321–7341, https://doi.org/10.5194/acp-13-7321-2013, https://doi.org/10.5194/acp-13-7321-2013, 2013
C. R. Flechard, R.-S. Massad, B. Loubet, E. Personne, D. Simpson, J. O. Bash, E. J. Cooter, E. Nemitz, and M. A. Sutton
Biogeosciences, 10, 5183–5225, https://doi.org/10.5194/bg-10-5183-2013, https://doi.org/10.5194/bg-10-5183-2013, 2013
P. I. Palmer, M. Parrington, J. D. Lee, A. C. Lewis, A. R. Rickard, P. F. Bernath, T. J. Duck, D. L. Waugh, D. W. Tarasick, S. Andrews, E. Aruffo, L. J. Bailey, E. Barrett, S. J.-B. Bauguitte, K. R. Curry, P. Di Carlo, L. Chisholm, L. Dan, G. Forster, J. E. Franklin, M. D. Gibson, D. Griffin, D. Helmig, J. R. Hopkins, J. T. Hopper, M. E. Jenkin, D. Kindred, J. Kliever, M. Le Breton, S. Matthiesen, M. Maurice, S. Moller, D. P. Moore, D. E. Oram, S. J. O'Shea, R. C. Owen, C. M. L. S. Pagniello, S. Pawson, C. J. Percival, J. R. Pierce, S. Punjabi, R. M. Purvis, J. J. Remedios, K. M. Rotermund, K. M. Sakamoto, A. M. da Silva, K. B. Strawbridge, K. Strong, J. Taylor, R. Trigwell, K. A. Tereszchuk, K. A. Walker, D. Weaver, C. Whaley, and J. C. Young
Atmos. Chem. Phys., 13, 6239–6261, https://doi.org/10.5194/acp-13-6239-2013, https://doi.org/10.5194/acp-13-6239-2013, 2013
M. J. Newland, C. E. Reeves, D. E. Oram, J. C. Laube, W. T. Sturges, C. Hogan, P. Begley, and P. J. Fraser
Atmos. Chem. Phys., 13, 5551–5565, https://doi.org/10.5194/acp-13-5551-2013, https://doi.org/10.5194/acp-13-5551-2013, 2013
X. Ding, X.-M. Wang, Q.-F. He, X.-X. Fu, and B. Gao
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-13-13773-2013, https://doi.org/10.5194/acpd-13-13773-2013, 2013
Revised manuscript not accepted
G. Zhang, X. Bi, L. Li, L. Y. Chan, M. Li, X. Wang, G. Sheng, J. Fu, and Z. Zhou
Atmos. Chem. Phys., 13, 4723–4735, https://doi.org/10.5194/acp-13-4723-2013, https://doi.org/10.5194/acp-13-4723-2013, 2013
Y. L. Sun, Z. F. Wang, P. Q. Fu, T. Yang, Q. Jiang, H. B. Dong, J. Li, and J. J. Jia
Atmos. Chem. Phys., 13, 4577–4592, https://doi.org/10.5194/acp-13-4577-2013, https://doi.org/10.5194/acp-13-4577-2013, 2013
P. Di Carlo, E. Aruffo, M. Busilacchio, F. Giammaria, C. Dari-Salisburgo, F. Biancofiore, G. Visconti, J. Lee, S. Moller, C. E. Reeves, S. Bauguitte, G. Forster, R. L. Jones, and B. Ouyang
Atmos. Meas. Tech., 6, 971–980, https://doi.org/10.5194/amt-6-971-2013, https://doi.org/10.5194/amt-6-971-2013, 2013
S. Metzger, W. Junkermann, M. Mauder, K. Butterbach-Bahl, B. Trancón y Widemann, F. Neidl, K. Schäfer, S. Wieneke, X. H. Zheng, H. P. Schmid, and T. Foken
Biogeosciences, 10, 2193–2217, https://doi.org/10.5194/bg-10-2193-2013, https://doi.org/10.5194/bg-10-2193-2013, 2013
D. S. Stevenson, P. J. Young, V. Naik, J.-F. Lamarque, D. T. Shindell, A. Voulgarakis, R. B. Skeie, S. B. Dalsoren, G. Myhre, T. K. Berntsen, G. A. Folberth, S. T. Rumbold, W. J. Collins, I. A. MacKenzie, R. M. Doherty, G. Zeng, T. P. C. van Noije, A. Strunk, D. Bergmann, P. Cameron-Smith, D. A. Plummer, S. A. Strode, L. Horowitz, Y. H. Lee, S. Szopa, K. Sudo, T. Nagashima, B. Josse, I. Cionni, M. Righi, V. Eyring, A. Conley, K. W. Bowman, O. Wild, and A. Archibald
Atmos. Chem. Phys., 13, 3063–3085, https://doi.org/10.5194/acp-13-3063-2013, https://doi.org/10.5194/acp-13-3063-2013, 2013
C. M. Pavuluri, K. Kawamura, N. Mihalopoulos, and P. Fu
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-13-6589-2013, https://doi.org/10.5194/acpd-13-6589-2013, 2013
Revised manuscript not accepted
A. Voulgarakis, V. Naik, J.-F. Lamarque, D. T. Shindell, P. J. Young, M. J. Prather, O. Wild, R. D. Field, D. Bergmann, P. Cameron-Smith, I. Cionni, W. J. Collins, S. B. Dalsøren, R. M. Doherty, V. Eyring, G. Faluvegi, G. A. Folberth, L. W. Horowitz, B. Josse, I. A. MacKenzie, T. Nagashima, D. A. Plummer, M. Righi, S. T. Rumbold, D. S. Stevenson, S. A. Strode, K. Sudo, S. Szopa, and G. Zeng
Atmos. Chem. Phys., 13, 2563–2587, https://doi.org/10.5194/acp-13-2563-2013, https://doi.org/10.5194/acp-13-2563-2013, 2013
Y. Wang, Q. Q. Zhang, K. He, Q. Zhang, and L. Chai
Atmos. Chem. Phys., 13, 2635–2652, https://doi.org/10.5194/acp-13-2635-2013, https://doi.org/10.5194/acp-13-2635-2013, 2013
N. A. D. Richards, S. R. Arnold, M. P. Chipperfield, G. Miles, A. Rap, R. Siddans, S. A. Monks, and M. J. Hollaway
Atmos. Chem. Phys., 13, 2331–2345, https://doi.org/10.5194/acp-13-2331-2013, https://doi.org/10.5194/acp-13-2331-2013, 2013
P. J. Young, A. T. Archibald, K. W. Bowman, J.-F. Lamarque, V. Naik, D. S. Stevenson, S. Tilmes, A. Voulgarakis, O. Wild, D. Bergmann, P. Cameron-Smith, I. Cionni, W. J. Collins, S. B. Dalsøren, R. M. Doherty, V. Eyring, G. Faluvegi, L. W. Horowitz, B. Josse, Y. H. Lee, I. A. MacKenzie, T. Nagashima, D. A. Plummer, M. Righi, S. T. Rumbold, R. B. Skeie, D. T. Shindell, S. A. Strode, K. Sudo, S. Szopa, and G. Zeng
Atmos. Chem. Phys., 13, 2063–2090, https://doi.org/10.5194/acp-13-2063-2013, https://doi.org/10.5194/acp-13-2063-2013, 2013
J. T. Walker, M. R. Jones, J. O. Bash, L. Myles, T. Meyers, D. Schwede, J. Herrick, E. Nemitz, and W. Robarge
Biogeosciences, 10, 981–998, https://doi.org/10.5194/bg-10-981-2013, https://doi.org/10.5194/bg-10-981-2013, 2013
P. Q. Fu, K. Kawamura, J. Chen, B. Charrière, and R. Sempéré
Biogeosciences, 10, 653–667, https://doi.org/10.5194/bg-10-653-2013, https://doi.org/10.5194/bg-10-653-2013, 2013
M. Crippa, P. F. DeCarlo, J. G. Slowik, C. Mohr, M. F. Heringa, R. Chirico, L. Poulain, F. Freutel, J. Sciare, J. Cozic, C. F. Di Marco, M. Elsasser, J. B. Nicolas, N. Marchand, E. Abidi, A. Wiedensohler, F. Drewnick, J. Schneider, S. Borrmann, E. Nemitz, R. Zimmermann, J.-L. Jaffrezo, A. S. H. Prévôt, and U. Baltensperger
Atmos. Chem. Phys., 13, 961–981, https://doi.org/10.5194/acp-13-961-2013, https://doi.org/10.5194/acp-13-961-2013, 2013
G. H. Wang, B. H. Zhou, C. L. Cheng, J. J. Cao, J. J. Li, J. J. Meng, J. Tao, R. J. Zhang, and P. Q. Fu
Atmos. Chem. Phys., 13, 819–835, https://doi.org/10.5194/acp-13-819-2013, https://doi.org/10.5194/acp-13-819-2013, 2013
A. C. Lewis, M. J. Evans, J. R. Hopkins, S. Punjabi, K. A. Read, R. M. Purvis, S. J. Andrews, S. J. Moller, L. J. Carpenter, J. D. Lee, A. R. Rickard, P. I. Palmer, and M. Parrington
Atmos. Chem. Phys., 13, 851–867, https://doi.org/10.5194/acp-13-851-2013, https://doi.org/10.5194/acp-13-851-2013, 2013
J.-T. Lin, Z. Liu, Q. Zhang, H. Liu, J. Mao, and G. Zhuang
Atmos. Chem. Phys., 12, 12255–12275, https://doi.org/10.5194/acp-12-12255-2012, https://doi.org/10.5194/acp-12-12255-2012, 2012
Related subject area
Subject: Gases | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Molecular and seasonal characteristics of organic vapors in urban Beijing: insights from Vocus-PTR measurements
The variations in volatile organic compounds based on the policy change for Omicron in the traffic hub of Zhengzhou
On the dynamics of ozone depletion events at Villum Research Station in the High Arctic
Measurement report: Long-term measurements of surface ozone and trends in semi-natural sub-Saharan African ecosystems
Characterization of biogenic volatile organic compounds and their oxidation products in a stressed spruce-dominated forest close to a biogas power plant
Reactive chlorine-, sulfur-, and nitrogen-containing volatile organic compounds impact atmospheric chemistry in the megacity of Delhi during both clean and extremely polluted seasons
Analysis of the day-to-day variability of ozone vertical profiles in the lower troposphere during the 2022 Paris ACROSS campaign
Ozone deposition measurements over wheat fields in the North China Plain: variability and related factors of deposition flux and velocity
Consistency evaluation of tropospheric ozone from ozonesonde and IAGOS (In-service Aircraft for a Global Observing System) observations: vertical distribution, ozonesonde types, and station–airport distance
CO2 and CO temporal variability over Mexico City from ground-based total column and surface measurements
Investigating carbonyl compounds above the Amazon rainforest using a proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS) with NO+ chemical ionization
Measurement report: In-flight and ground-based measurements of nitrogen oxide emissions from latest-generation jet engines and 100 % sustainable aviation fuel
Measurement report: Sources, sinks, and lifetime of NOx in a suburban temperate forest at night
Measurement report: Urban ammonia and amines in Houston, Texas
Biomass-burning sources control ambient particulate matter, but traffic and industrial sources control volatile organic compound (VOC) emissions and secondary-pollutant formation during extreme pollution events in Delhi
Multi-year observations of variable incomplete combustion in the New York megacity
Observations of the vertical distributions of summertime atmospheric pollutants in Nam Co: OH production and source analysis
Understanding summertime peroxyacetyl nitrate (PAN) formation and its relation to aerosol pollution: Insights from high-resolution measurements and modeling
Measurement report: Elevated atmospheric ammonia may promote particle pH and HONO formation – insights from the COVID-19 pandemic
Measurement report: Vertical and temporal variability in the near-surface ozone production rate and sensitivity in an urban area in the Pearl River Delta region, China
Elevated oxidized mercury in the free troposphere: analytical advances and application at a remote continental mountaintop site
Using observed urban NOx sinks to constrain VOC reactivity and the ozone and radical budget in the Seoul Metropolitan Area
Real-world emission characteristics of VOCs from typical cargo ships and their potential contributions to secondary organic aerosol and O3 under low-sulfur fuel policies
NO3 reactivity during a summer period in a temperate forest below and above the canopy
The role of oceanic ventilation and terrestrial outflow in atmospheric non-methane hydrocarbons over the Chinese marginal seas
Concentration and source changes of nitrous acid (HONO) during the COVID-19 lockdown in Beijing
Characteristics and sources of nonmethane volatile organic compounds (NMVOCs) and O3–NOx–NMVOC relationships in Zhengzhou, China
Seasonal Air Concentration Variability, Gas/Particle Partitioning, Precipitation Scavenging, and Air-Water Equilibrium of Organophosphate Esters in Southern Canada
Exploring the variations in ambient BTEX in urban Europe and its environmental health implications
Measurement report: Surface exchange fluxes of HONO during the growth process of paddy fields in the Huaihe River Basin, China
Cloud processing of DMS oxidation products limits SO2 and OCS production in the Eastern North Atlantic marine boundary layer
Deciphering anthropogenic and biogenic contributions to selected non-methane volatile organic compound emissions in an urban area
Emission characteristics of reactive organic gases (ROGs) from industrial volatile chemical products (VCPs) in the Pearl River Delta (PRD), China
Measurement report: Enhanced photochemical formation of formic and isocyanic acids in urban regions aloft – insights from tower-based online gradient measurements
Sources of organic gases and aerosol particles and their roles in nighttime particle growth at a rural forested site in southwest Germany
Exploring the Crucial Role of Atmospheric Carbonyl Compounds in Regional Ozone heavy Pollution: Insights from Intensive Field Observations and Observation-based modelling in the Chengdu Plain Urban Agglomeration, China
Surface snow bromide and nitrate at Eureka, Canada, in early spring and implications for polar boundary layer chemistry
Opinion: Strengthening research in the Global South – atmospheric science opportunities in South America and Africa
Shipping and algae emissions have a major impact on ambient air mixing ratios of non-methane hydrocarbons (NMHCs) and methanethiol on Utö Island in the Baltic Sea
Contribution of cooking emissions to the urban volatile organic compounds in Las Vegas, NV
Reanalysis of NOAA H2 observations: implications for the H2 budget
A large role of missing volatile organic compound reactivity from anthropogenic emissions in ozone pollution regulation
Diurnal, seasonal, and interannual variations in δ(18O) of atmospheric O2 and its application to evaluate changes in oxygen, carbon, and water cycles
Measurement report: Insights into the chemical composition and origin of molecular clusters and potential precursor molecules present in the free troposphere over the southern Indian Ocean: observations from the Maïdo Observatory (2150 m a.s.l., Réunion)
Production of oxygenated volatile organic compounds from the ozonolysis of coastal seawater
Comment on “Transport of substantial stratospheric ozone to the surface by a dying typhoon and shallow convection” by Chen et al. (2022)
Observations of cyanogen bromide (BrCN) in the global troposphere and their relation to polar surface O3 destruction
Individual coal mine methane emissions constrained by eddy covariance measurements: low bias and missing sources
Measurement report: Observations of ground-level ozone concentration gradients perpendicular to the Lake Ontario shoreline
Measurement report: The Palau Atmospheric Observatory and its ozonesonde record – continuous monitoring of tropospheric composition and dynamics in the tropical western Pacific
Zhaojin An, Rujing Yin, Xinyan Zhao, Xiaoxiao Li, Yuyang Li, Yi Yuan, Junchen Guo, Yiqi Zhao, Xue Li, Dandan Li, Yaowei Li, Dongbin Wang, Chao Yan, Kebin He, Douglas R. Worsnop, Frank N. Keutsch, and Jingkun Jiang
Atmos. Chem. Phys., 24, 13793–13810, https://doi.org/10.5194/acp-24-13793-2024, https://doi.org/10.5194/acp-24-13793-2024, 2024
Short summary
Short summary
Online Vocus-PTR measurements show the compositions and seasonal variations in organic vapors in urban Beijing. With enhanced sensitivity and mass resolution, various species at a level of sub-parts per trillion (ppt) and organics with multiple oxygens (≥ 3) were observed. The fast photooxidation process in summer leads to an increase in both concentration and proportion of organics with multiple oxygens, while, in other seasons, the variations in them could be influenced by mixed sources.
Bowen Zhang, Dong Zhang, Zhe Dong, Xinshuai Song, Ruiqin Zhang, and Xiao Li
Atmos. Chem. Phys., 24, 13587–13601, https://doi.org/10.5194/acp-24-13587-2024, https://doi.org/10.5194/acp-24-13587-2024, 2024
Short summary
Short summary
To gain insight into the impact of changes due to epidemic control policies, we undertook continuous online monitoring of volatile organic compounds (VOCs) at an urban site in Zhengzhou over a 2-month period. This study examines the characteristics of VOCs, their sources, and their temporal evolution. It also assesses the impact of the policy change on VOC pollution during the monitoring period, thus providing a basis for further research on VOC pollution and source control.
Jakob Boyd Pernov, Jens Liengaard Hjorth, Lise Lotte Sørensen, and Henrik Skov
Atmos. Chem. Phys., 24, 13603–13631, https://doi.org/10.5194/acp-24-13603-2024, https://doi.org/10.5194/acp-24-13603-2024, 2024
Short summary
Short summary
Arctic ozone depletion events (ODEs) occur every spring and have vast implications for the oxidizing capacity, radiative balance, and mercury oxidation. In this study, we analyze ozone, ODEs, and their connection to meteorological and air mass history variables through statistical analyses, back trajectories, and machine learning (ML) at Villum Research Station. ODEs are favorable under sunny, calm conditions with air masses arriving from northerly wind directions with sea ice contact.
Hagninou Elagnon Venance Donnou, Aristide Barthélémy Akpo, Money Ossohou, Claire Delon, Véronique Yoboué, Dungall Laouali, Marie Ouafo-Leumbe, Pieter Gideon Van Zyl, Ousmane Ndiaye, Eric Gardrat, Maria Dias-Alves, and Corinne Galy-Lacaux
Atmos. Chem. Phys., 24, 13151–13182, https://doi.org/10.5194/acp-24-13151-2024, https://doi.org/10.5194/acp-24-13151-2024, 2024
Short summary
Short summary
Ozone is a secondary air pollutant that is detrimental to human and plant health. A better understanding of its chemical evolution is a challenge for Africa, where it is still undersampled. Out of 14 sites examined (1995–2020), high levels of O3 are reported in southern Africa. The dominant chemical processes leading to O3 formation are identified. A decrease in O3 is observed at Katibougou (Mali) and Banizoumbou (Niger), and an increase is found at Zoétélé (Cameroon) and Skukuza (South Africa).
Junwei Song, Georgios I. Gkatzelis, Ralf Tillmann, Nicolas Brüggemann, Thomas Leisner, and Harald Saathoff
Atmos. Chem. Phys., 24, 13199–13217, https://doi.org/10.5194/acp-24-13199-2024, https://doi.org/10.5194/acp-24-13199-2024, 2024
Short summary
Short summary
Biogenic volatile organic compounds (BVOCs) and organic aerosol (OA) particles were measured online in a stressed spruce-dominated forest. OA was mainly attributed to the monoterpene oxidation products. The mixing ratios of BVOCs were higher than the values previously measured in other temperate forests. The results demonstrate that BVOCs are influenced not only by meteorology and biogenic emissions but also by local anthropogenic emissions and subsequent chemical transformation processes.
Sachin Mishra, Vinayak Sinha, Haseeb Hakkim, Arpit Awasthi, Sachin D. Ghude, Vijay Kumar Soni, Narendra Nigam, Baerbel Sinha, and Madhavan N. Rajeevan
Atmos. Chem. Phys., 24, 13129–13150, https://doi.org/10.5194/acp-24-13129-2024, https://doi.org/10.5194/acp-24-13129-2024, 2024
Short summary
Short summary
We quantified 111 gases using mass spectrometry to understand how seasonal and emission changes lead from clean air in the monsoon season to extremely polluted air in the post-monsoon season in Delhi. Averaged total mass concentrations (260 µg m-3) were > 4 times in polluted periods, driven by biomass burning emissions and reduced atmospheric ventilation. Reactive gaseous nitrogen, chlorine, and sulfur compounds hitherto unreported from such a polluted environment were discovered.
Gérard Ancellet, Camille Viatte, Anne Boynard, François Ravetta, Jacques Pelon, Cristelle Cailteau-Fischbach, Pascal Genau, Julie Capo, Axel Roy, and Philippe Nédélec
Atmos. Chem. Phys., 24, 12963–12983, https://doi.org/10.5194/acp-24-12963-2024, https://doi.org/10.5194/acp-24-12963-2024, 2024
Short summary
Short summary
Characterization of ozone pollution in urban areas benefited from a measurement campaign in summer 2022 in the Paris region. The analysis is based on 21 d of lidar and aircraft observations. The main objective is an analysis of the sensitivity of ozone pollution to the micrometeorological processes in the urban atmospheric boundary layer and the transport of regional pollution. The paper also discusses to what extent satellite observations can track observed ozone plumes.
Xiaoyi Zhang, Wanyun Xu, Weili Lin, Gen Zhang, Jinjian Geng, Li Zhou, Huarong Zhao, Sanxue Ren, Guangsheng Zhou, Jianmin Chen, and Xiaobin Xu
Atmos. Chem. Phys., 24, 12323–12340, https://doi.org/10.5194/acp-24-12323-2024, https://doi.org/10.5194/acp-24-12323-2024, 2024
Short summary
Short summary
Ozone (O3) deposition is a key process that removes surface O3, affecting air quality, ecosystems and climate change. We conducted O3 deposition measurement over a wheat canopy using a newly relaxed eddy accumulation flux system. Large variabilities in O3 deposition were detected, mainly determined by crop growth and modulated by various environmental factors. More O3 deposition observations over different surfaces are needed for exploring deposition mechanisms and model optimization.
Honglei Wang, David W. Tarasick, Jane Liu, Herman G. J. Smit, Roeland Van Malderen, Lijuan Shen, Romain Blot, and Tianliang Zhao
Atmos. Chem. Phys., 24, 11927–11942, https://doi.org/10.5194/acp-24-11927-2024, https://doi.org/10.5194/acp-24-11927-2024, 2024
Short summary
Short summary
In this study, we identify 23 suitable pairs of sites from World Ozone and Ultraviolet Radiation Data Centre (WOUDC) and In-service Aircraft for a Global Observing System (IAGOS) datasets (1995 to 2021), compare the average vertical distributions of tropospheric O3 from ozonesonde and aircraft measurements, and analyze the differences based on ozonesonde type and station–airport distance.
Noémie Taquet, Wolfgang Stremme, María Eugenia González del Castillo, Victor Almanza, Alejandro Bezanilla, Olivier Laurent, Carlos Alberti, Frank Hase, Michel Ramonet, Thomas Lauvaux, Ke Che, and Michel Grutter
Atmos. Chem. Phys., 24, 11823–11848, https://doi.org/10.5194/acp-24-11823-2024, https://doi.org/10.5194/acp-24-11823-2024, 2024
Short summary
Short summary
We characterize the variability in CO and CO2 emissions over Mexico City from long-term time-resolved Fourier transform infrared spectroscopy solar absorption and surface measurements from 2013 to 2021. Using the average intraday CO growth rate from total columns, the average CO / CO2 ratio and TROPOMI data, we estimate the interannual variability in the CO and CO2 anthropogenic emissions of Mexico City, highlighting the effect of an unprecedented drop in activity due to the COVID-19 lockdown.
Akima Ringsdorf, Achim Edtbauer, Bruna Holanda, Christopher Poehlker, Marta O. Sá, Alessandro Araújo, Jürgen Kesselmeier, Jos Lelieveld, and Jonathan Williams
Atmos. Chem. Phys., 24, 11883–11910, https://doi.org/10.5194/acp-24-11883-2024, https://doi.org/10.5194/acp-24-11883-2024, 2024
Short summary
Short summary
We show the average height distribution of separately observed aldehydes and ketones over a day and discuss their rainforest-specific sources and sinks as well as their seasonal changes above the Amazon. Ketones have much longer atmospheric lifetimes than aldehydes and thus different implications for atmospheric chemistry. However, they are commonly observed together, which we overcome by measuring with a NO+ chemical ionization mass spectrometer for the first time in the Amazon rainforest.
Theresa Harlass, Rebecca Dischl, Stefan Kaufmann, Raphael Märkl, Daniel Sauer, Monika Scheibe, Paul Stock, Tiziana Bräuer, Andreas Dörnbrack, Anke Roiger, Hans Schlager, Ulrich Schumann, Magdalena Pühl, Tobias Schripp, Tobias Grein, Linda Bondorf, Charles Renard, Maxime Gauthier, Mark Johnson, Darren Luff, Paul Madden, Peter Swann, Denise Ahrens, Reetu Sallinen, and Christiane Voigt
Atmos. Chem. Phys., 24, 11807–11822, https://doi.org/10.5194/acp-24-11807-2024, https://doi.org/10.5194/acp-24-11807-2024, 2024
Short summary
Short summary
Emissions from aircraft have a direct impact on our climate. Here, we present airborne and ground-based measurement data of nitrogen oxides that were collected in the exhaust of an Airbus aircraft. We study the impact of burning fossil and sustainable aviation fuel on nitrogen oxide emissions at different engine settings related to combustor temperature, pressure and fuel flow. Further, we compare observations with engine emission models.
Simone T. Andersen, Max R. McGillen, Chaoyang Xue, Tobias Seubert, Patrick Dewald, Gunther N. T. E. Türk, Jan Schuladen, Cyrielle Denjean, Jean-Claude Etienne, Olivier Garrouste, Marina Jamar, Sergio Harb, Manuela Cirtog, Vincent Michoud, Mathieu Cazaunau, Antonin Bergé, Christopher Cantrell, Sebastien Dusanter, Bénédicte Picquet-Varrault, Alexandre Kukui, Abdelwahid Mellouki, Lucy J. Carpenter, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 24, 11603–11618, https://doi.org/10.5194/acp-24-11603-2024, https://doi.org/10.5194/acp-24-11603-2024, 2024
Short summary
Short summary
Using measurements of various trace gases in a suburban forest near Paris in the summer of 2022, we were able to gain insight into the sources and sinks of NOx (NO+NO2) with a special focus on their nighttime chemical and physical loss processes. NO was observed as a result of nighttime soil emissions when O3 levels were strongly depleted by deposition. NO oxidation products were not observed at night, indicating that soil and/or foliar surfaces are an efficient sink of reactive N.
Lee Tiszenkel, James H. Flynn, and Shan-Hu Lee
Atmos. Chem. Phys., 24, 11351–11363, https://doi.org/10.5194/acp-24-11351-2024, https://doi.org/10.5194/acp-24-11351-2024, 2024
Short summary
Short summary
Ammonia and amines are important ingredients for aerosol formation in urban environments, but the measurements of these compounds are extremely challenging. Our observations show that urban ammonia and amines in Houston are emitted from urban sources, and diurnal variations in their concentrations are likely governed by gas-to-particle conversion and emissions.
Arpit Awasthi, Baerbel Sinha, Haseeb Hakkim, Sachin Mishra, Varkrishna Mummidivarapu, Gurmanjot Singh, Sachin D. Ghude, Vijay Kumar Soni, Narendra Nigam, Vinayak Sinha, and Madhavan N. Rajeevan
Atmos. Chem. Phys., 24, 10279–10304, https://doi.org/10.5194/acp-24-10279-2024, https://doi.org/10.5194/acp-24-10279-2024, 2024
Short summary
Short summary
We use 111 volatile organic compounds (VOCs), PM10, and PM2.5 in a positive matrix factorization (PMF) model to resolve 11 pollution sources validated with chemical fingerprints. Crop residue burning and heating account for ~ 50 % of the PM, while traffic and industrial emissions dominate the gas-phase VOC burden and formation potential of secondary organic aerosols (> 60 %). Non-tailpipe emissions from compressed-natural-gas-fuelled commercial vehicles dominate the transport sector's PM burden.
Luke D. Schiferl, Cong Cao, Bronte Dalton, Andrew Hallward-Driemeier, Ricardo Toledo-Crow, and Róisín Commane
Atmos. Chem. Phys., 24, 10129–10142, https://doi.org/10.5194/acp-24-10129-2024, https://doi.org/10.5194/acp-24-10129-2024, 2024
Short summary
Short summary
Carbon monoxide (CO) is an air pollutant and an important indicator of the incomplete combustion of fossil fuels in cities. Using 4 years of winter and spring observations in New York City, we found that both the magnitude and variability of CO from the metropolitan area are greater than expected. Transportation emissions cannot explain the missing and variable CO, which points to energy from buildings as a likely underappreciated source of urban air pollution and greenhouse gas emissions.
Chengzhi Xing, Cheng Liu, Chunxiang Ye, Jingkai Xue, Hongyu Wu, Xiangguang Ji, Jinping Ou, and Qihou Hu
Atmos. Chem. Phys., 24, 10093–10112, https://doi.org/10.5194/acp-24-10093-2024, https://doi.org/10.5194/acp-24-10093-2024, 2024
Short summary
Short summary
We identified the contributions of ozone (O3) and nitrous acid (HONO) to the production rates of hydroxide (OH) in vertical space on the Tibetan Plateau (TP). A new insight was offered: the contributions of HONO and O3 to the production rates of OH on the TP are even greater than in lower-altitudes areas. This study enriches the understanding of vertical distribution of atmospheric components and explains the strong atmospheric oxidation capacity (AOC) on the TP.
Baoye Hu, Naihua Chen, Rui Li, Mingqiang Huang, Jinsheng Chen, Youwei Hong, Lingling Xu, Xiaolong Fan, Mengren Li, Lei Tong, Qiuping Zheng, and Yuxiang Yang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2631, https://doi.org/10.5194/egusphere-2024-2631, 2024
Short summary
Short summary
Box modeling with the master chemical mechanism (MCM) was used to address the puzzle of summertime PAN formation and its association with aerosol pollution under high ozone conditions. The MCM model proves to be an ideal tool for investigating PAN photochemical formation (IOA=0.75). The model performed better during the clean period than during the haze period. Through the machine learning method of XGBoost, we found that the top three factors leading to simulation bias were NH3, NO3, and PM2.5.
Xinyuan Zhang, Lingling Wang, Nan Wang, Shuangliang Ma, Shenbo Wang, Ruiqin Zhang, Dong Zhang, Mingkai Wang, and Hongyu Zhang
Atmos. Chem. Phys., 24, 9885–9898, https://doi.org/10.5194/acp-24-9885-2024, https://doi.org/10.5194/acp-24-9885-2024, 2024
Short summary
Short summary
This study highlights the importance of the redox reaction of NO2 with SO2 based on actual atmospheric observations. The particle pH in future China is expected to rise steadily. Consequently, this reaction could become a significant source of HONO in China. Therefore, it is crucial to coordinate the control of SO2, NOx, and NH3 emissions to avoid a rapid increase in the particle pH.
Jun Zhou, Chunsheng Zhang, Aiming Liu, Bin Yuan, Yan Wang, Wenjie Wang, Jie-Ping Zhou, Yixin Hao, Xiao-Bing Li, Xianjun He, Xin Song, Yubin Chen, Suxia Yang, Shuchun Yang, Yanfeng Wu, Bin Jiang, Shan Huang, Junwen Liu, Yuwen Peng, Jipeng Qi, Minhui Deng, Bowen Zhong, Yibo Huangfu, and Min Shao
Atmos. Chem. Phys., 24, 9805–9826, https://doi.org/10.5194/acp-24-9805-2024, https://doi.org/10.5194/acp-24-9805-2024, 2024
Short summary
Short summary
In-depth understanding of the near-ground vertical variability in photochemical ozone (O3) formation is crucial for mitigating O3 pollution. Utilizing a self-built vertical observation system, a direct net photochemical O3 production rate detection system, and an observation-based model, we diagnosed the vertical distributions and formation mechanism of net photochemical O3 production rates and sensitivity in the Pearl River Delta region, one of the most O3-polluted areas in China.
Eleanor J. Derry, Tyler R. Elgiar, Taylor Y. Wilmot, Nicholas W. Hoch, Noah S. Hirshorn, Peter Weiss-Penzias, Christopher F. Lee, John C. Lin, A. Gannet Hallar, Rainer Volkamer, Seth N. Lyman, and Lynne E. Gratz
Atmos. Chem. Phys., 24, 9615–9643, https://doi.org/10.5194/acp-24-9615-2024, https://doi.org/10.5194/acp-24-9615-2024, 2024
Short summary
Short summary
Mercury (Hg) is a globally distributed neurotoxic pollutant. Atmospheric deposition is the main source of Hg in ecosystems. However, measurement biases hinder understanding of the origins and abundance of the more bioavailable oxidized form. We used an improved, calibrated measurement system to study air mass composition and transport of atmospheric Hg at a remote mountaintop site in the central US. Oxidized Hg originated upwind in the low to middle free troposphere under clean, dry conditions.
Benjamin A. Nault, Katherine R. Travis, James H. Crawford, Donald R. Blake, Pedro Campuzano-Jost, Ronald C. Cohen, Joshua P. DiGangi, Glenn S. Diskin, Samuel R. Hall, L. Gregory Huey, Jose L. Jimenez, Kyung-Eun Min, Young Ro Lee, Isobel J. Simpson, Kirk Ullmann, and Armin Wisthaler
Atmos. Chem. Phys., 24, 9573–9595, https://doi.org/10.5194/acp-24-9573-2024, https://doi.org/10.5194/acp-24-9573-2024, 2024
Short summary
Short summary
Ozone (O3) is a pollutant formed from the reactions of gases emitted from various sources. In urban areas, the density of human activities can increase the O3 formation rate (P(O3)), thus impacting air quality and health. Observations collected over Seoul, South Korea, are used to constrain P(O3). A high local P(O3) was found; however, local P(O3) was partly reduced due to compounds typically ignored. These observations also provide constraints for unmeasured compounds that will impact P(O3).
Fan Zhang, Binyu Xiao, Zeyu Liu, Yan Zhang, Chongguo Tian, Rui Li, Can Wu, Yali Lei, Si Zhang, Xinyi Wan, Yubao Chen, Yong Han, Min Cui, Cheng Huang, Hongli Wang, Yingjun Chen, and Gehui Wang
Atmos. Chem. Phys., 24, 8999–9017, https://doi.org/10.5194/acp-24-8999-2024, https://doi.org/10.5194/acp-24-8999-2024, 2024
Short summary
Short summary
Mandatory use of low-sulfur fuel due to global sulfur limit regulations means large uncertainties in volatile organic compound (VOC) emissions. On-board tests of VOCs from nine cargo ships in China were carried out. Results showed that switching from heavy-fuel oil to diesel increased emission factor VOCs by 48 % on average, enhancing O3 and the secondary organic aerosol formation potential. Thus, implementing a global ultra-low-sulfur oil policy needs to be optimized in the near future.
Patrick Dewald, Tobias Seubert, Simone T. Andersen, Gunther N. T. E. Türk, Jan Schuladen, Max R. McGillen, Cyrielle Denjean, Jean-Claude Etienne, Olivier Garrouste, Marina Jamar, Sergio Harb, Manuela Cirtog, Vincent Michoud, Mathieu Cazaunau, Antonin Bergé, Christopher Cantrell, Sebastien Dusanter, Bénédicte Picquet-Varrault, Alexandre Kukui, Chaoyang Xue, Abdelwahid Mellouki, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 24, 8983–8997, https://doi.org/10.5194/acp-24-8983-2024, https://doi.org/10.5194/acp-24-8983-2024, 2024
Short summary
Short summary
In the scope of a field campaign in a suburban forest near Paris in the summer of 2022, we measured the reactivity of the nitrate radical NO3 towards biogenic volatile organic compounds (BVOCs; e.g. monoterpenes) mainly below but also above the canopy. NO3 reactivity was the highest during nights with strong temperature inversions and decreased strongly with height. Reactions with BVOCs were the main removal process of NO3 throughout the diel cycle below the canopy.
Jian Wang, Lei Xue, Qianyao Ma, Feng Xu, Gaobin Xu, Shibo Yan, Jiawei Zhang, Jianlong Li, Honghai Zhang, Guiling Zhang, and Zhaohui Chen
Atmos. Chem. Phys., 24, 8721–8736, https://doi.org/10.5194/acp-24-8721-2024, https://doi.org/10.5194/acp-24-8721-2024, 2024
Short summary
Short summary
This study investigated the distribution and sources of non-methane hydrocarbons (NMHCs) in the lower atmosphere over the marginal seas of China. NMHCs, a subset of volatile organic compounds (VOCs), play a crucial role in atmospheric chemistry. Derived from systematic atmospheric sampling in coastal cities and marginal sea regions, this study offers valuable insights into the interaction between land and sea in shaping offshore atmospheric NMHCs.
Yusheng Zhang, Feixue Zheng, Zemin Feng, Chaofan Lian, Weigang Wang, Xiaolong Fan, Wei Ma, Zhuohui Lin, Chang Li, Gen Zhang, Chao Yan, Ying Zhang, Veli-Matti Kerminen, Federico Bianch, Tuukka Petäjä, Juha Kangasluoma, Markku Kulmala, and Yongchun Liu
Atmos. Chem. Phys., 24, 8569–8587, https://doi.org/10.5194/acp-24-8569-2024, https://doi.org/10.5194/acp-24-8569-2024, 2024
Short summary
Short summary
The nitrous acid (HONO) budget was validated during a COVID-19 lockdown event. The main conclusions are (1) HONO concentrations showed a significant decrease from 0.97 to 0.53 ppb during lockdown; (2) vehicle emissions accounted for 53 % of nighttime sources, with the heterogeneous conversion of NO2 on ground surfaces more important than aerosol; and (3) the dominant daytime source shifted from the homogenous reaction between NO and OH (51 %) to nitrate photolysis (53 %) during lockdown.
Dong Zhang, Xiao Li, Minghao Yuan, Yifei Xu, Qixiang Xu, Fangcheng Su, Shenbo Wang, and Ruiqin Zhang
Atmos. Chem. Phys., 24, 8549–8567, https://doi.org/10.5194/acp-24-8549-2024, https://doi.org/10.5194/acp-24-8549-2024, 2024
Short summary
Short summary
The increasing concentration of O3 precursors and unfavorable meteorological conditions are key factors in the formation of O3 pollution in Zhengzhou. Vehicular exhausts (28 %), solvent usage (27 %), and industrial production (22 %) are identified as the main sources of NMVOCs. Moreover, O3 formation in Zhengzhou is found to be in an anthropogenic volatile organic compound (AVOC)-limited regime. Thus, to reduce O3 formation, a minimum AVOCs / NOx reduction ratio ≥ 3 : 1 is recommended.
Yuening Li, Faqiang Zhan, Chubashini Shunthirasingham, Ying Duan Lei, Jenny Oh, Amina Ben Chaaben, Zhe Lu, Kelsey Lee, Frank A. P. C. Gobas, Hayley Hung, and Frank Wania
EGUsphere, https://doi.org/10.5194/egusphere-2024-1883, https://doi.org/10.5194/egusphere-2024-1883, 2024
Short summary
Short summary
Organophosphate esters are important man-made trace contaminants. Measuring them in the atmospheric gas phase, particles, precipitation and surface water from Canada, we explore seasonal concentration variability, gas/particle partitioning, precipitation scavenging, and air-water equilibrium. Whereas higher concentrations in summer and efficient precipitation scavenging conform with expectations, the lack of a relationship between compound volatility and gas-particle partitioning is puzzling.
Xiansheng Liu, Xun Zhang, Marvin Dufresne, Tao Wang, Lijie Wu, Rosa Lara, Roger Seco , Marta Monge, Ana Maria Yáñez-Serrano, Marie Gohy, Paul Petit, Audrey Chevalier, Marie-Pierre Vagnot, Yann Fortier, Alexia Baudic, Véronique Ghersi, Grégory Gille, Ludovic Lanzi, Valérie Gros, Leïla Simon, Heidi Hellen, Stefan Reimann, Zoé Le Bras, Michelle Jessy Müller, David Beddows, Siqi Hou, Zongbo Shi, Roy M. Harrison, William Bloss, James Dernie, Stéphane Sauvage, Philip K. Hopke, Xiaoli Duan, Taicheng An, Alastair Lewis, Jim Hopkins, Eleni Liakakou, Nikolaos Mihalopoulos, Xiaohu Zhang, Andrés Alastuey, Xavier Querol, and Thérèse Salameh
EGUsphere, https://doi.org/10.5194/egusphere-2024-2309, https://doi.org/10.5194/egusphere-2024-2309, 2024
Short summary
Short summary
This study examines BTEX (benzene, toluene, ethylbenzene, xylenes) pollution in urban areas across 7 European countries. Analyzing data from 22 monitoring sites, we found traffic and industrial activities significantly impact BTEX levels, with peaks during rush hours. Despite improvements, the risk from BTEX exposure remains moderate, especially in high-traffic and industrial zones. It highlights the need for targeted air quality management to protect public health and improve urban air quality.
Fanhao Meng, Baobin Han, Min Qin, Wu Fang, Ke Tang, Dou Shao, Zhitang Liao, Jun Duan, Yan Feng, Yong Huang, Ting Ni, and Pinhua Xie
EGUsphere, https://doi.org/10.5194/egusphere-2024-2127, https://doi.org/10.5194/egusphere-2024-2127, 2024
Short summary
Short summary
Comprehensive observations of HONO and NOx fluxes were first performed over paddy fields in the Huaihe River Basin. The consecutive peaks in HONO flux and NO flux demonstrated a potentially enhanced release of HONO and NO due to soil tillage, whereas higher WFPS (~80 %) inhibited microbial processes following irrigation. Notably, the biological processes and light-driven NO2 reactions on the surface could both be sources of HONO and influence the local HONO budget during rotary tillage.
Delaney B. Kilgour, Christopher M. Jernigan, Olga Garmash, Sneha Aggarwal, Claudia Mohr, Matt E. Salter, Joel A. Thornton, Jian Wang, Paul Zieger, and Timothy H. Bertram
EGUsphere, https://doi.org/10.5194/egusphere-2024-1975, https://doi.org/10.5194/egusphere-2024-1975, 2024
Short summary
Short summary
We report simultaneous measurements of dimethyl sulfide (DMS) and hydroperoxymethyl thioformate (HPMTF) in the Eastern North Atlantic. We use an observationally constrained box model to show cloud loss is the dominant sink of HPMTF in this region over six weeks, resulting in large reductions in DMS-derived products that contribute to aerosol formation and growth. Our findings indicate that fast cloud processing of HPMTF must be included in global models to accurately capture the sulfur cycle.
Arianna Peron, Martin Graus, Marcus Striednig, Christian Lamprecht, Georg Wohlfahrt, and Thomas Karl
Atmos. Chem. Phys., 24, 7063–7083, https://doi.org/10.5194/acp-24-7063-2024, https://doi.org/10.5194/acp-24-7063-2024, 2024
Short summary
Short summary
The anthropogenic fraction of non-methane volatile organic compound (NMVOC) emissions associated with biogenic sources (e.g., terpenes) is investigated based on eddy covariance observations. The anthropogenic fraction of terpene emissions is strongly dependent on season. When analyzing volatile chemical product (VCP) emissions in urban environments, we caution that observations from short-term campaigns might over-/underestimate their significance depending on local and seasonal circumstances.
Sihang Wang, Bin Yuan, Xianjun He, Ru Cui, Xin Song, Yubin Chen, Caihong Wu, Chaomin Wang, Yibo Huangfu, Xiao-Bing Li, Boguang Wang, and Min Shao
Atmos. Chem. Phys., 24, 7101–7121, https://doi.org/10.5194/acp-24-7101-2024, https://doi.org/10.5194/acp-24-7101-2024, 2024
Short summary
Short summary
Emissions of reactive organic gases from industrial volatile chemical product sources are measured. There are large differences among these industrial sources. We show that oxygenated species account for significant contributions to reactive organic gas emissions, especially for industrial sources utilizing water-borne chemicals.
Qing Yang, Xiao-Bing Li, Bin Yuan, Xiaoxiao Zhang, Yibo Huangfu, Lei Yang, Xianjun He, Jipeng Qi, and Min Shao
Atmos. Chem. Phys., 24, 6865–6882, https://doi.org/10.5194/acp-24-6865-2024, https://doi.org/10.5194/acp-24-6865-2024, 2024
Short summary
Short summary
Online vertical gradient measurements of formic and isocyanic acids were made based on a 320 m tower in a megacity. Vertical variations and sources of the two acids were analyzed in this study. We find that formic and isocyanic acids exhibited positive vertical gradients and were mainly contributed by photochemical formations. The formation of formic and isocyanic acids was also significantly enhanced in urban regions aloft.
Junwei Song, Harald Saathoff, Feng Jiang, Linyu Gao, Hengheng Zhang, and Thomas Leisner
Atmos. Chem. Phys., 24, 6699–6717, https://doi.org/10.5194/acp-24-6699-2024, https://doi.org/10.5194/acp-24-6699-2024, 2024
Short summary
Short summary
This study presents concurrent online measurements of organic gas and particles (VOCs and OA) at a forested site in summer. Both VOCs and OA were largely contributed by oxygenated organic compounds. Semi-volatile oxygenated OA and organic nitrate formed from monoterpenes and sesquiterpenes contributed significantly to nighttime particle growth. The results help us to understand the causes of nighttime particle growth regularly observed in summer in central European rural forested environments.
Jiemeng Bao, Xin Zhang, Zhenhai Wu, Li Zhou, Jun Qian, Qinwen Tan, Fumo Yang, Junhui Chen, Yunfeng Li, Hefan Liu, Liqun Deng, and Hong Li
EGUsphere, https://doi.org/10.5194/egusphere-2024-1204, https://doi.org/10.5194/egusphere-2024-1204, 2024
Short summary
Short summary
Our research in the Chengdu Plain Urban Agglomeration (CPUA), China, reveals significant correlations between carbonyl compounds and ozone pollution, particularly in Chengdu. Formaldehyde, acetone, and acetaldehyde are key contributors to ozone formation. Urgent collaborative actions among cities are needed to mitigate carbonyl-related ozone pollution, stressing the control of NOx and VOCs emissions. Our study offers crucial insights for crafting effective regional pollution control strategies.
Xin Yang, Kimberly Strong, Alison S. Criscitiello, Marta Santos-Garcia, Kristof Bognar, Xiaoyi Zhao, Pierre Fogal, Kaley A. Walker, Sara M. Morris, and Peter Effertz
Atmos. Chem. Phys., 24, 5863–5886, https://doi.org/10.5194/acp-24-5863-2024, https://doi.org/10.5194/acp-24-5863-2024, 2024
Short summary
Short summary
This study uses snow samples collected from a Canadian high Arctic site, Eureka, to demonstrate that surface snow in early spring is a net sink of atmospheric bromine and nitrogen. Surface snow bromide and nitrate are significantly correlated, indicating the oxidation of reactive nitrogen is accelerated by reactive bromine. In addition, we show evidence that snow photochemical release of reactive bromine is very weak, and its emission flux is much smaller than the deposition flux of bromide.
Rebecca M. Garland, Katye E. Altieri, Laura Dawidowski, Laura Gallardo, Aderiana Mbandi, Nestor Y. Rojas, and N'datchoh E. Touré
Atmos. Chem. Phys., 24, 5757–5764, https://doi.org/10.5194/acp-24-5757-2024, https://doi.org/10.5194/acp-24-5757-2024, 2024
Short summary
Short summary
This opinion piece focuses on two geographical areas in the Global South where the authors are based that are underrepresented in atmospheric science. This opinion provides context on common challenges and constraints, with suggestions on how the community can address these. The focus is on the strengths of atmospheric science research in these regions. It is these strengths, we believe, that highlight the critical role of Global South researchers in the future of atmospheric science research.
Heidi Hellén, Rostislav Kouznetsov, Kaisa Kraft, Jukka Seppälä, Mika Vestenius, Jukka-Pekka Jalkanen, Lauri Laakso, and Hannele Hakola
Atmos. Chem. Phys., 24, 4717–4731, https://doi.org/10.5194/acp-24-4717-2024, https://doi.org/10.5194/acp-24-4717-2024, 2024
Short summary
Short summary
Mixing ratios of C2-C5 NMHCs and methanethiol were measured on an island in the Baltic Sea using an in situ gas chromatograph. Shipping emissions were found to be an important source of ethene, ethyne, propene, and benzene. High summertime mixing ratios of methanethiol and dependence of mixing ratios on seawater temperature and height indicated the biogenic origin to possibly be phytoplankton or macroalgae. These emissions may have a strong impact on SO2 production and new particle formation.
Matthew M. Coggon, Chelsea E. Stockwell, Lu Xu, Jeff Peischl, Jessica B. Gilman, Aaron Lamplugh, Henry J. Bowman, Kenneth Aikin, Colin Harkins, Qindan Zhu, Rebecca H. Schwantes, Jian He, Meng Li, Karl Seltzer, Brian McDonald, and Carsten Warneke
Atmos. Chem. Phys., 24, 4289–4304, https://doi.org/10.5194/acp-24-4289-2024, https://doi.org/10.5194/acp-24-4289-2024, 2024
Short summary
Short summary
Residential and commercial cooking emits pollutants that degrade air quality. Here, ambient observations show that cooking is an important contributor to anthropogenic volatile organic compounds (VOCs) emitted in Las Vegas, NV. These emissions are not fully presented in air quality models, and more work may be needed to quantify emissions from important sources, such as commercial restaurants.
Fabien Paulot, Gabrielle Pétron, Andrew M. Crotwell, and Matteo B. Bertagni
Atmos. Chem. Phys., 24, 4217–4229, https://doi.org/10.5194/acp-24-4217-2024, https://doi.org/10.5194/acp-24-4217-2024, 2024
Short summary
Short summary
New data from the National Oceanic and Atmospheric Administration show that hydrogen (H2) concentrations increased from 2010 to 2019, which is consistent with the simulated increase in H2 photochemical production (mainly from methane). But this cannot be reconciled with the expected decrease (increase) in H2 anthropogenic emissions (soil deposition) in the same period. This shows gaps in our knowledge of the H2 biogeochemical cycle that must be resolved to quantify the impact of higher H2 usage.
Wenjie Wang, Bin Yuan, Hang Su, Yafang Cheng, Jipeng Qi, Sihang Wang, Wei Song, Xinming Wang, Chaoyang Xue, Chaoqun Ma, Fengxia Bao, Hongli Wang, Shengrong Lou, and Min Shao
Atmos. Chem. Phys., 24, 4017–4027, https://doi.org/10.5194/acp-24-4017-2024, https://doi.org/10.5194/acp-24-4017-2024, 2024
Short summary
Short summary
This study investigates the important role of unmeasured volatile organic compounds (VOCs) in ozone formation. Based on results in a megacity of China, we show that unmeasured VOCs can contribute significantly to ozone fomation and also influence the determination of ozone control strategy. Our results show that these unmeasured VOCs are mainly from human sources.
Shigeyuki Ishidoya, Satoshi Sugawara, and Atsushi Okazaki
EGUsphere, https://doi.org/10.5194/egusphere-2024-654, https://doi.org/10.5194/egusphere-2024-654, 2024
Short summary
Short summary
Diurnal, seasonal, and interannual variations of the present-day stable isotopic ratio of atmospheric O2, in other words slight variations in the Dole-Morita effect, have been detected firstly. A box model that incorporated biological and water processes associated with the Dole-Morita effect reproduced the general characteristics of the observational results. Based on the findings, we proposed some applications to evaluate oxygen, carbon, and water cycles.
Romain Salignat, Matti Rissanen, Siddharth Iyer, Jean-Luc Baray, Pierre Tulet, Jean-Marc Metzger, Jérôme Brioude, Karine Sellegri, and Clémence Rose
Atmos. Chem. Phys., 24, 3785–3812, https://doi.org/10.5194/acp-24-3785-2024, https://doi.org/10.5194/acp-24-3785-2024, 2024
Short summary
Short summary
Using mass spectrometry data collected at the Maïdo Observatory (2160 m a.s.l., Réunion), we provide the first detailed analysis of molecular cluster chemical composition specifically in the marine free troposphere. The abundance of the identified species is related both to in situ meteorological parameters and air mass history, which also provide insight into their origin. Our work makes an important contribution to documenting the chemistry and physics of the marine free troposphere.
Delaney B. Kilgour, Gordon A. Novak, Megan S. Claflin, Brian M. Lerner, and Timothy H. Bertram
Atmos. Chem. Phys., 24, 3729–3742, https://doi.org/10.5194/acp-24-3729-2024, https://doi.org/10.5194/acp-24-3729-2024, 2024
Short summary
Short summary
Laboratory experiments with seawater mimics suggest ozone deposition to the surface ocean can be a source of reactive carbon to the marine atmosphere. We conduct both field and laboratory measurements to assess abiotic VOC composition and yields from ozonolysis of real surface seawater. We show that C5–C11 aldehydes contribute to the observed VOC emission flux. We estimate that VOCs generated by the ozonolysis of surface seawater are competitive with biological VOC production and emission.
Xiangdong Zheng, Wen Yang, Yuting Sun, Chunmei Geng, Yingying Liu, and Xiaobin Xu
Atmos. Chem. Phys., 24, 3759–3768, https://doi.org/10.5194/acp-24-3759-2024, https://doi.org/10.5194/acp-24-3759-2024, 2024
Short summary
Short summary
Chen et al. (2022) attributed the nocturnal ozone enhancement (NOE) during the night of 31 July 2021 in the North China Plain (NCP) to "the direct stratospheric intrusion to reach the surface". We analyzed in situ data from the NCP. Our results do not suggest that there was a significant impact from the stratosphere on surface ozone during the NOE. We argue that the NOE was not caused by stratospheric intrusion but originated from fresh photochemical production in the lower troposphere.
James M. Roberts, Siyuan Wang, Patrick R. Veres, J. Andrew Neuman, Michael A. Robinson, Ilann Bourgeois, Jeff Peischl, Thomas B. Ryerson, Chelsea R. Thompson, Hannah M. Allen, John D. Crounse, Paul O. Wennberg, Samuel R. Hall, Kirk Ullmann, Simone Meinardi, Isobel J. Simpson, and Donald Blake
Atmos. Chem. Phys., 24, 3421–3443, https://doi.org/10.5194/acp-24-3421-2024, https://doi.org/10.5194/acp-24-3421-2024, 2024
Short summary
Short summary
We measured cyanogen bromide (BrCN) in the troposphere for the first time. BrCN is a product of the same active bromine chemistry that destroys ozone and removes mercury in polar surface environments and is a previously unrecognized sink for active Br compounds. BrCN has an apparent lifetime against heterogeneous loss in the range 1–10 d, so it serves as a cumulative marker of Br-radical chemistry. Accounting for BrCN chemistry is an important part of understanding polar Br cycling.
Kai Qin, Wei Hu, Qin He, Fan Lu, and Jason Blake Cohen
Atmos. Chem. Phys., 24, 3009–3028, https://doi.org/10.5194/acp-24-3009-2024, https://doi.org/10.5194/acp-24-3009-2024, 2024
Short summary
Short summary
We compute CH4 emissions and uncertainty on a mine-by-mine basis, including underground, overground, and abandoned mines. Mine-by-mine gas and flux data and 30 min observations from a flux tower located next to a mine shaft are integrated. The observed variability and bias correction are propagated over the emissions dataset, demonstrating that daily observations may not cover the range of variability. Comparisons show both an emissions magnitude and spatial mismatch with current inventories.
Yao Yan Huang and D. James Donaldson
Atmos. Chem. Phys., 24, 2387–2398, https://doi.org/10.5194/acp-24-2387-2024, https://doi.org/10.5194/acp-24-2387-2024, 2024
Short summary
Short summary
Ground-level ozone interacts at the lake–land boundary; this is important to our understanding and modelling of atmospheric chemistry and air pollution in the lower atmosphere. We show that a steep ozone gradient occurs year-round moving inland up to 1 km from the lake and that this gradient is influenced by seasonal factors on the local land environment, where more rural areas are more greatly affected seasonally.
Katrin Müller, Jordis S. Tradowsky, Peter von der Gathen, Christoph Ritter, Sharon Patris, Justus Notholt, and Markus Rex
Atmos. Chem. Phys., 24, 2169–2193, https://doi.org/10.5194/acp-24-2169-2024, https://doi.org/10.5194/acp-24-2169-2024, 2024
Short summary
Short summary
The Palau Atmospheric Observatory is introduced as an ideal site to detect changes in atmospheric composition and dynamics above the remote tropical western Pacific. We focus on the ozone sounding program from 2016–2021, including El Niño 2016. The year-round high convective activity is reflected in dominant low tropospheric ozone and high relative humidity. Their seasonal distributions are unique compared to other tropical sites and are modulated by the Intertropical Convergence Zone.
Cited articles
Acton, J., Hewitt, N., Huang, Z., and Wang, X.: APHH: Volatile organic compound (VOC) mixing ratios made at the IAP-Beijing site during the summer and winter campaigns, Centre for Environmental Data Analysis, available at: https://catalogue.ceda.ac.uk/uuid/de37c54e59a548ccb9f168ee724f3769, (last access: 24 Novemeber 2020), 2018a.
Acton, J., Hewitt, N., Huang, Z., and Wang, X.: APHH: Volatile organic compound (VOC) flux measurements made during the APHH-Beijing field campaigns (11 December 2016 and 5 June 2017), Centre for Environmental Data Analysis, available at: https://catalogue.ceda.ac.uk/uuid/9e11d5cb819a45068921db5ae296fb57, last access: 24 November 2020.
Acton, W. J. F., Schallhart, S., Langford, B., Valach, A., Rantala, P., Fares, S., Carriero, G., Tillmann, R., Tomlinson, S. J., Dragosits, U., Gianelle, D., Hewitt, C. N., and Nemitz, E.: Canopy-scale flux measurements and bottom-up emission estimates of volatile organic compounds from a mixed oak and hornbeam forest in northern Italy, Atmos. Chem. Phys., 16, 7149–7170, https://doi.org/10.5194/acp-16-7149-2016, 2016.
Acton, W. J. F., Jud, W., Ghirardo, A., Wohlfahrt, G., Hewitt, C. N., Taylor, J. E., and Hansel, A.: The effect of ozone fumigation on the above- and below-ground
emissions of biogenic volatile organic compounds (BVOCs) from Brassica
napus, PloS one, 13, e0208825, https://doi.org/10.1371/journal.pone.0208825, 2018b.
Amir Siddique, M., Dongyun, L., Li, P., Rasool, U., Ullah Khan, T., Javaid Aini Farooqi, T., Wang, L., Fan, B., and Rasool, M. A.: Assessment and simulation of land use and land cover change impacts on the land surface temperature of
Chaoyang District in Beijing, China, PeerJ, 8, e9115, https://doi.org/10.7717/peerj.9115, 2020.
Atkinson, R.: Atmospheric chemistry of VOCs and NOx, Atmos. Environ., 34, 2063–2101, 2000.
Atkinson, R. and Arey, J.: Atmospheric degradation of volatile organic compounds, Chem. Rev., 103, 4605–4638, 2003.
Aubinet, M., Vesala, T., and Papale, D.: Eddy covariance: A practical
guide to measurement and data analysis, Springer, Dordrecht, Heidelberg,
London, New York, 438 pp., ISBN 978-94-007-2350-4, 2012.
Barletta, B., Meinardi, S., Rowland, F. S., Chan, C.-Y., Wang, X., Zou, S., Chan, L. Y., and Blake, D. R.: Volatile organic compounds in 43 Chinese cities, Atmos. Environ., 39, 5979–5990, 2005.
Borbon, A., Fontaine, H., Veillerot, M., Locoge, N., Galloo, J. C., and Guillermo, R.: An investigation into the traffic-related fraction ofisoprene at an
urban location, Atmos. Environ., 35, 3749–3760, 2001.
Cao, H., Fu, T.-M., Zhang, L., Henze, D. K., Miller, C. C., Lerot, C., Abad, G. G., De Smedt, I., Zhang, Q., van Roozendael, M., Hendrick, F., Chance, K., Li, J., Zheng, J., and Zhao, Y.: Adjoint inversion of Chinese non-methane volatile organic compound emissions using space-based observations of formaldehyde and glyoxal, Atmos. Chem. Phys., 18, 15017–15046, https://doi.org/10.5194/acp-18-15017-2018, 2018.
Carslaw, D. C. and Ropkins, K.: openair – an R package for air quality data
analysis, Environ. Modell. Softw., vol. 27–28, 52–61, 2012.
Cheng, X., Li, H., Zhang, Y., Li, Y., Zhang, W., Wang, X., Bi, F., Zhang, H., Gao, J., Chai, F., Lun, X., Chen, Y., and Lv, J.: Atmospheric isoprene and
monoterpenes in a typical urban area of Beijing: Pollution characterization,
chemical reactivity and source identification, J. Environ. Sci., 71, 150–167, 2018a.
Cheng, X. L., Liu, X. M., Liu, Y. J., and Hu, F.: Characteristics of CO2
concentration and flux in the Beijing urban area, J. Geophys.
Res.-Atmos., 123, 1785–1801., 2018b.
de Gouw, J. A., Warneke, C., Parrish, D. D., Holloway, J. S., Trainer, M., and Fehsenfeld, F. C.: Emission sources and ocean uptake of acetonitrile (CH3CN) in the atmosphere, J. Geophys. Res., 108, 4329, https://doi.org/10.1029/2002JD002897, 2003.
Derwent, R. G., Jenkin, M. E., Saunders, S. M., and Pilling, M. J.: Photochemical
ozone creation potentials for organic compounds in northwest Europe
calculated with a master chemical mechanism, Atmos. Environ.,
32, 2429–2441, 1998.
Dinh, T.-V., Kim, S.-Y., Son, Y.-S., Choi, I.-Y., Park, S.-R., Sunwoo, Y., and Kim, J.-C.: Emission characteristics of VOCs emitted from consumer and commercial
products and their ozone formation potential, Environ. Sci. Pollut. R., 22, 9345–9355, 2015.
Dunmore, R. E., Whalley, L. K., Sherwen, T., Evans, M. J., Heard, D. E., Hopkins, J. R., Lee, J. D., Lewis, A. C., Lidster, R. T., Rickard, A. R., and Hamilton, J. F.: Atmospheric ethanol in London and the potential impacts of future fuel formulations, Faraday Discuss., 189, 105–120, 2016.
Ehn, M., Thornton, J. A., Kleist, E., Sipilä, M., Junninen, H., Pullinen, I., Springer, M., Rubach, F., Tillmann, R., Lee, B., Lopez-Hilfiker, F., Andres, S., Acir, I.-H., Rissanen, M., Jokinen, T., Schobesberger, S., Kangasluoma, J., Kontkanen, J., Nieminen, T., Kurtén, T., Nielsen, L. B., Jørgensen, S., Kjaergaard, H. G., Canagaratna, M., Maso, M. D., Berndt, T., Petäjä, T.,
Wahner, A., Kerminen, V.-M., Kulmala, M., Worsnop, D. R., Wildt, J., and Mentel, T. F.: A large source of low-volatility secondary organic aerosol, Nature, 506, 476–479, 2014.
Fehsenfeld, F., Calvert, J., Fall, R., Goldan, P., Guenther, A. B., Hewitt, C. N., Lamb, B., Liu, S., Trainer, M., Westberg, H., and Zimmerman, P.: Emissions of volatile organic compounds from vegetation and the implications for atmospheric chemistry, Global Biogeochem. Cy., 6, 389–430, 1992.
Foken, T. and Wichura, B.: Tools for quality assessment of surface- based flux, measurements, Agr. Forest Meteorol., 78, 83–105, 1996.
Gao, M., Guttikunda, S. K., Carmichael, G. R., Wang, Y., Liu, Z., Stanier, C. O.,
Saide, P. E., and Yu, M.: Health impacts and economic losses assessment of the 2013 severe haze event in Beijing area, Sci. Total Environ.,
511, 553–561, 2015.
Ghirardo, A., Xie, J., Zheng, X., Wang, Y., Grote, R., Block, K., Wildt, J., Mentel, T., Kiendler-Scharr, A., Hallquist, M., Butterbach-Bahl, K., and Schnitzler, J.-P.: Urban stress-induced biogenic VOC emissions and SOA-forming potentials in Beijing, Atmos. Chem. Phys., 16, 2901–2920, https://doi.org/10.5194/acp-16-2901-2016, 2016.
Guenther, A., Hewitt, C. N., Erickson, D., Fall, R., Geron, C., Graedel, T., Harley, P., Klinger, L., Lerdau, M., McKay, W. A., Pierce, T., Scholes, B., Steinbrecher, R., Tallamraju, R., Taylor, J., and Zimmerman, P.: A global model of natural volatile organic compound emissions, J. Geophys. Res., 100, 8873–8892, 1995.
Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., and Geron, C.: Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature), Atmos. Chem. Phys., 6, 3181–3210, https://doi.org/10.5194/acp-6-3181-2006, 2006.
Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., and Wang, X.: The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions, Geosci. Model Dev., 5, 1471–1492, https://doi.org/10.5194/gmd-5-1471-2012, 2012.
Hallquist, M., Wenger, J. C., Baltensperger, U., Rudich, Y., Simpson, D., Claeys, M., Dommen, J., Donahue, N. M., George, C., Goldstein, A. H., Hamilton, J. F., Herrmann, H., Hoffmann, T., Iinuma, Y., Jang, M., Jenkin, M. E., Jimenez, J. L., Kiendler-Scharr, A., Maenhaut, W., McFiggans, G., Mentel, Th. F., Monod, A., Prévôt, A. S. H., Seinfeld, J. H., Surratt, J. D., Szmigielski, R., and Wildt, J.: The formation, properties and impact of secondary organic aerosol: current and emerging issues, Atmos. Chem. Phys., 9, 5155–5236, https://doi.org/10.5194/acp-9-5155-2009, 2009.
Holzinger, R., Jordan, A., Hansel, A., and Lindinger, W.: Automobile emissions of acetonitrile: Assessment of its contribution to the global source, J. Atmos. Chem., 38, 187–193, 2001.
Hu, J., Chen, J., Ying, Q., and Zhang, H.: One-year simulation of ozone and particulate matter in China using WRF/CMAQ modeling system, Atmos. Chem. Phys., 16, 10333–10350, https://doi.org/10.5194/acp-16-10333-2016, 2016.
Jacob, D. J., Field, B. D., Li, Q., Blake, D. R., de Gouw, J., Warneke, C., Hansel, A., Wisthaler, A., Singh, H. B., and Guenther, A.: Global budget of methanol: Constraints from atmospheric observations, J. Geophys. Res., 110, D08303, https://doi.org/10.1029/2004JD005172, 2005.
Jaimes-Palomera, M., Retama, A., Elias-Castro, G., Neria-Hernández, A.,
Rivera-Hernández, O., and Velasco, E.: Non-methane hydrocarbons in the
atmosphere of Mexico City: Results of the 2012 ozone-season campaign,
Atmos. Environ., 132, 258–275, 2016.
Jia, Y. T., Rahn, K. A., He, K. B., Wen, T. X., and Wang, Y. S.: A novel technique for quantifying the regional component of urban aerosol solely from its sawtooth cycles, J. Geophys. Res.-Atmos., 113, D21309, https://doi.org/10.1029/2008JD010389, 2008.
Jing, B., Wu, L., Mao, H., Gong, S., He, J., Zou, C., Song, G., Li, X., and Wu, Z.: Development of a vehicle emission inventory with high temporal–spatial resolution based on NRT traffic data and its impact on air pollution in Beijing – Part 1: Development and evaluation of vehicle emission inventory, Atmos. Chem. Phys., 16, 3161–3170, https://doi.org/10.5194/acp-16-3161-2016, 2016.
Jordan, A., Haidacher, S., Hanel, G., Hartungen, E., Märk, L., Seehauser, H., Schottkowsky, R., Sulzer, P., and Märk, T. D.: A high resolution and high sensitivity proton-transfer-reaction time-of-flight mass spectrometer
(PTR-TOF-MS), Int. J. Mass Spectrom., 286, 122–128, 2009.
Kahle, D. and Wickham, H.: ggmap: Spatial Visualization with ggplot2, R J., 5, 144–161, 2013.
Karl, T. G., Spirig, C., Rinne, J., Stroud, C., Prevost, P., Greenberg, J., Fall, R., and Guenther, A.: Virtual disjunct eddy covariance measurements of organic compound fluxes from a subalpine forest using proton transfer reaction mass spectrometry, Atmos. Chem. Phys., 2, 279–291, https://doi.org/10.5194/acp-2-279-2002, 2002.
Karl, T., Jobson, T., Kuster, W. C., Williams, E., Stutz, J., Shetter, R., Hall, S. R., Goldan, P., and Fehsenfeld, F.: Use of proton-transfer-reaction mass spectrometry to characterize volatile organic compound sources at the La
Porte super site during the Texas Air Quality Study 2000, J.
Geophys. Res., 108, 4508, https://doi.org/10.1029/2002JD003333, 2003.
Karl, T., Striednig, M., Graus, M., Hammerle, A., and Wohlfahrt, G.: Urban flux measurements reveal a large pool of oxygenated volatile organic compound
emissions, P. Natl. Acad. Sci. USA, 115, 1186–1191, 2018.
Kljun, N., Calanca, P., Rotach, M. W., and Schmid, H. P.: A simple
parameterisation for flux footprint predictions, Bound.-Lay. Meteorol.,
112, 503–523, 2004.
Langford, B., Davison, B., Nemitz, E., and Hewitt, C. N.: Mixing ratios and eddy covariance flux measurements of volatile organic compounds from an urban canopy (Manchester, UK), Atmos. Chem. Phys., 9, 1971–1987, https://doi.org/10.5194/acp-9-1971-2009, 2009.
Langford, B., Misztal, P. K., Nemitz, E., Davison, B., Helfter, C., Pugh, T. A. M., MacKenzie, A. R., Lim, S. F., and Hewitt, C. N.: Fluxes and concentrations of volatile organic compounds from a South-East Asian tropical rainforest, Atmos. Chem. Phys., 10, 8391–8412, https://doi.org/10.5194/acp-10-8391-2010, 2010a.
Langford, B., Nemitz, E., House, E., Phillips, G. J., Famulari, D., Davison, B., Hopkins, J. R., Lewis, A. C., and Hewitt, C. N.: Fluxes and concentrations of volatile organic compounds above central London, UK, Atmos. Chem. Phys., 10, 627–645, https://doi.org/10.5194/acp-10-627-2010, 2010b.
Langford, B., Acton, W., Ammann, C., Valach, A., and Nemitz, E.: Eddy-covariance data with low signal-to-noise ratio: time-lag determination, uncertainties and limit of detection, Atmos. Meas. Tech., 8, 4197–4213, https://doi.org/10.5194/amt-8-4197-2015, 2015.
Langford, B., Cash, J., Acton, W. J. F., Valach, A. C., Hewitt, C. N., Fares, S., Goded, I., Gruening, C., House, E., Kalogridis, A.-C., Gros, V., Schafers, R., Thomas, R., Broadmeadow, M., and Nemitz, E.: Isoprene emission potentials from European oak forests derived from canopy flux measurements: an assessment of uncertainties and inter-algorithm variability, Biogeosciences, 14, 5571–5594, https://doi.org/10.5194/bg-14-5571-2017, 2017.
Lee, A., Goldstein, A. H., Keywood, M. D., Gao, S., Varutbangkul, V., Bahreini, R., Ng, N. L., Flagan, R. C., and Seinfeld, J. H.: Gas-phase products and secondary
aerosol yields from the ozonolysis of ten different terpenes, J. Geophys. Res.-Atmos., 111, D07302, https://doi.org/10.1029/2005JD006437, 2006.
Lenschow, D. H., Mann, J., and Kristensen, L.: How long is long enough when
measuring fluxes and other turbulence statistics, J. Atmos. Ocean. Tech., 11, 661–673, 1994.
Li, K., Li, J., Wang, W., Tong, S., Liggio, J., and Ge, M.: Evaluating the
effectiveness of joint emission control policies on the reduction of ambient
VOCs: Implications from observation during the 2014 APEC summit in suburban
Beijing, Atmos. Environ., 164, 117–127, 2017.
Li, K., Li, J., Tong, S., Wang, W., Huang, R.-J., and Ge, M.: Characteristics of wintertime VOCs in suburban and urban Beijing: concentrations, emission ratios, and festival effects, Atmos. Chem. Phys., 19, 8021–8036, https://doi.org/10.5194/acp-19-8021-2019, 2019.
Li, M., Zhang, Q., Streets, D. G., He, K. B., Cheng, Y. F., Emmons, L. K., Huo, H., Kang, S. C., Lu, Z., Shao, M., Su, H., Yu, X., and Zhang, Y.: Mapping Asian anthropogenic emissions of non-methane volatile organic compounds to multiple chemical mechanisms, Atmos. Chem. Phys., 14, 5617–5638, https://doi.org/10.5194/acp-14-5617-2014, 2014.
Li, M., Zhang, Q., Kurokawa, J.-I., Woo, J.-H., He, K., Lu, Z., Ohara, T., Song, Y., Streets, D. G., Carmichael, G. R., Cheng, Y., Hong, C., Huo, H., Jiang, X., Kang, S., Liu, F., Su, H., and Zheng, B.: MIX: a mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP, Atmos. Chem. Phys., 17, 935–963, https://doi.org/10.5194/acp-17-935-2017, 2017a.
Li, M., Liu, H., Geng, G., Hong, C., Liu, F., Song, Y., Tong, D., Zheng, B., Cui, H., Man, H., Zhang, Q., and He, K.: Anthropogenic emission inventories in China: a review, Natl. Sci. Rev., 4, 834–866, 2017b.
Li, Q., Liu, H. Z., Hu, F, Hong, Z. X., and Li, A. G.: The determination of the aero dynamical parameters over urban land surface (in Chinese), Clim. Environ. Res., 8, 443–450, 2003.
Liu, Z., Feng, J. W., Järvi, L., and Vesala, T.: Four-year (2006–2009) eddy covariance measurements of CO2 flux over an urban area in Beijing, Atmos. Chem. Phys., 12, 7881–7892, https://doi.org/10.5194/acp-12-7881-2012, 2012a.
Liu, Z., Wang, Y., Vrekoussis, M., Richter, A., Wittrock, F., Burrows, J. P., Shao, M., Chang, C.-C., Liu, S.-C., Wang, H., and Chen, C.: Exploring the missing
source of glyoxal (CHOCHO) over China, Geophys. Res. Lett., 39,
L10812, https://doi.org/10.1029/2012GL051645, 2012b.
Liu, Y., Yuan, B., Li, X., Shao, M., Lu, S., Li, Y., Chang, C.-C., Wang, Z., Hu, W., Huang, X., He, L., Zeng, L., Hu, M., and Zhu, T.: Impact of pollution controls in Beijing on atmospheric oxygenated volatile organic compounds (OVOCs) during the 2008 Olympic Games: observation and modeling implications, Atmos. Chem. Phys., 15, 3045–3062, https://doi.org/10.5194/acp-15-3045-2015, 2015.
Mauder, M., Foken, T., and Cuxart, J.: Surface-Energy-Balance Closure over Land: a review, Bound.-Lay. Meteorol., 177, 395–426, https://doi.org/10.1007/s10546-020-00529-6, 2020.
Metzger, S., Junkermann, W., Mauder, M., Beyrich, F., Butterbach-Bahl, K., Schmid, H. P., and Foken, T.: Eddy-covariance flux measurements with a weight-shift microlight aircraft, Atmos. Meas. Tech., 5, 1699–1717, https://doi.org/10.5194/amt-5-1699-2012, 2012.
Metzger, S., Durden, D., Sturtevant, C., Luo, H., Pingintha-Durden, N., Sachs, T., Serafimovich, A., Hartmann, J., Li, J., Xu, K., and Desai, A. R.: eddy4R 0.2.0: a DevOps model for community-extensible processing and analysis of eddy-covariance data based on R, Git, Docker, and HDF5, Geosci. Model Dev., 10, 3189–3206, https://doi.org/10.5194/gmd-10-3189-2017, 2017.
Müller, M., Graus, M., Ruuskanen, T. M., Schnitzhofer, R., Bamberger, I., Kaser, L., Titzmann, T., Hörtnagl, L., Wohlfahrt, G., Karl, T., and Hansel, A.: First eddy covariance flux measurements by PTR-TOF, Atmos. Meas. Tech., 3, 387–395, https://doi.org/10.5194/amt-3-387-2010, 2010.
Nematollahi, N., Kolev, S. D., and Steinemann, A.: Volatile chemical emissions
from 134 common consumer products, Air Qual. Atmos. Hlth., 12, 1259–1265,
https://doi.org/10.1007/s11869-019-00754-0, 2019.
Nordbo, A. and Katul, G.: A Wavelet-Based Correction Method for
Eddy-Covariance High-Frequency Losses in Scalar Concentration Measurements,
Bound.-Lay. Meteorol., 146, 81–102, 2013.
Parrish, D. D., Kuster, W. C., Shao, M., Yokouchi, Y., Kondo, Y., Goldan, P. D., de Gouw, J. A., Koike, M., and Shirai, T.: Comparison of air pollutant emissions
among mega-cities, Atmos. Environ., 43, 6435–6441, 2009.
Pattey, E., Desjardins, R. L., Boudreau, F., and Rochette, P.: Impact of density
fluctuations on flux measurements of trace gases: Implications for the
relaxed eddy accumulation technique, Bound.-Lay. Meteorol., 59,
195–203, 1992.
Qi, J., Zheng, B., Li, M., Yu, F., Chen, C., Liu, F., Zhou, X., Yuan, J., Zhang, Q., and He, K.: A high-resolution air pollutants emission inventory in 2013 for the Beijing-Tianjin-Hebei region, China, Atmos. Environ., 170,
156–168, 2017.
R Core Team: R: A language and environment for statistical computing, R
Foundation for Statistical Computing, Vienna, Austria, available at: https://www.R-project.org/, (last access: 25 November 2020), 2019.
Rinsky, R. A., Smith, A. B., Hornung, R., Filloon, T. G., Young, R. J., Okun, A. H., and Landrigan, P. J.: Benzene and Leukemia – An epidemiologic risk
assessment, New Engl. J. Med., 316, 1044–1050, 1987.
Sahu, L. K. and Saxena, P.: High time and mass resolved PTR-TOF-MS measurements
of VOCs at an urban site of India during winter: Role of anthropogenic,
biomass burning, biogenic and photochemical sources, Atmos. Res., 165, 84–94, 2015.
Sarkar, C., Sinha, V., Kumar, V., Rupakheti, M., Panday, A., Mahata, K. S., Rupakheti, D., Kathayat, B., and Lawrence, M. G.: Overview of VOC emissions and chemistry from PTR-TOF-MS measurements during the SusKat-ABC campaign: high acetaldehyde, isoprene and isocyanic acid in wintertime air of the Kathmandu Valley, Atmos. Chem. Phys., 16, 3979–4003, https://doi.org/10.5194/acp-16-3979-2016, 2016.
Shao, M., Lu, S., Liu, Y., Xie, X., Chang, C., Huang, S., and Chen, Z.: Volatile organic compounds measured in summer in Beijing and their role in
ground-level ozone formation, J. Geophys. Res.-Atmos.,
114, 1–13, 2009.
Sheng, J., Zhao, D., Ding, D., Li, X., Huang, M., Gao, Y., Quan, J., and Zhang, Q.:
Characterizing the level, photochemical reactivity, emission, and source
contribution of the volatile organic compounds based on PTR-TOF-MS during
winter haze period in Beijing, China, Atmos. Res., 212, 54–63,
2018.
Shi, Z., Vu, T., Kotthaus, S., Harrison, R. M., Grimmond, S., Yue, S., Zhu, T., Lee, J., Han, Y., Demuzere, M., Dunmore, R. E., Ren, L., Liu, D., Wang, Y., Wild, O., Allan, J., Acton, W. J., Barlow, J., Barratt, B., Beddows, D., Bloss, W. J., Calzolai, G., Carruthers, D., Carslaw, D. C., Chan, Q., Chatzidiakou, L., Chen, Y., Crilley, L., Coe, H., Dai, T., Doherty, R., Duan, F., Fu, P., Ge, B., Ge, M., Guan, D., Hamilton, J. F., He, K., Heal, M., Heard, D., Hewitt, C. N., Hollaway, M., Hu, M., Ji, D., Jiang, X., Jones, R., Kalberer, M., Kelly, F. J., Kramer, L., Langford, B., Lin, C., Lewis, A. C., Li, J., Li, W., Liu, H., Liu, J., Loh, M., Lu, K., Lucarelli, F., Mann, G., McFiggans, G., Miller, M. R., Mills, G., Monk, P., Nemitz, E., O'Connor, F., Ouyang, B., Palmer, P. I., Percival, C., Popoola, O., Reeves, C., Rickard, A. R., Shao, L., Shi, G., Spracklen, D., Stevenson, D., Sun, Y., Sun, Z., Tao, S., Tong, S., Wang, Q., Wang, W., Wang, X., Wang, X., Wang, Z., Wei, L., Whalley, L., Wu, X., Wu, Z., Xie, P., Yang, F., Zhang, Q., Zhang, Y., Zhang, Y., and Zheng, M.: Introduction to the special issue “In-depth study of air pollution sources and processes within Beijing and its surrounding region (APHH-Beijing)”, Atmos. Chem. Phys., 19, 7519–7546, https://doi.org/10.5194/acp-19-7519-2019, 2019.
Slater, E. J., Whalley, L. K., Woodward-Massey, R., Ye, C., Lee, J. D., Squires, F., Hopkins, J. R., Dunmore, R. E., Shaw, M., Hamilton, J. F., Lewis, A. C., Crilley, L. R., Kramer, L., Bloss, W., Vu, T., Sun, Y., Xu, W., Yue, S., Ren, L., Acton, W. J. F., Hewitt, C. N., Wang, X., Fu, P., and Heard, D. E.: Elevated levels of OH observed in haze events during wintertime in central Beijing, Atmos. Chem. Phys., 20, 14847–14871, https://doi.org/10.5194/acp-20-14847-2020, 2020.
Song, T. and Wang, Y.: Carbon dioxide fluxes from an urban area in Beijing,
Atmos. Res., 106, 139–149, 2012.
Song, T., Sun, Y., and Wang, Y.: Multilevel measurements of fluxes and
turbulence over an urban landscape in Beijing, Tellus B: Chem.
Phys. Meteorol., 65, 20421, https://doi.org/10.3402/tellusb.v65i0.20421, 2013.
Spirig, C., Neftel, A., Ammann, C., Dommen, J., Grabmer, W., Thielmann, A., Schaub, A., Beauchamp, J., Wisthaler, A., and Hansel, A.: Eddy covariance flux measurements of biogenic VOCs during ECHO 2003 using proton transfer reaction mass spectrometry, Atmos. Chem. Phys., 5, 465–481, https://doi.org/10.5194/acp-5-465-2005, 2005.
Squires, F. A., Nemitz, E., Langford, B., Wild, O., Drysdale, W. S., Acton, W. J. F., Fu, P., Grimmond, C. S. B., Hamilton, J. F., Hewitt, C. N., Hollaway, M., Kotthaus, S., Lee, J., Metzger, S., Pingintha-Durden, N., Shaw, M., Vaughan, A. R., Wang, X., Wu, R., Zhang, Q., and Zhang, Y.: Measurements of traffic-dominated pollutant emissions in a Chinese megacity, Atmos. Chem. Phys., 20, 8737–8761, https://doi.org/10.5194/acp-20-8737-2020, 2020.
Steinemann, A.: Volatile emissions from common consumer products, Air Qual. Atmos. Hlth., 8, 273–281, 2015.
Stewart, I. D. and Oke, T. R.: Local climate zones for urban temperature
studies, B. Am. Meteorol. Soc., 93, 1879–1900, 2012.
Taipale, R., Ruuskanen, T. M., Rinne, J., Kajos, M. K., Hakola, H., Pohja, T., and Kulmala, M.: Technical Note: Quantitative long-term measurements of VOC concentrations by PTR-MS – measurement, calibration, and volume mixing ratio calculation methods, Atmos. Chem. Phys., 8, 6681–6698, https://doi.org/10.5194/acp-8-6681-2008, 2008.
Taipale, R., Ruuskanen, T. M., and Rinne, J.: Lag time determination in DEC measurements with PTR-MS, Atmos. Meas. Tech., 3, 853–862, https://doi.org/10.5194/amt-3-853-2010, 2010.
Tani, A., Hayward, S., Hansel, A., and Hewitt, C. N.: Effect of water vapour
pressure on monoterpene measurements using proton transfer reaction-mass
spectrometry (PTR-MS), Int. J. Mass Spectrom., 239,
161–169, 2004.
Valach, A. C., Langford, B., Nemitz, E., MacKenzie, A. R., and Hewitt, C. N.: Seasonal and diurnal trends in concentrations and fluxes of volatile organic compounds in central London, Atmos. Chem. Phys., 15, 7777–7796, https://doi.org/10.5194/acp-15-7777-2015, 2015.
Vaughan, A. R., Lee, J. D., Shaw, M. D., Misztal, P. K., Metzger, S., Vieno, M., Davison, B., Karl, T. G., Carpenter, L. J., Lewis, A. C., Purvis, R. M., Goldstein, A. H., and Hewitt, C. N.: VOC emission rates over London and South East England
obtained by airborne eddy covariance, Faraday Discuss., 200, 599–620,
2017.
Velasco, E., Lamb, B., Pressley, S., Allwine, E., Westberg, H., Jobson, B. T., Alexander, M., Prazeller, P., Molina, L., and Molina, M.: Flux measurements of volatile organic compounds from an urban landscape, Geophys. Res. Lett., 32, L20802, https://doi.org/10.1029/2005GL023356, 2005.
Velasco, E., Lamb, B., Westberg, H., Allwine, E., Sosa, G., Arriaga-Colina, J. L., Jobson, B. T., Alexander, M. L., Prazeller, P., Knighton, W. B., Rogers, T. M., Grutter, M., Herndon, S. C., Kolb, C. E., Zavala, M., de Foy, B., Volkamer, R., Molina, L. T., and Molina, M. J.: Distribution, magnitudes, reactivities, ratios and diurnal patterns of volatile organic compounds in the Valley of Mexico during the MCMA 2002 & 2003 field campaigns, Atmos. Chem. Phys., 7, 329–353, https://doi.org/10.5194/acp-7-329-2007, 2007.
Velasco, E., Pressley, S., Grivicke, R., Allwine, E., Coons, T., Foster, W., Jobson, B. T., Westberg, H., Ramos, R., Hernández, F., Molina, L. T., and Lamb, B.: Eddy covariance flux measurements of pollutant gases in urban Mexico City, Atmos. Chem. Phys., 9, 7325–7342, https://doi.org/10.5194/acp-9-7325-2009, 2009.
von Schneidemesser, E., Monks, P. S., and Plass-Duelmer, C.: Global comparison of VOC and CO observations in urban areas, Atmos. Environ., 44, 5053–5064, 2010.
Wang, M., Shao, M., Chen, W., Lu, S., Liu, Y., Yuan, B., Zhang, Q., Zhang, Q., Chang, C.-C., Wang, B., Zeng, L., Hu, M., Yang, Y., and Li, Y.: Trends of non-methane hydrocarbons (NMHC) emissions in Beijing during 2002–2013, Atmos. Chem. Phys., 15, 1489–1502, https://doi.org/10.5194/acp-15-1489-2015, 2015.
Webb, E. K., Pearman, G. I., and Leuning, R.: Correction of flux measurements
for density effects due to heat and water vapour transfer, Q. J. Roy. Meteor. Soc., 106, 85–100, 1980.
Wehner, B., Birmili, W., Ditas, F., Wu, Z., Hu, M., Liu, X., Mao, J., Sugimoto, N., and Wiedensohler, A.: Relationships between submicrometer particulate air pollution and air mass history in Beijing, China, 2004–2006, Atmos. Chem. Phys., 8, 6155–6168, https://doi.org/10.5194/acp-8-6155-2008, 2008.
Whalley, L. K., Slater, E. J., Woodward-Massey, R., Ye, C., Lee, J. D., Squires, F., Hopkins, J. R., Dunmore, R. E., Shaw, M., Hamilton, J. F., Lewis, A. C., Mehra, A., Worrall, S. D., Bacak, A., Bannan, T. J., Coe, H., Ouyang, B., Jones, R. L., Crilley, L. R., Kramer, L. J., Bloss, W. J., Vu, T., Kotthaus, S., Grimmond, S., Sun, Y., Xu, W., Yue, S., Ren, L., Acton, W. J. F., Hewitt, C. N., Wang, X., Fu, P., and Heard, D. E.: Evaluating the sensitivity of radical chemistry and ozone formation to ambient VOCs and NOx in Beijing, Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-785, in review, 2020.
Yang, J., McBride, J., Zhou, J., and Sun, Z.: The urban forest in Beijing and its role in air pollution reduction, Urban For. Urban Gree., 3,
65–78, 2005.
Yang, Z., Wang, H., Shao, Z., and Muncrief, R.: Review of Beijing's Comprehensive Motor Vehicle Emission Control Programs, International Council on Clean Transportation Europe, Berlin, Germany, available at: https://theicct.org/publications/review-beijings-comprehensive-motor-vehicle-emission-control-programs, (last access: 24 November 2020), 2015.
Yao, N., Konijnendijk van den Bosch, C. C., Yang, J., Devisscher, T., Wirtz, Z., Jia, L., Duan, J., and Ma, L.: Beijing's 50 million new urban trees: Strategic governance for large-scale urban afforestation, Urban For. Urban Gree., 44, 126392, https://doi.org/10.1016/j.ufug.2019.126392, 2019.
Yuan, B., Shao, M., de Gouw, J., Parrish, D. D., Lu, S., Wang, M., Zeng, L., Zhang, Q., Song, Y., Zhang, J., and Hu, M.: Volatile organic compounds (VOCs) in urban
air: How chemistry affects the interpretation of positive matrix
factorization (PMF) analysis, J. Geophys. Res.-Atmos.,
117, 1–17, 2012.
Zhang, H. N., Zhang, Y. L., Huang, Z. H., Wang, Z. Y., Acton, W., Nemitz, E.,
Langford, B., Mullinger, N., Davison, B., Shi, Z. B., Liu, D., Yang, W. Q.,
Zeng, J. Q., Wu, Z. F., Fu, P. Q., Zhang, Q., and Wang, X. M.: Vertical profiles of BVOCs observed by proton transfer reaction-time of flight-mass spectrometry at the 325 m IAP tower in Beijing, J. Environ. Sci., 95, 33–42, 2020.
Zhang, L., Wang, T., Lv, M., and Zhang, Q.: On the severe haze in Beijing during
January 2013: Unraveling the effects of meteorological anomalies with
WRF-Chem, Atmos. Environ., 104, 11–21, 2015.
Zhao, Y., Zhou, Y. D., Qiu, L. P., and Zhang, J.: Quantifying the uncertainties of
China's emission inventory for industrial sources: From national to
provincial and city scales, Atmos. Environ., 165, 207–221, 2017.
Zheng, B., Zhang, Q., Tong, D., Chen, C., Hong, C., Li, M., Geng, G., Lei, Y., Huo, H., and He, K.: Resolution dependence of uncertainties in gridded emission inventories: a case study in Hebei, China, Atmos. Chem. Phys., 17, 921–933, https://doi.org/10.5194/acp-17-921-2017, 2017.
Zheng, B., Tong, D., Li, M., Liu, F., Hong, C., Geng, G., Li, H., Li, X., Peng, L., Qi, J., Yan, L., Zhang, Y., Zhao, H., Zheng, Y., He, K., and Zhang, Q.: Trends in China's anthropogenic emissions since 2010 as the consequence of clean air actions, Atmos. Chem. Phys., 18, 14095–14111, https://doi.org/10.5194/acp-18-14095-2018, 2018.
Short summary
Air quality in Beijing is of concern to both policy makers and the general public. In order to address concerns about air quality it is vital that the sources of atmospheric pollutants are understood. This work presents the first top-down measurement of volatile organic compound (VOC) emissions in Beijing. These measurements are used to evaluate the emissions inventory and assess the impact of VOC emission from the city centre on atmospheric chemistry.
Air quality in Beijing is of concern to both policy makers and the general public. In order to...
Altmetrics
Final-revised paper
Preprint