Supplement of Atmos. Chem. Phys., 20, 15101–15125, 2020 https://doi.org/10.5194/acp-20-15101-2020-supplement © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License.

Supplement of

Surface-atmosphere fluxes of volatile organic compounds in Beijing

W. Joe F. Acton et al.

Correspondence to: W. Joe F. Acton (w.j.f.acton@bham.ac.uk)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

Table 1: PTR-ToF-MS Sensitivity

Compound	Average sensitivity (ncps/ppb) winter campaign	Average sensitivity (ncps/ppb) summer campaign
methanol	8.48	6.41
acetonitrile	18.69	19.01
ethanol	0.83	1.57
1,3-butadiene	9.98	9.86
acetone	21.67	24.78
isoprene	10.21	10.15
butenone	20.37	19.58
butan-2-one	20.85	22.97
benzene	14.99	15.35
toluene	15.83	17.10
m-xylene	18.01	19.91
1,2,4-trimethylbenzene	17.56	18.79

Table 2: Mass/charge ratio and likely chemical composition of the 64 masses showing a flux with a median relative random error of less than 150% in the summer campaign.

m/z [amu]	Chemical formula	m/z [amu]	Chemical formula
31.018	$(CH_2O)H^+$	87.052	$(C_4H_6O_2)H^+$
33.033	$(CH_4O)H^+$	87.074	$(C_5H_{10}O)H^+$
40.974	Unassigned	89.048	$(C_4H_8S)H^+$
41.039	$(C_3H_5)H^+$	92.953	Unassigned
42.034	$(C_2H_3N)H^+$	93.071	$(C_7H_8)H^+$
43.018	$(C_2H_2O)H^+$	95.037	$(C_5H_4NO)H^+$
43.054	$(C_3H_6)H^+$	96.979	Unassigned
45.033	$(C_2H_4O)H^+$	97.097	$(C_7H_{12})H^+$
46.030	$(CH_3NO)H^+$	99.073	$(C_6H_{10}O)H^+$
47.032	$(CH2O2)H^{+}/(C_2H_6O)H^{+}$	100.998	Unassigned
51.041	Unassigned	101.029	$(C_4H_4O_3)H^+$
55.053	$(C_4H_6)H^+$	101.071	$(C_5H_8O_2)H^+$
57.044	$(C_3H_4O)H^+$	101.109	$(C_6H_{12}O)H^+$
57.081	$(C_4H_8)H^+$	105.071	$(C_8H_8)H^+$
59.064	$(C_3H_6O)H^+$	107.081	$(C_8H_{10})H^+$
61.030	$(C_2H_4O_2)H^+$	107.949	Unassigned
63.022	$(C_2H_6S)H^+$	111.111	$(C_8H_{15})H^+$
67.066	$(C_5H_6)H^+$	119.083	$(C_9H_{10})H^+$
69.078	$(C_5H_8)H^+$	120.942	Unassigned
71.058	$(C_4H_6O)H^+$	121.090	$(C_9H_{12})H^+$
73.062	$(C_4H_8O)H^+$	123.110	$(C_9H_{14})H^+$
75.050	$(C_3H_6O_2)H^+$	129.071	$(C_{10}H_8)H^+$
78.991	Unassigned	129.111	$(C_7H_{14}NO)H^+$
79.061	$(C_6H_6)H^+$	135.110	$(C_{10}H_{14})H^{+}$
80.974	Unassigned	137.014	$(C_8H_5Cl)H^+$
80.999	Unassigned	137.057	$(C_8H_8O_2)H^+$
81.073	$(C_6H_8)H^+$	137.134	$(C_{10}H_{16})H^{+}$
82.989	Unassigned	146.974	Unassigned
83.087	$(C_6H_{10})H^+$	147.109	$(C_{11}H_{14})H^+$
84.950	Unassigned	148.984	Unassigned
85.068	$(C_5H_8O)H^+$	149.075	$(C_7H_{13}ClO)H^+$
87.029	$(C_4H_6S)H^+$	180.942	$(C_6H_3Cl_3)H^+$