the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
New particle formation and its effect on cloud condensation nuclei abundance in the summer Arctic: a case study in the Fram Strait and Barents Sea
Simonas Kecorius
Teresa Vogl
Pauli Paasonen
Janne Lampilahti
Daniel Rothenberg
Heike Wex
Sebastian Zeppenfeld
Manuela van Pinxteren
Markus Hartmann
Silvia Henning
Xianda Gong
Andre Welti
Markku Kulmala
Frank Stratmann
Hartmut Herrmann
Alfred Wiedensohler
Related authors
We present a novel version of an aerosol number size distribution instrument, showcasing its capability to measure particle number concentration and particle number size distribution between 1 and 12 nm. Our results show that the instrument agrees well with existing instrumentation and allows for both the accurate measurement of the smallest particles and overlap with more conventional aerosol number size distribution instruments.
real-world laboratoryconditions was conducted. We found that measured black carbon (eBC) and particulate matter (PM) in rural shallow terrain depressions with residential wood burning could be much greater than predicted by models. The exceeding levels are a cause for concern since similar conditions can be expected in numerous hilly and mountainous regions across Europe, where approximately 20 % of the total population lives.
hotspotsof interaction. Code and data are open access.
Related subject area
Clouds over the Southern Ocean are crucial to Earth's energy balance, but understanding the factors that control them is complex. Our research examines how weather patterns affect tiny particles called cloud condensation nuclei (CCN), which influence cloud properties. Using data from Kennaook / Cape Grim, we found that winter air from Antarctica brings cleaner conditions with lower CCN, while summer patterns from Australia transport more particles. Precipitation also helps reduce CCN in winter.