Articles | Volume 17, issue 16
https://doi.org/10.5194/acp-17-9917-2017
https://doi.org/10.5194/acp-17-9917-2017
Research article
 | 
23 Aug 2017
Research article |  | 23 Aug 2017

Modeling the inorganic bromine partitioning in the tropical tropopause layer over the eastern and western Pacific Ocean

Maria A. Navarro, Alfonso Saiz-Lopez, Carlos A. Cuevas, Rafael P. Fernandez, Elliot Atlas, Xavier Rodriguez-Lloveras, Douglas Kinnison, Jean-Francois Lamarque, Simone Tilmes, Troy Thornberry, Andrew Rollins, James W. Elkins, Eric J. Hintsa, and Fred L. Moore

Related authors

Transport of short-lived halocarbons to the stratosphere over the Pacific Ocean
Michal T. Filus, Elliot L. Atlas, Maria A. Navarro, Elena Meneguz, David Thomson, Matthew J. Ashfold, Lucy J. Carpenter, Stephen J. Andrews, and Neil R. P. Harris
Atmos. Chem. Phys., 20, 1163–1181, https://doi.org/10.5194/acp-20-1163-2020,https://doi.org/10.5194/acp-20-1163-2020, 2020
Short summary
Probing the subtropical lowermost stratosphere and the tropical upper troposphere and tropopause layer for inorganic bromine
Bodo Werner, Jochen Stutz, Max Spolaor, Lisa Scalone, Rasmus Raecke, James Festa, Santo Fedele Colosimo, Ross Cheung, Catalina Tsai, Ryan Hossaini, Martyn P. Chipperfield, Giorgio S. Taverna, Wuhu Feng, James W. Elkins, David W. Fahey, Ru-Shan Gao, Erik J. Hintsa, Troy D. Thornberry, Free Lee Moore, Maria A. Navarro, Elliot Atlas, Bruce C. Daube, Jasna Pittman, Steve Wofsy, and Klaus Pfeilsticker
Atmos. Chem. Phys., 17, 1161–1186, https://doi.org/10.5194/acp-17-1161-2017,https://doi.org/10.5194/acp-17-1161-2017, 2017
Short summary
A comparison of very short lived halocarbon (VSLS) and DMS aircraft measurements in the tropical west Pacific from CAST, ATTREX and CONTRAST
Stephen J. Andrews, Lucy J. Carpenter, Eric C. Apel, Elliot Atlas, Valeria Donets, James R. Hopkins, Rebecca S. Hornbrook, Alastair C. Lewis, Richard T. Lidster, Richard Lueb, Jamie Minaeian, Maria Navarro, Shalini Punjabi, Daniel Riemer, and Sue Schauffler
Atmos. Meas. Tech., 9, 5213–5225, https://doi.org/10.5194/amt-9-5213-2016,https://doi.org/10.5194/amt-9-5213-2016, 2016
Short summary
A multi-model intercomparison of halogenated very short-lived substances (TransCom-VSLS): linking oceanic emissions and tropospheric transport for a reconciled estimate of the stratospheric source gas injection of bromine
R. Hossaini, P. K. Patra, A. A. Leeson, G. Krysztofiak, N. L. Abraham, S. J. Andrews, A. T. Archibald, J. Aschmann, E. L. Atlas, D. A. Belikov, H. Bönisch, L. J. Carpenter, S. Dhomse, M. Dorf, A. Engel, W. Feng, S. Fuhlbrügge, P. T. Griffiths, N. R. P. Harris, R. Hommel, T. Keber, K. Krüger, S. T. Lennartz, S. Maksyutov, H. Mantle, G. P. Mills, B. Miller, S. A. Montzka, F. Moore, M. A. Navarro, D. E. Oram, K. Pfeilsticker, J. A. Pyle, B. Quack, A. D. Robinson, E. Saikawa, A. Saiz-Lopez, S. Sala, B.-M. Sinnhuber, S. Taguchi, S. Tegtmeier, R. T. Lidster, C. Wilson, and F. Ziska
Atmos. Chem. Phys., 16, 9163–9187, https://doi.org/10.5194/acp-16-9163-2016,https://doi.org/10.5194/acp-16-9163-2016, 2016
The contribution of oceanic methyl iodide to stratospheric iodine
S. Tegtmeier, K. Krüger, B. Quack, E. Atlas, D. R. Blake, H. Boenisch, A. Engel, H. Hepach, R. Hossaini, M. A. Navarro, S. Raimund, S. Sala, Q. Shi, and F. Ziska
Atmos. Chem. Phys., 13, 11869–11886, https://doi.org/10.5194/acp-13-11869-2013,https://doi.org/10.5194/acp-13-11869-2013, 2013

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Impacts of wildfire smoke aerosols on near-surface ozone photochemistry
Jiaqi Shen, Ronald C. Cohen, Glenn M. Wolfe, and Xiaomeng Jin
Atmos. Chem. Phys., 25, 8701–8718, https://doi.org/10.5194/acp-25-8701-2025,https://doi.org/10.5194/acp-25-8701-2025, 2025
Short summary
Natural surface emissions dominate anthropogenic emissions contributions to total gaseous mercury at Canadian rural sites
Irene Cheng, Amanda Cole, Leiming Zhang, and Alexandra Steffen
Atmos. Chem. Phys., 25, 8591–8611, https://doi.org/10.5194/acp-25-8591-2025,https://doi.org/10.5194/acp-25-8591-2025, 2025
Short summary
Modelling Arctic lower-tropospheric ozone: processes controlling seasonal variations
Wanmin Gong, Stephen R. Beagley, Kenjiro Toyota, Henrik Skov, Jesper Heile Christensen, Alex Lupu, Diane Pendlebury, Junhua Zhang, Ulas Im, Yugo Kanaya, Alfonso Saiz-Lopez, Roberto Sommariva, Peter Effertz, John W. Halfacre, Nis Jepsen, Rigel Kivi, Theodore K. Koenig, Katrin Müller, Claus Nordstrøm, Irina Petropavlovskikh, Paul B. Shepson, William R. Simpson, Sverre Solberg, Ralf M. Staebler, David W. Tarasick, Roeland Van Malderen, and Mika Vestenius
Atmos. Chem. Phys., 25, 8355–8405, https://doi.org/10.5194/acp-25-8355-2025,https://doi.org/10.5194/acp-25-8355-2025, 2025
Short summary
Influence of nitrogen oxides and volatile organic compounds emission changes on tropospheric ozone variability, trends and radiative effect
Suvarna Fadnavis, Yasin Elshorbany, Jerald Ziemke, Brice Barret, Alexandru Rap, P. R. Satheesh Chandran, Richard J. Pope, Vijay Sagar, Domenico Taraborrelli, Eric Le Flochmoen, Juan Cuesta, Catherine Wespes, Folkert Boersma, Isolde Glissenaar, Isabelle De Smedt, Michel Van Roozendael, Hervé Petetin, and Isidora Anglou
Atmos. Chem. Phys., 25, 8229–8254, https://doi.org/10.5194/acp-25-8229-2025,https://doi.org/10.5194/acp-25-8229-2025, 2025
Short summary
Tropospheric ozone trends and attributions over East and Southeast Asia in 1995–2019: an integrated assessment using statistical methods, machine learning models, and multiple chemical transport models
Xiao Lu, Yiming Liu, Jiayin Su, Xiang Weng, Tabish Ansari, Yuqiang Zhang, Guowen He, Yuqi Zhu, Haolin Wang, Ganquan Zeng, Jingyu Li, Cheng He, Shuai Li, Teerachai Amnuaylojaroen, Tim Butler, Qi Fan, Shaojia Fan, Grant L. Forster, Meng Gao, Jianlin Hu, Yugo Kanaya, Mohd Talib Latif, Keding Lu, Philippe Nédélec, Peer Nowack, Bastien Sauvage, Xiaobin Xu, Lin Zhang, Ke Li, Ja-Ho Koo, and Tatsuya Nagashima
Atmos. Chem. Phys., 25, 7991–8028, https://doi.org/10.5194/acp-25-7991-2025,https://doi.org/10.5194/acp-25-7991-2025, 2025
Short summary

Cited articles

Aschmann, J., Sinnhuber, B.-M., Chipperfield, M. P., and Hossaini, R.: Impact of deep convection and dehydration on bromine loading in the upper troposphere and lower stratosphere, Atmos. Chem. Phys., 11, 2671–2687, https://doi.org/10.5194/acp-11-2671-2011, 2011.
Bauer, R., Rozanov, A., McLinden, C. A., Gordley, L. L., Lotz, W., Russell III, J. M., Walker, K. A., Zawodny, J. M., Ladstätter-Weißenmayer, A., Bovensmann, H., and Burrows, J. P.: Validation of SCIAMACHY limb NO2 profiles using solar occultation measurements, Atmos. Meas. Tech., 5, 1059–1084, https://doi.org/10.5194/amt-5-1059-2012, 2012.
Blake, N. J., Blake, D. R., Chen, T. Y., Collins, J. E., Sachse, G. W., Anderson, B. E., and Rowland, F. S.: Distribution and seasonality of selected hydrocarbons and halocarbons over the western Pacific basin during PEM-West A and PEM-West B, J. Geophys. Res.-Atmos., 102, 28315–28331, 1997.
Blake, N. J., Blake, D. R., Wingenter, O. W., Sive, B. C., McKenzie, L. M., Lopez, J. P., Simpson, I. J., Fuelberg, H. E., Sachse, G. W., and Anderson, B. E.: Influence of southern hemispheric biomass burning on midtropospheric distributions of nonmethane hydrocarbons and selected halocarbons over the remote South Pacific, J. Geophys. Res.-Atmos., 104, 16213–16232, 1999.
Blake, N. J., Blake, D. R., Simpson, I. J., Lopez, J. P., Johnston, N. A., Swanson, A. L., Katzenstein, A. S., Meinardi, S., Sive, B. C., and Colman, J. J.: Large-scale latitudinal and vertical distributions of NMHCs and selected halocarbons in the troposphere over the Pacific Ocean during the March–April 1999 Pacific Exploratory Mission (PEM-Tropics B), J. Geophys. Res.-Atmos., 106, 32627–32644, 2001.
Download
Short summary
Inorganic bromine (Bry) plays an important role in ozone layer depletion. Based on aircraft observations of organic bromine species and chemistry simulations, we model the Bry abundances over the Pacific tropical tropopause. Our results show BrO and Br as the dominant species during daytime hours, and BrCl and BrONO2 as the nighttime dominant species over the western and eastern Pacific, respectively. The difference in the partitioning is due to changes in the abundance of O3, NO2, and Cly.
Share
Altmetrics
Final-revised paper
Preprint