Brown-Steiner, B., Hess, P., and Lin, M.: On the capabilities and limitations
of GCCM simulations of summertime regional air quality: A diagnostic analysis
of ozone and temperature simulations in the US using CESM CAM-Chem,
Atmos. Environ., 101, 134–148,
https://doi.org/10.1016/j.atmosenv.2014.11.001, 2015. a, b, c
Collins, M., Knutti, R., Arblaster, J., Dufresne, J.-L., Fichefet, T.,
Friedlingstein, P., Gao, X., Gutowski, W., Johns, T., Krinner, G., Shongwe,
M., Tebaldi, C., Weaver, A., and Wehner, M.: Long-term Climate Change:
Projections, Commitments and Irreversibility, Cambridge University Press, Cambridge, United Kingdom and New York, NY,
USA, book section 12, 1029–1136, https://doi.org/10.1017/CBO9781107415324.024, 2013. a
Dear, K., Ranmuthugala, G., Kjellström, T., Skinner, C., and Hanigan, I.:
Effects of Temperature and Ozone on Daily Mortality During the August 2003
Heat Wave in France, Arch. Environ. Occup. H., 60,
205–212, https://doi.org/10.3200/AEOH.60.4.205-212, 2005. a
Deser, C., Knutti, R., Solomon, S., and Phillips, A. S.: Communication of the
role of natural variability in future North American climate, Nat. Clim.
Change, 2, 775–779, https://doi.org/10.1038/nclimate1562, 2012. a
Einmahl, J. H., Piterbarg, V. I., and de Haan, L.: Nonparametric estimation
of the spectral measure of an extreme value distribution, Ann.
Stat., 29, 1401–1423, 2001. a
Eyring, V., Arblaster, J. M., Cionni, I., Sedláček, J., Perlwitz, J.,
Young, P. J., Bekki, S., Bergmann, D., Cameron-Smith, P., Collins, W. J.,
Faluvegi,
G., Gottschaldt, K.-D., Horowitz, L. W., Kinnison, D. E., Lamarque, J.-F.,
Marsh, D. R., Saint-Martin, D., Shindell, D. T., Sudo, K., Szopa, S., and
Watanabe, S.: Long-term ozone changes and associated climate impacts in CMIP5
simulations, J. Geophys. Res.-Atmos., 118, 5029–5060,
https://doi.org/10.1002/jgrd.50316, 2013a. a
Eyring, V., Lamarque, J.-F., Hess, P., Arfeuille, F., Bowman, K.,
Chipperfield, M., Duncan, B., Fiore, A., Gettelman, A., Giorgetta, M.,
Granier, C., Hegglin, M., Kinnison, D., Kunze, M., Langematz, U., Luo, B.,
Martin, R., Matthes, K., Newman, P., Peter, T., Peter, T., Robock, A.,
Ryerson, T., Saiz-Lopez, A., Salawitch, R., Schultz, M., Shepherd, T.,
Shindell, D.,
Staehelin, J., Tegtmeier, S., Thomason, L., Tilmes, S., Vernier, J.-P.,
Waugh, D., and Young, P.: Overview of IGAC/SPARC Chemistry-Climate Model
Initiative (CCMI) Community Simulations in Support of Upcoming Ozone and
Climate Assessments, SPARC Newsletter no. 40, WMO-WRCP,
Geneva, Switzerland, 48–66, 2013b. a
Granier, C., Bessagnet, B., Bond, T., D'Angiola, A., Denier Van Der Gon, H.,
Frost, G. J., Heil, A., Kaiser, J. W., Kinne, S., Klimont, Z., Kloster, S.,
Lamarque, J.-F., Liousse, C., Masui, T., Meleux, F., Mieville, A., Ohara, T.,
Raut, J.-C., Riahi, K., Schultz, M. G., Smith, S. J., Thompson, A.,
Van Aardenne, J., Van Der Werf, G. R., and Van Vuuren, D. P.: Evolution of
anthropogenic and biomass burning emissions of air pollutants at global and
regional scales during the 1980–2010 period, Climatic Change, 109, 163–190,
https://doi.org/10.1007/s10584-011-0154-1,
2011. a
Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T.,
Emmons, L. K., and Wang, X.: The Model of Emissions of Gases and Aerosols
from Nature version 2.1 (MEGAN2.1): an extended and updated framework for
modeling biogenic emissions, Geosci. Model Dev., 5, 1471–1492,
https://doi.org/10.5194/gmd-5-1471-2012, 2012. a
Huybers, P., McKinnon, K. A., Rhines, A., and Tingley, M.: U.S. Daily
Temperatures: The Meaning of Extremes in the Context of Nonnormality, J. Climate, 27, 7368–7384, https://doi.org/10.1175/JCLI-D-14-00216.1, 2014. a, b
Jacob, D. and Winner, D.: Effect of climate change on air quality, Atmos.
Environ., 43, 51–63, https://doi.org/10.1016/j.atmosenv.2008.09.051, 2009. a
Lamarque, J.-F., Emmons, L. K., Hess, P. G., Kinnison, D. E., Tilmes, S.,
Vitt, F., Heald, C. L., Holland, E. A., Lauritzen, P. H., Neu, J., Orlando,
J. J., Rasch, P. J., and Tyndall, G. K.: CAM-chem: description and evaluation
of interactive atmospheric chemistry in the Community Earth System Model,
Geosci. Model Dev., 5, 369–411, https://doi.org/10.5194/gmd-5-369-2012,
2012. a, b
McKinnon, K. A., Rhines, A., Tingley, M. P., and Huybers, P.: The changing
shape of Northern Hemisphere summer temperature distributions, J.
Geophys. Res.-Atmos., 121, 8849–8868,
https://doi.org/10.1002/2016JD025292, 2016JD025292, 2016. a, b
Meehl, G. A. and Tebaldi, C.: More Intense, More Frequent, and Longer Lasting
Heat Waves in the 21st Century, Science, 305, 994–997,
https://doi.org/10.1126/science.1098704, 2004. a
Meehl, G. A., Tebaldi, C., Tilmes, S., Lamarque, J.-F., Bates, S.,
Pendergrass,
A., and Lombardozzi, D.: Future heat waves and surface ozone, Environ.
Res. Lett. 13, 064004, https://doi.org/10.1088/1748-9326/aabcdc, 2018. a
Morgenstern, O., Hegglin, M. I., Rozanov, E., O'Connor, F. M., Abraham, N.
L., Akiyoshi, H., Archibald, A. T., Bekki, S., Butchart, N., Chipperfield, M.
P., Deushi, M., Dhomse, S. S., Garcia, R. R., Hardiman, S. C., Horowitz, L.
W., Jöckel, P., Josse, B., Kinnison, D., Lin, M., Mancini, E., Manyin, M.
E., Marchand, M., Marécal, V., Michou, M., Oman, L. D., Pitari, G.,
Plummer, D. A., Revell, L. E., Saint-Martin, D., Schofield, R., Stenke, A.,
Stone, K., Sudo, K., Tanaka, T. Y., Tilmes, S., Yamashita, Y., Yoshida, K.,
and Zeng, G.: Review of the global models used within phase 1 of the
Chemistry–Climate Model Initiative (CCMI), Geosci. Model Dev., 10, 639–671,
https://doi.org/10.5194/gmd-10-639-2017, 2017. a
Nguyen, T. and Samorodnitsky, G.: Multivariate tail estimation with
application
to analysis of CoVar, ASTIN Bulletin, 43, 245–270, 2013. a
Phalitnonkiat, P., Sun, W., Grigoriu, M. D., Hess, P., and Samorodnitsky, G.:
Extreme ozone events: Tail behavior of the surface ozone distribution over
the U.S., Atmos. Environ., 128, 134–146,
https://doi.org/10.1016/j.atmosenv.2015.12.047,
2016. a, b, c, d
Porter, W. C., Heald, C. L., Cooley, D., and Russell, B.: Investigating the
observed sensitivities of air-quality extremes to meteorological drivers via
quantile regression, Atmos. Chem. Phys., 15, 10349–10366,
https://doi.org/10.5194/acp-15-10349-2015, 2015. a
Pusede, S. E., Steiner, A. L., and Cohen, R. C.: Temperature and Recent
Trends
in the Chemistry of Continental Surface Ozone, Chem. Rev., 115,
3898–3918, https://doi.org/10.1021/cr5006815, 2015. a, b, c
Ren, C., Williams, G., Morawska, L., Mengersen, K., and Tong, S.: Ozone
modifies associations between temperature and cardiovascular mortality:
analysis of the NMMAPS data, Occup. Environ. Med., 65,
255–260, 2008. a
Resnick, S.: Heavy-Tail Phenomena: Probabilistic and Statistical Modeling,
Springer, New York, 2007. a
Rieder, H., Fiore, A., Horowitz, L., and Naik, V.: Projecting policy-relevant
metrics for high summertime ozone pollution events over the eastern United
States due to climate and emission changes during the 21st century, J.
Geophys. Res.-Atmos., 120, 784–800,
https://doi.org/10.1002/2014JD022303,
2015. a, b, c
Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Bacmeister, J.,
Liu,
E., Bosilovich, M. G., Schubert, S. D., Takacs, L., Kim, G.-K., Bloom, S.,
Chen, J., Collins, D., Conaty, A., da Silva, A., Gu, W., Joiner, J., Koster,
R. D., Lucchesi, R., Molod, A., Owens, T., Pawson, S., Pegion, P., Redder,
C. R., Reichle, R., Robertson, F. R., Ruddick, A. G., Sienkiewicz, M., and
Woollen, J.: MERRA: NASA's Modern-Era Retrospective Analysis for Research and
Applications, J. Climate, 24, 3624–3648,
https://doi.org/10.1175/JCLI-D-11-00015.1, 2011. a
Schnell, J. L. and Prather, M. J.: Co-occurrence of extremes in surface
ozone,
particulate matter, and temperature over eastern North America, P.
Natl. Acad. Sci. USA, 114, 2854–2859,
https://doi.org/10.1073/pnas.1614453114, 2017. a, b, c, d, e, f
Seneviratne, S. I., Nicholls, N., Easterling, D., Goodess, C. M., Kanae, S.,
Kossin, J., Luo, Y., Marengo, J., McInnes, K., Rahimi, M., Reichstein, M.,
Sorteberg, A., Vera, C., Zhang, X., Rusticucci, M., Semenov, V., Alexander,
L. V., Allen, S., Benito, G., Cavazos, T., Clague, J., Conway, D.,
Della-Marta, P. M., Gerber, M., Gong, S., Goswami, B. N., Hemer, M., Huggel,
C., van den Hurk, B., Kharin, V. V., Kitoh, A., Tank, A. M. K., Li, G.,
Mason, S., McGuire, W., van Oldenborgh, G. J., Orlowsky, B., Smith, S.,
Thiaw, W., Velegrakis, A., Yiou, P., Zhang, T., Zhou, T., and Zwiers, F. W.:
Changes in Climate Extremes and their Impacts on the Natural Physical
Environment, in: Managing the Risks of Extreme Events and Disasters to
Advance Climate Change Adaptation: Special Report of the Intergovernmental
Panel on Climate Change, edited by: Field, C. B., Barros, V., Stocker, T. F.,
and Dahe, Q., Cambridge University Press, Cambridge, 109–230,
https://doi.org/10.1017/CBO9781139177245.006, 2012. a
Shen, L., Mickley, L. J., and Gilleland, E.: Impact of increasing heat waves
on
U.S. ozone episodes in the 2050s: Results from a multimodel analysis using
extreme value theory, Geophys. Res. Lett., 43, 4017–4025,
https://doi.org/10.1002/2016GL068432, 2016. a, b, c, d, e, f, g
Steiner, A. L., Davis, A. J., Sillman, S., Owen, R. C., Michalak, A. M., and
Fiore, A. M.: Observed suppression of ozone formation at extremely high
temperatures due to chemical and biophysical feedbacks, P.
Natl. Acad. Sci. USA, 107,
19685–19690, https://doi.org/10.1073/pnas.1008336107, 2010. a, b, c, d
Sun, W., Hess, P., and Liu, C.: The impact of meteorological persistence on
the
distribution and extremes of ozone, Geophys. Res. Lett., 44,
1545–1553, https://doi.org/10.1002/2016GL071731, 2016GL071731, 2017. a, b, c, d, e, f
Tilmes, S., Lamarque, J.-F., Emmons, L. K., Kinnison, D. E., Marsh, D.,
Garcia, R. R., Smith, A. K., Neely, R. R., Conley, A., Vitt, F., Val Martin,
M., Tanimoto, H., Simpson, I., Blake, D. R., and Blake, N.: Representation of
the Community Earth System Model (CESM1) CAM4-chem within the
Chemistry-Climate Model Initiative (CCMI), Geosci. Model Dev., 9, 1853–1890,
https://doi.org/10.5194/gmd-9-1853-2016, 2016. a, b
Titchner, H. A. and Rayner, N. A.: The Met Office Hadley Centre sea ice and
sea
surface temperature data set, version 2: 1. Sea ice concentrations, J.
Geophys. Res.-Atmos., 119, 2864–2889,
https://doi.org/10.1002/2013JD020316,
2014. a
Weaver, C. P., Cooter, E., Gilliam, R., Gilliland, A., Grambsch, A., Grano,
D.,
Hemming, B., Hunt, S. W., Nolte, C., Winner, D. A., Liang, X.-Z., Zhu, J.,
Caughey, M., Kunkel, K., Lin, J.-T., Tao, Z., Williams, A., Wuebbles, D. J.,
Adams, P. J., Dawson, J. P., Amar, P., He, S., Avise, J., Chen, J., Cohen,
R. C., Goldstein, A. H., Harley, R. A., Steiner, A. L., Tonse, S., Guenther,
A., Lamarque, J.-F., Wiedinmyer, C., Gustafson, W. I., Leung, L. R., Hogrefe,
C., Huang, H.-C., Jacob, D. J., Mickley, L. J., Wu, S., Kinney, P. L., Lamb,
B., Larkin, N. K., McKenzie, D., Liao, K.-J., Manomaiphiboon, K., Russell,
A. G., Tagaris, E., Lynn, B. H., Mass, C., Salathé, E., O'Neill, S. M.,
Pandis, S. N., Racherla, P. N., Rosenzweig, C., and Woo, J.-H.: A Preliminary
Synthesis of Modeled Climate Change Impacts on U.S. Regional Ozone
Concentrations, B. Am. Meteorol. Soc., 90,
1843–1863, https://doi.org/10.1175/2009BAMS2568.1, 2009. a, b
Wilson, A., Rappold, A. G., Neas, L. M., and Reich, B. J.: Modeling the
effect
of temperature on ozone-related mortality, Ann. Appl. Stat.,
8, 1728–1749, https://doi.org/10.1214/14-AOAS754, 2014. a
Wu, S., Mickley, L., Jacob, D., Rind, D., and Streets, D.: Effects of
2000–2050
changes in climate and emissions on global tropospheric ozone and the
policy-relevant background surface ozone in the United States, J.
Geophy. Res.-Atmos., 113, d18312, https://doi.org/10.1029/2007JD009639,
2008.
a, b
Zhang, H., Wang, Y., Park, T.-W., and Deng, Y.: Quantifying the relationship
between extreme air pollution events and extreme weather events, Atmos.
Res., 188, 64–79,
https://doi.org/10.1016/j.atmosres.2016.11.010, 2017. a, b, c, d, e, f
Zhu, J. and Liang, X.-Z.: Impacts of the Bermuda High on Regional Climate and
Ozone over the United States, J. Climate, 26, 1018–1032,
https://doi.org/10.1175/JCLI-D-12-00168.1, 2013. a, b, c