Articles | Volume 21, issue 23
https://doi.org/10.5194/acp-21-17291-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-17291-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Overview: Fusion of radar polarimetry and numerical atmospheric modelling towards an improved understanding of cloud and precipitation processes
Silke Trömel
CORRESPONDING AUTHOR
Institute for Geosciences, Department of Meteorology, University of
Bonn, Bonn, 53121, Germany
Laboratory for Clouds and Precipitation Exploration, Geoverbund ABC/J,
Bonn, 53121, Germany
Clemens Simmer
Institute for Geosciences, Department of Meteorology, University of
Bonn, Bonn, 53121, Germany
Ulrich Blahak
Deutscher Wetterdienst (DWD), Offenbach, 63067, Germany
Armin Blanke
Institute for Geosciences, Department of Meteorology, University of
Bonn, Bonn, 53121, Germany
Sabine Doktorowski
Institute for Meteorology, Universität Leipzig, Leipzig, 04103,
Germany
Florian Ewald
Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen, 82234,
Germany
Michael Frech
Deutscher Wetterdienst (DWD), Observatorium Hohenpeißenberg,
Hohenpeißenberg, 82383, Germany
Mathias Gergely
Deutscher Wetterdienst (DWD), Observatorium Hohenpeißenberg,
Hohenpeißenberg, 82383, Germany
Martin Hagen
Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen, 82234,
Germany
Tijana Janjic
Meteorological Institute Munich, Ludwig-Maximilians-Universität
München, Munich, 80333, Germany
Heike Kalesse-Los
Deutscher Wetterdienst (DWD), Observatorium Hohenpeißenberg,
Hohenpeißenberg, 82383, Germany
Stefan Kneifel
Institute of Geophysics and Meteorology, University of Cologne, Cologne, 50969,
Germany
Christoph Knote
Meteorological Institute Munich, Ludwig-Maximilians-Universität
München, Munich, 80333, Germany
Faculty of Medicine, University of Augsburg, Augsburg, 86159 Germany
Jana Mendrok
Deutscher Wetterdienst (DWD), Offenbach, 63067, Germany
Manuel Moser
Institute for Physics of the Atmosphere, University Mainz, Mainz,
55099, Germany
Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen, 82234,
Germany
Gregor Köcher
Meteorological Institute Munich, Ludwig-Maximilians-Universität
München, Munich, 80333, Germany
Kai Mühlbauer
Institute for Geosciences, Department of Meteorology, University of
Bonn, Bonn, 53121, Germany
Alexander Myagkov
Radiometer Physics GmbH, Meckenheim, 53340, Germany
Velibor Pejcic
Institute for Geosciences, Department of Meteorology, University of
Bonn, Bonn, 53121, Germany
Patric Seifert
Leibniz Institute for Tropospheric Research (TROPOS), 04318 Leipzig,
Germany
Prabhakar Shrestha
Institute for Geosciences, Department of Meteorology, University of
Bonn, Bonn, 53121, Germany
Audrey Teisseire
Leibniz Institute for Tropospheric Research (TROPOS), 04318 Leipzig,
Germany
Leonie von Terzi
Institute of Geophysics and Meteorology, University of Cologne, Cologne, 50969,
Germany
Eleni Tetoni
Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen, 82234,
Germany
Teresa Vogl
Institute for Meteorology, Universität Leipzig, Leipzig, 04103,
Germany
Christiane Voigt
Institute for Physics of the Atmosphere, University Mainz, Mainz,
55099, Germany
Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen, 82234,
Germany
Yuefei Zeng
Meteorological Institute Munich, Ludwig-Maximilians-Universität
München, Munich, 80333, Germany
Tobias Zinner
Meteorological Institute Munich, Ludwig-Maximilians-Universität
München, Munich, 80333, Germany
Johannes Quaas
Institute for Meteorology, Universität Leipzig, Leipzig, 04103,
Germany
Related authors
Armin Blanke, Mathias Gergely, and Silke Trömel
EGUsphere, https://doi.org/10.5194/egusphere-2024-3336, https://doi.org/10.5194/egusphere-2024-3336, 2024
Short summary
Short summary
The area-wide radar-based distinction between riming and aggregation is crucial for model microphysics and data assimilation. This study introduces a discrimination algorithm based on polarimetric radar networks only. Exploiting the unique opportunity to link fall velocities from Doppler spectra to polarimetric variables in an operational setting enables us to set up and evaluate a well-performing machine learning algorithm.
Lucas Reimann, Clemens Simmer, and Silke Trömel
Atmos. Chem. Phys., 23, 14219–14237, https://doi.org/10.5194/acp-23-14219-2023, https://doi.org/10.5194/acp-23-14219-2023, 2023
Short summary
Short summary
Polarimetric radar observations were assimilated for the first time in a convective-scale numerical weather prediction system in Germany and their impact on short-term precipitation forecasts was evaluated. The assimilation was performed using microphysical retrievals of liquid and ice water content and yielded slightly improved deterministic 9 h precipitation forecasts for three intense summer precipitation cases with respect to the assimilation of radar reflectivity alone.
Armin Blanke, Andrew J. Heymsfield, Manuel Moser, and Silke Trömel
Atmos. Meas. Tech., 16, 2089–2106, https://doi.org/10.5194/amt-16-2089-2023, https://doi.org/10.5194/amt-16-2089-2023, 2023
Short summary
Short summary
We present an evaluation of current retrieval techniques in the ice phase applied to polarimetric radar measurements with collocated in situ observations of aircraft conducted over the Olympic Mountains, Washington State, during winter 2015. Radar estimates of ice properties agreed most with aircraft observations in regions with pronounced radar signatures, but uncertainties were identified that indicate issues of some retrievals, particularly in warmer temperature regimes.
Mohamed Saadi, Carina Furusho-Percot, Alexandre Belleflamme, Ju-Yu Chen, Silke Trömel, and Stefan Kollet
Nat. Hazards Earth Syst. Sci., 23, 159–177, https://doi.org/10.5194/nhess-23-159-2023, https://doi.org/10.5194/nhess-23-159-2023, 2023
Short summary
Short summary
On 14 July 2021, heavy rainfall fell over central Europe, causing considerable damage and human fatalities. We analyzed how accurate our estimates of rainfall and peak flow were for these flooding events in western Germany. We found that the rainfall estimates from radar measurements were improved by including polarimetric variables and their vertical gradients. Peak flow estimates were highly uncertain due to uncertainties in hydrological model parameters and rainfall measurements.
Prabhakar Shrestha, Silke Trömel, Raquel Evaristo, and Clemens Simmer
Atmos. Chem. Phys., 22, 7593–7618, https://doi.org/10.5194/acp-22-7593-2022, https://doi.org/10.5194/acp-22-7593-2022, 2022
Short summary
Short summary
The study makes use of ensemble numerical simulations with forward operator to evaluate the simulated cloud and precipitation processes with radar observations. While comparing model data with radar has its own challenges due to errors in the forward operator and processed radar measurements, the model was generally found to underestimate the high reflectivity, width/magnitude (value) of ZDR columns and high precipitation.
Prabhakar Shrestha, Jana Mendrok, Velibor Pejcic, Silke Trömel, Ulrich Blahak, and Jacob T. Carlin
Geosci. Model Dev., 15, 291–313, https://doi.org/10.5194/gmd-15-291-2022, https://doi.org/10.5194/gmd-15-291-2022, 2022
Short summary
Short summary
The article focuses on the exploitation of radar polarimetry for model evaluation of stratiform precipitation. The model exhibited a low bias in simulated polarimetric moments at lower levels above the melting layer where snow was found to dominate. This necessitates further research into the missing microphysical processes in these lower levels (e.g. fragmentation due to ice–ice collisions) and use of more reliable snow-scattering models in the forward operator to draw valid conclusions.
José Dias Neto, Stefan Kneifel, Davide Ori, Silke Trömel, Jan Handwerker, Birger Bohn, Normen Hermes, Kai Mühlbauer, Martin Lenefer, and Clemens Simmer
Earth Syst. Sci. Data, 11, 845–863, https://doi.org/10.5194/essd-11-845-2019, https://doi.org/10.5194/essd-11-845-2019, 2019
Short summary
Short summary
This study describes a 2-month dataset of ground-based, vertically pointing triple-frequency cloud radar observations recorded during the winter season 2015/2016 in Jülich, Germany. Intensive quality control has been applied to the unique long-term dataset, which allows the multifrequency signatures of ice and snow particles to be statistically analyzed for the first time. The analysis includes, for example, aggregation and its dependence on cloud temperature, riming, and onset of melting.
Andreas Macke, Patric Seifert, Holger Baars, Christian Barthlott, Christoph Beekmans, Andreas Behrendt, Birger Bohn, Matthias Brueck, Johannes Bühl, Susanne Crewell, Thomas Damian, Hartwig Deneke, Sebastian Düsing, Andreas Foth, Paolo Di Girolamo, Eva Hammann, Rieke Heinze, Anne Hirsikko, John Kalisch, Norbert Kalthoff, Stefan Kinne, Martin Kohler, Ulrich Löhnert, Bomidi Lakshmi Madhavan, Vera Maurer, Shravan Kumar Muppa, Jan Schween, Ilya Serikov, Holger Siebert, Clemens Simmer, Florian Späth, Sandra Steinke, Katja Träumner, Silke Trömel, Birgit Wehner, Andreas Wieser, Volker Wulfmeyer, and Xinxin Xie
Atmos. Chem. Phys., 17, 4887–4914, https://doi.org/10.5194/acp-17-4887-2017, https://doi.org/10.5194/acp-17-4887-2017, 2017
Short summary
Short summary
This article provides an overview of the instrumental setup and the main results obtained during the two HD(CP)2 Observational Prototype Experiments HOPE-Jülich and HOPE-Melpitz conducted in Germany in April–May and Sept 2013, respectively. Goal of the field experiments was to provide high-resolution observational datasets for both, improving the understaning of boundary layer and cloud processes, as well as for the evaluation of the new ICON model that is run at 156 m horizontal resolution.
Xinxin Xie, Raquel Evaristo, Clemens Simmer, Jan Handwerker, and Silke Trömel
Atmos. Chem. Phys., 16, 7105–7116, https://doi.org/10.5194/acp-16-7105-2016, https://doi.org/10.5194/acp-16-7105-2016, 2016
Short summary
Short summary
This study provides a first analysis of rainfall observations and related microphysical processes during the HOPE campaign, which will benefit future studies on the evaluation and improvement of climate models within the HD(CP)2 framework. The results conveyed in this study confirm that polarimetric radars have the capability to validate weather and climate models with respect to rainfall estimation and the ongoing microphysical processes.
Zhaolong Wu, Patric Seifert, Yun He, Holger Baars, Haoran Li, Cristofer Jimenez, Chengcai Li, and Albert Ansmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-3841, https://doi.org/10.5194/egusphere-2024-3841, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
This study introduces a novel method to detect horizontally oriented ice crystals (HOICs) using two ground-based polarization lidars at different zenith angles, based on a year-long dataset collected in Beijing. Combined with cloud radar and reanalysis data, the fine categorization results reveal HOICs occur in calm winds and moderately cold temperatures and are influenced by turbulence near cloud bases. The results enhance our understanding of cloud processes and improve the atmospheric model.
Andreas Foth, Moritz Lochmann, Pablo Saavedra Garfias, and Heike Kalesse-Los
Atmos. Meas. Tech., 17, 7169–7181, https://doi.org/10.5194/amt-17-7169-2024, https://doi.org/10.5194/amt-17-7169-2024, 2024
Short summary
Short summary
Microwave radiometers are usually not able to provide atmospheric quantities such as temperature profiles during rain. We present a method based on a selection of specific frequencies and elevation angles from microwave radiometer observations. A comparison with a numerical weather prediction model shows the presented method allows low-level temperature profiles during rain to be resolved, with rain rates of up to 2.5 mm h−1,, which was not possible before with state-of-the-art retrievals.
Ewan Crosbie, Johnathan Hair, Amin Nehrir, Richard Ferrare, Chris Hostetler, Taylor Shingler, David Harper, Marta Fenn, James Collins, Rory Barton-Grimley, Brian Collister, K. Lee Thornhill, Christiane Voigt, Simon Kirschler, and Armin Sorooshian
EGUsphere, https://doi.org/10.5194/egusphere-2024-3844, https://doi.org/10.5194/egusphere-2024-3844, 2024
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
A method was developed to extract information from airborne lidar observations about the distribution of ice and liquid water within clouds. The method specifically targets signatures of horizontal and vertical gradients in ice and water that appear in the polarization of the lidar signals. The method was tested against direct measurements of the cloud properties collected by a second aircraft.
Nina Maherndl, Manuel Moser, Imke Schirmacher, Aaron Bansemer, Johannes Lucke, Christiane Voigt, and Maximilian Maahn
Atmos. Chem. Phys., 24, 13935–13960, https://doi.org/10.5194/acp-24-13935-2024, https://doi.org/10.5194/acp-24-13935-2024, 2024
Short summary
Short summary
It is not clear why ice crystals in clouds occur in clusters. Here, airborne measurements of clouds in mid-latitudes and high latitudes are used to study the spatial variability of ice. Further, we investigate the influence of riming, which occurs when liquid droplets freeze onto ice crystals. We find that riming enhances the occurrence of ice clusters. In the Arctic, riming leads to ice clustering at spatial scales of 3–5 km. This is due to updrafts and not higher amounts of liquid water.
Johannes Mülmenstädt, Andrew S. Ackerman, Ann M. Fridlind, Meng Huang, Po-Lun Ma, Naser Mahfouz, Susanne E. Bauer, Susannah M. Burrows, Matthew W. Christensen, Sudhakar Dipu, Andrew Gettelman, L. Ruby Leung, Florian Tornow, Johannes Quaas, Adam C. Varble, Hailong Wang, Kai Zhang, and Youtong Zheng
Atmos. Chem. Phys., 24, 13633–13652, https://doi.org/10.5194/acp-24-13633-2024, https://doi.org/10.5194/acp-24-13633-2024, 2024
Short summary
Short summary
Stratocumulus clouds play a large role in Earth's climate by reflecting incoming solar energy back to space. Turbulence at stratocumulus cloud top mixes in dry, warm air, which can lead to cloud dissipation. This process is challenging for coarse-resolution global models to represent. We show that global models nevertheless agree well with our process understanding. Global models also think the process is less important for the climate than other lines of evidence have led us to conclude.
Henning Dorff, Florian Ewald, Heike Konow, Mario Mech, Davide Ori, Vera Schemann, Andreas Walbröl, Manfred Wendisch, and Felix Ament
EGUsphere, https://doi.org/10.5194/egusphere-2024-3632, https://doi.org/10.5194/egusphere-2024-3632, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Using observations of an Arctic Atmospheric River (AR) from a long-range research aircraft, we analyse how moisture transported into the Arctic by the AR is transformed and how it interacts with the Arctic environment. The moisture transport divergence is the main driver of local moisture change over time. Surface precipitation and evaporation are rather weak when averaged over extended AR sectors, although considerable heterogeneity of precipitation within the AR is observed.
Jianqi Zhao, Xiaoyan Ma, and Johannes Quaas
EGUsphere, https://doi.org/10.5194/egusphere-2024-3662, https://doi.org/10.5194/egusphere-2024-3662, 2024
Short summary
Short summary
We conduct a comparative analysis of aerosol-cloud responses in liquid-phase clouds under different aerosol and meteorological conditions based on simulations using the WRF-Chem-SBM model. Our findings highlight the different effects of aerosols on clouds and precipitation, as well as variations in the roles of aerosol and meteorological factors influencing aerosol-cloud interactions, in different environment.
Lea Volkmer, Tobias Kölling, Tobias Zinner, and Bernhard Mayer
Atmos. Meas. Tech., 17, 6807–6817, https://doi.org/10.5194/amt-17-6807-2024, https://doi.org/10.5194/amt-17-6807-2024, 2024
Short summary
Short summary
The importance of the consideration of cloud motion for the stereographic determination of cloud top height from aircraft observations is demonstrated using measurements of the airborne spectrometer of the Munich Aerosol Cloud Scanner (specMACS). A method for cloud motion correction using model winds from the European Centre for Medium-Range Weather Forecasts is presented and validated using both real measurements and realistic radiative transfer simulations.
Armin Blanke, Mathias Gergely, and Silke Trömel
EGUsphere, https://doi.org/10.5194/egusphere-2024-3336, https://doi.org/10.5194/egusphere-2024-3336, 2024
Short summary
Short summary
The area-wide radar-based distinction between riming and aggregation is crucial for model microphysics and data assimilation. This study introduces a discrimination algorithm based on polarimetric radar networks only. Exploiting the unique opportunity to link fall velocities from Doppler spectra to polarimetric variables in an operational setting enables us to set up and evaluate a well-performing machine learning algorithm.
Yongbo Zhou, Yubao Liu, Wei Han, Yuefei Zeng, Haofei Sun, Peilong Yu, and Lijian Zhu
Atmos. Meas. Tech., 17, 6659–6675, https://doi.org/10.5194/amt-17-6659-2024, https://doi.org/10.5194/amt-17-6659-2024, 2024
Short summary
Short summary
The study explored differences between the visible reflectance provided by the Fengyun-4A satellite and its equivalent derived from the China Meteorological Administration Mesoscale model using a forward operator. The observation-minus-simulation biases were able to monitor the performance of the satellite visible instrument. The biases were corrected based on a first-order approximation method, which promotes the data assimilation of satellite visible reflectance in real-world cases.
Majid Hajipour, Patric Seifert, Hannes Griesche, Kevin Ohneiser, and Martin Radenz
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-173, https://doi.org/10.5194/amt-2024-173, 2024
Preprint under review for AMT
Short summary
Short summary
This study presents an approach that enables the detection of the shape and orientation of multiple types of co-located hydrometeors in mixed-phase cloud systems. This information is key for improving the understanding of these clouds, as they do contain ice and liquid water simultaneously, making them relevant for the precipitation budget and radiative balance of the Earth's atmosphere. The retrieval is based on elevation scans of polarimetric cloud radars and can therefore be flexibly applied.
Florian Tornow, Ann Fridlind, George Tselioudis, Brian Cairns, Andrew Ackerman, Seethala Chellappan, David Painemal, Paquita Zuidema, Christiane Voigt, Simon Kirschler, and Armin Sorooshian
EGUsphere, https://doi.org/10.5194/egusphere-2024-3462, https://doi.org/10.5194/egusphere-2024-3462, 2024
Short summary
Short summary
The recent NASA campaign ACTIVATE (Aerosol Cloud meTeorology Interactions oVer the western ATlantic Experiment) performed 71 tandem flights in mid-latitude marine cold-air outbreaks off the US Eastern seaboard. We provide meteorological and cloud transition stage context, allowing us to identify days that are most suitable for Lagrangian modeling and analysis. Surveyed cloud properties show signatures of cloud microphysical processes, such as cloud-top entrainment and secondary ice formation.
Teresa Vogl, Martin Radenz, Fabiola Ramelli, Rosa Gierens, and Heike Kalesse-Los
Atmos. Meas. Tech., 17, 6547–6568, https://doi.org/10.5194/amt-17-6547-2024, https://doi.org/10.5194/amt-17-6547-2024, 2024
Short summary
Short summary
In this study, we present a toolkit of two Python algorithms to extract information from Doppler spectra measured by ground-based cloud radars. In these Doppler spectra, several peaks can be formed due to populations of droplets/ice particles with different fall velocities coexisting in the same measurement time and height. The two algorithms can detect peaks and assign them to certain particle types, such as small cloud droplets or fast-falling ice particles like graupel.
Iris Papakonstantinou-Presvelou and Johannes Quaas
EGUsphere, https://doi.org/10.5194/egusphere-2024-3293, https://doi.org/10.5194/egusphere-2024-3293, 2024
Short summary
Short summary
As the Arctic warms and the sea ice retreats, more open ocean is exposed, changing how aerosols impact clouds. Our previous 10-year satellite analysis found higher ice crystal numbers over sea ice than over ocean. Using model simulations and aircraft observations we identify here two factors as potential causes at colder temperatures; ice nucleating particles over sea ice and blowing snow. With further sea ice loss, these processes may weaken, leading to fewer ice particles in the future.
Charlotte Lange and Johannes Quaas
EGUsphere, https://doi.org/10.5194/egusphere-2024-3229, https://doi.org/10.5194/egusphere-2024-3229, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
We studied how the Earth’s climate system adjusts to sudden changes in the energy budget, by analyzing data of four climate models, which simulated a 4 % reduction of incoming solar energy. We found rapid cooling of the atmosphere and shifts in cloud cover and atmospheric circulation patterns like land-sea-circulation. Our research helps to better understand cloud adjustments, which are a main source of uncertainty in climate models. This can improve future climate predictions.
Theresa Harlass, Rebecca Dischl, Stefan Kaufmann, Raphael Märkl, Daniel Sauer, Monika Scheibe, Paul Stock, Tiziana Bräuer, Andreas Dörnbrack, Anke Roiger, Hans Schlager, Ulrich Schumann, Magdalena Pühl, Tobias Schripp, Tobias Grein, Linda Bondorf, Charles Renard, Maxime Gauthier, Mark Johnson, Darren Luff, Paul Madden, Peter Swann, Denise Ahrens, Reetu Sallinen, and Christiane Voigt
Atmos. Chem. Phys., 24, 11807–11822, https://doi.org/10.5194/acp-24-11807-2024, https://doi.org/10.5194/acp-24-11807-2024, 2024
Short summary
Short summary
Emissions from aircraft have a direct impact on our climate. Here, we present airborne and ground-based measurement data of nitrogen oxides that were collected in the exhaust of an Airbus aircraft. We study the impact of burning fossil and sustainable aviation fuel on nitrogen oxide emissions at different engine settings related to combustor temperature, pressure and fuel flow. Further, we compare observations with engine emission models.
Soodabeh Namdari, Sanja Dmitrovic, Gao Chen, Yonghoon Choi, Ewan Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Richard A. Ferrare, Johnathan W. Hair, Simon Kirschler, John B. Nowak, Kenneth L. Thornhill, Christiane Voigt, Holger Vömel, Xubin Zeng, and Armin Sorooshian
EGUsphere, https://doi.org/10.5194/egusphere-2024-3024, https://doi.org/10.5194/egusphere-2024-3024, 2024
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
We conducted this study to assess the accuracy of airborne measurements of wind, temperature, and humidity, essential for understanding atmospheric processes. Using data from NASA's ACTIVATE campaign, we compared measurements from the TAMMS and DLH aboard a Falcon aircraft with dropsondes from a King Air, matching data points based on location and time using statistical methods. The study showed strong agreement, confirming the reliability of these methods for advancing climate models.
Audrey Teisseire, Anne-Claire Billault-Roux, Teresa Vogl, and Patric Seifert
EGUsphere, https://doi.org/10.5194/egusphere-2024-2711, https://doi.org/10.5194/egusphere-2024-2711, 2024
Short summary
Short summary
This study demonstrates the ability of the VDPS method, delivering the vertical distribution of particle shape, to highlight riming and aggregation processes, identifying graupel and aggregates, respectively, as isometric particles. The distinction between these processes can be achieved using lidar or spectral techniques, as demonstrated in the case studies. The capability of the VDPS method to identify rimed particles and aggregates without differentiating them can simplify statistical work.
Rebecca Dischl, Daniel Sauer, Christiane Voigt, Theresa Harlaß, Felicitas Sakellariou, Raphael Märkl, Ulrich Schumann, Monika Scheibe, Stefan Kaufmann, Anke Roiger, Andreas Dörnbrack, Charles Renard, Maxime Gauthier, Peter Swann, Paul Madden, Darren Luff, Mark Johnson, Denise Ahrens, Reetu Sallinen, Tobias Schripp, Georg Eckel, Uwe Bauder, and Patrick Le Clercq
Atmos. Chem. Phys., 24, 11255–11273, https://doi.org/10.5194/acp-24-11255-2024, https://doi.org/10.5194/acp-24-11255-2024, 2024
Short summary
Short summary
In-flight measurements of aircraft emissions burning 100 % sustainable aviation fuel (SAF) show reduced particle number concentrations up to 41 % compared to conventional jet fuel. Particle emissions are dependent on engine power setting, flight altitude, and fuel composition. Engine models show a good correlation with measurement results. Future increased prevalence of SAF can positively influence the climate impact of aviation.
Sina Mehrdad, Dörthe Handorf, Ines Höschel, Khalil Karami, Johannes Quaas, Sudhakar Dipu, and Christoph Jacobi
Weather Clim. Dynam., 5, 1223–1268, https://doi.org/10.5194/wcd-5-1223-2024, https://doi.org/10.5194/wcd-5-1223-2024, 2024
Short summary
Short summary
This study introduces a novel deep learning (DL) approach to analyze how regional radiative forcing in Europe impacts the Arctic climate. By integrating atmospheric poleward energy transport with DL-based clustering of atmospheric patterns and attributing anomalies to specific clusters, our method reveals crucial, nuanced interactions within the climate system, enhancing our understanding of intricate climate dynamics.
Julien Lenhardt, Johannes Quaas, Dino Sejdinovic, and Daniel Klocke
EGUsphere, https://doi.org/10.5194/egusphere-2024-2724, https://doi.org/10.5194/egusphere-2024-2724, 2024
Short summary
Short summary
Clouds come in various shapes and sizes and constitute a fundamental element of the Earth’s climate system. Different cloud types show variable impacts on climate change. We present a new cloud type classification method called CloudViT relying on spatial patterns of cloud properties obtained from satellite data using machine learning. We can thus help understanding the effects of different cloud types on climate change.
Julien Lenhardt, Johannes Quaas, and Dino Sejdinovic
Atmos. Meas. Tech., 17, 5655–5677, https://doi.org/10.5194/amt-17-5655-2024, https://doi.org/10.5194/amt-17-5655-2024, 2024
Short summary
Short summary
Clouds play a key role in the regulation of the Earth's climate. Aspects like the height of their base are of essential interest to quantify their radiative effects but remain difficult to derive from satellite data. In this study, we combine observations from the surface and satellite retrievals of cloud properties to build a robust and accurate method to retrieve the cloud base height, based on a computer vision model and ordinal regression.
Cassidy Soloff, Taiwo Ajayi, Yonghoon Choi, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Marta A. Fenn, Richard A. Ferrare, Francesca Gallo, Johnathan W. Hair, Miguel Ricardo A. Hilario, Simon Kirschler, Richard H. Moore, Taylor J. Shingler, Michael A. Shook, Kenneth L. Thornhill, Christiane Voigt, Edward L. Winstead, Luke D. Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 24, 10385–10408, https://doi.org/10.5194/acp-24-10385-2024, https://doi.org/10.5194/acp-24-10385-2024, 2024
Short summary
Short summary
Using aircraft measurements over the northwestern Atlantic between the US East Coast and Bermuda and trajectory modeling of continental outflow, we identify trace gas and particle properties that exhibit gradients with offshore distance and quantify these changes with high-resolution measurements of concentrations and particle chemistry, size, and scattering properties. This work furthers our understanding of the complex interactions between continental and marine environments.
Alexander Myagkov, Tatiana Nomokonova, and Michael Frech
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-143, https://doi.org/10.5194/amt-2024-143, 2024
Revised manuscript under review for AMT
Short summary
Short summary
The study examines the use of the spheroidal shape approximation for calculating cloud radar observables in rain and identifies some limitations. To address these, it introduces the empirical scattering model (EMS) based on high-quality Doppler spectra from a 94 GHz radar. The ESM offers improved accuracy and directly incorporates natural rain's microphysical effects. This new model can enhance retrieval and calibration methods, benefiting cloud radar polarimetry experts and scattering modelers.
Kira Zeider, Kayla McCauley, Sanja Dmitrovic, Leong Wai Siu, Yonghoon Choi, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Simon Kirschler, John B. Nowak, Michael A. Shook, Kenneth L. Thornhill, Christiane Voigt, Edward L. Winstead, Luke D. Ziemba, Paquita Zuidema, and Armin Sorooshian
EGUsphere, https://doi.org/10.5194/egusphere-2024-2743, https://doi.org/10.5194/egusphere-2024-2743, 2024
Short summary
Short summary
In-situ aircraft data collected over the northwest Atlantic Ocean are utilized to compare aerosol conditions and turbulence between near-surface and below cloud base altitudes for different regimes of coupling strength between those two levels, along with how cloud microphysical properties vary across those regimes. Stronger coupling yields more homogenous aerosol structure vertically along with higher cloud drop concentrations and sea salt influence in clouds.
Shuaiqi Tang, Hailong Wang, Xiang-Yu Li, Jingyi Chen, Armin Sorooshian, Xubin Zeng, Ewan Crosbie, Kenneth L. Thornhill, Luke D. Ziemba, and Christiane Voigt
Atmos. Chem. Phys., 24, 10073–10092, https://doi.org/10.5194/acp-24-10073-2024, https://doi.org/10.5194/acp-24-10073-2024, 2024
Short summary
Short summary
We examined marine boundary layer clouds and their interactions with aerosols in the E3SM single-column model (SCM) for a case study. The SCM shows good agreement when simulating the clouds with high-resolution models. It reproduces the relationship between cloud droplet and aerosol particle number concentrations as produced in global models. However, the relationship between cloud liquid water and droplet number concentration is different, warranting further investigation.
Johanna Mayer, Bernhard Mayer, Luca Bugliaro, Ralf Meerkötter, and Christiane Voigt
Atmos. Meas. Tech., 17, 5161–5185, https://doi.org/10.5194/amt-17-5161-2024, https://doi.org/10.5194/amt-17-5161-2024, 2024
Short summary
Short summary
This study uses radiative transfer calculations to characterize the relation of two satellite channel combinations (namely infrared window brightness temperature differences – BTDs – of SEVIRI) to the thermodynamic cloud phase. A sensitivity analysis reveals the complex interplay of cloud parameters and their contribution to the observed phase dependence of BTDs. This knowledge helps to design optimal cloud-phase retrievals and to understand their potential and limitations.
Cynthia H. Whaley, Tim Butler, Jose A. Adame, Rupal Ambulkar, Stephen R. Arnold, Rebecca R. Buchholz, Benjamin Gaubert, Douglas S. Hamilton, Min Huang, Hayley Hung, Johannes W. Kaiser, Jacek W. Kaminski, Christophe Knote, Gerbrand Koren, Jean-Luc Kouassi, Meiyun Lin, Tianjia Liu, Jianmin Ma, Kasemsan Manomaiphiboon, Elisa Bergas Masso, Jessica L. McCarty, Mariano Mertens, Mark Parrington, Helene Peiro, Pallavi Saxena, Saurabh Sonwani, Vanisa Surapipith, Damaris Tan, Wenfu Tang, Veerachai Tanpipat, Kostas Tsigaridis, Christine Wiedinmyer, Oliver Wild, Yuanyu Xie, and Paquita Zuidema
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-126, https://doi.org/10.5194/gmd-2024-126, 2024
Preprint under review for GMD
Short summary
Short summary
The multi-model experiment design of the HTAP3 Fires project takes a multi-pollutant approach to improving our understanding of transboundary transport of wildland fire and agricultural burning emissions and their impacts. The experiments are designed with the goal of answering science policy questions related to fires. The options for the multi-model approach, including inputs, outputs, and model set up are discussed, and the official recommendations for the project are presented.
Benedikt Gast, Cristofer Jimenez, Albert Ansmann, Moritz Haarig, Ronny Engelmann, Felix Fritzsch, Athena Augusta Floutsi, Hannes Griesche, Kevin Ohneiser, Julian Hofer, Martin Radenz, Holger Baars, Patric Seifert, and Ulla Wandinger
EGUsphere, https://doi.org/10.5194/egusphere-2024-2586, https://doi.org/10.5194/egusphere-2024-2586, 2024
Short summary
Short summary
In this study, we discuss the enhanced detection capabilities of a fluorescence lidar in the case of optically thin aerosol layers in the upper troposphere and lower stratosphere (UTLS) region. Our results suggest that such thin aerosol layers are not so rare in the UTLS and can potentially trigger and impact cirrus cloud formation through heterogeneous ice nucleation. By altering the microphysical cloud properties, this could affect cloud evolution and lifetime, and thus their climate effect.
Taiwo Ajayi, Yonghoon Choi, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Marta A. Fenn, Richard A. Ferrare, Johnathan W. Hair, Miguel Ricardo A. Hilario, Chris A. Hostetler, Simon Kirschler, Richard H. Moore, Taylor J. Shingler, Michael A. Shook, Cassidy Soloff, Kenneth L. Thornhill, Christiane Voigt, Edward L. Winstead, Luke D. Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 24, 9197–9218, https://doi.org/10.5194/acp-24-9197-2024, https://doi.org/10.5194/acp-24-9197-2024, 2024
Short summary
Short summary
This study uses airborne data to examine vertical profiles of trace gases, aerosol particles, and meteorological variables over a remote marine area (Bermuda). Results show distinct differences based on both air mass source region (North America, Ocean, Caribbean/North Africa) and altitude for a given air mass type. This work highlights the sensitivity of remote marine areas to long-range transport and the importance of considering the vertical dependence of trace gas and aerosol properties.
Jianqi Zhao, Xiaoyan Ma, Johannes Quaas, and Hailing Jia
Atmos. Chem. Phys., 24, 9101–9118, https://doi.org/10.5194/acp-24-9101-2024, https://doi.org/10.5194/acp-24-9101-2024, 2024
Short summary
Short summary
We explore aerosol–cloud interactions in liquid-phase clouds over eastern China and its adjacent ocean in winter based on the WRF-Chem–SBM model, which couples a spectral-bin microphysics scheme and an online aerosol module. Our study highlights the differences in aerosol–cloud interactions between land and ocean and between precipitation clouds and non-precipitation clouds, and it differentiates and quantifies their underlying mechanisms.
Cornelius Hald, Maximilian Schaper, Annette Böhm, Michael Frech, Jan Petersen, Bertram Lange, and Benjamin Rohrdantz
Atmos. Meas. Tech., 17, 4695–4707, https://doi.org/10.5194/amt-17-4695-2024, https://doi.org/10.5194/amt-17-4695-2024, 2024
Short summary
Short summary
Weather radars should use lightning protection to be safe from damage, but the rods can reduce the quality of the radar measurements. This study presents three new solutions for lightning protection for weather radars and evaluates their influence on data quality. The results are compared to the current system. All tested ones have very little effect on data, and a new lightning protection system with four rods is recommended for the German Meteorological Service.
Manfred Wendisch, Susanne Crewell, André Ehrlich, Andreas Herber, Benjamin Kirbus, Christof Lüpkes, Mario Mech, Steven J. Abel, Elisa F. Akansu, Felix Ament, Clémantyne Aubry, Sebastian Becker, Stephan Borrmann, Heiko Bozem, Marlen Brückner, Hans-Christian Clemen, Sandro Dahlke, Georgios Dekoutsidis, Julien Delanoë, Elena De La Torre Castro, Henning Dorff, Regis Dupuy, Oliver Eppers, Florian Ewald, Geet George, Irina V. Gorodetskaya, Sarah Grawe, Silke Groß, Jörg Hartmann, Silvia Henning, Lutz Hirsch, Evelyn Jäkel, Philipp Joppe, Olivier Jourdan, Zsofia Jurányi, Michail Karalis, Mona Kellermann, Marcus Klingebiel, Michael Lonardi, Johannes Lucke, Anna E. Luebke, Maximilian Maahn, Nina Maherndl, Marion Maturilli, Bernhard Mayer, Johanna Mayer, Stephan Mertes, Janosch Michaelis, Michel Michalkov, Guillaume Mioche, Manuel Moser, Hanno Müller, Roel Neggers, Davide Ori, Daria Paul, Fiona M. Paulus, Christian Pilz, Felix Pithan, Mira Pöhlker, Veronika Pörtge, Maximilian Ringel, Nils Risse, Gregory C. Roberts, Sophie Rosenburg, Johannes Röttenbacher, Janna Rückert, Michael Schäfer, Jonas Schaefer, Vera Schemann, Imke Schirmacher, Jörg Schmidt, Sebastian Schmidt, Johannes Schneider, Sabrina Schnitt, Anja Schwarz, Holger Siebert, Harald Sodemann, Tim Sperzel, Gunnar Spreen, Bjorn Stevens, Frank Stratmann, Gunilla Svensson, Christian Tatzelt, Thomas Tuch, Timo Vihma, Christiane Voigt, Lea Volkmer, Andreas Walbröl, Anna Weber, Birgit Wehner, Bruno Wetzel, Martin Wirth, and Tobias Zinner
Atmos. Chem. Phys., 24, 8865–8892, https://doi.org/10.5194/acp-24-8865-2024, https://doi.org/10.5194/acp-24-8865-2024, 2024
Short summary
Short summary
The Arctic is warming faster than the rest of the globe. Warm-air intrusions (WAIs) into the Arctic may play an important role in explaining this phenomenon. Cold-air outbreaks (CAOs) out of the Arctic may link the Arctic climate changes to mid-latitude weather. In our article, we describe how to observe air mass transformations during CAOs and WAIs using three research aircraft instrumented with state-of-the-art remote-sensing and in situ measurement devices.
André Ehrlich, Susanne Crewell, Andreas Herber, Marcus Klingebiel, Christof Lüpkes, Mario Mech, Sebastian Becker, Stephan Borrmann, Heiko Bozem, Matthias Buschmann, Hans-Christian Clemen, Elena De La Torre Castro, Henning Dorff, Regis Dupuy, Oliver Eppers, Florian Ewald, Geet George, Andreas Giez, Sarah Grawe, Christophe Gourbeyre, Jörg Hartmann, Evelyn Jäkel, Philipp Joppe, Olivier Jourdan, Zsófia Jurányi, Benjamin Kirbus, Johannes Lucke, Anna E. Luebke, Maximilian Maahn, Nina Maherndl, Christian Mallaun, Johanna Mayer, Stephan Mertes, Guillaume Mioche, Manuel Moser, Hanno Müller, Veronika Pörtge, Nils Risse, Greg Roberts, Sophie Rosenburg, Johannes Röttenbacher, Michael Schäfer, Jonas Schaefer, Andreas Schäfler, Imke Schirmacher, Johannes Schneider, Sabrina Schnitt, Frank Stratmann, Christian Tatzelt, Christiane Voigt, Andreas Walbröl, Anna Weber, Bruno Wetzel, Martin Wirth, and Manfred Wendisch
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-281, https://doi.org/10.5194/essd-2024-281, 2024
Revised manuscript under review for ESSD
Short summary
Short summary
This paper provides an overview of the HALO–(AC)3 aircraft campaign data sets, the campaign specific instrument operation, data processing, and data quality. The data set comprises in-situ and remote sensing observations from three research aircraft, HALO, Polar 5, and Polar 6. All data are published in the PANGAEA database by instrument-separated data subsets. It is highlighted how the scientific analysis of the HALO–(AC)3 data benefits from the coordinated operation of three aircraft.
Johannes Röttenbacher, André Ehrlich, Hanno Müller, Florian Ewald, Anna E. Luebke, Benjamin Kirbus, Robin J. Hogan, and Manfred Wendisch
Atmos. Chem. Phys., 24, 8085–8104, https://doi.org/10.5194/acp-24-8085-2024, https://doi.org/10.5194/acp-24-8085-2024, 2024
Short summary
Short summary
Weather prediction models simplify the physical processes related to light scattering by clouds consisting of complex ice crystals. Whether these simplifications are the cause for uncertainties in their prediction can be evaluated by comparing them with measurement data. Here we do this for Arctic ice clouds over sea ice using airborne measurements from two case studies. The model performs well for thick ice clouds but not so well for thin ones. This work can be used to improve the model.
Ziming Wang, Luca Bugliaro, Klaus Gierens, Michaela I. Hegglin, Susanne Rohs, Andreas Petzold, Stefan Kaufmann, and Christiane Voigt
EGUsphere, https://doi.org/10.5194/egusphere-2024-2012, https://doi.org/10.5194/egusphere-2024-2012, 2024
Short summary
Short summary
Upper tropospheric relative humidity bias in the ERA5 weather model is corrected by 9 % by an artificial neural network using aircraft in-service humidity data and thermodynamic and dynamical variables. The improved skills of the weather model will advance cirrus research, weather forecast and measures for contrail reduction.
Johanna Mayer, Luca Bugliaro, Bernhard Mayer, Dennis Piontek, and Christiane Voigt
Atmos. Meas. Tech., 17, 4015–4039, https://doi.org/10.5194/amt-17-4015-2024, https://doi.org/10.5194/amt-17-4015-2024, 2024
Short summary
Short summary
ProPS (PRObabilistic cloud top Phase retrieval for SEVIRI) is a method to detect clouds and their thermodynamic phase with a geostationary satellite, distinguishing between clear sky and ice, mixed-phase, supercooled and warm liquid clouds. It uses a Bayesian approach based on the lidar–radar product DARDAR. The method allows studying cloud phases, especially mixed-phase and supercooled clouds, rarely observed from geostationary satellites. This can be used for comparison with climate models.
Albert Ansmann, Cristofer Jimenez, Johanna Roschke, Johannes Bühl, Kevin Ohneiser, Ronny Engelmann, Martin Radenz, Hannes Griesche, Julian Hofer, Dietrich Althausen, Daniel A. Knopf, Sandro Dahlke, Tom Gaudek, Patric Seifert, and Ulla Wandinger
EGUsphere, https://doi.org/10.5194/egusphere-2024-2008, https://doi.org/10.5194/egusphere-2024-2008, 2024
Short summary
Short summary
In this study, we focus on the potential impact of wildfire smoke on cirrus formation. For the first time, state-of-the-art aerosol and cirrus observations with lidar and radar, presented in part 1 of a series of two articles, are closely linked to comprehensive modeling of gravity-wave-induced ice nucleation in cirrus evolution processes, presented in part 2. We found a clear impact of wildfire smoke on cirrus evolution.
Philipp Joppe, Johannes Schneider, Katharina Kaiser, Horst Fischer, Peter Hoor, Daniel Kunkel, Hans-Christoph Lachnitt, Andreas Marsing, Lenard Röder, Hans Schlager, Laura Tomsche, Christiane Voigt, Andreas Zahn, and Stephan Borrmann
Atmos. Chem. Phys., 24, 7499–7522, https://doi.org/10.5194/acp-24-7499-2024, https://doi.org/10.5194/acp-24-7499-2024, 2024
Short summary
Short summary
From aircraft measurements in the upper troposphere/lower stratosphere, we find a correlation between the ozone and particulate sulfate in the lower stratosphere. The correlation exhibits some variability over the measurement period exceeding the background sulfate-to-ozone correlation. From our analysis, we conclude that gas-to-particle conversion of volcanic sulfur dioxide leads to observed enhanced sulfate aerosol mixing ratios.
Clémantyne Aubry, Julien Delanoë, Silke Groß, Florian Ewald, Frédéric Tridon, Olivier Jourdan, and Guillaume Mioche
Atmos. Meas. Tech., 17, 3863–3881, https://doi.org/10.5194/amt-17-3863-2024, https://doi.org/10.5194/amt-17-3863-2024, 2024
Short summary
Short summary
Radar–lidar synergy is used to retrieve ice, supercooled water and mixed-phase cloud properties, making the most of the radar sensitivity to ice crystals and the lidar sensitivity to supercooled droplets. A first analysis of the output of the algorithm run on the satellite data is compared with in situ data during an airborne Arctic field campaign, giving a mean percent error of 49 % for liquid water content and 75 % for ice water content.
Goutam Choudhury, Karoline Block, Mahnoosh Haghighatnasab, Johannes Quaas, Tom Goren, and Matthias Tesche
EGUsphere, https://doi.org/10.5194/egusphere-2024-1863, https://doi.org/10.5194/egusphere-2024-1863, 2024
Short summary
Short summary
More aerosol particles in the atmosphere increase the reflectivity of clouds, leading to more sunlight being reflected back into space and cooling the Earth. Accurate global measurements of these particles are crucial to estimate this cooling effect. This study compares and harmonizes two newly developed global datasets of aerosol concentrations, offering valuable insights for their future use and refinement.
Johannes Mülmenstädt, Edward Gryspeerdt, Sudhakar Dipu, Johannes Quaas, Andrew S. Ackerman, Ann M. Fridlind, Florian Tornow, Susanne E. Bauer, Andrew Gettelman, Yi Ming, Youtong Zheng, Po-Lun Ma, Hailong Wang, Kai Zhang, Matthew W. Christensen, Adam C. Varble, L. Ruby Leung, Xiaohong Liu, David Neubauer, Daniel G. Partridge, Philip Stier, and Toshihiko Takemura
Atmos. Chem. Phys., 24, 7331–7345, https://doi.org/10.5194/acp-24-7331-2024, https://doi.org/10.5194/acp-24-7331-2024, 2024
Short summary
Short summary
Human activities release copious amounts of small particles called aerosols into the atmosphere. These particles change how much sunlight clouds reflect to space, an important human perturbation of the climate, whose magnitude is highly uncertain. We found that the latest climate models show a negative correlation but a positive causal relationship between aerosols and cloud water. This means we need to be very careful when we interpret observational studies that can only see correlation.
Nadja Omanovic, Sylvaine Ferrachat, Christopher Fuchs, Jan Henneberger, Anna J. Miller, Kevin Ohneiser, Fabiola Ramelli, Patric Seifert, Robert Spirig, Huiying Zhang, and Ulrike Lohmann
Atmos. Chem. Phys., 24, 6825–6844, https://doi.org/10.5194/acp-24-6825-2024, https://doi.org/10.5194/acp-24-6825-2024, 2024
Short summary
Short summary
We present simulations with a high-resolution numerical weather prediction model to study the growth of ice crystals in low clouds following glaciogenic seeding. We show that the simulated ice crystals grow slower than observed and do not consume as many cloud droplets as measured in the field. This may have implications for forecasting precipitation, as the ice phase is crucial for precipitation at middle and high latitudes.
Johanna Roschke, Jonas Witthuhn, Marcus Klingebiel, Moritz Haarig, Andreas Foth, Anton Kötsche, and Heike Kalesse-Los
EGUsphere, https://doi.org/10.5194/egusphere-2024-894, https://doi.org/10.5194/egusphere-2024-894, 2024
Short summary
Short summary
We present a technique to discriminate between the Cloudnet target classification of "Drizzle or rain" and sea salt aerosols that is applicable to marine Cloudnet sites. The method is crucial for investigating the occurrence of precipitation and significantly improves the Cloudnet target classification scheme for the measurements over the Barbados Cloud Observatory (BCO). A first-ever analysis of the Cloudnet product including the new "haze echo" target over two years at the BCO is presented.
Karina McCusker, Anthony J. Baran, Chris Westbrook, Stuart Fox, Patrick Eriksson, Richard Cotton, Julien Delanoë, and Florian Ewald
Atmos. Meas. Tech., 17, 3533–3552, https://doi.org/10.5194/amt-17-3533-2024, https://doi.org/10.5194/amt-17-3533-2024, 2024
Short summary
Short summary
Polarised radiative transfer simulations are performed using an atmospheric model based on in situ measurements. These are compared to large polarisation measurements to explore whether such measurements can provide information on cloud ice, e.g. particle shape and orientation. We find that using oriented particle models with shapes based on imagery generally allows for accurate simulations. However, results are sensitive to shape assumptions such as the choice of single crystals or aggregates.
Ewan Crosbie, Luke D. Ziemba, Michael A. Shook, Taylor Shingler, Johnathan W. Hair, Armin Sorooshian, Richard A. Ferrare, Brian Cairns, Yonghoon Choi, Joshua DiGangi, Glenn S. Diskin, Chris Hostetler, Simon Kirschler, Richard H. Moore, David Painemal, Claire Robinson, Shane T. Seaman, K. Lee Thornhill, Christiane Voigt, and Edward Winstead
Atmos. Chem. Phys., 24, 6123–6152, https://doi.org/10.5194/acp-24-6123-2024, https://doi.org/10.5194/acp-24-6123-2024, 2024
Short summary
Short summary
Marine clouds are found to clump together in regions or lines, readily discernible from satellite images of the ocean. While clustering is also a feature of deep storm clouds, we focus on smaller cloud systems associated with fair weather and brief localized showers. Two aircraft sampled the region around these shallow systems: one incorporated measurements taken within, adjacent to, and below the clouds, while the other provided a survey from above using remote sensing techniques.
Roger Teoh, Zebediah Engberg, Ulrich Schumann, Christiane Voigt, Marc Shapiro, Susanne Rohs, and Marc E. J. Stettler
Atmos. Chem. Phys., 24, 6071–6093, https://doi.org/10.5194/acp-24-6071-2024, https://doi.org/10.5194/acp-24-6071-2024, 2024
Short summary
Short summary
The radiative forcing (RF) due to aviation contrails is comparable to that caused by CO2. We estimate that global contrail net RF in 2019 was 62.1 mW m−2. This is ~1/2 the previous best estimate for 2018. Contrail RF varies regionally due to differences in conditions required for persistent contrails. COVID-19 reduced contrail RF by 54% in 2020 relative to 2019. Globally, 2 % of all flights account for 80 % of the annual contrail energy forcing, suggesting a opportunity to mitigate contrail RF.
Junghwa Lee, Patric Seifert, Tempei Hashino, Maximilian Maahn, Fabian Senf, and Oswald Knoth
Atmos. Chem. Phys., 24, 5737–5756, https://doi.org/10.5194/acp-24-5737-2024, https://doi.org/10.5194/acp-24-5737-2024, 2024
Short summary
Short summary
Spectral bin model simulations of an idealized supercooled stratiform cloud were performed with the AMPS model for variable CCN and INP concentrations. We performed radar forward simulations with PAMTRA to transfer the simulations into radar observational space. The derived radar reflectivity factors were compared to observational studies of stratiform mixed-phase clouds. These studies report a similar response of the radar reflectivity factor to aerosol perturbations as we found in our study.
Bjorn Stevens, Stefan Adami, Tariq Ali, Hartwig Anzt, Zafer Aslan, Sabine Attinger, Jaana Bäck, Johanna Baehr, Peter Bauer, Natacha Bernier, Bob Bishop, Hendryk Bockelmann, Sandrine Bony, Guy Brasseur, David N. Bresch, Sean Breyer, Gilbert Brunet, Pier Luigi Buttigieg, Junji Cao, Christelle Castet, Yafang Cheng, Ayantika Dey Choudhury, Deborah Coen, Susanne Crewell, Atish Dabholkar, Qing Dai, Francisco Doblas-Reyes, Dale Durran, Ayoub El Gaidi, Charlie Ewen, Eleftheria Exarchou, Veronika Eyring, Florencia Falkinhoff, David Farrell, Piers M. Forster, Ariane Frassoni, Claudia Frauen, Oliver Fuhrer, Shahzad Gani, Edwin Gerber, Debra Goldfarb, Jens Grieger, Nicolas Gruber, Wilco Hazeleger, Rolf Herken, Chris Hewitt, Torsten Hoefler, Huang-Hsiung Hsu, Daniela Jacob, Alexandra Jahn, Christian Jakob, Thomas Jung, Christopher Kadow, In-Sik Kang, Sarah Kang, Karthik Kashinath, Katharina Kleinen-von Königslöw, Daniel Klocke, Uta Kloenne, Milan Klöwer, Chihiro Kodama, Stefan Kollet, Tobias Kölling, Jenni Kontkanen, Steve Kopp, Michal Koran, Markku Kulmala, Hanna Lappalainen, Fakhria Latifi, Bryan Lawrence, June Yi Lee, Quentin Lejeun, Christian Lessig, Chao Li, Thomas Lippert, Jürg Luterbacher, Pekka Manninen, Jochem Marotzke, Satoshi Matsouoka, Charlotte Merchant, Peter Messmer, Gero Michel, Kristel Michielsen, Tomoki Miyakawa, Jens Müller, Ramsha Munir, Sandeep Narayanasetti, Ousmane Ndiaye, Carlos Nobre, Achim Oberg, Riko Oki, Tuba Özkan-Haller, Tim Palmer, Stan Posey, Andreas Prein, Odessa Primus, Mike Pritchard, Julie Pullen, Dian Putrasahan, Johannes Quaas, Krishnan Raghavan, Venkatachalam Ramaswamy, Markus Rapp, Florian Rauser, Markus Reichstein, Aromar Revi, Sonakshi Saluja, Masaki Satoh, Vera Schemann, Sebastian Schemm, Christina Schnadt Poberaj, Thomas Schulthess, Cath Senior, Jagadish Shukla, Manmeet Singh, Julia Slingo, Adam Sobel, Silvina Solman, Jenna Spitzer, Philip Stier, Thomas Stocker, Sarah Strock, Hang Su, Petteri Taalas, John Taylor, Susann Tegtmeier, Georg Teutsch, Adrian Tompkins, Uwe Ulbrich, Pier-Luigi Vidale, Chien-Ming Wu, Hao Xu, Najibullah Zaki, Laure Zanna, Tianjun Zhou, and Florian Ziemen
Earth Syst. Sci. Data, 16, 2113–2122, https://doi.org/10.5194/essd-16-2113-2024, https://doi.org/10.5194/essd-16-2113-2024, 2024
Short summary
Short summary
To manage Earth in the Anthropocene, new tools, new institutions, and new forms of international cooperation will be required. Earth Virtualization Engines is proposed as an international federation of centers of excellence to empower all people to respond to the immense and urgent challenges posed by climate change.
Sabine Doktorowski, Jan Kretzschmar, Johannes Quaas, Marc Salzmann, and Odran Sourdeval
Geosci. Model Dev., 17, 3099–3110, https://doi.org/10.5194/gmd-17-3099-2024, https://doi.org/10.5194/gmd-17-3099-2024, 2024
Short summary
Short summary
Especially over the midlatitudes, precipitation is mainly formed via the ice phase. In this study we focus on the initial snow formation process in the ICON-AES, the aggregation process. We use a stochastical approach for the aggregation parameterization and investigate the influence in the ICON-AES. Therefore, a distribution function of cloud ice is created, which is evaluated with satellite data. The new approach leads to cloud ice loss and an improvement in the process rate bias.
Benjamin Kirbus, Imke Schirmacher, Marcus Klingebiel, Michael Schäfer, André Ehrlich, Nils Slättberg, Johannes Lucke, Manuel Moser, Hanno Müller, and Manfred Wendisch
Atmos. Chem. Phys., 24, 3883–3904, https://doi.org/10.5194/acp-24-3883-2024, https://doi.org/10.5194/acp-24-3883-2024, 2024
Short summary
Short summary
A research aircraft is used to track the changes in air temperature, moisture, and cloud properties for air that moves from cold Arctic sea ice onto warmer oceanic waters. The measurements are compared to two reanalysis models named ERA5 and CARRA. The biggest differences are found for air temperature over the sea ice and moisture over the ocean. CARRA data are more accurate than ERA5 because they better simulate the sea ice, the transition from sea ice to open ocean, and the forming clouds.
Raphael Satoru Märkl, Christiane Voigt, Daniel Sauer, Rebecca Katharina Dischl, Stefan Kaufmann, Theresa Harlaß, Valerian Hahn, Anke Roiger, Cornelius Weiß-Rehm, Ulrike Burkhardt, Ulrich Schumann, Andreas Marsing, Monika Scheibe, Andreas Dörnbrack, Charles Renard, Maxime Gauthier, Peter Swann, Paul Madden, Darren Luff, Reetu Sallinen, Tobias Schripp, and Patrick Le Clercq
Atmos. Chem. Phys., 24, 3813–3837, https://doi.org/10.5194/acp-24-3813-2024, https://doi.org/10.5194/acp-24-3813-2024, 2024
Short summary
Short summary
In situ measurements of contrails from a large passenger aircraft burning 100 % sustainable aviation fuel (SAF) show a 56 % reduction in contrail ice crystal numbers compared to conventional Jet A-1. Results from a climate model initialized with the observations suggest a significant decrease in radiative forcing from contrails. Our study confirms that future increased use of low aromatic SAF can reduce the climate impact from aviation.
Nina Maherndl, Manuel Moser, Johannes Lucke, Mario Mech, Nils Risse, Imke Schirmacher, and Maximilian Maahn
Atmos. Meas. Tech., 17, 1475–1495, https://doi.org/10.5194/amt-17-1475-2024, https://doi.org/10.5194/amt-17-1475-2024, 2024
Short summary
Short summary
In some clouds, liquid water droplets can freeze onto ice crystals (riming). Riming leads to the formation of snowflakes. We show two ways to quantify riming using aircraft data collected in the Arctic. One aircraft had a cloud radar, while the other aircraft was measuring directly in cloud. The first method compares radar and direct observations. The second looks at snowflake shape. Both methods agree, except when there were gaps in the cloud. This improves our ability to understand riming.
Anna Weber, Tobias Kölling, Veronika Pörtge, Andreas Baumgartner, Clemens Rammeloo, Tobias Zinner, and Bernhard Mayer
Atmos. Meas. Tech., 17, 1419–1439, https://doi.org/10.5194/amt-17-1419-2024, https://doi.org/10.5194/amt-17-1419-2024, 2024
Short summary
Short summary
In this work, we introduce the 2D RGB polarization-resolving cameras of the airborne hyperspectral and polarized imaging system specMACS. A full characterization and calibration of the cameras including a geometric calibration as well as a radiometric characterization is provided, allowing for the computation of absolute calibrated, georeferenced Stokes vectors rotated into the scattering plane. We validate the calibration by comparing sunglint measurements to radiative transfer simulations.
Robert Hanfland, Dominik Brunner, Christiane Voigt, Alina Fiehn, Anke Roiger, and Margit Pattantyús-Ábrahám
Atmos. Chem. Phys., 24, 2511–2534, https://doi.org/10.5194/acp-24-2511-2024, https://doi.org/10.5194/acp-24-2511-2024, 2024
Short summary
Short summary
To show that the three-dimensional dispersion of plumes simulated by the Atmospheric Radionuclide Transport Model within the planetary boundary layer agrees with real plumes, we identify the most important input parameters and analyse the turbulence properties of five different turbulence models in very unstable stratification conditions using their deviation from the well-mixed state. Simulations show that one model agrees slightly better in unstable stratification conditions.
Audrey Teisseire, Patric Seifert, Alexander Myagkov, Johannes Bühl, and Martin Radenz
Atmos. Meas. Tech., 17, 999–1016, https://doi.org/10.5194/amt-17-999-2024, https://doi.org/10.5194/amt-17-999-2024, 2024
Short summary
Short summary
The vertical distribution of particle shape (VDPS) method, introduced in this study, aids in characterizing the density-weighted shape of cloud particles from scanning slanted linear depolarization ratio (SLDR)-mode cloud radar observations. The VDPS approach represents a new, versatile way to study microphysical processes by combining a spheroidal scattering model with real measurements of SLDR.
Sabrina Schnitt, Andreas Foth, Heike Kalesse-Los, Mario Mech, Claudia Acquistapace, Friedhelm Jansen, Ulrich Löhnert, Bernhard Pospichal, Johannes Röttenbacher, Susanne Crewell, and Bjorn Stevens
Earth Syst. Sci. Data, 16, 681–700, https://doi.org/10.5194/essd-16-681-2024, https://doi.org/10.5194/essd-16-681-2024, 2024
Short summary
Short summary
This publication describes the microwave radiometric measurements performed during the EUREC4A campaign at Barbados Cloud Observatory (BCO) and aboard RV Meteor and RV Maria S Merian. We present retrieved integrated water vapor (IWV), liquid water path (LWP), and temperature and humidity profiles as a unified, quality-controlled, multi-site data set on a 3 s temporal resolution for a core period between 19 January 2020 and 14 February 2020.
Julian Hofer, Patric Seifert, J. Ben Liley, Martin Radenz, Osamu Uchino, Isamu Morino, Tetsu Sakai, Tomohiro Nagai, and Albert Ansmann
Atmos. Chem. Phys., 24, 1265–1280, https://doi.org/10.5194/acp-24-1265-2024, https://doi.org/10.5194/acp-24-1265-2024, 2024
Short summary
Short summary
An 11-year dataset of polarization lidar observations from Lauder, New Zealand / Aotearoa, was used to distinguish the thermodynamic phase of natural clouds. The cloud dataset was separated to assess the impact of air mass origin on the frequency of heterogeneous ice formation. Ice formation efficiency in clouds above Lauder was found to be lower than in the polluted Northern Hemisphere midlatitudes but higher than in very clean and pristine environments, such as Punta Arenas in southern Chile.
Karoline Block, Mahnoosh Haghighatnasab, Daniel G. Partridge, Philip Stier, and Johannes Quaas
Earth Syst. Sci. Data, 16, 443–470, https://doi.org/10.5194/essd-16-443-2024, https://doi.org/10.5194/essd-16-443-2024, 2024
Short summary
Short summary
Aerosols being able to act as condensation nuclei for cloud droplets (CCNs) are a key element in cloud formation but very difficult to determine. In this study we present a new global vertically resolved CCN dataset for various humidity conditions and aerosols. It is obtained using an atmospheric model (CAMS reanalysis) that is fed by satellite observations of light extinction (AOD). We investigate and evaluate the abundance of CCNs in the atmosphere and their temporal and spatial occurrence.
Hannes Jascha Griesche, Carola Barrientos-Velasco, Hartwig Deneke, Anja Hünerbein, Patric Seifert, and Andreas Macke
Atmos. Chem. Phys., 24, 597–612, https://doi.org/10.5194/acp-24-597-2024, https://doi.org/10.5194/acp-24-597-2024, 2024
Short summary
Short summary
The Arctic is strongly affected by climate change and the role of clouds therein is not yet completely understood. Measurements from the Arctic expedition PS106 were used to simulate radiative fluxes with and without clouds at very low altitudes (below 165 m), and their radiative effect was calculated to be 54 Wm-2. The low heights of these clouds make them hard to observe. This study shows the importance of accurate measurements and simulations of clouds and gives suggestions for improvements.
Marcus Klingebiel, André Ehrlich, Elena Ruiz-Donoso, Nils Risse, Imke Schirmacher, Evelyn Jäkel, Michael Schäfer, Kevin Wolf, Mario Mech, Manuel Moser, Christiane Voigt, and Manfred Wendisch
Atmos. Chem. Phys., 23, 15289–15304, https://doi.org/10.5194/acp-23-15289-2023, https://doi.org/10.5194/acp-23-15289-2023, 2023
Short summary
Short summary
In this study we explain how we use aircraft measurements from two Arctic research campaigns to identify cloud properties (like droplet size) over sea-ice and ice-free ocean. To make sure that our measurements make sense, we compare them with other observations. Our results show, e.g., larger cloud droplets in early summer than in spring. Moreover, the cloud droplets are also larger over ice-free ocean than compared to sea ice. In the future, our data can be used to improve climate models.
Hyunju Jung, Peter Knippertz, Yvonne Ruckstuhl, Robert Redl, Tijana Janjic, and Corinna Hoose
Weather Clim. Dynam., 4, 1111–1134, https://doi.org/10.5194/wcd-4-1111-2023, https://doi.org/10.5194/wcd-4-1111-2023, 2023
Short summary
Short summary
A narrow rainfall belt in the tropics is an important feature for large-scale circulations and the global water cycle. The accurate simulation of this rainfall feature has been a long-standing problem, with the reasons behind that unclear. We present a novel diagnostic tool that allows us to disentangle processes important for rainfall, which changes due to modifications in model. Using our diagnostic tool, one can potentially identify sources of uncertainty in weather and climate models.
Giovanni Chellini, Rosa Gierens, Kerstin Ebell, Theresa Kiszler, Pavel Krobot, Alexander Myagkov, Vera Schemann, and Stefan Kneifel
Earth Syst. Sci. Data, 15, 5427–5448, https://doi.org/10.5194/essd-15-5427-2023, https://doi.org/10.5194/essd-15-5427-2023, 2023
Short summary
Short summary
We present a comprehensive quality-controlled dataset of remote sensing observations of low-level mixed-phase clouds (LLMPCs) taken at the high Arctic site of Ny-Ålesund, Svalbard, Norway. LLMPCs occur frequently in the Arctic region, and substantially warm the surface. However, our understanding of microphysical processes in these clouds is incomplete. This dataset includes a comprehensive set of variables which allow for extensive investigation of such processes in LLMPCs at the site.
Pablo Saavedra Garfias, Heike Kalesse-Los, Luisa von Albedyll, Hannes Griesche, and Gunnar Spreen
Atmos. Chem. Phys., 23, 14521–14546, https://doi.org/10.5194/acp-23-14521-2023, https://doi.org/10.5194/acp-23-14521-2023, 2023
Short summary
Short summary
An important Arctic climate process is the release of heat fluxes from sea ice openings to the atmosphere that influence the clouds. The characterization of this process is the objective of this study. Using synergistic observations from the MOSAiC expedition, we found that single-layer cloud properties show significant differences when clouds are coupled or decoupled to the water vapour transport which is used as physical link between the upwind sea ice openings and the cloud under observation.
Lucas Reimann, Clemens Simmer, and Silke Trömel
Atmos. Chem. Phys., 23, 14219–14237, https://doi.org/10.5194/acp-23-14219-2023, https://doi.org/10.5194/acp-23-14219-2023, 2023
Short summary
Short summary
Polarimetric radar observations were assimilated for the first time in a convective-scale numerical weather prediction system in Germany and their impact on short-term precipitation forecasts was evaluated. The assimilation was performed using microphysical retrievals of liquid and ice water content and yielded slightly improved deterministic 9 h precipitation forecasts for three intense summer precipitation cases with respect to the assimilation of radar reflectivity alone.
Rodanthi-Elisavet Mamouri, Albert Ansmann, Kevin Ohneiser, Daniel A. Knopf, Argyro Nisantzi, Johannes Bühl, Ronny Engelmann, Annett Skupin, Patric Seifert, Holger Baars, Dragos Ene, Ulla Wandinger, and Diofantos Hadjimitsis
Atmos. Chem. Phys., 23, 14097–14114, https://doi.org/10.5194/acp-23-14097-2023, https://doi.org/10.5194/acp-23-14097-2023, 2023
Short summary
Short summary
For the first time, rather clear evidence is found that wildfire smoke particles can trigger strong cirrus formation. This finding is of importance because intensive and large wildfires may occur increasingly often in the future as climate change proceeds. Based on lidar observations in Cyprus in autumn 2020, we provide detailed insight into the cirrus formation at the tropopause in the presence of aged wildfire smoke (here, 8–9 day old Californian wildfire smoke).
Elena De La Torre Castro, Tina Jurkat-Witschas, Armin Afchine, Volker Grewe, Valerian Hahn, Simon Kirschler, Martina Krämer, Johannes Lucke, Nicole Spelten, Heini Wernli, Martin Zöger, and Christiane Voigt
Atmos. Chem. Phys., 23, 13167–13189, https://doi.org/10.5194/acp-23-13167-2023, https://doi.org/10.5194/acp-23-13167-2023, 2023
Short summary
Short summary
In this study, we show the differences in the microphysical properties between high-latitude (HL) cirrus and mid-latitude (ML) cirrus over the Arctic, North Atlantic, and central Europe during summer. The in situ measurements are combined with backward trajectories to investigate the influence of the region on cloud formation. We show that HL cirrus are characterized by a lower concentration of larger ice crystals when compared to ML cirrus.
Albert Ansmann, Kevin Ohneiser, Ronny Engelmann, Martin Radenz, Hannes Griesche, Julian Hofer, Dietrich Althausen, Jessie M. Creamean, Matthew C. Boyer, Daniel A. Knopf, Sandro Dahlke, Marion Maturilli, Henriette Gebauer, Johannes Bühl, Cristofer Jimenez, Patric Seifert, and Ulla Wandinger
Atmos. Chem. Phys., 23, 12821–12849, https://doi.org/10.5194/acp-23-12821-2023, https://doi.org/10.5194/acp-23-12821-2023, 2023
Short summary
Short summary
The 1-year MOSAiC (2019–2020) expedition with the German ice breaker Polarstern was the largest polar field campaign ever conducted. The Polarstern, with our lidar aboard, drifted with the pack ice north of 85° N for more than 7 months (October 2019 to mid-May 2020). We measured the full annual cycle of aerosol conditions in terms of aerosol optical and cloud-process-relevant properties. We observed a strong contrast between polluted winter and clean summer aerosol conditions.
Simon Kirschler, Christiane Voigt, Bruce E. Anderson, Gao Chen, Ewan C. Crosbie, Richard A. Ferrare, Valerian Hahn, Johnathan W. Hair, Stefan Kaufmann, Richard H. Moore, David Painemal, Claire E. Robinson, Kevin J. Sanchez, Amy J. Scarino, Taylor J. Shingler, Michael A. Shook, Kenneth L. Thornhill, Edward L. Winstead, Luke D. Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 23, 10731–10750, https://doi.org/10.5194/acp-23-10731-2023, https://doi.org/10.5194/acp-23-10731-2023, 2023
Short summary
Short summary
In this study we present an overview of liquid and mixed-phase clouds and precipitation in the marine boundary layer over the western North Atlantic Ocean. We compare microphysical properties of pure liquid clouds to mixed-phase clouds and show that the initiation of the ice phase in mixed-phase clouds promotes precipitation. The observational data presented in this study are well suited for investigating the processes that give rise to liquid and mixed-phase clouds, ice, and precipitation.
Olivia Linke, Johannes Quaas, Finja Baumer, Sebastian Becker, Jan Chylik, Sandro Dahlke, André Ehrlich, Dörthe Handorf, Christoph Jacobi, Heike Kalesse-Los, Luca Lelli, Sina Mehrdad, Roel A. J. Neggers, Johannes Riebold, Pablo Saavedra Garfias, Niklas Schnierstein, Matthew D. Shupe, Chris Smith, Gunnar Spreen, Baptiste Verneuil, Kameswara S. Vinjamuri, Marco Vountas, and Manfred Wendisch
Atmos. Chem. Phys., 23, 9963–9992, https://doi.org/10.5194/acp-23-9963-2023, https://doi.org/10.5194/acp-23-9963-2023, 2023
Short summary
Short summary
Lapse rate feedback (LRF) is a major driver of the Arctic amplification (AA) of climate change. It arises because the warming is stronger at the surface than aloft. Several processes can affect the LRF in the Arctic, such as the omnipresent temperature inversion. Here, we compare multimodel climate simulations to Arctic-based observations from a large research consortium to broaden our understanding of these processes, find synergy among them, and constrain the Arctic LRF and AA.
Holger Baars, Joshua Walchester, Elizaveta Basharova, Henriette Gebauer, Martin Radenz, Johannes Bühl, Boris Barja, Ulla Wandinger, and Patric Seifert
Atmos. Meas. Tech., 16, 3809–3834, https://doi.org/10.5194/amt-16-3809-2023, https://doi.org/10.5194/amt-16-3809-2023, 2023
Short summary
Short summary
In 2018, the Aeolus satellite of the European Space Agency (ESA) was launched to improve weather forecasts through global measurements of wind profiles. Given the novel lidar technique onboard, extensive validation efforts have been needed to verify the observations. For this reason, we performed long-term validation measurements in Germany and Chile. We found significant improvement in the data products due to a new algorithm version and can confirm the general validity of Aeolus observations.
Armin Sorooshian, Mikhail D. Alexandrov, Adam D. Bell, Ryan Bennett, Grace Betito, Sharon P. Burton, Megan E. Buzanowicz, Brian Cairns, Eduard V. Chemyakin, Gao Chen, Yonghoon Choi, Brian L. Collister, Anthony L. Cook, Andrea F. Corral, Ewan C. Crosbie, Bastiaan van Diedenhoven, Joshua P. DiGangi, Glenn S. Diskin, Sanja Dmitrovic, Eva-Lou Edwards, Marta A. Fenn, Richard A. Ferrare, David van Gilst, Johnathan W. Hair, David B. Harper, Miguel Ricardo A. Hilario, Chris A. Hostetler, Nathan Jester, Michael Jones, Simon Kirschler, Mary M. Kleb, John M. Kusterer, Sean Leavor, Joseph W. Lee, Hongyu Liu, Kayla McCauley, Richard H. Moore, Joseph Nied, Anthony Notari, John B. Nowak, David Painemal, Kasey E. Phillips, Claire E. Robinson, Amy Jo Scarino, Joseph S. Schlosser, Shane T. Seaman, Chellappan Seethala, Taylor J. Shingler, Michael A. Shook, Kenneth A. Sinclair, William L. Smith Jr., Douglas A. Spangenberg, Snorre A. Stamnes, Kenneth L. Thornhill, Christiane Voigt, Holger Vömel, Andrzej P. Wasilewski, Hailong Wang, Edward L. Winstead, Kira Zeider, Xubin Zeng, Bo Zhang, Luke D. Ziemba, and Paquita Zuidema
Earth Syst. Sci. Data, 15, 3419–3472, https://doi.org/10.5194/essd-15-3419-2023, https://doi.org/10.5194/essd-15-3419-2023, 2023
Short summary
Short summary
The NASA Aerosol Cloud meTeorology Interactions oVer the western ATlantic Experiment (ACTIVATE) produced a unique dataset for research into aerosol–cloud–meteorology interactions. HU-25 Falcon and King Air aircraft conducted systematic and spatially coordinated flights over the northwest Atlantic Ocean. This paper describes the ACTIVATE flight strategy, instrument and complementary dataset products, data access and usage details, and data application notes.
Valerian Hahn, Ralf Meerkötter, Christiane Voigt, Sonja Gisinger, Daniel Sauer, Valéry Catoire, Volker Dreiling, Hugh Coe, Cyrille Flamant, Stefan Kaufmann, Jonas Kleine, Peter Knippertz, Manuel Moser, Philip Rosenberg, Hans Schlager, Alfons Schwarzenboeck, and Jonathan Taylor
Atmos. Chem. Phys., 23, 8515–8530, https://doi.org/10.5194/acp-23-8515-2023, https://doi.org/10.5194/acp-23-8515-2023, 2023
Short summary
Short summary
During the DACCIWA campaign in West Africa, we found a 35 % increase in the cloud droplet concentration that formed in a polluted compared with a less polluted environment and a decrease of 17 % in effective droplet diameter. Radiative transfer simulations, based on the measured cloud properties, reveal that these low-level polluted clouds radiate only 2.6 % more energy back to space, compared with a less polluted cloud. The corresponding additional decrease in temperature is rather small.
Silke Groß, Tina Jurkat-Witschas, Qiang Li, Martin Wirth, Benedikt Urbanek, Martina Krämer, Ralf Weigel, and Christiane Voigt
Atmos. Chem. Phys., 23, 8369–8381, https://doi.org/10.5194/acp-23-8369-2023, https://doi.org/10.5194/acp-23-8369-2023, 2023
Short summary
Short summary
Aviation-emitted aerosol can have an impact on cirrus clouds. We present optical and microphysical properties of mid-latitude cirrus clouds which were formed under the influence of aviation-emitted aerosol or which were formed under rather pristine conditions. We find that cirrus clouds affected by aviation-emitted aerosol show larger values of the particle linear depolarization ratio, larger mean effective ice particle diameters and decreased ice particle number concentrations.
Hao Luo, Johannes Quaas, and Yong Han
Atmos. Chem. Phys., 23, 8169–8186, https://doi.org/10.5194/acp-23-8169-2023, https://doi.org/10.5194/acp-23-8169-2023, 2023
Short summary
Short summary
Clouds exhibit a wide range of vertical structures with varying microphysical and radiative properties. We show a global survey of spatial distribution, vertical extent and radiative effect of various classified cloud vertical structures using joint satellite observations from the new CCCM datasets during 2007–2010. Moreover, the long-term trends in CVSs are investigated based on different CMIP6 future scenarios to capture the cloud variations with different, increasing anthropogenic forcings.
Bin Zhou and Christoph Knote
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-111, https://doi.org/10.5194/nhess-2023-111, 2023
Publication in NHESS not foreseen
Short summary
Short summary
This study estimates the loss of life caused by wildfires in the eastern and central Mediterranean basin in summer 2021. We used a computer model to simulate concentrations of air pollutants emitted from wildfires and estimated the resulting excess human deaths based on the most relevant evidence from literature. We found that wildfire-caused air pollution accounted for several hundred excess deaths. We estimate the effects of ozone to exceed those of particles created by wildfires.
Manuel Moser, Christiane Voigt, Tina Jurkat-Witschas, Valerian Hahn, Guillaume Mioche, Olivier Jourdan, Régis Dupuy, Christophe Gourbeyre, Alfons Schwarzenboeck, Johannes Lucke, Yvonne Boose, Mario Mech, Stephan Borrmann, André Ehrlich, Andreas Herber, Christof Lüpkes, and Manfred Wendisch
Atmos. Chem. Phys., 23, 7257–7280, https://doi.org/10.5194/acp-23-7257-2023, https://doi.org/10.5194/acp-23-7257-2023, 2023
Short summary
Short summary
This study provides a comprehensive microphysical and thermodynamic phase analysis of low-level clouds in the northern Fram Strait, above the sea ice and the open ocean, during spring and summer. Using airborne in situ cloud data, we show that the properties of Arctic low-level clouds vary significantly with seasonal meteorological situations and surface conditions. The observations presented in this study can help one to assess the role of clouds in the Arctic climate system.
Philipp Gregor, Tobias Zinner, Fabian Jakub, and Bernhard Mayer
Atmos. Meas. Tech., 16, 3257–3271, https://doi.org/10.5194/amt-16-3257-2023, https://doi.org/10.5194/amt-16-3257-2023, 2023
Short summary
Short summary
This work introduces MACIN, a model for short-term forecasting of direct irradiance for solar energy applications. MACIN exploits cloud images of multiple cameras to predict irradiance. The model is applied to artificial images of clouds from a weather model. The artificial cloud data allow for a more in-depth evaluation and attribution of errors compared with real data. Good performance of derived cloud information and significant forecast improvements over a baseline forecast were found.
Gregor Köcher, Tobias Zinner, and Christoph Knote
Atmos. Chem. Phys., 23, 6255–6269, https://doi.org/10.5194/acp-23-6255-2023, https://doi.org/10.5194/acp-23-6255-2023, 2023
Short summary
Short summary
Polarimetric radar observations of 30 d of convective precipitation events are used to statistically analyze 5 state-of-the-art microphysics schemes of varying complexity. The frequency and area of simulated heavy-precipitation events are in some cases significantly different from those observed, depending on the microphysics scheme. Analysis of simulated particle size distributions and reflectivities shows that some schemes have problems reproducing the correct particle size distributions.
Athena Augusta Floutsi, Holger Baars, Ronny Engelmann, Dietrich Althausen, Albert Ansmann, Stephanie Bohlmann, Birgit Heese, Julian Hofer, Thomas Kanitz, Moritz Haarig, Kevin Ohneiser, Martin Radenz, Patric Seifert, Annett Skupin, Zhenping Yin, Sabur F. Abdullaev, Mika Komppula, Maria Filioglou, Elina Giannakaki, Iwona S. Stachlewska, Lucja Janicka, Daniele Bortoli, Eleni Marinou, Vassilis Amiridis, Anna Gialitaki, Rodanthi-Elisavet Mamouri, Boris Barja, and Ulla Wandinger
Atmos. Meas. Tech., 16, 2353–2379, https://doi.org/10.5194/amt-16-2353-2023, https://doi.org/10.5194/amt-16-2353-2023, 2023
Short summary
Short summary
DeLiAn is a collection of lidar-derived aerosol intensive optical properties for several aerosol types, namely the particle linear depolarization ratio, the extinction-to-backscatter ratio (lidar ratio) and the Ångström exponent. The data collection is based on globally distributed, long-term, ground-based, multiwavelength, Raman and polarization lidar measurements and currently covers two wavelengths, 355 and 532 nm, for 13 aerosol categories ranging from basic aerosol types to mixtures.
Armin Blanke, Andrew J. Heymsfield, Manuel Moser, and Silke Trömel
Atmos. Meas. Tech., 16, 2089–2106, https://doi.org/10.5194/amt-16-2089-2023, https://doi.org/10.5194/amt-16-2089-2023, 2023
Short summary
Short summary
We present an evaluation of current retrieval techniques in the ice phase applied to polarimetric radar measurements with collocated in situ observations of aircraft conducted over the Olympic Mountains, Washington State, during winter 2015. Radar estimates of ice properties agreed most with aircraft observations in regions with pronounced radar signatures, but uncertainties were identified that indicate issues of some retrievals, particularly in warmer temperature regimes.
Samuel Kwakye, Heike Kalesse-Los, Maximilian Maahn, Patric Seifert, Roel van Klink, Christian Wirth, and Johannes Quaas
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-69, https://doi.org/10.5194/amt-2023-69, 2023
Publication in AMT not foreseen
Short summary
Short summary
Insect numbers in the atmosphere can be calculated using polarimetric weather radar but they have to be identified and separated from other echoes, especially weather phenomena. Here, the separation is demonstrated using three machine-learning algorithms and insect count data from suction traps and the nature of radar measurements of different radar echoes is revealed. Random forest is the best separating algorithm and insect echoes radar measurements are distinct.
Heike Kalesse-Los, Anton Kötsche, Andreas Foth, Johannes Röttenbacher, Teresa Vogl, and Jonas Witthuhn
Atmos. Meas. Tech., 16, 1683–1704, https://doi.org/10.5194/amt-16-1683-2023, https://doi.org/10.5194/amt-16-1683-2023, 2023
Short summary
Short summary
The Virga-Sniffer, a new modular open-source Python package tool to characterize full precipitation evaporation (so-called virga) from ceilometer cloud base height and vertically pointing cloud radar reflectivity time–height fields, is described. Results of its first application to RV Meteor observations during the EUREC4A field experiment in January–February 2020 are shown. About half of all detected clouds with bases below the trade inversion height were found to produce virga.
Jianqi Zhao, Xiaoyan Ma, Johannes Quaas, and Hailing Jia
EGUsphere, https://doi.org/10.5194/egusphere-2023-331, https://doi.org/10.5194/egusphere-2023-331, 2023
Preprint archived
Short summary
Short summary
We improve the ability of WRF-Chem model to simulate aerosol-cloud physical and chemical processes by coupling a spectral-bin cloud microphysics scheme and online aerosol module, and consequently explore the aerosol-cloud interactions over eastern China and its adjacent ocean in boreal winter. Our study highlights the differences in aerosol-cloud interactions between land and ocean, precipitation clouds and non-precipitation clouds, and differentiates and quantifies their underlying mechanisms.
Marine Bonazzola, Hélène Chepfer, Po-Lun Ma, Johannes Quaas, David M. Winker, Artem Feofilov, and Nick Schutgens
Geosci. Model Dev., 16, 1359–1377, https://doi.org/10.5194/gmd-16-1359-2023, https://doi.org/10.5194/gmd-16-1359-2023, 2023
Short summary
Short summary
Aerosol has a large impact on climate. Using a lidar aerosol simulator ensures consistent comparisons between modeled and observed aerosol. We present a lidar aerosol simulator that applies a cloud masking and an aerosol detection threshold. We estimate the lidar signals that would be observed at 532 nm by the Cloud-Aerosol Lidar with Orthogonal Polarization overflying the atmosphere predicted by a climate model. Our comparison at the seasonal timescale shows a discrepancy in the Southern Ocean.
Dominik Brunner, Gerrit Kuhlmann, Stephan Henne, Erik Koene, Bastian Kern, Sebastian Wolff, Christiane Voigt, Patrick Jöckel, Christoph Kiemle, Anke Roiger, Alina Fiehn, Sven Krautwurst, Konstantin Gerilowski, Heinrich Bovensmann, Jakob Borchardt, Michal Galkowski, Christoph Gerbig, Julia Marshall, Andrzej Klonecki, Pascal Prunet, Robert Hanfland, Margit Pattantyús-Ábrahám, Andrzej Wyszogrodzki, and Andreas Fix
Atmos. Chem. Phys., 23, 2699–2728, https://doi.org/10.5194/acp-23-2699-2023, https://doi.org/10.5194/acp-23-2699-2023, 2023
Short summary
Short summary
We evaluated six atmospheric transport models for their capability to simulate the CO2 plumes from two of the largest power plants in Europe by comparing the models against aircraft observations collected during the CoMet (Carbon Dioxide and Methane Mission) campaign in 2018. The study analyzed how realistically such plumes can be simulated at different model resolutions and how well the planned European satellite mission CO2M will be able to quantify emissions from power plants.
Yun Li, Christoph Mahnke, Susanne Rohs, Ulrich Bundke, Nicole Spelten, Georgios Dekoutsidis, Silke Groß, Christiane Voigt, Ulrich Schumann, Andreas Petzold, and Martina Krämer
Atmos. Chem. Phys., 23, 2251–2271, https://doi.org/10.5194/acp-23-2251-2023, https://doi.org/10.5194/acp-23-2251-2023, 2023
Short summary
Short summary
The radiative effect of aviation-induced cirrus is closely related to ambient conditions and its microphysical properties. Our study investigated the occurrence of contrail and natural cirrus measured above central Europe in spring 2014. It finds that contrail cirrus appears frequently in the pressure range 200 to 245 hPa and occurs more often in slightly ice-subsaturated environments than expected. Avoiding slightly ice-subsaturated regions by aviation might help mitigate contrail cirrus.
Ziming Wang, Luca Bugliaro, Tina Jurkat-Witschas, Romy Heller, Ulrike Burkhardt, Helmut Ziereis, Georgios Dekoutsidis, Martin Wirth, Silke Groß, Simon Kirschler, Stefan Kaufmann, and Christiane Voigt
Atmos. Chem. Phys., 23, 1941–1961, https://doi.org/10.5194/acp-23-1941-2023, https://doi.org/10.5194/acp-23-1941-2023, 2023
Short summary
Short summary
Differences in the microphysical properties of contrail cirrus and natural cirrus in a contrail outbreak situation during the ML-CIRRUS campaign over the North Atlantic flight corridor can be observed from in situ measurements. The cirrus radiative effect in the area of the outbreak, derived from satellite observation-based radiative transfer modeling, is warming in the early morning and cooling during the day.
Veronika Pörtge, Tobias Kölling, Anna Weber, Lea Volkmer, Claudia Emde, Tobias Zinner, Linda Forster, and Bernhard Mayer
Atmos. Meas. Tech., 16, 645–667, https://doi.org/10.5194/amt-16-645-2023, https://doi.org/10.5194/amt-16-645-2023, 2023
Short summary
Short summary
In this work, we analyze polarized cloudbow observations by the airborne camera system specMACS to retrieve the cloud droplet size distribution defined by the effective radius (reff) and the effective variance (veff). Two case studies of trade-wind cumulus clouds observed during the EUREC4A field campaign are presented. The results are combined into maps of reff and veff with a very high spatial resolution (100 m × 100 m) that allow new insights into cloud microphysics.
Michael Frech, Cornelius Hald, Maximilian Schaper, Bertram Lange, and Benjamin Rohrdantz
Atmos. Meas. Tech., 16, 295–309, https://doi.org/10.5194/amt-16-295-2023, https://doi.org/10.5194/amt-16-295-2023, 2023
Short summary
Short summary
Weather radar data are the backbone of a lot of meteorological products. In order to obtain a better low-level coverage with radar data, additional systems have to be included. The frequency range in which radars are allowed to operate is limited. A potential radar-to-radar interference has to be avoided. The paper derives guidelines on how additional radars can be included into a C-band weather radar network and how interferences can be avoided.
Mohamed Saadi, Carina Furusho-Percot, Alexandre Belleflamme, Ju-Yu Chen, Silke Trömel, and Stefan Kollet
Nat. Hazards Earth Syst. Sci., 23, 159–177, https://doi.org/10.5194/nhess-23-159-2023, https://doi.org/10.5194/nhess-23-159-2023, 2023
Short summary
Short summary
On 14 July 2021, heavy rainfall fell over central Europe, causing considerable damage and human fatalities. We analyzed how accurate our estimates of rainfall and peak flow were for these flooding events in western Germany. We found that the rainfall estimates from radar measurements were improved by including polarimetric variables and their vertical gradients. Peak flow estimates were highly uncertain due to uncertainties in hydrological model parameters and rainfall measurements.
Andreas Marsing, Ralf Meerkötter, Romy Heller, Stefan Kaufmann, Tina Jurkat-Witschas, Martina Krämer, Christian Rolf, and Christiane Voigt
Atmos. Chem. Phys., 23, 587–609, https://doi.org/10.5194/acp-23-587-2023, https://doi.org/10.5194/acp-23-587-2023, 2023
Short summary
Short summary
We employ highly resolved aircraft measurements of profiles of the ice water content (IWC) in Arctic cirrus clouds in winter and spring, when solar irradiation is low. Using radiation transfer calculations, we assess the cloud radiative effect over different surfaces like snow or ocean. The variability in the IWC of the clouds affects their overall radiative effect and drives internal processes. This helps understand the role of cirrus in a rapidly changing Arctic environment.
Johannes Lucke, Tina Jurkat-Witschas, Romy Heller, Valerian Hahn, Matthew Hamman, Wolfgang Breitfuss, Venkateshwar Reddy Bora, Manuel Moser, and Christiane Voigt
Atmos. Meas. Tech., 15, 7375–7394, https://doi.org/10.5194/amt-15-7375-2022, https://doi.org/10.5194/amt-15-7375-2022, 2022
Short summary
Short summary
Flight testing in icing conditions requires instruments that are able to accurately measure the liquid water content of supercooled large droplets (SLDs). This work finds that the 12 mm cone of the Nevzorov hot-wire probe has excellent collection properties for SLDs. We also derive a correction to compensate for the low collision efficiency of small droplets with the cone. The results provide a procedure to evaluate LWC measurements of the 12 mm cone during wind tunnel and airborne experiments.
Mathias Gergely, Maximilian Schaper, Matthias Toussaint, and Michael Frech
Atmos. Meas. Tech., 15, 7315–7335, https://doi.org/10.5194/amt-15-7315-2022, https://doi.org/10.5194/amt-15-7315-2022, 2022
Short summary
Short summary
This study presents the new vertically pointing birdbath scan of the German C-band radar network, which provides high-resolution profiles of precipitating clouds above all DWD weather radars since the spring of 2021. Our AI-based postprocessing method for filtering and analyzing the recorded radar data offers a unique quantitative view into a wide range of precipitation events from snowfall over stratiform rain to intense frontal showers and will be used to complement DWD's operational services.
Laura Tomsche, Andreas Marsing, Tina Jurkat-Witschas, Johannes Lucke, Stefan Kaufmann, Katharina Kaiser, Johannes Schneider, Monika Scheibe, Hans Schlager, Lenard Röder, Horst Fischer, Florian Obersteiner, Andreas Zahn, Martin Zöger, Jos Lelieveld, and Christiane Voigt
Atmos. Chem. Phys., 22, 15135–15151, https://doi.org/10.5194/acp-22-15135-2022, https://doi.org/10.5194/acp-22-15135-2022, 2022
Short summary
Short summary
The detection of sulfur compounds in the upper troposphere (UT) and lower stratosphere (LS) is a challenge. In-flight measurements of SO2 and sulfate aerosol were performed during the BLUESKY mission in spring 2020 under exceptional atmospheric conditions. Reduced sinks in the dry UTLS and lower but still significant air traffic influenced the enhanced SO2 in the UT, and aged volcanic plumes enhanced the LS sulfate aerosol impacting the atmospheric radiation budget and global climate.
Maximilian Schaper, Michael Frech, David Michaelis, Cornelius Hald, and Benjamin Rohrdantz
Atmos. Meas. Tech., 15, 6625–6642, https://doi.org/10.5194/amt-15-6625-2022, https://doi.org/10.5194/amt-15-6625-2022, 2022
Short summary
Short summary
C-band weather radar data are commonly compromised by radio frequency interference (RFI) from external sources. It is not possible to separate a superimposed interference signal from the radar data. Therefore, the best course of action is to shut down RFI sources as quickly as possible. An automated RFI detection algorithm has been developed. Since its implementation, persistent RFI sources are eliminated much more quickly, while the number of short-lived RFI sources keeps steadily increasing.
Alberto Caldas-Alvarez, Markus Augenstein, Georgy Ayzel, Klemens Barfus, Ribu Cherian, Lisa Dillenardt, Felix Fauer, Hendrik Feldmann, Maik Heistermann, Alexia Karwat, Frank Kaspar, Heidi Kreibich, Etor Emanuel Lucio-Eceiza, Edmund P. Meredith, Susanna Mohr, Deborah Niermann, Stephan Pfahl, Florian Ruff, Henning W. Rust, Lukas Schoppa, Thomas Schwitalla, Stella Steidl, Annegret H. Thieken, Jordis S. Tradowsky, Volker Wulfmeyer, and Johannes Quaas
Nat. Hazards Earth Syst. Sci., 22, 3701–3724, https://doi.org/10.5194/nhess-22-3701-2022, https://doi.org/10.5194/nhess-22-3701-2022, 2022
Short summary
Short summary
In a warming climate, extreme precipitation events are becoming more frequent. To advance our knowledge on such phenomena, we present a multidisciplinary analysis of a selected case study that took place on 29 June 2017 in the Berlin metropolitan area. Our analysis provides evidence of the extremeness of the case from the atmospheric and the impacts perspectives as well as new insights on the physical mechanisms of the event at the meteorological and climate scales.
Prabhakar Shrestha, Jana Mendrok, and Dominik Brunner
Atmos. Chem. Phys., 22, 14095–14117, https://doi.org/10.5194/acp-22-14095-2022, https://doi.org/10.5194/acp-22-14095-2022, 2022
Short summary
Short summary
The study extends the Terrestrial Systems Modeling Platform with gas-phase chemistry aerosol dynamics and a radar forward operator to enable detailed studies of aerosol–cloud–precipitation interactions. This is demonstrated using a case study of a deep convective storm, which showed that the strong updraft in the convective core of the storm produced aerosol-tower-like features, which affected the size of the hydrometeors and the simulated polarimetric features (e.g., ZDR and KDP columns).
Hossein Dadashazar, Andrea F. Corral, Ewan Crosbie, Sanja Dmitrovic, Simon Kirschler, Kayla McCauley, Richard Moore, Claire Robinson, Joseph S. Schlosser, Michael Shook, K. Lee Thornhill, Christiane Voigt, Edward Winstead, Luke Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 22, 13897–13913, https://doi.org/10.5194/acp-22-13897-2022, https://doi.org/10.5194/acp-22-13897-2022, 2022
Short summary
Short summary
Multi-season airborne data over the northwestern Atlantic show that organic mass fraction and the relative amount of oxygenated organics within that fraction are enhanced in droplet residual particles as compared to particles below and above cloud. In-cloud aqueous processing is shown to be a potential driver of this compositional shift in cloud. This implies that aerosol–cloud interactions in the region reduce aerosol hygroscopicity due to the jump in the organic : sulfate ratio in cloud.
Frederic Tridon, Israel Silber, Alessandro Battaglia, Stefan Kneifel, Ann Fridlind, Petros Kalogeras, and Ranvir Dhillon
Atmos. Chem. Phys., 22, 12467–12491, https://doi.org/10.5194/acp-22-12467-2022, https://doi.org/10.5194/acp-22-12467-2022, 2022
Short summary
Short summary
The role of ice precipitation in the Earth water budget is not well known because ice particles are complex, and their formation involves intricate processes. Riming of ice crystals by supercooled water droplets is an efficient process, but little is known about its importance at high latitudes. In this work, by exploiting the deployment of an unprecedented number of remote sensing systems in Antarctica, we find that riming occurs at much lower temperatures compared with the mid-latitudes.
Johannes Quaas, Hailing Jia, Chris Smith, Anna Lea Albright, Wenche Aas, Nicolas Bellouin, Olivier Boucher, Marie Doutriaux-Boucher, Piers M. Forster, Daniel Grosvenor, Stuart Jenkins, Zbigniew Klimont, Norman G. Loeb, Xiaoyan Ma, Vaishali Naik, Fabien Paulot, Philip Stier, Martin Wild, Gunnar Myhre, and Michael Schulz
Atmos. Chem. Phys., 22, 12221–12239, https://doi.org/10.5194/acp-22-12221-2022, https://doi.org/10.5194/acp-22-12221-2022, 2022
Short summary
Short summary
Pollution particles cool climate and offset part of the global warming. However, they are washed out by rain and thus their effect responds quickly to changes in emissions. We show multiple datasets to demonstrate that aerosol emissions and their concentrations declined in many regions influenced by human emissions, as did the effects on clouds. Consequently, the cooling impact on the Earth energy budget became smaller. This change in trend implies a relative warming.
Willi Schimmel, Heike Kalesse-Los, Maximilian Maahn, Teresa Vogl, Andreas Foth, Pablo Saavedra Garfias, and Patric Seifert
Atmos. Meas. Tech., 15, 5343–5366, https://doi.org/10.5194/amt-15-5343-2022, https://doi.org/10.5194/amt-15-5343-2022, 2022
Short summary
Short summary
This study introduces the novel Doppler radar spectra-based machine learning approach VOODOO (reVealing supercOOled liquiD beyOnd lidar attenuatiOn). VOODOO is a powerful probability-based extension to the existing Cloudnet hydrometeor target classification, enabling the detection of liquid-bearing cloud layers beyond complete lidar attenuation via user-defined p* threshold. VOODOO performs best for (multi-layer) stratiform and deep mixed-phase clouds with liquid water path > 100 g m−2.
Leonie von Terzi, José Dias Neto, Davide Ori, Alexander Myagkov, and Stefan Kneifel
Atmos. Chem. Phys., 22, 11795–11821, https://doi.org/10.5194/acp-22-11795-2022, https://doi.org/10.5194/acp-22-11795-2022, 2022
Short summary
Short summary
We present a statistical analysis of ice microphysical processes (IMP) in mid-latitude clouds. Combining various radar approaches, we find that the IMP active at −20 to −10 °C seems to be the main driver of ice particle size, shape and concentration. The strength of aggregation at −20 to −10 °C correlates with the increase in concentration and aspect ratio of locally formed ice particles. Despite ongoing aggregation, the concentration of ice particles stays enhanced until −4 °C.
Albert Ansmann, Kevin Ohneiser, Alexandra Chudnovsky, Daniel A. Knopf, Edwin W. Eloranta, Diego Villanueva, Patric Seifert, Martin Radenz, Boris Barja, Félix Zamorano, Cristofer Jimenez, Ronny Engelmann, Holger Baars, Hannes Griesche, Julian Hofer, Dietrich Althausen, and Ulla Wandinger
Atmos. Chem. Phys., 22, 11701–11726, https://doi.org/10.5194/acp-22-11701-2022, https://doi.org/10.5194/acp-22-11701-2022, 2022
Short summary
Short summary
For the first time we present a systematic study on the impact of wildfire smoke on ozone depletion in the Arctic (2020) and Antarctic stratosphere (2020, 2021). Two major fire events in Siberia and Australia were responsible for the observed record-breaking stratospheric smoke pollution. Our analyses were based on lidar observations of smoke parameters (Polarstern, Punta Arenas) and NDACC Arctic and Antarctic ozone profiles as well as on Antarctic OMI satellite observations of column ozone.
Roger Teoh, Ulrich Schumann, Edward Gryspeerdt, Marc Shapiro, Jarlath Molloy, George Koudis, Christiane Voigt, and Marc E. J. Stettler
Atmos. Chem. Phys., 22, 10919–10935, https://doi.org/10.5194/acp-22-10919-2022, https://doi.org/10.5194/acp-22-10919-2022, 2022
Short summary
Short summary
Aircraft condensation trails (contrails) contribute to over half of the climate forcing attributable to aviation. This study uses historical air traffic and weather data to simulate contrails in the North Atlantic over 5 years, from 2016 to 2021. We found large intra- and inter-year variability in contrail radiative forcing and observed a 66 % reduction due to COVID-19. Most warming contrails predominantly result from night-time flights in winter.
Simon F. Reifenberg, Anna Martin, Matthias Kohl, Sara Bacer, Zaneta Hamryszczak, Ivan Tadic, Lenard Röder, Daniel J. Crowley, Horst Fischer, Katharina Kaiser, Johannes Schneider, Raphael Dörich, John N. Crowley, Laura Tomsche, Andreas Marsing, Christiane Voigt, Andreas Zahn, Christopher Pöhlker, Bruna A. Holanda, Ovid Krüger, Ulrich Pöschl, Mira Pöhlker, Patrick Jöckel, Marcel Dorf, Ulrich Schumann, Jonathan Williams, Birger Bohn, Joachim Curtius, Hardwig Harder, Hans Schlager, Jos Lelieveld, and Andrea Pozzer
Atmos. Chem. Phys., 22, 10901–10917, https://doi.org/10.5194/acp-22-10901-2022, https://doi.org/10.5194/acp-22-10901-2022, 2022
Short summary
Short summary
In this work we use a combination of observational data from an aircraft campaign and model results to investigate the effect of the European lockdown due to COVID-19 in spring 2020. Using model results, we show that the largest relative changes to the atmospheric composition caused by the reduced emissions are located in the upper troposphere around aircraft cruise altitude, while the largest absolute changes are present at the surface.
Xianda Gong, Martin Radenz, Heike Wex, Patric Seifert, Farnoush Ataei, Silvia Henning, Holger Baars, Boris Barja, Albert Ansmann, and Frank Stratmann
Atmos. Chem. Phys., 22, 10505–10525, https://doi.org/10.5194/acp-22-10505-2022, https://doi.org/10.5194/acp-22-10505-2022, 2022
Short summary
Short summary
The sources of ice-nucleating particles (INPs) are poorly understood in the Southern Hemisphere (SH). We studied INPs in the boundary layer in the southern Patagonia region. No seasonal cycle of INP concentrations was observed. The majority of INPs are biogenic particles, likely from local continental sources. The INP concentrations are higher when strong precipitation occurs. While previous studies focused on marine INP sources in SH, we point out the importance of continental sources of INPs.
Jörg Wieder, Nikola Ihn, Claudia Mignani, Moritz Haarig, Johannes Bühl, Patric Seifert, Ronny Engelmann, Fabiola Ramelli, Zamin A. Kanji, Ulrike Lohmann, and Jan Henneberger
Atmos. Chem. Phys., 22, 9767–9797, https://doi.org/10.5194/acp-22-9767-2022, https://doi.org/10.5194/acp-22-9767-2022, 2022
Short summary
Short summary
Ice formation and its evolution in mixed-phase clouds are still uncertain. We evaluate the lidar retrieval of ice-nucleating particle concentration in dust-dominated and continental air masses over the Swiss Alps with in situ observations. A calibration factor to improve the retrieval from continental air masses is proposed. Ice multiplication factors are obtained with a new method utilizing remote sensing. Our results indicate that secondary ice production occurs at temperatures down to −30 °C.
Carola Barrientos-Velasco, Hartwig Deneke, Anja Hünerbein, Hannes J. Griesche, Patric Seifert, and Andreas Macke
Atmos. Chem. Phys., 22, 9313–9348, https://doi.org/10.5194/acp-22-9313-2022, https://doi.org/10.5194/acp-22-9313-2022, 2022
Short summary
Short summary
This article describes an intercomparison of radiative fluxes and cloud properties from satellite, shipborne observations, and 1D radiative transfer simulations. The analysis focuses on research for PS106 expedition aboard the German research vessel, Polarstern. The results are presented in detailed case studies, time series for the PS106 cruise and extended to the central Arctic region. The findings illustrate the main periods of agreement and discrepancies of both points of view.
Ovid O. Krüger, Bruna A. Holanda, Sourangsu Chowdhury, Andrea Pozzer, David Walter, Christopher Pöhlker, Maria Dolores Andrés Hernández, John P. Burrows, Christiane Voigt, Jos Lelieveld, Johannes Quaas, Ulrich Pöschl, and Mira L. Pöhlker
Atmos. Chem. Phys., 22, 8683–8699, https://doi.org/10.5194/acp-22-8683-2022, https://doi.org/10.5194/acp-22-8683-2022, 2022
Short summary
Short summary
The abrupt reduction in human activities during the first COVID-19 lockdown created unprecedented atmospheric conditions. We took the opportunity to quantify changes in black carbon (BC) as a major anthropogenic air pollutant. Therefore, we measured BC on board a research aircraft over Europe during the lockdown and compared the results to measurements from 2017. With model simulations we account for different weather conditions and find a lockdown-related decrease in BC of 41 %.
Eleni Tetoni, Florian Ewald, Martin Hagen, Gregor Köcher, Tobias Zinner, and Silke Groß
Atmos. Meas. Tech., 15, 3969–3999, https://doi.org/10.5194/amt-15-3969-2022, https://doi.org/10.5194/amt-15-3969-2022, 2022
Short summary
Short summary
We use the C-band POLDIRAD and the Ka-band MIRA-35 to perform snowfall dual-wavelength polarimetric radar measurements. We develop an ice microphysics retrieval for mass, apparent shape, and median size of the particle size distribution by comparing observations to T-matrix ice spheroid simulations while varying the mass–size relationship. We furthermore show how the polarimetric measurements from POLDIRAD help to narrow down ambiguities between ice particle shape and size.
Mahnoosh Haghighatnasab, Jan Kretzschmar, Karoline Block, and Johannes Quaas
Atmos. Chem. Phys., 22, 8457–8472, https://doi.org/10.5194/acp-22-8457-2022, https://doi.org/10.5194/acp-22-8457-2022, 2022
Short summary
Short summary
The impact of aerosols emitted by the Holuhraun volcanic eruption on liquid clouds was assessed from a pair of cloud-system-resolving simulations along with satellite retrievals. Inside and outside the plume were compared in terms of their statistical distributions. Analyses indicated enhancement for cloud droplet number concentration inside the volcano plume in model simulations and satellite retrievals, while there was on average a small effect on both liquid water path and cloud fraction.
Simon Kirschler, Christiane Voigt, Bruce Anderson, Ramon Campos Braga, Gao Chen, Andrea F. Corral, Ewan Crosbie, Hossein Dadashazar, Richard A. Ferrare, Valerian Hahn, Johannes Hendricks, Stefan Kaufmann, Richard Moore, Mira L. Pöhlker, Claire Robinson, Amy J. Scarino, Dominik Schollmayer, Michael A. Shook, K. Lee Thornhill, Edward Winstead, Luke D. Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 22, 8299–8319, https://doi.org/10.5194/acp-22-8299-2022, https://doi.org/10.5194/acp-22-8299-2022, 2022
Short summary
Short summary
In this study we show that the vertical velocity dominantly impacts the cloud droplet number concentration (NC) of low-level clouds over the western North Atlantic in the winter and summer season, while the cloud condensation nuclei concentration, aerosol size distribution and chemical composition impact NC within a season. The observational data presented in this study can evaluate and improve the representation of aerosol–cloud interactions for a wide range of conditions.
Prabhakar Shrestha, Silke Trömel, Raquel Evaristo, and Clemens Simmer
Atmos. Chem. Phys., 22, 7593–7618, https://doi.org/10.5194/acp-22-7593-2022, https://doi.org/10.5194/acp-22-7593-2022, 2022
Short summary
Short summary
The study makes use of ensemble numerical simulations with forward operator to evaluate the simulated cloud and precipitation processes with radar observations. While comparing model data with radar has its own challenges due to errors in the forward operator and processed radar measurements, the model was generally found to underestimate the high reflectivity, width/magnitude (value) of ZDR columns and high precipitation.
Kevin Ohneiser, Albert Ansmann, Bernd Kaifler, Alexandra Chudnovsky, Boris Barja, Daniel A. Knopf, Natalie Kaifler, Holger Baars, Patric Seifert, Diego Villanueva, Cristofer Jimenez, Martin Radenz, Ronny Engelmann, Igor Veselovskii, and Félix Zamorano
Atmos. Chem. Phys., 22, 7417–7442, https://doi.org/10.5194/acp-22-7417-2022, https://doi.org/10.5194/acp-22-7417-2022, 2022
Short summary
Short summary
We present and discuss 2 years of long-term lidar observations of the largest stratospheric perturbation by wildfire smoke ever observed. The smoke originated from the record-breaking Australian fires in 2019–2020 and affects climate conditions and even the ozone layer in the Southern Hemisphere. The obvious link between dense smoke occurrence in the stratosphere and strong ozone depletion found in the Arctic and in the Antarctic in 2020 can be regarded as a new aspect of climate change.
Hailing Jia, Johannes Quaas, Edward Gryspeerdt, Christoph Böhm, and Odran Sourdeval
Atmos. Chem. Phys., 22, 7353–7372, https://doi.org/10.5194/acp-22-7353-2022, https://doi.org/10.5194/acp-22-7353-2022, 2022
Short summary
Short summary
Aerosol–cloud interaction is the most uncertain component of the anthropogenic forcing of the climate. By combining satellite and reanalysis data, we show that the strength of the Twomey effect (S) increases remarkably with vertical velocity. Both the confounding effect of aerosol–precipitation interaction and the lack of vertical co-location between aerosol and cloud are found to overestimate S, whereas the retrieval biases in aerosol and cloud appear to underestimate S.
Andreas Luther, Julian Kostinek, Ralph Kleinschek, Sara Defratyka, Mila Stanisavljević, Andreas Forstmaier, Alexandru Dandocsi, Leon Scheidweiler, Darko Dubravica, Norman Wildmann, Frank Hase, Matthias M. Frey, Jia Chen, Florian Dietrich, Jarosław Nȩcki, Justyna Swolkień, Christoph Knote, Sanam N. Vardag, Anke Roiger, and André Butz
Atmos. Chem. Phys., 22, 5859–5876, https://doi.org/10.5194/acp-22-5859-2022, https://doi.org/10.5194/acp-22-5859-2022, 2022
Short summary
Short summary
Coal mining is an extensive source of anthropogenic methane emissions. In order to reduce and mitigate methane emissions, it is important to know how much and where the methane is emitted. We estimated coal mining methane emissions in Poland based on atmospheric methane measurements and particle dispersion modeling. In general, our emission estimates suggest higher emissions than expected by previous annual emission reports.
Mireia Papke Chica, Valerian Hahn, Tiziana Braeuer, Elena de la Torre Castro, Florian Ewald, Mathias Gergely, Simon Kirschler, Luca Bugliaro Goggia, Stefanie Knobloch, Martina Kraemer, Johannes Lucke, Johanna Mayer, Raphael Maerkl, Manuel Moser, Laura Tomsche, Tina Jurkat-Witschas, Martin Zoeger, Christian von Savigny, and Christiane Voigt
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-255, https://doi.org/10.5194/acp-2022-255, 2022
Preprint withdrawn
Short summary
Short summary
The mixed-phase temperature regime in convective clouds challenges our understanding of microphysical and radiative cloud properties. We provide a rare and unique dataset of aircraft in situ measurements in a strong mid-latitude convective system. We find that mechanisms initiating ice nucleation and growth strongly depend on temperature, relative humidity, and vertical velocity and variate within the measured system, resulting in altitude dependent changes of the cloud liquid and ice fraction.
Po-Lun Ma, Bryce E. Harrop, Vincent E. Larson, Richard B. Neale, Andrew Gettelman, Hugh Morrison, Hailong Wang, Kai Zhang, Stephen A. Klein, Mark D. Zelinka, Yuying Zhang, Yun Qian, Jin-Ho Yoon, Christopher R. Jones, Meng Huang, Sheng-Lun Tai, Balwinder Singh, Peter A. Bogenschutz, Xue Zheng, Wuyin Lin, Johannes Quaas, Hélène Chepfer, Michael A. Brunke, Xubin Zeng, Johannes Mülmenstädt, Samson Hagos, Zhibo Zhang, Hua Song, Xiaohong Liu, Michael S. Pritchard, Hui Wan, Jingyu Wang, Qi Tang, Peter M. Caldwell, Jiwen Fan, Larry K. Berg, Jerome D. Fast, Mark A. Taylor, Jean-Christophe Golaz, Shaocheng Xie, Philip J. Rasch, and L. Ruby Leung
Geosci. Model Dev., 15, 2881–2916, https://doi.org/10.5194/gmd-15-2881-2022, https://doi.org/10.5194/gmd-15-2881-2022, 2022
Short summary
Short summary
An alternative set of parameters for E3SM Atmospheric Model version 1 has been developed based on a tuning strategy that focuses on clouds. When clouds in every regime are improved, other aspects of the model are also improved, even though they are not the direct targets for calibration. The recalibrated model shows a lower sensitivity to anthropogenic aerosols and surface warming, suggesting potential improvements to the simulated climate in the past and future.
Helmut Ziereis, Peter Hoor, Jens-Uwe Grooß, Andreas Zahn, Greta Stratmann, Paul Stock, Michael Lichtenstern, Jens Krause, Vera Bense, Armin Afchine, Christian Rolf, Wolfgang Woiwode, Marleen Braun, Jörn Ungermann, Andreas Marsing, Christiane Voigt, Andreas Engel, Björn-Martin Sinnhuber, and Hermann Oelhaf
Atmos. Chem. Phys., 22, 3631–3654, https://doi.org/10.5194/acp-22-3631-2022, https://doi.org/10.5194/acp-22-3631-2022, 2022
Short summary
Short summary
Airborne observations were conducted in the lowermost Arctic stratosphere during the winter of 2015/2016. The observed distribution of reactive nitrogen shows clear indications of nitrification in mid-winter and denitrification in late winter. This was caused by the formation of polar stratospheric cloud particles, which were observed during several flights. The sedimentation and evaporation of these particles and the descent of air masses cause a redistribution of reactive nitrogen.
Alexander Myagkov and Davide Ori
Atmos. Meas. Tech., 15, 1333–1354, https://doi.org/10.5194/amt-15-1333-2022, https://doi.org/10.5194/amt-15-1333-2022, 2022
Short summary
Short summary
This study provides equations to characterize random errors of spectral polarimetric observations from cloud radars. The results can be used for a broad spectrum of applications. For instance, accurate error characterization is essential for advanced retrievals of microphysical properties of clouds and precipitation. Moreover, error characterization allows for the use of measurements from polarimetric cloud radars to potentially improve weather forecasts.
Adrien Deroubaix, Laurent Menut, Cyrille Flamant, Peter Knippertz, Andreas H. Fink, Anneke Batenburg, Joel Brito, Cyrielle Denjean, Cheikh Dione, Régis Dupuy, Valerian Hahn, Norbert Kalthoff, Fabienne Lohou, Alfons Schwarzenboeck, Guillaume Siour, Paolo Tuccella, and Christiane Voigt
Atmos. Chem. Phys., 22, 3251–3273, https://doi.org/10.5194/acp-22-3251-2022, https://doi.org/10.5194/acp-22-3251-2022, 2022
Short summary
Short summary
During the summer monsoon in West Africa, pollutants emitted in urbanized areas modify cloud cover and precipitation patterns. We analyze these patterns with the WRF-CHIMERE model, integrating the effects of aerosols on meteorology, based on the numerous observations provided by the Dynamics-Aerosol-Climate-Interactions campaign. This study adds evidence to recent findings that increased pollution levels in West Africa delay the breakup time of low-level clouds and reduce precipitation.
Gregor Köcher, Tobias Zinner, Christoph Knote, Eleni Tetoni, Florian Ewald, and Martin Hagen
Atmos. Meas. Tech., 15, 1033–1054, https://doi.org/10.5194/amt-15-1033-2022, https://doi.org/10.5194/amt-15-1033-2022, 2022
Short summary
Short summary
We present a setup for systematic characterization of differences between numerical weather models and radar observations for convective weather situations. Radar observations providing dual-wavelength and polarimetric variables to infer information about hydrometeor shapes and sizes are compared against simulations using microphysics schemes of varying complexity. Differences are found in ice and liquid phase, pointing towards issues of some schemes in reproducing particle size distributions.
Simon Pfreundschuh, Stuart Fox, Patrick Eriksson, David Duncan, Stefan A. Buehler, Manfred Brath, Richard Cotton, and Florian Ewald
Atmos. Meas. Tech., 15, 677–699, https://doi.org/10.5194/amt-15-677-2022, https://doi.org/10.5194/amt-15-677-2022, 2022
Short summary
Short summary
We test a novel method to remotely measure ice particles in clouds. This is important because such measurements are required to improve climate and weather models. The method combines a radar with newly developed sensors measuring microwave radiation at very short wavelengths. We use observations made from aircraft flying above the cloud and compare them to real measurements from inside the cloud. This works well given that one can model the ice particles in the cloud sufficiently well.
Teresa Vogl, Maximilian Maahn, Stefan Kneifel, Willi Schimmel, Dmitri Moisseev, and Heike Kalesse-Los
Atmos. Meas. Tech., 15, 365–381, https://doi.org/10.5194/amt-15-365-2022, https://doi.org/10.5194/amt-15-365-2022, 2022
Short summary
Short summary
We are using machine learning techniques, a type of artificial intelligence, to detect graupel formation in clouds. The measurements used as input to the machine learning framework were performed by cloud radars. Cloud radars are instruments located at the ground, emitting radiation with wavelenghts of a few millimeters vertically into the cloud and measuring the back-scattered signal. Our novel technique can be applied to different radar systems and different weather conditions.
Heike Kalesse-Los, Willi Schimmel, Edward Luke, and Patric Seifert
Atmos. Meas. Tech., 15, 279–295, https://doi.org/10.5194/amt-15-279-2022, https://doi.org/10.5194/amt-15-279-2022, 2022
Short summary
Short summary
It is important to detect the vertical distribution of cloud droplets and ice in mixed-phase clouds. Here, an artificial neural network (ANN) previously developed for Arctic clouds is applied to a mid-latitudinal cloud radar data set. The performance of this technique is contrasted to the Cloudnet target classification. For thick/multi-layer clouds, the machine learning technique is better at detecting liquid than Cloudnet, but if lidar data are available Cloudnet is at least as good as the ANN.
Leonie Villiger, Heini Wernli, Maxi Boettcher, Martin Hagen, and Franziska Aemisegger
Weather Clim. Dynam., 3, 59–88, https://doi.org/10.5194/wcd-3-59-2022, https://doi.org/10.5194/wcd-3-59-2022, 2022
Short summary
Short summary
The coupling between the large-scale atmospheric circulation and the clouds in the trade-wind region is complex and not yet fully understood. In this study, the formation pathway of two anomalous cloud layers over Barbados during the field campaign EUREC4A is described. The two case studies highlight the influence of remote weather systems on the local environmental conditions in Barbados.
Dongwook Kim, Changmin Cho, Seokhan Jeong, Soojin Lee, Benjamin A. Nault, Pedro Campuzano-Jost, Douglas A. Day, Jason C. Schroder, Jose L. Jimenez, Rainer Volkamer, Donald R. Blake, Armin Wisthaler, Alan Fried, Joshua P. DiGangi, Glenn S. Diskin, Sally E. Pusede, Samuel R. Hall, Kirk Ullmann, L. Gregory Huey, David J. Tanner, Jack Dibb, Christoph J. Knote, and Kyung-Eun Min
Atmos. Chem. Phys., 22, 805–821, https://doi.org/10.5194/acp-22-805-2022, https://doi.org/10.5194/acp-22-805-2022, 2022
Short summary
Short summary
CHOCHO was simulated using a 0-D box model constrained by measurements during the KORUS-AQ mission. CHOCHO concentration was high in large cities, aromatics being the most important precursors. Loss path to aerosol was the highest sink, contributing to ~ 20 % of secondary organic aerosol formation. Our work highlights that simple CHOCHO surface uptake approach is valid only for low aerosol conditions and more work is required to understand CHOCHO solubility in high-aerosol conditions.
Prabhakar Shrestha, Jana Mendrok, Velibor Pejcic, Silke Trömel, Ulrich Blahak, and Jacob T. Carlin
Geosci. Model Dev., 15, 291–313, https://doi.org/10.5194/gmd-15-291-2022, https://doi.org/10.5194/gmd-15-291-2022, 2022
Short summary
Short summary
The article focuses on the exploitation of radar polarimetry for model evaluation of stratiform precipitation. The model exhibited a low bias in simulated polarimetric moments at lower levels above the melting layer where snow was found to dominate. This necessitates further research into the missing microphysical processes in these lower levels (e.g. fragmentation due to ice–ice collisions) and use of more reliable snow-scattering models in the forward operator to draw valid conclusions.
Matthew W. Christensen, Andrew Gettelman, Jan Cermak, Guy Dagan, Michael Diamond, Alyson Douglas, Graham Feingold, Franziska Glassmeier, Tom Goren, Daniel P. Grosvenor, Edward Gryspeerdt, Ralph Kahn, Zhanqing Li, Po-Lun Ma, Florent Malavelle, Isabel L. McCoy, Daniel T. McCoy, Greg McFarquhar, Johannes Mülmenstädt, Sandip Pal, Anna Possner, Adam Povey, Johannes Quaas, Daniel Rosenfeld, Anja Schmidt, Roland Schrödner, Armin Sorooshian, Philip Stier, Velle Toll, Duncan Watson-Parris, Robert Wood, Mingxi Yang, and Tianle Yuan
Atmos. Chem. Phys., 22, 641–674, https://doi.org/10.5194/acp-22-641-2022, https://doi.org/10.5194/acp-22-641-2022, 2022
Short summary
Short summary
Trace gases and aerosols (tiny airborne particles) are released from a variety of point sources around the globe. Examples include volcanoes, industrial chimneys, forest fires, and ship stacks. These sources provide opportunistic experiments with which to quantify the role of aerosols in modifying cloud properties. We review the current state of understanding on the influence of aerosol on climate built from the wide range of natural and anthropogenic laboratories investigated in recent decades.
Claudia Acquistapace, Richard Coulter, Susanne Crewell, Albert Garcia-Benadi, Rosa Gierens, Giacomo Labbri, Alexander Myagkov, Nils Risse, and Jan H. Schween
Earth Syst. Sci. Data, 14, 33–55, https://doi.org/10.5194/essd-14-33-2022, https://doi.org/10.5194/essd-14-33-2022, 2022
Short summary
Short summary
This publication describes the unprecedented high-resolution cloud and precipitation dataset collected by two radars deployed on the Maria S. Merian research vessel. The ship operated in the west Atlantic Ocean during the measurement campaign called EUREC4A, between 19 January and 19 February 2020. The data collected are crucial to investigate clouds and precipitation and understand how they form and change over the ocean, where it is so difficult to measure them.
Shaoning Lv, Clemens Simmer, Yijian Zeng, Jun Wen, Yuanyuan Guo, and Zhongbo Su
The Cryosphere Discuss., https://doi.org/10.5194/tc-2021-369, https://doi.org/10.5194/tc-2021-369, 2022
Preprint withdrawn
Short summary
Short summary
The freeze-thaw of the ground is an interesting topic to climatology, hydrology, and other earth sciences. The global freeze-thaw distribution is available by passive microwave remote sensing technique. However, the remote sensing technique indirectly detects freeze-thaw states by measuring the brightness temperature difference between frozen and unfrozen soil. Thus, we present different interprets of the brightness signals to the FT-state by using its sub-daily character.
Martin Hagen, Florian Ewald, Silke Groß, Lothar Oswald, David A. Farrell, Marvin Forde, Manuel Gutleben, Johann Heumos, Jens Reimann, Eleni Tetoni, Gregor Köcher, Eleni Marinou, Christoph Kiemle, Qiang Li, Rebecca Chewitt-Lucas, Alton Daley, Delando Grant, and Kashawn Hall
Earth Syst. Sci. Data, 13, 5899–5914, https://doi.org/10.5194/essd-13-5899-2021, https://doi.org/10.5194/essd-13-5899-2021, 2021
Short summary
Short summary
The German polarimetric weather radar Poldirad was deployed for the international campaign EUREC4A on Barbados. The focus was monitoring clouds and precipitation in the trade wind region east of Barbados. Observations were with a temporal sequence of 5 min and a maximum range of 375 km. Examples of mesoscale precipitation patterns, rain rate accumulation, diurnal cycle, and vertical distribution show the potential for further studies on the life cycle of precipitating shallow cumulus clouds.
Debora Griffin, Chris A. McLinden, Enrico Dammers, Cristen Adams, Chelsea E. Stockwell, Carsten Warneke, Ilann Bourgeois, Jeff Peischl, Thomas B. Ryerson, Kyle J. Zarzana, Jake P. Rowe, Rainer Volkamer, Christoph Knote, Natalie Kille, Theodore K. Koenig, Christopher F. Lee, Drew Rollins, Pamela S. Rickly, Jack Chen, Lukas Fehr, Adam Bourassa, Doug Degenstein, Katherine Hayden, Cristian Mihele, Sumi N. Wren, John Liggio, Ayodeji Akingunola, and Paul Makar
Atmos. Meas. Tech., 14, 7929–7957, https://doi.org/10.5194/amt-14-7929-2021, https://doi.org/10.5194/amt-14-7929-2021, 2021
Short summary
Short summary
Satellite-derived NOx emissions from biomass burning are estimated with TROPOMI observations. Two common emission estimation methods are applied, and sensitivity tests with model output were performed to determine the accuracy of these methods. The effect of smoke aerosols on TROPOMI NO2 columns is estimated and compared to aircraft observations from four different aircraft campaigns measuring biomass burning plumes in 2018 and 2019 in North America.
Alan J. Geer, Peter Bauer, Katrin Lonitz, Vasileios Barlakas, Patrick Eriksson, Jana Mendrok, Amy Doherty, James Hocking, and Philippe Chambon
Geosci. Model Dev., 14, 7497–7526, https://doi.org/10.5194/gmd-14-7497-2021, https://doi.org/10.5194/gmd-14-7497-2021, 2021
Short summary
Short summary
Satellite observations of radiation from the earth can have strong sensitivity to cloud and precipitation in the atmosphere, with applications in weather forecasting and the development of models. Computing the radiation received at the satellite sensor using radiative transfer theory requires a simulation of the optical properties of a volume containing a large number of cloud and precipitation particles. This article describes the physics used to generate these
bulkoptical properties.
Martin Radenz, Johannes Bühl, Patric Seifert, Holger Baars, Ronny Engelmann, Boris Barja González, Rodanthi-Elisabeth Mamouri, Félix Zamorano, and Albert Ansmann
Atmos. Chem. Phys., 21, 17969–17994, https://doi.org/10.5194/acp-21-17969-2021, https://doi.org/10.5194/acp-21-17969-2021, 2021
Short summary
Short summary
This study brings together long-term ground-based remote-sensing observations of mixed-phase clouds at three key locations of aerosol–cloud interactions in the Northern and Southern Hemisphere midlatitudes. The findings contribute several new aspects on the nature of the excess of supercooled liquid clouds in the Southern Hemisphere, such as a long-term lidar-based estimate of ice-nucleating particle profiles as well as the effects of boundary layer coupling and gravity waves on ice formation.
Ramon Campos Braga, Barbara Ervens, Daniel Rosenfeld, Meinrat O. Andreae, Jan-David Förster, Daniel Fütterer, Lianet Hernández Pardo, Bruna A. Holanda, Tina Jurkat-Witschas, Ovid O. Krüger, Oliver Lauer, Luiz A. T. Machado, Christopher Pöhlker, Daniel Sauer, Christiane Voigt, Adrian Walser, Manfred Wendisch, Ulrich Pöschl, and Mira L. Pöhlker
Atmos. Chem. Phys., 21, 17513–17528, https://doi.org/10.5194/acp-21-17513-2021, https://doi.org/10.5194/acp-21-17513-2021, 2021
Short summary
Short summary
Interactions of aerosol particles with clouds represent a large uncertainty in estimates of climate change. Properties of aerosol particles control their ability to act as cloud condensation nuclei. Using aerosol measurements in the Amazon, we performed model studies to compare predicted and measured cloud droplet number concentrations at cloud bases. Our results confirm previous estimates of particle hygroscopicity in this region.
Heike Konow, Florian Ewald, Geet George, Marek Jacob, Marcus Klingebiel, Tobias Kölling, Anna E. Luebke, Theresa Mieslinger, Veronika Pörtge, Jule Radtke, Michael Schäfer, Hauke Schulz, Raphaela Vogel, Martin Wirth, Sandrine Bony, Susanne Crewell, André Ehrlich, Linda Forster, Andreas Giez, Felix Gödde, Silke Groß, Manuel Gutleben, Martin Hagen, Lutz Hirsch, Friedhelm Jansen, Theresa Lang, Bernhard Mayer, Mario Mech, Marc Prange, Sabrina Schnitt, Jessica Vial, Andreas Walbröl, Manfred Wendisch, Kevin Wolf, Tobias Zinner, Martin Zöger, Felix Ament, and Bjorn Stevens
Earth Syst. Sci. Data, 13, 5545–5563, https://doi.org/10.5194/essd-13-5545-2021, https://doi.org/10.5194/essd-13-5545-2021, 2021
Short summary
Short summary
The German research aircraft HALO took part in the research campaign EUREC4A in January and February 2020. The focus area was the tropical Atlantic east of the island of Barbados. We describe the characteristics of the 15 research flights, provide auxiliary information, derive combined cloud mask products from all instruments that observe clouds on board the aircraft, and provide code examples that help new users of the data to get started.
Markus Karrer, Axel Seifert, Davide Ori, and Stefan Kneifel
Atmos. Chem. Phys., 21, 17133–17166, https://doi.org/10.5194/acp-21-17133-2021, https://doi.org/10.5194/acp-21-17133-2021, 2021
Short summary
Short summary
Modeling precipitation is of great relevance, e.g., for mitigating damage caused by extreme weather. A key component in accurate precipitation modeling is aggregation, i.e., sticking together of snowflakes. Simulating aggregation is difficult due to multiple parameters that are not well-known. Knowing how these parameters affect aggregation can help its simulation. We put new parameters in the model and select a combination of parameters with which the model can simulate observations better.
Tiziana Bräuer, Christiane Voigt, Daniel Sauer, Stefan Kaufmann, Valerian Hahn, Monika Scheibe, Hans Schlager, Felix Huber, Patrick Le Clercq, Richard H. Moore, and Bruce E. Anderson
Atmos. Chem. Phys., 21, 16817–16826, https://doi.org/10.5194/acp-21-16817-2021, https://doi.org/10.5194/acp-21-16817-2021, 2021
Short summary
Short summary
Over half of aviation climate impact is caused by contrails. Biofuels can reduce the ice crystal numbers in contrails and mitigate the climate impact. The experiment ECLIF II/NDMAX in 2018 assessed the effects of biofuels on contrails and aviation emissions. The NASA DC-8 aircraft performed measurements inside the contrail of the DLR A320. One reference fuel and two blends of the biofuel HEFA and kerosene are analysed. We find a max reduction of contrail ice numbers through biofuel use of 40 %.
Hossein Dadashazar, Majid Alipanah, Miguel Ricardo A. Hilario, Ewan Crosbie, Simon Kirschler, Hongyu Liu, Richard H. Moore, Andrew J. Peters, Amy Jo Scarino, Michael Shook, K. Lee Thornhill, Christiane Voigt, Hailong Wang, Edward Winstead, Bo Zhang, Luke Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 21, 16121–16141, https://doi.org/10.5194/acp-21-16121-2021, https://doi.org/10.5194/acp-21-16121-2021, 2021
Short summary
Short summary
This study investigates precipitation impacts on long-range transport of North American outflow over the western North Atlantic Ocean (WNAO). Results demonstrate that precipitation scavenging plays a significant role in modifying surface aerosol concentrations over the WNAO, especially in winter and spring due to large-scale scavenging processes. This study highlights how precipitation impacts surface aerosol properties with relevance for other marine regions vulnerable to continental outflow.
Ramon Campos Braga, Daniel Rosenfeld, Ovid O. Krüger, Barbara Ervens, Bruna A. Holanda, Manfred Wendisch, Trismono Krisna, Ulrich Pöschl, Meinrat O. Andreae, Christiane Voigt, and Mira L. Pöhlker
Atmos. Chem. Phys., 21, 14079–14088, https://doi.org/10.5194/acp-21-14079-2021, https://doi.org/10.5194/acp-21-14079-2021, 2021
Short summary
Short summary
Quantifying the precipitation within clouds is crucial for our understanding of the Earth's hydrological cycle. Using in situ measurements of cloud and rain properties over the Amazon Basin and Atlantic Ocean, we show here a linear relationship between the effective radius (re) and precipitation water content near the tops of convective clouds for different pollution states and temperature levels. Our results emphasize the role of re to determine both initiation and amount of precipitation.
Teresa Vogl, Amy Hrdina, and Christoph K. Thomas
Biogeosciences, 18, 5097–5115, https://doi.org/10.5194/bg-18-5097-2021, https://doi.org/10.5194/bg-18-5097-2021, 2021
Short summary
Short summary
The relaxed eddy accumulation technique is a method used for measuring fluxes of chemical species in the atmosphere. It relies on a proportionality factor, β, which can be determined using different methods. Also, different techniques for sampling can be used by only drawing air into the measurement system when vertical wind velocity exceeds a certain threshold. We compare different ways to obtain β and different threshold techniques to direct flux measurements for three different sites.
Bernd Schalge, Gabriele Baroni, Barbara Haese, Daniel Erdal, Gernot Geppert, Pablo Saavedra, Vincent Haefliger, Harry Vereecken, Sabine Attinger, Harald Kunstmann, Olaf A. Cirpka, Felix Ament, Stefan Kollet, Insa Neuweiler, Harrie-Jan Hendricks Franssen, and Clemens Simmer
Earth Syst. Sci. Data, 13, 4437–4464, https://doi.org/10.5194/essd-13-4437-2021, https://doi.org/10.5194/essd-13-4437-2021, 2021
Short summary
Short summary
In this study, a 9-year simulation of complete model output of a coupled atmosphere–land-surface–subsurface model on the catchment scale is discussed. We used the Neckar catchment in SW Germany as the basis of this simulation. Since the dataset includes the full model output, it is not only possible to investigate model behavior and interactions between the component models but also use it as a virtual truth for comparison of, for example, data assimilation experiments.
Ronny Engelmann, Albert Ansmann, Kevin Ohneiser, Hannes Griesche, Martin Radenz, Julian Hofer, Dietrich Althausen, Sandro Dahlke, Marion Maturilli, Igor Veselovskii, Cristofer Jimenez, Robert Wiesen, Holger Baars, Johannes Bühl, Henriette Gebauer, Moritz Haarig, Patric Seifert, Ulla Wandinger, and Andreas Macke
Atmos. Chem. Phys., 21, 13397–13423, https://doi.org/10.5194/acp-21-13397-2021, https://doi.org/10.5194/acp-21-13397-2021, 2021
Short summary
Short summary
A Raman lidar was operated aboard the icebreaker Polarstern during MOSAiC and monitored aerosol and cloud layers in the central Arctic up to 30 km height. The article provides an overview of the spectrum of aerosol profiling observations and shows aerosol–cloud interaction studies for liquid-water and ice clouds. A highlight was the detection of a 10 km deep wildfire smoke layer over the North Pole up to 17 km height from the fire season of 2019, which persisted over the whole winter period.
Bjorn Stevens, Sandrine Bony, David Farrell, Felix Ament, Alan Blyth, Christopher Fairall, Johannes Karstensen, Patricia K. Quinn, Sabrina Speich, Claudia Acquistapace, Franziska Aemisegger, Anna Lea Albright, Hugo Bellenger, Eberhard Bodenschatz, Kathy-Ann Caesar, Rebecca Chewitt-Lucas, Gijs de Boer, Julien Delanoë, Leif Denby, Florian Ewald, Benjamin Fildier, Marvin Forde, Geet George, Silke Gross, Martin Hagen, Andrea Hausold, Karen J. Heywood, Lutz Hirsch, Marek Jacob, Friedhelm Jansen, Stefan Kinne, Daniel Klocke, Tobias Kölling, Heike Konow, Marie Lothon, Wiebke Mohr, Ann Kristin Naumann, Louise Nuijens, Léa Olivier, Robert Pincus, Mira Pöhlker, Gilles Reverdin, Gregory Roberts, Sabrina Schnitt, Hauke Schulz, A. Pier Siebesma, Claudia Christine Stephan, Peter Sullivan, Ludovic Touzé-Peiffer, Jessica Vial, Raphaela Vogel, Paquita Zuidema, Nicola Alexander, Lyndon Alves, Sophian Arixi, Hamish Asmath, Gholamhossein Bagheri, Katharina Baier, Adriana Bailey, Dariusz Baranowski, Alexandre Baron, Sébastien Barrau, Paul A. Barrett, Frédéric Batier, Andreas Behrendt, Arne Bendinger, Florent Beucher, Sebastien Bigorre, Edmund Blades, Peter Blossey, Olivier Bock, Steven Böing, Pierre Bosser, Denis Bourras, Pascale Bouruet-Aubertot, Keith Bower, Pierre Branellec, Hubert Branger, Michal Brennek, Alan Brewer, Pierre-Etienne Brilouet, Björn Brügmann, Stefan A. Buehler, Elmo Burke, Ralph Burton, Radiance Calmer, Jean-Christophe Canonici, Xavier Carton, Gregory Cato Jr., Jude Andre Charles, Patrick Chazette, Yanxu Chen, Michal T. Chilinski, Thomas Choularton, Patrick Chuang, Shamal Clarke, Hugh Coe, Céline Cornet, Pierre Coutris, Fleur Couvreux, Susanne Crewell, Timothy Cronin, Zhiqiang Cui, Yannis Cuypers, Alton Daley, Gillian M. Damerell, Thibaut Dauhut, Hartwig Deneke, Jean-Philippe Desbios, Steffen Dörner, Sebastian Donner, Vincent Douet, Kyla Drushka, Marina Dütsch, André Ehrlich, Kerry Emanuel, Alexandros Emmanouilidis, Jean-Claude Etienne, Sheryl Etienne-Leblanc, Ghislain Faure, Graham Feingold, Luca Ferrero, Andreas Fix, Cyrille Flamant, Piotr Jacek Flatau, Gregory R. Foltz, Linda Forster, Iulian Furtuna, Alan Gadian, Joseph Galewsky, Martin Gallagher, Peter Gallimore, Cassandra Gaston, Chelle Gentemann, Nicolas Geyskens, Andreas Giez, John Gollop, Isabelle Gouirand, Christophe Gourbeyre, Dörte de Graaf, Geiske E. de Groot, Robert Grosz, Johannes Güttler, Manuel Gutleben, Kashawn Hall, George Harris, Kevin C. Helfer, Dean Henze, Calvert Herbert, Bruna Holanda, Antonio Ibanez-Landeta, Janet Intrieri, Suneil Iyer, Fabrice Julien, Heike Kalesse, Jan Kazil, Alexander Kellman, Abiel T. Kidane, Ulrike Kirchner, Marcus Klingebiel, Mareike Körner, Leslie Ann Kremper, Jan Kretzschmar, Ovid Krüger, Wojciech Kumala, Armin Kurz, Pierre L'Hégaret, Matthieu Labaste, Tom Lachlan-Cope, Arlene Laing, Peter Landschützer, Theresa Lang, Diego Lange, Ingo Lange, Clément Laplace, Gauke Lavik, Rémi Laxenaire, Caroline Le Bihan, Mason Leandro, Nathalie Lefevre, Marius Lena, Donald Lenschow, Qiang Li, Gary Lloyd, Sebastian Los, Niccolò Losi, Oscar Lovell, Christopher Luneau, Przemyslaw Makuch, Szymon Malinowski, Gaston Manta, Eleni Marinou, Nicholas Marsden, Sebastien Masson, Nicolas Maury, Bernhard Mayer, Margarette Mayers-Als, Christophe Mazel, Wayne McGeary, James C. McWilliams, Mario Mech, Melina Mehlmann, Agostino Niyonkuru Meroni, Theresa Mieslinger, Andreas Minikin, Peter Minnett, Gregor Möller, Yanmichel Morfa Avalos, Caroline Muller, Ionela Musat, Anna Napoli, Almuth Neuberger, Christophe Noisel, David Noone, Freja Nordsiek, Jakub L. Nowak, Lothar Oswald, Douglas J. Parker, Carolyn Peck, Renaud Person, Miriam Philippi, Albert Plueddemann, Christopher Pöhlker, Veronika Pörtge, Ulrich Pöschl, Lawrence Pologne, Michał Posyniak, Marc Prange, Estefanía Quiñones Meléndez, Jule Radtke, Karim Ramage, Jens Reimann, Lionel Renault, Klaus Reus, Ashford Reyes, Joachim Ribbe, Maximilian Ringel, Markus Ritschel, Cesar B. Rocha, Nicolas Rochetin, Johannes Röttenbacher, Callum Rollo, Haley Royer, Pauline Sadoulet, Leo Saffin, Sanola Sandiford, Irina Sandu, Michael Schäfer, Vera Schemann, Imke Schirmacher, Oliver Schlenczek, Jerome Schmidt, Marcel Schröder, Alfons Schwarzenboeck, Andrea Sealy, Christoph J. Senff, Ilya Serikov, Samkeyat Shohan, Elizabeth Siddle, Alexander Smirnov, Florian Späth, Branden Spooner, M. Katharina Stolla, Wojciech Szkółka, Simon P. de Szoeke, Stéphane Tarot, Eleni Tetoni, Elizabeth Thompson, Jim Thomson, Lorenzo Tomassini, Julien Totems, Alma Anna Ubele, Leonie Villiger, Jan von Arx, Thomas Wagner, Andi Walther, Ben Webber, Manfred Wendisch, Shanice Whitehall, Anton Wiltshire, Allison A. Wing, Martin Wirth, Jonathan Wiskandt, Kevin Wolf, Ludwig Worbes, Ethan Wright, Volker Wulfmeyer, Shanea Young, Chidong Zhang, Dongxiao Zhang, Florian Ziemen, Tobias Zinner, and Martin Zöger
Earth Syst. Sci. Data, 13, 4067–4119, https://doi.org/10.5194/essd-13-4067-2021, https://doi.org/10.5194/essd-13-4067-2021, 2021
Short summary
Short summary
The EUREC4A field campaign, designed to test hypothesized mechanisms by which clouds respond to warming and benchmark next-generation Earth-system models, is presented. EUREC4A comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. It was the first campaign that attempted to characterize the full range of processes and scales influencing trade wind clouds.
Yuefei Zeng, Tijana Janjic, Yuxuan Feng, Ulrich Blahak, Alberto de Lozar, Elisabeth Bauernschubert, Klaus Stephan, and Jinzhong Min
Atmos. Meas. Tech., 14, 5735–5756, https://doi.org/10.5194/amt-14-5735-2021, https://doi.org/10.5194/amt-14-5735-2021, 2021
Short summary
Short summary
Observation errors (OEs) of radar measurements are correlated. The Desroziers method has been often used to estimate statistics of OE in data assimilation. However, the resulting statistics consist of contributions from different sources and are difficult to interpret. Here, we use an approach based on samples for truncation error to approximate the representation error due to unresolved scales and processes (RE) and compare its statistics with OE statistics estimated by the Desroziers method.
Markus Hartmann, Xianda Gong, Simonas Kecorius, Manuela van Pinxteren, Teresa Vogl, André Welti, Heike Wex, Sebastian Zeppenfeld, Hartmut Herrmann, Alfred Wiedensohler, and Frank Stratmann
Atmos. Chem. Phys., 21, 11613–11636, https://doi.org/10.5194/acp-21-11613-2021, https://doi.org/10.5194/acp-21-11613-2021, 2021
Short summary
Short summary
Ice-nucleating particles (INPs) are not well characterized in the Arctic despite their importance for the Arctic energy budget. Little is known about their nature (mineral or biological) and sources (terrestrial or marine, long-range transport or local). We find indications that, at the beginning of the melt season, a local, biogenic, probably marine source is likely, but significant enrichment of INPs has to take place from the ocean to the aerosol phase.
Florian Ewald, Silke Groß, Martin Wirth, Julien Delanoë, Stuart Fox, and Bernhard Mayer
Atmos. Meas. Tech., 14, 5029–5047, https://doi.org/10.5194/amt-14-5029-2021, https://doi.org/10.5194/amt-14-5029-2021, 2021
Short summary
Short summary
In this study, we show how solar radiance observations can be used to validate and further constrain ice cloud microphysics retrieved from the synergy of radar–lidar measurements. Since most radar–lidar retrievals rely on a global assumption about the ice particle shape, ice water content and particle size biases are to be expected in individual cloud regimes. In this work, we identify and correct these biases by reconciling simulated and measured solar radiation reflected from these clouds.
Caterina Mogno, Paul I. Palmer, Christoph Knote, Fei Yao, and Timothy J. Wallington
Atmos. Chem. Phys., 21, 10881–10909, https://doi.org/10.5194/acp-21-10881-2021, https://doi.org/10.5194/acp-21-10881-2021, 2021
Short summary
Short summary
We use a 3-D atmospheric chemistry model to investigate how seasonal emissions sources and meteorological conditions affect the surface distribution of fine particulate matter (PM2.5) and organic aerosol (OA) over the Indo-Gangetic Plain. We find that all seasonal mean values of PM2.5 still exceed safe air quality levels, with human emissions contributing to PM2.5 all year round, open fires during post- and pre-monsoon, and biogenic emissions during monsoon. OA contributes up to 30 % to PM2.5.
Hossein Dadashazar, David Painemal, Majid Alipanah, Michael Brunke, Seethala Chellappan, Andrea F. Corral, Ewan Crosbie, Simon Kirschler, Hongyu Liu, Richard H. Moore, Claire Robinson, Amy Jo Scarino, Michael Shook, Kenneth Sinclair, K. Lee Thornhill, Christiane Voigt, Hailong Wang, Edward Winstead, Xubin Zeng, Luke Ziemba, Paquita Zuidema, and Armin Sorooshian
Atmos. Chem. Phys., 21, 10499–10526, https://doi.org/10.5194/acp-21-10499-2021, https://doi.org/10.5194/acp-21-10499-2021, 2021
Short summary
Short summary
This study investigates the seasonal cycle of cloud drop number concentration (Nd) over the western North Atlantic Ocean (WNAO) using multiple datasets. Reasons for the puzzling discrepancy between the seasonal cycles of Nd and aerosol concentration were identified. Results indicate that Nd is highest in winter (when aerosol proxy values are often lowest) due to conditions both linked to cold-air outbreaks and that promote greater droplet activation.
Hannes J. Griesche, Kevin Ohneiser, Patric Seifert, Martin Radenz, Ronny Engelmann, and Albert Ansmann
Atmos. Chem. Phys., 21, 10357–10374, https://doi.org/10.5194/acp-21-10357-2021, https://doi.org/10.5194/acp-21-10357-2021, 2021
Short summary
Short summary
Heterogeneous ice formation in Arctic mixed-phase clouds under consideration of their surface-coupling state is investigated. Cloud phase and macrophysical properties were determined by means of lidar and cloud radar measurements, the coupling state, and cloud minimum temperature by radiosonde profiles. Above −15 °C cloud minimum temperature, surface-coupled clouds are more likely to contain ice by a factor of 2–6. By means of a literature survey, causes of the observed effects are discussed.
Albert Ansmann, Kevin Ohneiser, Rodanthi-Elisavet Mamouri, Daniel A. Knopf, Igor Veselovskii, Holger Baars, Ronny Engelmann, Andreas Foth, Cristofer Jimenez, Patric Seifert, and Boris Barja
Atmos. Chem. Phys., 21, 9779–9807, https://doi.org/10.5194/acp-21-9779-2021, https://doi.org/10.5194/acp-21-9779-2021, 2021
Short summary
Short summary
We present retrievals of tropospheric and stratospheric height profiles of particle mass, volume, surface area concentration of wildfire smoke layers, and related cloud condensation nuclei (CCN) and ice-nucleating particle (INP) concentrations. The new analysis scheme is applied to ground-based lidar observations of stratospheric Australian smoke over southern South America and to spaceborne lidar observations of tropospheric North American smoke.
Andreas Foth, Janek Zimmer, Felix Lauermann, and Heike Kalesse-Los
Atmos. Meas. Tech., 14, 4565–4574, https://doi.org/10.5194/amt-14-4565-2021, https://doi.org/10.5194/amt-14-4565-2021, 2021
Short summary
Short summary
In this paper, we present two micro rain radar-based approaches to discriminate between stratiform and convective precipitation. One is based on probability density functions and the other one is an artificial neural network classification. Both methods agree well, giving similar results. However, the results of the artificial neural network are more reasonable since it is also able to distinguish an inconclusive class, in turn making the stratiform and convective classes more reliable.
Julian Kostinek, Anke Roiger, Maximilian Eckl, Alina Fiehn, Andreas Luther, Norman Wildmann, Theresa Klausner, Andreas Fix, Christoph Knote, Andreas Stohl, and André Butz
Atmos. Chem. Phys., 21, 8791–8807, https://doi.org/10.5194/acp-21-8791-2021, https://doi.org/10.5194/acp-21-8791-2021, 2021
Short summary
Short summary
Abundant mining and industrial activities in the Upper Silesian Coal Basin lead to large emissions of the potent greenhouse gas methane. This study quantifies these emissions with continuous, high-precision airborne measurements and dispersion modeling. Our emission estimates are in line with values reported in the European Pollutant Release and Transfer Register (E-PRTR 2017) but significantly lower than values reported in the Emissions Database for Global Atmospheric Research (EDGAR v4.3.2).
Ulrich Schumann, Ian Poll, Roger Teoh, Rainer Koelle, Enrico Spinielli, Jarlath Molloy, George S. Koudis, Robert Baumann, Luca Bugliaro, Marc Stettler, and Christiane Voigt
Atmos. Chem. Phys., 21, 7429–7450, https://doi.org/10.5194/acp-21-7429-2021, https://doi.org/10.5194/acp-21-7429-2021, 2021
Short summary
Short summary
The roughly 70 % reduction of air traffic during the COVID-19 pandemic from March–August 2020 compared to 2019 provides a test case for the relationship between air traffic density, contrails, and their radiative forcing of climate change. This paper investigates the induced traffic and contrail changes in a model study. Besides strong weather changes, the model results indicate aviation-induced cirrus and top-of-the-atmosphere irradiance changes, which can be tested with observations.
Fabiola Ramelli, Jan Henneberger, Robert O. David, Johannes Bühl, Martin Radenz, Patric Seifert, Jörg Wieder, Annika Lauber, Julie T. Pasquier, Ronny Engelmann, Claudia Mignani, Maxime Hervo, and Ulrike Lohmann
Atmos. Chem. Phys., 21, 6681–6706, https://doi.org/10.5194/acp-21-6681-2021, https://doi.org/10.5194/acp-21-6681-2021, 2021
Short summary
Short summary
Orographic mixed-phase clouds are an important source of precipitation, but the ice formation processes within them remain uncertain. Here we investigate the origin of ice crystals in a mixed-phase cloud in the Swiss Alps using aerosol and cloud data from in situ and remote sensing observations. We found that ice formation primarily occurs in cloud top generating cells. Our results indicate that secondary ice processes are active in the feeder region, which can enhance orographic precipitation.
Maxi Boettcher, Andreas Schäfler, Michael Sprenger, Harald Sodemann, Stefan Kaufmann, Christiane Voigt, Hans Schlager, Donato Summa, Paolo Di Girolamo, Daniele Nerini, Urs Germann, and Heini Wernli
Atmos. Chem. Phys., 21, 5477–5498, https://doi.org/10.5194/acp-21-5477-2021, https://doi.org/10.5194/acp-21-5477-2021, 2021
Short summary
Short summary
Warm conveyor belts (WCBs) are important airstreams in extratropical cyclones, often leading to the formation of intense precipitation. We present a case study that involves aircraft, lidar and radar observations of water and clouds in a WCB ascending from western Europe across the Alps towards the Baltic Sea during the field campaigns HyMeX and T-NAWDEX-Falcon in October 2012. A probabilistic trajectory measure and an airborne tracer experiment were used to confirm the long pathway of the WCB.
Fabiola Ramelli, Jan Henneberger, Robert O. David, Annika Lauber, Julie T. Pasquier, Jörg Wieder, Johannes Bühl, Patric Seifert, Ronny Engelmann, Maxime Hervo, and Ulrike Lohmann
Atmos. Chem. Phys., 21, 5151–5172, https://doi.org/10.5194/acp-21-5151-2021, https://doi.org/10.5194/acp-21-5151-2021, 2021
Short summary
Short summary
Interactions between dynamics, microphysics and orography can enhance precipitation. Yet the exact role of these interactions is still uncertain. Here we investigate the role of low-level blocking and turbulence for precipitation by combining remote sensing and in situ observations. The observations show that blocked flow can induce the formation of feeder clouds and that turbulence can enhance hydrometeor growth, demonstrating the importance of local flow effects for orographic precipitation.
Thomas Thorp, Stephen R. Arnold, Richard J. Pope, Dominick V. Spracklen, Luke Conibear, Christoph Knote, Mikhail Arshinov, Boris Belan, Eija Asmi, Tuomas Laurila, Andrei I. Skorokhod, Tuomo Nieminen, and Tuukka Petäjä
Atmos. Chem. Phys., 21, 4677–4697, https://doi.org/10.5194/acp-21-4677-2021, https://doi.org/10.5194/acp-21-4677-2021, 2021
Short summary
Short summary
We compare modelled near-surface pollutants with surface and satellite observations to better understand the controls on the regional concentrations of pollution in western Siberia for late spring and summer in 2011. We find two commonly used emission inventories underestimate human emissions when compared to observations. Transport emissions are the main source of pollutants within the region during this period, whilst fire emissions peak during June and are only significant south of 60° N.
Davide Ori, Leonie von Terzi, Markus Karrer, and Stefan Kneifel
Geosci. Model Dev., 14, 1511–1531, https://doi.org/10.5194/gmd-14-1511-2021, https://doi.org/10.5194/gmd-14-1511-2021, 2021
Short summary
Short summary
Snowflakes have very complex shapes, and modeling their properties requires vast computing power. We produced a large number of realistic snowflakes and modeled their average properties by leveraging their fractal structure. Our approach allows modeling the properties of big ensembles of snowflakes, taking into account their natural variability, at a much lower cost. This enables the usage of remote sensing instruments, such as radars, to monitor the evolution of clouds and precipitation.
Yuefei Zeng, Alberto de Lozar, Tijana Janjic, and Axel Seifert
Geosci. Model Dev., 14, 1295–1307, https://doi.org/10.5194/gmd-14-1295-2021, https://doi.org/10.5194/gmd-14-1295-2021, 2021
Short summary
Short summary
A new integrated mass-flux adjustment filter is introduced and examined with an idealized setup for convective-scale radar data assimilation. It is found that the new filter slightly reduces the accuracy of background and analysis states; however, it preserves the main structure of cold pools and primary mesocyclone properties of supercells. More importantly, it successfully diminishes the imbalance in the analysis considerably and improves the forecasts.
Inken Knop, Stephan E. Bansmer, Valerian Hahn, and Christiane Voigt
Atmos. Meas. Tech., 14, 1761–1781, https://doi.org/10.5194/amt-14-1761-2021, https://doi.org/10.5194/amt-14-1761-2021, 2021
Short summary
Short summary
Knowledge on droplet size and concentration is essential for several applications of atomizers. After having developed a new spray system for our icing wind tunnel, we did intercomparison tests of different droplet measurement techniques including two commercial probes. The probes proved the good repeatability of the spray conditions and showed good overall agreement in measuring size and concentration. Furthermore, we could identify limitations and error sources of the measuring techniques.
Martin Radenz, Patric Seifert, Holger Baars, Athena Augusta Floutsi, Zhenping Yin, and Johannes Bühl
Atmos. Chem. Phys., 21, 3015–3033, https://doi.org/10.5194/acp-21-3015-2021, https://doi.org/10.5194/acp-21-3015-2021, 2021
Yvonne Ruckstuhl, Tijana Janjić, and Stephan Rasp
Nonlin. Processes Geophys., 28, 111–119, https://doi.org/10.5194/npg-28-111-2021, https://doi.org/10.5194/npg-28-111-2021, 2021
Short summary
Short summary
The assimilation of observations using standard algorithms can lead to a violation of physical laws (e.g. mass conservation), which is shown to have a detrimental impact on the system's forecast. We use a neural network (NN) to correct this mass violation, using training data generated from expensive algorithms that can constrain such physical properties. We found that, in an idealized set-up, the NN can match the performance of these expensive algorithms at negligible computational costs.
Annika Oertel, Michael Sprenger, Hanna Joos, Maxi Boettcher, Heike Konow, Martin Hagen, and Heini Wernli
Weather Clim. Dynam., 2, 89–110, https://doi.org/10.5194/wcd-2-89-2021, https://doi.org/10.5194/wcd-2-89-2021, 2021
Short summary
Short summary
Convection embedded in the stratiform cloud band of strongly ascending airstreams in extratropical cyclones (so-called warm conveyor belts) can influence not only surface precipitation but also the
upper-tropospheric potential vorticity (PV) and waveguide. The comparison of intense vs. moderate embedded convection shows that its strength alone is not a reliable measure for upper-tropospheric PV modification. Instead, characteristics of the ambient flow co-determine its dynamical significance.
Kamil Mróz, Alessandro Battaglia, Stefan Kneifel, Leonie von Terzi, Markus Karrer, and Davide Ori
Atmos. Meas. Tech., 14, 511–529, https://doi.org/10.5194/amt-14-511-2021, https://doi.org/10.5194/amt-14-511-2021, 2021
Short summary
Short summary
The article examines the relationship between the characteristics of rain and the properties of the ice cloud from which the rain originated. Our results confirm the widely accepted assumption that the mass flux through the melting zone is well preserved with an exception of extreme aggregation and riming conditions. Moreover, it is shown that the mean (mass-weighted) size of particles above and below the melting zone is strongly linked, with the former being on average larger.
Cristofer Jimenez, Albert Ansmann, Ronny Engelmann, David Donovan, Aleksey Malinka, Jörg Schmidt, Patric Seifert, and Ulla Wandinger
Atmos. Chem. Phys., 20, 15247–15263, https://doi.org/10.5194/acp-20-15247-2020, https://doi.org/10.5194/acp-20-15247-2020, 2020
Short summary
Short summary
A novel lidar method to study cloud microphysical properties (of liquid water clouds) and to study aerosol–cloud interaction (ACI) is developed and presented in this paper. In Part 1, the theoretical framework including an error analysis is given together with an overview of the aerosol information that the same lidar system can obtain. The ACI concept based on aerosol and cloud information is also explained. Applications of the proposed approach to lidar measurements are presented in Part 2.
Cristofer Jimenez, Albert Ansmann, Ronny Engelmann, David Donovan, Aleksey Malinka, Patric Seifert, Robert Wiesen, Martin Radenz, Zhenping Yin, Johannes Bühl, Jörg Schmidt, Boris Barja, and Ulla Wandinger
Atmos. Chem. Phys., 20, 15265–15284, https://doi.org/10.5194/acp-20-15265-2020, https://doi.org/10.5194/acp-20-15265-2020, 2020
Short summary
Short summary
Part 2 presents the application of the dual-FOV polarization lidar technique introduced in Part 1. A lidar system was upgraded with a second polarization telescope, and it was deployed at the southernmost tip of South America. A comparison with alternative remote sensing techniques and the evaluation of the aerosol–cloud–wind relation in a convective boundary layer in pristine marine conditions are presented in two case studies, demonstrating the potential of the approach for ACI studies.
Johannes Quaas, Antti Arola, Brian Cairns, Matthew Christensen, Hartwig Deneke, Annica M. L. Ekman, Graham Feingold, Ann Fridlind, Edward Gryspeerdt, Otto Hasekamp, Zhanqing Li, Antti Lipponen, Po-Lun Ma, Johannes Mülmenstädt, Athanasios Nenes, Joyce E. Penner, Daniel Rosenfeld, Roland Schrödner, Kenneth Sinclair, Odran Sourdeval, Philip Stier, Matthias Tesche, Bastiaan van Diedenhoven, and Manfred Wendisch
Atmos. Chem. Phys., 20, 15079–15099, https://doi.org/10.5194/acp-20-15079-2020, https://doi.org/10.5194/acp-20-15079-2020, 2020
Short summary
Short summary
Anthropogenic pollution particles – aerosols – serve as cloud condensation nuclei and thus increase cloud droplet concentration and the clouds' reflection of sunlight (a cooling effect on climate). This Twomey effect is poorly constrained by models and requires satellite data for better quantification. The review summarizes the challenges in properly doing so and outlines avenues for progress towards a better use of aerosol retrievals and better retrievals of droplet concentrations.
Martin Bauch, Thomas Labbé, Annabell Engel, and Patric Seifert
Clim. Past, 16, 2343–2358, https://doi.org/10.5194/cp-16-2343-2020, https://doi.org/10.5194/cp-16-2343-2020, 2020
Short summary
Short summary
The onset of Little Ice Age cooling around 1310 CE was preceded in Europe by a series of droughts in the first decade of the 14th century that were uniquely severe in the period 1200–1400. Based mainly on information from chronicles and other historical texts, we reconstructed the socioeconomic and cultural impact of these events but also a seesaw pattern of multiannual droughts in the Mediterranean and Europe north of the Alps that has remarkable resemblances to the 2018–2019 dry period.
Jan Kretzschmar, Johannes Stapf, Daniel Klocke, Manfred Wendisch, and Johannes Quaas
Atmos. Chem. Phys., 20, 13145–13165, https://doi.org/10.5194/acp-20-13145-2020, https://doi.org/10.5194/acp-20-13145-2020, 2020
Short summary
Short summary
This study compares simulations with the ICON model at the kilometer scale to airborne radiation and cloud microphysics observations that have been derived during the ACLOUD aircraft campaign around Svalbard, Norway, in May/June 2017. We find an overestimated surface warming effect of clouds compared to the observations in our setup. This bias was reduced by considering subgrid-scale vertical motion in the activation of cloud condensation nuclei in the two-moment microphysical scheme used.
Jie Gong, Xiping Zeng, Dong L. Wu, S. Joseph Munchak, Xiaowen Li, Stefan Kneifel, Davide Ori, Liang Liao, and Donifan Barahona
Atmos. Chem. Phys., 20, 12633–12653, https://doi.org/10.5194/acp-20-12633-2020, https://doi.org/10.5194/acp-20-12633-2020, 2020
Short summary
Short summary
This work provides a novel way of using polarized passive microwave measurements to study the interlinked cloud–convection–precipitation processes. The magnitude of differences between polarized radiances is found linked to ice microphysics (shape, size, orientation and density), mesoscale dynamic and thermodynamic structures, and surface precipitation. We conclude that passive sensors with multiple polarized channel pairs may serve as cheaper and useful substitutes for spaceborne radar sensors.
Alexander Myagkov, Stefan Kneifel, and Thomas Rose
Atmos. Meas. Tech., 13, 5799–5825, https://doi.org/10.5194/amt-13-5799-2020, https://doi.org/10.5194/amt-13-5799-2020, 2020
Short summary
Short summary
This study shows two methods for evaluating the reflectivity calibration of W-band cloud radars. Both methods use natural rain as a reference target. The first method is based on spectral polarimetric observations and requires a polarimetric cloud radar with a scanner. The second method utilizes disdrometer observations and can be applied to scanning and vertically pointed radars. Both methods show consistent results and can be applied for operational monitoring of measurement quality.
Martina Krämer, Christian Rolf, Nicole Spelten, Armin Afchine, David Fahey, Eric Jensen, Sergey Khaykin, Thomas Kuhn, Paul Lawson, Alexey Lykov, Laura L. Pan, Martin Riese, Andrew Rollins, Fred Stroh, Troy Thornberry, Veronika Wolf, Sarah Woods, Peter Spichtinger, Johannes Quaas, and Odran Sourdeval
Atmos. Chem. Phys., 20, 12569–12608, https://doi.org/10.5194/acp-20-12569-2020, https://doi.org/10.5194/acp-20-12569-2020, 2020
Short summary
Short summary
To improve the representations of cirrus clouds in climate predictions, extended knowledge of their properties and geographical distribution is required. This study presents extensive airborne in situ and satellite remote sensing climatologies of cirrus and humidity, which serve as a guide to cirrus clouds. Further, exemplary radiative characteristics of cirrus types and also in situ observations of tropical tropopause layer cirrus and humidity in the Asian monsoon anticyclone are shown.
Ben Silver, Luke Conibear, Carly L. Reddington, Christoph Knote, Steve R. Arnold, and Dominick V. Spracklen
Atmos. Chem. Phys., 20, 11683–11695, https://doi.org/10.5194/acp-20-11683-2020, https://doi.org/10.5194/acp-20-11683-2020, 2020
Short summary
Short summary
China suffers from serious air pollution, which is thought to cause millions of early deaths each year. Measurements on the ground show that overall air quality is improving. Air quality is also affected by weather conditions, which can vary from year to year. We conduct computer simulations to show it is the reduction of the amount of pollution emitted, rather than weather conditions, which caused air quality to improve during 2015–2017. We then estimate that 150 000 fewer people die early.
Hannes J. Griesche, Patric Seifert, Albert Ansmann, Holger Baars, Carola Barrientos Velasco, Johannes Bühl, Ronny Engelmann, Martin Radenz, Yin Zhenping, and Andreas Macke
Atmos. Meas. Tech., 13, 5335–5358, https://doi.org/10.5194/amt-13-5335-2020, https://doi.org/10.5194/amt-13-5335-2020, 2020
Short summary
Short summary
In summer 2017, the research vessel Polarstern performed cruise PS106 to the Arctic north of Svalbard. In the frame of the cruise, remote-sensing observations of the atmosphere were performed on Polarstern to continuously monitor aerosol and clouds above the vessel. In our study, we present the deployed instrumentation and applied data analysis methods and provide case studies of the aerosol and cloud observations made during the cruise. Statistics of low-cloud occurrence are presented as well.
Frédéric Tridon, Alessandro Battaglia, and Stefan Kneifel
Atmos. Meas. Tech., 13, 5065–5085, https://doi.org/10.5194/amt-13-5065-2020, https://doi.org/10.5194/amt-13-5065-2020, 2020
Short summary
Short summary
The droplets and ice crystals composing clouds and precipitation interact with microwaves and can therefore be observed by radars, but they can also attenuate the signal they emit. By combining the observations made by two ground-based radars, this study describes an original approach for estimating such attenuation. As a result, the latter can be not only corrected in the radar observations but also exploited for providing an accurate characterization of droplet and ice crystal properties.
James Weber, Scott Archer-Nicholls, Paul Griffiths, Torsten Berndt, Michael Jenkin, Hamish Gordon, Christoph Knote, and Alexander T. Archibald
Atmos. Chem. Phys., 20, 10889–10910, https://doi.org/10.5194/acp-20-10889-2020, https://doi.org/10.5194/acp-20-10889-2020, 2020
Short summary
Short summary
Highly oxygenated organic molecules (HOMs) are important for aerosol growth and new particle formation, particularly in air masses with less sulphuric acid. This new chemical mechanism reproduces measured [HOM] and [HOM precursors] and is concise enough for use in global climate models. The mechanism also reproduces the observed suppression of HOMs by isoprene, suggesting enhanced emissions may not necessarily lead to more aerosols. Greater HOM importance in the pre-industrial era is also shown.
Mario Mech, Maximilian Maahn, Stefan Kneifel, Davide Ori, Emiliano Orlandi, Pavlos Kollias, Vera Schemann, and Susanne Crewell
Geosci. Model Dev., 13, 4229–4251, https://doi.org/10.5194/gmd-13-4229-2020, https://doi.org/10.5194/gmd-13-4229-2020, 2020
Short summary
Short summary
The Passive and Active Microwave TRAnsfer tool (PAMTRA) is a public domain software package written in Python and Fortran for the simulation of microwave remote sensing observations. PAMTRA models the interaction of radiation with gases, clouds, precipitation, and the surface using either in situ observations or model output as input parameters. The wide range of applications is demonstrated for passive (radiometer) and active (radar) instruments on ground, airborne, and satellite platforms.
Nicolas Bellouin, Will Davies, Keith P. Shine, Johannes Quaas, Johannes Mülmenstädt, Piers M. Forster, Chris Smith, Lindsay Lee, Leighton Regayre, Guy Brasseur, Natalia Sudarchikova, Idir Bouarar, Olivier Boucher, and Gunnar Myhre
Earth Syst. Sci. Data, 12, 1649–1677, https://doi.org/10.5194/essd-12-1649-2020, https://doi.org/10.5194/essd-12-1649-2020, 2020
Short summary
Short summary
Quantifying the imbalance in the Earth's energy budget caused by human activities is important to understand and predict climate changes. This study presents new estimates of the imbalance caused by changes in atmospheric concentrations of carbon dioxide, methane, ozone, and particles of pollution. Over the period 2003–2017, the overall imbalance has been positive, indicating that the climate system has gained energy and will warm further.
Kevin Ohneiser, Albert Ansmann, Holger Baars, Patric Seifert, Boris Barja, Cristofer Jimenez, Martin Radenz, Audrey Teisseire, Athina Floutsi, Moritz Haarig, Andreas Foth, Alexandra Chudnovsky, Ronny Engelmann, Félix Zamorano, Johannes Bühl, and Ulla Wandinger
Atmos. Chem. Phys., 20, 8003–8015, https://doi.org/10.5194/acp-20-8003-2020, https://doi.org/10.5194/acp-20-8003-2020, 2020
Short summary
Short summary
Unique lidar observations of a strong perturbation in stratospheric aerosol conditions in the Southern Hemisphere caused by the extreme Australian bushfires in 2019–2020 are presented. One of the main goals of this article is to provide the CALIPSO and Aeolus spaceborne lidar science teams with basic input parameters (lidar ratios, depolarization ratios) for a trustworthy documentation of this record-breaking event.
Athena Augusta Floutsi, Holger Baars, Martin Radenz, Moritz Haarig, Zhenping Yin, Patric Seifert, Cristofer Jimenez, Ulla Wandinger, Ronny Engelmann, Boris Barja, Felix Zamorano, and Albert Ansmann
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-453, https://doi.org/10.5194/acp-2020-453, 2020
Preprint withdrawn
Montserrat Costa-Surós, Odran Sourdeval, Claudia Acquistapace, Holger Baars, Cintia Carbajal Henken, Christa Genz, Jonas Hesemann, Cristofer Jimenez, Marcel König, Jan Kretzschmar, Nils Madenach, Catrin I. Meyer, Roland Schrödner, Patric Seifert, Fabian Senf, Matthias Brueck, Guido Cioni, Jan Frederik Engels, Kerstin Fieg, Ksenia Gorges, Rieke Heinze, Pavan Kumar Siligam, Ulrike Burkhardt, Susanne Crewell, Corinna Hoose, Axel Seifert, Ina Tegen, and Johannes Quaas
Atmos. Chem. Phys., 20, 5657–5678, https://doi.org/10.5194/acp-20-5657-2020, https://doi.org/10.5194/acp-20-5657-2020, 2020
Short summary
Short summary
The impact of anthropogenic aerosols on clouds is a key uncertainty in climate change. This study analyses large-domain simulations with a new high-resolution model to investigate the differences in clouds between 1985 and 2013 comparing multiple observational datasets. The differences in aerosol and in cloud droplet concentrations are clearly detectable. For other quantities, the detection and attribution proved difficult, despite a substantial impact on the Earth's energy budget.
Bruna A. Holanda, Mira L. Pöhlker, David Walter, Jorge Saturno, Matthias Sörgel, Jeannine Ditas, Florian Ditas, Christiane Schulz, Marco Aurélio Franco, Qiaoqiao Wang, Tobias Donth, Paulo Artaxo, Henrique M. J. Barbosa, Stephan Borrmann, Ramon Braga, Joel Brito, Yafang Cheng, Maximilian Dollner, Johannes W. Kaiser, Thomas Klimach, Christoph Knote, Ovid O. Krüger, Daniel Fütterer, Jošt V. Lavrič, Nan Ma, Luiz A. T. Machado, Jing Ming, Fernando G. Morais, Hauke Paulsen, Daniel Sauer, Hans Schlager, Johannes Schneider, Hang Su, Bernadett Weinzierl, Adrian Walser, Manfred Wendisch, Helmut Ziereis, Martin Zöger, Ulrich Pöschl, Meinrat O. Andreae, and Christopher Pöhlker
Atmos. Chem. Phys., 20, 4757–4785, https://doi.org/10.5194/acp-20-4757-2020, https://doi.org/10.5194/acp-20-4757-2020, 2020
Short summary
Short summary
Biomass burning smoke from African savanna and grassland is transported across the South Atlantic Ocean in defined layers within the free troposphere. The combination of in situ aircraft and ground-based measurements aided by satellite observations showed that these layers are transported into the Amazon Basin during the early dry season. The influx of aged smoke, enriched in black carbon and cloud condensation nuclei, has important implications for the Amazonian aerosol and cloud cycling.
Shaoning Lv, Bernd Schalge, Pablo Saavedra Garfias, and Clemens Simmer
Hydrol. Earth Syst. Sci., 24, 1957–1973, https://doi.org/10.5194/hess-24-1957-2020, https://doi.org/10.5194/hess-24-1957-2020, 2020
Short summary
Short summary
Passive remote sensing of soil moisture has good potential to improve weather forecasting via data assimilation in theory. We use the virtual reality data set (VR01) to infer the impact of sampling density on soil moisture ground cal/val activity. It shows how the sampling error is growing with an increasing sampling distance for a SMOS–SMAP scale footprint in about 40 km, 9 km, and 3 km. The conclusion will help in understanding the passive remote sensing soil moisture products.
Carola Barrientos Velasco, Hartwig Deneke, Hannes Griesche, Patric Seifert, Ronny Engelmann, and Andreas Macke
Atmos. Meas. Tech., 13, 1757–1775, https://doi.org/10.5194/amt-13-1757-2020, https://doi.org/10.5194/amt-13-1757-2020, 2020
Short summary
Short summary
In the changing Arctic, quantifying the resulting variability of incoming solar radiation is important to better elucidate the net radiative effect of clouds. As part of a multidisciplinary expedition in the central Arctic held in early summer 2017, a novel network of pyranometers was deployed over an ice floe to investigate the spatiotemporal variability of solar radiation under different sky conditions. This study presents the collected data and an analysis of the spatiotemporal variability.
Mattia Righi, Johannes Hendricks, Ulrike Lohmann, Christof Gerhard Beer, Valerian Hahn, Bernd Heinold, Romy Heller, Martina Krämer, Michael Ponater, Christian Rolf, Ina Tegen, and Christiane Voigt
Geosci. Model Dev., 13, 1635–1661, https://doi.org/10.5194/gmd-13-1635-2020, https://doi.org/10.5194/gmd-13-1635-2020, 2020
Short summary
Short summary
A new cloud microphysical scheme is implemented in the global EMAC-MADE3 aerosol model and evaluated. The new scheme features a detailed parameterization for aerosol-driven ice formation in cirrus clouds, accounting for the competition between homogeneous and heterogeneous ice formation processes. The comparison against satellite data and in situ measurements shows that the model performance is in line with similar global coupled models featuring ice cloud parameterizations.
Sabine Griessbach, Lars Hoffmann, Reinhold Spang, Peggy Achtert, Marc von Hobe, Nina Mateshvili, Rolf Müller, Martin Riese, Christian Rolf, Patric Seifert, and Jean-Paul Vernier
Atmos. Meas. Tech., 13, 1243–1271, https://doi.org/10.5194/amt-13-1243-2020, https://doi.org/10.5194/amt-13-1243-2020, 2020
Short summary
Short summary
In this paper we study the cloud top height derived from MIPAS measurements. Previous studies showed contradictory results with respect to MIPAS, both underestimating and overestimating cloud top height. We used simulations and found that overestimation and/or underestimation depend on cloud extinction. To support our findings we compared MIPAS cloud top heights of volcanic sulfate aerosol with measurements from CALIOP, ground-based lidar, and ground-based twilight measurements.
Lucas Höppler, Felix Gödde, Manuel Gutleben, Tobias Kölling, Bernhard Mayer, and Tobias Zinner
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-49, https://doi.org/10.5194/amt-2020-49, 2020
Publication in AMT not foreseen
Short summary
Short summary
Clouds are considered as two-dimensional in many climate and weather models. This approach creates errors due to wrongly calculated solar or terrestrial radiative transfer. In order to reduce these errors, realistic three-dimensional clouds need to be retrieved or reproduced. This paper shows an approach to retrieve realistic three-dimensional clouds from an airplane, by combining the strengths of several active and passive remote sensing instruments.
Michael Frech and John Hubbert
Atmos. Meas. Tech., 13, 1051–1069, https://doi.org/10.5194/amt-13-1051-2020, https://doi.org/10.5194/amt-13-1051-2020, 2020
Short summary
Short summary
The prime source of the temperature sensitivity of ZDR can be attributed to the antenna assembly. This result is based on over 2000 solar box scans. These data also reveal that there is a 0.6 dB decrease in gain for a 10 °C temperature increase, which directly relates to a bias of the radar reflectivity factor Z, which has not been not accounted for previously. The ZDR variability in and ZDR calibration performance of the German weather radar network are shown.
Claudia Unglaub, Karoline Block, Johannes Mülmenstädt, Odran Sourdeval, and Johannes Quaas
Atmos. Chem. Phys., 20, 2407–2418, https://doi.org/10.5194/acp-20-2407-2020, https://doi.org/10.5194/acp-20-2407-2020, 2020
Short summary
Short summary
In cloud research, it is necessary to classify clouds. The World Meteorological Organization proposes distinguishing stratiform and cumuliform clouds in three altitude layers. The paper explains why previous approaches to classify clouds fail for many applications and proposes a new classification on the basis of new approaches for satellite retrievals to derive cloud-base height, in combination with cloud inhomogeneity. It is demonstrated that this discriminates cloud characteristics well.
Diego Villanueva, Bernd Heinold, Patric Seifert, Hartwig Deneke, Martin Radenz, and Ina Tegen
Atmos. Chem. Phys., 20, 2177–2199, https://doi.org/10.5194/acp-20-2177-2020, https://doi.org/10.5194/acp-20-2177-2020, 2020
Short summary
Short summary
Spaceborne retrievals of cloud phase were analysed together with an atmospheric composition model to assess the global frequency of ice and liquid clouds. This analysis showed that at equal temperature the average occurrence of ice clouds increases for higher dust mixing ratios on a day-to-day basis in the middle and high latitudes. This indicates that mineral dust may have a strong impact on the occurrence of ice clouds even in remote areas.
Pascal Polonik, Christoph Knote, Tobias Zinner, Florian Ewald, Tobias Kölling, Bernhard Mayer, Meinrat O. Andreae, Tina Jurkat-Witschas, Thomas Klimach, Christoph Mahnke, Sergej Molleker, Christopher Pöhlker, Mira L. Pöhlker, Ulrich Pöschl, Daniel Rosenfeld, Christiane Voigt, Ralf Weigel, and Manfred Wendisch
Atmos. Chem. Phys., 20, 1591–1605, https://doi.org/10.5194/acp-20-1591-2020, https://doi.org/10.5194/acp-20-1591-2020, 2020
Short summary
Short summary
A realistic representation of cloud–aerosol interactions is central to accurate climate projections. Here we combine observations collected during the ACRIDICON-CHUVA campaign with chemistry-transport simulations to evaluate the model’s ability to represent the indirect effects of biomass burning aerosol on cloud microphysics. We find an upper limit for the model sensitivity on cloud condensation nuclei concentrations well below the levels reached during the burning season in the Amazon Basin.
Darielle Dexheimer, Martin Airey, Erika Roesler, Casey Longbottom, Keri Nicoll, Stefan Kneifel, Fan Mei, R. Giles Harrison, Graeme Marlton, and Paul D. Williams
Atmos. Meas. Tech., 12, 6845–6864, https://doi.org/10.5194/amt-12-6845-2019, https://doi.org/10.5194/amt-12-6845-2019, 2019
Short summary
Short summary
A tethered-balloon system deployed supercooled liquid water content sondes and fiber optic distributed temperature sensing to collect in situ atmospheric measurements within mixed-phase Arctic clouds. These data were validated against collocated surface-based and remote sensing datasets. From these measurements and sensor evaluations, tethered-balloon flights are shown to offer an effective method of collecting data to inform numerical models and calibrate remote sensing instrumentation.
Johannes Mülmenstädt, Edward Gryspeerdt, Marc Salzmann, Po-Lun Ma, Sudhakar Dipu, and Johannes Quaas
Atmos. Chem. Phys., 19, 15415–15429, https://doi.org/10.5194/acp-19-15415-2019, https://doi.org/10.5194/acp-19-15415-2019, 2019
Short summary
Short summary
The effect of aerosol–cloud interactions (ACIs) on Earth's energy budget continues to be highly uncertain. We decompose the effective radiative forcing by ACIs (ERFaci) into the instantaneous forcing due to anthropogenic increases in the number of cloud droplets and fast responses of cloud properties to the droplet number perturbation in the ECHAM–HAMMOZ aerosol–climate model. This decomposition maps onto the IPCC's Fifth Assessment Report analysis of ERFaci more directly than previous work.
Johannes Bühl, Patric Seifert, Martin Radenz, Holger Baars, and Albert Ansmann
Atmos. Meas. Tech., 12, 6601–6617, https://doi.org/10.5194/amt-12-6601-2019, https://doi.org/10.5194/amt-12-6601-2019, 2019
Short summary
Short summary
In the present paper, we present a novel remote-sensing technique for the measurement of ice crystal number concentrations in clouds. The fall velocity of ice crystals measured with values from cloud radar and a radar wind profiler is used in order to derive information about ice crystal size and number concentration. In contrast to existing methods based on the combination of lidar and cloud radar, the present method can also be used in optically thick clouds.
Albert Ansmann, Rodanthi-Elisavet Mamouri, Johannes Bühl, Patric Seifert, Ronny Engelmann, Julian Hofer, Argyro Nisantzi, James D. Atkinson, Zamin A. Kanji, Berko Sierau, Mihalis Vrekoussis, and Jean Sciare
Atmos. Chem. Phys., 19, 15087–15115, https://doi.org/10.5194/acp-19-15087-2019, https://doi.org/10.5194/acp-19-15087-2019, 2019
Short summary
Short summary
For the first time, a closure study of the relationship between the ice-nucleating particle concentration (INPC) and ice crystal number concentration (ICNC) in altocumulus and cirrus layers, solely based on ground-based active remote sensing, is presented. The closure studies were conducted in Cyprus. A focus was on altocumulus and cirrus layers which developed in pronounced Saharan dust layers. The closure studies show that heterogeneous ice nucleation can play a dominant role in ice formation.
Simonas Kecorius, Teresa Vogl, Pauli Paasonen, Janne Lampilahti, Daniel Rothenberg, Heike Wex, Sebastian Zeppenfeld, Manuela van Pinxteren, Markus Hartmann, Silvia Henning, Xianda Gong, Andre Welti, Markku Kulmala, Frank Stratmann, Hartmut Herrmann, and Alfred Wiedensohler
Atmos. Chem. Phys., 19, 14339–14364, https://doi.org/10.5194/acp-19-14339-2019, https://doi.org/10.5194/acp-19-14339-2019, 2019
Short summary
Short summary
Arctic sea-ice retreat, atmospheric new particle formation (NPF), and aerosol–cloud interaction may all be linked via a positive feedback mechanism. Understanding the sources of cloud condensation nuclei (CCN) is an important piece in the Arctic amplification puzzle. We show that Arctic newly formed particles do not have to grow beyond the Aitken mode to act as CCN. This is important, because NPF occurrence in the Arctic is expected to increase, making it a significant contributor to CCN budget.
Zhenping Yin, Albert Ansmann, Holger Baars, Patric Seifert, Ronny Engelmann, Martin Radenz, Cristofer Jimenez, Alina Herzog, Kevin Ohneiser, Karsten Hanbuch, Luc Blarel, Philippe Goloub, Gaël Dubois, Stephane Victori, and Fabrice Maupin
Atmos. Meas. Tech., 12, 5685–5698, https://doi.org/10.5194/amt-12-5685-2019, https://doi.org/10.5194/amt-12-5685-2019, 2019
Short summary
Short summary
A new shipborne Sun–sky–lunar photometer was validated through comparisons with collocated MICROTOPS II and multiwavelength Raman polarization lidar measurements during two trans-Atlantic cruises. A full diurnal cycle of mixed dust–smoke episode was captured by both the shipborne photometer and lidar. The coefficient of determination for the linear regression between MICROTOPS II and the shipborne photometer was 0.993 for AOD at 500 nm based on the entire dataset.
Daun Jeong, Roger Seco, Dasa Gu, Youngro Lee, Benjamin A. Nault, Christoph J. Knote, Tom Mcgee, John T. Sullivan, Jose L. Jimenez, Pedro Campuzano-Jost, Donald R. Blake, Dianne Sanchez, Alex B. Guenther, David Tanner, L. Gregory Huey, Russell Long, Bruce E. Anderson, Samuel R. Hall, Kirk Ullmann, Hye-jung Shin, Scott C. Herndon, Youngjae Lee, Danbi Kim, Joonyoung Ahn, and Saewung Kim
Atmos. Chem. Phys., 19, 12779–12795, https://doi.org/10.5194/acp-19-12779-2019, https://doi.org/10.5194/acp-19-12779-2019, 2019
Carly L. Reddington, Luke Conibear, Christoph Knote, Ben J. Silver, Yong J. Li, Chak K. Chan, Steve R. Arnold, and Dominick V. Spracklen
Atmos. Chem. Phys., 19, 11887–11910, https://doi.org/10.5194/acp-19-11887-2019, https://doi.org/10.5194/acp-19-11887-2019, 2019
Short summary
Short summary
We use a high-resolution model over South and East Asia to explore air quality and human health benefits of eliminating emissions from six man-made pollution sources. We find that preventing emissions from either residential energy use, industry, or open biomass burning yields the largest reductions in ground-level particulate matter pollution and its associated disease burden over this region. We also summarize previous estimates of the source-specific disease burden in China and India.
Shannon L. Mason, Robin J. Hogan, Christopher D. Westbrook, Stefan Kneifel, Dmitri Moisseev, and Leonie von Terzi
Atmos. Meas. Tech., 12, 4993–5018, https://doi.org/10.5194/amt-12-4993-2019, https://doi.org/10.5194/amt-12-4993-2019, 2019
Short summary
Short summary
The mass contents of snowflakes are critical to remotely sensed estimates of snowfall. The signatures of snow measured at three radar frequencies can distinguish fluffy, fractal snowflakes from dense and more homogeneous rimed snow. However, we show that the shape of the particle size spectrum also has a significant impact on triple-frequency radar signatures and must be accounted for when making triple-frequency radar estimates of snow that include variations in particle structure and density.
Martin Radenz, Johannes Bühl, Patric Seifert, Hannes Griesche, and Ronny Engelmann
Atmos. Meas. Tech., 12, 4813–4828, https://doi.org/10.5194/amt-12-4813-2019, https://doi.org/10.5194/amt-12-4813-2019, 2019
Short summary
Short summary
Clouds may be composed of more than one particle population even at the smallest scales. Cloud radar observations can contain information on multiple particle species, showing up as distinct peaks and subpeaks in the Doppler spectrum. We propose the use of binary tree structures to recursively structure these peaks. Two case studies from different locations and instruments illustrate how this approach can be used to disentangle particle populations in multilayered mixed-phase clouds.
Eleni Marinou, Matthias Tesche, Athanasios Nenes, Albert Ansmann, Jann Schrod, Dimitra Mamali, Alexandra Tsekeri, Michael Pikridas, Holger Baars, Ronny Engelmann, Kalliopi-Artemis Voudouri, Stavros Solomos, Jean Sciare, Silke Groß, Florian Ewald, and Vassilis Amiridis
Atmos. Chem. Phys., 19, 11315–11342, https://doi.org/10.5194/acp-19-11315-2019, https://doi.org/10.5194/acp-19-11315-2019, 2019
Short summary
Short summary
We assess the feasibility of ground-based and spaceborne lidars to retrieve profiles of cloud-relevant aerosol concentrations and ice-nucleating particles. The retrieved profiles are in good agreement with airborne in situ measurements. Our methodology will be applied to satellite observations in the future so as to provide a global 3D product of cloud-relevant properties.
Jacob Schacht, Bernd Heinold, Johannes Quaas, John Backman, Ribu Cherian, Andre Ehrlich, Andreas Herber, Wan Ting Katty Huang, Yutaka Kondo, Andreas Massling, P. R. Sinha, Bernadett Weinzierl, Marco Zanatta, and Ina Tegen
Atmos. Chem. Phys., 19, 11159–11183, https://doi.org/10.5194/acp-19-11159-2019, https://doi.org/10.5194/acp-19-11159-2019, 2019
Short summary
Short summary
The Arctic is warming faster than the rest of Earth. Black carbon (BC) aerosol contributes to this Arctic amplification by direct and indirect aerosol radiative effects while distributed in air or deposited on snow and ice. The aerosol-climate model ECHAM-HAM is used to estimate direct aerosol radiative effect (DRE). Airborne and near-surface BC measurements are used to evaluate the model and give an uncertainty range for the burden and DRE of Arctic BC caused by different emission inventories.
Laura Kiely, Dominick V. Spracklen, Christine Wiedinmyer, Luke Conibear, Carly L. Reddington, Scott Archer-Nicholls, Douglas Lowe, Stephen R. Arnold, Christoph Knote, Md Firoz Khan, Mohd Talib Latif, Mikinori Kuwata, Sri Hapsari Budisulistiorini, and Lailan Syaufina
Atmos. Chem. Phys., 19, 11105–11121, https://doi.org/10.5194/acp-19-11105-2019, https://doi.org/10.5194/acp-19-11105-2019, 2019
Short summary
Short summary
In 2015, a large fire episode occurred in Indonesia, reducing air quality. Fires occurred predominantly on peatland, where large uncertainties are associated with emissions. Current fire emissions datasets underestimate peat fire emissions. We created new fire emissions data, with data specific to Indonesian peat fires. Using these emissions in simulations of particulate matter and aerosol optical depth shows an improvement over simulations using current data, when compared with observations.
Heike Kalesse, Teresa Vogl, Cosmin Paduraru, and Edward Luke
Atmos. Meas. Tech., 12, 4591–4617, https://doi.org/10.5194/amt-12-4591-2019, https://doi.org/10.5194/amt-12-4591-2019, 2019
Short summary
Short summary
In a cloud, different particles like liquid water droplets and ice particles can exist simultaneously. To study the evolution of cloud particles from cloud top to bottom one has to find out how many different types of particles with different fall velocities are present. This can be done by analyzing the number of peaks in upward-looking cloud radar Doppler spectra. A new machine-learning algorithm (named PEAKO) that determines the number of peaks is introduced and compared to existing methods.
Andreas Marsing, Tina Jurkat-Witschas, Jens-Uwe Grooß, Stefan Kaufmann, Romy Heller, Andreas Engel, Peter Hoor, Jens Krause, and Christiane Voigt
Atmos. Chem. Phys., 19, 10757–10772, https://doi.org/10.5194/acp-19-10757-2019, https://doi.org/10.5194/acp-19-10757-2019, 2019
Short summary
Short summary
We study the partitioning of inorganic chlorine into active (ozone-depleting) and reservoir species in the lowermost stratosphere of the Arctic polar vortex, using novel in situ aircraft measurements in winter 2015/2016. We observe a change in recovery pathways of the reservoirs HCl and ClONO2 with increasing potential temperature. A comparison with the CLaMS model relates the observations to the vortex-wide evolution and confirms unresolved discrepancies in the mid-winter HCl distribution.
Jan Kretzschmar, Marc Salzmann, Johannes Mülmenstädt, and Johannes Quaas
Atmos. Chem. Phys., 19, 10571–10589, https://doi.org/10.5194/acp-19-10571-2019, https://doi.org/10.5194/acp-19-10571-2019, 2019
Short summary
Short summary
This study aims to explore Arctic cloud properties in the atmospheric circulation model ECHAM6. We compare cloud properties in the model to satellite observations using a satellite simulator and show that ECHAM6 overestimates low-level liquid-containing clouds. In sensitivity studies, we show that this bias can be related to cloud microphysics and surface fluxes.
Hailing Jia, Xiaoyan Ma, Johannes Quaas, Yan Yin, and Tom Qiu
Atmos. Chem. Phys., 19, 8879–8896, https://doi.org/10.5194/acp-19-8879-2019, https://doi.org/10.5194/acp-19-8879-2019, 2019
Short summary
Short summary
We systematically assess how and to what extent satellite retrieval biases may affect correlations, as well as explore the underlying physical mechanisms. It is noted that the retrieval biases of both cloud and aerosol can result in a serious overestimation of the slope of CER–AI. Positive correlations more likely to occur in the case of drier cloud top and stronger turbulence in clouds, implying entrainment mixing might be a possible physical interpretation for such a positive CER–AI slope.
Jonathan W. Taylor, Sophie L. Haslett, Keith Bower, Michael Flynn, Ian Crawford, James Dorsey, Tom Choularton, Paul J. Connolly, Valerian Hahn, Christiane Voigt, Daniel Sauer, Régis Dupuy, Joel Brito, Alfons Schwarzenboeck, Thierry Bourriane, Cyrielle Denjean, Phil Rosenberg, Cyrille Flamant, James D. Lee, Adam R. Vaughan, Peter G. Hill, Barbara Brooks, Valéry Catoire, Peter Knippertz, and Hugh Coe
Atmos. Chem. Phys., 19, 8503–8522, https://doi.org/10.5194/acp-19-8503-2019, https://doi.org/10.5194/acp-19-8503-2019, 2019
Short summary
Short summary
Low-level clouds cover a wide area of southern West Africa (SWA) and play an important role in the region's climate, reflecting sunlight away from the surface. We performed aircraft measurements of aerosols and clouds over SWA during the 2016 summer monsoon and found pollution, and polluted clouds, across the whole region. Smoke from biomass burning in Central Africa is transported to West Africa, causing a polluted background which limits the effect of local pollution on cloud properties.
Heike Konow, Marek Jacob, Felix Ament, Susanne Crewell, Florian Ewald, Martin Hagen, Lutz Hirsch, Friedhelm Jansen, Mario Mech, and Bjorn Stevens
Earth Syst. Sci. Data, 11, 921–934, https://doi.org/10.5194/essd-11-921-2019, https://doi.org/10.5194/essd-11-921-2019, 2019
Short summary
Short summary
High-resolution measurements of maritime clouds are relatively scarce. Airborne cloud radar, microwave radiometer and dropsonde observations are used to expand these data. The measurements are unified into one data set to enable easy joint analyses of several or all instruments together to gain insight into cloud properties and atmospheric state. The data set contains measurements from four campaigns between December 2013 and October 2016 over the tropical and midlatitude Atlantic.
José Dias Neto, Stefan Kneifel, Davide Ori, Silke Trömel, Jan Handwerker, Birger Bohn, Normen Hermes, Kai Mühlbauer, Martin Lenefer, and Clemens Simmer
Earth Syst. Sci. Data, 11, 845–863, https://doi.org/10.5194/essd-11-845-2019, https://doi.org/10.5194/essd-11-845-2019, 2019
Short summary
Short summary
This study describes a 2-month dataset of ground-based, vertically pointing triple-frequency cloud radar observations recorded during the winter season 2015/2016 in Jülich, Germany. Intensive quality control has been applied to the unique long-term dataset, which allows the multifrequency signatures of ice and snow particles to be statistically analyzed for the first time. The analysis includes, for example, aggregation and its dependence on cloud temperature, riming, and onset of melting.
Andreas Foth, Thomas Kanitz, Ronny Engelmann, Holger Baars, Martin Radenz, Patric Seifert, Boris Barja, Michael Fromm, Heike Kalesse, and Albert Ansmann
Atmos. Chem. Phys., 19, 6217–6233, https://doi.org/10.5194/acp-19-6217-2019, https://doi.org/10.5194/acp-19-6217-2019, 2019
Short summary
Short summary
In this study, we present the vertical aerosol distribution in the pristine region of the southern tip of South America determined by ground-based and spaceborne lidar observations. Most aerosol load is contained within the planetary boundary layer up to about 1200 m. The free troposphere is characterized by a very low aerosol concentration but a frequent occurrence of clouds. Lofted aerosol layers were rarely observed and, when present, were characterized by very low optical thicknesses.
Edward Gryspeerdt, Tom Goren, Odran Sourdeval, Johannes Quaas, Johannes Mülmenstädt, Sudhakar Dipu, Claudia Unglaub, Andrew Gettelman, and Matthew Christensen
Atmos. Chem. Phys., 19, 5331–5347, https://doi.org/10.5194/acp-19-5331-2019, https://doi.org/10.5194/acp-19-5331-2019, 2019
Short summary
Short summary
The liquid water path (LWP) is the strongest control on cloud albedo, such that a small change in LWP can have a large radiative impact. By changing the droplet number concentration (Nd) aerosols may be able to change the LWP, but the sign and magnitude of the effect is unclear. This work uses satellite data to investigate the relationship between Nd and LWP at a global scale and in response to large aerosol perturbations, suggesting that a strong decrease in LWP at high Nd may be overestimated.
John T. Sullivan, Thomas J. McGee, Ryan M. Stauffer, Anne M. Thompson, Andrew Weinheimer, Christoph Knote, Scott Janz, Armin Wisthaler, Russell Long, James Szykman, Jinsoo Park, Youngjae Lee, Saewung Kim, Daun Jeong, Dianne Sanchez, Laurence Twigg, Grant Sumnicht, Travis Knepp, and Jason R. Schroeder
Atmos. Chem. Phys., 19, 5051–5067, https://doi.org/10.5194/acp-19-5051-2019, https://doi.org/10.5194/acp-19-5051-2019, 2019
Short summary
Short summary
During the May–June 2016 International Cooperative Air Quality Field Study in Korea (KORUS-AQ), pollution reached the remote Taehwa Research Forest (TRF) site. Two case studies are examined and observations clearly identify TRF and the surrounding rural areas as long-term receptor sites for severe urban pollution events. In summary, domestic emissions may be causing more pollution than by transboundary pathways, which have been historically believed to be the major source of air pollution.
Florian Ewald, Silke Groß, Martin Hagen, Lutz Hirsch, Julien Delanoë, and Matthias Bauer-Pfundstein
Atmos. Meas. Tech., 12, 1815–1839, https://doi.org/10.5194/amt-12-1815-2019, https://doi.org/10.5194/amt-12-1815-2019, 2019
Short summary
Short summary
This study gives a summary of lessons learned during the absolute calibration of the airborne, high-power Ka-band cloud radar HAMP MIRA on board the German research aircraft HALO. The first part covers the internal calibration of the instrument where individual instrument components are characterized in the laboratory. In the second part, the internal calibration is validated with external reference sources like the ocean surface backscatter and different air- and spaceborne cloud radars.
Christoph Böhm, Odran Sourdeval, Johannes Mülmenstädt, Johannes Quaas, and Susanne Crewell
Atmos. Meas. Tech., 12, 1841–1860, https://doi.org/10.5194/amt-12-1841-2019, https://doi.org/10.5194/amt-12-1841-2019, 2019
Short summary
Short summary
The cloud base height (CBH) is important for air traffic, for describing the energy budget of the Earth and for other applications. Ground-based CBH measurements are only available for individual sites and mostly limited to land. Satellites are a powerful tool for global coverage. While the cloud top height is derived operationally, the derivation of CBH from space is more difficult as the clouds hide their base. Here, we present a method to retrieve the CBH from multi-angle satellite data.
Tobias Zinner, Ulrich Schwarz, Tobias Kölling, Florian Ewald, Evelyn Jäkel, Bernhard Mayer, and Manfred Wendisch
Atmos. Meas. Tech., 12, 1167–1181, https://doi.org/10.5194/amt-12-1167-2019, https://doi.org/10.5194/amt-12-1167-2019, 2019
Florian Ewald, Tobias Zinner, Tobias Kölling, and Bernhard Mayer
Atmos. Meas. Tech., 12, 1183–1206, https://doi.org/10.5194/amt-12-1183-2019, https://doi.org/10.5194/amt-12-1183-2019, 2019
Short summary
Short summary
This paper presents a new method for gaining insights into the vertical evolution of cloud droplet effective radii by using reflected solar radiation from cloud sides. The paper investigates how bi-spectral effective radius retrievals are affected by unknown cloud surface orientations and presents a method to mitigate this effect. Based on these findings, this study develops a statistical effective radius retrieval for airborne, side-looking imaging sensors.
Tobias Kölling, Tobias Zinner, and Bernhard Mayer
Atmos. Meas. Tech., 12, 1155–1166, https://doi.org/10.5194/amt-12-1155-2019, https://doi.org/10.5194/amt-12-1155-2019, 2019
Short summary
Short summary
Imaging technology allows us to quickly gather information on larger cloud fields. Unlike using lidar or radar, it is difficult to obtain accurate position information about the observed clouds. This work presents a method to retrieve the missing position information using RGB images from an airborne video camera. Using field campaign data, we observe and explain a median offset of 126 m compared to lidar data and show that systematic errors across the measurement swath are well below 50 m.
Johannes Mülmenstädt, Odran Sourdeval, David S. Henderson, Tristan S. L'Ecuyer, Claudia Unglaub, Leonore Jungandreas, Christoph Böhm, Lynn M. Russell, and Johannes Quaas
Earth Syst. Sci. Data, 10, 2279–2293, https://doi.org/10.5194/essd-10-2279-2018, https://doi.org/10.5194/essd-10-2279-2018, 2018
Short summary
Short summary
One of the key pieces of information about a cloud is how high its base is. Unlike cloud top, cloud base is hard to observe from a satellite perspective – the cloud blocks the view. But without using satellites, it is difficult to compile global datasets. Here we describe how we worked around the limitations of a cloud-detecting laser satellite to observe global cloud base heights. This dataset will expand our knowledge of the cloudy atmosphere and its interaction with the planetary surface.
Benjamin A. Nault, Pedro Campuzano-Jost, Douglas A. Day, Jason C. Schroder, Bruce Anderson, Andreas J. Beyersdorf, Donald R. Blake, William H. Brune, Yonghoon Choi, Chelsea A. Corr, Joost A. de Gouw, Jack Dibb, Joshua P. DiGangi, Glenn S. Diskin, Alan Fried, L. Gregory Huey, Michelle J. Kim, Christoph J. Knote, Kara D. Lamb, Taehyoung Lee, Taehyun Park, Sally E. Pusede, Eric Scheuer, Kenneth L. Thornhill, Jung-Hun Woo, and Jose L. Jimenez
Atmos. Chem. Phys., 18, 17769–17800, https://doi.org/10.5194/acp-18-17769-2018, https://doi.org/10.5194/acp-18-17769-2018, 2018
Short summary
Short summary
Aerosol impacts visibility and human health in large cities. Sources of aerosols are still highly uncertain, especially for cities surrounded by numerous other cities. We use observations collected during the Korea–United States Air Quality study to determine sources of organic aerosol (OA). We find that secondary OA (SOA) is rapidly produced over Seoul, South Korea, and that the sources of the SOA originate from short-lived hydrocarbons, which originate from local emissions.
Michael Weger, Bernd Heinold, Christa Engler, Ulrich Schumann, Axel Seifert, Romy Fößig, Christiane Voigt, Holger Baars, Ulrich Blahak, Stephan Borrmann, Corinna Hoose, Stefan Kaufmann, Martina Krämer, Patric Seifert, Fabian Senf, Johannes Schneider, and Ina Tegen
Atmos. Chem. Phys., 18, 17545–17572, https://doi.org/10.5194/acp-18-17545-2018, https://doi.org/10.5194/acp-18-17545-2018, 2018
Short summary
Short summary
The impact of desert dust on cloud formation is investigated for a major Saharan dust event over Europe by interactive regional dust modeling. Dust particles are very efficient ice-nucleating particles promoting the formation of ice crystals in clouds. The simulations show that the observed extensive cirrus development was likely related to the above-average dust load. The interactive dust–cloud feedback in the model significantly improves the agreement with aircraft and satellite observations.
Stefan Kaufmann, Christiane Voigt, Romy Heller, Tina Jurkat-Witschas, Martina Krämer, Christian Rolf, Martin Zöger, Andreas Giez, Bernhard Buchholz, Volker Ebert, Troy Thornberry, and Ulrich Schumann
Atmos. Chem. Phys., 18, 16729–16745, https://doi.org/10.5194/acp-18-16729-2018, https://doi.org/10.5194/acp-18-16729-2018, 2018
Short summary
Short summary
We present an intercomparison of the airborne water vapor measurements during the ML-CIRRUS mission. Although the agreement of the hygrometers significantly improved compared to studies from recent decades, systematic differences remain under specific meteorological conditions. We compare the measurements to model data, where we observe a model wet bias in the lower stratosphere close to the tropopause, likely caused by a blurred humidity gradient in the model tropopause.
Diego Villanueva, Bernd Heinold, Patric Seifert, Hartwig Deneke, Martin Radenz, and Ina Tegen
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-1074, https://doi.org/10.5194/acp-2018-1074, 2018
Revised manuscript not accepted
Short summary
Short summary
Two different satellite products were analysed together with an atmospheric composition model to assess the global frequency of ice and liquid stratiform clouds. This analysis showed that at equal temperature the average occurrence of fully glaciated stratiform clouds was found to increase for higher dust mixing-ratios on a day-to-day basis in the mid- and high latitudes. This indicates that mineral dust may have a strong impact in the occurrence of ice clouds even in remote areas.
Christiane Voigt, Andreas Dörnbrack, Martin Wirth, Silke M. Groß, Michael C. Pitts, Lamont R. Poole, Robert Baumann, Benedikt Ehard, Björn-Martin Sinnhuber, Wolfgang Woiwode, and Hermann Oelhaf
Atmos. Chem. Phys., 18, 15623–15641, https://doi.org/10.5194/acp-18-15623-2018, https://doi.org/10.5194/acp-18-15623-2018, 2018
Short summary
Short summary
The 2015–2016 stratospheric winter was the coldest in the 36-year climatological data record. The extreme conditions promoted the formation of persistent Arctic polar stratospheric ice clouds. An extended ice PSC detected by airborne lidar in January 2016 shows a second mode with higher particle depolarization ratios. Back-trajectories from the high-depol ice matched to CALIOP PSC curtains provide evidence for ice nucleation on NAT. The novel data consolidate our understanding of PSC formation.
Christiane Schulz, Johannes Schneider, Bruna Amorim Holanda, Oliver Appel, Anja Costa, Suzane S. de Sá, Volker Dreiling, Daniel Fütterer, Tina Jurkat-Witschas, Thomas Klimach, Christoph Knote, Martina Krämer, Scot T. Martin, Stephan Mertes, Mira L. Pöhlker, Daniel Sauer, Christiane Voigt, Adrian Walser, Bernadett Weinzierl, Helmut Ziereis, Martin Zöger, Meinrat O. Andreae, Paulo Artaxo, Luiz A. T. Machado, Ulrich Pöschl, Manfred Wendisch, and Stephan Borrmann
Atmos. Chem. Phys., 18, 14979–15001, https://doi.org/10.5194/acp-18-14979-2018, https://doi.org/10.5194/acp-18-14979-2018, 2018
Short summary
Short summary
Aerosol chemical composition measurements in the tropical upper troposphere over the Amazon region show that 78 % of the aerosol in the upper troposphere consists of organic matter. Up to 20 % of the organic aerosol can be attributed to isoprene epoxydiol secondary organic aerosol (IEPOX-SOA). Furthermore, organic nitrates were identified, suggesting a connection to the IEPOX-SOA formation.
Odran Sourdeval, Edward Gryspeerdt, Martina Krämer, Tom Goren, Julien Delanoë, Armin Afchine, Friederike Hemmer, and Johannes Quaas
Atmos. Chem. Phys., 18, 14327–14350, https://doi.org/10.5194/acp-18-14327-2018, https://doi.org/10.5194/acp-18-14327-2018, 2018
Short summary
Short summary
The number concentration of ice crystals (Ni) is a key cloud property that remains very uncertain due to difficulties in determining it using satellites. This lack of global observational constraints limits our ability to constrain this property in models responsible for predicting future climate. This pair of papers fills this gap by showing and analyzing the first rigorously evaluated global climatology of Ni, leading to new information shedding light on the processes that control high clouds.
Irene Crisologo, Robert A. Warren, Kai Mühlbauer, and Maik Heistermann
Atmos. Meas. Tech., 11, 5223–5236, https://doi.org/10.5194/amt-11-5223-2018, https://doi.org/10.5194/amt-11-5223-2018, 2018
Short summary
Short summary
The calibration of ground-based weather radar (GR) can be improved a posteriori by comparing observed GR reflectivity to well-established spaceborne radar platforms (SR), such as TRMM or GPM. Our study shows that the consistency between GR and SR reflectivity measurements can be enhanced by considering the quality of GR data from areas where signals may have been blocked due to the surrounding terrain, and provides an open-source toolset to carry out corresponding analyses.
Albert Ansmann, Holger Baars, Alexandra Chudnovsky, Ina Mattis, Igor Veselovskii, Moritz Haarig, Patric Seifert, Ronny Engelmann, and Ulla Wandinger
Atmos. Chem. Phys., 18, 11831–11845, https://doi.org/10.5194/acp-18-11831-2018, https://doi.org/10.5194/acp-18-11831-2018, 2018
Short summary
Short summary
Extremely large light extinction coefficients of 500 Mm-1, about 20 times higher than after the Pinatubo volcanic eruptions in 1991, were observed by EARLINET lidars in the stratosphere over central Europe from 21 to 22 August, 2017. This paper provides an overview based on ground-based (lidar, AERONET) and satellite (MODIS, OMI) remote sensing.
Sören Johansson, Wolfgang Woiwode, Michael Höpfner, Felix Friedl-Vallon, Anne Kleinert, Erik Kretschmer, Thomas Latzko, Johannes Orphal, Peter Preusse, Jörn Ungermann, Michelle L. Santee, Tina Jurkat-Witschas, Andreas Marsing, Christiane Voigt, Andreas Giez, Martina Krämer, Christian Rolf, Andreas Zahn, Andreas Engel, Björn-Martin Sinnhuber, and Hermann Oelhaf
Atmos. Meas. Tech., 11, 4737–4756, https://doi.org/10.5194/amt-11-4737-2018, https://doi.org/10.5194/amt-11-4737-2018, 2018
Short summary
Short summary
We present two-dimensional cross sections of temperature, HNO3, O3, ClONO2, H2O and CFC-12 from measurements of the GLORIA infrared limb imager during the POLSTRACC/GW-LCYCLE/SALSA aircraft campaigns in the Arctic winter 2015/2016. GLORIA sounded the atmosphere between 5 and 14 km with vertical resolutions of 0.4–1 km. Estimated errors are in the range of 1–2 K (temperature) and 10 %–20 % (trace gases). Comparisons to in situ instruments onboard the aircraft and to Aura/MLS are shown.
Philippe Baron, Donal Murtagh, Patrick Eriksson, Jana Mendrok, Satoshi Ochiai, Kristell Pérot, Hideo Sagawa, and Makoto Suzuki
Atmos. Meas. Tech., 11, 4545–4566, https://doi.org/10.5194/amt-11-4545-2018, https://doi.org/10.5194/amt-11-4545-2018, 2018
Short summary
Short summary
This paper investigates with computer simulations the measurement performances of the satellite Stratospheric Inferred Winds (SIW) in the altitude range 10–90 km. SIW is a Swedish mission that will be launched close to 2022. It is intended to fill the current altitude gap between 30 and 70 km in wind measurements and to pursue the monitoring of temperature and key stratospheric constituents for better understanding climate change effects.
Patrick Eriksson, Robin Ekelund, Jana Mendrok, Manfred Brath, Oliver Lemke, and Stefan A. Buehler
Earth Syst. Sci. Data, 10, 1301–1326, https://doi.org/10.5194/essd-10-1301-2018, https://doi.org/10.5194/essd-10-1301-2018, 2018
Short summary
Short summary
A main application of microwave remote sensing is to observe atmospheric particles consisting of ice. This application requires data on how particles with different shapes and sizes affect the observations. A database of such properties has been developed. The database is the most comprehensive of its type. Main strengths are a good representation of particles of aggregate type and broad frequency coverage.
Aurélien Chauvigné, Olivier Jourdan, Alfons Schwarzenboeck, Christophe Gourbeyre, Jean François Gayet, Christiane Voigt, Hans Schlager, Stefan Kaufmann, Stephan Borrmann, Sergej Molleker, Andreas Minikin, Tina Jurkat, and Ulrich Schumann
Atmos. Chem. Phys., 18, 9803–9822, https://doi.org/10.5194/acp-18-9803-2018, https://doi.org/10.5194/acp-18-9803-2018, 2018
Short summary
Short summary
This paper demonstrates a new form of statistical analysis of contrail to cirrus evolution. The authors show well-separated analyses of the different stages of the contrail's evolution, which allows us to study their optical, microphysical, and chemical properties. These results could be used to develop representative parameterizations of the scattering and geometrical properties of the ice crystals’ shapes and sizes, observed in the visible wavelength range.
Armin Afchine, Christian Rolf, Anja Costa, Nicole Spelten, Martin Riese, Bernhard Buchholz, Volker Ebert, Romy Heller, Stefan Kaufmann, Andreas Minikin, Christiane Voigt, Martin Zöger, Jessica Smith, Paul Lawson, Alexey Lykov, Sergey Khaykin, and Martina Krämer
Atmos. Meas. Tech., 11, 4015–4031, https://doi.org/10.5194/amt-11-4015-2018, https://doi.org/10.5194/amt-11-4015-2018, 2018
Short summary
Short summary
The ice water content (IWC) of cirrus clouds is an essential parameter that determines their radiative properties and is thus important for climate simulations. Experimental investigations of IWCs measured on board research aircraft reveal that their accuracy is influenced by the sampling position. IWCs detected at the aircraft roof deviate significantly from wing, side or bottom IWCs. The reasons are deflections of the gas streamlines and ice particle trajectories behind the aircraft cockpit.
Paul Petersik, Marc Salzmann, Jan Kretzschmar, Ribu Cherian, Daniel Mewes, and Johannes Quaas
Atmos. Chem. Phys., 18, 8589–8599, https://doi.org/10.5194/acp-18-8589-2018, https://doi.org/10.5194/acp-18-8589-2018, 2018
Short summary
Short summary
Our study presents the first estimate of RFari using a global atmospheric model with a parameterization for subgrid-scale variability in RH that is consistent with the assumptions in the model. We find that the revision has a strong influence on the simulated radiative forcing (~ 31 %). In addition, we examine its effects on optical properties of the atmosphere and find an increase in AOD by about 7.8 %.
Stephan E. Bansmer, Arne Baumert, Stephan Sattler, Inken Knop, Delphine Leroy, Alfons Schwarzenboeck, Tina Jurkat-Witschas, Christiane Voigt, Hugo Pervier, and Biagio Esposito
Atmos. Meas. Tech., 11, 3221–3249, https://doi.org/10.5194/amt-11-3221-2018, https://doi.org/10.5194/amt-11-3221-2018, 2018
Short summary
Short summary
Snow, frost formation and ice cubes in our drinks are part of our daily life. But what about our technical innovations like aviation, electrical power transmission and wind-energy production, can they cope with icing? Icing Wind Tunnels are an ideal laboratory environment to answer that question. In this paper, we show how the icing wind tunnel in Braunschweig (Germany) was built and how we can use it for engineering and climate research.
Guangyao Dai, Dietrich Althausen, Julian Hofer, Ronny Engelmann, Patric Seifert, Johannes Bühl, Rodanthi-Elisavet Mamouri, Songhua Wu, and Albert Ansmann
Atmos. Meas. Tech., 11, 2735–2748, https://doi.org/10.5194/amt-11-2735-2018, https://doi.org/10.5194/amt-11-2735-2018, 2018
Short summary
Short summary
The presented calibration method grants access to quality approved automated atmospheric water vapor profiles from lidar measurements. This method uses the Raman lidar data from the water vapor and nitrogen channels and additional data from sun photometer and GDAS. The retrieved water vapor profiles agree well with respective profiles from radio soundings. The paper describes this method and shows results from the CyCARE (Cyprus Cloud Aerosol and Rain Experiment) campaign in 2015–2017.
Edward Gryspeerdt, Johannes Quaas, Tom Goren, Daniel Klocke, and Matthias Brueck
Atmos. Chem. Phys., 18, 6157–6169, https://doi.org/10.5194/acp-18-6157-2018, https://doi.org/10.5194/acp-18-6157-2018, 2018
Short summary
Short summary
Cirrus clouds can form by a variety of mechanisms, such as orographic uplift, through convective systems or through large-scale rising motions. In this work, an automated classification of cirrus clouds based on satellite and reanalysis data is presented to separate cirrus by these different formation mechanisms. The classification provides information on the ice origin and cloud-scale updraughts that could not be determined using satellite or reanalysis data alone.
Klaus-Dirk Gottschaldt, Hans Schlager, Robert Baumann, Duy Sinh Cai, Veronika Eyring, Phoebe Graf, Volker Grewe, Patrick Jöckel, Tina Jurkat-Witschas, Christiane Voigt, Andreas Zahn, and Helmut Ziereis
Atmos. Chem. Phys., 18, 5655–5675, https://doi.org/10.5194/acp-18-5655-2018, https://doi.org/10.5194/acp-18-5655-2018, 2018
Short summary
Short summary
This study places aircraft trace gas measurements from within the Asian summer monsoon anticyclone into the context of regional, intra- and interannual variability. We find that the processes reflected in the measurements are present throughout multiple simulated monsoon seasons. Dynamical instabilities, photochemical ozone production, lightning and entrainments from the lower troposphere and from the tropopause region determine the distinct composition of the anticyclone and its outflow.
Stefan A. Buehler, Jana Mendrok, Patrick Eriksson, Agnès Perrin, Richard Larsson, and Oliver Lemke
Geosci. Model Dev., 11, 1537–1556, https://doi.org/10.5194/gmd-11-1537-2018, https://doi.org/10.5194/gmd-11-1537-2018, 2018
Short summary
Short summary
The Atmospheric Radiative Transfer Simulator (ARTS) is a public domain
software for simulating how radiation in the microwave to infrared
spectral range travels through an atmosphere. The program can simulate
satellite observations, in cloudy and clear atmospheres, and can also
be used to calculate radiative energy fluxes. The main feature of this
release is a planetary toolbox that allows simulations for the
planets Venus, Mars, and Jupiter, in addition to Earth.
Trismono C. Krisna, Manfred Wendisch, André Ehrlich, Evelyn Jäkel, Frank Werner, Ralf Weigel, Stephan Borrmann, Christoph Mahnke, Ulrich Pöschl, Meinrat O. Andreae, Christiane Voigt, and Luiz A. T. Machado
Atmos. Chem. Phys., 18, 4439–4462, https://doi.org/10.5194/acp-18-4439-2018, https://doi.org/10.5194/acp-18-4439-2018, 2018
Short summary
Short summary
The optical thickness and particle effective radius of a cirrus above liquid water clouds and a DCC topped by an anvil cirrus are retrieved based on SMART and MODIS radiance measurements. For the cirrus, retrieved particle effective radius are validated with corresponding in situ data using a vertical weighting method. This approach allows to assess the measurements, retrieval algorithms, and derived cloud products.
Christoph Knote, Jérôme Barré, and Max Eckl
Geosci. Model Dev., 11, 561–573, https://doi.org/10.5194/gmd-11-561-2018, https://doi.org/10.5194/gmd-11-561-2018, 2018
Short summary
Short summary
The Background Error Analysis Testbed with Box Models (BEATBOX) is a toy model to investigate the effects of data assimilation on systems like tropospheric photochemistry in a box model fashion. We present the model system and show its application in a case study using data from a recent field campaign and employing commonly used tropospheric chemistry mechanisms.
Sebastian Düsing, Birgit Wehner, Patric Seifert, Albert Ansmann, Holger Baars, Florian Ditas, Silvia Henning, Nan Ma, Laurent Poulain, Holger Siebert, Alfred Wiedensohler, and Andreas Macke
Atmos. Chem. Phys., 18, 1263–1290, https://doi.org/10.5194/acp-18-1263-2018, https://doi.org/10.5194/acp-18-1263-2018, 2018
Meinrat O. Andreae, Armin Afchine, Rachel Albrecht, Bruna Amorim Holanda, Paulo Artaxo, Henrique M. J. Barbosa, Stephan Borrmann, Micael A. Cecchini, Anja Costa, Maximilian Dollner, Daniel Fütterer, Emma Järvinen, Tina Jurkat, Thomas Klimach, Tobias Konemann, Christoph Knote, Martina Krämer, Trismono Krisna, Luiz A. T. Machado, Stephan Mertes, Andreas Minikin, Christopher Pöhlker, Mira L. Pöhlker, Ulrich Pöschl, Daniel Rosenfeld, Daniel Sauer, Hans Schlager, Martin Schnaiter, Johannes Schneider, Christiane Schulz, Antonio Spanu, Vinicius B. Sperling, Christiane Voigt, Adrian Walser, Jian Wang, Bernadett Weinzierl, Manfred Wendisch, and Helmut Ziereis
Atmos. Chem. Phys., 18, 921–961, https://doi.org/10.5194/acp-18-921-2018, https://doi.org/10.5194/acp-18-921-2018, 2018
Short summary
Short summary
We made airborne measurements of aerosol particle concentrations and properties over the Amazon Basin. We found extremely high concentrations of very small particles in the region between 8 and 14 km altitude all across the basin, which had been recently formed by gas-to-particle conversion at these altitudes. This makes the upper troposphere a very important source region of atmospheric particles with significant implications for the Earth's climate system.
Albert Ansmann, Franziska Rittmeister, Ronny Engelmann, Sara Basart, Oriol Jorba, Christos Spyrou, Samuel Remy, Annett Skupin, Holger Baars, Patric Seifert, Fabian Senf, and Thomas Kanitz
Atmos. Chem. Phys., 17, 14987–15006, https://doi.org/10.5194/acp-17-14987-2017, https://doi.org/10.5194/acp-17-14987-2017, 2017
Romy Heller, Christiane Voigt, Stuart Beaton, Andreas Dörnbrack, Andreas Giez, Stefan Kaufmann, Christian Mallaun, Hans Schlager, Johannes Wagner, Kate Young, and Markus Rapp
Atmos. Chem. Phys., 17, 14853–14869, https://doi.org/10.5194/acp-17-14853-2017, https://doi.org/10.5194/acp-17-14853-2017, 2017
Ramon Campos Braga, Daniel Rosenfeld, Ralf Weigel, Tina Jurkat, Meinrat O. Andreae, Manfred Wendisch, Ulrich Pöschl, Christiane Voigt, Christoph Mahnke, Stephan Borrmann, Rachel I. Albrecht, Sergej Molleker, Daniel A. Vila, Luiz A. T. Machado, and Lucas Grulich
Atmos. Chem. Phys., 17, 14433–14456, https://doi.org/10.5194/acp-17-14433-2017, https://doi.org/10.5194/acp-17-14433-2017, 2017
Holger Baars, Patric Seifert, Ronny Engelmann, and Ulla Wandinger
Atmos. Meas. Tech., 10, 3175–3201, https://doi.org/10.5194/amt-10-3175-2017, https://doi.org/10.5194/amt-10-3175-2017, 2017
Short summary
Short summary
A novel technique for multiwavelength lidars is introduced to derive information on the particle type in the tropospheric profile in analogy to the Cloudnet target classification. Four different aerosol classes and several cloud classes are defined. The technique is based on absolute calibrated lidar signals in temporally high resolution and thus is also well suited for aerosol–cloud-interaction studies. The approach was applied on a 2-month data set of the HOPE campaign in western Germany.
Micael A. Cecchini, Luiz A. T. Machado, Meinrat O. Andreae, Scot T. Martin, Rachel I. Albrecht, Paulo Artaxo, Henrique M. J. Barbosa, Stephan Borrmann, Daniel Fütterer, Tina Jurkat, Christoph Mahnke, Andreas Minikin, Sergej Molleker, Mira L. Pöhlker, Ulrich Pöschl, Daniel Rosenfeld, Christiane Voigt, Bernadett Weinzierl, and Manfred Wendisch
Atmos. Chem. Phys., 17, 10037–10050, https://doi.org/10.5194/acp-17-10037-2017, https://doi.org/10.5194/acp-17-10037-2017, 2017
Short summary
Short summary
We study the effects of aerosol particles and updraft speed on the warm phase of Amazonian clouds. We expand the sensitivity analysis usually found in the literature by concomitantly considering cloud evolution and the effects on droplet size distribution (DSD) shape. The quantitative results show that particle concentration is the primary driver for the vertical profiles of effective diameter and droplet concentration in the warm phase of Amazonian convective clouds.
Evelyn Jäkel, Manfred Wendisch, Trismono C. Krisna, Florian Ewald, Tobias Kölling, Tina Jurkat, Christiane Voigt, Micael A. Cecchini, Luiz A. T. Machado, Armin Afchine, Anja Costa, Martina Krämer, Meinrat O. Andreae, Ulrich Pöschl, Daniel Rosenfeld, and Tianle Yuan
Atmos. Chem. Phys., 17, 9049–9066, https://doi.org/10.5194/acp-17-9049-2017, https://doi.org/10.5194/acp-17-9049-2017, 2017
Short summary
Short summary
Vertical profiles of the cloud particle phase state in tropical deep convective clouds (DCCs) were investigated using airborne imaging spectrometer measurements during the ACRIDICON-CHUVA campaign, which was conducted over the Brazilian rainforest in September 2014. A phase discrimination retrieval was applied to observations of clouds formed in different aerosol conditions. The profiles were compared to in situ and satellite measurements.
Sudhakar Dipu, Johannes Quaas, Ralf Wolke, Jens Stoll, Andreas Mühlbauer, Odran Sourdeval, Marc Salzmann, Bernd Heinold, and Ina Tegen
Geosci. Model Dev., 10, 2231–2246, https://doi.org/10.5194/gmd-10-2231-2017, https://doi.org/10.5194/gmd-10-2231-2017, 2017
Ramon Campos Braga, Daniel Rosenfeld, Ralf Weigel, Tina Jurkat, Meinrat O. Andreae, Manfred Wendisch, Mira L. Pöhlker, Thomas Klimach, Ulrich Pöschl, Christopher Pöhlker, Christiane Voigt, Christoph Mahnke, Stephan Borrmann, Rachel I. Albrecht, Sergej Molleker, Daniel A. Vila, Luiz A. T. Machado, and Paulo Artaxo
Atmos. Chem. Phys., 17, 7365–7386, https://doi.org/10.5194/acp-17-7365-2017, https://doi.org/10.5194/acp-17-7365-2017, 2017
Johannes Bühl, Patric Seifert, Ronny Engelmann, Julia Fruntke, and Albert Ansmann
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-230, https://doi.org/10.5194/acp-2017-230, 2017
Revised manuscript not accepted
Short summary
Short summary
Vertical air motion is a key driver of physical processes in clouds. The stability of clouds and the process of ice formation have been shown to depend critically on vertical air motions. However, observations of vertical air motions and ice formation in clouds are rare. This motivated us in the Up- and downdraft in Drop and Ice Nucleation Experiment (UDINE) to deliver a comprehensive statistics, connecting remote-sensing observations of vertical motions and ice formation.
Klaus-D. Gottschaldt, Hans Schlager, Robert Baumann, Heiko Bozem, Veronika Eyring, Peter Hoor, Patrick Jöckel, Tina Jurkat, Christiane Voigt, Andreas Zahn, and Helmut Ziereis
Atmos. Chem. Phys., 17, 6091–6111, https://doi.org/10.5194/acp-17-6091-2017, https://doi.org/10.5194/acp-17-6091-2017, 2017
Short summary
Short summary
We present upper-tropospheric trace gas measurements in the Asian summer monsoon anticyclone, obtained with the HALO research aircraft in September 2012. The anticyclone is one of the largest atmospheric features on Earth, but many aspects of it are not well understood. With the help of model simulations we find that entrainments from the tropopause region and the lower troposphere, combined with photochemistry and dynamical instabilities, can explain the observations.
Claudia Acquistapace, Stefan Kneifel, Ulrich Löhnert, Pavlos Kollias, Maximilian Maahn, and Matthias Bauer-Pfundstein
Atmos. Meas. Tech., 10, 1783–1802, https://doi.org/10.5194/amt-10-1783-2017, https://doi.org/10.5194/amt-10-1783-2017, 2017
Short summary
Short summary
The goal of the paper is to understand what the optimal cloud radar settings for drizzle detection are. The number of cloud radars in the world has increased in the last 10 years and it is important to develop strategies to derive optimal settings which can be applied to all radar systems. The study is part of broader research focused on better understanding the microphysical process of drizzle growth using ground-based observations.
Carolin Klinger, Bernhard Mayer, Fabian Jakub, Tobias Zinner, Seung-Bu Park, and Pierre Gentine
Atmos. Chem. Phys., 17, 5477–5500, https://doi.org/10.5194/acp-17-5477-2017, https://doi.org/10.5194/acp-17-5477-2017, 2017
Short summary
Short summary
Radiation is driving weather and climate. Yet, the effect of radiation on clouds is not fully understood and often only poorly represented in models. Better understanding and better parameterizations of the radiation–cloud interaction are therefore essential. Using our newly developed fast
neighboring column approximationfor 3-D thermal heating and cooling rates, we show that thermal radiation changes cloud circulation and causes organization and a deepening of the clouds.
Andreas Macke, Patric Seifert, Holger Baars, Christian Barthlott, Christoph Beekmans, Andreas Behrendt, Birger Bohn, Matthias Brueck, Johannes Bühl, Susanne Crewell, Thomas Damian, Hartwig Deneke, Sebastian Düsing, Andreas Foth, Paolo Di Girolamo, Eva Hammann, Rieke Heinze, Anne Hirsikko, John Kalisch, Norbert Kalthoff, Stefan Kinne, Martin Kohler, Ulrich Löhnert, Bomidi Lakshmi Madhavan, Vera Maurer, Shravan Kumar Muppa, Jan Schween, Ilya Serikov, Holger Siebert, Clemens Simmer, Florian Späth, Sandra Steinke, Katja Träumner, Silke Trömel, Birgit Wehner, Andreas Wieser, Volker Wulfmeyer, and Xinxin Xie
Atmos. Chem. Phys., 17, 4887–4914, https://doi.org/10.5194/acp-17-4887-2017, https://doi.org/10.5194/acp-17-4887-2017, 2017
Short summary
Short summary
This article provides an overview of the instrumental setup and the main results obtained during the two HD(CP)2 Observational Prototype Experiments HOPE-Jülich and HOPE-Melpitz conducted in Germany in April–May and Sept 2013, respectively. Goal of the field experiments was to provide high-resolution observational datasets for both, improving the understaning of boundary layer and cloud processes, as well as for the evaluation of the new ICON model that is run at 156 m horizontal resolution.
Piyushkumar N. Patel, Johannes Quaas, and Raj Kumar
Atmos. Chem. Phys., 17, 3687–3698, https://doi.org/10.5194/acp-17-3687-2017, https://doi.org/10.5194/acp-17-3687-2017, 2017
Short summary
Short summary
Radiative forcing by aerosol–cloud interactions (RFaci) remains highly uncertain and difficult to quantify on the basis of current knowledge. The present study reassesses the estimated RFaci by using a new statistical fitting approach, which improves the quantification of RFaci with less uncertainty. The present work helps to improve the parameterisation of RFaci in the present climate model.
Diego A. Gouveia, Boris Barja, Henrique M. J. Barbosa, Patric Seifert, Holger Baars, Theotonio Pauliquevis, and Paulo Artaxo
Atmos. Chem. Phys., 17, 3619–3636, https://doi.org/10.5194/acp-17-3619-2017, https://doi.org/10.5194/acp-17-3619-2017, 2017
Short summary
Short summary
We derive the first comprehensive statistics of cirrus clouds over a tropical rain forest. Monthly frequency of occurrence can be as high as 88 %. The diurnal cycle follows that of precipitation, and frequently cirrus is found in the tropopause layer. The mean values of cloud top, base, thickness, optical depth and lidar ratio were 14.3 km, 12.9 km, 1.4 km, 0.25, and 23 sr respectively. The high fraction (42 %) of subvisible clouds may contaminate satellite measurements to an unknown extent.
Gunnar Myhre, Wenche Aas, Ribu Cherian, William Collins, Greg Faluvegi, Mark Flanner, Piers Forster, Øivind Hodnebrog, Zbigniew Klimont, Marianne T. Lund, Johannes Mülmenstädt, Cathrine Lund Myhre, Dirk Olivié, Michael Prather, Johannes Quaas, Bjørn H. Samset, Jordan L. Schnell, Michael Schulz, Drew Shindell, Ragnhild B. Skeie, Toshihiko Takemura, and Svetlana Tsyro
Atmos. Chem. Phys., 17, 2709–2720, https://doi.org/10.5194/acp-17-2709-2017, https://doi.org/10.5194/acp-17-2709-2017, 2017
Short summary
Short summary
Over the past decades, the geographical distribution of emissions of substances that alter the atmospheric energy balance has changed due to economic growth and pollution regulations. Here, we show the resulting changes to aerosol and ozone abundances and their radiative forcing using recently updated emission data for the period 1990–2015, as simulated by seven global atmospheric composition models. The global mean radiative forcing is more strongly positive than reported in IPCC AR5.
Ulrich Schumann, Christoph Kiemle, Hans Schlager, Ralf Weigel, Stephan Borrmann, Francesco D'Amato, Martina Krämer, Renaud Matthey, Alain Protat, Christiane Voigt, and C. Michael Volk
Atmos. Chem. Phys., 17, 2311–2346, https://doi.org/10.5194/acp-17-2311-2017, https://doi.org/10.5194/acp-17-2311-2017, 2017
Short summary
Short summary
A long-lived (1 h) contrail and overshooting convection were observed in the tropics, near Darwin, Australia. The data are used to study the contrail life cycle at low temperatures and cirrus from deep overturning convection in the lower tropical stratosphere. Airborne in situ, lidar, profiler, radar, and satellite data, as well as a photo, are used to distinguish contrail cirrus from convective cirrus and to study the origin of the observed ice and aerosol, up to 2.3 km above the tropopause.
Tobias Sirch, Luca Bugliaro, Tobias Zinner, Matthias Möhrlein, and Margarita Vazquez-Navarro
Atmos. Meas. Tech., 10, 409–429, https://doi.org/10.5194/amt-10-409-2017, https://doi.org/10.5194/amt-10-409-2017, 2017
Short summary
Short summary
A novel approach for the nowcasting of clouds and direct normal irradiance (DNI) based on the geostationary satellite MSG is presented. The basis of the algorithm is an optical flow method to derive cloud motion vectors for low and high level clouds separately. DNI is calculated from the forecasted optical thickness of the clouds. Validation against MSG observations shows good performance: compared to persistence an improvement of forecast horizon by a factor of 2 is reached for 2 h forecasts.
Ulrich Schumann, Robert Baumann, Darrel Baumgardner, Sarah T. Bedka, David P. Duda, Volker Freudenthaler, Jean-Francois Gayet, Andrew J. Heymsfield, Patrick Minnis, Markus Quante, Ehrhard Raschke, Hans Schlager, Margarita Vázquez-Navarro, Christiane Voigt, and Zhien Wang
Atmos. Chem. Phys., 17, 403–438, https://doi.org/10.5194/acp-17-403-2017, https://doi.org/10.5194/acp-17-403-2017, 2017
Short summary
Short summary
The initially linear clouds often seen behind aircraft are known as contrails. Contrails are prototype cirrus clouds forming under well-known conditions, but with less certain life cycle and climate effects. This paper collects contrail data from a large set of measurements and compares them among each other and with models. The observations show consistent contrail properties over a wide range of aircraft and atmosphere conditions. The dataset is available for further research.
Christiane Voigt, Andreas Dörnbrack, Martin Wirth, Silke M. Groß, Robert Baumann, Benedikt Ehard, Michael C. Pitts, Lamont R. Poole, Björn-Martin Sinnhuber, and Hermann Oelhaf
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2016-1082, https://doi.org/10.5194/acp-2016-1082, 2016
Revised manuscript not accepted
Short summary
Short summary
The letter describes unprecedented observations of widespread and persistent polar stratospheric ice clouds (ice PSCs) in the exceptionally cold Arctic stratospheric winter 2015/16. The unique observations are of global relevance because trends in Arctic ozone loss and in polar temperatures are highly uncertain. The new observations at cold conditions serve to enhance our knowledge on ice PSC formation, Arctic ozone loss and polar stratrospheric temperatures in a changing climate.
Christoph Beekmans, Johannes Schneider, Thomas Läbe, Martin Lennefer, Cyrill Stachniss, and Clemens Simmer
Atmos. Chem. Phys., 16, 14231–14248, https://doi.org/10.5194/acp-16-14231-2016, https://doi.org/10.5194/acp-16-14231-2016, 2016
Short summary
Short summary
Sky imager cameras provide a full view of the sky with high spatial and temporal resolution and are used to derive cloud cover, cloud type or cloud-base height, if employed in a stereo configuration.
The application of a dense fisheye stereo method provides dense, consistent and quite complete 3-D cloud boundaries and can be fully automated. We present validation of our approach and cloud examples with high geometric complexity. Applications are radiative closure studies and cloud dynamics.
Nicolas Bellouin, Laura Baker, Øivind Hodnebrog, Dirk Olivié, Ribu Cherian, Claire Macintosh, Bjørn Samset, Anna Esteve, Borgar Aamaas, Johannes Quaas, and Gunnar Myhre
Atmos. Chem. Phys., 16, 13885–13910, https://doi.org/10.5194/acp-16-13885-2016, https://doi.org/10.5194/acp-16-13885-2016, 2016
Short summary
Short summary
This study uses global climate models to quantify how strongly man-made emissions of selected pollutants modify the energy budget of the Earth. The pollutants studied interact directly and indirectly with sunlight and terrestrial radiation and remain a relatively short time in the atmosphere, leading to regional and seasonal variations in their impacts. This new data set is useful to compare the potential climate impacts of different pollutants in support of policies to reduce climate change.
Bernd Schalge, Jehan Rihani, Gabriele Baroni, Daniel Erdal, Gernot Geppert, Vincent Haefliger, Barbara Haese, Pablo Saavedra, Insa Neuweiler, Harrie-Jan Hendricks Franssen, Felix Ament, Sabine Attinger, Olaf A. Cirpka, Stefan Kollet, Harald Kunstmann, Harry Vereecken, and Clemens Simmer
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-557, https://doi.org/10.5194/hess-2016-557, 2016
Manuscript not accepted for further review
Short summary
Short summary
In this work we show how we used a coupled atmosphere-land surface-subsurface model at highest possible resolution to create a testbed for data assimilation. The model was able to capture all important processes and interactions between the compartments as well as showing realistic statistical behavior. This proves that using a model as a virtual truth is possible and it will enable us to develop data assimilation methods where states and parameters are updated across compartment.
Valery Shcherbakov, Olivier Jourdan, Christiane Voigt, Jean-Francois Gayet, Aurélien Chauvigne, Alfons Schwarzenboeck, Andreas Minikin, Marcus Klingebiel, Ralf Weigel, Stephan Borrmann, Tina Jurkat, Stefan Kaufmann, Romy Schlage, Christophe Gourbeyre, Guy Febvre, Tatyana Lapyonok, Wiebke Frey, Sergej Molleker, and Bernadett Weinzierl
Atmos. Chem. Phys., 16, 11883–11897, https://doi.org/10.5194/acp-16-11883-2016, https://doi.org/10.5194/acp-16-11883-2016, 2016
Tobias Zinner, Petra Hausmann, Florian Ewald, Luca Bugliaro, Claudia Emde, and Bernhard Mayer
Atmos. Meas. Tech., 9, 4615–4632, https://doi.org/10.5194/amt-9-4615-2016, https://doi.org/10.5194/amt-9-4615-2016, 2016
Short summary
Short summary
A new retrieval of optical thickness and effective particle size of ice clouds over a wide range of optical thickness from transmittance measurements is presented. A visible range spectral slope is used to resolve the transmittance optical thickness ambiguity. Retrieval sensitivity to ice crystal habit, aerosol, albedo, sensor accuracy and lookup table interpolation is presented as well as an application of the method and comparison to satellite products for 2 days.
Hendrik Wouters, Matthias Demuzere, Ulrich Blahak, Krzysztof Fortuniak, Bino Maiheu, Johan Camps, Daniël Tielemans, and Nicole P. M. van Lipzig
Geosci. Model Dev., 9, 3027–3054, https://doi.org/10.5194/gmd-9-3027-2016, https://doi.org/10.5194/gmd-9-3027-2016, 2016
Short summary
Short summary
A methodology is presented for translating three-dimensional information of urban areas into land-surface parameters that can be easily employed in atmospheric modelling. As demonstrated with the COSMO-CLM model for a Belgian summer, it enables them to represent urban heat islands and their dependency on urban design with a low computational cost. It allows for efficiently incorporating urban information systems (e.g., WUDAPT) into climate change assessment and numerical weather prediction.
B. Quennehen, J.-C. Raut, K. S. Law, N. Daskalakis, G. Ancellet, C. Clerbaux, S.-W. Kim, M. T. Lund, G. Myhre, D. J. L. Olivié, S. Safieddine, R. B. Skeie, J. L. Thomas, S. Tsyro, A. Bazureau, N. Bellouin, M. Hu, M. Kanakidou, Z. Klimont, K. Kupiainen, S. Myriokefalitakis, J. Quaas, S. T. Rumbold, M. Schulz, R. Cherian, A. Shimizu, J. Wang, S.-C. Yoon, and T. Zhu
Atmos. Chem. Phys., 16, 10765–10792, https://doi.org/10.5194/acp-16-10765-2016, https://doi.org/10.5194/acp-16-10765-2016, 2016
Short summary
Short summary
This paper evaluates the ability of six global models and one regional model in reproducing short-lived pollutants (defined here as ozone and its precursors, aerosols and black carbon) concentrations over Asia using satellite, ground-based and airborne observations.
Key findings are that models homogeneously reproduce the trace gas observations although nitrous oxides are underestimated, whereas the aerosol distributions are heterogeneously reproduced, implicating important uncertainties.
Johannes Bühl, Patric Seifert, Alexander Myagkov, and Albert Ansmann
Atmos. Chem. Phys., 16, 10609–10620, https://doi.org/10.5194/acp-16-10609-2016, https://doi.org/10.5194/acp-16-10609-2016, 2016
Short summary
Short summary
We probe thin layered clouds with remote sensing instruments from ground in order to get insight into atmospheric processes like the formation of rain or snow. We think that the findings of our work can be used to improve climate and weather simulations. The present paper presents a new technique that can be used to detect the shape, fall speed and mass of ice particles falling from layered clouds. With such information the impact of cloud ice, e.g., on the lifetime of a cloud, can be estimated.
Francesco De Angelis, Domenico Cimini, James Hocking, Pauline Martinet, and Stefan Kneifel
Geosci. Model Dev., 9, 2721–2739, https://doi.org/10.5194/gmd-9-2721-2016, https://doi.org/10.5194/gmd-9-2721-2016, 2016
Short summary
Short summary
Ground-based microwave radiometers (MWRs) offer to bridge the observational gap in the atmospheric boundary layer. Currently MWRs are operational at many sites worldwide. However, their potential is largely under-exploited, partly due to the lack of a fast radiative transfer model (RTM) suited for data assimilation into numerical weather prediction models. Here we propose and test an RTM, building on satellite heritage and adapting for ground-based MWRs, which addresses this shortage.
Alexander Myagkov, Patric Seifert, Ulla Wandinger, Johannes Bühl, and Ronny Engelmann
Atmos. Meas. Tech., 9, 3739–3754, https://doi.org/10.5194/amt-9-3739-2016, https://doi.org/10.5194/amt-9-3739-2016, 2016
Short summary
Short summary
This paper presents first quantitative estimations of ice particle shape at the top of liquid-topped clouds. The estimation is based on polarimetric measurements from a Ka-band cloud radar. 22 cases observed during the ACCEPT (Analysis of the Composition of Clouds with Extended Polarization Techniques) campaign were used. Data from a free-fall chamber were used for the comparison. A good agreement of detected shapes with known shape–temperature dependencies observed in laboratories was found.
Erika Kienast-Sjögren, Christian Rolf, Patric Seifert, Ulrich K. Krieger, Bei P. Luo, Martina Krämer, and Thomas Peter
Atmos. Chem. Phys., 16, 7605–7621, https://doi.org/10.5194/acp-16-7605-2016, https://doi.org/10.5194/acp-16-7605-2016, 2016
Short summary
Short summary
We present a climatology of mid-latitude cirrus cloud properties based on 13 000 hours of automatically analyzed lidar measurements at three different sites. Jungfraujoch,
situated at 3580 m a.s.l., is found to be ideal to measure high and optically thin
cirrus. We use our retrieved optical properties together with a radiation model and
estimate the radiative forcing by mid-latitude cirrus.
All cirrus clouds detected here have a positive net radiative effect.
Xinxin Xie, Raquel Evaristo, Clemens Simmer, Jan Handwerker, and Silke Trömel
Atmos. Chem. Phys., 16, 7105–7116, https://doi.org/10.5194/acp-16-7105-2016, https://doi.org/10.5194/acp-16-7105-2016, 2016
Short summary
Short summary
This study provides a first analysis of rainfall observations and related microphysical processes during the HOPE campaign, which will benefit future studies on the evaluation and improvement of climate models within the HD(CP)2 framework. The results conveyed in this study confirm that polarimetric radars have the capability to validate weather and climate models with respect to rainfall estimation and the ongoing microphysical processes.
Florian Ewald, Tobias Kölling, Andreas Baumgartner, Tobias Zinner, and Bernhard Mayer
Atmos. Meas. Tech., 9, 2015–2042, https://doi.org/10.5194/amt-9-2015-2016, https://doi.org/10.5194/amt-9-2015-2016, 2016
Short summary
Short summary
The new spectrometer of the Munich Aerosol Cloud Scanner (specMACS) is a
multipurpose hyperspectral cloud and sky imager which is designated, but not limited, to investigations of cloud-aerosol interactions in Earth's atmosphere. This paper describes the specMACS instrument's hardware and software design and
characterizes the instrument performance. Initial measurements of cloud sides are presented which demonstrate the wide applicability of the instrument.
Tina Jurkat, Stefan Kaufmann, Christiane Voigt, Dominik Schäuble, Philipp Jeßberger, and Helmut Ziereis
Atmos. Meas. Tech., 9, 1907–1923, https://doi.org/10.5194/amt-9-1907-2016, https://doi.org/10.5194/amt-9-1907-2016, 2016
Short summary
Short summary
The paper details novel mass spectrometric measurements with AIMS-TG aboard the new German research aircraft HALO. The measurements comprise a wide range of tracers with characteristic source regions. Using these tracers, stratospheric and tropospheric air in the UTLS is tagged. The instrument is equipped with a new discharge ionization source, an in-flight calibration and improved transmission of adhesive gases like HNO3 and HCl. AIMS was built to characterize transport and mixing in the UTLS.
Holger Baars, Thomas Kanitz, Ronny Engelmann, Dietrich Althausen, Birgit Heese, Mika Komppula, Jana Preißler, Matthias Tesche, Albert Ansmann, Ulla Wandinger, Jae-Hyun Lim, Joon Young Ahn, Iwona S. Stachlewska, Vassilis Amiridis, Eleni Marinou, Patric Seifert, Julian Hofer, Annett Skupin, Florian Schneider, Stephanie Bohlmann, Andreas Foth, Sebastian Bley, Anne Pfüller, Eleni Giannakaki, Heikki Lihavainen, Yrjö Viisanen, Rakesh Kumar Hooda, Sérgio Nepomuceno Pereira, Daniele Bortoli, Frank Wagner, Ina Mattis, Lucja Janicka, Krzysztof M. Markowicz, Peggy Achtert, Paulo Artaxo, Theotonio Pauliquevis, Rodrigo A. F. Souza, Ved Prakesh Sharma, Pieter Gideon van Zyl, Johan Paul Beukes, Junying Sun, Erich G. Rohwer, Ruru Deng, Rodanthi-Elisavet Mamouri, and Felix Zamorano
Atmos. Chem. Phys., 16, 5111–5137, https://doi.org/10.5194/acp-16-5111-2016, https://doi.org/10.5194/acp-16-5111-2016, 2016
Short summary
Short summary
The findings from more than 10 years of global aerosol lidar measurements with Polly systems are summarized, and a data set of optical properties for specific aerosol types is given. An automated data retrieval algorithm for continuous Polly lidar observations is presented and discussed by means of a Saharan dust advection event in Leipzig, Germany. Finally, a statistic on the vertical aerosol distribution including the seasonal variability at PollyNET locations around the globe is presented.
Heike Kalesse, Wanda Szyrmer, Stefan Kneifel, Pavlos Kollias, and Edward Luke
Atmos. Chem. Phys., 16, 2997–3012, https://doi.org/10.5194/acp-16-2997-2016, https://doi.org/10.5194/acp-16-2997-2016, 2016
Short summary
Short summary
Mixed-phase clouds are ubiquitous. Process-level understanding is needed to address the complexity of mixed-phase clouds and to improve their representation in models. This study illustrates steps to identify the impact of a microphysical process (riming) on cloud Doppler radar observations. It suggests that in situ observations of key ice properties are needed to complement radar observations before process-oriented studies can effectively evaluate ice microphysical parameterizations in models.
Stefan Kaufmann, Christiane Voigt, Tina Jurkat, Troy Thornberry, David W. Fahey, Ru-Shan Gao, Romy Schlage, Dominik Schäuble, and Martin Zöger
Atmos. Meas. Tech., 9, 939–953, https://doi.org/10.5194/amt-9-939-2016, https://doi.org/10.5194/amt-9-939-2016, 2016
Short summary
Short summary
We present the development of a new airborne mass spectrometer AIMS-H2O for the fast and accurate measurement of water vapor in the upper troposphere and lower stratosphere. The high accuracy needed for e.g. quantification of atmospheric water vapor transport processes or cloud formation is achieved by an in-flight calibration of the instrument. AIMS-H2O is deployed on the DLR research aircraft HALO and Falcon where it covers a range of water vapor mixing ratios from 1 to 500 ppmv.
A. Skupin, A. Ansmann, R. Engelmann, P. Seifert, and T. Müller
Atmos. Chem. Phys., 16, 1863–1876, https://doi.org/10.5194/acp-16-1863-2016, https://doi.org/10.5194/acp-16-1863-2016, 2016
A. Myagkov, P. Seifert, M. Bauer-Pfundstein, and U. Wandinger
Atmos. Meas. Tech., 9, 469–489, https://doi.org/10.5194/amt-9-469-2016, https://doi.org/10.5194/amt-9-469-2016, 2016
Short summary
Short summary
In this paper a newly developed scanning 35 GHz cloud radar MIRA-35 is described. The issues concerned with implementation, polarization calibration, and data processing are considered. Also, an algorithm for a characterization of shape and orientation distribution based on polarimetric observations from the cloud radar is presented. For demonstration, the developed retrieval technique is applied to a cloud system containing ice crystals with different habits.
D. Merk, H. Deneke, B. Pospichal, and P. Seifert
Atmos. Chem. Phys., 16, 933–952, https://doi.org/10.5194/acp-16-933-2016, https://doi.org/10.5194/acp-16-933-2016, 2016
Short summary
Short summary
A 2-year data set is analyzed to evaluate the consistency and limitations of current ground-based and satellite-retrieved cloud property data sets. We demonstrate that neither the assumption of a completely adiabatic cloud nor the assumption of a constant sub-adiabatic factor is fulfilled. As cloud adiabaticity is required to estimate the cloud droplet number concentration, but is not available from passive satellite observations, we need an independent method to estimate the adiabatic factor.
Y. Zheng, N. Unger, A. Hodzic, L. Emmons, C. Knote, S. Tilmes, J.-F. Lamarque, and P. Yu
Atmos. Chem. Phys., 15, 13487–13506, https://doi.org/10.5194/acp-15-13487-2015, https://doi.org/10.5194/acp-15-13487-2015, 2015
Short summary
Short summary
Nitrogen oxides (NOx) play an important but complex role in secondary organic aerosol (SOA) formation. In this study we update the SOA scheme in a global 3-D chemistry-climate model by implementing a 4-product volatility basis set (VBS) framework with NOx-dependent yields and simplified aging parameterizations. We find that the SOA decrease in response to a 50% reduction in anthropogenic NOx emissions is limited due to the buffering in different chemical pathways.
P. Shrestha, M. Sulis, C. Simmer, and S. Kollet
Hydrol. Earth Syst. Sci., 19, 4317–4326, https://doi.org/10.5194/hess-19-4317-2015, https://doi.org/10.5194/hess-19-4317-2015, 2015
Short summary
Short summary
This study highlights the grid resolution dependence of energy and water balance of the 3-D physically based integrated surface-groundwater model. The non-local controls of soil moisture were found to be highly grid resolution dependent, but the local vegetation control strongly modulates the scaling behavior of surface energy fluxes. For coupled runs, variability in patterns of surface fluxes due to this scale dependence can affect the simulated atmospheric boundary layer and local circulation.
A. Stohl, B. Aamaas, M. Amann, L. H. Baker, N. Bellouin, T. K. Berntsen, O. Boucher, R. Cherian, W. Collins, N. Daskalakis, M. Dusinska, S. Eckhardt, J. S. Fuglestvedt, M. Harju, C. Heyes, Ø. Hodnebrog, J. Hao, U. Im, M. Kanakidou, Z. Klimont, K. Kupiainen, K. S. Law, M. T. Lund, R. Maas, C. R. MacIntosh, G. Myhre, S. Myriokefalitakis, D. Olivié, J. Quaas, B. Quennehen, J.-C. Raut, S. T. Rumbold, B. H. Samset, M. Schulz, Ø. Seland, K. P. Shine, R. B. Skeie, S. Wang, K. E. Yttri, and T. Zhu
Atmos. Chem. Phys., 15, 10529–10566, https://doi.org/10.5194/acp-15-10529-2015, https://doi.org/10.5194/acp-15-10529-2015, 2015
Short summary
Short summary
This paper presents a summary of the findings of the ECLIPSE EU project. The project has investigated the climate and air quality impacts of short-lived climate pollutants (especially methane, ozone, aerosols) and has designed a global mitigation strategy that maximizes co-benefits between air quality and climate policy. Transient climate model simulations allowed quantifying the impacts on temperature (e.g., reduction in global warming by 0.22K for the decade 2041-2050) and precipitation.
V. N. Aswathy, O. Boucher, M. Quaas, U. Niemeier, H. Muri, J. Mülmenstädt, and J. Quaas
Atmos. Chem. Phys., 15, 9593–9610, https://doi.org/10.5194/acp-15-9593-2015, https://doi.org/10.5194/acp-15-9593-2015, 2015
Short summary
Short summary
Simulations conducted in the GeoMIP and IMPLICC model intercomparison studies for climate engineering by stratospheric sulfate injection and marine cloud brightening via sea salt are analysed and compared to the reference scenario RCP4.5. The focus is on extremes in surface temperature and precipitation. It is found that the extreme changes mostly follow the mean changes and that extremes are also in general well mitigated, except for in polar regions.
S. Eckhardt, B. Quennehen, D. J. L. Olivié, T. K. Berntsen, R. Cherian, J. H. Christensen, W. Collins, S. Crepinsek, N. Daskalakis, M. Flanner, A. Herber, C. Heyes, Ø. Hodnebrog, L. Huang, M. Kanakidou, Z. Klimont, J. Langner, K. S. Law, M. T. Lund, R. Mahmood, A. Massling, S. Myriokefalitakis, I. E. Nielsen, J. K. Nøjgaard, J. Quaas, P. K. Quinn, J.-C. Raut, S. T. Rumbold, M. Schulz, S. Sharma, R. B. Skeie, H. Skov, T. Uttal, K. von Salzen, and A. Stohl
Atmos. Chem. Phys., 15, 9413–9433, https://doi.org/10.5194/acp-15-9413-2015, https://doi.org/10.5194/acp-15-9413-2015, 2015
Short summary
Short summary
The concentrations of sulfate, black carbon and other aerosols in the Arctic are characterized by high values in late winter and spring (so-called Arctic Haze) and low values in summer. Models have long been struggling to capture this seasonality. In this study, we evaluate sulfate and BC concentrations from different updated models and emissions against a comprehensive pan-Arctic measurement data set. We find that the models improved but still struggle to get the maximum concentrations.
S. H. Budisulistiorini, X. Li, S. T. Bairai, J. Renfro, Y. Liu, Y. J. Liu, K. A. McKinney, S. T. Martin, V. F. McNeill, H. O. T. Pye, A. Nenes, M. E. Neff, E. A. Stone, S. Mueller, C. Knote, S. L. Shaw, Z. Zhang, A. Gold, and J. D. Surratt
Atmos. Chem. Phys., 15, 8871–8888, https://doi.org/10.5194/acp-15-8871-2015, https://doi.org/10.5194/acp-15-8871-2015, 2015
Short summary
Short summary
Isoprene epoxydiols (IEPOX) are major gas-phase products from the atmospheric oxidation of isoprene that yield secondary organic aerosol (SOA) by reactive uptake onto acidic sulfate aerosol. We report a substantial contribution of IEPOX-derived SOA to the total fine aerosol collected during summer. IEPOX-derived SOA measured by online and offline mass spectrometry techniques is correlated with acidic sulfate aerosol, demonstrating the critical role of anthropogenic emissions in its formation.
L. H. Baker, W. J. Collins, D. J. L. Olivié, R. Cherian, Ø. Hodnebrog, G. Myhre, and J. Quaas
Atmos. Chem. Phys., 15, 8201–8216, https://doi.org/10.5194/acp-15-8201-2015, https://doi.org/10.5194/acp-15-8201-2015, 2015
Short summary
Short summary
We investigate the impact of removing land-based anthropogenic emissions of three aerosol species, using four fully-coupled atmosphere-ocean global climate models. Removing SO2 emissions leads to warming globally, strongest in the Northern Hemisphere (NH), and an increase in NH precipitation. Organic and black carbon (OC, BC) have a weaker impact, and less certainty on the response; OC (BC) removal shows a weak overall warming (cooling), and both show small increases in precipitation globally.
F. Ewald, C. Winkler, and T. Zinner
Atmos. Meas. Tech., 8, 2491–2508, https://doi.org/10.5194/amt-8-2491-2015, https://doi.org/10.5194/amt-8-2491-2015, 2015
J. Ungermann, J. Blank, M. Dick, A. Ebersoldt, F. Friedl-Vallon, A. Giez, T. Guggenmoser, M. Höpfner, T. Jurkat, M. Kaufmann, S. Kaufmann, A. Kleinert, M. Krämer, T. Latzko, H. Oelhaf, F. Olchewski, P. Preusse, C. Rolf, J. Schillings, O. Suminska-Ebersoldt, V. Tan, N. Thomas, C. Voigt, A. Zahn, M. Zöger, and M. Riese
Atmos. Meas. Tech., 8, 2473–2489, https://doi.org/10.5194/amt-8-2473-2015, https://doi.org/10.5194/amt-8-2473-2015, 2015
Short summary
Short summary
The GLORIA sounder is an airborne infrared limb-imager combining a two-dimensional infrared detector with a Fourier transform spectrometer. It was operated aboard the new German Gulfstream G550 research aircraft HALO during the TACTS and ESMVAL campaigns in summer 2012. This paper describes the retrieval of temperature, as well as H2O, HNO3, and O3 cross sections from GLORIA dynamics mode spectra. A high correlation is achieved between the remote sensing and the in situ trace gas measurements.
P. Eriksson, M. Jamali, J. Mendrok, and S. A. Buehler
Atmos. Meas. Tech., 8, 1913–1933, https://doi.org/10.5194/amt-8-1913-2015, https://doi.org/10.5194/amt-8-1913-2015, 2015
Short summary
Short summary
The optical properties of randomly oriented ice hydrometeors are reviewed from a perspective of microwave mass retrievals. The soft particle approximation is found to be highly problematic, and the alternative approach presented by Geer and Baordo (2014) should instead be used. We present a simplified version of this approach, and point out several critical limitations of existing DDA data.
M. Frech and J. Steinert
Hydrol. Earth Syst. Sci., 19, 1141–1152, https://doi.org/10.5194/hess-19-1141-2015, https://doi.org/10.5194/hess-19-1141-2015, 2015
I. V. Gorodetskaya, S. Kneifel, M. Maahn, K. Van Tricht, W. Thiery, J. H. Schween, A. Mangold, S. Crewell, and N. P. M. Van Lipzig
The Cryosphere, 9, 285–304, https://doi.org/10.5194/tc-9-285-2015, https://doi.org/10.5194/tc-9-285-2015, 2015
Short summary
Short summary
Our paper presents a new cloud-precipitation-meteorological observatory established in the escarpment zone of Dronning Maud Land, East Antarctica. The site is characterised by bimodal cloud occurrence (clear sky or overcast) with liquid-containing clouds occurring 20% of the cloudy periods. Local surface mass balance strongly depends on rare intense snowfall events. A substantial part of the accumulated snow is removed by surface and drifting snow sublimation and wind-driven snow erosion.
C. Knote, A. Hodzic, and J. L. Jimenez
Atmos. Chem. Phys., 15, 1–18, https://doi.org/10.5194/acp-15-1-2015, https://doi.org/10.5194/acp-15-1-2015, 2015
Short summary
Short summary
Organic material found in ambient aerosol is mostly formed through the oxidation of gaseous precursors. It is semi-volatile under atmospheric conditions, and it continuously partitions between the gas and particle phases. At the same time, it is also highly water soluble. We show that wet and especially dry deposition of semi-volatile organic compounds in the gas phase are major indirect removal pathways for the particle phase, and hence need to be accurately accounted for in modeling studies.
M. Mech, E. Orlandi, S. Crewell, F. Ament, L. Hirsch, M. Hagen, G. Peters, and B. Stevens
Atmos. Meas. Tech., 7, 4539–4553, https://doi.org/10.5194/amt-7-4539-2014, https://doi.org/10.5194/amt-7-4539-2014, 2014
Short summary
Short summary
Here the High Altitude and LOng range research aircraft Microwave Package (HAMP) is introduced. The package consists
of three passive radiometer modules with 26 channels between 22
and 183 GHz and a 36 GHz Doppler cloud radar. The manuscript
describes the instrument specifications, the installation in the aircraft, and the operation. Furthermore, results from simulation
and retrieval studies, as well as measurements from a first test
campaign, are shown.
F. Gasper, K. Goergen, P. Shrestha, M. Sulis, J. Rihani, M. Geimer, and S. Kollet
Geosci. Model Dev., 7, 2531–2543, https://doi.org/10.5194/gmd-7-2531-2014, https://doi.org/10.5194/gmd-7-2531-2014, 2014
S. Groß, M. Wirth, A. Schäfler, A. Fix, S. Kaufmann, and C. Voigt
Atmos. Meas. Tech., 7, 2745–2755, https://doi.org/10.5194/amt-7-2745-2014, https://doi.org/10.5194/amt-7-2745-2014, 2014
T. Kanitz, A. Ansmann, A. Foth, P. Seifert, U. Wandinger, R. Engelmann, H. Baars, D. Althausen, C. Casiccia, and F. Zamorano
Atmos. Meas. Tech., 7, 2061–2072, https://doi.org/10.5194/amt-7-2061-2014, https://doi.org/10.5194/amt-7-2061-2014, 2014
R. Kumar, M. C. Barth, S. Madronich, M. Naja, G. R. Carmichael, G. G. Pfister, C. Knote, G. P. Brasseur, N. Ojha, and T. Sarangi
Atmos. Chem. Phys., 14, 6813–6834, https://doi.org/10.5194/acp-14-6813-2014, https://doi.org/10.5194/acp-14-6813-2014, 2014
C. Knote, A. Hodzic, J. L. Jimenez, R. Volkamer, J. J. Orlando, S. Baidar, J. Brioude, J. Fast, D. R. Gentner, A. H. Goldstein, P. L. Hayes, W. B. Knighton, H. Oetjen, A. Setyan, H. Stark, R. Thalman, G. Tyndall, R. Washenfelder, E. Waxman, and Q. Zhang
Atmos. Chem. Phys., 14, 6213–6239, https://doi.org/10.5194/acp-14-6213-2014, https://doi.org/10.5194/acp-14-6213-2014, 2014
F. Dahlkötter, M. Gysel, D. Sauer, A. Minikin, R. Baumann, P. Seifert, A. Ansmann, M. Fromm, C. Voigt, and B. Weinzierl
Atmos. Chem. Phys., 14, 6111–6137, https://doi.org/10.5194/acp-14-6111-2014, https://doi.org/10.5194/acp-14-6111-2014, 2014
A. Battaglia, C. D. Westbrook, S. Kneifel, P. Kollias, N. Humpage, U. Löhnert, J. Tyynelä, and G. W. Petty
Atmos. Meas. Tech., 7, 1527–1546, https://doi.org/10.5194/amt-7-1527-2014, https://doi.org/10.5194/amt-7-1527-2014, 2014
A. Seifert, U. Blahak, and R. Buhr
Geosci. Model Dev., 7, 463–478, https://doi.org/10.5194/gmd-7-463-2014, https://doi.org/10.5194/gmd-7-463-2014, 2014
P. Jeßberger, C. Voigt, U. Schumann, I. Sölch, H. Schlager, S. Kaufmann, A. Petzold, D. Schäuble, and J.-F. Gayet
Atmos. Chem. Phys., 13, 11965–11984, https://doi.org/10.5194/acp-13-11965-2013, https://doi.org/10.5194/acp-13-11965-2013, 2013
Y. Kasai, H. Sagawa, D. Kreyling, E. Dupuy, P. Baron, J. Mendrok, K. Suzuki, T. O. Sato, T. Nishibori, S. Mizobuchi, K. Kikuchi, T. Manabe, H. Ozeki, T. Sugita, M. Fujiwara, Y. Irimajiri, K. A. Walker, P. F. Bernath, C. Boone, G. Stiller, T. von Clarmann, J. Orphal, J. Urban, D. Murtagh, E. J. Llewellyn, D. Degenstein, A. E. Bourassa, N. D. Lloyd, L. Froidevaux, M. Birk, G. Wagner, F. Schreier, J. Xu, P. Vogt, T. Trautmann, and M. Yasui
Atmos. Meas. Tech., 6, 2311–2338, https://doi.org/10.5194/amt-6-2311-2013, https://doi.org/10.5194/amt-6-2311-2013, 2013
D. Merk and T. Zinner
Atmos. Meas. Tech., 6, 1903–1918, https://doi.org/10.5194/amt-6-1903-2013, https://doi.org/10.5194/amt-6-1903-2013, 2013
J. Wagner, A. Ansmann, U. Wandinger, P. Seifert, A. Schwarz, M. Tesche, A. Chaikovsky, and O. Dubovik
Atmos. Meas. Tech., 6, 1707–1724, https://doi.org/10.5194/amt-6-1707-2013, https://doi.org/10.5194/amt-6-1707-2013, 2013
T. Zinner, C. Forster, E. de Coning, and H.-D. Betz
Atmos. Meas. Tech., 6, 1567–1583, https://doi.org/10.5194/amt-6-1567-2013, https://doi.org/10.5194/amt-6-1567-2013, 2013
T. D. Thornberry, A. W. Rollins, R. S. Gao, L. A. Watts, S. J. Ciciora, R. J. McLaughlin, C. Voigt, B. Hall, and D. W. Fahey
Atmos. Meas. Tech., 6, 1461–1475, https://doi.org/10.5194/amt-6-1461-2013, https://doi.org/10.5194/amt-6-1461-2013, 2013
G. Pappalardo, L. Mona, G. D'Amico, U. Wandinger, M. Adam, A. Amodeo, A. Ansmann, A. Apituley, L. Alados Arboledas, D. Balis, A. Boselli, J. A. Bravo-Aranda, A. Chaikovsky, A. Comeron, J. Cuesta, F. De Tomasi, V. Freudenthaler, M. Gausa, E. Giannakaki, H. Giehl, A. Giunta, I. Grigorov, S. Groß, M. Haeffelin, A. Hiebsch, M. Iarlori, D. Lange, H. Linné, F. Madonna, I. Mattis, R.-E. Mamouri, M. A. P. McAuliffe, V. Mitev, F. Molero, F. Navas-Guzman, D. Nicolae, A. Papayannis, M. R. Perrone, C. Pietras, A. Pietruczuk, G. Pisani, J. Preißler, M. Pujadas, V. Rizi, A. A. Ruth, J. Schmidt, F. Schnell, P. Seifert, I. Serikov, M. Sicard, V. Simeonov, N. Spinelli, K. Stebel, M. Tesche, T. Trickl, X. Wang, F. Wagner, M. Wiegner, and K. M. Wilson
Atmos. Chem. Phys., 13, 4429–4450, https://doi.org/10.5194/acp-13-4429-2013, https://doi.org/10.5194/acp-13-4429-2013, 2013
K. Gottschaldt, C. Voigt, P. Jöckel, M. Righi, R. Deckert, and S. Dietmüller
Atmos. Chem. Phys., 13, 3003–3025, https://doi.org/10.5194/acp-13-3003-2013, https://doi.org/10.5194/acp-13-3003-2013, 2013
N. Bellouin, J. Quaas, J.-J. Morcrette, and O. Boucher
Atmos. Chem. Phys., 13, 2045–2062, https://doi.org/10.5194/acp-13-2045-2013, https://doi.org/10.5194/acp-13-2045-2013, 2013
F. Ewald, L. Bugliaro, H. Mannstein, and B. Mayer
Atmos. Meas. Tech., 6, 309–322, https://doi.org/10.5194/amt-6-309-2013, https://doi.org/10.5194/amt-6-309-2013, 2013
C. Knote and D. Brunner
Atmos. Chem. Phys., 13, 1177–1192, https://doi.org/10.5194/acp-13-1177-2013, https://doi.org/10.5194/acp-13-1177-2013, 2013
Related subject area
Subject: Clouds and Precipitation | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Technical note: Applicability of physics-based and machine-learning-based algorithms of a geostationary satellite in retrieving the diurnal cycle of cloud base height
Observing convective activities in complex convective organizations and their contributions to precipitation and anvil cloud amounts
Weak liquid water path response in ship tracks
Lightning declines over shipping lanes following regulation of fuel sulfur emissions
Air mass history linked to the development of Arctic mixed-phase clouds
Post-Return Stroke VHF Electromagnetic Activity in North-Western Mediterranean Cloud-to-Ground Lightning Flashes
Distinct structure, radiative effects, and precipitation characteristics of deep convection systems in the Tibetan Plateau compared to the tropical Indian Ocean
The correlation between Arctic sea ice, cloud phase and radiation using A-Train satellites
Technical note: Retrieval of the supercooled liquid fraction in mixed-phase clouds from Himawari-8 observations
Characterisation of low-base and mid-base clouds and their thermodynamic phase over the Southern Ocean and Arctic marine regions
A survey of radiative and physical properties of North Atlantic mesoscale cloud morphologies from multiple identification methodologies
Extensive coverage of ultrathin tropical tropopause layer cirrus clouds revealed by balloon-borne lidar observations
The effects of warm-air intrusions in the high Arctic on cirrus clouds
The characteristics of cloud macro-parameters caused by the seeder–feeder process inside clouds measured by millimeter-wave cloud radar in Xi'an, China
Shallow- and deep-convection characteristics in the greater Houston, Texas, area using cell tracking methodology
Observations of the macrophysical properties of cumulus cloud fields over the tropical western Pacific and their connection to meteorological variables
A Lagrangian perspective on the lifecycle and cloud radiative effect of deep convective clouds over Africa
How does the lifetime of detrained cirrus impact the high cloud radiative effect in the tropics?
Daytime variation in the aerosol indirect effect for warm marine boundary layer clouds in the eastern North Atlantic
Technical note: Bimodal parameterizations of in situ ice cloud particle size distributions
Inter-relations of precipitation, aerosols, and clouds over Andalusia, southern Spain, revealed by the Andalusian Global ObseRvatory of the Atmosphere (AGORA)
On the relationship between mesoscale cellular convection and meteorological forcing: comparing the Southern Ocean against the North Pacific
Aerosol-related effects on the occurrence of heterogeneous ice formation over Lauder, New Zealand ∕ Aotearoa
Low-level Arctic clouds: a blind zone in our knowledge of the radiation budget
Climatologically invariant scale invariance seen in distributions of cloud horizontal sizes
Variability and properties of liquid-dominated clouds over the ice-free and sea-ice-covered Arctic Ocean
Asymmetries in cloud microphysical properties ascribed to sea ice leads via water vapour transport in the central Arctic
Quantifying the dependence of drop spectrum width on cloud drop number concentration for cloud remote sensing
The evolution of deep convective systems and their associated cirrus outflows
Wildfire smoke triggers cirrus formation: lidar observations over the eastern Mediterranean
Rapid saturation of cloud water adjustments to shipping emissions
Sensitivities of cloud radiative effects to large-scale meteorology and aerosols from global observations
Distinct secondary ice production processes observed in radar Doppler spectra: insights from a case study
Investigating the development of clouds within marine cold-air outbreaks
Detection of large-scale cloud microphysical changes within a major shipping corridor after implementation of the International Maritime Organization 2020 fuel sulfur regulations
Examining cloud vertical structure and radiative effects from satellite retrievals and evaluation of CMIP6 scenarios
Influence of cloud microphysics schemes on weather model predictions of heavy precipitation
Convective organization and 3D structure of tropical cloud systems deduced from synergistic A-Train observations and machine learning
Seasonal controls on isolated convective storm drafts, precipitation intensity, and life cycle as observed during GoAmazon2014/5
Uncertainty in aerosol–cloud radiative forcing is driven by clean conditions
Surface-based observations of cold-air outbreak clouds during the COMBLE field campaign
Boundary layer moisture variability at the Atmospheric Radiation Measurement (ARM) Eastern North Atlantic observatory during marine conditions
Profile-based estimated inversion strength
Characteristics of supersaturation in midlatitude cirrus clouds and their adjacent cloud-free air
Establishment of an analytical model for remote sensing of typical stratocumulus cloud profiles under various precipitation and entrainment conditions
Satellite remote sensing of regional and seasonal Arctic cooling showing a multi-decadal trend towards brighter and more liquid clouds
Microphysical processes of super typhoon Lekima (2019) and their impacts on polarimetric radar remote sensing of precipitation
The impacts of dust aerosol and convective available potential energy on precipitation vertical structure in southeastern China as seen from multisource observations
Heavy snowfall event over the Swiss Alps: did wind shear impact secondary ice production?
On the global relationship between polarimetric radio occultation differential phase shift and ice water content
Mengyuan Wang, Min Min, Jun Li, Han Lin, Yongen Liang, Binlong Chen, Zhigang Yao, Na Xu, and Miao Zhang
Atmos. Chem. Phys., 24, 14239–14256, https://doi.org/10.5194/acp-24-14239-2024, https://doi.org/10.5194/acp-24-14239-2024, 2024
Short summary
Short summary
Although machine learning technology is advanced in the field of satellite remote sensing, the physical inversion algorithm based on cloud base height can better capture the daily variation in the characteristics of the cloud base.
Zhenquan Wang and Jian Yuan
Atmos. Chem. Phys., 24, 13811–13831, https://doi.org/10.5194/acp-24-13811-2024, https://doi.org/10.5194/acp-24-13811-2024, 2024
Short summary
Short summary
Tropical convection organizations are normally connected complexes of many convective activities. In this work, a novel variable-brightness-temperature segment tracking algorithm is established to partition the complex convective organizations into structural components of single cold cores for tracking separately. The duration, precipitation and anvil amount of the tracked organization segments have strong loglinear relationships with brightness temperature structures.
Anna Tippett, Edward Gryspeerdt, Peter Manshausen, Philip Stier, and Tristan W. P. Smith
Atmos. Chem. Phys., 24, 13269–13283, https://doi.org/10.5194/acp-24-13269-2024, https://doi.org/10.5194/acp-24-13269-2024, 2024
Short summary
Short summary
Ship emissions can form artificially brightened clouds, known as ship tracks, and provide us with an opportunity to investigate how aerosols interact with clouds. Previous studies that used ship tracks suggest that clouds can experience large increases in the amount of water (LWP) from aerosols. Here, we show that there is a bias in previous research and that, when we account for this bias, the LWP response to aerosols is much weaker than previously reported.
Chris J. Wright, Joel A. Thornton, Lyatt Jaeglé, Yang Cao, Yannian Zhu, Jihu Liu, Randall Jones II, Robert H. Holzworth, Daniel Rosenfeld, Robert Wood, Peter Blossey, and Daehyun Kim
EGUsphere, https://doi.org/10.48550/arXiv.2408.07207, https://doi.org/10.48550/arXiv.2408.07207, 2024
Short summary
Short summary
Aerosol particles influence clouds, which exert a large forcing on solar radiation and fresh water. To better understand the mechanisms by which aerosol influences thunderstorms, we look at the two busiest shipping lanes in the world, where recent regulations have reduced sulfur emissions by nearly an order of magnitude. We find that the reduction in emissions has been accompanied by a dramatic decrease in both lightning and the number of droplets in clouds over the shipping lanes.
Rebecca J. Murray-Watson and Edward Gryspeerdt
Atmos. Chem. Phys., 24, 11115–11132, https://doi.org/10.5194/acp-24-11115-2024, https://doi.org/10.5194/acp-24-11115-2024, 2024
Short summary
Short summary
The formation of mixed-phase clouds during marine cold-air outbreaks is not well understood. Our study, using satellite data and Lagrangian trajectories, reveals that the occurrence of these clouds depends on both time and temperature, influenced partly by the presence of biological ice-nucleating particles. This highlights the importance of comprehending local aerosol dynamics for precise modelling of cloud-phase transitions in the Arctic.
Andrea Kolínská, Ivana Kolmašová, Eric Defer, Ondřej Santolík, and Stéphane Pédeboy
EGUsphere, https://doi.org/10.5194/egusphere-2024-2489, https://doi.org/10.5194/egusphere-2024-2489, 2024
Short summary
Short summary
We contribute to the knowledge about the differences in lightning flashes of opposite polarity. We found and explained a distinct behaviour of in-cloud processes happening immediately after return strokes of cloud-to-ground lightning flashes, considering a recharging of in-cloud part of bidirectional leader.
Yuxin Zhao, Jiming Li, Deyu Wen, Yarong Li, Yuan Wang, and Jianping Huang
Atmos. Chem. Phys., 24, 9435–9457, https://doi.org/10.5194/acp-24-9435-2024, https://doi.org/10.5194/acp-24-9435-2024, 2024
Short summary
Short summary
This study identifies deep convection systems (DCSs), including deep convection cores and anvils, over the Tibetan Plateau (TP) and tropical Indian Ocean (TO). The DCSs over the TP are less frequent, showing narrower and thinner cores and anvils compared to those over the TO. TP DCSs show a stronger longwave cloud radiative effect at the surface and in the low-level atmosphere. Distinct aerosol–cloud–precipitation interaction is found in TP DCSs, probably due to the cold cloud bases.
Grégory V. Cesana, Olivia Pierpaoli, Matteo Ottaviani, Linh Vu, Zhonghai Jin, and Israel Silber
Atmos. Chem. Phys., 24, 7899–7909, https://doi.org/10.5194/acp-24-7899-2024, https://doi.org/10.5194/acp-24-7899-2024, 2024
Short summary
Short summary
Better characterizing the relationship between sea ice and clouds is key to understanding Arctic climate because clouds and sea ice affect surface radiation and modulate Arctic surface warming. Our results indicate that Arctic liquid clouds robustly increase in response to sea ice decrease. This increase has a cooling effect on the surface because more solar radiation is reflected back to space, and it should contribute to dampening future Arctic surface warming.
Ziming Wang, Husi Letu, Huazhe Shang, and Luca Bugliaro
Atmos. Chem. Phys., 24, 7559–7574, https://doi.org/10.5194/acp-24-7559-2024, https://doi.org/10.5194/acp-24-7559-2024, 2024
Short summary
Short summary
The supercooled liquid fraction (SLF) in mixed-phase clouds is retrieved for the first time using passive geostationary satellite observations based on differences in liquid droplet and ice particle radiative properties. The retrieved results are comparable to global distributions observed by active instruments, and the feasibility of the retrieval method to analyze the observed trends of the SLF has been validated.
Barbara Dietel, Odran Sourdeval, and Corinna Hoose
Atmos. Chem. Phys., 24, 7359–7383, https://doi.org/10.5194/acp-24-7359-2024, https://doi.org/10.5194/acp-24-7359-2024, 2024
Short summary
Short summary
Uncertainty with respect to cloud phases over the Southern Ocean and Arctic marine regions leads to large uncertainties in the radiation budget of weather and climate models. This study investigates the phases of low-base and mid-base clouds using satellite-based remote sensing data. A comprehensive analysis of the correlation of cloud phase with various parameters, such as temperature, aerosols, sea ice, vertical and horizontal cloud extent, and cloud radiative effect, is presented.
Ryan Eastman, Isabel L. McCoy, Hauke Schulz, and Robert Wood
Atmos. Chem. Phys., 24, 6613–6634, https://doi.org/10.5194/acp-24-6613-2024, https://doi.org/10.5194/acp-24-6613-2024, 2024
Short summary
Short summary
Cloud types are determined using machine learning image classifiers applied to satellite imagery for 1 year in the North Atlantic. This survey of these cloud types shows that the climate impact of a cloud scene is, in part, a function of cloud type. Each type displays a different mix of thick and thin cloud cover, with the fraction of thin cloud cover having the strongest impact on the clouds' radiative effect. Future studies must account for differing properties and processes among cloud types.
Thomas Lesigne, François Ravetta, Aurélien Podglajen, Vincent Mariage, and Jacques Pelon
Atmos. Chem. Phys., 24, 5935–5952, https://doi.org/10.5194/acp-24-5935-2024, https://doi.org/10.5194/acp-24-5935-2024, 2024
Short summary
Short summary
Upper tropical clouds have a strong impact on Earth's climate but are challenging to observe. We report the first long-duration observations of tropical clouds from lidars flying on board stratospheric balloons. Comparisons with spaceborne observations reveal the enhanced sensitivity of balloon-borne lidar to optically thin cirrus. These clouds, which have a significant coverage and lie in the uppermost troposphere, are linked with the dehydration of air masses on their way to the stratosphere.
Georgios Dekoutsidis, Martin Wirth, and Silke Groß
Atmos. Chem. Phys., 24, 5971–5987, https://doi.org/10.5194/acp-24-5971-2024, https://doi.org/10.5194/acp-24-5971-2024, 2024
Short summary
Short summary
For decades the earth's temperature has been rising. The Arctic regions are warming faster. Cirrus clouds can contribute to this phenomenon. During warm-air intrusions, air masses are transported into the Arctic from the mid-latitudes. The HALO-(AC)3 campaign took place to measure cirrus during intrusion events and under normal conditions. We study the two cloud types based on these measurements and find differences in their geometry, relative humidity distribution and vertical structure.
Huige Di and Yun Yuan
Atmos. Chem. Phys., 24, 5783–5801, https://doi.org/10.5194/acp-24-5783-2024, https://doi.org/10.5194/acp-24-5783-2024, 2024
Short summary
Short summary
We observed the seeder–feeder process among double-layer clouds using a cloud radar and microwave radiometer. By defining the parameters of the seeding depth and seeding time of the upper cloud affecting the lower cloud, we find that the cloud particle terminal velocity is significantly enhanced during the seeder–feeder period, and the lower the height and thinner the thickness of the height difference between double-layer clouds, the lower the height and thicker the thickness of seeding depth.
Kristofer S. Tuftedal, Bernat Puigdomènech Treserras, Mariko Oue, and Pavlos Kollias
Atmos. Chem. Phys., 24, 5637–5657, https://doi.org/10.5194/acp-24-5637-2024, https://doi.org/10.5194/acp-24-5637-2024, 2024
Short summary
Short summary
This study analyzed coastal convective cells from June through September 2018–2021. The cells were classified and their lifecycles were analyzed to better understand their characteristics. Features such as convective-core growth, for example, are shown. The study found differences in the initiation location of shallow convection and in the aerosol loading in deep convective environments. This work provides a foundation for future analyses of convection or other tracked events elsewhere.
Michie Vianca De Vera, Larry Di Girolamo, Guangyu Zhao, Robert M. Rauber, Stephen W. Nesbitt, and Greg M. McFarquhar
Atmos. Chem. Phys., 24, 5603–5623, https://doi.org/10.5194/acp-24-5603-2024, https://doi.org/10.5194/acp-24-5603-2024, 2024
Short summary
Short summary
Tropical oceanic low clouds remain a dominant source of uncertainty in cloud feedback in climate models due to their macrophysical properties (fraction, size, height, shape, distribution) being misrepresented. High-resolution satellite imagery over the Philippine oceans is used here to characterize cumulus macrophysical properties and their relationship to meteorological variables. Such information can act as a benchmark for cloud models and can improve low-cloud generation in climate models.
William K. Jones, Martin Stengel, and Philip Stier
Atmos. Chem. Phys., 24, 5165–5180, https://doi.org/10.5194/acp-24-5165-2024, https://doi.org/10.5194/acp-24-5165-2024, 2024
Short summary
Short summary
Storm clouds cover large areas of the tropics. These clouds both reflect incoming sunlight and trap heat from the atmosphere below, regulating the temperature of the tropics. Over land, storm clouds occur in the late afternoon and evening and so exist both during the daytime and at night. Changes in this timing could upset the balance of the respective cooling and heating effects of these clouds. We find that isolated storms have a larger effect on this balance than their small size suggests.
George Horner and Edward Gryspeerdt
EGUsphere, https://doi.org/10.5194/egusphere-2024-1090, https://doi.org/10.5194/egusphere-2024-1090, 2024
Short summary
Short summary
This work tracks the lifecycle of thin cirrus clouds that flow out of tropical convective storms. These cirrus clouds are found to have a warming effect on the atmosphere over their whole lifetime. Thin cirrus that originate from land origin convection warm more than those of ocean origin. Moreover, if the lifetime of these cirrus clouds increase, the warming they exert over their whole lifetime also increases. These results help us understand how these clouds might change in a future climate.
Shaoyue Qiu, Xue Zheng, David Painemal, Christopher R. Terai, and Xiaoli Zhou
Atmos. Chem. Phys., 24, 2913–2935, https://doi.org/10.5194/acp-24-2913-2024, https://doi.org/10.5194/acp-24-2913-2024, 2024
Short summary
Short summary
The aerosol indirect effect (AIE) depends on cloud states, which exhibit significant diurnal variations in the northeastern Atlantic. Yet the AIE diurnal cycle remains poorly understood. Using satellite retrievals, we find a pronounced “U-shaped” diurnal variation in the AIE, which is contributed to by the transition of cloud states combined with the lagged cloud responses. This suggests that polar-orbiting satellites with overpass times at noon underestimate daytime mean values of the AIE.
Irene Bartolomé García, Odran Sourdeval, Reinhold Spang, and Martina Krämer
Atmos. Chem. Phys., 24, 1699–1716, https://doi.org/10.5194/acp-24-1699-2024, https://doi.org/10.5194/acp-24-1699-2024, 2024
Short summary
Short summary
How many ice crystals of each size are in a cloud is a key parameter for the retrieval of cloud properties. The distribution of ice crystals is obtained from in situ measurements and used to create parameterizations that can be used when analyzing the remote-sensing data. Current parameterizations are based on data sets that do not include reliable measurements of small crystals, but in our study we use a data set that includes very small ice crystals to improve these parameterizations.
Wenyue Wang, Klemens Hocke, Leonardo Nania, Alberto Cazorla, Gloria Titos, Renaud Matthey, Lucas Alados-Arboledas, Agustín Millares, and Francisco Navas-Guzmán
Atmos. Chem. Phys., 24, 1571–1585, https://doi.org/10.5194/acp-24-1571-2024, https://doi.org/10.5194/acp-24-1571-2024, 2024
Short summary
Short summary
The south-central interior of Andalusia experiences complex precipitation patterns as a result of the semi-arid Mediterranean climate and the influence of Saharan dust. This study monitored the inter-relations between aerosols, clouds, meteorological variables, and precipitation systems using ground-based remote sensing and in situ instruments.
Francisco Lang, Steven T. Siems, Yi Huang, Tahereh Alinejadtabrizi, and Luis Ackermann
Atmos. Chem. Phys., 24, 1451–1466, https://doi.org/10.5194/acp-24-1451-2024, https://doi.org/10.5194/acp-24-1451-2024, 2024
Short summary
Short summary
Marine low-level clouds play a crucial role in the Earth's energy balance, trapping heat from the surface and reflecting sunlight back into space. These clouds are distinguishable by their large-scale spatial structures, primarily characterized as hexagonal patterns with either filled (closed) or empty (open) cells. Utilizing satellite observations, these two cloud type patterns have been categorized over the Southern Ocean and North Pacific Ocean through a pattern recognition program.
Julian Hofer, Patric Seifert, J. Ben Liley, Martin Radenz, Osamu Uchino, Isamu Morino, Tetsu Sakai, Tomohiro Nagai, and Albert Ansmann
Atmos. Chem. Phys., 24, 1265–1280, https://doi.org/10.5194/acp-24-1265-2024, https://doi.org/10.5194/acp-24-1265-2024, 2024
Short summary
Short summary
An 11-year dataset of polarization lidar observations from Lauder, New Zealand / Aotearoa, was used to distinguish the thermodynamic phase of natural clouds. The cloud dataset was separated to assess the impact of air mass origin on the frequency of heterogeneous ice formation. Ice formation efficiency in clouds above Lauder was found to be lower than in the polluted Northern Hemisphere midlatitudes but higher than in very clean and pristine environments, such as Punta Arenas in southern Chile.
Hannes Jascha Griesche, Carola Barrientos-Velasco, Hartwig Deneke, Anja Hünerbein, Patric Seifert, and Andreas Macke
Atmos. Chem. Phys., 24, 597–612, https://doi.org/10.5194/acp-24-597-2024, https://doi.org/10.5194/acp-24-597-2024, 2024
Short summary
Short summary
The Arctic is strongly affected by climate change and the role of clouds therein is not yet completely understood. Measurements from the Arctic expedition PS106 were used to simulate radiative fluxes with and without clouds at very low altitudes (below 165 m), and their radiative effect was calculated to be 54 Wm-2. The low heights of these clouds make them hard to observe. This study shows the importance of accurate measurements and simulations of clouds and gives suggestions for improvements.
Thomas D. DeWitt, Timothy J. Garrett, Karlie N. Rees, Corey Bois, Steven K. Krueger, and Nicolas Ferlay
Atmos. Chem. Phys., 24, 109–122, https://doi.org/10.5194/acp-24-109-2024, https://doi.org/10.5194/acp-24-109-2024, 2024
Short summary
Short summary
Viewed from space, a defining feature of Earth's atmosphere is the wide spectrum of cloud sizes. A recent study predicted the distribution of cloud sizes, and this paper compares the prediction to observations. Although there is nuance in viewing perspective, we find robust agreement with theory across different climatological conditions, including land–ocean contrasts, time of year, or latitude, suggesting a minor role for Coriolis forces, aerosol loading, or surface temperature.
Marcus Klingebiel, André Ehrlich, Elena Ruiz-Donoso, Nils Risse, Imke Schirmacher, Evelyn Jäkel, Michael Schäfer, Kevin Wolf, Mario Mech, Manuel Moser, Christiane Voigt, and Manfred Wendisch
Atmos. Chem. Phys., 23, 15289–15304, https://doi.org/10.5194/acp-23-15289-2023, https://doi.org/10.5194/acp-23-15289-2023, 2023
Short summary
Short summary
In this study we explain how we use aircraft measurements from two Arctic research campaigns to identify cloud properties (like droplet size) over sea-ice and ice-free ocean. To make sure that our measurements make sense, we compare them with other observations. Our results show, e.g., larger cloud droplets in early summer than in spring. Moreover, the cloud droplets are also larger over ice-free ocean than compared to sea ice. In the future, our data can be used to improve climate models.
Pablo Saavedra Garfias, Heike Kalesse-Los, Luisa von Albedyll, Hannes Griesche, and Gunnar Spreen
Atmos. Chem. Phys., 23, 14521–14546, https://doi.org/10.5194/acp-23-14521-2023, https://doi.org/10.5194/acp-23-14521-2023, 2023
Short summary
Short summary
An important Arctic climate process is the release of heat fluxes from sea ice openings to the atmosphere that influence the clouds. The characterization of this process is the objective of this study. Using synergistic observations from the MOSAiC expedition, we found that single-layer cloud properties show significant differences when clouds are coupled or decoupled to the water vapour transport which is used as physical link between the upwind sea ice openings and the cloud under observation.
Matthew D. Lebsock and Mikael Witte
Atmos. Chem. Phys., 23, 14293–14305, https://doi.org/10.5194/acp-23-14293-2023, https://doi.org/10.5194/acp-23-14293-2023, 2023
Short summary
Short summary
This paper evaluates measurements of cloud drop size distributions made from airplanes. We find that as the number of cloud drops increases the distribution of the cloud drop sizes narrows. The data are used to develop a simple equation that relates the drop number to the width of the drop sizes. We then use this equation to demonstrate that existing approaches to observe the drop number from satellites contain errors that can be corrected by including the new relationship.
George Horner and Edward Gryspeerdt
Atmos. Chem. Phys., 23, 14239–14253, https://doi.org/10.5194/acp-23-14239-2023, https://doi.org/10.5194/acp-23-14239-2023, 2023
Short summary
Short summary
Tropical deep convective clouds, and the thin cirrus (ice) clouds that flow out from them, are important for modulating the energy budget of the tropical atmosphere. This work uses a new method to track the evolution of the properties of these clouds across their entire lifetimes. We find these clouds cool the atmosphere in the first 6 h before switching to a warming regime after the deep convective core has dissipated, which is sustained beyond 120 h from the initial convective event.
Rodanthi-Elisavet Mamouri, Albert Ansmann, Kevin Ohneiser, Daniel A. Knopf, Argyro Nisantzi, Johannes Bühl, Ronny Engelmann, Annett Skupin, Patric Seifert, Holger Baars, Dragos Ene, Ulla Wandinger, and Diofantos Hadjimitsis
Atmos. Chem. Phys., 23, 14097–14114, https://doi.org/10.5194/acp-23-14097-2023, https://doi.org/10.5194/acp-23-14097-2023, 2023
Short summary
Short summary
For the first time, rather clear evidence is found that wildfire smoke particles can trigger strong cirrus formation. This finding is of importance because intensive and large wildfires may occur increasingly often in the future as climate change proceeds. Based on lidar observations in Cyprus in autumn 2020, we provide detailed insight into the cirrus formation at the tropopause in the presence of aged wildfire smoke (here, 8–9 day old Californian wildfire smoke).
Peter Manshausen, Duncan Watson-Parris, Matthew W. Christensen, Jukka-Pekka Jalkanen, and Philip Stier
Atmos. Chem. Phys., 23, 12545–12555, https://doi.org/10.5194/acp-23-12545-2023, https://doi.org/10.5194/acp-23-12545-2023, 2023
Short summary
Short summary
Aerosol from burning fuel changes cloud properties, e.g., the number of droplets and the content of water. Here, we study how clouds respond to different amounts of shipping aerosol. Droplet numbers increase linearly with increasing aerosol over a broad range until they stop increasing, while the amount of liquid water always increases, independently of emission amount. These changes in cloud properties can make them reflect more or less sunlight, which is important for the earth's climate.
Hendrik Andersen, Jan Cermak, Alyson Douglas, Timothy A. Myers, Peer Nowack, Philip Stier, Casey J. Wall, and Sarah Wilson Kemsley
Atmos. Chem. Phys., 23, 10775–10794, https://doi.org/10.5194/acp-23-10775-2023, https://doi.org/10.5194/acp-23-10775-2023, 2023
Short summary
Short summary
This study uses an observation-based cloud-controlling factor framework to study near-global sensitivities of cloud radiative effects to a large number of meteorological and aerosol controls. We present near-global sensitivity patterns to selected thermodynamic, dynamic, and aerosol factors and discuss the physical mechanisms underlying the derived sensitivities. Our study hopes to guide future analyses aimed at constraining cloud feedbacks and aerosol–cloud interactions.
Anne-Claire Billault-Roux, Paraskevi Georgakaki, Josué Gehring, Louis Jaffeux, Alfons Schwarzenboeck, Pierre Coutris, Athanasios Nenes, and Alexis Berne
Atmos. Chem. Phys., 23, 10207–10234, https://doi.org/10.5194/acp-23-10207-2023, https://doi.org/10.5194/acp-23-10207-2023, 2023
Short summary
Short summary
Secondary ice production plays a key role in clouds and precipitation. In this study, we analyze radar measurements from a snowfall event in the Jura Mountains. Complex signatures are observed, which reveal that ice crystals were formed through various processes. An analysis of multi-sensor data suggests that distinct ice multiplication processes were taking place. Both the methods used and the insights gained through this case study contribute to a better understanding of snowfall microphysics.
Rebecca J. Murray-Watson, Edward Gryspeerdt, and Tom Goren
Atmos. Chem. Phys., 23, 9365–9383, https://doi.org/10.5194/acp-23-9365-2023, https://doi.org/10.5194/acp-23-9365-2023, 2023
Short summary
Short summary
Clouds formed in Arctic marine cold air outbreaks undergo a distinct evolution, but the factors controlling their transition from high-coverage to broken cloud fields are poorly understood. We use satellite and reanalysis data to study how these clouds develop in time and the different influences on their evolution. The aerosol concentration is correlated with cloud break-up; more aerosol is linked to prolonged coverage and a stronger cooling effect, with implications for a more polluted Arctic.
Michael S. Diamond
Atmos. Chem. Phys., 23, 8259–8269, https://doi.org/10.5194/acp-23-8259-2023, https://doi.org/10.5194/acp-23-8259-2023, 2023
Short summary
Short summary
Fuel sulfur regulations were implemented for ships in 2020 to improve air quality but may also accelerate global warming. We use spatial statistics and satellite retrievals to detect changes in the size of cloud droplets and find evidence for a resulting decrease in cloud brightness within a major shipping corridor after the sulfur limits went into effect. Our results confirm both that the regulations are being followed and that they are having a warming influence via their effect on clouds.
Hao Luo, Johannes Quaas, and Yong Han
Atmos. Chem. Phys., 23, 8169–8186, https://doi.org/10.5194/acp-23-8169-2023, https://doi.org/10.5194/acp-23-8169-2023, 2023
Short summary
Short summary
Clouds exhibit a wide range of vertical structures with varying microphysical and radiative properties. We show a global survey of spatial distribution, vertical extent and radiative effect of various classified cloud vertical structures using joint satellite observations from the new CCCM datasets during 2007–2010. Moreover, the long-term trends in CVSs are investigated based on different CMIP6 future scenarios to capture the cloud variations with different, increasing anthropogenic forcings.
Gregor Köcher, Tobias Zinner, and Christoph Knote
Atmos. Chem. Phys., 23, 6255–6269, https://doi.org/10.5194/acp-23-6255-2023, https://doi.org/10.5194/acp-23-6255-2023, 2023
Short summary
Short summary
Polarimetric radar observations of 30 d of convective precipitation events are used to statistically analyze 5 state-of-the-art microphysics schemes of varying complexity. The frequency and area of simulated heavy-precipitation events are in some cases significantly different from those observed, depending on the microphysics scheme. Analysis of simulated particle size distributions and reflectivities shows that some schemes have problems reproducing the correct particle size distributions.
Claudia J. Stubenrauch, Giulio Mandorli, and Elisabeth Lemaitre
Atmos. Chem. Phys., 23, 5867–5884, https://doi.org/10.5194/acp-23-5867-2023, https://doi.org/10.5194/acp-23-5867-2023, 2023
Short summary
Short summary
Organized convection leads to large convective cloud systems and intense rain and may change with a warming climate. Their complete 3D description, attained by machine learning techniques in combination with various satellite observations, together with a cloud system concept, link convection to anvil properties, while convective organization can be identified by the horizontal structure of intense rain.
Scott E. Giangrande, Thiago S. Biscaro, and John M. Peters
Atmos. Chem. Phys., 23, 5297–5316, https://doi.org/10.5194/acp-23-5297-2023, https://doi.org/10.5194/acp-23-5297-2023, 2023
Short summary
Short summary
Our study tracks thunderstorms observed during the wet and dry seasons of the Amazon Basin using weather radar. We couple this precipitation tracking with opportunistic overpasses of a wind profiler and other ground observations to add unique insights into the upwards and downwards air motions within these clouds at various stages in the storm life cycle. The results of a simple updraft model are provided to give physical explanations for observed seasonal differences.
Edward Gryspeerdt, Adam C. Povey, Roy G. Grainger, Otto Hasekamp, N. Christina Hsu, Jane P. Mulcahy, Andrew M. Sayer, and Armin Sorooshian
Atmos. Chem. Phys., 23, 4115–4122, https://doi.org/10.5194/acp-23-4115-2023, https://doi.org/10.5194/acp-23-4115-2023, 2023
Short summary
Short summary
The impact of aerosols on clouds is one of the largest uncertainties in the human forcing of the climate. Aerosol can increase the concentrations of droplets in clouds, but observational and model studies produce widely varying estimates of this effect. We show that these estimates can be reconciled if only polluted clouds are studied, but this is insufficient to constrain the climate impact of aerosol. The uncertainty in aerosol impact on clouds is currently driven by cases with little aerosol.
Zackary Mages, Pavlos Kollias, Zeen Zhu, and Edward P. Luke
Atmos. Chem. Phys., 23, 3561–3574, https://doi.org/10.5194/acp-23-3561-2023, https://doi.org/10.5194/acp-23-3561-2023, 2023
Short summary
Short summary
Cold-air outbreaks (when cold air is advected over warm water and creates low-level convection) are a dominant cloud regime in the Arctic, and we capitalized on ground-based observations, which did not previously exist, from the COMBLE field campaign to study them. We characterized the extent and strength of the convection and turbulence and found evidence of secondary ice production. This information is useful for model intercomparison studies that will represent cold-air outbreak processes.
Maria P. Cadeddu, Virendra P. Ghate, David D. Turner, and Thomas E. Surleta
Atmos. Chem. Phys., 23, 3453–3470, https://doi.org/10.5194/acp-23-3453-2023, https://doi.org/10.5194/acp-23-3453-2023, 2023
Short summary
Short summary
We analyze the variability in marine boundary layer moisture at the Eastern North Atlantic site on a monthly and daily temporal scale and examine its fundamental role in the control of boundary layer cloudiness and precipitation. The study also highlights the complex interaction between large-scale and local processes controlling the boundary layer moisture and the importance of the mesoscale spatial distribution of vapor to support convection and precipitation.
Zhenquan Wang, Jian Yuan, Robert Wood, Yifan Chen, and Tiancheng Tong
Atmos. Chem. Phys., 23, 3247–3266, https://doi.org/10.5194/acp-23-3247-2023, https://doi.org/10.5194/acp-23-3247-2023, 2023
Short summary
Short summary
This study develops a novel profile-based algorithm based on the ERA5 to estimate the inversion strength in the planetary boundary layer better than the previous inversion index, which is a key low-cloud-controlling factor. This improved measure is more effective at representing the meteorological influence on low-cloud variations. It can better constrain the meteorological influence on low clouds to better isolate cloud responses to aerosols or to estimate low cloud feedbacks in climate models.
Georgios Dekoutsidis, Silke Groß, Martin Wirth, Martina Krämer, and Christian Rolf
Atmos. Chem. Phys., 23, 3103–3117, https://doi.org/10.5194/acp-23-3103-2023, https://doi.org/10.5194/acp-23-3103-2023, 2023
Short summary
Short summary
Cirrus clouds affect Earth's atmosphere, deeming our study important. Here we use water vapor measurements by lidar and study the relative humidity (RHi) within and around midlatitude cirrus clouds. We find high supersaturations in the cloud-free air and within the clouds, especially near the cloud top. We study two cloud types with different formation processes. Finally, we conclude that the shape of the distribution of RHi can be used as an indicator of different cloud evolutionary stages.
Huazhe Shang, Souichiro Hioki, Guillaume Penide, Céline Cornet, Husi Letu, and Jérôme Riedi
Atmos. Chem. Phys., 23, 2729–2746, https://doi.org/10.5194/acp-23-2729-2023, https://doi.org/10.5194/acp-23-2729-2023, 2023
Short summary
Short summary
We find that cloud profiles can be divided into four prominent patterns, and the frequency of these four patterns is related to intensities of cloud-top entrainment and precipitation. Based on these analyses, we further propose a cloud profile parameterization scheme allowing us to represent these patterns. Our results shed light on how to facilitate the representation of cloud profiles and how to link them to cloud entrainment or precipitating status in future remote-sensing applications.
Luca Lelli, Marco Vountas, Narges Khosravi, and John Philipp Burrows
Atmos. Chem. Phys., 23, 2579–2611, https://doi.org/10.5194/acp-23-2579-2023, https://doi.org/10.5194/acp-23-2579-2023, 2023
Short summary
Short summary
Arctic amplification describes the recent period in which temperatures have been rising twice as fast as or more than the global average and sea ice and the Greenland ice shelf are approaching a tipping point. Hence, the Arctic ability to reflect solar energy decreases and absorption by the surface increases. Using 2 decades of complementary satellite data, we discover that clouds unexpectedly increase the pan-Arctic reflectance by increasing their liquid water content, thus cooling the Arctic.
Yabin Gou, Haonan Chen, Hong Zhu, and Lulin Xue
Atmos. Chem. Phys., 23, 2439–2463, https://doi.org/10.5194/acp-23-2439-2023, https://doi.org/10.5194/acp-23-2439-2023, 2023
Short summary
Short summary
This article investigates the complex precipitation microphysics associated with super typhoon Lekima using a host of in situ and remote sensing observations, including rain gauge and disdrometer data, as well as polarimetric radar observations. The impacts of precipitation microphysics on multi-source data consistency and radar precipitation estimation are quantified. It is concluded that the dynamical precipitation microphysical processes must be considered in radar precipitation estimation.
Hongxia Zhu, Rui Li, Shuping Yang, Chun Zhao, Zhe Jiang, and Chen Huang
Atmos. Chem. Phys., 23, 2421–2437, https://doi.org/10.5194/acp-23-2421-2023, https://doi.org/10.5194/acp-23-2421-2023, 2023
Short summary
Short summary
The impacts of atmospheric dust aerosols and cloud dynamic conditions on precipitation vertical development in southeastern China were studied using multiple satellite observations. It was found that the precipitating drops under dusty conditions grow faster in the middle layer but slower in the upper and lower layers compared with their pristine counterparts. Quantitative estimation of the sensitivity of the precipitation top temperature to the dust aerosol optical depth is also provided.
Zane Dedekind, Jacopo Grazioli, Philip H. Austin, and Ulrike Lohmann
Atmos. Chem. Phys., 23, 2345–2364, https://doi.org/10.5194/acp-23-2345-2023, https://doi.org/10.5194/acp-23-2345-2023, 2023
Short summary
Short summary
Simulations allowing ice particles to collide with one another producing more ice particles represented surface observations of ice particles accurately. An increase in ice particles formed through collisions was related to sharp changes in the wind direction and speed with height. Changes in wind speed and direction can therefore cause more enhanced collisions between ice particles and alter how fast and how much precipitation forms. Simulations were conducted with the atmospheric model COSMO.
Ramon Padullés, Estel Cardellach, and F. Joseph Turk
Atmos. Chem. Phys., 23, 2199–2214, https://doi.org/10.5194/acp-23-2199-2023, https://doi.org/10.5194/acp-23-2199-2023, 2023
Short summary
Short summary
The results of comparing the polarimetric radio occultation observables and the ice water content retrieved from the CloudSat radar in a global and statistical way show a strong correlation between the geographical patterns of both quantities for a wide range of heights. This implies that horizontally oriented hydrometeors are systematically present through the whole globe and through all vertical levels, which could provide insights on the physical processes leading to precipitation.
Cited articles
Alfieria, L., Thielen, J., and Pappenberger, J.: Ensemble
hydro-meteorological simulation for flash flood early detection in southern
Switzerland, J. Hydrol., 424, 143–153, https://doi.org/10.1016/j.jhydrol.2011.12.038,
2012.
Bauer, P., Thorpe, A., and Brunet, G.: The quiet revolution of numerical
weather prediction, Nature 525, 47–55, https://doi.org/10.1038/nature14956, 2015.
Besic, N., Figueras i Ventura, J., Grazioli, J., Gabella, M., Germann, U., and Berne, A.: Hydrometeor classification through statistical clustering of polarimetric radar measurements: a semi-supervised approach, Atmos. Meas. Tech., 9, 4425–4445, https://doi.org/10.5194/amt-9-4425-2016, 2016.
Besic, N., Gehring, J., Praz, C., Figueras i Ventura, J., Grazioli, J., Gabella, M., Germann, U., and Berne, A.: Unraveling hydrometeor mixtures in polarimetric radar measurements, Atmos. Meas. Tech., 11, 4847–4866, https://doi.org/10.5194/amt-11-4847-2018, 2018.
Bick, T., Simmer, C., Trömel, S., Wapler, K., Stephan, K., Blahak, U.,
Zeng, Y., and Potthast, R.: Assimilation of 3D-radar Reflectivities with an
Ensemble Kalman Filter on the Convective Scale, Q. J. Roy. Meteor. Soc.,
142, 1490–1504, 2016.
Blahak, U.: RADAR_MIE_LM and
RADAR_MIELIB – Calculation of Radar Reflectivity from Model
Output, COSMO Technical Report No. 28, Consortium for Small Scale Modeling
(COSMO), available at: http://www.cosmo-model.org/content/model/documentation/techReports/cosmo/docs/techReport28.pdf
(last access: 25 October 2021), 2016.
Blahak, U. and De Lozar, A.: EMVORADO – Efficient Modular VOlume scan RADar
Operator. A User's Guide, Deutscher Wetterdienst, available at:
http://www.cosmo-model.org/content/model/documentation/core/emvorado_userguide.pdf (last access: 25 October 2021), 2020.
Brdar, S. and Seifert, A.: McSnow: A Monte-Carlo Particle Model for Riming
and Aggregation of Ice Particles in a Multidimensional Microphysical Phase
Space, J. Adv. Model. Earth Syst., 10, 187–206,
https://doi.org/10.1002/2017MS001167, 2018.
Bukovčić, P., Ryzhkov, A., and Zrnić, D.: Polarimetric Relations
for Snow Estimation – Radar Verification, J. Appl. Meteorol. Clim., 59, 991–1009, https://doi.org/10.1175/JAMC-D-19-0140.1, 2020
Bühl, J., Seifert, P., Wandinger, U., Baars, H., Kanitz, T., Schmidt,
J., Myagkov, A., Engelmann, R., Skupin, A., Heese, B., Klepel, A.,
Althausen, D., and Ansmann, A.: LACROS: The Leipzig Aerosol and Cloud Remote
Observations System, in: SPIE Remote Sensing, edited by: Comeron, A.,
Kassianov, E. I., Schäfer, K., Stein, K., and Gonglewski, J. D., p. 889002, Dresden, Germany, https://doi.org/10.1117/12.2030911, 2013.
Bühl, J., Seifert, P., Myagkov, A., and Ansmann, A.: Measuring ice- and liquid-water properties in mixed-phase cloud layers at the Leipzig Cloudnet station, Atmos. Chem. Phys., 16, 10609–10620, https://doi.org/10.5194/acp-16-10609-2016, 2016.
Cahalan, R. F.: Bounded cascade clouds: albedo and effective thickness,
Nonlinear Proc. Geoph., 1, 156–167, 1994.
Carlin, B., Fu, Q., Lohmann, U., Mace, G. G., Sassen, K., and Comstock, J. M.: High-cloud horizontal inhomogeneity and solar albedo
bias, J. Climate, 15, 2321–2339, 2002.
Carlin, J. T., Ryzhkov, A. V., Snyder, J. C., and Khain, A.: Hydrometeor
Mixing Ratio Retrievals for Storm-Scale Radar Data Assimilation: Utility of
Current Relations and Potential Benefits of Polarimetry, Mon. Weather Rev.
144, 2981–3001, https://doi.org/10.1175/MWR-D-15-461 0423.1., 2016.
Carlin, J. T., Reeves, H. D., and Ryzhkov, A. V.: Polarimetric Observations
and Simulations of Sublimating Snow: Implications for Nowcasting, J. Appl.
Meteor. Climatol., 60, 1035–1054, https://doi.org/10.1175/JAMC-D-21-0038.1, 2021.
Costa-Surós, M., Sourdeval, O., Acquistapace, C., Baars, H., Carbajal Henken, C., Genz, C., Hesemann, J., Jimenez, C., König, M., Kretzschmar, J., Madenach, N., Meyer, C. I., Schrödner, R., Seifert, P., Senf, F., Brueck, M., Cioni, G., Engels, J. F., Fieg, K., Gorges, K., Heinze, R., Siligam, P. K., Burkhardt, U., Crewell, S., Hoose, C., Seifert, A., Tegen, I., and Quaas, J.: Detection and attribution of aerosol–cloud interactions in large-domain large-eddy simulations with the ICOsahedral Non-hydrostatic model, Atmos. Chem. Phys., 20, 5657–5678, https://doi.org/10.5194/acp-20-5657-2020, 2020.
Delanoë, J., Heymsfield, A. J., Protat, A., Bansemer, A., and Hogan, R.
J.: Normalized particle size distribution for remote sensing application, J.
Geophys. Res.-Atmos., 119, 4204–4227, https://doi.org/10.1002/2013JD020700, 2014.
Diederich, M., Ryzhkov, A., Simmer, C., Zhang, P., and Trömel, S.: Use
of specific attenuation for rainfall measurement at X-band radar wavelengths
– Part 1: Radar calibration and partial beam blockage estimation, J.
Hydrometeor., 16, 2, 487–502, https://doi.org/10.1175/JHM-D-14-0066.1, 2015a.
Diederich, M., Ryzhkov, A., Simmer, C., Zhang, P., and Trömel, S.: Use
of specific attenuation for rainfall measurement at X-band radar wavelengths
– Part 2: Rainfall estimates and comparison with rain gauges, J.
Hydrometeor., 16, 2, 503–516, https://doi.org/10.1175/JHM-D-14-0067.1, 2015b.
Dipankar, A., Stevens, B., Heinze, R., Moseley, C., Zängl, G.,
Giorgetta, M., and Brdar, S.: Large eddy simulations using the general
circulation model ICON, J. Adv. Model. Earth Sy., 7, 963–986,
https://doi.org/10.1002/2015MS000431, 2015.
Feng, Y., Janjić, T., Zeng, Y., Seifert, A., and Min, J.: Representing microphysical uncertainty in convective-scale data assimilation using additive noise, J. Adv. Model. Earth Sys., 13, e2021MS002606, https://doi.org/10.1029/2021MS002606, 2021.
Field, P. R. and Heymsfield, A. J.: Importance of snow to global
precipitation, Geophys. Res. Lett., 42, 9512–9520,
https://doi.org/10.1002/2015GL065497, 2015.
Field, P. R., Lawson, R. P., Brown, P. R. A., Lloyd, G., Westbrook, C.,
Moisseev, D., Miltenberger, A., Nenes, A., Blyth, A., Choularton, T.,
Connolly, P., Buehl, J., Crosier, J., Cui, Z., Dearden, C., DeMott, P.,
Flossmann, A., Heymsfield, A., Huang, Y., Kalesse, H., Kanji, Z. A.,
Korolev, A., Kirchgaessner, A., Lasher-Trapp, S., Leisner, T., McFarquhar,
G., Phillips, V., Stith, J., and Sullivan, S.: Secondary Ice Production:
Current State of the Science and Recommendations for the Future,
Meteorol. Monogr., 58, 1–20, https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0014.1, 2017.
Forster, P., Storelvmo, T., Armour, K., Collins, W., Dufresne, J. L., Frame,
D., Lunt, D. J., Mauritsen, T., Palmer, M. D., Watanabe, M., Wild, M., and
Zhang, H.: The Earth's Energy Budget, Climate Feedbacks, and Climate
Sensitivity, in: Climate Change 2021: The Physical Science Basis.
Contribution of Working Group I to the Sixth Assessment Report of the
Intergovernmental Panel on Climate Change, Cambridge University Press, in
press, 2021.
Frech, M. and Hubbert, J.: Monitoring the differential reflectivity and receiver calibration of the German polarimetric weather radar network, Atmos. Meas. Tech., 13, 1051–1069, https://doi.org/10.5194/amt-13-1051-2020, 2020.
Gao, W., Sui, C.-H., Chen Wang, T.-C., and Chang, W.-Y.: An evaluation and
improvement of microphysical parameterization from a two-moment cloud
microphysics scheme and the Southwest Monsoon Experiment
(SoWMEX)/Terrain-influenced Monsoon Rainfall Experiment (TiMREX)
observations, J. Geophys. Res.-Atmos., 116, 1–13, https://doi.org/10.1029/2011JD015718,
2011.
Gasper, F., Goergen, K., Shrestha, P., Sulis, M., Rihani, J., Geimer, M., and Kollet, S.: Implementation and scaling of the fully coupled Terrestrial Systems Modeling Platform (TerrSysMP v1.0) in a massively parallel supercomputing environment – a case study on JUQUEEN (IBM Blue Gene/Q), Geosci. Model Dev., 7, 2531–2543, https://doi.org/10.5194/gmd-7-2531-2014, 2014.
Gehring, J., Oertel, A., Vignon, É., Jullien, N., Besic, N., and Berne, A.: Microphysics and dynamics of snowfall associated with a warm conveyor belt over Korea, Atmos. Chem. Phys., 20, 7373–7392, https://doi.org/10.5194/acp-20-7373-2020, 2020.
Grazioli, J., Tuia, D., and Berne, A.: Hydrometeor classification from polarimetric radar measurements: a clustering approach, Atmos. Meas. Tech., 8, 149–170, https://doi.org/10.5194/amt-8-149-2015, 2015.
Flamant, C., Knippertz, P., Fink, A.H., Akpo, A., Brooks, B., Chiu, C.J.,
Coe, H., Danuor, S., Evans, M., Jegede, O., Kalthoff, N., Konaré, A.,
Liousse, C., Lohou, F., Mari, C., Schlager, H., Schwarzenboeck, A., Adler,
B., Amekudzi, L., Aryee, J., Ayoola, M., Batenburg, A.M., Bessardon, G.,
Borrmann, S., Brito, J., Bower, K., Burnet, F., Catoire, V., Colomb, A.,
Denjean, C., Fosu-Amankwah, K., Hill, P.G., Lee, J., Lothon, M., Maranan,
M., Marsham, J., Meynadier, R., Ngamini, J., Rosenberg, P., Sauer, D.,
Smith, V., Stratmann, G., Taylor, J.W., Voigt, C., and Yoboué, V.: The
Dynamics–Aerosol–Chemistry–Cloud Interactions in West Africa Field
Campaign: Overview and Research Highlights, B. Am. Meteorol. Soc., 99,
83–104, https://doi.org/10.1175/BAMS-D-16-0256.1, 2018.
Fridlind, A. M., van Lier-Walqui, M., Collis, S., Giangrande, S. E., Jackson, R. C., Li, X., Matsui, T., Orville, R., Picel, M. H., Rosenfeld, D., Ryzhkov, A., Weitz, R., and Zhang, P.: Use of polarimetric radar measurements to constrain simulated convective cell evolution: a pilot study with Lagrangian tracking, Atmos. Meas. Tech., 12, 2979–3000, https://doi.org/10.5194/amt-12-2979-2019, 2019.
Hashino, T., and Tripoli, G. J.: The Spectral Ice Habit Prediction System
(SHIPS), Part I: Model Description and Simulation of the Vapor Deposition
Process, J. Atmos. Sci., 64, 2210–2237, https://doi.org/10.1175/JAS3963.1, 2007.
Heinze, R., Dipankar, A., Henken, C. C., Moseley, C., Sourdeval, O.,
Trömel, S., Xie, X., Adamidis, P., Ament, F., Baars, H. Barthlott, C.,
Behrendt, A., Blahak, U. , Bley, S. , Brdar, S., Brueck, M., Crewell, S.,
Deneke, H., Girolamo, P. D., Evaristo, R., Fischer, J., Frank, C.,
Friederichs, P., Göcke, T., Gorges, K., Hande, L., Hanke, M., Hansen,
A., Hege, H.-C., Hoose, C., Jahns, T., Kalthoff, N., Klocke, D., Kneifel,
S., Knippertz, P., Kuhn, A., Laar, T., Macke, A., Maurer, V., Mayer, B.,
Meyer, C. I., Muppa, S. K., Neggers, R. A. J., Orlandi, E., Pantillon, F. ,
Pospichal, B., Röber, N., Scheck, L., Seifert, A., Seifert, P., Senf, F., Siligam, P., Simmer, C., Steinke, S., Stevens, B., Wapler, K., Weniger,
M., Wulfmeyer, V., Zängl, G., Zhang, D., and Quaas, J.: Large-eddy
simulations over Germany using ICON: A comprehensive evaluation, Q. J. Roy.
Meteor. Soc., 143, 69–100, https://doi.org/10.1002/qj.2947, 2017.
Heymsfield, A., Bansemer, A., Wood, N. B., Liu, G., Tanelli, S., Sy, O. O.,
Poellot, M., and Liu, C.: Toward Improving Ice Water Content and Snow-Rate
Retrievals from Radars, Part II: Results from Three Wavelength
Radar–Collocated In Situ Measurements and CloudSat–GPM–TRMM Radar Data,
J. Appl. Meteor. Climatol., 57, 365–389,
2018.
Hogan, R. J., Tian, L., Brown, P. R. A., Westbrook, C. D.,
Heymsfield, A. J., and Eastment, J. D.:. Radar Scattering from Ice
Aggregates Using the Horizontally Aligned Oblate Spheroid Approximation, J.
Appl. Meteor. Climatol., 51, 655–671, https://doi.org/10.1175/JAMC-D-11-074.1, 2012.
Ilotoviz, E., Khain, A., Ryzhkov, A. V., and Snyder, J. C.: Relation between
Aerosols, Hail Microphysics, and ZDR Columns, J. Atmos. Sci., 75, 1755–1781,
https://doi.org/10.1175/JAS-D-17-0127.1, 2018.
Janjic, T., Bormann, N., Bocquet, M., Carton, J. A., Cohn, S. E., Dance, S.
L., Losa, S. N., Nichols, N. K., Potthast, R., Waller, J. A., and Weston,
P.: On the representation error in data assimilation, Q. J. R. Meteorol.
Soc., 144, 1257–1278, 2018.
Jung, Y., Xue, M., Zhang, G., and Straka, J.: Assimilation of simulated
polarimetric radar data for a convective storm using ensemble Kalman filter.
Part II: Impact of polarimetric data on storm analysis, Mon. Weather Rev., 136,
2246–2260, https://doi.org/10.1175/2007MWR2288.1, 2008.
Jung, Y., Xue, M., and Zhang, G.: Simultaneous Estimation of Microphysical
Parameters and the Atmospheric State Using Simulated Polarimetric Radar Data
and an Ensemble Kalman Filter in the Presence of an Observation Operator
Error, Mon. Weather Rev., 138, 539–562,
https://doi.org/10.1175/2009MWR2748.1, 2010.
Jung, Y., Xue, M., and Tong, M.: Ensemble Kalman Filter Analyses of the
29—30 May 2004 Oklahoma Tornadic Thunderstorm Using One- and Two-Moment
Bulk Microphysics Schemes, with Verification against Polarimetric Radar
Data, Mon. Weather Rev., 140, 1457–1475, 2012.
Kalesse, H., Szyrmer, W., Kneifel, S., Kollias, P., and Luke, E.: Fingerprints of a riming event on cloud radar Doppler spectra: observations and modeling, Atmos. Chem. Phys., 16, 2997–3012, https://doi.org/10.5194/acp-16-2997-2016, 2016.
Khain, A., Rosenfeld, D., and Pokrovsky, A.: Aerosol impact on the dynamics
and microphysics of convective clouds, Q. J. R. Meteorol. Soc., 131,
2639–2663, https://doi.org/10.1256/qj.04.62, 2005.
Khain, A. P., Beheng, K. D., Heymsfield, A., Korolev, A., Krichak, S. O.,
Levin, Z., Pinsky, M., Phillips, V., Prabhakaran, T., Teller, A., et al.:
Representation of microphysical processes in cloud-resolving models:
Spectral (bin) microphysics versus bulk parameterization, Rev. Geophys., 53,
247–322, https://doi.org/10.1002/2014RG000468, 2015.
Kleine, J., Voigt, C., Sauer, D., Schlager, H., Scheibe, M., Kaufmann, S. ,
Jurkat-Witschas, T., Kärcher, B., and Anderson B.: In situ observations
of ice particle losses in a young persistent contrail, Geophs. Res. Lett., 45, 13553–13561,
https://doi.org/10.1029/2018GL079390, 2018.
Kneifel, S., von Lerber, A., Tiira, J., Moisseev, D., Kollias, P., and Leinonen, J.: Observed Relations between Snowfall Microphysics and
Triple-frequency Radar Measurements, J. Geophys. Res., 120, 6034–6055, https://doi.org/10.1002/2015JD023156, 2015.
Kneifel, S. and Moisseev, D.: Long-term statistics of riming in
non-convective clouds derived from ground-based Doppler cloud radar
observations, J. Atmos. Sci., 77, 3495–3508, https://doi.org/10.1175/JAS-D-20-0007.1,
2020.
Kollias, P., Albrecht, B. A., and Marks Jr, F.: Why Mie Accurate observations
of vertical air velocities and raindrops using a cloud radar, B. Am. Meteorol. Soc., 83, 1471–1484, https://doi.org/10.1175/BAMS-83-10-1471 2002.
Kumjian, M. R.: Principles and applications of dual-püolarization
wheather radar, Part I: Description of the polarimetric radar variables, J.
Operational Meteor., 1, 226–242, https://doi.org/10.15191/nwajom.2013.0119, 2013.
Kumjian, M. R.: The impact of precipitation physical processes on the
polarimetric radar variables, Dissertation, University of Oklahoma, Norman
Campus, available at: https://hdl.handle.net/11244/319188 (last access: 25 October 2021), 2012.
Kumjian, M. R., Khain, A. P., Benmoshe, N., Ilotoviz, E., Ryzhkov, A. V.,
and Phillips, V. T. J.: The anatomy and physics of ZDR columns:
Investigating a polarimetric radar signature with a spectral bin
microphysical model, J. Appl. Meteor. Climatol., 53, 1820–1843, 2014.
Kumjian, M. R., Tobin, D. M., Oue, M., and Kollias, P.: Microphysical
insights into ice pellet formation revealed by fully polarimetric Ka-band
Doppler radar, J. Appl. Meteor. Climatol., 59, 1557–1580, https://doi.org/10.1175/JAMC-D-20-0054.1, 2020.
Kuster, C. M., Schuur, T. J., Lindley, T. T., and Snyder, J. C.: Using ZDR
Columns in Forecaster Conceptual Models and Warning Decision-Making, Weather
Forecast., 35, 2507–2522, 2020.
Le Treut, H. and Li, Z.-X.: Sensitivity of an atmospheric general
circulation model to prescribed SST changes: Feedback effects associated
with the simulation of cloud optical properties, Clim. Dynam., 5, 175–187,
1991.
Li, H. and Moisseev, D.: Two layers of melting ice particles within a
single radar bright band: interpretation and implications, Geophys. Res.
Lett., 47, e2020GL087499, https://doi.org/10.1029/2020GL087499, 2020.
Libbrecht, K. G.: The physics of snow crystals, Rep. Prog. Phys., 68,
855–895, https://doi.org/10.1088/0034-4885/68/4/R03, 2005.
Lukach, M., Dufton, D., Crosier, J., Hampton, J. M., Bennett, L., and Neely III, R. R.: Hydrometeor classification of quasi-vertical profiles of polarimetric radar measurements using a top-down iterative hierarchical clustering method, Atmos. Meas. Tech., 14, 1075–1098, https://doi.org/10.5194/amt-14-1075-2021, 2021.
Luke, E. P., Yang, F., Kollias, P., Vogelmann, A. M., and Maahn, M.: New insights
into ice multiplication using remote-sensing observations of slightly
supercooled mixed-phase clouds in the Arctic, P. Natl. Acad. Sci. USA, 118, e2021387118,
https://doi.org/10.1073/pnas.2021387118, 2021.
Matrosov, S. Y., Reinking, R. F., Kropfli, R. A., Martner, B. E., and
Bartram, B. W.: On the use of radar depolarization ratios for
estimating shapes of ice hydrometeors in winter clouds, J. Appl. Meteorol., 40, 479–490,
https://doi.org/10.1175/1520-0450(2001)040h0479:OTUORDi2.0.CO;2, 2001.
Matsui, T., Dolan, B., Rutledge, S. A., Tao, W.-K., Iguchi, T., Barnum, J.,
and Lang, S. E.: POLARRIS: A POLArimetric Radar Retrieval and Instrument
Simulator, J. Geophys. Res.-Atmos., 124, 4634–4657,
https://doi.org/10.1029/2018JD028317, 2019.
Mellado, J. P., Stevens, B., Schmidt, H., and Peters, N.: Buoyancy reversal
in cloud-top mixing layers, Q.J.R. Meteorol. Soc., 135, 963–978,
https://doi.org/10.1002/qj.417, 2009.
Mendrok, J., Blahak, U., Snyder, J. C., and Carlin, J. T.: Implementation of radar polarimetry into the efficient modular volume scan radar forward operator EMVORADO, in preparation to Geosci.
Model Dev., 2021.
Mishchenko, M. I.: Calculation of the amplitude matrix for a nonspherical
particle in a fixed orientation, Appl. Opt., 39, 1026–1031, 2000.
Moisseev, D. N., Lautaportti, S., Tyynela, J., and Lim, S.: Dualpolarization
radar signatures in snowstorms: Role of snowflake aggregation, J. Geophys.
Res.-Atmos., 120, 12644–12655, https://doi.org/10.1002/2015JD023884, 2015.
Morrison, H. and Milbrandt, J. A.: Parameterization of Cloud Microphysics
Based on the Prediction of Bulk Ice Particle Properties. Part I: Scheme
Description and Idealized Tests, J. Atmos. Sci., 72, 287–311, 2015.
Morrison, H., van Lier-Walqui, M., Fridlind, A. M., Grabowski, W. W.,
Harrington, J. Y., and Hoose, C., et al.: Confronting the challenge of
modeling cloud and precipitation microphysics, J. Adv. Model. Earth Sys., 12, e2019MS001689, https://doi.org/10.1029/2019MS001689, 2020.
Mülmenstädt, J., Sourdeval, O., Delanoë, J., and Quaas, J.:
Frequency of occurrence of rain from liquid-, mixed- and ice-phase clouds
derived from A-Train satellite retrievals, Geophys. Res. Lett., 42,
6502–6509, https://doi.org/10.1002/2015GL064604, 2015.
Murphy, A. M., Ryzhkov, A., and Zhang, P.: Columnar vertical profile (CVP)
methodology for validating polarimetric radar retrievals in ice using in
situ aircraft measurements, J. Atmos. Oceanic Technol., 37, 1623–1642,
https://doi.org/10.1175/JTECH-D-20-0011.1, 2020.
Myagkov, A., Seifert, P., Bauer-Pfundstein, M., and Wandinger, U.: Cloud radar with hybrid mode towards estimation of shape and orientation of ice crystals, Atmos. Meas. Tech., 9, 469–489, https://doi.org/10.5194/amt-9-469-2016, 2016.
Neggers, R. A.: A dual mass flux framework for boundary layer convection.
Part II: Clouds, J. Atmos. Sci., 66, 1489–1506, https://doi.org/10.1175/2008JAS2636.1,
2009.
Dias Neto, J., Kneifel, S., Ori, D., Trömel, S., Handwerker, J., Bohn, B., Hermes, N., Mühlbauer, K., Lenefer, M., and Simmer, C.: The TRIple-frequency and Polarimetric radar Experiment for improving process observations of winter precipitation, Earth Syst. Sci. Data, 11, 845–863, https://doi.org/10.5194/essd-11-845-2019, 2019.
Nguyen, C. M., Wolde, M., and Korolev, A.: Determination of ice water content (IWC) in tropical convective clouds from X-band dual-polarization airborne radar, Atmos. Meas. Tech., 12, 5897–5911, https://doi.org/10.5194/amt-12-5897-2019, 2019.
Ori, D., Schemann, V., Karrer, M., Dias Neto, J., von Terzi, L., Seifert, A., and
Kneifel, S.: Evaluation of ice particle growth in ICON using statistics of
multi-frequency Doppler cloud radar observations, Q. J. Roy. Meteor. Soc.,
146, 3830–3849, https://doi.org/10.1002/qj.3875, 2020.
Oue, M., Tatarevic, A., Kollias, P., Wang, D., Yu, K., and Vogelmann, A. M.: The Cloud-resolving model Radar SIMulator (CR-SIM) Version 3.3: description and applications of a virtual observatory, Geosci. Model Dev., 13, 1975–1998, https://doi.org/10.5194/gmd-13-1975-2020, 2020.
Oue, M., Kollias, P., Ryzhkov, A., and Luke, E. P.: Toward exploring the
synergy between cloud radar polarimetry and Doppler spectral analysis in
deep cold precipitating systems in the Arctic, J. Geophys. Res.-Atmos., 123,
2797–2815, https://doi.org/10.1002/2017JD027717, 2018.
Phillips, V. T. J., Yano, J., and Khain, A.: Ice Multiplication by
Breakup in Ice–Ice Collisions, Part I: Theoretical Formulation, J. Atmos.
Sci., 74, 1705–1719, 2017.
Pfitzenmaier, L., Unal, C. M. H., Dufournet, Y., and Russchenberg, H. W. J.: Observing ice particle growth along fall streaks in mixed-phase clouds using spectral polarimetric radar data, Atmos. Chem. Phys., 18, 7843–7862, https://doi.org/10.5194/acp-18-7843-2018, 2018.
Pincus, R. and Klein, S.: Unresolved spatial variability and microphysical
process rates in large-scale models, J. Geophys. Res., 105, 27059–27065,
2000.
Putnam, B., Xue, M., Jung, Y., Snook, N., and Zhang, G.: Ensemble Kalman
Filter Assimilation of Polarimetric Radar Observations for the 20 May 2013
Oklahoma Tornadic Supercell Case, Mon. Weather Rev., 147, 2511–2533,
https://doi.org/10.1175/MWR-D-18-0251.1, 2019.
Radenz, M., Bühl, J., Seifert, P., Baars, H., Engelmann, R., Barja González, B., Mamouri, R.-E., Zamorano, F., and Ansmann, A.: Hemispheric contrasts in ice formation in stratiform mixed-phase clouds: Disentangling the role of aerosol and dynamics with ground-based remote sensing, Atmos. Chem. Phys. Discuss. [preprint], https://doi.org/10.5194/acp-2021-360, in review, 2021.
Reimann, L., Simmer, C., and Trömel, S.: Dual-polarimetric radar
estimators of liquid water content over Germany, Meteorol. Z.,
30, 237–249, https://doi.org/10.1127/metz/2021/1072, 2021.
Ribaud, J.-F., Machado, L. A. T., and Biscaro, T.: X-band dual-polarization radar-based hydrometeor classification for Brazilian tropical precipitation systems, Atmos. Meas. Tech., 12, 811–837, https://doi.org/10.5194/amt-12-811-2019, 2019.
Rosch, J., Heus, T., Brueck, M., Salzmann, M., Mülmenstädt, J., Schlemmer, L., Quaas, J.: Analysis of diagnostic climate model cloud
parameterisations using large-eddy simulations, Q. J. R. Meteorol. Soc.,
141, 2199–2205, https://doi.org/10.1002/qj.2515, 2015.
Rotstayn, L. D.: On the tuning of autoconversion parameterizations in
climate models, J. Geophys. Res., 105, 15495–15507, 2000.
Ryzhkov, A. V., Zrnic, D. S., and Gordon, B. A.: Polarimetric Method for Ice
Water Content Determination, J. Appl. Meteor. Clim., 37, 125–134, 1998.
Ryzhkov, A., Pinsky, M., Pokrovsky, A., and Khain, A.: Polarimetric Radar
Observation Operator for a Cloud Model with Spectral Microphysics, J. Appl.
Meteor. Clim., 50, 873–894, 2011.
Ryzhkov, A., Zhang, P., Reeves, H., Kumjian, M., Tschallener, T.,
Trömel, S., and Simmer, C.: Quasi-vertical profiles – a new way to look
at polarimetric radar data, J. Atmos. Oceanic Technol., 33, 551–562,
https://doi.org/10.1175/JTECH-D-15-0020.1, 2016.
Ryzhkov, A., Bukovcic, P., Murphy, A., Zhang, P., and McFarquhar, G.: Ice
Microphysical Retrievals Using Polarimetric Radar Data, in: Proceedings of
the 10th European Conference on Radar in Meteorology and Hydrology, Ede, The
Netherlands, 1–6 July 2018.
Ryzhkov, A. and Zrnic, D.: Radar Polarimetry for Weather Observations,
Springer Atmospheric Sciences, 486 pp., 2019.
Schinagl, K., Friederichs, P., Trömel, S., and Simmer, C.: Gamma Drop
Size Distribution Assumptions in Bulk Model Parameterizations and Radar
Polarimetry and Their Impact on Polarimetric Radar Moments, J. Appl. Meteor.
Clim., 58, 467–478, https://doi.org/10.1175/JAMC-D-18-0178.1, 2019.
Schrom, R. S. and Kumjian, M. R.: Bulk-Density Representations of Branched
Planar Ice Crystals: Errors in the Polarimetric Radar Variables, J. Appl.
Meteor. Clim., 57, 333–346, 2018.
Seifert, A. and Beheng, K. D.: A two-moment cloud microphysics
parameterization for mixed-phase clouds, Part 1: Model description,
Meteorol. Atmos. Phys., 92, 45–66, https://doi.org/10.1007/s00703-005-0112-4, 2006.
Shrestha, P., Sulis, M., Masbou, M., Kollet, S., and Simmer, C: A
scale-consistent Terrestrial System Modeling Platform based on COSMO, CLM
and ParFlow, Mon. Weather Rev., 142, 3466–3483, https://doi.org/10.1175/MWR-D-14-00029.1,
2014.
Shrestha, P.: Clouds and vegetation modulate shallow groundwater table
depth, 22, 753–763, https://doi.org/10.1175/JHM-D-20-0171.1, 2021.
Shrestha, P., Trömel, S., Evaristo, R., and Simmer, C.: Evaluation of modeled summertime convective storms using polarimetric radar observations, Atmos. Chem. Phys. Discuss. [preprint], https://doi.org/10.5194/acp-2021-404, in review, 2021a.
Shrestha, P., Mendrok, J., Pejcic, V., Trömel, S., Blahak, U., and Carlin, J. T.: Evaluation of the COSMO model (v5.1) in polarimetric radar space – Impact of uncertainties in model microphysics, retrievals, and forward operator, Geosci. Model Dev. Discuss. [preprint], https://doi.org/10.5194/gmd-2021-188, in review, 2021b.
Shupe, M. D., Kollias, P., Matrosov, S. Y., and Schneider, T. L.: Deriving
mixed-phase cloud properties from Doppler radar spectra, J. Atmos. Ocean. Technol., 21, 660–670, 2004.
Simmel, M., Bühl, J., Ansmann, A., and Tegen, I.: Ice phase in altocumulus clouds over Leipzig: remote sensing observations and detailed modeling, Atmos. Chem. Phys., 15, 10453–10470, https://doi.org/10.5194/acp-15-10453-2015, 2015.
Simmer, C., Thiele-Eich, I., Masbou, M., Amelung, W., Crewell, S.,
Diekkrueger, B., Ewert, F., Hendricks Franssen, H.-J., Huisman, A. J.,
Kemna, A., Klitzsch, N., Kollet, S., Langensiepen, M., Löhnert, U.,
Rahman, M., Rascher, U., Schneider, K., Schween, J., Shao, Y., Shrestha, P.,
Stiebler, M., Sulis, M., Vanderborght, J., Vereecken, H., van der Kruk, J.,
Zerenner, T., and Waldhoff, G.: Monitoring and Modeling the Terrestrial
System from Pores to Catchments – the Transregional Collaborative Research
Center on Patterns in the Soil-Vegetation-Atmosphere System, B. Am.
Meteorol. Soc., 96, 1765–1787, https://doi.org/10.1175/BAMS-D-13-00134.1, 2015.
Simmer, C., Adrian, G., Jones, S., Wirth, V., Goeber, M., Hohenegger, C.,
Janjic, T., Keller, J., Ohlwein, C., Seifert, A., Trömel, S., Ulbrich,
T., Wapler, K., Weissmann, M., Keller, J., Masbou, M., Meilinger, S., Riss,
N., Schomburg, A., Vormann, A., and Weingaertner, C.: HErZ – The German
Hans-Ertel Centre for Weather Research, B. Am. Meteorol. Soc., 97, 1057–1068,
doi:10.1175/BAMS-D-13-00227.1, 2014.
Smith, R. N.: A scheme for predicting layer clouds and their water content
in a general circulation model, Q. J. R. Meteorol. Soc., 116, 435–460,
https://doi.org/10.1002/qj.49711649210, 1990.
Snyder, J. C., Ryzhkov, A. V., Kumjian, M. R., Khain, A. P., and Picca, J. C.: A
ZDR column detection algorithm to examine convective storm updrafts, Weather Forecast., 30, 1819–1844, 2015.
Sommeria, G. and Deardorff, J. W.: Subgrid-scale condensation models of
non-precipitating clouds, J. Atmos. Sci., 34, 344–355, 1977.
Sourdeval, O., Gryspeerdt, E., Krämer, M., Goren, T., Delanoë, J., Afchine, A., Hemmer, F., and Quaas, J.: Ice crystal number concentration estimates from lidar–radar satellite remote sensing – Part 1: Method and evaluation, Atmos. Chem. Phys., 18, 14327–14350, https://doi.org/10.5194/acp-18-14327-2018, 2018.
Spek, A. L. J., Unal, C. M. H., Moisseev, C. N., Russchenberg, H. W. J.,
Chandrasekar, V., and Dufournet, Y.: A New Techniques to Categorize and Retrieve
the Microphysical Properties of Ice Particles above the Melting Layer Using
Radar Dual-Polarization Spectral Analysis, Jtech, https://doi.org/10.1175/2007JTECHA944.1, 2008.
Stevens, B., Acquistapace, C., Hansen, A., Heinze, R., Klinger, C., Klocke,
D., Schubotz, W., Windmiller, J., Adamidis, P., Arka, I., Barlakas, V.,
Biercamp, J., Brueck, M., Brune, S., Buehler, S., Burkhardt, U., Cioni, G.,
Costa-Surós, M., Crewell, S., Crueger, T., Deneke, H., Friederichs, P.,
Carbajal Henken, C., Hohenegger, C., Jacob, M., Jakub, F., Kalthoff, N.,
Köhler, M., Van Laar, T. W., Li, P., Löhnert, U., Macke, A.,
Madenach, N., Mayer, B., Nam, C., Naumann, A. K., Peters, K., Poll, S. ,
Quaas, J., Röber, N., Rochetin, N., Rybka, H., Scheck, L., Schemann, V.,
Schnitt, S., Seifert, A., Senf, F., Shapkalijevski, M., Simmer, C., Singh,
S., Sourdeval, O., Spickermann, D., Strandgren, J., Tessiot, O.,
Vercauteren, N., Vial, J., Voigt, A., and Zängl, G.: Large-eddy and
storm resolving models for climate prediction – the added value for clouds
and precipitation, J. Meteorol. Soc. Jpn, 98, 395–435, https://doi.org/10.2151/jmsj2020-021,
2020.
Stevens, B., Giorgetta, M., Esch, M., Mauritsen, T., Crueger, T., Rast, S., Salzmann, M., Schmidt, H., Bader, J., Block, K., Brokopf, R., Fast, I., Kinne, S., Kornblueh, L., Lohmann, U., Pincus, R., Reichler, T., Roeckner, E.: Atmospheric component of the MPI-M Earth System Model:
ECHAM6, J. Adv. Model. Earth Syst., 5, 146–172, https://doi.org/10.1002/jame.20015,
2013.
Stevens, B. and Feingold, G.: Untangling Aerosol Effects on Clouds and
Precipitation in a Buffered System, Nature, 461, 607–613, 2009.
Sundqvist, H., Berge, E., and Kristjánsson, J. E.: Condensation and cloud parameterization studies with
a mesoscale numerical weather prediction model, Mon. Weather Rev., 117,
1641–1657, 1989.
Takahashi, T.: High ice crystal production in winter cumuli over the Japan
Sea, Geophys. Res. Lett., 20, 451–454, 1993.
Takahashi, T., Yoshihiro, N., and Yuzuru, K.: Possible high ice particle
production during graupel–graupel collisions, J. Atmos. Sci., 52,
4523–4527, 1995.
Takahashi, T.: Influence of liquid water content and temperature on the form
and growth of branched planar snow crystals in a cloud, J. Atmos. Sci.,
71, 4127–4142, 2014.
Tiedtke, M.: Representation of clouds in large scale models, Mon. Weather
Rev., 121, 3040–3061, 1993.
Tompkins, A.: A prognostic parameterization for the subgrid-scale
variability of water vapor and clouds in large-scale models and its use to
diagnose cloud cover, J. Atmos. Sci., 59, 1917–1942, 2002.
Trömel, S., Quaas, J., Crewell, S., Bott, A., and Simmer, C.:
Polarimetric Radar Observations Meet Atmospheric Modelling, 19th
International Radar Symposium (IRS), Bonn, https://doi.org/10.23919/IRS.2018.8448121,
2018.
Trömel, S., Ryzhkov, A. V., Hickman, B., Mühlbauer, K., and Simmer,
C.: Polarimetric Radar Variables in the Layers of Melting and Dendritic
Growth at X Band – Implications for a Nowcasting Strategy in Stratiform
Rain, J. Appl. Meteor. Climatol., 58, 2497–2522,
https://doi.org/10.1175/JAMC-D-19-0056.1, 2019.
Trömel, S., Ryzhkov, A. V., Zhang, P., and Simmer, C.: The microphysical
information of backscatter differential phase δ in the melting
layer, J. Appl. Meteor. Climatol., 53, 2344–2359, 2014.
Verlinde, J., Rambukkange, M. P., Clothiaux, E. E., McFarquhar, G. M., and
Eloranta, E. W.: Arctic multilayered, mixed-phase cloud processes revealed
in millimeter-wave cloud radar Doppler spectra, J. Geophys. Res.-Atmos.,
118, 13199–13213, https://doi.org/10.1002/2013JD020183, 2013.
Vogl, T., Maahn, M., Kneifel, S., Schimmel, W., Moisseev, D., and Kalesse-Los, H.: Using artificial neural networks to predict riming from Doppler cloud radar observations, Atmos. Meas. Tech. Discuss. [preprint], https://doi.org/10.5194/amt-2021-137, in review, 2021.
Voigt, C., Schumann, U., Jurkat, T., Schäuble, D., Schlager, H., Petzold, A., Gayet, J.-F., Krämer, M., Schneider, J., Borrmann, S., Schmale, J., Jessberger, P., Hamburger, T., Lichtenstern, M., Scheibe, M., Gourbeyre, C., Meyer, J., Kübbeler, M., Frey, W., Kalesse, H., Butler, T., Lawrence, M. G., Holzäpfel, F., Arnold, F., Wendisch, M., Döpelheuer, A., Gottschaldt, K., Baumann, R., Zöger, M., Sölch, I., Rautenhaus, M., and Dörnbrack, A.: In-situ observations of young contrails – overview and selected results from the CONCERT campaign, Atmos. Chem. Phys., 10, 9039–9056, https://doi.org/10.5194/acp-10-9039-2010, 2010.
Voigt, C., Jessberger, P., Jurkat, T., Kaufmann, S., Baumann, R., Schlager, H., Bobrowski, N., Giuffrida, G., Salerno, G.: Evolution of CO2, SO2, HCl and HNO3 in the volcanic plumes from Etna, Geophys. Res. Lett., 41, 6, 2196-2203, https://doi.org/10.1002/2013GL058974, 2014.
Voigt, C., Schumann, U., Minikin, A., Abdelmonem, A., Afchine, A., Borrmann, S., Boettcher, M., Buchholz, B., Bugliaro, L., Costa, A., Curtius, J., Dollner, M., Dörnbrack, A., Dreiling, V., Ebert, V., Ehrlich, A., Fix, A., Forster, L., Frank, F., Fütterer, D., Giez, A., Graf, K., Grooß, J.-U., Groß, S., Heimerl, K., Heinold, B., Hüneke, T., Järvinen, E., Jurkat, T., Kaufmann, S., Kenntner, M., Klingebiel, M., Klimach, T., Kohl, R., Krämer, M., Krisna, T. C., Luebke, A., Mayer, B., Mertes, S., Molleker, S., Petzold, A., Pfeilsticker, K., Port, M., Rapp, M., Reutter, P., Rolf, C., Rose, D., Sauer, D., Schäfler, A., Schlage, R., Schnaiter, M., Schneider, J., Spelten, N., Spichtinger, P., Stock, P., Walser, A., Weigel, R., Weinzierl, B., Wendisch, M., Werner, F., Wernli, H., Wirth, M., Zahn, A., Ziereis, H., and Zöger, M.: ML-CIRRUS – The airborne experiment on natural cirrus and contrail cirrus with the high-altitude long-range research aircraft HALO, B. Am. Meteorol. Soc., 271–288, https://doi.org/10.1175/BAMS-D-15-00213.1, 2017.
Voigt, C., Lelieveld, J. , Schlager, H., Schneider, J., Sauer, D.,
Meerkötter, R., Pöhlker, M., Bugliaro, L., Curtius, J., Erbertseder,
T., Hahn, V., Jöckel, P., Li, Q., Marsing, A., Mertens, M., Pöhlker,
C., Pöschl, U., Pozzer, A., Tomsche, L., and Schumann, U.: Aerosol and
Cloud Changes during the Corona Lockdown in 2020 – First highlights from the
BLUESKY campaign; EGU21-13134, available at: https://meetingorganizer.copernicus.org/EGU21/session/40818, 2021.
Wang, M., Zhao, K., Pan, Y., and Xue, M.: Evaluation of simulated drop size
distributions and microphysical processes using polarimetric radar
observations for landfalling Typhoon Matmo (2014), J. Geophys. Res.-Atmos.,
125, 1–20, https://doi.org/10.1029/2019JD031527, 2020.
Weissmann, M., M. Göber, C., Hohenegger, T., Janjic, J., Keller, C.,
Ohlwein, A., Seifert, S., Trömel, T., Ulbrich, K., Wapler, C., Bollmeyer, H., and Denke, H.: The Hans-Ertel Centre for Weather Research – Research objectives
and highlights from its first three years. Meteorol. Z., 23, 193–208,
2014.
Wendisch, M., Pöschl, U., Andreae, M. O., Machado, L. A. T., Albrecht,
R., Schlager, H., Rosenfeld, D., Martin, S. T., Abdelmonem, A., Afchine, A.,
Araùjo, A. C., Artaxo, P., Aufmhoff, H., Barbosa, H. M. J., Borrmann,
S., Braga, R., Buchholz, B., Cecchini, M. A., Costa, A., Curtius, J.,
Dollner, M., Dorf, M., Dreiling, V., Ebert, V., Ehrlich, A., Ewald, F.,
Fisch, G., Fix, A., Frank, F., Fütterer, D., Heckl, C., Heidelberg, F.,
Hüneke, T., Jäkel, E., Järvinen, E., Jurkat, T., Kanter, S.,
Kästner, U., Kenntner, M., Kesselmeier, J., Klimach, T., Knecht, M.,
Kohl, R., Kölling, T., Krämer, M., Krüger, M., Krisna, T. C.,
Lavric, J. V., Longo, K., Mahnke, C., Manzi, A. O., Mayer, B., Mertes, S.,
Minikin, A., Molleker, S., Münch, S., Nillius, B., Pfeilsticker, K.,
Pöhlker, C., Roiger, A., Rose, D., Rosenow, D., Sauer, D., Schnaiter,
M., Schneider, J., Schulz, C., de Souza, R. A. F., Spanu, A., Stock, P.,
Vila, D., Voigt, C., Walser, A., Walter, D., Weigel, R., Weinzierl, B.,
Werner, F., Yamasoe, M. A., Ziereis, H., Zinner, T., and Zöger, M.:
ACRIDICON–CHUVA Campaign: Studying Tropical Deep Convective Clouds and
Precipitation over Amazonia Using the New German Research Aircraft HALO, B.
Am. Meteorol. Soc., 97, 1885–1908,
2016.
Wolfensberger, D. and Berne, A.: From model to radar variables: a new forward polarimetric radar operator for COSMO, Atmos. Meas. Tech., 11, 3883–3916, https://doi.org/10.5194/amt-11-3883-2018, 2018.
Xie, X., Evaristo, R., Trömel, S., Saavedra, P., Simmer, C., and
Ryzhkov, A.: Radar Observation of Evaporation and Implications for
Quantitative Precipitation and Cooling Rate Estimation, J. Atmos. Ocean. Technol., 33, 1779–1792, https://doi.org/10.1175/JTECH-D-15-0244.1, 2016.
Xie, X., Shrestha, P., Mendrok, J., Carlin, J., Trömel, S., and Blahak,
U.: Bonn Polarimetric Radar forward Operator (B-PRO), CRC/TR32 Database
(TR32DB), https://doi.org/10.5880/TR32DB.41, 2021.
Xue, L., Fan, J., Lebo, Z. J., Wu, W., Morrison, H., Grabowski, W. W., Chu,
X., Geresdi, I., North, K., Stenz, R., Gao, Y., Lou, X., Bansemer, A.,
Heymsfield, A. J., McFarquhar, G. M., and Rasmussen, R. M.: Idealized
Simulations of a Squall Line from the MC3E Field Campaign Applying Three Bin
Microphysics Schemes: Dynamic and Thermodynamic Structure, Mon. Weather
Rev., 145, 4789–4812, https://doi.org/10.1175/MWR-D-16-0385.1, 2017.
You, C.-R., Chung, K.-S., and Tsai, C.-C.: Evaluating the performance of
convection-permitting model by using dual-polarimetric radar parameters:
Case study of SoWMEX IOP8, Remote Sens., 12, 1–25,
https://doi.org/10.3390/rs12183004, 2020.
Zängl, G., Reinert, D., Rípodas, P., and Baldauf, M.: The ICON (icosahedral non-hydrostatic) modelling
framework of DWD and MPI-M: Description of the non-hydrostatic dynamical
core, Q. J. Roy. Meteor. Soc., 141, 563–579, 2015.
Zeng, Y., Janjic, T., Lozar, A. de, Welzbacher, C. A., Blahak, U., and
Seifert, A.: Assimilating radar radial wind and reflectivity data in an
idealized setup of the COSMO-KENDA system, Atmos. Res., 249,
105282, https://doi.org/10.1016/j.atmosres.2020.105282, 2021a.
Zeng, Y., Janjic, T., Feng, Y., Blahak, U., de Lozar, A., Bauernschubert, E., Stephan, K., and Min, J.: Interpreting estimated observation error statistics of weather radar measurements using the ICON-LAM-KENDA system, Atmos. Meas. Tech., 14, 5735–5756, https://doi.org/10.5194/amt-14-5735-2021, 2021b.
Zeng, Y., Blahak, U., and Jerger, D.: An efficient modular volume-scanning
radar forward operator for NWP models: description and coupling to the COSMO
model, Q. J. Roy. Meteor. Soc., 142, 3234–3256, 2016.
Zeng, Y., Janjic, T., Lozar, A. de, Blahak, U., Reich, H., Keil, C., and
Seifert, A.: Representation of model error in convective-scale data
assimilation: Additive noise, relaxation methods and combinations, J. Adv.
Model. Earth Sy., 10, 2889–2911, 2018.
Zeng, Y., Janjic, T., Sommer, M., Lozar, A. de, Blahak, U., and Seifert, A.:
Representation of model error in convective-scale data assimilation:
additive noise based on model truncation error, J. Adv. Model. Earth Sy.,
11, 752–770, 2019.
Zeng, Y., Janjic, T., Lozar, A. de, Rasp, S., Blahak, U., Seifert, A., and
Craig, G. C.: Comparison of methods accounting for subgrid-scale model error
in convective-scale data assimilation, Mon. Weather Rev., 148, 2457–2477, 2020.
Zhu, K., Xue, M., Ouyang, K., and Jung, Y.: Assimilating polarimetric radar
data with an ensemble Kalman filter: OSSEs with a tornadic supercell storm
simulated with a two-moment microphysics scheme, Q. J. Roy. Meteor. Soc.,
146, 1880–1900, https://doi.org/10.1002/qj.3772, 2020.
Short summary
The article introduces the ACP readership to ongoing research in Germany on cloud- and precipitation-related process information inherent in polarimetric radar measurements, outlines pathways to inform atmospheric models with radar-based information, and points to remaining challenges towards an improved fusion of radar polarimetry and atmospheric modelling.
The article introduces the ACP readership to ongoing research in Germany on cloud- and...
Altmetrics
Final-revised paper
Preprint