Articles | Volume 13, issue 8
Atmos. Chem. Phys., 13, 4429–4450, 2013

Special issue: Atmospheric implications of the volcanic eruptions of Eyjafjallajökull,...

Atmos. Chem. Phys., 13, 4429–4450, 2013
Research article
29 Apr 2013
Research article | 29 Apr 2013

Four-dimensional distribution of the 2010 Eyjafjallajökull volcanic cloud over Europe observed by EARLINET

G. Pappalardo1, L. Mona1, G. D'Amico1, U. Wandinger2, M. Adam3, A. Amodeo1, A. Ansmann2, A. Apituley4, L. Alados Arboledas5, D. Balis6, A. Boselli1, J. A. Bravo-Aranda5, A. Chaikovsky7, A. Comeron8, J. Cuesta9,10, F. De Tomasi11, V. Freudenthaler12, M. Gausa13, E. Giannakaki6,14, H. Giehl15, A. Giunta1, I. Grigorov16, S. Groß12,17, M. Haeffelin18, A. Hiebsch2, M. Iarlori19, D. Lange8, H. Linné20, F. Madonna1, I. Mattis2,21, R.-E. Mamouri22, M. A. P. McAuliffe23, V. Mitev24, F. Molero25, F. Navas-Guzman5, D. Nicolae26, A. Papayannis22, M. R. Perrone11, C. Pietras18, A. Pietruczuk27, G. Pisani28, J. Preißler29, M. Pujadas25, V. Rizi19, A. A. Ruth23, J. Schmidt2, F. Schnell12, P. Seifert2, I. Serikov20, M. Sicard8, V. Simeonov30, N. Spinelli28, K. Stebel31, M. Tesche2,32, T. Trickl15, X. Wang28, F. Wagner29, M. Wiegner12, and K. M. Wilson4 G. Pappalardo et al.
  • 1Istituto di Metodologie per l'Analisi Ambientale CNR-IMAA, C.da S. Loja, Tito Scalo, Potenza 85050, Italy
  • 2Leibniz-Institut für Troposphärenforschung, Leipzig, Germany
  • 3EC Joint Research Centre, Ispra (VA), Italy
  • 4KNMI – Royal Netherlands Meteorological Institute, The Bilt, the Netherlands
  • 5Universidad de Granada, Granada, Spain
  • 6Aristoteleio Panepistimio, Thessalonikis, Greece
  • 7Institute of Physics, National Academy of Sciences, Minsk, Bjelarus
  • 8Universitat Politècnica de Catalunya, Barcelona, Spain
  • 9LATMOS, CNRS UMR8190, Université Pierre et Marie Curie, Paris, France
  • 10LISA, CNRS UMR7583, Université Paris-Est Créteil and Université Paris-Diderot, Créteil, France
  • 11Università del Salento, Department of Mathematics and Physics, Lecce, Italy
  • 12Ludwig-Maximilians-Universität, Munich, Germany
  • 13Andøya Rocket Range, Andenes, Norway
  • 14Finnish Meteorological Institute, Kuopio Unit, Finland
  • 15Karlsruher Institut für Technologie, Garmisch-Partenkirchen, Germany
  • 16Institute of Electronics, Bulgarian Academy of Sciences, Sofia, Bulgaria
  • 17Deutsches Zentrum für Luft- und Raumfahrt, Institut f. Physik d. Atmosphäre, Oberpfaffenhofen, Germany
  • 18Université Pierre et Maris Curie-Institut Pierre Simon Laplace, Paris, France
  • 19CETEMPS, Dipartimento di Scienze Fisiche e Chimiche, Università Degli Studi dell'Aquila, Italy
  • 20Max-Planck-Institut für Meteorologie, Hamburg, Germany
  • 21Deutscher Wetterdienst, Meteorologisches Observatorium Hohenpeißenberg, Hohenpeißenberg, Germany
  • 22National Technical University of Athens, Department of Physics, Athens, Greece
  • 23Physics Department & Environmental Research Institute, University College Cork, Cork, Ireland
  • 24CSEM, Centre Suisse d'Electronique et de Microtechnique SA, Neuchâtel, Switzerland
  • 25Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid, Spain
  • 26National Institute of R&D for Optoelectronics, Magurele-Bucharest, Romania
  • 27Institute of Geophysics, Polish Academy of Sciences, Warsaw, Poland
  • 28Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia, Naples, Italy
  • 29Universidade de Évora, Centro de Geofísica de Évora, Évora, Portugal
  • 30Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
  • 31Norwegian Institute for Air Research (NILU), Kjeller, Norway
  • 32Department of Applied Environmental Science (ITM), Stockholm University, Stockholm, Sweden

Abstract. The eruption of the Icelandic volcano Eyjafjallajökull in April–May 2010 represents a "natural experiment" to study the impact of volcanic emissions on a continental scale. For the first time, quantitative data about the presence, altitude, and layering of the volcanic cloud, in conjunction with optical information, are available for most parts of Europe derived from the observations by the European Aerosol Research Lidar NETwork (EARLINET). Based on multi-wavelength Raman lidar systems, EARLINET is the only instrument worldwide that is able to provide dense time series of high-quality optical data to be used for aerosol typing and for the retrieval of particle microphysical properties as a function of altitude.

In this work we show the four-dimensional (4-D) distribution of the Eyjafjallajökull volcanic cloud in the troposphere over Europe as observed by EARLINET during the entire volcanic event (15 April–26 May 2010). All optical properties directly measured (backscatter, extinction, and particle linear depolarization ratio) are stored in the EARLINET database available at A specific relational database providing the volcanic mask over Europe, realized ad hoc for this specific event, has been developed and is available on request at

During the first days after the eruption, volcanic particles were detected over Central Europe within a wide range of altitudes, from the upper troposphere down to the local planetary boundary layer (PBL). After 19 April 2010, volcanic particles were detected over southern and south-eastern Europe. During the first half of May (5–15 May), material emitted by the Eyjafjallajökull volcano was detected over Spain and Portugal and then over the Mediterranean and the Balkans. The last observations of the event were recorded until 25 May in Central Europe and in the Eastern Mediterranean area.

The 4-D distribution of volcanic aerosol layering and optical properties on European scale reported here provides an unprecedented data set for evaluating satellite data and aerosol dispersion models for this kind of volcanic events.

Final-revised paper