Research article
| 29 Apr 2013
Four-dimensional distribution of the 2010 Eyjafjallajökull volcanic cloud over Europe observed by EARLINET
G. Pappalardo1 , L. Mona1 , G. D'Amico1 , U. Wandinger2 , M. Adam3 , A. Amodeo1 , A. Ansmann2 , A. Apituley4 , L. Alados Arboledas5 , D. Balis6 , A. Boselli1 , J. A. Bravo-Aranda5 , A. Chaikovsky7 , A. Comeron8 , J. Cuesta9,10 , F. De Tomasi11 , V. Freudenthaler12 , M. Gausa13 , E. Giannakaki6,14 , H. Giehl15 , A. Giunta1 , I. Grigorov16 , S. Groß12,17 , M. Haeffelin18 , A. Hiebsch2 , M. Iarlori19 , D. Lange8 , H. Linné20 , F. Madonna1 , I. Mattis2,21 , R.-E. Mamouri22 , M. A. P. McAuliffe23 , V. Mitev24 , F. Molero25 , F. Navas-Guzman5 , D. Nicolae26 , A. Papayannis22 , M. R. Perrone11 , C. Pietras18 , A. Pietruczuk27 , G. Pisani28 , J. Preißler29 , M. Pujadas25 , V. Rizi19 , A. A. Ruth23 , J. Schmidt2 , F. Schnell12 , P. Seifert2 , I. Serikov20 , M. Sicard8 , V. Simeonov30 , N. Spinelli28 , K. Stebel31 , M. Tesche2,32 , T. Trickl15 , X. Wang28 , F. Wagner29 , M. Wiegner12 , and K. M. Wilson4
G. Pappalardo et al.
G. Pappalardo1 , L. Mona1 , G. D'Amico1 , U. Wandinger2 , M. Adam3 , A. Amodeo1 , A. Ansmann2 , A. Apituley4 , L. Alados Arboledas5 , D. Balis6 , A. Boselli1 , J. A. Bravo-Aranda5 , A. Chaikovsky7 , A. Comeron8 , J. Cuesta9,10 , F. De Tomasi11 , V. Freudenthaler12 , M. Gausa13 , E. Giannakaki6,14 , H. Giehl15 , A. Giunta1 , I. Grigorov16 , S. Groß12,17 , M. Haeffelin18 , A. Hiebsch2 , M. Iarlori19 , D. Lange8 , H. Linné20 , F. Madonna1 , I. Mattis2,21 , R.-E. Mamouri22 , M. A. P. McAuliffe23 , V. Mitev24 , F. Molero25 , F. Navas-Guzman5 , D. Nicolae26 , A. Papayannis22 , M. R. Perrone11 , C. Pietras18 , A. Pietruczuk27 , G. Pisani28 , J. Preißler29 , M. Pujadas25 , V. Rizi19 , A. A. Ruth23 , J. Schmidt2 , F. Schnell12 , P. Seifert2 , I. Serikov20 , M. Sicard8 , V. Simeonov30 , N. Spinelli28 , K. Stebel31 , M. Tesche2,32 , T. Trickl15 , X. Wang28 , F. Wagner29 , M. Wiegner12 , and K. M. Wilson4
1 Istituto di Metodologie per l'Analisi Ambientale CNR-IMAA, C.da S. Loja, Tito Scalo, Potenza 85050, Italy 2 Leibniz-Institut für Troposphärenforschung, Leipzig, Germany 3 EC Joint Research Centre, Ispra (VA), Italy 4 KNMI – Royal Netherlands Meteorological Institute, The Bilt, the Netherlands 5 Universidad de Granada, Granada, Spain 6 Aristoteleio Panepistimio, Thessalonikis, Greece 7 Institute of Physics, National Academy of Sciences, Minsk, Bjelarus 8 Universitat Politècnica de Catalunya, Barcelona, Spain 9 LATMOS, CNRS UMR8190, Université Pierre et Marie Curie, Paris, France 10 LISA, CNRS UMR7583, Université Paris-Est Créteil and Université Paris-Diderot, Créteil, France 11 Università del Salento, Department of Mathematics and Physics, Lecce, Italy 12 Ludwig-Maximilians-Universität, Munich, Germany 13 Andøya Rocket Range, Andenes, Norway 14 Finnish Meteorological Institute, Kuopio Unit, Finland 15 Karlsruher Institut für Technologie, Garmisch-Partenkirchen, Germany 16 Institute of Electronics, Bulgarian Academy of Sciences, Sofia, Bulgaria 17 Deutsches Zentrum für Luft- und Raumfahrt, Institut f. Physik d. Atmosphäre, Oberpfaffenhofen, Germany 18 Université Pierre et Maris Curie-Institut Pierre Simon Laplace, Paris, France 19 CETEMPS, Dipartimento di Scienze Fisiche e Chimiche, Università Degli Studi dell'Aquila, Italy 20 Max-Planck-Institut für Meteorologie, Hamburg, Germany 21 Deutscher Wetterdienst, Meteorologisches Observatorium Hohenpeißenberg, Hohenpeißenberg, Germany 22 National Technical University of Athens, Department of Physics, Athens, Greece 23 Physics Department & Environmental Research Institute, University College Cork, Cork, Ireland 24 CSEM, Centre Suisse d'Electronique et de Microtechnique SA, Neuchâtel, Switzerland 25 Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid, Spain 26 National Institute of R&D for Optoelectronics, Magurele-Bucharest, Romania 27 Institute of Geophysics, Polish Academy of Sciences, Warsaw, Poland 28 Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia, Naples, Italy 29 Universidade de Évora, Centro de Geofísica de Évora, Évora, Portugal 30 Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland 31 Norwegian Institute for Air Research (NILU), Kjeller, Norway 32 Department of Applied Environmental Science (ITM), Stockholm University, Stockholm, Sweden
1 Istituto di Metodologie per l'Analisi Ambientale CNR-IMAA, C.da S. Loja, Tito Scalo, Potenza 85050, Italy 2 Leibniz-Institut für Troposphärenforschung, Leipzig, Germany 3 EC Joint Research Centre, Ispra (VA), Italy 4 KNMI – Royal Netherlands Meteorological Institute, The Bilt, the Netherlands 5 Universidad de Granada, Granada, Spain 6 Aristoteleio Panepistimio, Thessalonikis, Greece 7 Institute of Physics, National Academy of Sciences, Minsk, Bjelarus 8 Universitat Politècnica de Catalunya, Barcelona, Spain 9 LATMOS, CNRS UMR8190, Université Pierre et Marie Curie, Paris, France 10 LISA, CNRS UMR7583, Université Paris-Est Créteil and Université Paris-Diderot, Créteil, France 11 Università del Salento, Department of Mathematics and Physics, Lecce, Italy 12 Ludwig-Maximilians-Universität, Munich, Germany 13 Andøya Rocket Range, Andenes, Norway 14 Finnish Meteorological Institute, Kuopio Unit, Finland 15 Karlsruher Institut für Technologie, Garmisch-Partenkirchen, Germany 16 Institute of Electronics, Bulgarian Academy of Sciences, Sofia, Bulgaria 17 Deutsches Zentrum für Luft- und Raumfahrt, Institut f. Physik d. Atmosphäre, Oberpfaffenhofen, Germany 18 Université Pierre et Maris Curie-Institut Pierre Simon Laplace, Paris, France 19 CETEMPS, Dipartimento di Scienze Fisiche e Chimiche, Università Degli Studi dell'Aquila, Italy 20 Max-Planck-Institut für Meteorologie, Hamburg, Germany 21 Deutscher Wetterdienst, Meteorologisches Observatorium Hohenpeißenberg, Hohenpeißenberg, Germany 22 National Technical University of Athens, Department of Physics, Athens, Greece 23 Physics Department & Environmental Research Institute, University College Cork, Cork, Ireland 24 CSEM, Centre Suisse d'Electronique et de Microtechnique SA, Neuchâtel, Switzerland 25 Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid, Spain 26 National Institute of R&D for Optoelectronics, Magurele-Bucharest, Romania 27 Institute of Geophysics, Polish Academy of Sciences, Warsaw, Poland 28 Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia, Naples, Italy 29 Universidade de Évora, Centro de Geofísica de Évora, Évora, Portugal 30 Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland 31 Norwegian Institute for Air Research (NILU), Kjeller, Norway 32 Department of Applied Environmental Science (ITM), Stockholm University, Stockholm, Sweden
Hide author details
Received: 26 Oct 2012 – Discussion started: 22 Nov 2012 – Revised: 05 Apr 2013 – Accepted: 09 Apr 2013 – Published: 29 Apr 2013
The eruption of the Icelandic volcano Eyjafjallajökull in April–May 2010 represents a "natural experiment" to study the impact of volcanic emissions on a continental scale. For the first time, quantitative data about the presence, altitude, and layering of the volcanic cloud, in conjunction with optical information, are available for most parts of Europe derived from the observations by the European Aerosol Research Lidar NETwork (EARLINET). Based on multi-wavelength Raman lidar systems, EARLINET is the only instrument worldwide that is able to provide dense time series of high-quality optical data to be used for aerosol typing and for the retrieval of particle microphysical properties as a function of altitude. In this work we show the four-dimensional (4-D) distribution of the Eyjafjallajökull volcanic cloud in the troposphere over Europe as observed by EARLINET during the entire volcanic event (15 April–26 May 2010). All optical properties directly measured (backscatter, extinction, and particle linear depolarization ratio) are stored in the EARLINET database available at http://www.earlinet.org . A specific relational database providing the volcanic mask over Europe, realized ad hoc for this specific event, has been developed and is available on request at http://www.earlinet.org . During the first days after the eruption, volcanic particles were detected over Central Europe within a wide range of altitudes, from the upper troposphere down to the local planetary boundary layer (PBL). After 19 April 2010, volcanic particles were detected over southern and south-eastern Europe. During the first half of May (5–15 May), material emitted by the Eyjafjallajökull volcano was detected over Spain and Portugal and then over the Mediterranean and the Balkans. The last observations of the event were recorded until 25 May in Central Europe and in the Eastern Mediterranean area. The 4-D distribution of volcanic aerosol layering and optical properties on European scale reported here provides an unprecedented data set for evaluating satellite data and aerosol dispersion models for this kind of volcanic events.