Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.414 IF 5.414
  • IF 5-year value: 5.958 IF 5-year
    5.958
  • CiteScore value: 9.7 CiteScore
    9.7
  • SNIP value: 1.517 SNIP 1.517
  • IPP value: 5.61 IPP 5.61
  • SJR value: 2.601 SJR 2.601
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 191 Scimago H
    index 191
  • h5-index value: 89 h5-index 89
Preprints
https://doi.org/10.5194/acp-2018-1074
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-2018-1074
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

  12 Nov 2018

12 Nov 2018

Review status
This preprint was under review for the journal ACP but the revision was not accepted.

The impact of mineral dust on the day-to-day variability of stratiform cloud glaciation occurrence

Diego Villanueva, Bernd Heinold, Patric Seifert, Hartwig Deneke, Martin Radenz, and Ina Tegen Diego Villanueva et al.
  • Leibniz Institute for Tropospheric Research, Leipzig, 04318, Germany

Abstract. Two different A-Train satellite cloud phase products were analysed together with an aerosol model reanalysis to assess the global day-to-day variability of cloud thermodynamic phase. This variability was analysed for different mixing-ratios of fine and coarse mineral dust during the period 2007–2010 and within a temperature range from +3 °C to −42 °C. Night‑time stratiform clouds were analysed, including stratocumulus, altocumulus, altostratus and cirrus clouds. This analysis showed that the phase of stratiform clouds is highly dependent on temperature and latitude. However, at equal temperature the average occurrence of fully glaciated stratiform clouds was found to increase for higher dust mixing-ratios on a day-to-day basis at mid- and high latitudes. At −15 °C, the increment of ice cloud occurrence between the lowest and highest mixing-ratio was found to be higher for fine dust (+10 % to +18 % occurrence) than for coarse dust (+5 % to +10 %). Surprisingly, the increments were higher in remote regions (e.g. southern high latitudes) where the average dust-mixing ratios are low.

Diego Villanueva et al.

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Diego Villanueva et al.

Diego Villanueva et al.

Viewed

Total article views: 752 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
539 200 13 752 65 18 13
  • HTML: 539
  • PDF: 200
  • XML: 13
  • Total: 752
  • Supplement: 65
  • BibTeX: 18
  • EndNote: 13
Views and downloads (calculated since 12 Nov 2018)
Cumulative views and downloads (calculated since 12 Nov 2018)

Viewed (geographical distribution)

Total article views: 697 (including HTML, PDF, and XML) Thereof 696 with geography defined and 1 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Saved

No saved metrics found.

Discussed

No discussed metrics found.
Latest update: 11 Aug 2020
Publications Copernicus
Download
Short summary
Two different satellite products were analysed together with an atmospheric composition model to assess the global frequency of ice and liquid stratiform clouds. This analysis showed that at equal temperature the average occurrence of fully glaciated stratiform clouds was found to increase for higher dust mixing-ratios on a day-to-day basis in the mid- and high latitudes. This indicates that mineral dust may have a strong impact in the occurrence of ice clouds even in remote areas.
Two different satellite products were analysed together with an atmospheric composition model to...
Citation