Articles | Volume 15, issue 11
https://doi.org/10.5194/acp-15-6379-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-15-6379-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Chemical characterization of submicron regional background aerosols in the western Mediterranean using an Aerosol Chemical Speciation Monitor
M. C. Minguillón
Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18–26, 08034 Barcelona, Spain
A. Ripoll
Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18–26, 08034 Barcelona, Spain
Departament d'Astronomia i Meteorologia, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
N. Pérez
Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18–26, 08034 Barcelona, Spain
A. S. H. Prévôt
Paul Scherrer Institute, Laboratory of Atmospheric Chemistry, 5232 Villigen PSI, Switzerland
F. Canonaco
Paul Scherrer Institute, Laboratory of Atmospheric Chemistry, 5232 Villigen PSI, Switzerland
X. Querol
Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18–26, 08034 Barcelona, Spain
A. Alastuey
Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18–26, 08034 Barcelona, Spain
Related authors
Marta Via, Gang Chen, Francesco Canonaco, Kaspar R. Daellenbach, Benjamin Chazeau, Hasna Chebaicheb, Jianhui Jiang, Hannes Keernik, Chunshui Lin, Nicolas Marchand, Cristina Marin, Colin O'Dowd, Jurgita Ovadnevaite, Jean-Eudes Petit, Michael Pikridas, Véronique Riffault, Jean Sciare, Jay G. Slowik, Leïla Simon, Jeni Vasilescu, Yunjiang Zhang, Olivier Favez, André S. H. Prévôt, Andrés Alastuey, and María Cruz Minguillón
Atmos. Meas. Tech., 15, 5479–5495, https://doi.org/10.5194/amt-15-5479-2022, https://doi.org/10.5194/amt-15-5479-2022, 2022
Short summary
Short summary
This work presents the differences resulting from two techniques (rolling and seasonal) of the positive matrix factorisation model that can be run for organic aerosol source apportionment. The current state of the art suggests that the rolling technique is more accurate, but no proof of its effectiveness has been provided yet. This paper tackles this issue in the context of a synthetic dataset and a multi-site real-world comparison.
Jesús Yus-Díez, Marta Via, Andrés Alastuey, Angeliki Karanasiou, María Cruz Minguillón, Noemí Perez, Xavier Querol, Cristina Reche, Matic Ivančič, Martin Rigler, and Marco Pandolfi
Atmos. Chem. Phys., 22, 8439–8456, https://doi.org/10.5194/acp-22-8439-2022, https://doi.org/10.5194/acp-22-8439-2022, 2022
Short summary
Short summary
This study presents the absorption enhancement of internally and externally mixed black carbon (BC) particles in a Mediterranean city and countryside. We showed the importance of secondary organic aerosols (SOAs) and particle ageing by increasing the BC absorption enhancement. We performed a trend analysis on the absorption enhancement. We found a positive trend of the absorption enhancement at the regional station in summer driven by the increase over time of the relative contribution of SOA.
Marta Via, María Cruz Minguillón, Cristina Reche, Xavier Querol, and Andrés Alastuey
Atmos. Chem. Phys., 21, 8323–8339, https://doi.org/10.5194/acp-21-8323-2021, https://doi.org/10.5194/acp-21-8323-2021, 2021
Short summary
Short summary
Atmospheric pollutants have been measured in an urban environment by means of state-of-the-art techniques, allowing the origin and the sources of pollution to be identified. Recent years are shown to be increasingly dominated by non-directly emitted particulate matter. Knowledge about the sources of atmospheric pollutants is necessary to design effective mitigation policies.
Andrea Cuesta-Mosquera, Griša Močnik, Luka Drinovec, Thomas Müller, Sascha Pfeifer, María Cruz Minguillón, Björn Briel, Paul Buckley, Vadimas Dudoitis, Javier Fernández-García, María Fernández-Amado, Joel Ferreira De Brito, Veronique Riffault, Harald Flentje, Eimear Heffernan, Nikolaos Kalivitis, Athina-Cerise Kalogridis, Hannes Keernik, Luminita Marmureanu, Krista Luoma, Angela Marinoni, Michael Pikridas, Gerhard Schauer, Norbert Serfozo, Henri Servomaa, Gloria Titos, Jesús Yus-Díez, Natalia Zioła, and Alfred Wiedensohler
Atmos. Meas. Tech., 14, 3195–3216, https://doi.org/10.5194/amt-14-3195-2021, https://doi.org/10.5194/amt-14-3195-2021, 2021
Short summary
Short summary
Measurements of black carbon must be conducted with instruments operating in quality-checked and assured conditions to generate reliable and comparable data. Here, 23 Aethalometers monitoring black carbon mass concentrations in European networks were characterized and intercompared. The influence of different aerosol sources, maintenance activities, and the filter material on the instrumental variabilities were investigated. Good agreement and in general low deviations were seen.
James Brean, David C. S. Beddows, Zongbo Shi, Brice Temime-Roussel, Nicolas Marchand, Xavier Querol, Andrés Alastuey, María Cruz Minguillón, and Roy M. Harrison
Atmos. Chem. Phys., 20, 10029–10045, https://doi.org/10.5194/acp-20-10029-2020, https://doi.org/10.5194/acp-20-10029-2020, 2020
Short summary
Short summary
New particle formation is a key process influencing both local air quality and climatically active cloud condensation nuclei concentrations. This study has carried out fundamental measurements of nucleation processes in Barcelona, Spain, and concludes that a mechanism involving stabilisation of sulfuric acid clusters by low molecular weight amines is primarily responsible for new particle formation events.
Pragati Rai, Markus Furger, Jay G. Slowik, Francesco Canonaco, Roman Fröhlich, Christoph Hüglin, María Cruz Minguillón, Krag Petterson, Urs Baltensperger, and André S. H. Prévôt
Atmos. Chem. Phys., 20, 1657–1674, https://doi.org/10.5194/acp-20-1657-2020, https://doi.org/10.5194/acp-20-1657-2020, 2020
Short summary
Short summary
A source apportionment study of hourly resolved elements in PM10 measured at a traffic-influenced site in Härkingen, Switzerland, using positive matrix factorization (PMF) and multilinear engine-2 (ME-2) offered resolution of robust and unambiguous factor profiles and contributions. We show that the rotational control available in ME-2 provides a means for treating extreme events such as fireworks within a PMF analysis.
Jianhui Jiang, Sebnem Aksoyoglu, Imad El-Haddad, Giancarlo Ciarelli, Hugo A. C. Denier van der Gon, Francesco Canonaco, Stefania Gilardoni, Marco Paglione, María Cruz Minguillón, Olivier Favez, Yunjiang Zhang, Nicolas Marchand, Liqing Hao, Annele Virtanen, Kalliopi Florou, Colin O'Dowd, Jurgita Ovadnevaite, Urs Baltensperger, and André S. H. Prévôt
Atmos. Chem. Phys., 19, 15247–15270, https://doi.org/10.5194/acp-19-15247-2019, https://doi.org/10.5194/acp-19-15247-2019, 2019
Short summary
Short summary
We use an air quality model with a modified organic aerosol (OA) module based on chamber experiments to identify the OA sources and their contributions in Europe. Comparisons with long-term measurements at nine sites in 2011 show an improvement in OA simulation. Our results suggest that the biomass burning and biogenic emissions are the dominant sources in winter and summer, respectively. Contributions of diesel and gasoline vehicles are relatively small compared to a previous study in the US.
Athanasia Vlachou, Anna Tobler, Houssni Lamkaddam, Francesco Canonaco, Kaspar R. Daellenbach, Jean-Luc Jaffrezo, María Cruz Minguillón, Marek Maasikmets, Erik Teinemaa, Urs Baltensperger, Imad El Haddad, and André S. H. Prévôt
Atmos. Chem. Phys., 19, 7279–7295, https://doi.org/10.5194/acp-19-7279-2019, https://doi.org/10.5194/acp-19-7279-2019, 2019
Short summary
Short summary
The resolution of rotational ambiguity in positive matrix factorization (PMF) models is a major challenge. Here, we developed a method based on bootstrapping and correlations to extract environmentally meaningful solutions from PMF analysis based on offline aerosol mass spectrometry data. The method has been tested on a dataset that covers 1 full year of filter samples collected at three different sites in Estonia.
Jianhui Jiang, Sebnem Aksoyoglu, Giancarlo Ciarelli, Emmanouil Oikonomakis, Imad El-Haddad, Francesco Canonaco, Colin O'Dowd, Jurgita Ovadnevaite, María Cruz Minguillón, Urs Baltensperger, and André S. H. Prévôt
Atmos. Chem. Phys., 19, 3747–3768, https://doi.org/10.5194/acp-19-3747-2019, https://doi.org/10.5194/acp-19-3747-2019, 2019
Short summary
Short summary
Biogenic volatile organic compound (BVOC) emissions from vegetation are essential inputs for air quality models but their uncertainties are very high. In this study we show the importance of BVOC emissions for modelled ozone and aerosol concentrations in Europe. Using different biogenic emissions from MEGAN and PSI models significantly affected organic aerosols (smaller effect on ozone), indicating the importance of harmonising the BVOC emissions in the model inter-comparison studies.
Carlo Bozzetti, Imad El Haddad, Dalia Salameh, Kaspar Rudolf Daellenbach, Paola Fermo, Raquel Gonzalez, María Cruz Minguillón, Yoshiteru Iinuma, Laurent Poulain, Miriam Elser, Emanuel Müller, Jay Gates Slowik, Jean-Luc Jaffrezo, Urs Baltensperger, Nicolas Marchand, and André Stephan Henry Prévôt
Atmos. Chem. Phys., 17, 8247–8268, https://doi.org/10.5194/acp-17-8247-2017, https://doi.org/10.5194/acp-17-8247-2017, 2017
Short summary
Short summary
We present the first long-term organic aerosol source apportionment in an environment influenced by anthropogenic emissions including biomass burning and industrial processes and an active photochemistry. Online and offline aerosol mass spectrometry were used to characterize these emissions and their transformation. Measurements of organic markers provided insights into the origin of biomass smoke in this area, with different seasonal contributions from domestic heating and agricultural burning.
Markus Furger, María Cruz Minguillón, Varun Yadav, Jay G. Slowik, Christoph Hüglin, Roman Fröhlich, Krag Petterson, Urs Baltensperger, and André S. H. Prévôt
Atmos. Meas. Tech., 10, 2061–2076, https://doi.org/10.5194/amt-10-2061-2017, https://doi.org/10.5194/amt-10-2061-2017, 2017
Short summary
Short summary
An Xact 625 Ambient Metals Monitor was tested during a 3-week summer field campaign at a rural, traffic-influenced site in Switzerland. The objective was to characterize the operation of the instrument, evaluate the data quality by intercomparison with other independent measurements, and test its applicability for aerosol source quantification. The results demonstrate significant advantages compared to traditional elemental analysis methods, with some desirable improvements.
Xavier Querol, Gotzon Gangoiti, Enrique Mantilla, Andrés Alastuey, Maria Cruz Minguillón, Fulvio Amato, Cristina Reche, Mar Viana, Teresa Moreno, Angeliki Karanasiou, Ioar Rivas, Noemí Pérez, Anna Ripoll, Mariola Brines, Marina Ealo, Marco Pandolfi, Hong-Ku Lee, Hee-Ram Eun, Yong-Hee Park, Miguel Escudero, David Beddows, Roy M. Harrison, Amelie Bertrand, Nicolas Marchand, Andrei Lyasota, Bernat Codina, Miriam Olid, Mireia Udina, Bernat Jiménez-Esteve, María R. Soler, Lucio Alonso, Millán Millán, and Kang-Ho Ahn
Atmos. Chem. Phys., 17, 2817–2838, https://doi.org/10.5194/acp-17-2817-2017, https://doi.org/10.5194/acp-17-2817-2017, 2017
Short summary
Short summary
High summer O3 episodes in NE Spain were analysed. We evidence the relevance of local emission of precursors in meteorological scenarios of vertical air mass recirculations, when transboundary contributions are also significant. Forecasting these scenarios and sensitivity analysis of possible O3 precursors drop are key for potential abatement strategies. However, this is a very difficult task due to the complexity of scenarios, the external contributions, and the complex O3 production reactions.
Marina Ealo, Andrés Alastuey, Anna Ripoll, Noemí Pérez, María Cruz Minguillón, Xavier Querol, and Marco Pandolfi
Atmos. Chem. Phys., 16, 12567–12586, https://doi.org/10.5194/acp-16-12567-2016, https://doi.org/10.5194/acp-16-12567-2016, 2016
Short summary
Short summary
The present work demonstrates the potential of in situ aerosol optical measurements, from both nephelometer and aethalometer instruments, for detecting specific air pollution scenarios in near real time. Given the high sensitivity of the intensive aerosol optical properties to characterize atmospheric aerosols, these parameters were calibrated in order to detect Saharan dust and biomass burning events at regional (Montseny) and continental (Montsec) environments in the NW Mediterranean.
Mariola Brines, Manuel Dall'Osto, Fulvio Amato, María Cruz Minguillón, Angeliki Karanasiou, Andrés Alastuey, and Xavier Querol
Atmos. Chem. Phys., 16, 6785–6804, https://doi.org/10.5194/acp-16-6785-2016, https://doi.org/10.5194/acp-16-6785-2016, 2016
Fulvio Amato, Andrés Alastuey, Angeliki Karanasiou, Franco Lucarelli, Silvia Nava, Giulia Calzolai, Mirko Severi, Silvia Becagli, Vorne L. Gianelle, Cristina Colombi, Celia Alves, Danilo Custódio, Teresa Nunes, Mario Cerqueira, Casimiro Pio, Konstantinos Eleftheriadis, Evangelia Diapouli, Cristina Reche, María Cruz Minguillón, Manousos-Ioannis Manousakas, Thomas Maggos, Stergios Vratolis, Roy M. Harrison, and Xavier Querol
Atmos. Chem. Phys., 16, 3289–3309, https://doi.org/10.5194/acp-16-3289-2016, https://doi.org/10.5194/acp-16-3289-2016, 2016
Short summary
Short summary
Harmonized source apportionment of atmospheric particulate matter (PM10 and PM2.5) at 5 EU cities (Barcelona, Florence, Milan, Athens and Porto) reveals that vehicle exhaust (excluding nitrate) plus non-exhaust contributes 16–32 % to PM10 and 15–36 % to PM2.5. Secondary PM represents 37–82 % of PM2.5. Biomass burning varies from < 2 to 24 % of PM10, depending on the residential heating fuel. Other sources are local dust (7–19 % of PM10), industries (4–11 % of PM10), shipping, sea salt and Saharan dust.
V. Crenn, J. Sciare, P. L. Croteau, S. Verlhac, R. Fröhlich, C. A. Belis, W. Aas, M. Äijälä, A. Alastuey, B. Artiñano, D. Baisnée, N. Bonnaire, M. Bressi, M. Canagaratna, F. Canonaco, C. Carbone, F. Cavalli, E. Coz, M. J. Cubison, J. K. Esser-Gietl, D. C. Green, V. Gros, L. Heikkinen, H. Herrmann, C. Lunder, M. C. Minguillón, G. Močnik, C. D. O'Dowd, J. Ovadnevaite, J.-E. Petit, E. Petralia, L. Poulain, M. Priestman, V. Riffault, A. Ripoll, R. Sarda-Estève, J. G. Slowik, A. Setyan, A. Wiedensohler, U. Baltensperger, A. S. H. Prévôt, J. T. Jayne, and O. Favez
Atmos. Meas. Tech., 8, 5063–5087, https://doi.org/10.5194/amt-8-5063-2015, https://doi.org/10.5194/amt-8-5063-2015, 2015
Short summary
Short summary
A large intercomparison study of 13 Q-ACSM was conducted for a 3-week period in the region of Paris to evaluate the performance of this instrument and to monitor the major NR-PM1 chemical components. Reproducibility expanded uncertainties of Q-ACSM concentration measurements were found to be 9, 15, 19, 28, and 36% for NR-PM1, NO3, OM, SO4, and NH4, respectively. Some recommendations regarding best calibration practices, standardized data processing and data treatment are also provided.
A. Karanasiou, M. C. Minguillón, M. Viana, A. Alastuey, J.-P. Putaud, W. Maenhaut, P. Panteliadis, G. Močnik, O. Favez, and T. A. J. Kuhlbusch
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amtd-8-9649-2015, https://doi.org/10.5194/amtd-8-9649-2015, 2015
Revised manuscript not accepted
R. Fröhlich, V. Crenn, A. Setyan, C. A. Belis, F. Canonaco, O. Favez, V. Riffault, J. G. Slowik, W. Aas, M. Aijälä, A. Alastuey, B. Artiñano, N. Bonnaire, C. Bozzetti, M. Bressi, C. Carbone, E. Coz, P. L. Croteau, M. J. Cubison, J. K. Esser-Gietl, D. C. Green, V. Gros, L. Heikkinen, H. Herrmann, J. T. Jayne, C. R. Lunder, M. C. Minguillón, G. Močnik, C. D. O'Dowd, J. Ovadnevaite, E. Petralia, L. Poulain, M. Priestman, A. Ripoll, R. Sarda-Estève, A. Wiedensohler, U. Baltensperger, J. Sciare, and A. S. H. Prévôt
Atmos. Meas. Tech., 8, 2555–2576, https://doi.org/10.5194/amt-8-2555-2015, https://doi.org/10.5194/amt-8-2555-2015, 2015
Short summary
Short summary
Source apportionment (SA) of organic aerosol mass spectrometric data measured with the Aerodyne ACSM using PMF/ME2 is a frequently used technique in the AMS/ACSM community. ME2 uncertainties due to instrument-to-instrument variations are elucidated by performing SA on ambient data from 14 individual, co-located ACSMs, recorded during the first ACTRIS ACSM intercomparison study at SIRTA near Paris (France). The mean uncertainty was 17.2%. Recommendations for future studies using ME2 are provided.
A. Ripoll, M. C. Minguillón, J. Pey, J. L. Jimenez, D. A. Day, Y. Sosedova, F. Canonaco, A. S. H. Prévôt, X. Querol, and A. Alastuey
Atmos. Chem. Phys., 15, 2935–2951, https://doi.org/10.5194/acp-15-2935-2015, https://doi.org/10.5194/acp-15-2935-2015, 2015
Short summary
Short summary
Real-time measurements of inorganic (sulfate, nitrate, ammonium, chloride and black carbon (BC)) and organic submicron aerosols from a continental background site (Montsec, MSC, 1570m a.s.l.) in the western Mediterranean Basin (WMB) were conducted for 10 months (July 2011 - April 2012) with an aerosol chemical speciation monitor (ACSM). The ACSM was co-located with other online and offline PM1 measurements. Analyses of the hourly, diurnal, and seasonal variations are presented here.
A. Ripoll, M. C. Minguillón, J. Pey, N. Pérez, X. Querol, and A. Alastuey
Atmos. Chem. Phys., 15, 1129–1145, https://doi.org/10.5194/acp-15-1129-2015, https://doi.org/10.5194/acp-15-1129-2015, 2015
Short summary
Short summary
The complete chemical compositions of atmospheric particulate matter (PM1 and PM10) from a continental (Montsec, 1570 m a.s.l.) and a regional (Montseny, 720 m a.s.l) background site in the western Mediterranean Basin were jointly studied for the first time over a relatively long-term period (January 2010-March 2013). Results revealed a) a high relevance of African dust transport and regional dust resuspension; b) low biomass burning contribution; and c) high organic matter contribution.
A. Ripoll, J. Pey, M. C. Minguillón, N. Pérez, M. Pandolfi, X. Querol, and A. Alastuey
Atmos. Chem. Phys., 14, 4279–4295, https://doi.org/10.5194/acp-14-4279-2014, https://doi.org/10.5194/acp-14-4279-2014, 2014
M. Dall'Osto, X. Querol, A. Alastuey, M. C. Minguillon, M. Alier, F. Amato, M. Brines, M. Cusack, J. O. Grimalt, A. Karanasiou, T. Moreno, M. Pandolfi, J. Pey, C. Reche, A. Ripoll, R. Tauler, B. L. Van Drooge, M. Viana, R. M. Harrison, J. Gietl, D. Beddows, W. Bloss, C. O'Dowd, D. Ceburnis, G. Martucci, N. L. Ng, D. Worsnop, J. Wenger, E. Mc Gillicuddy, J. Sodeau, R. Healy, F. Lucarelli, S. Nava, J. L. Jimenez, F. Gomez Moreno, B. Artinano, A. S. H. Prévôt, L. Pfaffenberger, S. Frey, F. Wilsenack, D. Casabona, P. Jiménez-Guerrero, D. Gross, and N. Cots
Atmos. Chem. Phys., 13, 8991–9019, https://doi.org/10.5194/acp-13-8991-2013, https://doi.org/10.5194/acp-13-8991-2013, 2013
Imad El Haddad, Danielle Vienneau, Kaspar R. Daellenbach, Robin Modini, Jay G. Slowik, Abhishek Upadhyay, Petros N. Vasilakos, David Bell, Kees de Hoogh, and Andre S. H. Prevot
Atmos. Chem. Phys., 24, 11981–12011, https://doi.org/10.5194/acp-24-11981-2024, https://doi.org/10.5194/acp-24-11981-2024, 2024
Short summary
Short summary
This opinion paper explores how advances in aerosol science inform our understanding of the health impacts of outdoor particulate pollution. We advocate for a shift in the way we target PM pollution, focusing on the most harmful anthropogenic emissions. We highlight key observations, modelling developments, and emission measurements needed to achieve this shift.
Adolfo González-Romero, Cristina González-Flórez, Agnesh Panta, Jesús Yus-Díez, Patricia Córdoba, Andres Alastuey, Natalia Moreno, Melani Hernández-Chiriboga, Konrad Kandler, Martina Klose, Roger N. Clark, Bethany L. Ehlmann, Rebecca N. Greenberger, Abigail M. Keebler, Phil Brodrick, Robert Green, Paul Ginoux, Xavier Querol, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 24, 9155–9176, https://doi.org/10.5194/acp-24-9155-2024, https://doi.org/10.5194/acp-24-9155-2024, 2024
Short summary
Short summary
In this research, we studied the dust-emitting properties of crusts and aeolian ripples from the Mojave Desert. These properties are key to understanding the effect of dust upon climate. We found two different playa lakes according to the groundwater regime, which implies differences in crusts' cohesion state and mineralogy, which can affect the dust emission potential and properties. We also compare them with Moroccan Sahara crusts and Icelandic top sediments.
Xiansheng Liu, Xun Zhang, Marvin Dufresne, Tao Wang, Lijie Wu, Rosa Lara, Roger Seco , Marta Monge, Ana Maria Yáñez-Serrano, Marie Gohy, Paul Petit, Audrey Chevalier, Marie-Pierre Vagnot, Yann Fortier, Alexia Baudic, Véronique Ghersi, Grégory Gille, Ludovic Lanzi, Valérie Gros, Leïla Simon, Heidi Hellen, Stefan Reimann, Zoé Le Bras, Michelle Jessy Müller, David Beddows, Siqi Hou, Zongbo Shi, Roy M. Harrison, William Bloss, James Dernie, Stéphane Sauvage, Philip K. Hopke, Xiaoli Duan, Taicheng An, Alastair Lewis, Jim Hopkins, Eleni Liakakou, Nikolaos Mihalopoulos, Xiaohu Zhang, Andrés Alastuey, Xavier Querol, and Thérèse Salameh
EGUsphere, https://doi.org/10.5194/egusphere-2024-2309, https://doi.org/10.5194/egusphere-2024-2309, 2024
Short summary
Short summary
This study examines BTEX (benzene, toluene, ethylbenzene, xylenes) pollution in urban areas across 7 European countries. Analyzing data from 22 monitoring sites, we found traffic and industrial activities significantly impact BTEX levels, with peaks during rush hours. Despite improvements, the risk from BTEX exposure remains moderate, especially in high-traffic and industrial zones. It highlights the need for targeted air quality management to protect public health and improve urban air quality.
Hector Navarro-Barboza, Jordi Rovira, Vincenzo Obiso, Andrea Pozzer, Marta Via, Andres Alastuey, Xavier Querol, Noemi Perez, Marjan Savadkoohi, Gang Chen, Jesus Yus-Díez, Matic Ivancic, Martin Rigler, Konstantinos Eleftheriadis, Stergios Vratolis, Olga Zografou, Maria Gini, Benjamin Chazeau, Nicolas Marchand, Andre Prevot, Kaspar Dallenbach, Mikael Ehn, Krista Luoma, Tuukka Petäjä, Anna Tobler, Jaroslaw Necki, Minna Aurela, Hilkka Timonen, Jarkko Niemi, Olivier Favez, Jean-Eudes Petit, Jean-Philippe Putaud, Christoph Hueglin, Nicolas Pascal, Aurelien Chauvigné, Sebastien Conil, Marco Pandolfi, and Oriol Jorba
EGUsphere, https://doi.org/10.5194/egusphere-2024-2086, https://doi.org/10.5194/egusphere-2024-2086, 2024
Short summary
Short summary
Brown carbon (BrC) absorbs UV and visible light, affecting climate. Our study investigates BrC's imaginary refractive index (k ) using data from 12 European sites. Residential emissions are a major OA source in winter, while secondary organic aerosols (SOA) dominate in summer. We derived source-specific k values, enhancing model accuracy. This research improves understanding of BrC's climate role, emphasizing the need for source-specific constraints in atmospheric models.
Pamela A. Dominutti, Jean-Luc Jaffrezo, Anouk Marsal, Takoua Mhadhbi, Rhabira Elazzouzi, Camille Rak, Fabrizia Cavalli, Jean-Philippe Putaud, Aikaterini Bougiatioti, Nikolaos Mihalopoulos, Despina Paraskevopoulou, Ian S. Mudway, Athanasios Nenes, Kaspar R. Daellenbach, Catherine Banach, Steven J. Campbell, Hana Cigánková, Daniele Contini, Greg Evans, Maria Georgopoulou, Manuella Ghanem, Drew A. Glencross, Maria Rachele Guascito, Hartmut Herrmann, Saima Iram, Maja Jovanović, Milena Jovašević-Stojanović, Markus Kalberer, Ingeborg M. Kooter, Suzanne E. Paulson, Anil Patel, Esperanza Perdrix, Maria Chiara Pietrogrande, Pavel Mikuška, Jean-Jacques Sauvain, Aikaterina Seitanidi, Pourya Shahpoury, Eduardo J. S. Souza, Sarah Steimer, Svetlana Stevanovic, Guillaume Suarez, P. S. Ganesh Subramanian, Battist Utinger, Marloes F. van Os, Vishal Verma, Xing Wang, Rodney J. Weber, Yuhan Yang, Xavier Querol, Gerard Hoek, Roy M. Harrison, and Gaëlle Uzu
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-107, https://doi.org/10.5194/amt-2024-107, 2024
Revised manuscript accepted for AMT
Short summary
Short summary
In this work, 20 labs worldwide collaborated to evaluate the measurement of air pollution's oxidative potential (OP), a key indicator of its harmful effects. The study aimed to identify disparities in the widely used OP DTT assay and assess the consistency of OP among labs using the same protocol. The results showed that half of the labs achieved acceptable results. However, variability was also found, highlighting the need for standardization in OP procedures.
Ashutosh Kumar Shukla, Sachchida Nand Tripathi, Shamitaksha Talukdar, Vishnu Murari, Sreenivas Gaddamidi, Manousos-Ioannis Manousakas, Vipul Lalchandani, Kuldeep Dixit, Vinayak M Ruge, Peeyush Khare, Mayank Kumar, Vikram Singh, Neeraj Rastogi, Suresh Tiwari, Atul K. Srivastava, Dilip Ganguly, Kaspar Rudolf Daellenbach, and Andre Stephan Henry Prevot
EGUsphere, https://doi.org/10.5194/egusphere-2024-1385, https://doi.org/10.5194/egusphere-2024-1385, 2024
Short summary
Short summary
Our study delves into the elemental composition of aerosols across the Indo-Gangetic Plain (IGP), revealing distinct patterns during pollution episodes. We found significant increases in Cl-rich and SFC1 sources, indicating dynamic emissions and agricultural burning impacts. Surges in Cl-rich particles during cold periods highlight their role in particle growth under specific conditions.
Natalie M. Mahowald, Longlei Li, Julius Vira, Marje Prank, Douglas S. Hamilton, Hitoshi Matsui, Ron L. Miller, Louis Lu, Ezgi Akyuz, Daphne Meidan, Peter G. Hess, Heikki Lihavainen, Christine Wiedinmyer, Jenny Hand, Maria Grazia Alaimo, Célia Alves, Andres Alastuey, Paulo Artaxo, Africa Barreto, Francisco Barraza, Silvia Becagli, Giulia Calzolai, Shankararaman Chellam, Ying Chen, Patrick Chuang, David D. Cohen, Cristina Colombi, Evangelia Diapouli, Gaetano Dongarra, Konstantinos Eleftheriadis, Johann Engelbrecht, Corinne Galy-Lacaux, Cassandra Gaston, Dario Gomez, Yenny González Ramos, Roy M. Harrison, Chris Heyes, Barak Herut, Philip Hopke, Christoph Hüglin, Maria Kanakidou, Zsofia Kertesz, Zbigniew Klimont, Katriina Kyllönen, Fabrice Lambert, Xiaohong Liu, Remi Losno, Franco Lucarelli, Willy Maenhaut, Beatrice Marticorena, Randall V. Martin, Nikolaos Mihalopoulos, Yasser Morera-Gomez, Adina Paytan, Joseph Prospero, Sergio Rodríguez, Patricia Smichowski, Daniela Varrica, Brenna Walsh, Crystal Weagle, and Xi Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2024-1617, https://doi.org/10.5194/egusphere-2024-1617, 2024
Short summary
Short summary
Aerosol particles are an important part of the Earth system, but their concentrations are spatially and temporally heterogeneous, as well as variable in size and composition. Here we present a new compilation of PM2.5 and PM10 aerosol observations, focusing on the spatial variability across different observational stations, including composition, and demonstrate a method for comparing the datasets to model output.
Adolfo González-Romero, Cristina González-Flórez, Agnesh Panta, Jesús Yus-Díez, Patricia Córdoba, Andres Alastuey, Natalia Moreno, Konrad Kandler, Martina Klose, Roger N. Clark, Bethany L. Ehlmann, Rebecca N. Greenberger, Abigail M. Keebler, Phil Brodrick, Robert O. Green, Xavier Querol, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 24, 6883–6910, https://doi.org/10.5194/acp-24-6883-2024, https://doi.org/10.5194/acp-24-6883-2024, 2024
Short summary
Short summary
The knowledge of properties from dust emitted in high latitudes such as in Iceland is scarce. This study focuses on the particle size, mineralogy, cohesion, and iron mode of occurrence and reflectance spectra of dust-emitting sediments. Icelandic top sediments have lower cohesion state, coarser particle size, distinctive mineralogy, and 3-fold bulk Fe content, with a large presence of magnetite compared to Saharan crusts.
Fernando Rejano, Andrea Casans, Marta Via, Juan Andrés Casquero-Vera, Sonia Castillo, Hassan Lyamani, Alberto Cazorla, Elisabeth Andrews, Daniel Pérez-Ramírez, Andrés Alastuey, Francisco Javier Gómez-Moreno, Lucas Alados-Arboledas, Francisco José Olmo, and Gloria Titos
EGUsphere, https://doi.org/10.5194/egusphere-2024-1059, https://doi.org/10.5194/egusphere-2024-1059, 2024
Short summary
Short summary
This study provides valuable insights to improve cloud condensation nuclei (CCN) estimations at a high-altitude remote site which is influenced by nearby urban pollution. Understanding the factors that affect CCN estimations is essential to improve the CCN data coverage worldwide and assess aerosol-cloud interactions in a global scale. This is crucial for improving climate models since aerosol-cloud interactions are the most important source of uncertainty in climate projections.
Tiantian Wang, Jun Zhang, Houssni Lamkaddam, Kun Li, Ka Yuen Cheung, Lisa Kattner, Erlend Gammelsæter, Michael Bauer, Zachary C. J. Decker, Deepika Bhattu, Rujin Huang, Rob L. Modini, Jay G. Slowik, Imad El Haddad, Andre S. H. Prevot, and David M. Bell
EGUsphere, https://doi.org/10.5194/egusphere-2024-1161, https://doi.org/10.5194/egusphere-2024-1161, 2024
Short summary
Short summary
Our study analyzes real-time emissions of primary organic gases from solid fuel combustion, including residential and open burning. Using Vocus-PTR-TOF, we tested various fuels, finding higher emissions from wood burning. Statistical tests identified unique characteristic compounds. IVOCs are key precursors to SOA formation, particularly in open burning. Our insights benefit air quality, climate, and health, advancing atmospheric chemistry and aiding accurate emission assessments.
Jordi Massagué, Eduardo Torre-Pascual, Cristina Carnerero, Miguel Escudero, Andrés Alastuey, Marco Pandolfi, Xavier Querol, and Gotzon Gangoiti
Atmos. Chem. Phys., 24, 4827–4850, https://doi.org/10.5194/acp-24-4827-2024, https://doi.org/10.5194/acp-24-4827-2024, 2024
Short summary
Short summary
This study analyses three acute ozone episodes in Barcelona (NE Spain) which have occurred only in recent years and are of particular concern due to the city's significant population. The findings uncover a complex interplay of factors, notably shared among episodes, including pollution transport at different scales and specific weather and emission patterns. These insights significantly enhance our understanding of these occurrences and improve predictive capabilities.
C. Isabel Moreno, Radovan Krejci, Jean-Luc Jaffrezo, Gaëlle Uzu, Andrés Alastuey, Marcos F. Andrade, Valeria Mardóñez, Alkuin Maximilian Koenig, Diego Aliaga, Claudia Mohr, Laura Ticona, Fernando Velarde, Luis Blacutt, Ricardo Forno, David N. Whiteman, Alfred Wiedensohler, Patrick Ginot, and Paolo Laj
Atmos. Chem. Phys., 24, 2837–2860, https://doi.org/10.5194/acp-24-2837-2024, https://doi.org/10.5194/acp-24-2837-2024, 2024
Short summary
Short summary
Aerosol chemical composition (ions, sugars, carbonaceous matter) from 2011 to 2020 was studied at Mt. Chacaltaya (5380 m a.s.l., Bolivian Andes). Minimum concentrations occur in the rainy season with maxima in the dry and transition seasons. The origins of the aerosol are located in a radius of hundreds of kilometers: nearby urban and rural areas, natural biogenic emissions, vegetation burning from Amazonia and Chaco, Pacific Ocean emissions, soil dust, and Peruvian volcanism.
Natalie M. Mahowald, Longlei Li, Julius Vira, Marje Prank, Douglas S. Hamilton, Hitoshi Matsui, Ron L. Miller, Louis Lu, Ezgi Akyuz, Daphne Meidan, Peter Hess, Heikki Lihavainen, Christine Wiedinmyer, Jenny Hand, Maria Grazia Alaimo, Célia Alves, Andres Alastuey, Paulo Artaxo, Africa Barreto, Francisco Barraza, Silvia Becagli, Giulia Calzolai, Shankarararman Chellam, Ying Chen, Patrick Chuang, David D. Cohen, Cristina Colombi, Evangelia Diapouli, Gaetano Dongarra, Konstantinos Eleftheriadis, Corinne Galy-Lacaux, Cassandra Gaston, Dario Gomez, Yenny González Ramos, Hannele Hakola, Roy M. Harrison, Chris Heyes, Barak Herut, Philip Hopke, Christoph Hüglin, Maria Kanakidou, Zsofia Kertesz, Zbiginiw Klimont, Katriina Kyllönen, Fabrice Lambert, Xiaohong Liu, Remi Losno, Franco Lucarelli, Willy Maenhaut, Beatrice Marticorena, Randall V. Martin, Nikolaos Mihalopoulos, Yasser Morera-Gomez, Adina Paytan, Joseph Prospero, Sergio Rodríguez, Patricia Smichowski, Daniela Varrica, Brenna Walsh, Crystal Weagle, and Xi Zhao
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-1, https://doi.org/10.5194/essd-2024-1, 2024
Preprint withdrawn
Short summary
Short summary
Aerosol particles can interact with incoming solar radiation and outgoing long wave radiation, change cloud properties, affect photochemistry, impact surface air quality, and when deposited impact surface albedo of snow and ice, and modulate carbon dioxide uptake by the land and ocean. Here we present a new compilation of aerosol observations including composition, a methodology for comparing the datasets to model output, and show the implications of these results using one model.
Adolfo González-Romero, Cristina González-Flórez, Agnesh Panta, Jesús Yus-Díez, Cristina Reche, Patricia Córdoba, Natalia Moreno, Andres Alastuey, Konrad Kandler, Martina Klose, Clarissa Baldo, Roger N. Clark, Zongbo Shi, Xavier Querol, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 23, 15815–15834, https://doi.org/10.5194/acp-23-15815-2023, https://doi.org/10.5194/acp-23-15815-2023, 2023
Short summary
Short summary
The effect of dust emitted from desertic surfaces upon climate and ecosystems depends on size and mineralogy, but data from soil mineral atlases of desert soils are scarce. We performed particle-size distribution, mineralogy, and Fe speciation in southern Morocco. Results show coarser particles with high quartz proportion are near the elevated areas, while in depressed areas, sizes are finer, and proportions of clays and nano-Fe oxides are higher. This difference is important for dust modelling.
Juan Andrés Casquero-Vera, Daniel Pérez-Ramírez, Hassan Lyamani, Fernando Rejano, Andrea Casans, Gloria Titos, Francisco José Olmo, Lubna Dada, Simo Hakala, Tareq Hussein, Katrianne Lehtipalo, Pauli Paasonen, Antti Hyvärinen, Noemí Pérez, Xavier Querol, Sergio Rodríguez, Nikos Kalivitis, Yenny González, Mansour A. Alghamdi, Veli-Matti Kerminen, Andrés Alastuey, Tuukka Petäjä, and Lucas Alados-Arboledas
Atmos. Chem. Phys., 23, 15795–15814, https://doi.org/10.5194/acp-23-15795-2023, https://doi.org/10.5194/acp-23-15795-2023, 2023
Short summary
Short summary
Here we present the first study of the effect of mineral dust on the inhibition/promotion of new particle formation (NPF) events in different dust-influenced areas. Unexpectedly, we show that the occurrence of NPF events is highly frequent during mineral dust outbreaks, occurring even during extreme dust outbreaks. We also show that the occurrence of NPF events during mineral dust outbreaks significantly affects the potential cloud condensation nuclei budget.
Jun Zhang, Kun Li, Tiantian Wang, Erlend Gammelsæter, Rico K. Y. Cheung, Mihnea Surdu, Sophie Bogler, Deepika Bhattu, Dongyu S. Wang, Tianqu Cui, Lu Qi, Houssni Lamkaddam, Imad El Haddad, Jay G. Slowik, Andre S. H. Prevot, and David M. Bell
Atmos. Chem. Phys., 23, 14561–14576, https://doi.org/10.5194/acp-23-14561-2023, https://doi.org/10.5194/acp-23-14561-2023, 2023
Short summary
Short summary
We conducted burning experiments to simulate various types of solid fuel combustion, including residential burning, wildfires, agricultural burning, cow dung, and plastic bag burning. The chemical composition of the particles was characterized using mass spectrometers, and new potential markers for different fuels were identified using statistical analysis. This work improves our understanding of emissions from solid fuel burning and offers support for refined source apportionment.
Simone Lolli, Michaël Sicard, Francesco Amato, Adolfo Comeron, Cristina Gíl-Diaz, Tony C. Landi, Constantino Munoz-Porcar, Daniel Oliveira, Federico Dios Otin, Francesc Rocadenbosch, Alejandro Rodriguez-Gomez, Andrés Alastuey, Xavier Querol, and Cristina Reche
Atmos. Chem. Phys., 23, 12887–12906, https://doi.org/10.5194/acp-23-12887-2023, https://doi.org/10.5194/acp-23-12887-2023, 2023
Short summary
Short summary
We evaluated the long-term trends and seasonal variability of the vertically resolved aerosol properties over the past 17 years in Barcelona. Results shows that air quality is improved, with a consistent drop in PM concentrations at the surface, as well as the column aerosol optical depth. The results also show that natural dust outbreaks are more likely in summer, with aerosols reaching an altitude of 5 km, while in winter, aerosols decay as an exponential with a scale height of 600 m.
Valeria Mardoñez, Marco Pandolfi, Lucille Joanna S. Borlaza, Jean-Luc Jaffrezo, Andrés Alastuey, Jean-Luc Besombes, Isabel Moreno R., Noemi Perez, Griša Močnik, Patrick Ginot, Radovan Krejci, Vladislav Chrastny, Alfred Wiedensohler, Paolo Laj, Marcos Andrade, and Gaëlle Uzu
Atmos. Chem. Phys., 23, 10325–10347, https://doi.org/10.5194/acp-23-10325-2023, https://doi.org/10.5194/acp-23-10325-2023, 2023
Short summary
Short summary
La Paz and El Alto are two fast-growing, high-altitude Bolivian cities forming the second-largest metropolitan area in the country. The sources of particulate matter (PM) in this conurbation were not previously investigated. This study identified 11 main sources of PM, of which dust and vehicular emissions stand out as the main ones. The influence of regional biomass combustion and local waste combustion was also observed, with the latter being a major source of hazardous compounds.
Jean-Philippe Putaud, Enrico Pisoni, Alexander Mangold, Christoph Hueglin, Jean Sciare, Michael Pikridas, Chrysanthos Savvides, Jakub Ondracek, Saliou Mbengue, Alfred Wiedensohler, Kay Weinhold, Maik Merkel, Laurent Poulain, Dominik van Pinxteren, Hartmut Herrmann, Andreas Massling, Claus Nordstroem, Andrés Alastuey, Cristina Reche, Noemí Pérez, Sonia Castillo, Mar Sorribas, Jose Antonio Adame, Tuukka Petaja, Katrianne Lehtipalo, Jarkko Niemi, Véronique Riffault, Joel F. de Brito, Augustin Colette, Olivier Favez, Jean-Eudes Petit, Valérie Gros, Maria I. Gini, Stergios Vratolis, Konstantinos Eleftheriadis, Evangelia Diapouli, Hugo Denier van der Gon, Karl Espen Yttri, and Wenche Aas
Atmos. Chem. Phys., 23, 10145–10161, https://doi.org/10.5194/acp-23-10145-2023, https://doi.org/10.5194/acp-23-10145-2023, 2023
Short summary
Short summary
Many European people are still exposed to levels of air pollution that can affect their health. COVID-19 lockdowns in 2020 were used to assess the impact of the reduction in human mobility on air pollution across Europe by comparing measurement data with values that would be expected if no lockdown had occurred. We show that lockdown measures did not lead to consistent decreases in the concentrations of fine particulate matter suspended in the air, and we investigate why.
Yong Zhang, Jie Tian, Qiyuan Wang, Lu Qi, Manousos Ioannis Manousakas, Yuemei Han, Weikang Ran, Yele Sun, Huikun Liu, Renjian Zhang, Yunfei Wu, Tianqu Cui, Kaspar Rudolf Daellenbach, Jay Gates Slowik, André S. H. Prévôt, and Junji Cao
Atmos. Chem. Phys., 23, 9455–9471, https://doi.org/10.5194/acp-23-9455-2023, https://doi.org/10.5194/acp-23-9455-2023, 2023
Short summary
Short summary
PM2.5 pollution still frequently occurs in northern China during winter, and it is necessary to figure out the causes of air pollution based on intensive real-time measurement. The findings elaborate the chemical characteristics and source contributions of PM2.5 in three pilot cities, reveal potential formation mechanisms of secondary aerosols, and highlight the importance of controlling biomass burning and inhibiting generation of secondary aerosol for air quality improvement.
Sophie L. Haslett, David M. Bell, Varun Kumar, Jay G. Slowik, Dongyu S. Wang, Suneeti Mishra, Neeraj Rastogi, Atinderpal Singh, Dilip Ganguly, Joel Thornton, Feixue Zheng, Yuanyuan Li, Wei Nie, Yongchun Liu, Wei Ma, Chao Yan, Markku Kulmala, Kaspar R. Daellenbach, David Hadden, Urs Baltensperger, Andre S. H. Prevot, Sachchida N. Tripathi, and Claudia Mohr
Atmos. Chem. Phys., 23, 9023–9036, https://doi.org/10.5194/acp-23-9023-2023, https://doi.org/10.5194/acp-23-9023-2023, 2023
Short summary
Short summary
In Delhi, some aspects of daytime and nighttime atmospheric chemistry are inverted, and parodoxically, vehicle emissions may be limiting other forms of particle production. This is because the nighttime emissions of nitrogen oxide (NO) by traffic and biomass burning prevent some chemical processes that would otherwise create even more particles and worsen the urban haze.
Cristina González-Flórez, Martina Klose, Andrés Alastuey, Sylvain Dupont, Jerónimo Escribano, Vicken Etyemezian, Adolfo Gonzalez-Romero, Yue Huang, Konrad Kandler, George Nikolich, Agnesh Panta, Xavier Querol, Cristina Reche, Jesús Yus-Díez, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 23, 7177–7212, https://doi.org/10.5194/acp-23-7177-2023, https://doi.org/10.5194/acp-23-7177-2023, 2023
Short summary
Short summary
Atmospheric mineral dust consists of tiny mineral particles that are emitted by wind erosion from arid regions. Its particle size distribution (PSD) affects its impact on the Earth's system. Nowadays, there is an incomplete understanding of the emitted dust PSD and a lot of debate about its variability. Here, we try to address these issues based on the measurements performed during a wind erosion and dust emission field campaign in the Moroccan Sahara within the framework of FRAGMENT project.
Samira Atabakhsh, Laurent Poulain, Gang Chen, Francesco Canonaco, André S. H. Prévôt, Mira Pöhlker, Alfred Wiedensohler, and Hartmut Herrmann
Atmos. Chem. Phys., 23, 6963–6988, https://doi.org/10.5194/acp-23-6963-2023, https://doi.org/10.5194/acp-23-6963-2023, 2023
Short summary
Short summary
The study focuses on the aerosol chemical variations found in the rural-background station of Melpitz based on ACSM and MAAP measurements. Source apportionment on both organic aerosol (OA) and black carbon (eBC) was performed, and source seasonality was also linked to air mass trajectories. Overall, three anthropogenic sources were identified in OA and eBC plus two additional aged OA. Our results demonstrate the influence of transported coal-combustion-related OA even during summer time.
Agnesh Panta, Konrad Kandler, Andres Alastuey, Cristina González-Flórez, Adolfo González-Romero, Martina Klose, Xavier Querol, Cristina Reche, Jesús Yus-Díez, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 23, 3861–3885, https://doi.org/10.5194/acp-23-3861-2023, https://doi.org/10.5194/acp-23-3861-2023, 2023
Short summary
Short summary
Desert dust is a major aerosol component of the Earth system and affects the climate. Dust properties are influenced by particle size, mineralogy, shape, and mixing state. This work characterizes freshly emitted individual mineral dust particles from a major source region using electron microscopy. Our new insights into critical particle-specific information will contribute to better constraining climate models that consider mineralogical variations in their representation of the dust cycle.
Vaishali Jain, Nidhi Tripathi, Sachchida N. Tripathi, Mansi Gupta, Lokesh K. Sahu, Vishnu Murari, Sreenivas Gaddamidi, Ashutosh K. Shukla, and Andre S. H. Prevot
Atmos. Chem. Phys., 23, 3383–3408, https://doi.org/10.5194/acp-23-3383-2023, https://doi.org/10.5194/acp-23-3383-2023, 2023
Short summary
Short summary
This research chemically characterises 173 different NMVOCs (non-methane volatile organic compounds) measured in real time for three seasons in the city of the central Indo-Gangetic basin of India, Lucknow. Receptor modelling is used to analyse probable sources of NMVOCs and their crucial role in forming ozone and secondary organic aerosols. It is observed that vehicular emissions and solid fuel combustion are the highest contributors to the emission of primary and secondary NMVOCs.
Tingting Feng, Yingkun Wang, Weiwei Hu, Ming Zhu, Wei Song, Wei Chen, Yanyan Sang, Zheng Fang, Wei Deng, Hua Fang, Xu Yu, Cheng Wu, Bin Yuan, Shan Huang, Min Shao, Xiaofeng Huang, Lingyan He, Young Ro Lee, Lewis Gregory Huey, Francesco Canonaco, Andre S. H. Prevot, and Xinming Wang
Atmos. Chem. Phys., 23, 611–636, https://doi.org/10.5194/acp-23-611-2023, https://doi.org/10.5194/acp-23-611-2023, 2023
Short summary
Short summary
To investigate the impact of aging processes on organic aerosols (OA), we conducted a comprehensive field study at a continental remote site using an on-line mass spectrometer. The results show that OA in the Chinese outflows were strongly influenced by upwind anthropogenic emissions. The aging processes can significantly decrease the OA volatility and result in a varied viscosity of OA under different circumstances, signifying the complex physiochemical properties of OA in aged plumes.
Yandong Tong, Lu Qi, Giulia Stefenelli, Dongyu Simon Wang, Francesco Canonaco, Urs Baltensperger, André Stephan Henry Prévôt, and Jay Gates Slowik
Atmos. Meas. Tech., 15, 7265–7291, https://doi.org/10.5194/amt-15-7265-2022, https://doi.org/10.5194/amt-15-7265-2022, 2022
Short summary
Short summary
We present a method for positive matrix factorisation (PMF) analysis on a single dataset that includes measurements from both EESI-TOF and AMS in Zurich, Switzerland. For the first time, we resolved and quantified secondary organic aerosol (SOA) sources. Meanwhile, we also determined the retrieved EESI-TOF factor-dependent sensitivities. This method provides a framework for exploiting semi-quantitative, high-resolution instrumentation for quantitative source apportionment.
David M. Bell, Cheng Wu, Amelie Bertrand, Emelie Graham, Janne Schoonbaert, Stamatios Giannoukos, Urs Baltensperger, Andre S. H. Prevot, Ilona Riipinen, Imad El Haddad, and Claudia Mohr
Atmos. Chem. Phys., 22, 13167–13182, https://doi.org/10.5194/acp-22-13167-2022, https://doi.org/10.5194/acp-22-13167-2022, 2022
Short summary
Short summary
A series of studies designed to investigate the evolution of organic aerosol were performed in an atmospheric simulation chamber, using a common oxidant found at night (NO3). The chemical composition steadily changed from its initial composition via different chemical reactions that were taking place inside of the aerosol particle. These results show that the composition of organic aerosol steadily changes during its lifetime in the atmosphere.
Marta Via, Gang Chen, Francesco Canonaco, Kaspar R. Daellenbach, Benjamin Chazeau, Hasna Chebaicheb, Jianhui Jiang, Hannes Keernik, Chunshui Lin, Nicolas Marchand, Cristina Marin, Colin O'Dowd, Jurgita Ovadnevaite, Jean-Eudes Petit, Michael Pikridas, Véronique Riffault, Jean Sciare, Jay G. Slowik, Leïla Simon, Jeni Vasilescu, Yunjiang Zhang, Olivier Favez, André S. H. Prévôt, Andrés Alastuey, and María Cruz Minguillón
Atmos. Meas. Tech., 15, 5479–5495, https://doi.org/10.5194/amt-15-5479-2022, https://doi.org/10.5194/amt-15-5479-2022, 2022
Short summary
Short summary
This work presents the differences resulting from two techniques (rolling and seasonal) of the positive matrix factorisation model that can be run for organic aerosol source apportionment. The current state of the art suggests that the rolling technique is more accurate, but no proof of its effectiveness has been provided yet. This paper tackles this issue in the context of a synthetic dataset and a multi-site real-world comparison.
Jesús Yus-Díez, Marta Via, Andrés Alastuey, Angeliki Karanasiou, María Cruz Minguillón, Noemí Perez, Xavier Querol, Cristina Reche, Matic Ivančič, Martin Rigler, and Marco Pandolfi
Atmos. Chem. Phys., 22, 8439–8456, https://doi.org/10.5194/acp-22-8439-2022, https://doi.org/10.5194/acp-22-8439-2022, 2022
Short summary
Short summary
This study presents the absorption enhancement of internally and externally mixed black carbon (BC) particles in a Mediterranean city and countryside. We showed the importance of secondary organic aerosols (SOAs) and particle ageing by increasing the BC absorption enhancement. We performed a trend analysis on the absorption enhancement. We found a positive trend of the absorption enhancement at the regional station in summer driven by the increase over time of the relative contribution of SOA.
Chuan Ping Lee, Mihnea Surdu, David M. Bell, Josef Dommen, Mao Xiao, Xueqin Zhou, Andrea Baccarini, Stamatios Giannoukos, Günther Wehrle, Pascal André Schneider, Andre S. H. Prevot, Jay G. Slowik, Houssni Lamkaddam, Dongyu Wang, Urs Baltensperger, and Imad El Haddad
Atmos. Meas. Tech., 15, 3747–3760, https://doi.org/10.5194/amt-15-3747-2022, https://doi.org/10.5194/amt-15-3747-2022, 2022
Short summary
Short summary
Real-time detection of both the gas and particle phase is needed to elucidate the sources and chemical reaction pathways of organic vapors and particulate matter. The Dual-EESI was developed to measure gas- and particle-phase species to provide new insights into aerosol sources or formation mechanisms. After characterizing the relative gas and particle response factors of EESI via organic aerosol uptake experiments, the Dual-EESI is more sensitive toward gas-phase analyes.
Varun Kumar, Stamatios Giannoukos, Sophie L. Haslett, Yandong Tong, Atinderpal Singh, Amelie Bertrand, Chuan Ping Lee, Dongyu S. Wang, Deepika Bhattu, Giulia Stefenelli, Jay S. Dave, Joseph V. Puthussery, Lu Qi, Pawan Vats, Pragati Rai, Roberto Casotto, Rangu Satish, Suneeti Mishra, Veronika Pospisilova, Claudia Mohr, David M. Bell, Dilip Ganguly, Vishal Verma, Neeraj Rastogi, Urs Baltensperger, Sachchida N. Tripathi, André S. H. Prévôt, and Jay G. Slowik
Atmos. Chem. Phys., 22, 7739–7761, https://doi.org/10.5194/acp-22-7739-2022, https://doi.org/10.5194/acp-22-7739-2022, 2022
Short summary
Short summary
Here we present source apportionment results from the first field deployment in Delhi of an extractive electrospray ionization time-of-flight mass spectrometer (EESI-TOF). The EESI-TOF is a recently developed instrument capable of providing uniquely detailed online chemical characterization of organic aerosol (OA), in particular the secondary OA (SOA) fraction. Here, we are able to apportion not only primary OA but also SOA to specific sources, which is performed for the first time in Delhi.
Amir Yazdani, Nikunj Dudani, Satoshi Takahama, Amelie Bertrand, André S. H. Prévôt, Imad El Haddad, and Ann M. Dillner
Atmos. Meas. Tech., 15, 2857–2874, https://doi.org/10.5194/amt-15-2857-2022, https://doi.org/10.5194/amt-15-2857-2022, 2022
Short summary
Short summary
While the aerosol mass spectrometer provides high-time-resolution characterization of the overall extent of oxidation, the extensive fragmentation of molecules and specificity of the technique have posed challenges toward deeper understanding of molecular structures in aerosols. This work demonstrates how functional group information can be extracted from a suite of commonly measured mass fragments using collocated infrared spectroscopy measurements.
Clémence Rose, Martine Collaud Coen, Elisabeth Andrews, Yong Lin, Isaline Bossert, Cathrine Lund Myhre, Thomas Tuch, Alfred Wiedensohler, Markus Fiebig, Pasi Aalto, Andrés Alastuey, Elisabeth Alonso-Blanco, Marcos Andrade, Begoña Artíñano, Todor Arsov, Urs Baltensperger, Susanne Bastian, Olaf Bath, Johan Paul Beukes, Benjamin T. Brem, Nicolas Bukowiecki, Juan Andrés Casquero-Vera, Sébastien Conil, Konstantinos Eleftheriadis, Olivier Favez, Harald Flentje, Maria I. Gini, Francisco Javier Gómez-Moreno, Martin Gysel-Beer, Anna Gannet Hallar, Ivo Kalapov, Nikos Kalivitis, Anne Kasper-Giebl, Melita Keywood, Jeong Eun Kim, Sang-Woo Kim, Adam Kristensson, Markku Kulmala, Heikki Lihavainen, Neng-Huei Lin, Hassan Lyamani, Angela Marinoni, Sebastiao Martins Dos Santos, Olga L. Mayol-Bracero, Frank Meinhardt, Maik Merkel, Jean-Marc Metzger, Nikolaos Mihalopoulos, Jakub Ondracek, Marco Pandolfi, Noemi Pérez, Tuukka Petäjä, Jean-Eudes Petit, David Picard, Jean-Marc Pichon, Veronique Pont, Jean-Philippe Putaud, Fabienne Reisen, Karine Sellegri, Sangeeta Sharma, Gerhard Schauer, Patrick Sheridan, James Patrick Sherman, Andreas Schwerin, Ralf Sohmer, Mar Sorribas, Junying Sun, Pierre Tulet, Ville Vakkari, Pieter Gideon van Zyl, Fernando Velarde, Paolo Villani, Stergios Vratolis, Zdenek Wagner, Sheng-Hsiang Wang, Kay Weinhold, Rolf Weller, Margarita Yela, Vladimir Zdimal, and Paolo Laj
Atmos. Chem. Phys., 21, 17185–17223, https://doi.org/10.5194/acp-21-17185-2021, https://doi.org/10.5194/acp-21-17185-2021, 2021
Short summary
Short summary
Aerosol particles are a complex component of the atmospheric system the effects of which are among the most uncertain in climate change projections. Using data collected at 62 stations, this study provides the most up-to-date picture of the spatial distribution of particle number concentration and size distribution worldwide, with the aim of contributing to better representation of aerosols and their interactions with clouds in models and, therefore, better evaluation of their impact on climate.
Dongyu S. Wang, Chuan Ping Lee, Jordan E. Krechmer, Francesca Majluf, Yandong Tong, Manjula R. Canagaratna, Julia Schmale, André S. H. Prévôt, Urs Baltensperger, Josef Dommen, Imad El Haddad, Jay G. Slowik, and David M. Bell
Atmos. Meas. Tech., 14, 6955–6972, https://doi.org/10.5194/amt-14-6955-2021, https://doi.org/10.5194/amt-14-6955-2021, 2021
Short summary
Short summary
To understand the sources and fate of particulate matter in the atmosphere, the ability to quantitatively describe its chemical composition is essential. In this work, we developed a calibration method for a state-of-the-art measurement technique without the need for chemical standards. Statistical analyses identified the driving factors behind instrument sensitivity variability towards individual components of particulate matter.
Gang Chen, Yulia Sosedova, Francesco Canonaco, Roman Fröhlich, Anna Tobler, Athanasia Vlachou, Kaspar R. Daellenbach, Carlo Bozzetti, Christoph Hueglin, Peter Graf, Urs Baltensperger, Jay G. Slowik, Imad El Haddad, and André S. H. Prévôt
Atmos. Chem. Phys., 21, 15081–15101, https://doi.org/10.5194/acp-21-15081-2021, https://doi.org/10.5194/acp-21-15081-2021, 2021
Short summary
Short summary
A novel, advanced source apportionment technique was applied to a dataset measured in Magadino. Rolling positive matrix factorisation (PMF) allows for retrieving more realistic, time-dependent, and detailed information on organic aerosol sources. The strength of the rolling PMF mechanism is highlighted by comparing it with results derived from conventional seasonal PMF. Overall, this comprehensive interpretation of aerosol chemical speciation monitor data could be a role model for similar work.
Wenfei Zhu, Song Guo, Zirui Zhang, Hui Wang, Ying Yu, Zheng Chen, Ruizhe Shen, Rui Tan, Kai Song, Kefan Liu, Rongzhi Tang, Yi Liu, Shengrong Lou, Yuanju Li, Wenbin Zhang, Zhou Zhang, Shijin Shuai, Hongming Xu, Shuangde Li, Yunfa Chen, Min Hu, Francesco Canonaco, and Andre S. H. Prévôt
Atmos. Chem. Phys., 21, 15065–15079, https://doi.org/10.5194/acp-21-15065-2021, https://doi.org/10.5194/acp-21-15065-2021, 2021
Short summary
Short summary
The experiments of primary emissions and secondary organic aerosol (SOA) formation from urban lifestyle sources (cooking and vehicles) were conducted. The mass spectral features of primary organic aerosol (POA) and SOA were characterized by using a high-resolution time-of-flight aerosol mass spectrometer. This work, for the first time, establishes the vehicle and cooking SOA source profiles and can be further used as source constraints in the OA source apportionment in the ambient atmosphere.
Anna K. Tobler, Alicja Skiba, Francesco Canonaco, Griša Močnik, Pragati Rai, Gang Chen, Jakub Bartyzel, Miroslaw Zimnoch, Katarzyna Styszko, Jaroslaw Nęcki, Markus Furger, Kazimierz Różański, Urs Baltensperger, Jay G. Slowik, and Andre S. H. Prevot
Atmos. Chem. Phys., 21, 14893–14906, https://doi.org/10.5194/acp-21-14893-2021, https://doi.org/10.5194/acp-21-14893-2021, 2021
Short summary
Short summary
Kraków is among the cities with the highest particulate matter levels within Europe. We conducted long-term and highly time-resolved measurements of the chemical composition of submicron particlulate matter (PM1). Combined with advanced source apportionment techniques, which allow for time-dependent factor profiles, our results elucidate that traffic and residential heating (biomass burning and coal combustion) as well as oxygenated organic aerosol are the key PM sources in Kraków.
Cheng Wu, David M. Bell, Emelie L. Graham, Sophie Haslett, Ilona Riipinen, Urs Baltensperger, Amelie Bertrand, Stamatios Giannoukos, Janne Schoonbaert, Imad El Haddad, Andre S. H. Prevot, Wei Huang, and Claudia Mohr
Atmos. Chem. Phys., 21, 14907–14925, https://doi.org/10.5194/acp-21-14907-2021, https://doi.org/10.5194/acp-21-14907-2021, 2021
Short summary
Short summary
Night-time reactions of biogenic volatile organic compounds and nitrate radicals can lead to the formation of secondary organic aerosol (BSOANO3). Here, we study the impacts of light exposure on the BSOANO3 from three biogenic precursors. Our results suggest that photolysis causes photodegradation of a substantial fraction of BSOANO3, changes the chemical composition and bulk volatility, and might be a potentially important loss pathway of BSOANO3 during the night-to-day transition.
Jesús Yus-Díez, Vera Bernardoni, Griša Močnik, Andrés Alastuey, Davide Ciniglia, Matic Ivančič, Xavier Querol, Noemí Perez, Cristina Reche, Martin Rigler, Roberta Vecchi, Sara Valentini, and Marco Pandolfi
Atmos. Meas. Tech., 14, 6335–6355, https://doi.org/10.5194/amt-14-6335-2021, https://doi.org/10.5194/amt-14-6335-2021, 2021
Short summary
Short summary
Here we characterize the multiple-scattering factor, C, of the dual-spot Aethalometer AE33 and its cross-sensitivity to scattering and wavelength dependence for three background stations: urban, regional and mountaintop. C was obtained for two sets of filter tapes: M8020 and M8060. The cross-sensitivity to scattering and wavelength dependence of C were determined by inter-comparing with other absorption and scattering measurements including multi-angle off-line absorption measurements.
Chuan Ping Lee, Mihnea Surdu, David M. Bell, Houssni Lamkaddam, Mingyi Wang, Farnoush Ataei, Victoria Hofbauer, Brandon Lopez, Neil M. Donahue, Josef Dommen, Andre S. H. Prevot, Jay G. Slowik, Dongyu Wang, Urs Baltensperger, and Imad El Haddad
Atmos. Meas. Tech., 14, 5913–5923, https://doi.org/10.5194/amt-14-5913-2021, https://doi.org/10.5194/amt-14-5913-2021, 2021
Short summary
Short summary
Extractive electrospray ionization mass spectrometry (EESI-MS) has been deployed for high throughput online detection of particles with minimal fragmentation. Our study elucidates the extraction mechanism between the particles and electrospray (ES) droplets of different properties. The results show that the extraction rate is likely affected by the coagulation rate between the particles and ES droplets. Once coagulated, the particles undergo complete extraction within the ES droplet.
Vaios Moschos, Martin Gysel-Beer, Robin L. Modini, Joel C. Corbin, Dario Massabò, Camilla Costa, Silvia G. Danelli, Athanasia Vlachou, Kaspar R. Daellenbach, Sönke Szidat, Paolo Prati, André S. H. Prévôt, Urs Baltensperger, and Imad El Haddad
Atmos. Chem. Phys., 21, 12809–12833, https://doi.org/10.5194/acp-21-12809-2021, https://doi.org/10.5194/acp-21-12809-2021, 2021
Short summary
Short summary
This study provides a holistic approach to studying the spectrally resolved light absorption by atmospheric brown carbon (BrC) and black carbon using long time series of daily samples from filter-based measurements. The obtained results provide (1) a better understanding of the aerosol absorption profile and its dependence on BrC and on lensing from less absorbing coatings and (2) an estimation of the most important absorbers at typical European locations.
Dimitrios Bousiotis, Francis D. Pope, David C. S. Beddows, Manuel Dall'Osto, Andreas Massling, Jakob Klenø Nøjgaard, Claus Nordstrøm, Jarkko V. Niemi, Harri Portin, Tuukka Petäjä, Noemi Perez, Andrés Alastuey, Xavier Querol, Giorgos Kouvarakis, Nikos Mihalopoulos, Stergios Vratolis, Konstantinos Eleftheriadis, Alfred Wiedensohler, Kay Weinhold, Maik Merkel, Thomas Tuch, and Roy M. Harrison
Atmos. Chem. Phys., 21, 11905–11925, https://doi.org/10.5194/acp-21-11905-2021, https://doi.org/10.5194/acp-21-11905-2021, 2021
Short summary
Short summary
Formation of new particles is a key process in the atmosphere. New particle formation events arising from nucleation of gaseous precursors have been analysed in extensive datasets from 13 sites in five European countries in terms of frequency, nucleation rate, and particle growth rate, with several common features and many differences identified. Although nucleation frequencies are lower at roadside sites, nucleation rates and particle growth rates are typically higher.
Evelyn Freney, Karine Sellegri, Alessia Nicosia, Leah R. Williams, Matteo Rinaldi, Jonathan T. Trueblood, André S. H. Prévôt, Melilotus Thyssen, Gérald Grégori, Nils Haëntjens, Julie Dinasquet, Ingrid Obernosterer, France Van Wambeke, Anja Engel, Birthe Zäncker, Karine Desboeufs, Eija Asmi, Hilkka Timonen, and Cécile Guieu
Atmos. Chem. Phys., 21, 10625–10641, https://doi.org/10.5194/acp-21-10625-2021, https://doi.org/10.5194/acp-21-10625-2021, 2021
Short summary
Short summary
In this work, we present observations of the organic aerosol content in primary sea spray aerosols (SSAs) continuously generated along a 5-week cruise in the Mediterranean. This information is combined with seawater biogeochemical properties also measured continuously along the ship track to develop a number of parametrizations that can be used in models to determine SSA organic content in oligotrophic waters that represent 60 % of the oceans from commonly measured seawater variables.
Amir Yazdani, Nikunj Dudani, Satoshi Takahama, Amelie Bertrand, André S. H. Prévôt, Imad El Haddad, and Ann M. Dillner
Atmos. Chem. Phys., 21, 10273–10293, https://doi.org/10.5194/acp-21-10273-2021, https://doi.org/10.5194/acp-21-10273-2021, 2021
Short summary
Short summary
Functional group compositions of primary and aged aerosols from wood burning and coal combustion sources from chamber experiments are interpreted through compounds present in the fuels and known gas-phase oxidation products. Infrared spectra of aged wood burning in the chamber and ambient biomass burning samples reveal striking similarities, and a new method for identifying burning-impacted samples in monitoring network measurements is presented.
Yandong Tong, Veronika Pospisilova, Lu Qi, Jing Duan, Yifang Gu, Varun Kumar, Pragati Rai, Giulia Stefenelli, Liwei Wang, Ying Wang, Haobin Zhong, Urs Baltensperger, Junji Cao, Ru-Jin Huang, André S. H. Prévôt, and Jay G. Slowik
Atmos. Chem. Phys., 21, 9859–9886, https://doi.org/10.5194/acp-21-9859-2021, https://doi.org/10.5194/acp-21-9859-2021, 2021
Short summary
Short summary
We investigate SOA sources and formation processes by a field deployment of the EESI-TOF-MS and L-TOF AMS in Beijing in late autumn and early winter. Our study shows that the sources and processes giving rise to haze events in Beijing are variable and seasonally dependent: (1) in the heating season, SOA formation is driven by oxidation of aromatics from solid fuel combustion; and (2) under high-NOx and RH conditions, aqueous-phase chemistry can be a major contributor to SOA formation.
Jose Antonio Benavent-Oltra, Juan Andrés Casquero-Vera, Roberto Román, Hassan Lyamani, Daniel Pérez-Ramírez, María José Granados-Muñoz, Milagros Herrera, Alberto Cazorla, Gloria Titos, Pablo Ortiz-Amezcua, Andrés Esteban Bedoya-Velásquez, Gregori de Arruda Moreira, Noemí Pérez, Andrés Alastuey, Oleg Dubovik, Juan Luis Guerrero-Rascado, Francisco José Olmo-Reyes, and Lucas Alados-Arboledas
Atmos. Chem. Phys., 21, 9269–9287, https://doi.org/10.5194/acp-21-9269-2021, https://doi.org/10.5194/acp-21-9269-2021, 2021
Short summary
Short summary
In this paper, we use the GRASP algorithm combining different remote sensing measurements to obtain the aerosol vertical and column properties during the SLOPE I and II campaigns. We show an overview of aerosol properties retrieved by GRASP during these campaigns and evaluate the retrievals of aerosol properties using the in situ measurements performed at a high-altitude station and airborne flights. For the first time we present an evaluation of the absorption coefficient by GRASP.
Marta Via, María Cruz Minguillón, Cristina Reche, Xavier Querol, and Andrés Alastuey
Atmos. Chem. Phys., 21, 8323–8339, https://doi.org/10.5194/acp-21-8323-2021, https://doi.org/10.5194/acp-21-8323-2021, 2021
Short summary
Short summary
Atmospheric pollutants have been measured in an urban environment by means of state-of-the-art techniques, allowing the origin and the sources of pollution to be identified. Recent years are shown to be increasingly dominated by non-directly emitted particulate matter. Knowledge about the sources of atmospheric pollutants is necessary to design effective mitigation policies.
Siqi Hou, Di Liu, Jingsha Xu, Tuan V. Vu, Xuefang Wu, Deepchandra Srivastava, Pingqing Fu, Linjie Li, Yele Sun, Athanasia Vlachou, Vaios Moschos, Gary Salazar, Sönke Szidat, André S. H. Prévôt, Roy M. Harrison, and Zongbo Shi
Atmos. Chem. Phys., 21, 8273–8292, https://doi.org/10.5194/acp-21-8273-2021, https://doi.org/10.5194/acp-21-8273-2021, 2021
Short summary
Short summary
This study provides a newly developed method which combines radiocarbon (14C) with organic tracers to enable source apportionment of primary and secondary fossil vs. non-fossil sources of carbonaceous aerosols at an urban and a rural site of Beijing. The source apportionment results were compared with those by chemical mass balance and AMS/ACSM-PMF methods. Correlations of WINSOC and WSOC with different sources of OC were also performed to elucidate the formation mechanisms of SOC.
Karl Espen Yttri, Francesco Canonaco, Sabine Eckhardt, Nikolaos Evangeliou, Markus Fiebig, Hans Gundersen, Anne-Gunn Hjellbrekke, Cathrine Lund Myhre, Stephen Matthew Platt, André S. H. Prévôt, David Simpson, Sverre Solberg, Jason Surratt, Kjetil Tørseth, Hilde Uggerud, Marit Vadset, Xin Wan, and Wenche Aas
Atmos. Chem. Phys., 21, 7149–7170, https://doi.org/10.5194/acp-21-7149-2021, https://doi.org/10.5194/acp-21-7149-2021, 2021
Short summary
Short summary
Carbonaceous aerosol sources and trends were studied at the Birkenes Observatory. A large decrease in elemental carbon (EC; 2001–2018) and a smaller decline in levoglucosan (2008–2018) suggest that organic carbon (OC)/EC from traffic/industry is decreasing, whereas the abatement of OC/EC from biomass burning has been less successful. Positive matrix factorization apportioned 72 % of EC to fossil fuel sources and 53 % (PM2.5) and 78 % (PM10–2.5) of OC to biogenic sources.
Andrea Cuesta-Mosquera, Griša Močnik, Luka Drinovec, Thomas Müller, Sascha Pfeifer, María Cruz Minguillón, Björn Briel, Paul Buckley, Vadimas Dudoitis, Javier Fernández-García, María Fernández-Amado, Joel Ferreira De Brito, Veronique Riffault, Harald Flentje, Eimear Heffernan, Nikolaos Kalivitis, Athina-Cerise Kalogridis, Hannes Keernik, Luminita Marmureanu, Krista Luoma, Angela Marinoni, Michael Pikridas, Gerhard Schauer, Norbert Serfozo, Henri Servomaa, Gloria Titos, Jesús Yus-Díez, Natalia Zioła, and Alfred Wiedensohler
Atmos. Meas. Tech., 14, 3195–3216, https://doi.org/10.5194/amt-14-3195-2021, https://doi.org/10.5194/amt-14-3195-2021, 2021
Short summary
Short summary
Measurements of black carbon must be conducted with instruments operating in quality-checked and assured conditions to generate reliable and comparable data. Here, 23 Aethalometers monitoring black carbon mass concentrations in European networks were characterized and intercompared. The influence of different aerosol sources, maintenance activities, and the filter material on the instrumental variabilities were investigated. Good agreement and in general low deviations were seen.
Jianhui Jiang, Imad El Haddad, Sebnem Aksoyoglu, Giulia Stefenelli, Amelie Bertrand, Nicolas Marchand, Francesco Canonaco, Jean-Eudes Petit, Olivier Favez, Stefania Gilardoni, Urs Baltensperger, and André S. H. Prévôt
Geosci. Model Dev., 14, 1681–1697, https://doi.org/10.5194/gmd-14-1681-2021, https://doi.org/10.5194/gmd-14-1681-2021, 2021
Short summary
Short summary
We developed a box model with a volatility basis set to simulate organic aerosol (OA) from biomass burning and optimized the vapor-wall-loss-corrected OA yields with a genetic algorithm. The optimized parameterizations were then implemented in the air quality model CAMx v6.5. Comparisons with ambient measurements indicate that the vapor-wall-loss-corrected parameterization effectively improves the model performance in predicting OA, which reduced the mean fractional bias from −72.9 % to −1.6 %.
Dimitrios Bousiotis, James Brean, Francis D. Pope, Manuel Dall'Osto, Xavier Querol, Andrés Alastuey, Noemi Perez, Tuukka Petäjä, Andreas Massling, Jacob Klenø Nøjgaard, Claus Nordstrøm, Giorgos Kouvarakis, Stergios Vratolis, Konstantinos Eleftheriadis, Jarkko V. Niemi, Harri Portin, Alfred Wiedensohler, Kay Weinhold, Maik Merkel, Thomas Tuch, and Roy M. Harrison
Atmos. Chem. Phys., 21, 3345–3370, https://doi.org/10.5194/acp-21-3345-2021, https://doi.org/10.5194/acp-21-3345-2021, 2021
Short summary
Short summary
New particle formation events from 16 sites over Europe have been studied, and the influence of meteorological and atmospheric composition variables has been investigated. Some variables, like solar radiation intensity and temperature, have a positive effect on the occurrence of these events, while others have a negative effect, affecting different aspects such as the rate at which particles are formed or grow. This effect varies depending on the site type and magnitude of these variables.
Ana Moreno, Miguel Bartolomé, Juan Ignacio López-Moreno, Jorge Pey, Juan Pablo Corella, Jordi García-Orellana, Carlos Sancho, María Leunda, Graciela Gil-Romera, Penélope González-Sampériz, Carlos Pérez-Mejías, Francisco Navarro, Jaime Otero-García, Javier Lapazaran, Esteban Alonso-González, Cristina Cid, Jerónimo López-Martínez, Belén Oliva-Urcia, Sérgio Henrique Faria, María José Sierra, Rocío Millán, Xavier Querol, Andrés Alastuey, and José M. García-Ruíz
The Cryosphere, 15, 1157–1172, https://doi.org/10.5194/tc-15-1157-2021, https://doi.org/10.5194/tc-15-1157-2021, 2021
Short summary
Short summary
Our study of the chronological sequence of Monte Perdido Glacier in the Central Pyrenees (Spain) reveals that, although the intense warming associated with the Roman period or Medieval Climate Anomaly produced important ice mass losses, it was insufficient to make this glacier disappear. By contrast, recent global warming has melted away almost 600 years of ice accumulated since the Little Ice Age, jeopardising the survival of this and other southern European glaciers over the next few decades.
Francesco Canonaco, Anna Tobler, Gang Chen, Yulia Sosedova, Jay Gates Slowik, Carlo Bozzetti, Kaspar Rudolf Daellenbach, Imad El Haddad, Monica Crippa, Ru-Jin Huang, Markus Furger, Urs Baltensperger, and André Stephan Henry Prévôt
Atmos. Meas. Tech., 14, 923–943, https://doi.org/10.5194/amt-14-923-2021, https://doi.org/10.5194/amt-14-923-2021, 2021
Short summary
Short summary
Long-term ambient aerosol mass spectrometric data were analyzed with a statistical model (PMF) to obtain source contributions and fingerprints. The new aspects of this paper involve time-dependent source fingerprints by a rolling technique and the replacement of the full visual inspection of each run by a user-defined set of criteria to monitor the quality of each of these runs more efficiently. More reliable sources will finally provide better instruments for political mitigation strategies.
Pragati Rai, Jay G. Slowik, Markus Furger, Imad El Haddad, Suzanne Visser, Yandong Tong, Atinderpal Singh, Günther Wehrle, Varun Kumar, Anna K. Tobler, Deepika Bhattu, Liwei Wang, Dilip Ganguly, Neeraj Rastogi, Ru-Jin Huang, Jaroslaw Necki, Junji Cao, Sachchida N. Tripathi, Urs Baltensperger, and André S. H. Prévôt
Atmos. Chem. Phys., 21, 717–730, https://doi.org/10.5194/acp-21-717-2021, https://doi.org/10.5194/acp-21-717-2021, 2021
Short summary
Short summary
We present a simple conceptual framework based on elemental size distributions and enrichment factors that allows for a characterization of major sources, site-to-site similarities, and local differences and the identification of key information required for efficient policy development. Absolute concentrations are by far the highest in Delhi, followed by Beijing, and then the European cities.
Jesús Yus-Díez, Marina Ealo, Marco Pandolfi, Noemí Perez, Gloria Titos, Griša Močnik, Xavier Querol, and Andrés Alastuey
Atmos. Chem. Phys., 21, 431–455, https://doi.org/10.5194/acp-21-431-2021, https://doi.org/10.5194/acp-21-431-2021, 2021
Short summary
Short summary
Here we describe the vertical profiles of extensive (scattering and absorption) and intensive (e.g. albedo and asymmetry parameter) aerosol optical properties from coupling ground-based measurements from two sites in north-eastern Spain and airborne measurements performed with an aircraft. We analyse different aerosol layers along the vertical profile for a regional pollution episode and a Saharan dust intrusion. The results show a change with height depending on the different measured layers.
Sebnem Aksoyoglu, Jianhui Jiang, Giancarlo Ciarelli, Urs Baltensperger, and André S. H. Prévôt
Atmos. Chem. Phys., 20, 15665–15680, https://doi.org/10.5194/acp-20-15665-2020, https://doi.org/10.5194/acp-20-15665-2020, 2020
Short summary
Short summary
We investigated the role of ammonia in European air quality between 1990 and 2030 under varying land and ship emissions. If ship emissions will be regulated more strictly in the future, particulate nitrate will decrease in coastal areas in northern Europe, while sulfate aerosol will decrease in the Mediterranean region. We predict a shift in the sensitivity of aerosol formation from NH3 towards NOx emissions between 1990 and 2030 in most of Europe except the eastern part of the model domain.
Anna K. Tobler, Alicja Skiba, Dongyu S. Wang, Philip Croteau, Katarzyna Styszko, Jarosław Nęcki, Urs Baltensperger, Jay G. Slowik, and André S. H. Prévôt
Atmos. Meas. Tech., 13, 5293–5301, https://doi.org/10.5194/amt-13-5293-2020, https://doi.org/10.5194/amt-13-5293-2020, 2020
Short summary
Short summary
Some quadrupole aerosol chemical speciation monitors (Q-ACSMs) have had issues with the quantification of particulate chloride, resulting in apparent negative chloride concentrations. We can show that this is due to the different behavior of Cl+ and HCl+, and we present a correction for the more accurate quantification of chloride. The correction can be applied to measurements in environments where the particulate chloride is dominated by NH4Cl.
James Brean, David C. S. Beddows, Zongbo Shi, Brice Temime-Roussel, Nicolas Marchand, Xavier Querol, Andrés Alastuey, María Cruz Minguillón, and Roy M. Harrison
Atmos. Chem. Phys., 20, 10029–10045, https://doi.org/10.5194/acp-20-10029-2020, https://doi.org/10.5194/acp-20-10029-2020, 2020
Short summary
Short summary
New particle formation is a key process influencing both local air quality and climatically active cloud condensation nuclei concentrations. This study has carried out fundamental measurements of nucleation processes in Barcelona, Spain, and concludes that a mechanism involving stabilisation of sulfuric acid clusters by low molecular weight amines is primarily responsible for new particle formation events.
Liwei Wang, Jay G. Slowik, Nidhi Tripathi, Deepika Bhattu, Pragati Rai, Varun Kumar, Pawan Vats, Rangu Satish, Urs Baltensperger, Dilip Ganguly, Neeraj Rastogi, Lokesh K. Sahu, Sachchida N. Tripathi, and André S. H. Prévôt
Atmos. Chem. Phys., 20, 9753–9770, https://doi.org/10.5194/acp-20-9753-2020, https://doi.org/10.5194/acp-20-9753-2020, 2020
Martin Rigler, Luka Drinovec, Gašper Lavrič, Athanasia Vlachou, André S. H. Prévôt, Jean Luc Jaffrezo, Iasonas Stavroulas, Jean Sciare, Judita Burger, Irena Kranjc, Janja Turšič, Anthony D. A. Hansen, and Griša Močnik
Atmos. Meas. Tech., 13, 4333–4351, https://doi.org/10.5194/amt-13-4333-2020, https://doi.org/10.5194/amt-13-4333-2020, 2020
Short summary
Short summary
Carbonaceous aerosols are a large fraction of fine particulate matter. They are extremely diverse, and they directly impact air quality, visibility, cloud formation and public health. In this paper we present a new instrument and new method to measure carbon content in particulate matter in real time and at a high time resolution. The new method was validated in a 1-month winter field campaign in Ljubljana, Slovenia.
Paolo Laj, Alessandro Bigi, Clémence Rose, Elisabeth Andrews, Cathrine Lund Myhre, Martine Collaud Coen, Yong Lin, Alfred Wiedensohler, Michael Schulz, John A. Ogren, Markus Fiebig, Jonas Gliß, Augustin Mortier, Marco Pandolfi, Tuukka Petäja, Sang-Woo Kim, Wenche Aas, Jean-Philippe Putaud, Olga Mayol-Bracero, Melita Keywood, Lorenzo Labrador, Pasi Aalto, Erik Ahlberg, Lucas Alados Arboledas, Andrés Alastuey, Marcos Andrade, Begoña Artíñano, Stina Ausmeel, Todor Arsov, Eija Asmi, John Backman, Urs Baltensperger, Susanne Bastian, Olaf Bath, Johan Paul Beukes, Benjamin T. Brem, Nicolas Bukowiecki, Sébastien Conil, Cedric Couret, Derek Day, Wan Dayantolis, Anna Degorska, Konstantinos Eleftheriadis, Prodromos Fetfatzis, Olivier Favez, Harald Flentje, Maria I. Gini, Asta Gregorič, Martin Gysel-Beer, A. Gannet Hallar, Jenny Hand, Andras Hoffer, Christoph Hueglin, Rakesh K. Hooda, Antti Hyvärinen, Ivo Kalapov, Nikos Kalivitis, Anne Kasper-Giebl, Jeong Eun Kim, Giorgos Kouvarakis, Irena Kranjc, Radovan Krejci, Markku Kulmala, Casper Labuschagne, Hae-Jung Lee, Heikki Lihavainen, Neng-Huei Lin, Gunter Löschau, Krista Luoma, Angela Marinoni, Sebastiao Martins Dos Santos, Frank Meinhardt, Maik Merkel, Jean-Marc Metzger, Nikolaos Mihalopoulos, Nhat Anh Nguyen, Jakub Ondracek, Noemi Pérez, Maria Rita Perrone, Jean-Eudes Petit, David Picard, Jean-Marc Pichon, Veronique Pont, Natalia Prats, Anthony Prenni, Fabienne Reisen, Salvatore Romano, Karine Sellegri, Sangeeta Sharma, Gerhard Schauer, Patrick Sheridan, James Patrick Sherman, Maik Schütze, Andreas Schwerin, Ralf Sohmer, Mar Sorribas, Martin Steinbacher, Junying Sun, Gloria Titos, Barbara Toczko, Thomas Tuch, Pierre Tulet, Peter Tunved, Ville Vakkari, Fernando Velarde, Patricio Velasquez, Paolo Villani, Sterios Vratolis, Sheng-Hsiang Wang, Kay Weinhold, Rolf Weller, Margarita Yela, Jesus Yus-Diez, Vladimir Zdimal, Paul Zieger, and Nadezda Zikova
Atmos. Meas. Tech., 13, 4353–4392, https://doi.org/10.5194/amt-13-4353-2020, https://doi.org/10.5194/amt-13-4353-2020, 2020
Short summary
Short summary
The paper establishes the fiducial reference of the GAW aerosol network providing the fully characterized value chain to the provision of four climate-relevant aerosol properties from ground-based sites. Data from almost 90 stations worldwide are reported for a reference year, 2017, providing a unique and very robust view of the variability of these variables worldwide. Current gaps in the GAW network are analysed and requirements for the Global Climate Monitoring System are proposed.
Eirini Boleti, Christoph Hueglin, Stuart K. Grange, André S. H. Prévôt, and Satoshi Takahama
Atmos. Chem. Phys., 20, 9051–9066, https://doi.org/10.5194/acp-20-9051-2020, https://doi.org/10.5194/acp-20-9051-2020, 2020
Short summary
Short summary
Long-term temporal evolution of ozone concentrations between 2000 and 2015 in Europe was estimated using a signal decomposition technique. The seasonal cycles are correlated with local climate conditions and vary according to geographic region, while ozone levels are indicative of distance to emission sources. The site's environment plays a key role in ozone trends, with the most polluted environments showing the least reduction in ozone, while in less polluted areas ozone has decreased.
Martine Collaud Coen, Elisabeth Andrews, Andrés Alastuey, Todor Petkov Arsov, John Backman, Benjamin T. Brem, Nicolas Bukowiecki, Cédric Couret, Konstantinos Eleftheriadis, Harald Flentje, Markus Fiebig, Martin Gysel-Beer, Jenny L. Hand, András Hoffer, Rakesh Hooda, Christoph Hueglin, Warren Joubert, Melita Keywood, Jeong Eun Kim, Sang-Woo Kim, Casper Labuschagne, Neng-Huei Lin, Yong Lin, Cathrine Lund Myhre, Krista Luoma, Hassan Lyamani, Angela Marinoni, Olga L. Mayol-Bracero, Nikos Mihalopoulos, Marco Pandolfi, Natalia Prats, Anthony J. Prenni, Jean-Philippe Putaud, Ludwig Ries, Fabienne Reisen, Karine Sellegri, Sangeeta Sharma, Patrick Sheridan, James Patrick Sherman, Junying Sun, Gloria Titos, Elvis Torres, Thomas Tuch, Rolf Weller, Alfred Wiedensohler, Paul Zieger, and Paolo Laj
Atmos. Chem. Phys., 20, 8867–8908, https://doi.org/10.5194/acp-20-8867-2020, https://doi.org/10.5194/acp-20-8867-2020, 2020
Short summary
Short summary
Long-term trends of aerosol radiative properties (52 stations) prove that aerosol load has significantly decreased over the last 20 years. Scattering trends are negative in Europe (EU) and North America (NA), not ss in Asia, and show a mix of positive and negative trends at polar stations. Absorption has mainly negative trends. The single scattering albedo has positive trends in Asia and eastern EU and negative in western EU and NA, leading to a global positive median trend of 0.02 % per year.
Tuukka Petäjä, Ella-Maria Duplissy, Ksenia Tabakova, Julia Schmale, Barbara Altstädter, Gerard Ancellet, Mikhail Arshinov, Yurii Balin, Urs Baltensperger, Jens Bange, Alison Beamish, Boris Belan, Antoine Berchet, Rossana Bossi, Warren R. L. Cairns, Ralf Ebinghaus, Imad El Haddad, Beatriz Ferreira-Araujo, Anna Franck, Lin Huang, Antti Hyvärinen, Angelika Humbert, Athina-Cerise Kalogridis, Pavel Konstantinov, Astrid Lampert, Matthew MacLeod, Olivier Magand, Alexander Mahura, Louis Marelle, Vladimir Masloboev, Dmitri Moisseev, Vaios Moschos, Niklas Neckel, Tatsuo Onishi, Stefan Osterwalder, Aino Ovaska, Pauli Paasonen, Mikhail Panchenko, Fidel Pankratov, Jakob B. Pernov, Andreas Platis, Olga Popovicheva, Jean-Christophe Raut, Aurélie Riandet, Torsten Sachs, Rosamaria Salvatori, Roberto Salzano, Ludwig Schröder, Martin Schön, Vladimir Shevchenko, Henrik Skov, Jeroen E. Sonke, Andrea Spolaor, Vasileios K. Stathopoulos, Mikko Strahlendorff, Jennie L. Thomas, Vito Vitale, Sterios Vratolis, Carlo Barbante, Sabine Chabrillat, Aurélien Dommergue, Konstantinos Eleftheriadis, Jyri Heilimo, Kathy S. Law, Andreas Massling, Steffen M. Noe, Jean-Daniel Paris, André S. H. Prévôt, Ilona Riipinen, Birgit Wehner, Zhiyong Xie, and Hanna K. Lappalainen
Atmos. Chem. Phys., 20, 8551–8592, https://doi.org/10.5194/acp-20-8551-2020, https://doi.org/10.5194/acp-20-8551-2020, 2020
Short summary
Short summary
The role of polar regions is increasing in terms of megatrends such as globalization, new transport routes, demography, and the use of natural resources with consequent effects on regional and transported pollutant concentrations. Here we summarize initial results from our integrative project exploring the Arctic environment and pollution to deliver data products, metrics, and indicators for stakeholders.
Yunle Chen, Masayuki Takeuchi, Theodora Nah, Lu Xu, Manjula R. Canagaratna, Harald Stark, Karsten Baumann, Francesco Canonaco, André S. H. Prévôt, L. Gregory Huey, Rodney J. Weber, and Nga L. Ng
Atmos. Chem. Phys., 20, 8421–8440, https://doi.org/10.5194/acp-20-8421-2020, https://doi.org/10.5194/acp-20-8421-2020, 2020
Short summary
Short summary
Two online mass spectrometry instruments, an aerosol mass spectrometer and a chemical ionization mass spectrometer equipped with a filter inlet for gases and aerosols, were deployed at Yorkville, GA, for a comprehensive characterization of organic aerosol. We observed notable secondary organic aerosol formation from isoprene and monoterpenes via different pathways during both day and night, and a series of highly oxidized acid-like compounds was found to be closely related to aged SOA.
Lu Qi, Alexander L. Vogel, Sepideh Esmaeilirad, Liming Cao, Jing Zheng, Jean-Luc Jaffrezo, Paola Fermo, Anne Kasper-Giebl, Kaspar R. Daellenbach, Mindong Chen, Xinlei Ge, Urs Baltensperger, André S. H. Prévôt, and Jay G. Slowik
Atmos. Chem. Phys., 20, 7875–7893, https://doi.org/10.5194/acp-20-7875-2020, https://doi.org/10.5194/acp-20-7875-2020, 2020
Short summary
Short summary
We present the first application of this online and offline strategy using the new extractive electrospray ionization time-of-flight mass spectrometer (EESI-TOF), which achieves increased chemical specificity relative to other online techniques. Measurement and source apportionment of 1 year of filter samples collected in Zurich, Switzerland, show seasonal contributions from fresh and aged wood combustion in winter and biogenic emission-derived SOA in summer, as well as other sources.
Pragati Rai, Markus Furger, Jay G. Slowik, Francesco Canonaco, Roman Fröhlich, Christoph Hüglin, María Cruz Minguillón, Krag Petterson, Urs Baltensperger, and André S. H. Prévôt
Atmos. Chem. Phys., 20, 1657–1674, https://doi.org/10.5194/acp-20-1657-2020, https://doi.org/10.5194/acp-20-1657-2020, 2020
Short summary
Short summary
A source apportionment study of hourly resolved elements in PM10 measured at a traffic-influenced site in Härkingen, Switzerland, using positive matrix factorization (PMF) and multilinear engine-2 (ME-2) offered resolution of robust and unambiguous factor profiles and contributions. We show that the rotational control available in ME-2 provides a means for treating extreme events such as fireworks within a PMF analysis.
Marco Paglione, Stefania Gilardoni, Matteo Rinaldi, Stefano Decesari, Nicola Zanca, Silvia Sandrini, Lara Giulianelli, Dimitri Bacco, Silvia Ferrari, Vanes Poluzzi, Fabiana Scotto, Arianna Trentini, Laurent Poulain, Hartmut Herrmann, Alfred Wiedensohler, Francesco Canonaco, André S. H. Prévôt, Paola Massoli, Claudio Carbone, Maria Cristina Facchini, and Sandro Fuzzi
Atmos. Chem. Phys., 20, 1233–1254, https://doi.org/10.5194/acp-20-1233-2020, https://doi.org/10.5194/acp-20-1233-2020, 2020
Short summary
Short summary
Our multi-year observational study regarding organic aerosol (OA) in the Po Valley indicates that more than half of OA is of secondary origin (SOA) through all the year and at both urban and rural sites. Within the SOA, the measurements show the importance of biomass burning (BB) aging products during cold seasons and indicate aqueous-phase processing of BB emissions as a fundamental driver of SOA formation in wintertime, with important consequences for air quality policy at the global level.
Marco Pandolfi, Dennis Mooibroek, Philip Hopke, Dominik van Pinxteren, Xavier Querol, Hartmut Herrmann, Andrés Alastuey, Olivier Favez, Christoph Hüglin, Esperanza Perdrix, Véronique Riffault, Stéphane Sauvage, Eric van der Swaluw, Oksana Tarasova, and Augustin Colette
Atmos. Chem. Phys., 20, 409–429, https://doi.org/10.5194/acp-20-409-2020, https://doi.org/10.5194/acp-20-409-2020, 2020
Short summary
Short summary
In the last scientific assessment report from the LRTAP Convention, it is stated that because non-urban sources are often major contributors to urban pollution, many cities will be unable to meet WHO guideline levels for air pollutants through local action alone. Consequently, it is very important to estimate how much the local and non-local sources contribute to urban pollution in order to design global strategies to reduce the levels of pollutants in European cities.
Jianhui Jiang, Sebnem Aksoyoglu, Imad El-Haddad, Giancarlo Ciarelli, Hugo A. C. Denier van der Gon, Francesco Canonaco, Stefania Gilardoni, Marco Paglione, María Cruz Minguillón, Olivier Favez, Yunjiang Zhang, Nicolas Marchand, Liqing Hao, Annele Virtanen, Kalliopi Florou, Colin O'Dowd, Jurgita Ovadnevaite, Urs Baltensperger, and André S. H. Prévôt
Atmos. Chem. Phys., 19, 15247–15270, https://doi.org/10.5194/acp-19-15247-2019, https://doi.org/10.5194/acp-19-15247-2019, 2019
Short summary
Short summary
We use an air quality model with a modified organic aerosol (OA) module based on chamber experiments to identify the OA sources and their contributions in Europe. Comparisons with long-term measurements at nine sites in 2011 show an improvement in OA simulation. Our results suggest that the biomass burning and biogenic emissions are the dominant sources in winter and summer, respectively. Contributions of diesel and gasoline vehicles are relatively small compared to a previous study in the US.
Giulia Stefenelli, Veronika Pospisilova, Felipe D. Lopez-Hilfiker, Kaspar R. Daellenbach, Christoph Hüglin, Yandong Tong, Urs Baltensperger, André S. H. Prévôt, and Jay G. Slowik
Atmos. Chem. Phys., 19, 14825–14848, https://doi.org/10.5194/acp-19-14825-2019, https://doi.org/10.5194/acp-19-14825-2019, 2019
Yunjiang Zhang, Olivier Favez, Jean-Eudes Petit, Francesco Canonaco, Francois Truong, Nicolas Bonnaire, Vincent Crenn, Tanguy Amodeo, Andre S. H. Prévôt, Jean Sciare, Valerie Gros, and Alexandre Albinet
Atmos. Chem. Phys., 19, 14755–14776, https://doi.org/10.5194/acp-19-14755-2019, https://doi.org/10.5194/acp-19-14755-2019, 2019
Short summary
Short summary
We present 6-year source apportionment of organic aerosol (OA) achieved with near-continuous online measurements and subsequent receptor model analysis in the Paris region, France. The OA factors presented distinct seasonal patterns, associated with different atmospheric formation processes and roles in air pollution. Limited year-round trends for two primary anthropogenic factors and a biogenic-like secondary factor were observed, while a more oxidized secondary OA showed a decreasing feature.
Jun Zhou, Miriam Elser, Ru-Jin Huang, Manuel Krapf, Roman Fröhlich, Deepika Bhattu, Giulia Stefenelli, Peter Zotter, Emily A. Bruns, Simone M. Pieber, Haiyan Ni, Qiyuan Wang, Yichen Wang, Yaqing Zhou, Chunying Chen, Mao Xiao, Jay G. Slowik, Samuel Brown, Laure-Estelle Cassagnes, Kaspar R. Daellenbach, Thomas Nussbaumer, Marianne Geiser, André S. H. Prévôt, Imad El-Haddad, Junji Cao, Urs Baltensperger, and Josef Dommen
Atmos. Chem. Phys., 19, 14703–14720, https://doi.org/10.5194/acp-19-14703-2019, https://doi.org/10.5194/acp-19-14703-2019, 2019
Short summary
Short summary
Reactive oxygen species (ROS) are believed to contribute to the adverse health effects of aerosols. We measured particle-bound ROS (PB-ROS) with an online instrument in two distinct environments, i.e., Beijing (China) and Bern (Switzerland). In both cities these exogenic ROS are predominantly related to secondary organic aerosol (SOA). PB-ROS content in SOA from various anthropogenic emission sources tested in the laboratory was comparable to that in the ambient measurements.
Miguel Escudero, Arjo Segers, Richard Kranenburg, Xavier Querol, Andrés Alastuey, Rafael Borge, David de la Paz, Gotzon Gangoiti, and Martijn Schaap
Atmos. Chem. Phys., 19, 14211–14232, https://doi.org/10.5194/acp-19-14211-2019, https://doi.org/10.5194/acp-19-14211-2019, 2019
Short summary
Short summary
In this work we optimise LOTOS-EUROS CTM for simulating tropospheric O3 during summer in the Madrid metropolitan area, one of the largest conurbations in the Mediterranean. Comparing the outputs from five set-ups with different combinations of spatial resolution, meteorological data and vertical structure, we conclude that the model benefits from fine horizontal resolution and highly resolved vertical structure. Running optimized configuration run, we interpret O3 variability during July 2016.
Xiaoli Shen, Heike Vogel, Bernhard Vogel, Wei Huang, Claudia Mohr, Ramakrishna Ramisetty, Thomas Leisner, André S. H. Prévôt, and Harald Saathoff
Atmos. Chem. Phys., 19, 13189–13208, https://doi.org/10.5194/acp-19-13189-2019, https://doi.org/10.5194/acp-19-13189-2019, 2019
Short summary
Short summary
This study provides good insight into the chemical nature and complex origin of aerosols by combining comprehensive field observations and transport modelling. We suggest that factors related to topography, metrological conditions, local emissions, in situ formation and growth, regional transport, and the interaction of biogenic and anthropogenic compounds need to be considered for a comprehensive understanding of aerosol processes.
Giulia Stefenelli, Jianhui Jiang, Amelie Bertrand, Emily A. Bruns, Simone M. Pieber, Urs Baltensperger, Nicolas Marchand, Sebnem Aksoyoglu, André S. H. Prévôt, Jay G. Slowik, and Imad El Haddad
Atmos. Chem. Phys., 19, 11461–11484, https://doi.org/10.5194/acp-19-11461-2019, https://doi.org/10.5194/acp-19-11461-2019, 2019
Short summary
Short summary
Box model simulations, based on the volatility basis set approach, of smog chamber wood combustion experiments conducted at different temperatures (−10 °C, 2 °C, 15 °C), emission loads, combustion conditions (flaming and smoldering) and residential stoves fabricated in the last 2 decades. Novel parameterization methods based on a genetic algorithm approach allowed estimation of precursor class contributions to SOA and evaluation of the effect of emission variability on SOA yield predictions.
Felipe D. Lopez-Hilfiker, Veronika Pospisilova, Wei Huang, Markus Kalberer, Claudia Mohr, Giulia Stefenelli, Joel A. Thornton, Urs Baltensperger, Andre S. H. Prevot, and Jay G. Slowik
Atmos. Meas. Tech., 12, 4867–4886, https://doi.org/10.5194/amt-12-4867-2019, https://doi.org/10.5194/amt-12-4867-2019, 2019
Short summary
Short summary
We present a novel, field-deployable extractive electrospray time-of-flight mass spectrometer (EESI-TOF), which provides real-time, near-molecular measurements of organic aerosol at atmospherically relevant concentrations, addressing a critical gap in existing measurement capabilities. Successful deployments of the EESI-TOF for laboratory measurements, ground-based ambient sampling, and aboard a research aircraft highlight the versatility and potential of the EESI-TOF system.
Jaime Benavides, Michelle Snyder, Marc Guevara, Albert Soret, Carlos Pérez García-Pando, Fulvio Amato, Xavier Querol, and Oriol Jorba
Geosci. Model Dev., 12, 2811–2835, https://doi.org/10.5194/gmd-12-2811-2019, https://doi.org/10.5194/gmd-12-2811-2019, 2019
Short summary
Short summary
The NO2 annual air quality limit value is systematically exceeded in many European cities. In this context, understanding human exposure, improving policy and planning, and providing forecasts requires the development of accurate air quality models at street level. We describe CALIOPE-Urban, a system coupling an operational mesoscale air quality forecast system with an urban roadway dispersion model over Barcelona city (Spain). The methodology may be replicated for other cities in the future.
Lu Qi, Mindong Chen, Giulia Stefenelli, Veronika Pospisilova, Yandong Tong, Amelie Bertrand, Christoph Hueglin, Xinlei Ge, Urs Baltensperger, André S. H. Prévôt, and Jay G. Slowik
Atmos. Chem. Phys., 19, 8037–8062, https://doi.org/10.5194/acp-19-8037-2019, https://doi.org/10.5194/acp-19-8037-2019, 2019
Short summary
Short summary
Current understanding of OA sources is limited by the chemical resolution of existing real-time measurement technology. We describe the first wintertime deployment of a novel extractive electrospray ionization time-of-flight mass spectrometer, which provides near-molecular OA measurements with high time resolution. We show that biomass combustion strongly influences winter OA. Via factor analysis, aging-dependent signatures and time contributions of biomass-combustion-derived OA are resolved.
Gloria Titos, Marina Ealo, Roberto Román, Alberto Cazorla, Yolanda Sola, Oleg Dubovik, Andrés Alastuey, and Marco Pandolfi
Atmos. Meas. Tech., 12, 3255–3267, https://doi.org/10.5194/amt-12-3255-2019, https://doi.org/10.5194/amt-12-3255-2019, 2019
Short summary
Short summary
We present new results of vertically resolved extensive aerosol optical properties (backscattering, scattering and extinction) and volume concentrations retrieved with the GRASP algorithm from ceilometer and photometer measurements. Long-term evaluation with in situ data gathered at the Montsec mountaintop observatory (northeastern Spain) shows good agreement, being a step forward towards a better representation of aerosol vertical distribution with wide spatial coverage.
Jordi Massagué, Cristina Carnerero, Miguel Escudero, José María Baldasano, Andrés Alastuey, and Xavier Querol
Atmos. Chem. Phys., 19, 7445–7465, https://doi.org/10.5194/acp-19-7445-2019, https://doi.org/10.5194/acp-19-7445-2019, 2019
Athanasia Vlachou, Anna Tobler, Houssni Lamkaddam, Francesco Canonaco, Kaspar R. Daellenbach, Jean-Luc Jaffrezo, María Cruz Minguillón, Marek Maasikmets, Erik Teinemaa, Urs Baltensperger, Imad El Haddad, and André S. H. Prévôt
Atmos. Chem. Phys., 19, 7279–7295, https://doi.org/10.5194/acp-19-7279-2019, https://doi.org/10.5194/acp-19-7279-2019, 2019
Short summary
Short summary
The resolution of rotational ambiguity in positive matrix factorization (PMF) models is a major challenge. Here, we developed a method based on bootstrapping and correlations to extract environmentally meaningful solutions from PMF analysis based on offline aerosol mass spectrometry data. The method has been tested on a dataset that covers 1 full year of filter samples collected at three different sites in Estonia.
Kaspar R. Daellenbach, Ivan Kourtchev, Alexander L. Vogel, Emily A. Bruns, Jianhui Jiang, Tuukka Petäjä, Jean-Luc Jaffrezo, Sebnem Aksoyoglu, Markus Kalberer, Urs Baltensperger, Imad El Haddad, and André S. H. Prévôt
Atmos. Chem. Phys., 19, 5973–5991, https://doi.org/10.5194/acp-19-5973-2019, https://doi.org/10.5194/acp-19-5973-2019, 2019
Short summary
Short summary
Here we present the molecular composition of the organic aerosol (OA) at an urban site in Central Europe (Zurich, Switzerland) and compare it to smog chamber wood smoke and ambient biogenic secondary OA (SOA) (Orbitrap analyses). Accordingly, we are able to explain the strong seasonality of the molecular composition by aged wood smoke and biogenic SOA during winter and summer. Our results could also explain the predominance of non-fossil organic carbon at European locations throughout the year.
María Teresa Pay, Gotzon Gangoiti, Marc Guevara, Sergey Napelenok, Xavier Querol, Oriol Jorba, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 19, 5467–5494, https://doi.org/10.5194/acp-19-5467-2019, https://doi.org/10.5194/acp-19-5467-2019, 2019
Short summary
Short summary
The poor diagnostic of the O3 issue over southwestern Europe prevents authorities from implementing effective mitigation plans. This work is a pioneer in identifying that imported O3 is the largest input to the ground-level O3 concentration in the Iberian Peninsula, which is largely explained by vertical mixing. This study also proves that anthropogenic emissions control the severe O3 peaks during stagnant conditions. Ad hoc local actions should complement national/European strategies.
Karl Espen Yttri, David Simpson, Robert Bergström, Gyula Kiss, Sönke Szidat, Darius Ceburnis, Sabine Eckhardt, Christoph Hueglin, Jacob Klenø Nøjgaard, Cinzia Perrino, Ignazio Pisso, Andre Stephan Henry Prevot, Jean-Philippe Putaud, Gerald Spindler, Milan Vana, Yan-Lin Zhang, and Wenche Aas
Atmos. Chem. Phys., 19, 4211–4233, https://doi.org/10.5194/acp-19-4211-2019, https://doi.org/10.5194/acp-19-4211-2019, 2019
Short summary
Short summary
Carbonaceous aerosols from natural sources were abundant regardless of season. Residential wood burning (RWB) emissions were occasionally equally as large as or larger than of fossil-fuel sources, depending on season and region. RWB emissions are poorly constrained; thus emissions inventories need improvement. Harmonizing emission factors between countries is likely the most important step to improve model calculations for biomass burning emissions and European PM2.5 concentrations in general.
Jianhui Jiang, Sebnem Aksoyoglu, Giancarlo Ciarelli, Emmanouil Oikonomakis, Imad El-Haddad, Francesco Canonaco, Colin O'Dowd, Jurgita Ovadnevaite, María Cruz Minguillón, Urs Baltensperger, and André S. H. Prévôt
Atmos. Chem. Phys., 19, 3747–3768, https://doi.org/10.5194/acp-19-3747-2019, https://doi.org/10.5194/acp-19-3747-2019, 2019
Short summary
Short summary
Biogenic volatile organic compound (BVOC) emissions from vegetation are essential inputs for air quality models but their uncertainties are very high. In this study we show the importance of BVOC emissions for modelled ozone and aerosol concentrations in Europe. Using different biogenic emissions from MEGAN and PSI models significantly affected organic aerosols (smaller effect on ozone), indicating the importance of harmonising the BVOC emissions in the model inter-comparison studies.
Mikko Äijälä, Kaspar R. Daellenbach, Francesco Canonaco, Liine Heikkinen, Heikki Junninen, Tuukka Petäjä, Markku Kulmala, André S. H. Prévôt, and Mikael Ehn
Atmos. Chem. Phys., 19, 3645–3672, https://doi.org/10.5194/acp-19-3645-2019, https://doi.org/10.5194/acp-19-3645-2019, 2019
Short summary
Short summary
Aerosol mass spectrometry produces large amounts of complex data, the analysis of which necessitates chemometrics – the application of advanced statistical and mathematical tools to chemical data. Here, we perform a data-driven analysis of multiple aerosol mass spectrometric data sets, to show that the traditional separation of organics and inorganics is not necessary. The resulting 7-component aerosol speciation explains 83 % to 96 % of observed variability at our boreal forest experiment site.
Li Xing, Jiarui Wu, Miriam Elser, Shengrui Tong, Suixin Liu, Xia Li, Lang Liu, Junji Cao, Jiamao Zhou, Imad El-Haddad, Rujin Huang, Maofa Ge, Xuexi Tie, André S. H. Prévôt, and Guohui Li
Atmos. Chem. Phys., 19, 2343–2359, https://doi.org/10.5194/acp-19-2343-2019, https://doi.org/10.5194/acp-19-2343-2019, 2019
Short summary
Short summary
We used the WRF-CHEM model to simulate wintertime secondary organic aerosol (SOA) concentrations over Beijing–Tianjin–Hebei (BTH), China. Heterogeneous HONO sources increased the near-surface SOA by 46.3 % in BTH. Direct emissions of glyoxal and methylglyoxal from residential sources contributed 25.5 % to the total SOA mass. Our study highlights the importance of heterogeneous HONO sources and primary residential emissions of glyoxal and methylglyoxal to SOA formation in winter over BTH.
Ru-Jin Huang, Yichen Wang, Junji Cao, Chunshui Lin, Jing Duan, Qi Chen, Yongjie Li, Yifang Gu, Jin Yan, Wei Xu, Roman Fröhlich, Francesco Canonaco, Carlo Bozzetti, Jurgita Ovadnevaite, Darius Ceburnis, Manjula R. Canagaratna, John Jayne, Douglas R. Worsnop, Imad El-Haddad, André S. H. Prévôt, and Colin D. O'Dowd
Atmos. Chem. Phys., 19, 2283–2298, https://doi.org/10.5194/acp-19-2283-2019, https://doi.org/10.5194/acp-19-2283-2019, 2019
Short summary
Short summary
We found that in wintertime Shijiazhuang fine PM was mostly from primary emissions without sufficient atmospheric aging. In addition, secondary inorganic and organic aerosol dominated in pollution events under high-RH conditions, likely due to enhanced aqueous-phase chemistry, whereas primary organic aerosol dominated in pollution events under low-RH and stagnant conditions. Our results also highlighted the importance of meteorological conditions for PM pollution in this highly polluted city.
Nivedita K. Kumar, Joel C. Corbin, Emily A. Bruns, Dario Massabó, Jay G. Slowik, Luka Drinovec, Griša Močnik, Paolo Prati, Athanasia Vlachou, Urs Baltensperger, Martin Gysel, Imad El-Haddad, and André S. H. Prévôt
Atmos. Chem. Phys., 18, 17843–17861, https://doi.org/10.5194/acp-18-17843-2018, https://doi.org/10.5194/acp-18-17843-2018, 2018
Short summary
Short summary
It is clear that considerable uncertainties still exist in understanding the magnitude of aerosol absorption on a global scale and its contribution to global warming. This manuscript provides a comprehensive assessment of the optical absorption by organic aerosols (brown carbon) from residential wood combustion as a function of atmospheric aging.
Cristina Carnerero, Noemí Pérez, Cristina Reche, Marina Ealo, Gloria Titos, Hong-Ku Lee, Hee-Ram Eun, Yong-Hee Park, Lubna Dada, Pauli Paasonen, Veli-Matti Kerminen, Enrique Mantilla, Miguel Escudero, Francisco J. Gómez-Moreno, Elisabeth Alonso-Blanco, Esther Coz, Alfonso Saiz-Lopez, Brice Temime-Roussel, Nicolas Marchand, David C. S. Beddows, Roy M. Harrison, Tuukka Petäjä, Markku Kulmala, Kang-Ho Ahn, Andrés Alastuey, and Xavier Querol
Atmos. Chem. Phys., 18, 16601–16618, https://doi.org/10.5194/acp-18-16601-2018, https://doi.org/10.5194/acp-18-16601-2018, 2018
Short summary
Short summary
The vertical distribution of new particle formation events was studied using tethered balloons carrying miniaturized instrumentation. Results show that new particle formation and growth occurs only in the lower layer of the atmosphere, where aerosols are mixed due to convection, especially when the atmosphere is clean. A comparison of urban and suburban surface stations was also made, suggesting that such events may have a significant impact on ultrafine particle concentrations in a wide area.
Yingjie Zhang, Wei Du, Yuying Wang, Qingqing Wang, Haofei Wang, Haitao Zheng, Fang Zhang, Hongrong Shi, Yuxuan Bian, Yongxiang Han, Pingqing Fu, Francesco Canonaco, André S. H. Prévôt, Tong Zhu, Pucai Wang, Zhanqing Li, and Yele Sun
Atmos. Chem. Phys., 18, 14637–14651, https://doi.org/10.5194/acp-18-14637-2018, https://doi.org/10.5194/acp-18-14637-2018, 2018
Short summary
Short summary
We have a comprehensive characterization of aerosol chemistry and particle growth events at a downwind site of a highly polluted city in the North China Plain. Aerosol particles at the urban downwind site were highly aged and mainly from secondary formation. New particle growth events were also frequently observed on both clean and polluted days. While both sulfate and SOA played important roles in particle growth during clean periods, SOA was more important than sulfate during polluted events.
Xiao-Feng Huang, Bei-Bing Zou, Ling-Yan He, Min Hu, André S. H. Prévôt, and Yuan-Hang Zhang
Atmos. Chem. Phys., 18, 11563–11580, https://doi.org/10.5194/acp-18-11563-2018, https://doi.org/10.5194/acp-18-11563-2018, 2018
Short summary
Short summary
A novel multilinear engine (ME-2) model was applied to the PM2.5 dataset observed in the Pearl River Delta (PRD) of China in 2015 and identified the sources of secondary sulfate (21 %), vehicle emissions (14 %), industrial emissions (13 %), secondary nitrate (11 %), biomass burning (11 %), secondary organic aerosol (7 %), coal burning (6 %), fugitive dust (5 %), ship emissions (3 %) and aged sea salt (2 %). The central PRD area was clearly identified as the key emission area in the PRD.
Amelie Bertrand, Giulia Stefenelli, Simone M. Pieber, Emily A. Bruns, Brice Temime-Roussel, Jay G. Slowik, Henri Wortham, André S. H. Prévôt, Imad El Haddad, and Nicolas Marchand
Atmos. Chem. Phys., 18, 10915–10930, https://doi.org/10.5194/acp-18-10915-2018, https://doi.org/10.5194/acp-18-10915-2018, 2018
Short summary
Short summary
We model the evolution of several BBOA markers including levoglucosan during aging experiments conducted in an atmospheric Teflon chamber, in order to evaluate the influence of vapor wall loss on the determination of the rate constants of the compounds with hydroxyl radicals (OH).
Xia Li, Jiarui Wu, Miriam Elser, Tian Feng, Junji Cao, Imad El-Haddad, Rujin Huang, Xuexi Tie, André S. H. Prévôt, and Guohui Li
Atmos. Chem. Phys., 18, 10675–10691, https://doi.org/10.5194/acp-18-10675-2018, https://doi.org/10.5194/acp-18-10675-2018, 2018
Simone M. Pieber, Nivedita K. Kumar, Felix Klein, Pierre Comte, Deepika Bhattu, Josef Dommen, Emily A. Bruns, Doǧuşhan Kılıç, Imad El Haddad, Alejandro Keller, Jan Czerwinski, Norbert Heeb, Urs Baltensperger, Jay G. Slowik, and André S. H. Prévôt
Atmos. Chem. Phys., 18, 9929–9954, https://doi.org/10.5194/acp-18-9929-2018, https://doi.org/10.5194/acp-18-9929-2018, 2018
Short summary
Short summary
We studied primary emissions and secondary organic aerosol (SOA) from gasoline direct injection (GDI) vehicles including GDIs retrofitted with gasoline particle filters (GPF). GPF retrofitting significantly decreased the primary particulate matter, particularly through removal of refractory black carbon and, to a lesser extent, of non-refractory organic particulates. SOA experiments were conducted in a batch and flow reactor. GPF retrofitting did not significantly affect precursors or yields.
Emmanouil Oikonomakis, Sebnem Aksoyoglu, Martin Wild, Giancarlo Ciarelli, Urs Baltensperger, and André Stephan Henry Prévôt
Atmos. Chem. Phys., 18, 9741–9765, https://doi.org/10.5194/acp-18-9741-2018, https://doi.org/10.5194/acp-18-9741-2018, 2018
Short summary
Short summary
We report a model sensitivity study on the impact of aerosol–radiation interaction (ARI) changes in Europe between 1990 and 2010 on summer surface ozone via effects on photolysis rates and biogenic emissions. The overall impact of ARI changes on ozone was relatively small when compared to the total ozone concentrations, but it was more important when compared to the order of magnitude of ozone trends, indicating a potential partial damping of the effects of ozone precursor emissions' reduction.
Yele Sun, Weiqi Xu, Qi Zhang, Qi Jiang, Francesco Canonaco, André S. H. Prévôt, Pingqing Fu, Jie Li, John Jayne, Douglas R. Worsnop, and Zifa Wang
Atmos. Chem. Phys., 18, 8469–8489, https://doi.org/10.5194/acp-18-8469-2018, https://doi.org/10.5194/acp-18-8469-2018, 2018
Short summary
Short summary
We present a 2–year analysis of organic aerosol (OA) from highly time–resolved measurements by an aerosol chemical speciation monitor in the megacity of Beijing. The sources of OA were analyzed with the advanced factor analysis of a multilinear engine (ME-2). Our results showed very different seasonal patterns, relative humidity and temperature dependence, and sources regions among different OA factors. The sources and processes of OA factors, and their roles in haze pollution are elucidated.
Marco Pandolfi, Lucas Alados-Arboledas, Andrés Alastuey, Marcos Andrade, Christo Angelov, Begoña Artiñano, John Backman, Urs Baltensperger, Paolo Bonasoni, Nicolas Bukowiecki, Martine Collaud Coen, Sébastien Conil, Esther Coz, Vincent Crenn, Vadimas Dudoitis, Marina Ealo, Kostas Eleftheriadis, Olivier Favez, Prodromos Fetfatzis, Markus Fiebig, Harald Flentje, Patrick Ginot, Martin Gysel, Bas Henzing, Andras Hoffer, Adela Holubova Smejkalova, Ivo Kalapov, Nikos Kalivitis, Giorgos Kouvarakis, Adam Kristensson, Markku Kulmala, Heikki Lihavainen, Chris Lunder, Krista Luoma, Hassan Lyamani, Angela Marinoni, Nikos Mihalopoulos, Marcel Moerman, José Nicolas, Colin O'Dowd, Tuukka Petäjä, Jean-Eudes Petit, Jean Marc Pichon, Nina Prokopciuk, Jean-Philippe Putaud, Sergio Rodríguez, Jean Sciare, Karine Sellegri, Erik Swietlicki, Gloria Titos, Thomas Tuch, Peter Tunved, Vidmantas Ulevicius, Aditya Vaishya, Milan Vana, Aki Virkkula, Stergios Vratolis, Ernest Weingartner, Alfred Wiedensohler, and Paolo Laj
Atmos. Chem. Phys., 18, 7877–7911, https://doi.org/10.5194/acp-18-7877-2018, https://doi.org/10.5194/acp-18-7877-2018, 2018
Short summary
Short summary
This investigation presents the variability in near-surface in situ aerosol particle light-scattering measurements obtained over the past decade at 28 measuring atmospheric observatories which are part of the ACTRIS Research Infrastructure, and most of them belong to the GAW network. This paper provides a comprehensive picture of the spatial and temporal variability of aerosol particles optical properties in Europe.
Amelie Bertrand, Giulia Stefenelli, Coty N. Jen, Simone M. Pieber, Emily A. Bruns, Haiyan Ni, Brice Temime-Roussel, Jay G. Slowik, Allen H. Goldstein, Imad El Haddad, Urs Baltensperger, André S. H. Prévôt, Henri Wortham, and Nicolas Marchand
Atmos. Chem. Phys., 18, 7607–7624, https://doi.org/10.5194/acp-18-7607-2018, https://doi.org/10.5194/acp-18-7607-2018, 2018
Short summary
Short summary
A thermal desorption aerosol gas chromatograph coupled to an aerosol mass spectrometer (TAG–AMS) is connected to an atmospheric chamber. The setup serves the quantitative study of the impact of combustion conditions and atmospheric aging on the chemical fingerprint at the molecular level of biomass burning organic aerosol.
Doğuşhan Kılıç, Imad El Haddad, Benjamin T. Brem, Emily Bruns, Carlo Bozetti, Joel Corbin, Lukas Durdina, Ru-Jin Huang, Jianhui Jiang, Felix Klein, Avi Lavi, Simone M. Pieber, Theo Rindlisbacher, Yinon Rudich, Jay G. Slowik, Jing Wang, Urs Baltensperger, and Andre S. H. Prévôt
Atmos. Chem. Phys., 18, 7379–7391, https://doi.org/10.5194/acp-18-7379-2018, https://doi.org/10.5194/acp-18-7379-2018, 2018
Short summary
Short summary
We study primary emissions and secondary aerosol (SA) from an aircraft turbofan. By monitoring the chemical composition of both gaseous and particulate emissions at different engine loads, we explained SA formed in an oxidation flow reactor (PAM) by the oxidation of gaseous species. At idle, more than 90 % of the secondary particle mass was organic and could be explained by the oxidation of gaseous aromatic species, while at an approximated cruise load sulfates comprised 85 % of the total SA.
Arineh Cholakian, Matthias Beekmann, Augustin Colette, Isabelle Coll, Guillaume Siour, Jean Sciare, Nicolas Marchand, Florian Couvidat, Jorge Pey, Valerie Gros, Stéphane Sauvage, Vincent Michoud, Karine Sellegri, Aurélie Colomb, Karine Sartelet, Helen Langley DeWitt, Miriam Elser, André S. H. Prévot, Sonke Szidat, and François Dulac
Atmos. Chem. Phys., 18, 7287–7312, https://doi.org/10.5194/acp-18-7287-2018, https://doi.org/10.5194/acp-18-7287-2018, 2018
Short summary
Short summary
In this work, four schemes for the simulation of organic aerosols in the western Mediterranean basin are added to the CHIMERE chemistry–transport model; the resulting simulations are then compared to measurements obtained from ChArMEx. It is concluded that the scheme taking into account the fragmentation and the formation of nonvolatile organic aerosols corresponds better to measurements; the major source of this aerosol in the western Mediterranean is found to be of biogenic origin.
Jun Zhou, Peter Zotter, Emily A. Bruns, Giulia Stefenelli, Deepika Bhattu, Samuel Brown, Amelie Bertrand, Nicolas Marchand, Houssni Lamkaddam, Jay G. Slowik, André S. H. Prévôt, Urs Baltensperger, Thomas Nussbaumer, Imad El-Haddad, and Josef Dommen
Atmos. Chem. Phys., 18, 6985–7000, https://doi.org/10.5194/acp-18-6985-2018, https://doi.org/10.5194/acp-18-6985-2018, 2018
Short summary
Short summary
We thoroughly studied the reactive oxygen species (ROS) generation potential of particulate wood combustion emissions, from different combustion technologies, fuel types, operation methods, combustion regimes and phases. ROS from automatically operated combustion devices under optimal conditions were much lower than those from manually operated appliances. We examined the impact of atmospheric aging on ROS content in SOA and determined the controlling parameters, by using an online ROS analyzer.
Xavier Querol, Andrés Alastuey, Gotzon Gangoiti, Noemí Perez, Hong K. Lee, Heeram R. Eun, Yonghee Park, Enrique Mantilla, Miguel Escudero, Gloria Titos, Lucio Alonso, Brice Temime-Roussel, Nicolas Marchand, Juan R. Moreta, M. Arantxa Revuelta, Pedro Salvador, Begoña Artíñano, Saúl García dos Santos, Mónica Anguas, Alberto Notario, Alfonso Saiz-Lopez, Roy M. Harrison, Millán Millán, and Kang-Ho Ahn
Atmos. Chem. Phys., 18, 6511–6533, https://doi.org/10.5194/acp-18-6511-2018, https://doi.org/10.5194/acp-18-6511-2018, 2018
Short summary
Short summary
We show the main drivers of high O3 episodes in and around Madrid. High levels of ultrafine particles (UFPs) are evidenced, but we demonstrate that most O3 arises from the fumigation of high atmospheric layers, whereas UFPs are generated inside the PBL. O3 contributions from the fumigation of the vertical recirculation of regional air masses, hemispheric transport, and horizontally from direct urban plume transport are shown. Complexity arises from the need to quantify them to abate surface O3.
Athanasia Vlachou, Kaspar R. Daellenbach, Carlo Bozzetti, Benjamin Chazeau, Gary A. Salazar, Soenke Szidat, Jean-Luc Jaffrezo, Christoph Hueglin, Urs Baltensperger, Imad El Haddad, and André S. H. Prévôt
Atmos. Chem. Phys., 18, 6187–6206, https://doi.org/10.5194/acp-18-6187-2018, https://doi.org/10.5194/acp-18-6187-2018, 2018
Short summary
Short summary
Carbonaceous aerosols are related to adverse human health effects, which depend on the aerosol chemical composition and size. Here, we combine aerosol mass spectrometry and radiocarbon measurements of size-resolved samples collected over a long term to identify the origins of primary and secondary carbonaceous aerosols in the fine and coarse modes.
Yan-Lin Zhang, Imad El-Haddad, Ru-Jin Huang, Kin-Fai Ho, Jun-Ji Cao, Yongming Han, Peter Zotter, Carlo Bozzetti, Kaspar R. Daellenbach, Jay G. Slowik, Gary Salazar, André S. H. Prévôt, and Sönke Szidat
Atmos. Chem. Phys., 18, 4005–4017, https://doi.org/10.5194/acp-18-4005-2018, https://doi.org/10.5194/acp-18-4005-2018, 2018
Short summary
Short summary
Here we present a quantitative source apportionment of WSOC, isolated from aerosols in China using radiocarbon (14C) and offline high-resolution time of flight aerosol mass spectrometer measurements. We demonstrate a dominant contribution of non-fossil emissions to WSOC aerosols in the Northern Hemisphere. However, the fossil fraction is substantially larger in aerosols from East Asia and the east Asian pollution outflow, especially during winter, due to increasing coal combustion.
Wei Zhou, Qingqing Wang, Xiujuan Zhao, Weiqi Xu, Chen Chen, Wei Du, Jian Zhao, Francesco Canonaco, André S. H. Prévôt, Pingqing Fu, Zifa Wang, Douglas R. Worsnop, and Yele Sun
Atmos. Chem. Phys., 18, 3951–3968, https://doi.org/10.5194/acp-18-3951-2018, https://doi.org/10.5194/acp-18-3951-2018, 2018
Short summary
Short summary
We present a 3-month analysis of submicron aerosols that were measured at 260 m on a meteorological tower in Beijing, China. The sources of organic aerosol (OA) were analyzed by using a multi-linear engine (ME-2). Our results showed significant changes in both primary and secondary OA composition from the non-heating season to the heating season. We also observed a considerable contribution (10–13%) of cooking OA at 260 m and very different OA composition between ground level and 260 m.
Julia Schmale, Silvia Henning, Stefano Decesari, Bas Henzing, Helmi Keskinen, Karine Sellegri, Jurgita Ovadnevaite, Mira L. Pöhlker, Joel Brito, Aikaterini Bougiatioti, Adam Kristensson, Nikos Kalivitis, Iasonas Stavroulas, Samara Carbone, Anne Jefferson, Minsu Park, Patrick Schlag, Yoko Iwamoto, Pasi Aalto, Mikko Äijälä, Nicolas Bukowiecki, Mikael Ehn, Göran Frank, Roman Fröhlich, Arnoud Frumau, Erik Herrmann, Hartmut Herrmann, Rupert Holzinger, Gerard Kos, Markku Kulmala, Nikolaos Mihalopoulos, Athanasios Nenes, Colin O'Dowd, Tuukka Petäjä, David Picard, Christopher Pöhlker, Ulrich Pöschl, Laurent Poulain, André Stephan Henry Prévôt, Erik Swietlicki, Meinrat O. Andreae, Paulo Artaxo, Alfred Wiedensohler, John Ogren, Atsushi Matsuki, Seong Soo Yum, Frank Stratmann, Urs Baltensperger, and Martin Gysel
Atmos. Chem. Phys., 18, 2853–2881, https://doi.org/10.5194/acp-18-2853-2018, https://doi.org/10.5194/acp-18-2853-2018, 2018
Short summary
Short summary
Collocated long-term observations of cloud condensation nuclei (CCN) number concentrations, particle number size distributions and chemical composition from 12 sites are synthesized. Observations cover coastal environments, the Arctic, the Mediterranean, the boreal and rain forest, high alpine and continental background sites, and Monsoon-influenced areas. We interpret regional and seasonal variability. CCN concentrations are predicted with the κ–Köhler model and compared to the measurements.
Qiao Zhu, Xiao-Feng Huang, Li-Ming Cao, Lin-Tong Wei, Bin Zhang, Ling-Yan He, Miriam Elser, Francesco Canonaco, Jay G. Slowik, Carlo Bozzetti, Imad El-Haddad, and André S. H. Prévôt
Atmos. Meas. Tech., 11, 1049–1060, https://doi.org/10.5194/amt-11-1049-2018, https://doi.org/10.5194/amt-11-1049-2018, 2018
Short summary
Short summary
Organic aerosol constitutes one of the major components of atmospheric particulate matter globally and is emitted from various sources. Therefore, identifying and quantifying the sources of organic aerosol accurately is a key task in the field. In this study, we applied a rather novel procedure for an improved source apportionment method (ME-2) to resolve the
less meaningful or mixed factorsproblems for organic aerosol using the traditional method (PMF).
Kaspar R. Daellenbach, Imad El-Haddad, Lassi Karvonen, Athanasia Vlachou, Joel C. Corbin, Jay G. Slowik, Maarten F. Heringa, Emily A. Bruns, Samuel M. Luedin, Jean-Luc Jaffrezo, Sönke Szidat, Andrea Piazzalunga, Raquel Gonzalez, Paola Fermo, Valentin Pflueger, Guido Vogel, Urs Baltensperger, and André S. H. Prévôt
Atmos. Chem. Phys., 18, 2155–2174, https://doi.org/10.5194/acp-18-2155-2018, https://doi.org/10.5194/acp-18-2155-2018, 2018
Short summary
Short summary
A novel offline LDI-MS method was developed to analyse particulate matter (PM) collected at multiple sites in central Europe during the entire year of 2013. PM sources were identified by positive matrix factorization. Wood burning emissions were separated according to the burning conditions; inefficient burns had a larger impact on air quality in southern Alpine valleys than in northern Switzerland. Moreover, primary tailpipe exhaust was distinguished from aged/secondary traffic emissions.
Emmanouil Oikonomakis, Sebnem Aksoyoglu, Giancarlo Ciarelli, Urs Baltensperger, and André Stephan Henry Prévôt
Atmos. Chem. Phys., 18, 2175–2198, https://doi.org/10.5194/acp-18-2175-2018, https://doi.org/10.5194/acp-18-2175-2018, 2018
Short summary
Short summary
We report a modeling study investigating the uncertainties in ozone production in Europe. Using various methods for different emission and meteorological scenarios, we searched for the possible reasons for underestimation of high ozone levels in Europe by models. Our results suggest that emissions, especially NOx, might be too low in the European inventories. Improvement of the modeled ozone production will contribute to more consistent and effective ozone mitigation strategies for the future.
Marina Ealo, Andrés Alastuey, Noemí Pérez, Anna Ripoll, Xavier Querol, and Marco Pandolfi
Atmos. Chem. Phys., 18, 1149–1169, https://doi.org/10.5194/acp-18-1149-2018, https://doi.org/10.5194/acp-18-1149-2018, 2018
Short summary
Short summary
This study aims to quantify the mass scattering and absorption efficiencies of different aerosol sources at urban (Barcelona), regional (Montseny) and remote (Montsec) background sites in the NW Mediterranean by analysing a source apportionment, first to PM10 and then to scattering and absorption coefficients. With this approach we addressed both the effect that aerosol sources have on air quality and their potential effect on light extinction.
Jun Zhou, Emily A. Bruns, Peter Zotter, Giulia Stefenelli, André S. H. Prévôt, Urs Baltensperger, Imad El-Haddad, and Josef Dommen
Atmos. Meas. Tech., 11, 65–80, https://doi.org/10.5194/amt-11-65-2018, https://doi.org/10.5194/amt-11-65-2018, 2018
Short summary
Short summary
Reactive oxygen species (ROS) in the particle phase may induce oxidative stress in the human lungs upon inhalation. Here we present and thoroughly characterize a modified online and offline ROS analyzer. Selected model organic compounds were tested and potential interferences from gas-phase and matrix effects of particulate constituents were evaluated. ROS measurements of filter samples revealed the rapid decay of a substantial ROS fraction, supporting the application of online measurements.
Naifang Bei, Jiarui Wu, Miriam Elser, Tian Feng, Junji Cao, Imad El-Haddad, Xia Li, Rujin Huang, Zhengqiang Li, Xin Long, Li Xing, Shuyu Zhao, Xuexi Tie, André S. H. Prévôt, and Guohui Li
Atmos. Chem. Phys., 17, 14579–14591, https://doi.org/10.5194/acp-17-14579-2017, https://doi.org/10.5194/acp-17-14579-2017, 2017
Yunjiang Zhang, Lili Tang, Philip L. Croteau, Olivier Favez, Yele Sun, Manjula R. Canagaratna, Zhuang Wang, Florian Couvidat, Alexandre Albinet, Hongliang Zhang, Jean Sciare, André S. H. Prévôt, John T. Jayne, and Douglas R. Worsnop
Atmos. Chem. Phys., 17, 14501–14517, https://doi.org/10.5194/acp-17-14501-2017, https://doi.org/10.5194/acp-17-14501-2017, 2017
Short summary
Short summary
We conducted the first field measurements of non-refractory fine aerosols (NR-PM2.5) in a megacity of eastern China using a PM2.5-ACSM along with a PM1-ACSM measurement. Inter-comparisons demonstrated that the NR-PM2.5 components can be characterized. Substantial mass fractions of aerosol species were observed in the size range of 1–2.5 μm, with sulfate and SOA being the two largest contributors. The impacts of aerosol water driven by secondary inorganic aerosols on SOA formation were explored.
Kaspar R. Daellenbach, Giulia Stefenelli, Carlo Bozzetti, Athanasia Vlachou, Paola Fermo, Raquel Gonzalez, Andrea Piazzalunga, Cristina Colombi, Francesco Canonaco, Christoph Hueglin, Anne Kasper-Giebl, Jean-Luc Jaffrezo, Federico Bianchi, Jay G. Slowik, Urs Baltensperger, Imad El-Haddad, and André S. H. Prévôt
Atmos. Chem. Phys., 17, 13265–13282, https://doi.org/10.5194/acp-17-13265-2017, https://doi.org/10.5194/acp-17-13265-2017, 2017
Short summary
Short summary
We present offline AMS analyses for the organic aerosol (OA) in PM10 at nine sites in central Europe for 2013. Primary OA is separated into traffic, cooking, and wood-burning components. A factor explaining sulfur-containing ions, with an event-driven time series, is also separated. We observe enhanced production of secondary OA (SOA) in summer, following biogenic emissions with temperature. In winter a SOA component is dominant, which correlates with anthropogenic inorganic species.
Alberto Cazorla, Juan Andrés Casquero-Vera, Roberto Román, Juan Luis Guerrero-Rascado, Carlos Toledano, Victoria E. Cachorro, José Antonio G. Orza, María Luisa Cancillo, Antonio Serrano, Gloria Titos, Marco Pandolfi, Andres Alastuey, Natalie Hanrieder, and Lucas Alados-Arboledas
Atmos. Chem. Phys., 17, 11861–11876, https://doi.org/10.5194/acp-17-11861-2017, https://doi.org/10.5194/acp-17-11861-2017, 2017
Short summary
Short summary
This work presents a method for the calibration and automated quality assurance of inversion of ceilometer profiles that is applied to the Iberian Ceilometer Network (ICENET). A cast study during an unusually intense dust outbreak affecting the Iberian Peninsula is shown. Results reveal that it is possible to obtain a quantitative optical aerosol characterization with ceilometers over large areas, and this information has a great potential for alert systems and model assimilation and evaluation.
Laura-Hélèna Rivellini, Isabelle Chiapello, Emmanuel Tison, Marc Fourmentin, Anaïs Féron, Aboubacry Diallo, Thierno N'Diaye, Philippe Goloub, Francesco Canonaco, André Stephan Henry Prévôt, and Véronique Riffault
Atmos. Chem. Phys., 17, 10291–10314, https://doi.org/10.5194/acp-17-10291-2017, https://doi.org/10.5194/acp-17-10291-2017, 2017
Short summary
Short summary
A 3-month field campaign was conducted in March–June 2015 in Senegal, as part of the SHADOW (SaHAran Dust Over West Africa) project. This article presents the time variability of the chemical composition of submicron particles. Organics (sulfates) were predominant for days under continental (marine) influence. Half the organic sources were identified as local, including one due to open waste-burning, and half were linked to regional air masses and enhanced photochemical processes.
Yi Ming Qin, Hao Bo Tan, Yong Jie Li, Misha I. Schurman, Fei Li, Francesco Canonaco, André S. H. Prévôt, and Chak K. Chan
Atmos. Chem. Phys., 17, 10245–10258, https://doi.org/10.5194/acp-17-10245-2017, https://doi.org/10.5194/acp-17-10245-2017, 2017
Short summary
Short summary
Freshly emitted HOA contributed significantly to the high concentrations of organics at night as heavy-duty vehicles enter downtown Guangzhou, while SOA contributed to the daytime high concentration. The large input of NOx, from automobile emissions, resulted in the significant formation of nitrate in both daytime and nighttime. Mitigating the PM pollution in urbanized areas such as Guangzhou can potentially benefit their peripheral cities, by reductions in traffic-related pollutants.
Prettiny K. Ma, Yunliang Zhao, Allen L. Robinson, David R. Worton, Allen H. Goldstein, Amber M. Ortega, Jose L. Jimenez, Peter Zotter, André S. H. Prévôt, Sönke Szidat, and Patrick L. Hayes
Atmos. Chem. Phys., 17, 9237–9259, https://doi.org/10.5194/acp-17-9237-2017, https://doi.org/10.5194/acp-17-9237-2017, 2017
Short summary
Short summary
Airborne particulate matter (PM) negatively impacts air quality in cities throughout the world. An important fraction of PM is organic aerosol. We have evaluated and developed several new models for secondary organic aerosol (SOA), which is formed from the chemical processing of gaseous precursors. Using our model results, we have quantified important SOA sources and precursors and also identified possible model parameterizations that could be used for air quality predictions.
M. Isabel García, Barend L. van Drooge, Sergio Rodríguez, and Andrés Alastuey
Atmos. Chem. Phys., 17, 8939–8958, https://doi.org/10.5194/acp-17-8939-2017, https://doi.org/10.5194/acp-17-8939-2017, 2017
Short summary
Short summary
Speciation of organic aerosol was performed in the westerlies and in the Saharan Air Layer, where biogenic secondary organic aerosol (oxidation of isoprene and alpha-pinene) and primary combustion compounds (hopanes and PAHs) were observed. In the Saharan Air Layer, species (saccharides) linked to soil emission – plant tissues and microorganisms – in the inner Sahara were also identified, whereas in the westerlies biomass burning compounds (e.g. levoglucosan) from North America also occurred.
Carlo Bozzetti, Imad El Haddad, Dalia Salameh, Kaspar Rudolf Daellenbach, Paola Fermo, Raquel Gonzalez, María Cruz Minguillón, Yoshiteru Iinuma, Laurent Poulain, Miriam Elser, Emanuel Müller, Jay Gates Slowik, Jean-Luc Jaffrezo, Urs Baltensperger, Nicolas Marchand, and André Stephan Henry Prévôt
Atmos. Chem. Phys., 17, 8247–8268, https://doi.org/10.5194/acp-17-8247-2017, https://doi.org/10.5194/acp-17-8247-2017, 2017
Short summary
Short summary
We present the first long-term organic aerosol source apportionment in an environment influenced by anthropogenic emissions including biomass burning and industrial processes and an active photochemistry. Online and offline aerosol mass spectrometry were used to characterize these emissions and their transformation. Measurements of organic markers provided insights into the origin of biomass smoke in this area, with different seasonal contributions from domestic heating and agricultural burning.
Sebnem Aksoyoglu, Giancarlo Ciarelli, Imad El-Haddad, Urs Baltensperger, and André S. H. Prévôt
Atmos. Chem. Phys., 17, 7757–7773, https://doi.org/10.5194/acp-17-7757-2017, https://doi.org/10.5194/acp-17-7757-2017, 2017
Short summary
Short summary
Sources of inorganic aerosols in Europe were investigated using a regional air quality model. Results of this study suggested that biogenic volatile organic coumpounds emitted from vegetation had a significant effect on inorganic aerosols, especially on ammonium nitrate concentrations. Sensitivity analyses showed that it is mainly terpene reactions with nitrate radical at night that lead to a decrease in ammonium nitrate.
Giancarlo Ciarelli, Imad El Haddad, Emily Bruns, Sebnem Aksoyoglu, Ottmar Möhler, Urs Baltensperger, and André S. H. Prévôt
Geosci. Model Dev., 10, 2303–2320, https://doi.org/10.5194/gmd-10-2303-2017, https://doi.org/10.5194/gmd-10-2303-2017, 2017
Short summary
Short summary
In Europe, residential wood-burning emissions constitute one of the main anthropogenic sources of air pollution. Novel wood-burning experiments performed in a state-of-the-art smog chamber provide valuable information on the chemical properties of wood-burning emissions and the transformation in the atmosphere. In this study, these new data were used in a box model to constrain a parameterization suitable for predicting the contribution of wood burning to air pollution with large-scale models.
Giancarlo Ciarelli, Sebnem Aksoyoglu, Imad El Haddad, Emily A. Bruns, Monica Crippa, Laurent Poulain, Mikko Äijälä, Samara Carbone, Evelyn Freney, Colin O'Dowd, Urs Baltensperger, and André S. H. Prévôt
Atmos. Chem. Phys., 17, 7653–7669, https://doi.org/10.5194/acp-17-7653-2017, https://doi.org/10.5194/acp-17-7653-2017, 2017
Short summary
Short summary
Organic aerosol (OA) comprises the main fraction of fine particulate matter (PM1). Using a new VBS parameterization, we performed model-based source apportionment studies to assess the importance of different emission sources to the total OA loads in Europe during winter periods. Our results indicate that residential wood burning emissions represent the major source of OA, followed by non-residential emission sources (i.e. traffic and industries).
M. Isabel García, Sergio Rodríguez, and Andrés Alastuey
Atmos. Chem. Phys., 17, 7387–7404, https://doi.org/10.5194/acp-17-7387-2017, https://doi.org/10.5194/acp-17-7387-2017, 2017
Short summary
Short summary
We measured the composition of the aerosols linked to transatlantic transport from North America to Izaña Observatory, Tenerife. The eastward-moving depressions prompt aerosols export. The seasonal shift of the westerlies stream over the aerosol sources prompts seasonality in the aerosol composition. High loads of dust, organics and sulfate occur in spring and elemental carbon occurs in summer. Aerosol population in the westerly winds over the North Atlantic is dominated by dust and organics.
Markus Furger, María Cruz Minguillón, Varun Yadav, Jay G. Slowik, Christoph Hüglin, Roman Fröhlich, Krag Petterson, Urs Baltensperger, and André S. H. Prévôt
Atmos. Meas. Tech., 10, 2061–2076, https://doi.org/10.5194/amt-10-2061-2017, https://doi.org/10.5194/amt-10-2061-2017, 2017
Short summary
Short summary
An Xact 625 Ambient Metals Monitor was tested during a 3-week summer field campaign at a rural, traffic-influenced site in Switzerland. The objective was to characterize the operation of the instrument, evaluate the data quality by intercomparison with other independent measurements, and test its applicability for aerosol source quantification. The results demonstrate significant advantages compared to traditional elemental analysis methods, with some desirable improvements.
Lisa Stirnweis, Claudia Marcolli, Josef Dommen, Peter Barmet, Carla Frege, Stephen M. Platt, Emily A. Bruns, Manuel Krapf, Jay G. Slowik, Robert Wolf, Andre S. H. Prévôt, Urs Baltensperger, and Imad El-Haddad
Atmos. Chem. Phys., 17, 5035–5061, https://doi.org/10.5194/acp-17-5035-2017, https://doi.org/10.5194/acp-17-5035-2017, 2017
Haiyan Li, Qi Zhang, Qiang Zhang, Chunrong Chen, Litao Wang, Zhe Wei, Shan Zhou, Caroline Parworth, Bo Zheng, Francesco Canonaco, André S. H. Prévôt, Ping Chen, Hongliang Zhang, Timothy J. Wallington, and Kebin He
Atmos. Chem. Phys., 17, 4751–4768, https://doi.org/10.5194/acp-17-4751-2017, https://doi.org/10.5194/acp-17-4751-2017, 2017
Short summary
Short summary
The sources and aerosol evolution processes of severe pollution episodes were investigated in Handan during wintertime using real-time measurements. An in-depth analysis of the data uncovered that primary emissions from coal combustion and biomass burning together with secondary formation of sulfate (mainly from SO2 emitted by coal combustion) are important driving factors for haze evolution. Our findings provide useful insights into air pollution control in heavily polluted regions.
Peter Zotter, Hanna Herich, Martin Gysel, Imad El-Haddad, Yanlin Zhang, Griša Močnik, Christoph Hüglin, Urs Baltensperger, Sönke Szidat, and André S. H. Prévôt
Atmos. Chem. Phys., 17, 4229–4249, https://doi.org/10.5194/acp-17-4229-2017, https://doi.org/10.5194/acp-17-4229-2017, 2017
Short summary
Short summary
Most studies use a single Ångström exponent for wood burning (αWB) and traffic (αTR) emissions in the Aethalometer model, used for source apportionment of black carbon, derived from previous work. However, accurate determination of the α values is currently lacking. Comparing radiocarbon measurements (14C) with the Aehtalometer model, good agreement was found, indicating that the Aethalometer model reproduces reasonably well the 14C results using our best estimate of a single αWB and αTR.
Luka Drinovec, Asta Gregorič, Peter Zotter, Robert Wolf, Emily Anne Bruns, André S. H. Prévôt, Jean-Eudes Petit, Olivier Favez, Jean Sciare, Ian J. Arnold, Rajan K. Chakrabarty, Hans Moosmüller, Agnes Filep, and Griša Močnik
Atmos. Meas. Tech., 10, 1043–1059, https://doi.org/10.5194/amt-10-1043-2017, https://doi.org/10.5194/amt-10-1043-2017, 2017
Short summary
Short summary
Black carbon measurements are usually conducted with absorption filter photometers, which are prone to the filter-loading effect – a saturation of the instrumental response due to the accumulation of the sample in the filter matrix. In this paper, we conducted several field campaigns to investigate the hypothesis that this filter-loading effect depends on the optical properties of particles present in the filter matrix, especially on the coating of black carbon particles.
Evangelia Diapouli, Manousos I. Manousakas, Stergios Vratolis, Vasiliki Vasilatou, Stella Pateraki, Kyriaki A. Bairachtari, Xavier Querol, Fulvio Amato, Andrés Alastuey, Angeliki A. Karanasiou, Franco Lucarelli, Silvia Nava, Giulia Calzolai, Vorne L. Gianelle, Cristina Colombi, Célia Alves, Danilo Custódio, Casimiro Pio, Christos Spyrou, George B. Kallos, and Konstantinos Eleftheriadis
Atmos. Chem. Phys., 17, 3673–3685, https://doi.org/10.5194/acp-17-3673-2017, https://doi.org/10.5194/acp-17-3673-2017, 2017
Short summary
Short summary
This study examined the contribution of two natural sources (long-range transport of African dust and sea salt) to the airborne particulate matter concentrations, in 5 southern European cities (Porto, Barcelona, Milan, Florence, Athens). The results demonstrated that natural sources are often expressed with high-intensity events, leading even to exceedances of the EU air quality standards. This effect was more pronounced in the case of African dust intrusions in the eastern Mediterranean area.
Mikko Äijälä, Liine Heikkinen, Roman Fröhlich, Francesco Canonaco, André S. H. Prévôt, Heikki Junninen, Tuukka Petäjä, Markku Kulmala, Douglas Worsnop, and Mikael Ehn
Atmos. Chem. Phys., 17, 3165–3197, https://doi.org/10.5194/acp-17-3165-2017, https://doi.org/10.5194/acp-17-3165-2017, 2017
Short summary
Short summary
Mass spectrometric measurements commonly yield data on hundreds of variables over thousands of points in time. Refining and synthesising this “raw” data into chemical information necessitates the use of advanced, statistics-based data analysis techniques. Here we present an example of combining data dimensionality reduction (factorisation) with exploratory classification (clustering) and show that the results complement and broaden our current perspectives on aerosol chemical classification.
Xavier Querol, Gotzon Gangoiti, Enrique Mantilla, Andrés Alastuey, Maria Cruz Minguillón, Fulvio Amato, Cristina Reche, Mar Viana, Teresa Moreno, Angeliki Karanasiou, Ioar Rivas, Noemí Pérez, Anna Ripoll, Mariola Brines, Marina Ealo, Marco Pandolfi, Hong-Ku Lee, Hee-Ram Eun, Yong-Hee Park, Miguel Escudero, David Beddows, Roy M. Harrison, Amelie Bertrand, Nicolas Marchand, Andrei Lyasota, Bernat Codina, Miriam Olid, Mireia Udina, Bernat Jiménez-Esteve, María R. Soler, Lucio Alonso, Millán Millán, and Kang-Ho Ahn
Atmos. Chem. Phys., 17, 2817–2838, https://doi.org/10.5194/acp-17-2817-2017, https://doi.org/10.5194/acp-17-2817-2017, 2017
Short summary
Short summary
High summer O3 episodes in NE Spain were analysed. We evidence the relevance of local emission of precursors in meteorological scenarios of vertical air mass recirculations, when transboundary contributions are also significant. Forecasting these scenarios and sensitivity analysis of possible O3 precursors drop are key for potential abatement strategies. However, this is a very difficult task due to the complexity of scenarios, the external contributions, and the complex O3 production reactions.
Emily A. Bruns, Jay G. Slowik, Imad El Haddad, Dogushan Kilic, Felix Klein, Josef Dommen, Brice Temime-Roussel, Nicolas Marchand, Urs Baltensperger, and André S. H. Prévôt
Atmos. Chem. Phys., 17, 705–720, https://doi.org/10.5194/acp-17-705-2017, https://doi.org/10.5194/acp-17-705-2017, 2017
Short summary
Short summary
We characterize primary and aged gaseous emissions from residential wood combustion using proton transfer reaction time-of-flight mass spectrometry. This approach allows for improved characterization, particularly of oxygenated gases, which are a considerable fraction of the total gaseous mass emitted during residential wood combustion. This study is the first thorough characterization of organic gases from this source and provides a benchmark for future studies.
Carlo Bozzetti, Yuliya Sosedova, Mao Xiao, Kaspar R. Daellenbach, Vidmantas Ulevicius, Vadimas Dudoitis, Genrik Mordas, Steigvilė Byčenkienė, Kristina Plauškaitė, Athanasia Vlachou, Benjamin Golly, Benjamin Chazeau, Jean-Luc Besombes, Urs Baltensperger, Jean-Luc Jaffrezo, Jay G. Slowik, Imad El Haddad, and André S. H. Prévôt
Atmos. Chem. Phys., 17, 117–141, https://doi.org/10.5194/acp-17-117-2017, https://doi.org/10.5194/acp-17-117-2017, 2017
Short summary
Short summary
In this study we present the offline-AMS source apportionment of the submicron organic aerosol (OA) sources conducted over 1 year at three locations in the south east Baltic region, which has so far received small attention. Offline-AMS enabled broadening the AMS spatial and temporal coverage, and provided a full characterization of the OA sources. Source apportionment results revealed that biomass burning and biogenic secondary emissions were the major OA sources during winter and summer.
Ernesto Reyes-Villegas, David C. Green, Max Priestman, Francesco Canonaco, Hugh Coe, André S. H. Prévôt, and James D. Allan
Atmos. Chem. Phys., 16, 15545–15559, https://doi.org/10.5194/acp-16-15545-2016, https://doi.org/10.5194/acp-16-15545-2016, 2016
Short summary
Short summary
For the first time in the UK, an Aerosol Chemical Speciation Monitor was used to measure aerosol concentrations in London in March–December 2013, with further organic aerosol (OA) source apportionment using the ME-2 factorization tool. Five OA sources were identified: biomass burning OA, hydrocarbon-like OA, cooking OA, semivolatile oxygenated OA and low-volatility oxygenated OA. This information can be used to take future action on the respective legislation in order to improve the air quality.
Jianzhong Xu, Jinsen Shi, Qi Zhang, Xinlei Ge, Francesco Canonaco, André S. H. Prévôt, Matthias Vonwiller, Sönke Szidat, Jinming Ge, Jianmin Ma, Yanqing An, Shichang Kang, and Dahe Qin
Atmos. Chem. Phys., 16, 14937–14957, https://doi.org/10.5194/acp-16-14937-2016, https://doi.org/10.5194/acp-16-14937-2016, 2016
Short summary
Short summary
This study deployed an AMS field study in Lanzhou, a city in northwestern China, evaluating the chemical composition, sources, and processes of urban aerosols during wintertime. In comparison with the results during summer in Lanzhou, the air pollution during winter was more severe and the sources were more complex. In addition, this paper estimates the contributions of fossil and non-fossil sources of organic carbon to primary and secondary organic carbon using the carbon isotopic method.
Petri Tiitta, Ari Leskinen, Liqing Hao, Pasi Yli-Pirilä, Miika Kortelainen, Julija Grigonyte, Jarkko Tissari, Heikki Lamberg, Anni Hartikainen, Kari Kuuspalo, Aki-Matti Kortelainen, Annele Virtanen, Kari E. J. Lehtinen, Mika Komppula, Simone Pieber, André S. H. Prévôt, Timothy B. Onasch, Douglas R. Worsnop, Hendryk Czech, Ralf Zimmermann, Jorma Jokiniemi, and Olli Sippula
Atmos. Chem. Phys., 16, 13251–13269, https://doi.org/10.5194/acp-16-13251-2016, https://doi.org/10.5194/acp-16-13251-2016, 2016
Short summary
Short summary
Real-time measurements of OA aging and SOA formation from logwood combustion were conducted under dark and UV oxidation. Substantial SOA formation was observed in all experiments, leading to twice the initial OA mass emphasizing the importance of the burning conditions for the aging processes. The results prove that emissions are subject to intensive chemical processing in the atmosphere; e.g. the most of the POA was found to become oxidized after the ozone addition, forming aged POA.
Michael Bressi, Fabrizia Cavalli, Claudio A. Belis, Jean-Philippe Putaud, Roman Fröhlich, Sebastiao Martins dos Santos, Ettore Petralia, André S. H. Prévôt, Massimo Berico, Antonella Malaguti, and Francesco Canonaco
Atmos. Chem. Phys., 16, 12875–12896, https://doi.org/10.5194/acp-16-12875-2016, https://doi.org/10.5194/acp-16-12875-2016, 2016
Short summary
Short summary
Atmospheric particulate matter (PM) levels and resulting impacts on human health are in the Po Valley (Italy) among the highest in Europe. This study discusses submicron PM chemical composition, sources and atmospheric processes in this region, using state-of-the-art measurement techniques and receptor models. Based on these results, effective PM abatement strategies are suggested in the upper Po Valley.
Bertrand Bessagnet, Guido Pirovano, Mihaela Mircea, Cornelius Cuvelier, Armin Aulinger, Giuseppe Calori, Giancarlo Ciarelli, Astrid Manders, Rainer Stern, Svetlana Tsyro, Marta García Vivanco, Philippe Thunis, Maria-Teresa Pay, Augustin Colette, Florian Couvidat, Frédérik Meleux, Laurence Rouïl, Anthony Ung, Sebnem Aksoyoglu, José María Baldasano, Johannes Bieser, Gino Briganti, Andrea Cappelletti, Massimo D'Isidoro, Sandro Finardi, Richard Kranenburg, Camillo Silibello, Claudio Carnevale, Wenche Aas, Jean-Charles Dupont, Hilde Fagerli, Lucia Gonzalez, Laurent Menut, André S. H. Prévôt, Pete Roberts, and Les White
Atmos. Chem. Phys., 16, 12667–12701, https://doi.org/10.5194/acp-16-12667-2016, https://doi.org/10.5194/acp-16-12667-2016, 2016
Short summary
Short summary
The EURODELTA III exercise allows a very comprehensive intercomparison and evaluation of air quality models' performance. On average, the models provide a rather good picture of the particulate matter (PM) concentrations over Europe even if the highest concentrations are underestimated. The meteorology is responsible for model discrepancies, while the lack of emissions, particularly in winter, is mentioned as the main reason for the underestimations of PM.
Chao Yan, Wei Nie, Mikko Äijälä, Matti P. Rissanen, Manjula R. Canagaratna, Paola Massoli, Heikki Junninen, Tuija Jokinen, Nina Sarnela, Silja A. K. Häme, Siegfried Schobesberger, Francesco Canonaco, Lei Yao, André S. H. Prévôt, Tuukka Petäjä, Markku Kulmala, Mikko Sipilä, Douglas R. Worsnop, and Mikael Ehn
Atmos. Chem. Phys., 16, 12715–12731, https://doi.org/10.5194/acp-16-12715-2016, https://doi.org/10.5194/acp-16-12715-2016, 2016
Short summary
Short summary
Highly oxidized multifunctional compounds (HOMs) are known to have a significant contribution to secondary aerosol formation, yet their dominating formation pathways remain unclear in the atmosphere. We apply positive matrix factorization (PMF) on HOM data, and successfully retrieve factors representing different formation pathways. The results improve our understanding of HOM formation, and provide new perspectives on using PMF to study the variation of short-lived specie.
Marina Ealo, Andrés Alastuey, Anna Ripoll, Noemí Pérez, María Cruz Minguillón, Xavier Querol, and Marco Pandolfi
Atmos. Chem. Phys., 16, 12567–12586, https://doi.org/10.5194/acp-16-12567-2016, https://doi.org/10.5194/acp-16-12567-2016, 2016
Short summary
Short summary
The present work demonstrates the potential of in situ aerosol optical measurements, from both nephelometer and aethalometer instruments, for detecting specific air pollution scenarios in near real time. Given the high sensitivity of the intensive aerosol optical properties to characterize atmospheric aerosols, these parameters were calibrated in order to detect Saharan dust and biomass burning events at regional (Montseny) and continental (Montsec) environments in the NW Mediterranean.
Marco Pandolfi, Andrés Alastuey, Noemi Pérez, Cristina Reche, Iria Castro, Victor Shatalov, and Xavier Querol
Atmos. Chem. Phys., 16, 11787–11805, https://doi.org/10.5194/acp-16-11787-2016, https://doi.org/10.5194/acp-16-11787-2016, 2016
Short summary
Short summary
The ambient concentration of many air pollutants in Europe has decreased in these last decades thanks to the effectiveness of the pollution control measures implemented at European or regional/local levels. In this work we studied the trends of the concentrations of many different pollutants during the period 2004–2014, reporting on the type of trend, magnitude of the trend, and its statistical significance. Data from two twin sites in NE Spain (regional and urban background) were used.
Weiwei Hu, Brett B. Palm, Douglas A. Day, Pedro Campuzano-Jost, Jordan E. Krechmer, Zhe Peng, Suzane S. de Sá, Scot T. Martin, M. Lizabeth Alexander, Karsten Baumann, Lina Hacker, Astrid Kiendler-Scharr, Abigail R. Koss, Joost A. de Gouw, Allen H. Goldstein, Roger Seco, Steven J. Sjostedt, Jeong-Hoo Park, Alex B. Guenther, Saewung Kim, Francesco Canonaco, André S. H. Prévôt, William H. Brune, and Jose L. Jimenez
Atmos. Chem. Phys., 16, 11563–11580, https://doi.org/10.5194/acp-16-11563-2016, https://doi.org/10.5194/acp-16-11563-2016, 2016
Short summary
Short summary
IEPOX-SOA is biogenically derived secondary organic aerosol under anthropogenic influence, which has been shown to comprise a substantial fraction of OA globally. We investigated the lifetime of ambient IEPOX-SOA in the SE US and Amazonia, with an oxidation flow reactor and thermodenuder coupled with MS-based instrumentation. The low volatility and long lifetime of IEPOX-SOA against OH radicals' oxidation (> 2 weeks) was observed, which can help to constrain OA impact on air quality and climate.
Giancarlo Ciarelli, Sebnem Aksoyoglu, Monica Crippa, Jose-Luis Jimenez, Eriko Nemitz, Karine Sellegri, Mikko Äijälä, Samara Carbone, Claudia Mohr, Colin O'Dowd, Laurent Poulain, Urs Baltensperger, and André S. H. Prévôt
Atmos. Chem. Phys., 16, 10313–10332, https://doi.org/10.5194/acp-16-10313-2016, https://doi.org/10.5194/acp-16-10313-2016, 2016
Short summary
Short summary
Recent studies based on aerosol mass spectrometer measurements revealed that the organic fraction dominates the non-refractory PM1 composition. However its representation in chemical transport models is still very challenging due to uncertainties in emission sources and formation pathways. In this study, a novel organic aerosol scheme was tested in the regional air quality model CAMx and results were compared with ambient measurements at 11 different sites in Europe.
Yvonne Boose, Berko Sierau, M. Isabel García, Sergio Rodríguez, Andrés Alastuey, Claudia Linke, Martin Schnaiter, Piotr Kupiszewski, Zamin A. Kanji, and Ulrike Lohmann
Atmos. Chem. Phys., 16, 9067–9087, https://doi.org/10.5194/acp-16-9067-2016, https://doi.org/10.5194/acp-16-9067-2016, 2016
Short summary
Short summary
Mineral dust is known to be among the most prevalent ice-nucleating particles (INPs) in the atmosphere, playing a crucial role for ice cloud formation. We present 2 months of ground-based in situ measurements of INP concentrations in the free troposphere close to the largest global dust source, the Sahara. We find that some atmospheric processes such as mixing with biological particles and ammonium increase the dust INP ability. This is important when predicting INPs based on emissions.
Patrick Schlag, Astrid Kiendler-Scharr, Marcus Johannes Blom, Francesco Canonaco, Jeroen Sebastiaan Henzing, Marcel Moerman, André Stephan Henry Prévôt, and Rupert Holzinger
Atmos. Chem. Phys., 16, 8831–8847, https://doi.org/10.5194/acp-16-8831-2016, https://doi.org/10.5194/acp-16-8831-2016, 2016
Short summary
Short summary
This work provides chemical composition data of atmospheric aerosols acquired during 1 year in the rural site of Cabauw, the Netherlands. In some periods, we found unexpected high particle mass concentrations exceeding the WHO limits. Using these composition data, we found that reducing ammonia emissions in this region would largely reduce the main aerosol component ammonium nitrate, whereas the local mitigation of the organics turned out to be difficult due to the lack of a designated source.
Antonis Gkikas, Sara Basart, Nikos Hatzianastassiou, Eleni Marinou, Vassilis Amiridis, Stelios Kazadzis, Jorge Pey, Xavier Querol, Oriol Jorba, Santiago Gassó, and José Maria Baldasano
Atmos. Chem. Phys., 16, 8609–8642, https://doi.org/10.5194/acp-16-8609-2016, https://doi.org/10.5194/acp-16-8609-2016, 2016
Short summary
Short summary
This study presents the 3-D structures of intense Mediterranean desert dust outbreaks, over the period Mar 2000–Feb 2013. The desert dust (DD) episodes are identified through an objective and dynamic algorithm, which utilizes satellite retrievals (MODIS, TOMS and OMI) as inputs. The performance of the satellite algorithm is evaluated vs. AERONET and PM10 data. The geometrical characteristics of the identified DD episodes are analyzed using the collocated CALIOP profiles as a complementary tool.
Miriam Elser, Carlo Bozzetti, Imad El-Haddad, Marek Maasikmets, Erik Teinemaa, Rene Richter, Robert Wolf, Jay G. Slowik, Urs Baltensperger, and André S. H. Prévôt
Atmos. Chem. Phys., 16, 7117–7134, https://doi.org/10.5194/acp-16-7117-2016, https://doi.org/10.5194/acp-16-7117-2016, 2016
Short summary
Short summary
This work presents the first detailed in-situ measurements of major air pollutants (including NR-PM2.5, eBC, and trace gases) in the two biggest cities in Estonia. The sources of organic aerosols were investigated by means of positive matrix factorization. Highly time-resolved mobile measurements allowed for the identification of source areas and the determination of regional background concentrations as well as urban increments of the individual components.
Mariola Brines, Manuel Dall'Osto, Fulvio Amato, María Cruz Minguillón, Angeliki Karanasiou, Andrés Alastuey, and Xavier Querol
Atmos. Chem. Phys., 16, 6785–6804, https://doi.org/10.5194/acp-16-6785-2016, https://doi.org/10.5194/acp-16-6785-2016, 2016
Andrés Alastuey, Xavier Querol, Wenche Aas, Franco Lucarelli, Noemí Pérez, Teresa Moreno, Fabrizia Cavalli, Hans Areskoug, Violeta Balan, Maria Catrambone, Darius Ceburnis, José C. Cerro, Sébastien Conil, Lusine Gevorgyan, Christoph Hueglin, Kornelia Imre, Jean-Luc Jaffrezo, Sarah R. Leeson, Nikolaos Mihalopoulos, Marta Mitosinkova, Colin D. O'Dowd, Jorge Pey, Jean-Philippe Putaud, Véronique Riffault, Anna Ripoll, Jean Sciare, Karine Sellegri, Gerald Spindler, and Karl Espen Yttri
Atmos. Chem. Phys., 16, 6107–6129, https://doi.org/10.5194/acp-16-6107-2016, https://doi.org/10.5194/acp-16-6107-2016, 2016
Short summary
Short summary
Mineral dust content in PM10 was analysed at 20 regional background sites across Europe. Higher dust loadings were observed at most sites in summer, with the most elevated concentrations in the southern- and easternmost countries, due to external and regional sources. Saharan dust outbreaks impacted western and central European in summer and eastern Mediterranean sites in winter. The spatial distribution of some metals reveals the influence of specific anthropogenic sources on a regional scale.
Vidmantas Ulevicius, Steigvilė Byčenkienė, Carlo Bozzetti, Athanasia Vlachou, Kristina Plauškaitė, Genrik Mordas, Vadimas Dudoitis, Gülcin Abbaszade, Vidmantas Remeikis, Andrius Garbaras, Agne Masalaite, Jan Blees, Roman Fröhlich, Kaspar R. Dällenbach, Francesco Canonaco, Jay G. Slowik, Josef Dommen, Ralf Zimmermann, Jürgen Schnelle-Kreis, Gary A. Salazar, Konstantinos Agrios, Sönke Szidat, Imad El Haddad, and André S. H. Prévôt
Atmos. Chem. Phys., 16, 5513–5529, https://doi.org/10.5194/acp-16-5513-2016, https://doi.org/10.5194/acp-16-5513-2016, 2016
Short summary
Short summary
In early spring the Baltic region is frequently affected by high pollution events due to biomass burning in that area. Here we present a comprehensive study to investigate the impact of biomass/grass burning (BB) on the evolution and composition of aerosol in Preila, Lithuania, during springtime open fires.
Emma Järvinen, Karoliina Ignatius, Leonid Nichman, Thomas B. Kristensen, Claudia Fuchs, Christopher R. Hoyle, Niko Höppel, Joel C. Corbin, Jill Craven, Jonathan Duplissy, Sebastian Ehrhart, Imad El Haddad, Carla Frege, Hamish Gordon, Tuija Jokinen, Peter Kallinger, Jasper Kirkby, Alexei Kiselev, Karl-Heinz Naumann, Tuukka Petäjä, Tamara Pinterich, Andre S. H. Prevot, Harald Saathoff, Thea Schiebel, Kamalika Sengupta, Mario Simon, Jay G. Slowik, Jasmin Tröstl, Annele Virtanen, Paul Vochezer, Steffen Vogt, Andrea C. Wagner, Robert Wagner, Christina Williamson, Paul M. Winkler, Chao Yan, Urs Baltensperger, Neil M. Donahue, Rick C. Flagan, Martin Gallagher, Armin Hansel, Markku Kulmala, Frank Stratmann, Douglas R. Worsnop, Ottmar Möhler, Thomas Leisner, and Martin Schnaiter
Atmos. Chem. Phys., 16, 4423–4438, https://doi.org/10.5194/acp-16-4423-2016, https://doi.org/10.5194/acp-16-4423-2016, 2016
Christos Fountoukis, Athanasios G. Megaritis, Ksakousti Skyllakou, Panagiotis E. Charalampidis, Hugo A. C. Denier van der Gon, Monica Crippa, André S. H. Prévôt, Friederike Fachinger, Alfred Wiedensohler, Christodoulos Pilinis, and Spyros N. Pandis
Atmos. Chem. Phys., 16, 3727–3741, https://doi.org/10.5194/acp-16-3727-2016, https://doi.org/10.5194/acp-16-3727-2016, 2016
Short summary
Short summary
We use PMCAMx with high grid resolution over Paris to simulate carbonaceous aerosol during the summer and winter MEGAPOLI campaigns. PMCAMx reproduces BC observations well. Addition of cooking organic aerosol emissions of 80 mg per day per capita is needed to reproduce the corresponding observations. While the oxygenated organic aerosol predictions during the summer are encouraging a major wintertime source appears to be missing.
Fulvio Amato, Andrés Alastuey, Angeliki Karanasiou, Franco Lucarelli, Silvia Nava, Giulia Calzolai, Mirko Severi, Silvia Becagli, Vorne L. Gianelle, Cristina Colombi, Celia Alves, Danilo Custódio, Teresa Nunes, Mario Cerqueira, Casimiro Pio, Konstantinos Eleftheriadis, Evangelia Diapouli, Cristina Reche, María Cruz Minguillón, Manousos-Ioannis Manousakas, Thomas Maggos, Stergios Vratolis, Roy M. Harrison, and Xavier Querol
Atmos. Chem. Phys., 16, 3289–3309, https://doi.org/10.5194/acp-16-3289-2016, https://doi.org/10.5194/acp-16-3289-2016, 2016
Short summary
Short summary
Harmonized source apportionment of atmospheric particulate matter (PM10 and PM2.5) at 5 EU cities (Barcelona, Florence, Milan, Athens and Porto) reveals that vehicle exhaust (excluding nitrate) plus non-exhaust contributes 16–32 % to PM10 and 15–36 % to PM2.5. Secondary PM represents 37–82 % of PM2.5. Biomass burning varies from < 2 to 24 % of PM10, depending on the residential heating fuel. Other sources are local dust (7–19 % of PM10), industries (4–11 % of PM10), shipping, sea salt and Saharan dust.
Miriam Elser, Ru-Jin Huang, Robert Wolf, Jay G. Slowik, Qiyuan Wang, Francesco Canonaco, Guohui Li, Carlo Bozzetti, Kaspar R. Daellenbach, Yu Huang, Renjian Zhang, Zhengqiang Li, Junji Cao, Urs Baltensperger, Imad El-Haddad, and André S. H. Prévôt
Atmos. Chem. Phys., 16, 3207–3225, https://doi.org/10.5194/acp-16-3207-2016, https://doi.org/10.5194/acp-16-3207-2016, 2016
Short summary
Short summary
This work represents the first online chemical characterization of the PM2.5 using a high-resolution time-of flight aerosol mass spectrometer during extreme haze events China. The application of novel source apportionment techniques allowed for an improved identification and quantification of the sources of organic aerosols. The main sources and processes driving the extreme haze events are assessed.
Andrea Paciga, Eleni Karnezi, Evangelia Kostenidou, Lea Hildebrandt, Magda Psichoudaki, Gabriella J. Engelhart, Byong-Hyoek Lee, Monica Crippa, André S. H. Prévôt, Urs Baltensperger, and Spyros N. Pandis
Atmos. Chem. Phys., 16, 2013–2023, https://doi.org/10.5194/acp-16-2013-2016, https://doi.org/10.5194/acp-16-2013-2016, 2016
Short summary
Short summary
We estimate the volatility distribution for the organic aerosol (OA) components during summer and winter field campaigns in Paris, France as part of the collaborative project MEGAPOLI. The OA factors (hydrocarbon like OA, cooking OA, marine OA, oxygenated OA) had a broad spectrum of volatilities with no direct link between the average volatility and average oxygen to carbon of the OA components.
Sebnem Aksoyoglu, Urs Baltensperger, and André S. H. Prévôt
Atmos. Chem. Phys., 16, 1895–1906, https://doi.org/10.5194/acp-16-1895-2016, https://doi.org/10.5194/acp-16-1895-2016, 2016
Short summary
Short summary
As a least-regulated source, ship emissions contribute significantly to air pollution. We used an air quality model to determine the effects of international shipping on the annual and seasonal concentrations of ozone, primary and secondary components of PM2.5, and dry and wet deposition of N and S compounds in Europe. The results presented in this paper suggest evolution of NOx emissions from ships and land-based NH3 emissions will play a significant role in the future European air quality.
C. R. Hoyle, C. Fuchs, E. Järvinen, H. Saathoff, A. Dias, I. El Haddad, M. Gysel, S. C. Coburn, J. Tröstl, A.-K. Bernhammer, F. Bianchi, M. Breitenlechner, J. C. Corbin, J. Craven, N. M. Donahue, J. Duplissy, S. Ehrhart, C. Frege, H. Gordon, N. Höppel, M. Heinritzi, T. B. Kristensen, U. Molteni, L. Nichman, T. Pinterich, A. S. H. Prévôt, M. Simon, J. G. Slowik, G. Steiner, A. Tomé, A. L. Vogel, R. Volkamer, A. C. Wagner, R. Wagner, A. S. Wexler, C. Williamson, P. M. Winkler, C. Yan, A. Amorim, J. Dommen, J. Curtius, M. W. Gallagher, R. C. Flagan, A. Hansel, J. Kirkby, M. Kulmala, O. Möhler, F. Stratmann, D. R. Worsnop, and U. Baltensperger
Atmos. Chem. Phys., 16, 1693–1712, https://doi.org/10.5194/acp-16-1693-2016, https://doi.org/10.5194/acp-16-1693-2016, 2016
Short summary
Short summary
A significant portion of sulphate, an important constituent of atmospheric aerosols, is formed via the aqueous phase oxidation of sulphur dioxide by ozone. The rate of this reaction has previously only been measured over a relatively small temperature range. Here, we use the state of the art CLOUD chamber at CERN to perform the first measurements of this reaction rate in super-cooled droplets, confirming that the existing extrapolation of the reaction rate to sub-zero temperatures is accurate.
L. Xu, L. R. Williams, D. E. Young, J. D. Allan, H. Coe, P. Massoli, E. Fortner, P. Chhabra, S. Herndon, W. A. Brooks, J. T. Jayne, D. R. Worsnop, A. C. Aiken, S. Liu, K. Gorkowski, M. K. Dubey, Z. L. Fleming, S. Visser, A. S. H. Prévôt, and N. L. Ng
Atmos. Chem. Phys., 16, 1139–1160, https://doi.org/10.5194/acp-16-1139-2016, https://doi.org/10.5194/acp-16-1139-2016, 2016
Short summary
Short summary
We investigate the spatial distribution of submicron aerosol in the greater London area as part of the Clean Air for London (ClearfLo) project in winter 2012. Although the concentrations of organic aerosol (OA) are similar between a rural and an urban site, the OA sources are different. We also examine the volatility of submicron aerosol at the rural site and find that the non-volatile organics have similar sources or have undergone similar chemical processing as refractory black carbon.
A. S. Fonseca, N. Talbot, J. Schwarz, J. Ondráček, V. Ždímal, J. Kozáková, M. Viana, A. Karanasiou, X. Querol, A. Alastuey, T. V. Vu, J. M. Delgado-Saborit, and R. M. Harrison
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2015-1016, https://doi.org/10.5194/acp-2015-1016, 2016
Revised manuscript not accepted
Short summary
Short summary
This work assessed the performance of 4 cascade impactors, by means of two intercomparison exercises in 2 European locations. The comparability between the different types of impactors assessed was dependent on particle size and on impactor design characteristics. Particle processes such as particle bounce, dissociation of semi volatiles in the coarser stages and/or particle shrinkage were identified as the main causes for the differences observed in particle mass across size fractions.
K. R. Daellenbach, C. Bozzetti, A. Křepelová, F. Canonaco, R. Wolf, P. Zotter, P. Fermo, M. Crippa, J. G. Slowik, Y. Sosedova, Y. Zhang, R.-J. Huang, L. Poulain, S. Szidat, U. Baltensperger, I. El Haddad, and A. S. H. Prévôt
Atmos. Meas. Tech., 9, 23–39, https://doi.org/10.5194/amt-9-23-2016, https://doi.org/10.5194/amt-9-23-2016, 2016
Short summary
Short summary
In this study, we developed an offline technique using the AMS for the characterization of the chemical fingerprints of aerosols collected on quartz filters, and evaluated the suitability of the organic mass spectral data for source apportionment. This technique may be used to enhance the AMS capabilities in measuring size-fractionated, spatially resolved long-term data sets.
V. Crenn, J. Sciare, P. L. Croteau, S. Verlhac, R. Fröhlich, C. A. Belis, W. Aas, M. Äijälä, A. Alastuey, B. Artiñano, D. Baisnée, N. Bonnaire, M. Bressi, M. Canagaratna, F. Canonaco, C. Carbone, F. Cavalli, E. Coz, M. J. Cubison, J. K. Esser-Gietl, D. C. Green, V. Gros, L. Heikkinen, H. Herrmann, C. Lunder, M. C. Minguillón, G. Močnik, C. D. O'Dowd, J. Ovadnevaite, J.-E. Petit, E. Petralia, L. Poulain, M. Priestman, V. Riffault, A. Ripoll, R. Sarda-Estève, J. G. Slowik, A. Setyan, A. Wiedensohler, U. Baltensperger, A. S. H. Prévôt, J. T. Jayne, and O. Favez
Atmos. Meas. Tech., 8, 5063–5087, https://doi.org/10.5194/amt-8-5063-2015, https://doi.org/10.5194/amt-8-5063-2015, 2015
Short summary
Short summary
A large intercomparison study of 13 Q-ACSM was conducted for a 3-week period in the region of Paris to evaluate the performance of this instrument and to monitor the major NR-PM1 chemical components. Reproducibility expanded uncertainties of Q-ACSM concentration measurements were found to be 9, 15, 19, 28, and 36% for NR-PM1, NO3, OM, SO4, and NH4, respectively. Some recommendations regarding best calibration practices, standardized data processing and data treatment are also provided.
R. Fröhlich, M. J. Cubison, J. G. Slowik, N. Bukowiecki, F. Canonaco, P. L. Croteau, M. Gysel, S. Henne, E. Herrmann, J. T. Jayne, M. Steinbacher, D. R. Worsnop, U. Baltensperger, and A. S. H. Prévôt
Atmos. Chem. Phys., 15, 11373–11398, https://doi.org/10.5194/acp-15-11373-2015, https://doi.org/10.5194/acp-15-11373-2015, 2015
Short summary
Short summary
This manuscript presents the first long-term (14-month) and highly time-resolved (10 min) measurements of NR-PM1 aerosol chemical composition at a high-altitude site (JFJ, Switzerland, 3580m a.s.l.). The elevated location allowed the investigation of free tropospheric aerosol year round. Total and relative mass loadings, diurnal variations as well as seasonal variations are discussed together with geographical origin, organic aerosol sources and the influence of the planetary boundary layer.
S. Visser, J. G. Slowik, M. Furger, P. Zotter, N. Bukowiecki, F. Canonaco, U. Flechsig, K. Appel, D. C. Green, A. H. Tremper, D. E. Young, P. I. Williams, J. D. Allan, H. Coe, L. R. Williams, C. Mohr, L. Xu, N. L. Ng, E. Nemitz, J. F. Barlow, C. H. Halios, Z. L. Fleming, U. Baltensperger, and A. S. H. Prévôt
Atmos. Chem. Phys., 15, 11291–11309, https://doi.org/10.5194/acp-15-11291-2015, https://doi.org/10.5194/acp-15-11291-2015, 2015
Short summary
Short summary
Trace element measurements in three particle size ranges (PM10-2.5, PM2.5-1.0 and PM1.0-0.3) were performed with 2h time resolution at kerbside, urban background and rural sites during the ClearfLo winter 2012 campaign in London. The environment-dependent variability of emissions was characterized using the Multilinear Engine implementation of the positive matrix factorization model. A total of nine different factors were resolved from local, regional and natural origin.
A. Karanasiou, M. C. Minguillón, M. Viana, A. Alastuey, J.-P. Putaud, W. Maenhaut, P. Panteliadis, G. Močnik, O. Favez, and T. A. J. Kuhlbusch
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amtd-8-9649-2015, https://doi.org/10.5194/amtd-8-9649-2015, 2015
Revised manuscript not accepted
M. Beekmann, A. S. H. Prévôt, F. Drewnick, J. Sciare, S. N. Pandis, H. A. C. Denier van der Gon, M. Crippa, F. Freutel, L. Poulain, V. Ghersi, E. Rodriguez, S. Beirle, P. Zotter, S.-L. von der Weiden-Reinmüller, M. Bressi, C. Fountoukis, H. Petetin, S. Szidat, J. Schneider, A. Rosso, I. El Haddad, A. Megaritis, Q. J. Zhang, V. Michoud, J. G. Slowik, S. Moukhtar, P. Kolmonen, A. Stohl, S. Eckhardt, A. Borbon, V. Gros, N. Marchand, J. L. Jaffrezo, A. Schwarzenboeck, A. Colomb, A. Wiedensohler, S. Borrmann, M. Lawrence, A. Baklanov, and U. Baltensperger
Atmos. Chem. Phys., 15, 9577–9591, https://doi.org/10.5194/acp-15-9577-2015, https://doi.org/10.5194/acp-15-9577-2015, 2015
Short summary
Short summary
A detailed characterization of air quality in the Paris (France) agglomeration, a megacity, during two summer and winter intensive campaigns and from additional 1-year observations, revealed that about 70% of the fine particulate matter (PM) at urban background is transported into the megacity from upwind regions. Unexpectedly, a major part of organic PM is of modern origin (woodburning and cooking activities, secondary formation from biogenic VOC).
S. Rodríguez, E. Cuevas, J. M. Prospero, A. Alastuey, X. Querol, J. López-Solano, M. I. García, and S. Alonso-Pérez
Atmos. Chem. Phys., 15, 7471–7486, https://doi.org/10.5194/acp-15-7471-2015, https://doi.org/10.5194/acp-15-7471-2015, 2015
Short summary
Short summary
Long-term 28-year variability of Saharan dust export to the Atlantic is correlated with large-scale meteorology in North Africa, particularly with the intensity of the Saharan high to tropical low dipole-like pattern, the so-called North African Dipole. Variability in the dipole intensity is connected with winds, monsoon rain band and latitudinal shifts of the Saharan air layer. Variability in the dipole intensity suggests connections with ENSO and the Sahel drought.
F. Canonaco, J. G. Slowik, U. Baltensperger, and A. S. H. Prévôt
Atmos. Chem. Phys., 15, 6993–7002, https://doi.org/10.5194/acp-15-6993-2015, https://doi.org/10.5194/acp-15-6993-2015, 2015
R. Fröhlich, V. Crenn, A. Setyan, C. A. Belis, F. Canonaco, O. Favez, V. Riffault, J. G. Slowik, W. Aas, M. Aijälä, A. Alastuey, B. Artiñano, N. Bonnaire, C. Bozzetti, M. Bressi, C. Carbone, E. Coz, P. L. Croteau, M. J. Cubison, J. K. Esser-Gietl, D. C. Green, V. Gros, L. Heikkinen, H. Herrmann, J. T. Jayne, C. R. Lunder, M. C. Minguillón, G. Močnik, C. D. O'Dowd, J. Ovadnevaite, E. Petralia, L. Poulain, M. Priestman, A. Ripoll, R. Sarda-Estève, A. Wiedensohler, U. Baltensperger, J. Sciare, and A. S. H. Prévôt
Atmos. Meas. Tech., 8, 2555–2576, https://doi.org/10.5194/amt-8-2555-2015, https://doi.org/10.5194/amt-8-2555-2015, 2015
Short summary
Short summary
Source apportionment (SA) of organic aerosol mass spectrometric data measured with the Aerodyne ACSM using PMF/ME2 is a frequently used technique in the AMS/ACSM community. ME2 uncertainties due to instrument-to-instrument variations are elucidated by performing SA on ambient data from 14 individual, co-located ACSMs, recorded during the first ACTRIS ACSM intercomparison study at SIRTA near Paris (France). The mean uncertainty was 17.2%. Recommendations for future studies using ME2 are provided.
M. Brines, M. Dall'Osto, D. C. S. Beddows, R. M. Harrison, F. Gómez-Moreno, L. Núñez, B. Artíñano, F. Costabile, G. P. Gobbi, F. Salimi, L. Morawska, C. Sioutas, and X. Querol
Atmos. Chem. Phys., 15, 5929–5945, https://doi.org/10.5194/acp-15-5929-2015, https://doi.org/10.5194/acp-15-5929-2015, 2015
P. L. Hayes, A. G. Carlton, K. R. Baker, R. Ahmadov, R. A. Washenfelder, S. Alvarez, B. Rappenglück, J. B. Gilman, W. C. Kuster, J. A. de Gouw, P. Zotter, A. S. H. Prévôt, S. Szidat, T. E. Kleindienst, J. H. Offenberg, P. K. Ma, and J. L. Jimenez
Atmos. Chem. Phys., 15, 5773–5801, https://doi.org/10.5194/acp-15-5773-2015, https://doi.org/10.5194/acp-15-5773-2015, 2015
Short summary
Short summary
(1) Four different parameterizations for the formation and chemical evolution of secondary organic aerosol (SOA) are evaluated using a box model representing the Los Angeles region during the CalNex campaign.
(2) The SOA formed only from the oxidation of VOCs is insufficient to explain the observed SOA concentrations.
(3) The amount of SOA mass formed from diesel vehicle emissions is estimated to be 16-27%.
(4) Modeled SOA depends strongly on the P-S/IVOC volatility distribution.
L. Drinovec, G. Močnik, P. Zotter, A. S. H. Prévôt, C. Ruckstuhl, E. Coz, M. Rupakheti, J. Sciare, T. Müller, A. Wiedensohler, and A. D. A. Hansen
Atmos. Meas. Tech., 8, 1965–1979, https://doi.org/10.5194/amt-8-1965-2015, https://doi.org/10.5194/amt-8-1965-2015, 2015
Short summary
Short summary
We present a new real-time algorithm for compensation of the filter-loading effect in filter photometers, based on a two parallel spot measurement of optical absorption. This algorithm has been incorporated into the new Aethalometer AE33. Intercomparison studies show excellent reproducibility of the AE33 measurements and very good agreement with post-processed data obtained using earlier aethalometer models and other filter-based absorption photometers.
L. R. Crilley, W. J. Bloss, J. Yin, D. C. S. Beddows, R. M. Harrison, J. D. Allan, D. E. Young, M. Flynn, P. Williams, P. Zotter, A. S. H. Prevot, M. R. Heal, J. F. Barlow, C. H. Halios, J. D. Lee, S. Szidat, and C. Mohr
Atmos. Chem. Phys., 15, 3149–3171, https://doi.org/10.5194/acp-15-3149-2015, https://doi.org/10.5194/acp-15-3149-2015, 2015
Short summary
Short summary
Wood is a renewable fuel but its combustion for residential heating releases a number of locally acting air pollutants, most notably particulate matter known to have adverse effects on human health. This paper used chemical tracers for wood smoke to estimate the contribution that burning wood makes to concentrations of airborne particles in the atmosphere of southern England and most particularly in London.
A. Ripoll, M. C. Minguillón, J. Pey, J. L. Jimenez, D. A. Day, Y. Sosedova, F. Canonaco, A. S. H. Prévôt, X. Querol, and A. Alastuey
Atmos. Chem. Phys., 15, 2935–2951, https://doi.org/10.5194/acp-15-2935-2015, https://doi.org/10.5194/acp-15-2935-2015, 2015
Short summary
Short summary
Real-time measurements of inorganic (sulfate, nitrate, ammonium, chloride and black carbon (BC)) and organic submicron aerosols from a continental background site (Montsec, MSC, 1570m a.s.l.) in the western Mediterranean Basin (WMB) were conducted for 10 months (July 2011 - April 2012) with an aerosol chemical speciation monitor (ACSM). The ACSM was co-located with other online and offline PM1 measurements. Analyses of the hourly, diurnal, and seasonal variations are presented here.
E. A. Bruns, M. Krapf, J. Orasche, Y. Huang, R. Zimmermann, L. Drinovec, G. Močnik, I. El-Haddad, J. G. Slowik, J. Dommen, U. Baltensperger, and A. S. H. Prévôt
Atmos. Chem. Phys., 15, 2825–2841, https://doi.org/10.5194/acp-15-2825-2015, https://doi.org/10.5194/acp-15-2825-2015, 2015
Short summary
Short summary
Residential wood combustion contributes significantly to the total atmospheric particulate burden; however, uncertainties remain in the magnitude and characteristics of wood burning products. The effects of wood loading on freshly emitted and aged emissions were investigated. Polycyclic aromatic hydrocarbons, which negatively impact health, contributed more to the total organic aerosol under highly loaded burner conditions, which has significant implications for burner operation protocols.
Y. J. Zhang, L. L. Tang, Z. Wang, H. X. Yu, Y. L. Sun, D. Liu, W. Qin, F. Canonaco, A. S. H. Prévôt, H. L. Zhang, and H. C. Zhou
Atmos. Chem. Phys., 15, 1331–1349, https://doi.org/10.5194/acp-15-1331-2015, https://doi.org/10.5194/acp-15-1331-2015, 2015
Short summary
Short summary
The chemical composition, sources, and evolution processes of PM1 were investigated with an Aerodyne ACSM during harvest seasons in the Yangtze River delta, China. Two biomass burning organic aerosol (BBOA) factors derived from PMF model were assessed. The oxidized BBOA contributes ~80% of the total BBOA loadings in the BB plumes. Evidence that BBOA may be oxidized to more aged and less volatile organics during the aging process was suggested.
J. Kaiser, G. M. Wolfe, B. Bohn, S. Broch, H. Fuchs, L. N. Ganzeveld, S. Gomm, R. Häseler, A. Hofzumahaus, F. Holland, J. Jäger, X. Li, I. Lohse, K. Lu, A. S. H. Prévôt, F. Rohrer, R. Wegener, R. Wolf, T. F. Mentel, A. Kiendler-Scharr, A. Wahner, and F. N. Keutsch
Atmos. Chem. Phys., 15, 1289–1298, https://doi.org/10.5194/acp-15-1289-2015, https://doi.org/10.5194/acp-15-1289-2015, 2015
Short summary
Short summary
Using measurements acquired from a Zeppelin airship during the PEGASOS 2012 campaign, we show that VOC oxidation alone cannot account for the formaldehyde concentrations observed in the morning over rural Italy. Vertical profiles suggest a ground-level source of HCHO. Incorporating this additional HCHO source into a photochemical model increases calculated O3 production by as much as 12%.
Y.-L. Zhang, R.-J. Huang, I. El Haddad, K.-F. Ho, J.-J. Cao, Y. Han, P. Zotter, C. Bozzetti, K. R. Daellenbach, F. Canonaco, J. G. Slowik, G. Salazar, M. Schwikowski, J. Schnelle-Kreis, G. Abbaszade, R. Zimmermann, U. Baltensperger, A. S. H. Prévôt, and S. Szidat
Atmos. Chem. Phys., 15, 1299–1312, https://doi.org/10.5194/acp-15-1299-2015, https://doi.org/10.5194/acp-15-1299-2015, 2015
Short summary
Short summary
Source apportionment of fine carbonaceous aerosols using radiocarbon and other organic markers measurements during 2013 winter haze episodes was conducted at four megacities in China. Our results demonstrate that fossil emissions predominate EC with a mean contribution of 75±8%, whereas non-fossil sources account for 55±10% of OC; and the increment of TC on heavily polluted days was mainly driven by the increase of secondary OC from both fossil-fuel and non-fossil emissions.
A. Ripoll, M. C. Minguillón, J. Pey, N. Pérez, X. Querol, and A. Alastuey
Atmos. Chem. Phys., 15, 1129–1145, https://doi.org/10.5194/acp-15-1129-2015, https://doi.org/10.5194/acp-15-1129-2015, 2015
Short summary
Short summary
The complete chemical compositions of atmospheric particulate matter (PM1 and PM10) from a continental (Montsec, 1570 m a.s.l.) and a regional (Montseny, 720 m a.s.l) background site in the western Mediterranean Basin were jointly studied for the first time over a relatively long-term period (January 2010-March 2013). Results revealed a) a high relevance of African dust transport and regional dust resuspension; b) low biomass burning contribution; and c) high organic matter contribution.
J.-E. Petit, O. Favez, J. Sciare, F. Canonaco, P. Croteau, G. Močnik, J. Jayne, D. Worsnop, and E. Leoz-Garziandia
Atmos. Chem. Phys., 14, 13773–13787, https://doi.org/10.5194/acp-14-13773-2014, https://doi.org/10.5194/acp-14-13773-2014, 2014
W. Ait-Helal, A. Borbon, S. Sauvage, J. A. de Gouw, A. Colomb, V. Gros, F. Freutel, M. Crippa, C. Afif, U. Baltensperger, M. Beekmann, J.-F. Doussin, R. Durand-Jolibois, I. Fronval, N. Grand, T. Leonardis, M. Lopez, V. Michoud, K. Miet, S. Perrier, A. S. H. Prévôt, J. Schneider, G. Siour, P. Zapf, and N. Locoge
Atmos. Chem. Phys., 14, 10439–10464, https://doi.org/10.5194/acp-14-10439-2014, https://doi.org/10.5194/acp-14-10439-2014, 2014
L. Poulain, W. Birmili, F. Canonaco, M. Crippa, Z. J. Wu, S. Nordmann, G. Spindler, A. S. H. Prévôt, A. Wiedensohler, and H. Herrmann
Atmos. Chem. Phys., 14, 10145–10162, https://doi.org/10.5194/acp-14-10145-2014, https://doi.org/10.5194/acp-14-10145-2014, 2014
D. Liu, J. D. Allan, D. E. Young, H. Coe, D. Beddows, Z. L. Fleming, M. J. Flynn, M. W. Gallagher, R. M. Harrison, J. Lee, A. S. H. Prevot, J. W. Taylor, J. Yin, P. I. Williams, and P. Zotter
Atmos. Chem. Phys., 14, 10061–10084, https://doi.org/10.5194/acp-14-10061-2014, https://doi.org/10.5194/acp-14-10061-2014, 2014
C. Fountoukis, A. G. Megaritis, K. Skyllakou, P. E. Charalampidis, C. Pilinis, H. A. C. Denier van der Gon, M. Crippa, F. Canonaco, C. Mohr, A. S. H. Prévôt, J. D. Allan, L. Poulain, T. Petäjä, P. Tiitta, S. Carbone, A. Kiendler-Scharr, E. Nemitz, C. O'Dowd, E. Swietlicki, and S. N. Pandis
Atmos. Chem. Phys., 14, 9061–9076, https://doi.org/10.5194/acp-14-9061-2014, https://doi.org/10.5194/acp-14-9061-2014, 2014
S. Segura, V. Estellés, G. Titos, H. Lyamani, M. P. Utrillas, P. Zotter, A. S. H. Prévôt, G. Močnik, L. Alados-Arboledas, and J. A. Martínez-Lozano
Atmos. Meas. Tech., 7, 2373–2387, https://doi.org/10.5194/amt-7-2373-2014, https://doi.org/10.5194/amt-7-2373-2014, 2014
R.-J. Huang, W.-B. Li, Y.-R. Wang, Q. Y. Wang, W. T. Jia, K.-F. Ho, J. J. Cao, G. H. Wang, X. Chen, I. EI Haddad, Z. X. Zhuang, X. R. Wang, A. S. H. Prévôt, C. D. O'Dowd, and T. Hoffmann
Atmos. Meas. Tech., 7, 2027–2035, https://doi.org/10.5194/amt-7-2027-2014, https://doi.org/10.5194/amt-7-2027-2014, 2014
P. Salvador, S. Alonso-Pérez, J. Pey, B. Artíñano, J. J. de Bustos, A. Alastuey, and X. Querol
Atmos. Chem. Phys., 14, 6759–6775, https://doi.org/10.5194/acp-14-6759-2014, https://doi.org/10.5194/acp-14-6759-2014, 2014
M. Pandolfi, A. Ripoll, X. Querol, and A. Alastuey
Atmos. Chem. Phys., 14, 6443–6460, https://doi.org/10.5194/acp-14-6443-2014, https://doi.org/10.5194/acp-14-6443-2014, 2014
R. Chirico, M. Clairotte, T. W. Adam, B. Giechaskiel, M. F. Heringa, M. Elsasser, G. Martini, U. Manfredi, T. Streibel, M. Sklorz, R. Zimmermann, P. F. DeCarlo, C. Astorga, U. Baltensperger, and A. S. H. Prevot
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-14-16591-2014, https://doi.org/10.5194/acpd-14-16591-2014, 2014
Revised manuscript has not been submitted
M. Crippa, F. Canonaco, V. A. Lanz, M. Äijälä, J. D. Allan, S. Carbone, G. Capes, D. Ceburnis, M. Dall'Osto, D. A. Day, P. F. DeCarlo, M. Ehn, A. Eriksson, E. Freney, L. Hildebrandt Ruiz, R. Hillamo, J. L. Jimenez, H. Junninen, A. Kiendler-Scharr, A.-M. Kortelainen, M. Kulmala, A. Laaksonen, A. A. Mensah, C. Mohr, E. Nemitz, C. O'Dowd, J. Ovadnevaite, S. N. Pandis, T. Petäjä, L. Poulain, S. Saarikoski, K. Sellegri, E. Swietlicki, P. Tiitta, D. R. Worsnop, U. Baltensperger, and A. S. H. Prévôt
Atmos. Chem. Phys., 14, 6159–6176, https://doi.org/10.5194/acp-14-6159-2014, https://doi.org/10.5194/acp-14-6159-2014, 2014
M. Paglione, S. Saarikoski, S. Carbone, R. Hillamo, M. C. Facchini, E. Finessi, L. Giulianelli, C. Carbone, S. Fuzzi, F. Moretti, E. Tagliavini, E. Swietlicki, K. Eriksson Stenström, A. S. H. Prévôt, P. Massoli, M. Canaragatna, D. Worsnop, and S. Decesari
Atmos. Chem. Phys., 14, 5089–5110, https://doi.org/10.5194/acp-14-5089-2014, https://doi.org/10.5194/acp-14-5089-2014, 2014
A. Bougiatioti, I. Stavroulas, E. Kostenidou, P. Zarmpas, C. Theodosi, G. Kouvarakis, F. Canonaco, A. S. H. Prévôt, A. Nenes, S. N. Pandis, and N. Mihalopoulos
Atmos. Chem. Phys., 14, 4793–4807, https://doi.org/10.5194/acp-14-4793-2014, https://doi.org/10.5194/acp-14-4793-2014, 2014
M. Viana, I. Rivas, X. Querol, A. Alastuey, J. Sunyer, M. Álvarez-Pedrerol, L. Bouso, and C. Sioutas
Atmos. Chem. Phys., 14, 4459–4472, https://doi.org/10.5194/acp-14-4459-2014, https://doi.org/10.5194/acp-14-4459-2014, 2014
A. Ripoll, J. Pey, M. C. Minguillón, N. Pérez, M. Pandolfi, X. Querol, and A. Alastuey
Atmos. Chem. Phys., 14, 4279–4295, https://doi.org/10.5194/acp-14-4279-2014, https://doi.org/10.5194/acp-14-4279-2014, 2014
F. Amato, A. Alastuey, J. de la Rosa, Y. Gonzalez Castanedo, A. M. Sánchez de la Campa, M. Pandolfi, A. Lozano, J. Contreras González, and X. Querol
Atmos. Chem. Phys., 14, 3533–3544, https://doi.org/10.5194/acp-14-3533-2014, https://doi.org/10.5194/acp-14-3533-2014, 2014
M. Brines, M. Dall'Osto, D.C.S. Beddows, R. M. Harrison, and X. Querol
Atmos. Chem. Phys., 14, 2973–2986, https://doi.org/10.5194/acp-14-2973-2014, https://doi.org/10.5194/acp-14-2973-2014, 2014
E. J. Freney, K. Sellegri, F. Canonaco, A. Colomb, A. Borbon, V. Michoud, J.-F. Doussin, S. Crumeyrolle, N. Amarouche, J.-M. Pichon, T. Bourianne, L. Gomes, A. S. H. Prevot, M. Beekmann, and A. Schwarzenböeck
Atmos. Chem. Phys., 14, 1397–1412, https://doi.org/10.5194/acp-14-1397-2014, https://doi.org/10.5194/acp-14-1397-2014, 2014
S.-L. von der Weiden-Reinmüller, F. Drewnick, M. Crippa, A. S. H. Prévôt, F. Meleux, U. Baltensperger, M. Beekmann, and S. Borrmann
Atmos. Meas. Tech., 7, 279–299, https://doi.org/10.5194/amt-7-279-2014, https://doi.org/10.5194/amt-7-279-2014, 2014
F. Canonaco, M. Crippa, J. G. Slowik, U. Baltensperger, and A. S. H. Prévôt
Atmos. Meas. Tech., 6, 3649–3661, https://doi.org/10.5194/amt-6-3649-2013, https://doi.org/10.5194/amt-6-3649-2013, 2013
A. Gkikas, N. Hatzianastassiou, N. Mihalopoulos, V. Katsoulis, S. Kazadzis, J. Pey, X. Querol, and O. Torres
Atmos. Chem. Phys., 13, 12135–12154, https://doi.org/10.5194/acp-13-12135-2013, https://doi.org/10.5194/acp-13-12135-2013, 2013
R. Fröhlich, M. J. Cubison, J. G. Slowik, N. Bukowiecki, A. S. H. Prévôt, U. Baltensperger, J. Schneider, J. R. Kimmel, M. Gonin, U. Rohner, D. R. Worsnop, and J. T. Jayne
Atmos. Meas. Tech., 6, 3225–3241, https://doi.org/10.5194/amt-6-3225-2013, https://doi.org/10.5194/amt-6-3225-2013, 2013
M. Alier, B. L. van Drooge, M. Dall'Osto, X. Querol, J. O. Grimalt, and R. Tauler
Atmos. Chem. Phys., 13, 10353–10371, https://doi.org/10.5194/acp-13-10353-2013, https://doi.org/10.5194/acp-13-10353-2013, 2013
R. M. Healy, J. Sciare, L. Poulain, M. Crippa, A. Wiedensohler, A. S. H. Prévôt, U. Baltensperger, R. Sarda-Estève, M. L. McGuire, C.-H. Jeong, E. McGillicuddy, I. P. O'Connor, J. R. Sodeau, G. J. Evans, and J. C. Wenger
Atmos. Chem. Phys., 13, 9479–9496, https://doi.org/10.5194/acp-13-9479-2013, https://doi.org/10.5194/acp-13-9479-2013, 2013
M. Dall'Osto, X. Querol, A. Alastuey, M. C. Minguillon, M. Alier, F. Amato, M. Brines, M. Cusack, J. O. Grimalt, A. Karanasiou, T. Moreno, M. Pandolfi, J. Pey, C. Reche, A. Ripoll, R. Tauler, B. L. Van Drooge, M. Viana, R. M. Harrison, J. Gietl, D. Beddows, W. Bloss, C. O'Dowd, D. Ceburnis, G. Martucci, N. L. Ng, D. Worsnop, J. Wenger, E. Mc Gillicuddy, J. Sodeau, R. Healy, F. Lucarelli, S. Nava, J. L. Jimenez, F. Gomez Moreno, B. Artinano, A. S. H. Prévôt, L. Pfaffenberger, S. Frey, F. Wilsenack, D. Casabona, P. Jiménez-Guerrero, D. Gross, and N. Cots
Atmos. Chem. Phys., 13, 8991–9019, https://doi.org/10.5194/acp-13-8991-2013, https://doi.org/10.5194/acp-13-8991-2013, 2013
X. Querol, A. Alastuey, M. Viana, T. Moreno, C. Reche, M. C. Minguillón, A. Ripoll, M. Pandolfi, F. Amato, A. Karanasiou, N. Pérez, J. Pey, M. Cusack, R. Vázquez, F. Plana, M. Dall'Osto, J. de la Rosa, A. Sánchez de la Campa, R. Fernández-Camacho, S. Rodríguez, C. Pio, L. Alados-Arboledas, G. Titos, B. Artíñano, P. Salvador, S. García Dos Santos, and R. Fernández Patier
Atmos. Chem. Phys., 13, 6185–6206, https://doi.org/10.5194/acp-13-6185-2013, https://doi.org/10.5194/acp-13-6185-2013, 2013
M. Laborde, M. Crippa, T. Tritscher, Z. Jurányi, P. F. Decarlo, B. Temime-Roussel, N. Marchand, S. Eckhardt, A. Stohl, U. Baltensperger, A. S. H. Prévôt, E. Weingartner, and M. Gysel
Atmos. Chem. Phys., 13, 5831–5856, https://doi.org/10.5194/acp-13-5831-2013, https://doi.org/10.5194/acp-13-5831-2013, 2013
Q. J. Zhang, M. Beekmann, F. Drewnick, F. Freutel, J. Schneider, M. Crippa, A. S. H. Prevot, U. Baltensperger, L. Poulain, A. Wiedensohler, J. Sciare, V. Gros, A. Borbon, A. Colomb, V. Michoud, J.-F. Doussin, H. A. C. Denier van der Gon, M. Haeffelin, J.-C. Dupont, G. Siour, H. Petetin, B. Bessagnet, S. N. Pandis, A. Hodzic, O. Sanchez, C. Honoré, and O. Perrussel
Atmos. Chem. Phys., 13, 5767–5790, https://doi.org/10.5194/acp-13-5767-2013, https://doi.org/10.5194/acp-13-5767-2013, 2013
H. Keskinen, A. Virtanen, J. Joutsensaari, G. Tsagkogeorgas, J. Duplissy, S. Schobesberger, M. Gysel, F. Riccobono, J. G. Slowik, F. Bianchi, T. Yli-Juuti, K. Lehtipalo, L. Rondo, M. Breitenlechner, A. Kupc, J. Almeida, A. Amorim, E. M. Dunne, A. J. Downard, S. Ehrhart, A. Franchin, M.K. Kajos, J. Kirkby, A. Kürten, T. Nieminen, V. Makhmutov, S. Mathot, P. Miettinen, A. Onnela, T. Petäjä, A. Praplan, F. D. Santos, S. Schallhart, M. Sipilä, Y. Stozhkov, A. Tomé, P. Vaattovaara, D. Wimmer, A. Prevot, J. Dommen, N. M. Donahue, R.C. Flagan, E. Weingartner, Y. Viisanen, I. Riipinen, A. Hansel, J. Curtius, M. Kulmala, D. R. Worsnop, U. Baltensperger, H. Wex, F. Stratmann, and A. Laaksonen
Atmos. Chem. Phys., 13, 5587–5600, https://doi.org/10.5194/acp-13-5587-2013, https://doi.org/10.5194/acp-13-5587-2013, 2013
M. Cusack, N. Pérez, J. Pey, A. Alastuey, and X. Querol
Atmos. Chem. Phys., 13, 5173–5187, https://doi.org/10.5194/acp-13-5173-2013, https://doi.org/10.5194/acp-13-5173-2013, 2013
M. Pandolfi, G. Martucci, X. Querol, A. Alastuey, F. Wilsenack, S. Frey, C. D. O'Dowd, and M. Dall'Osto
Atmos. Chem. Phys., 13, 4983–4996, https://doi.org/10.5194/acp-13-4983-2013, https://doi.org/10.5194/acp-13-4983-2013, 2013
M. Dall'Osto, X. Querol, F. Amato, A. Karanasiou, F. Lucarelli, S. Nava, G. Calzolai, and M. Chiari
Atmos. Chem. Phys., 13, 4375–4392, https://doi.org/10.5194/acp-13-4375-2013, https://doi.org/10.5194/acp-13-4375-2013, 2013
D. C. Oderbolz, S. Aksoyoglu, J. Keller, I. Barmpadimos, R. Steinbrecher, C. A. Skjøth, C. Plaß-Dülmer, and A. S. H. Prévôt
Atmos. Chem. Phys., 13, 1689–1712, https://doi.org/10.5194/acp-13-1689-2013, https://doi.org/10.5194/acp-13-1689-2013, 2013
J. Pey, X. Querol, A. Alastuey, F. Forastiere, and M. Stafoggia
Atmos. Chem. Phys., 13, 1395–1410, https://doi.org/10.5194/acp-13-1395-2013, https://doi.org/10.5194/acp-13-1395-2013, 2013
F. Freutel, J. Schneider, F. Drewnick, S.-L. von der Weiden-Reinmüller, M. Crippa, A. S. H. Prévôt, U. Baltensperger, L. Poulain, A. Wiedensohler, J. Sciare, R. Sarda-Estève, J. F. Burkhart, S. Eckhardt, A. Stohl, V. Gros, A. Colomb, V. Michoud, J. F. Doussin, A. Borbon, M. Haeffelin, Y. Morille, M. Beekmann, and S. Borrmann
Atmos. Chem. Phys., 13, 933–959, https://doi.org/10.5194/acp-13-933-2013, https://doi.org/10.5194/acp-13-933-2013, 2013
C. Chou, Z. A. Kanji, O. Stetzer, T. Tritscher, R. Chirico, M. F. Heringa, E. Weingartner, A. S. H. Prévôt, U. Baltensperger, and U. Lohmann
Atmos. Chem. Phys., 13, 761–772, https://doi.org/10.5194/acp-13-761-2013, https://doi.org/10.5194/acp-13-761-2013, 2013
M. Dall'Osto, X. Querol, A. Alastuey, C. O'Dowd, R. M. Harrison, J. Wenger, and F. J. Gómez-Moreno
Atmos. Chem. Phys., 13, 741–759, https://doi.org/10.5194/acp-13-741-2013, https://doi.org/10.5194/acp-13-741-2013, 2013
Related subject area
Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Understanding the mechanism and importance of brown carbon bleaching across the visible spectrum in biomass burning plumes from the WE-CAN campaign
Influence of terrestrial and marine air mass on the constituents and intermixing of bioaerosols over a coastal atmosphere
A multi-site passive approach to studying the emissions and evolution of smoke from prescribed fires
The annual cycle and sources of relevant aerosol precursor vapors in the central Arctic during the MOSAiC expedition
Opinion: How will advances in aerosol science inform our understanding of the health impacts of outdoor particulate pollution?
Measurement report: Intra-annual variability of black carbon and brown carbon and their interrelation with meteorological conditions over Gangtok, Sikkim
Long-range transport of air pollutants increases the concentration of hazardous components of PM2.5 in northern South America
Dominant influence of biomass combustion and cross-border transport on nitrogen-containing organic compound levels in the southeastern Tibetan Plateau
Impacts of elevated anthropogenic emissions on physicochemical characteristics of black-carbon-containing particles over the Tibetan Plateau
Online characterization of primary and secondary emissions of particulate matter and acidic molecules from a modern fleet of city buses
Atmospheric evolution of environmentally persistent free radicals in the rural North China Plain: effects on water solubility and PM2.5 oxidative potential
Two distinct ship emission profiles for organic-sulfate source apportionment of PM in sulfur emission control areas
Automated compound speciation, cluster analysis, and quantification of organic vapors and aerosols using comprehensive two-dimensional gas chromatography and mass spectrometry
Measurement report: Occurrence of aminiums in PM2.5 during winter in China – aminium outbreak during polluted episodes and potential constraints
Bridging gas and aerosol properties between the northeastern US and Bermuda: analysis of eight transit flights
The behaviour of charged particles (ions) during new particle formation events in urban Leipzig, Germany
Exploring the sources of light-absorbing carbonaceous aerosols by integrating observational and modeling results: insights from Northeast China
Measurement report: Characteristics of airborne black-carbon-containing particles during the 2021 summer COVID-19 lockdown in a typical Yangtze River Delta city, China
Aerosol optical properties within the atmospheric boundary layer predicted from ground-based observations compared to Raman lidar retrievals during RITA-2021
Hygroscopic growth and activation changed submicron aerosol composition and properties in the North China Plain
Measurement report: Formation of tropospheric brown carbon in a lifting air mass
Vertical variability of aerosol properties and trace gases over a remote marine region: a case study over Bermuda
Differences in aerosol and cloud properties along the central California coast when winds change from northerly to southerly
International airport emissions and their impact on local air quality: chemical speciation of ambient aerosols at Madrid–Barajas Airport during the AVIATOR campaign
Significant role of biomass burning in heavy haze formation in a megacity: Molecular-level insights from intensive PM2.5 sampling on winter hazy days
The local ship speed reduction effect on black carbon emissions measured at a remote marine station
High-altitude aerosol chemical characterization and source identification: insights from the CALISHTO campaign
Measurement report: Impact of emission control measures on environmental persistent free radicals and reactive oxygen species – a short-term case study in Beijing
Characterizing water solubility of fresh and aged secondary organic aerosol in PM2.5 with the stable carbon isotope technique
Measurement report: Impact of cloud processes on secondary organic aerosols at a forested mountain site in southeastern China
Critical contribution of chemically diverse carbonyl molecules to the oxidative potential of atmospheric aerosols
Seasonal Investigation of Ultrafine Particle Composition in an Eastern Amazonian Rainforest
Measurement report: Vanadium-containing ship exhaust particles detected in and above the marine boundary layer in the remote atmosphere
Diverging trends in aerosol sulfate and nitrate measured in the remote North Atlantic in Barbados are attributed to clean air policies, African smoke, and anthropogenic emissions
Technical note: Quantified organic aerosol subsaturated hygroscopicity by a simple optical scatter monitor system through field measurements
Diverse sources and aging change the mixing state and ice nucleation properties of aerosol particles over the western Pacific and Southern Ocean
The water-insoluble organic carbon in PM2.5 of typical Chinese urban areas: light-absorbing properties, potential sources, radiative forcing effects, and a possible light-absorbing continuum
Measurement report: Size-resolved secondary organic aerosol formation modulated by aerosol water uptake in wintertime haze
In situ measurement of organic aerosol molecular markers in urban Hong Kong during a summer period: temporal variations and source apportionment
Technical note: Determining chemical composition of atmospheric single particles by a standard-free mass calibration algorithm
Different formation pathways of nitrogen-containing organic compounds in aerosols and fog water in northern China
Impact of weather patterns and meteorological factors on PM2.5 and O3 responses to the COVID-19 lockdown in China
Daytime and nighttime aerosol soluble iron formation in clean and slightly polluted moist air in a coastal city in eastern China
Non-negligible secondary contribution to brown carbon in autumn and winter: inspiration from particulate nitrated and oxygenated aromatic compounds in urban Beijing
Non-sea-salt aerosols that contain trace bromine and iodine are widespread in the remote troposphere
Simultaneous organic aerosol source apportionment at two Antarctic sites reveals large-scale and ecoregion-specific components
Measurement report: Optical characterization, seasonality, and sources of brown carbon in fine aerosols from Tianjin, North China: year-round observations
High-resolution analyses of concentrations and sizes of black carbon particles deposited on northwest Greenland over the past 350 years – Part 2: Seasonal and temporal trends in black carbon originated from fossil fuel combustion and biomass burning
Bayesian inference-based estimation of hourly primary and secondary organic carbon in suburban Hong Kong: multi-temporal-scale variations and evolution characteristics during PM2.5 episodes
Formation and chemical evolution of SOA in two different environments: A dual chamber study
Yingjie Shen, Rudra P. Pokhrel, Amy P. Sullivan, Ezra J. T. Levin, Lauren A. Garofalo, Delphine K. Farmer, Wade Permar, Lu Hu, Darin W. Toohey, Teresa Campos, Emily V. Fischer, and Shane M. Murphy
Atmos. Chem. Phys., 24, 12881–12901, https://doi.org/10.5194/acp-24-12881-2024, https://doi.org/10.5194/acp-24-12881-2024, 2024
Short summary
Short summary
The magnitude and evolution of brown carbon (BrC) absorption remain unclear, with uncertainty in climate models. Data from the WE-CAN airborne experiment show that model parameterizations overestimate the mass absorption cross section (MAC) of BrC. Observed decreases in BrC absorption with chemical markers are due to decreasing organic aerosol (OA) mass rather than a decreasing BrC MAC, which is currently implemented in models. Water-soluble BrC contributes 23 % of total absorption at 660 nm.
Qun He, Zhaowen Wang, Houfeng Liu, Pengju Xu, Rongbao Duan, Caihong Xu, Jianmin Chen, and Min Wei
Atmos. Chem. Phys., 24, 12775–12792, https://doi.org/10.5194/acp-24-12775-2024, https://doi.org/10.5194/acp-24-12775-2024, 2024
Short summary
Short summary
Coastal environments provide an ideal setting for investigating the intermixing of terrestrial and marine aerosols. Terrestrial air mass constituted a larger number of microbes from anthropogenic and soil emissions, whereas saprophytic and gut microbes were predominant in marine samples. Mixed air masses indicated a fusion of marine and terrestrial aerosols, characterized by alterations in the ratio of pathogenic and saprophytic microbes when compared to either terrestrial or marine samples.
Rime El Asmar, Zongrun Li, David J. Tanner, Yongtao Hu, Susan O'Neill, L. Gregory Huey, M. Talat Odman, and Rodney J. Weber
Atmos. Chem. Phys., 24, 12749–12773, https://doi.org/10.5194/acp-24-12749-2024, https://doi.org/10.5194/acp-24-12749-2024, 2024
Short summary
Short summary
Prescribed burning is an important method for managing ecosystems and preventing wildfires. However, smoke from prescribed fires can have a significant impact on air quality. Here, using a network of fixed sites and sampling throughout an extended prescribed burning period in 2 different years, we characterize emissions and evolutions of up to 8 h of PM2.5 mass, black carbon (BC), and brown carbon (BrC) in smoke from burning of forested lands in the southeastern USA.
Matthew Boyer, Diego Aliaga, Lauriane L. J. Quéléver, Silvia Bucci, Hélène Angot, Lubna Dada, Benjamin Heutte, Lisa Beck, Marina Duetsch, Andreas Stohl, Ivo Beck, Tiia Laurila, Nina Sarnela, Roseline C. Thakur, Branka Miljevic, Markku Kulmala, Tuukka Petäjä, Mikko Sipilä, Julia Schmale, and Tuija Jokinen
Atmos. Chem. Phys., 24, 12595–12621, https://doi.org/10.5194/acp-24-12595-2024, https://doi.org/10.5194/acp-24-12595-2024, 2024
Short summary
Short summary
We analyze the seasonal cycle and sources of gases that are relevant for the formation of aerosol particles in the central Arctic. Since theses gases can form new particles, they can influence Arctic climate. We show that the sources of these gases are associated with changes in the Arctic environment during the year, especially with respect to sea ice. Therefore, the concentration of these gases will likely change in the future as the Arctic continues to warm.
Imad El Haddad, Danielle Vienneau, Kaspar R. Daellenbach, Robin Modini, Jay G. Slowik, Abhishek Upadhyay, Petros N. Vasilakos, David Bell, Kees de Hoogh, and Andre S. H. Prevot
Atmos. Chem. Phys., 24, 11981–12011, https://doi.org/10.5194/acp-24-11981-2024, https://doi.org/10.5194/acp-24-11981-2024, 2024
Short summary
Short summary
This opinion paper explores how advances in aerosol science inform our understanding of the health impacts of outdoor particulate pollution. We advocate for a shift in the way we target PM pollution, focusing on the most harmful anthropogenic emissions. We highlight key observations, modelling developments, and emission measurements needed to achieve this shift.
Pramod Kumar, Khushboo Sharma, Ankita Malu, Rajeev Rajak, Aparna Gupta, Bidyutjyoti Baruah, Shailesh Yadav, Thupstan Angchuk, Jayant Sharma, Rakesh Kumar Ranjan, Anil Kumar Misra, and Nishchal Wanjari
Atmos. Chem. Phys., 24, 11585–11601, https://doi.org/10.5194/acp-24-11585-2024, https://doi.org/10.5194/acp-24-11585-2024, 2024
Short summary
Short summary
This work monitors and assesses air pollution, especially black and brown carbon, its controlling factor, and its effect on the environment of Sikkim Himalayan region. The huge urban sprawl in recent decades has led to regional human-induced air pollution in the region. Black carbon was highest in April 2021 and March 2022, exceeding the WHO limit. The monsoon season causes huge rainfall over the region, which reduces the pollutants by scavenging (rainout and washout).
Maria P. Velásquez-García, K. Santiago Hernández, James A. Vergara-Correa, Richard J. Pope, Miriam Gómez-Marín, and Angela M. Rendón
Atmos. Chem. Phys., 24, 11497–11520, https://doi.org/10.5194/acp-24-11497-2024, https://doi.org/10.5194/acp-24-11497-2024, 2024
Short summary
Short summary
In the Aburrá Valley, northern South America, local emissions determine air quality conditions. However, we found that external sources, such as regional fires, Saharan dust, and volcanic emissions, increase particulate concentrations and worsen chemical composition by introducing elements like heavy metals. Dry winds and source variability contribute to seasonal influences on these events. This study assesses the air quality risks posed by such events, which can affect broad regions worldwide.
Meng Wang, Qiyuan Wang, Steven Sai Hang Ho, Jie Tian, Yong Zhang, Shun-cheng Lee, and Junji Cao
Atmos. Chem. Phys., 24, 11175–11189, https://doi.org/10.5194/acp-24-11175-2024, https://doi.org/10.5194/acp-24-11175-2024, 2024
Short summary
Short summary
We studied nitrogen-containing organic compounds (NOCs) in particulate matter <2.5 µm particles on the southeastern Tibetan Plateau. We found that biomass burning and transboundary transport are the main sources of NOCs in the high-altitude area. Understanding these aerosol sources informs how they add to regional and potentially global climate changes. Our findings could help shape effective environmental policies to enhance air quality and address climate impacts in this sensitive region.
Jinbo Wang, Jiaping Wang, Yuxuan Zhang, Tengyu Liu, Xuguang Chi, Xin Huang, Dafeng Ge, Shiyi Lai, Caijun Zhu, Lei Wang, Qiaozhi Zha, Ximeng Qi, Wei Nie, Congbin Fu, and Aijun Ding
Atmos. Chem. Phys., 24, 11063–11080, https://doi.org/10.5194/acp-24-11063-2024, https://doi.org/10.5194/acp-24-11063-2024, 2024
Short summary
Short summary
In this study, we found large spatial discrepancies in the physical and chemical properties of black carbon over the Tibetan Plateau (TP). Elevated anthropogenic emissions from low-altitude regions can significantly change the mass concentration, mixing state and chemical composition of black-carbon-containing aerosol in the TP region, further altering its light absorption ability. Our study emphasizes the vulnerability of remote plateau regions to intense anthropogenic influences.
Liyuan Zhou, Qianyun Liu, Christian M. Salvador, Michael Le Breton, Mattias Hallquist, Jian Zhen Yu, Chak K. Chan, and Åsa M. Hallquist
Atmos. Chem. Phys., 24, 11045–11061, https://doi.org/10.5194/acp-24-11045-2024, https://doi.org/10.5194/acp-24-11045-2024, 2024
Short summary
Short summary
Our research on city bus emissions reveals that alternative fuels (compressed natural gas and biofuels) reduce fresh particle emissions compared to diesel. However, all fuels lead to secondary air pollution. Aiming at guiding better environmental policies, we studied 76 buses using advanced emission measurement techniques. This work sheds light on the complex effects of bus fuels on urban air quality, emphasizing the need for comprehensive evaluations of future transportation technologies.
Xu Yang, Fobang Liu, Shuqi Yang, Yuling Yang, Yanan Wang, Jingjing Li, Mingyu Zhao, Zhao Wang, Kai Wang, Chi He, and Haijie Tong
Atmos. Chem. Phys., 24, 11029–11043, https://doi.org/10.5194/acp-24-11029-2024, https://doi.org/10.5194/acp-24-11029-2024, 2024
Short summary
Short summary
A study in the rural North China Plain showed environmentally persistent free radicals (EPFRs) in atmospheric particulate matter (PM), with a notable water-soluble fraction likely from atmospheric oxidation during transport. Significant positive correlations between EPFRs and the water-soluble oxidative potential of PM2.5 were found, primarily attributable to the water-soluble fractions of EPFRs. These findings emphasize understanding EPFRs' atmospheric evolution for climate and health impacts.
Kirsten N. Fossum, Chunshui Lin, Niall O'Sullivan, Lu Lei, Stig Hellebust, Darius Ceburnis, Aqeel Afzal, Anja Tremper, David Green, Srishti Jain, Steigvilė Byčenkienė, Colin O'Dowd, John Wenger, and Jurgita Ovadnevaite
Atmos. Chem. Phys., 24, 10815–10831, https://doi.org/10.5194/acp-24-10815-2024, https://doi.org/10.5194/acp-24-10815-2024, 2024
Short summary
Short summary
The chemical composition and sources of submicron aerosol in the Dublin Port area were investigated over a month-long campaign. Two distinct types of ship emissions were identified and characterised: sulfate-rich plumes from the use of heavy fuel oil with scrubbers and organic-rich plumes from the use of low-sulfur fuels. The latter were more frequent, emitting double the particle number and having a typical V / Ni ratio for ship emission.
Xiao He, Xuan Zheng, Shuwen Guo, Lewei Zeng, Ting Chen, Bohan Yang, Shupei Xiao, Qiongqiong Wang, Zhiyuan Li, Yan You, Shaojun Zhang, and Ye Wu
Atmos. Chem. Phys., 24, 10655–10666, https://doi.org/10.5194/acp-24-10655-2024, https://doi.org/10.5194/acp-24-10655-2024, 2024
Short summary
Short summary
This study introduces an innovative method for identifying and quantifying complex organic vapors and aerosols. By combining advanced analytical techniques and new algorithms, we categorized thousands of compounds from heavy-duty diesel vehicles and ambient air and highlighted specific tracers for emission sources. The innovative approach enhances peak identification, reduces quantification uncertainties, and offers new insights for air quality management and atmospheric chemistry.
Yu Xu, Tang Liu, Yi-Jia Ma, Qi-Bin Sun, Hong-Wei Xiao, Hao Xiao, Hua-Yun Xiao, and Cong-Qiang Liu
Atmos. Chem. Phys., 24, 10531–10542, https://doi.org/10.5194/acp-24-10531-2024, https://doi.org/10.5194/acp-24-10531-2024, 2024
Short summary
Short summary
This study investigates the characteristics of aminiums and ammonium in PM2.5 on clean and polluted winter days in 11 Chinese cities, highlighting the possibility of the competitive uptake of ammonia versus amines on acidic aerosols or the displacement of aminiums by ammonia under high-ammonia conditions. The overall results deepen the understanding of the spatiotemporal differences in aminium characteristics and formation in China.
Cassidy Soloff, Taiwo Ajayi, Yonghoon Choi, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Marta A. Fenn, Richard A. Ferrare, Francesca Gallo, Johnathan W. Hair, Miguel Ricardo A. Hilario, Simon Kirschler, Richard H. Moore, Taylor J. Shingler, Michael A. Shook, Kenneth L. Thornhill, Christiane Voigt, Edward L. Winstead, Luke D. Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 24, 10385–10408, https://doi.org/10.5194/acp-24-10385-2024, https://doi.org/10.5194/acp-24-10385-2024, 2024
Short summary
Short summary
Using aircraft measurements over the northwestern Atlantic between the US East Coast and Bermuda and trajectory modeling of continental outflow, we identify trace gas and particle properties that exhibit gradients with offshore distance and quantify these changes with high-resolution measurements of concentrations and particle chemistry, size, and scattering properties. This work furthers our understanding of the complex interactions between continental and marine environments.
Alex Rowell, James Brean, David C. S. Beddows, Zongbo Shi, Avinash Kumar, Matti Rissanen, Miikka Dal Maso, Peter Mettke, Kay Weinhold, Maik Merkel, and Roy M. Harrison
Atmos. Chem. Phys., 24, 10349–10361, https://doi.org/10.5194/acp-24-10349-2024, https://doi.org/10.5194/acp-24-10349-2024, 2024
Short summary
Short summary
Ions enhance the formation and growth rates of new particles, affecting the Earth's radiation budget. Despite these effects, there is little published data exploring the sources of ions in the urban environment and their role in new particle formation (NPF). Here we show that natural ion sources dominate in urban environments, while traffic is a secondary source. Ions contribute up to 12.7 % of the formation rate of particles, indicating that they are important for forming urban PM.
Yuan Cheng, Xu-bing Cao, Sheng-qiang Zhu, Zhi-qing Zhang, Jiu-meng Liu, Hong-liang Zhang, Qiang Zhang, and Ke-bin He
Atmos. Chem. Phys., 24, 9869–9883, https://doi.org/10.5194/acp-24-9869-2024, https://doi.org/10.5194/acp-24-9869-2024, 2024
Short summary
Short summary
The agreement between observational and modeling results is essential for the development of efficient air pollution control strategies. Here we constrained the modeling results of carbonaceous aerosols by field observation in Northeast China, a historically overlooked but recently targeted region of national clean-air actions. Our study suggested that the simulation of agricultural fire emissions and secondary organic aerosols remains challenging.
Yuan Dai, Junfeng Wang, Houjun Wang, Shijie Cui, Yunjiang Zhang, Haiwei Li, Yun Wu, Ming Wang, Eleonora Aruffo, and Xinlei Ge
Atmos. Chem. Phys., 24, 9733–9748, https://doi.org/10.5194/acp-24-9733-2024, https://doi.org/10.5194/acp-24-9733-2024, 2024
Short summary
Short summary
Short-term strict emission control can improve air quality, but its effectiveness needs assessment. During the 2021 summer COVID-19 lockdown in Yangzhou, we found that PM2.5 levels did not decrease despite reduced primary emissions. Aged black-carbon particles increased substantially due to higher O3 levels and transported pollutants. High humidity and low wind also played key roles. The results highlight the importance of a regionally balanced control strategy for future air quality management.
Xinya Liu, Diego Alves Gouveia, Bas Henzing, Arnoud Apituley, Arjan Hensen, Danielle van Dinther, Rujin Huang, and Ulrike Dusek
Atmos. Chem. Phys., 24, 9597–9614, https://doi.org/10.5194/acp-24-9597-2024, https://doi.org/10.5194/acp-24-9597-2024, 2024
Short summary
Short summary
The vertical distribution of aerosol optical properties is important for their effect on climate. This is usually measured by lidar, which has limitations, most notably the assumption of a lidar ratio. Our study shows that routine surface-level aerosol measurements are able to predict this lidar ratio reasonably well within the lower layers of the atmosphere and thus provide a relatively simple and cost-effective method to improve lidar measurements.
Weiqi Xu, Ye Kuang, Wanyun Xu, Zhiqiang Zhang, Biao Luo, Xiaoyi Zhang, Jiangchuang Tao, Hongqin Qiao, Li Liu, and Yele Sun
Atmos. Chem. Phys., 24, 9387–9399, https://doi.org/10.5194/acp-24-9387-2024, https://doi.org/10.5194/acp-24-9387-2024, 2024
Short summary
Short summary
We deployed an advanced aerosol–fog sampling system at a rural site in the North China Plain to investigate impacts of aerosol hygroscopic growth and activation on the physicochemical properties of submicron aerosols. Observed results highlighted remarkably different aqueous processing of primary and secondary submicron aerosol components under distinct ambient relative humidity (RH) conditions and that RH levels significantly impact aerosol sampling through the aerosol swelling effect.
Can Wu, Xiaodi Liu, Ke Zhang, Si Zhang, Cong Cao, Jianjun Li, Rui Li, Fan Zhang, and Gehui Wang
Atmos. Chem. Phys., 24, 9263–9275, https://doi.org/10.5194/acp-24-9263-2024, https://doi.org/10.5194/acp-24-9263-2024, 2024
Short summary
Short summary
Brown carbon (BrC) is prevalent in the troposphere and can efficiently absorb solar and terrestrial radiation. Our observations show that the enhanced light absorption of BrC relative to black carbon at the tropopause can be attributed to the formation of nitrogen-containing organic compounds through the aqueous-phase reactions of carbonyls with ammonium.
Taiwo Ajayi, Yonghoon Choi, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Marta A. Fenn, Richard A. Ferrare, Johnathan W. Hair, Miguel Ricardo A. Hilario, Chris A. Hostetler, Simon Kirschler, Richard H. Moore, Taylor J. Shingler, Michael A. Shook, Cassidy Soloff, Kenneth L. Thornhill, Christiane Voigt, Edward L. Winstead, Luke D. Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 24, 9197–9218, https://doi.org/10.5194/acp-24-9197-2024, https://doi.org/10.5194/acp-24-9197-2024, 2024
Short summary
Short summary
This study uses airborne data to examine vertical profiles of trace gases, aerosol particles, and meteorological variables over a remote marine area (Bermuda). Results show distinct differences based on both air mass source region (North America, Ocean, Caribbean/North Africa) and altitude for a given air mass type. This work highlights the sensitivity of remote marine areas to long-range transport and the importance of considering the vertical dependence of trace gas and aerosol properties.
Kira Zeider, Grace Betito, Anthony Bucholtz, Peng Xian, Annette Walker, and Armin Sorooshian
Atmos. Chem. Phys., 24, 9059–9083, https://doi.org/10.5194/acp-24-9059-2024, https://doi.org/10.5194/acp-24-9059-2024, 2024
Short summary
Short summary
The predominant wind direction along the California coast (northerly) reverses several times during the summer (to southerly). The effects of these wind reversals on aerosol and cloud characteristics are not well understood. Using data from multiple datasets we found that southerly flow periods had enhanced signatures of anthropogenic emissions due to shipping and continental sources, and clouds had more but smaller droplets.
Saleh Alzahrani, Doğuşhan Kılıç, Michael Flynn, Paul I. Williams, and James Allan
Atmos. Chem. Phys., 24, 9045–9058, https://doi.org/10.5194/acp-24-9045-2024, https://doi.org/10.5194/acp-24-9045-2024, 2024
Short summary
Short summary
This paper investigates emissions from aviation activities at an international airport to evaluate their impact on local air quality. The study provides detailed insights into the chemical composition of aerosols and key pollutants in the airport environment. Source apportionment analysis using positive matrix factorisation (PMF) identified three significant sources: less oxidised oxygenated organic aerosol, alkane organic aerosol, and more oxidised oxygenated organic aerosol.
Mingjie Kang, Mengying Bao, Wenhuai Song, Aduburexiati Abulimiti, Fang Cao, Sönke Szidat, and Yanlin Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2098, https://doi.org/10.5194/egusphere-2024-2098, 2024
Short summary
Short summary
Reports on the molecular level knowledge of high temporal resolution PM2.5 components on hazy days are still limited. This study investigated many individual PM2.5 species and sources. The results show biomass burning (BB) was the main source of organic carbon. Moreover, BB enhanced fungal spore emissions and secondary aerosol formation. The contribution of non-fossils increased with increasing haze pollution. These findings suggest BB may be an important driver of haze events in winter.
Mikko Heikkilä, Krista Luoma, Timo Mäkelä, and Tiia Grönholm
Atmos. Chem. Phys., 24, 8927–8941, https://doi.org/10.5194/acp-24-8927-2024, https://doi.org/10.5194/acp-24-8927-2024, 2024
Short summary
Short summary
Black carbon (BC) concentration was measured from 211 ship exhaust gas plumes at a remote marine station. Emission factors of BC were calculated in grams per kilogram of fuel. Ships with an exhaust gas cleaning system (EGCS) were found to have median BC emissions per fuel consumed 5 times lower than ships without an EGCS. However, this might be because of non-EGCS ships running at low engine loads rather than the EGCS itself. A local speed restriction would increase BC emissions of ships.
Olga Zografou, Maria Gini, Prodromos Fetfatzis, Konstantinos Granakis, Romanos Foskinis, Manousos Ioannis Manousakas, Fotios Tsopelas, Evangelia Diapouli, Eleni Dovrou, Christina N. Vasilakopoulou, Alexandros Papayannis, Spyros N. Pandis, Athanasios Nenes, and Konstantinos Eleftheriadis
Atmos. Chem. Phys., 24, 8911–8926, https://doi.org/10.5194/acp-24-8911-2024, https://doi.org/10.5194/acp-24-8911-2024, 2024
Short summary
Short summary
Characterization of PM1 and positive matrix factorization (PMF) source apportionment of organic and inorganic fractions were conducted at the high-altitude station (HAC)2. Cloud presence reduced PM1, affecting sulfate more than organics. Free-troposphere (FT) conditions showed more black carbon (eBC) than planetary boundary layer (PBL) conditions.
Yuanyuan Qin, Xinghua Zhang, Wei Huang, Juanjuan Qin, Xiaoyu Hu, Yuxuan Cao, Tianyi Zhao, Yang Zhang, Jihua Tan, Ziyin Zhang, Xinming Wang, and Zhenzhen Wang
Atmos. Chem. Phys., 24, 8737–8750, https://doi.org/10.5194/acp-24-8737-2024, https://doi.org/10.5194/acp-24-8737-2024, 2024
Short summary
Short summary
Environmental persistent free radicals (EPFRs) and reactive oxygen species (ROSs) play an active role in the atmosphere. Despite control measures having effectively reduced their emissions, reductions were less than in PM2.5. Emission control measures performed well in achieving Parade Blue, but reducing the impact of the atmosphere on human health remains challenging. Thus, there is a need to reassess emission control measures to better address the challenges posed by EPFRs and ROSs.
Fenghua Wei, Xing Peng, Liming Cao, Mengxue Tang, Ning Feng, Xiaofeng Huang, and Lingyan He
Atmos. Chem. Phys., 24, 8507–8518, https://doi.org/10.5194/acp-24-8507-2024, https://doi.org/10.5194/acp-24-8507-2024, 2024
Short summary
Short summary
The water solubility of secondary organic aerosols (SOAs) is a crucial factor in determining their hygroscopicity and climatic impact. Stable carbon isotope and mass spectrometry techniques were combined to assess the water solubility of SOAs with different aging degrees in a coastal megacity in China. This work revealed a much higher water-soluble fraction of aged SOA compared to fresh SOA, indicating that the aging degree of SOA has considerable impacts on its water solubility.
Zijun Zhang, Weiqi Xu, Yi Zhang, Wei Zhou, Xiangyu Xu, Aodong Du, Yinzhou Zhang, Hongqin Qiao, Ye Kuang, Xiaole Pan, Zifa Wang, Xueling Cheng, Lanzhong Liu, Qingyan Fu, Douglas R. Worsnop, Jie Li, and Yele Sun
Atmos. Chem. Phys., 24, 8473–8488, https://doi.org/10.5194/acp-24-8473-2024, https://doi.org/10.5194/acp-24-8473-2024, 2024
Short summary
Short summary
We investigated aerosol composition and sources and the interaction between secondary organic aerosol (SOA) and clouds at a regional mountain site in southeastern China. Clouds efficiently scavenge more oxidized SOA; however, cloud evaporation leads to the production of less oxidized SOA. The unexpectedly high presence of nitrate in aerosol particles indicates that nitrate formed in polluted areas has undergone interactions with clouds, significantly influencing the regional background site.
Feifei Li, Shanshan Tang, Jitao Lv, Shiyang Yu, Xu Sun, Dong Cao, Yawei Wang, and Guibin Jiang
Atmos. Chem. Phys., 24, 8397–8411, https://doi.org/10.5194/acp-24-8397-2024, https://doi.org/10.5194/acp-24-8397-2024, 2024
Short summary
Short summary
Targeted derivatization and non-targeted analysis with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) were used to reveal the molecular composition of carbonyl molecules in PM2.5, and the important role of carbonyls in increasing the oxidative potential of organic aerosol was found in real samples.
Adam E. Thomas, Hayley S. Glicker, Alex B. Guenther, Roger Seco, Oscar Vega Bustillos, Julio Tota, Rodrigo A. F. Souza, and James N. Smith
EGUsphere, https://doi.org/10.5194/egusphere-2024-2230, https://doi.org/10.5194/egusphere-2024-2230, 2024
Short summary
Short summary
We present measurements of the composition of ultrafine particles collected from the eastern Amazon, a relatively understudied region that is subjected to increasing human influence. We find that while isoprene chemistry is likely significant to ultrafine particle growth throughout the year, compounds related to other sources such as biological spore emissions and biomass burning exhibit striking seasonal differences, implying an extensive variation in regional ultrafine particle sources.
Maya Abou-Ghanem, Daniel M. Murphy, Gregory P. Schill, Michael J. Lawler, and Karl D. Froyd
Atmos. Chem. Phys., 24, 8263–8275, https://doi.org/10.5194/acp-24-8263-2024, https://doi.org/10.5194/acp-24-8263-2024, 2024
Short summary
Short summary
Using particle analysis by laser mass spectrometry, we examine vanadium-containing ship exhaust particles measured on NASA's DC-8 during the Atmospheric Tomography Mission (ATom). Our results reveal ship exhaust particles are sufficiently widespread in the marine atmosphere and experience atmospheric aging. Finally, we use laboratory calibrations to determine the vanadium, sulfate, and organic single-particle mass fractions of vanadium-containing ship exhaust particles.
Cassandra J. Gaston, Joseph M. Prospero, Kristen Foley, Havala O. T. Pye, Lillian Custals, Edmund Blades, Peter Sealy, and James A. Christie
Atmos. Chem. Phys., 24, 8049–8066, https://doi.org/10.5194/acp-24-8049-2024, https://doi.org/10.5194/acp-24-8049-2024, 2024
Short summary
Short summary
To understand how changing emissions have impacted aerosols in remote regions, we measured nitrate and sulfate in Barbados and compared them to model predictions from EPA’s Air QUAlity TimE Series (EQUATES). Nitrate was stable, except for spikes in 2008 and 2010 due to transported smoke. Sulfate decreased in the 1990s due to reductions in sulfur dioxide (SO2) in the US and Europe; then it increased in the 2000s, likely due to anthropogenic emissions from Africa.
Jie Zhang, Tianyu Zhu, Alexandra Catena, Yaowei Li, Margaret Schwab, Pengfei Liu, Akua Asa-Awuku, and James Schwab
EGUsphere, https://doi.org/10.5194/egusphere-2024-1390, https://doi.org/10.5194/egusphere-2024-1390, 2024
Short summary
Short summary
This study shows the derived organic aerosol hygroscopicity under high humidity conditions based on a simple optical scatter monitor system, including two nephelometric monitors (pDR-1500), after knowing the aerosol chemical composition.
Jiao Xue, Tian Zhang, Keyhong Park, Jinpei Yan, Young Jun Yoon, Jiyeon Park, and Bingbing Wang
Atmos. Chem. Phys., 24, 7731–7754, https://doi.org/10.5194/acp-24-7731-2024, https://doi.org/10.5194/acp-24-7731-2024, 2024
Short summary
Short summary
Ice formation by particles is an important way of making mixed-phase and ice clouds. We found that particles collected in the marine atmosphere exhibit diverse ice nucleation abilities and mixing states. Sea salt mixed-sulfate particles were enriched in ice-nucleating particles. Selective aging on sea salt particles made particle populations more externally mixed. Characterizations of particles and their mixing state are needed for a better understanding of aerosol–cloud interactions.
Yangzhi Mo, Jun Li, Guangcai Zhong, Sanyuan Zhu, Shizhen Zhao, Jiao Tang, Hongxing Jiang, Zhineng Cheng, Chongguo Tian, Yingjun Chen, and Gan Zhang
Atmos. Chem. Phys., 24, 7755–7772, https://doi.org/10.5194/acp-24-7755-2024, https://doi.org/10.5194/acp-24-7755-2024, 2024
Short summary
Short summary
In this study, we found that biomass burning (31.0 %) and coal combustion (31.1 %) were the dominant sources of water-insoluble organic carbon in China, with coal combustion sources exhibiting the strongest light-absorbing capacity. Additionally, we propose a light-absorbing carbonaceous continuum, revealing that components enriched with fossil sources tend to have stronger light-absorbing capacity, higher aromaticity, higher molecular weights, and greater recalcitrance in the atmosphere.
Jing Duan, Ru-Jin Huang, Ying Wang, Wei Xu, Haobin Zhong, Chunshui Lin, Wei Huang, Yifang Gu, Jurgita Ovadnevaite, Darius Ceburnis, and Colin O'Dowd
Atmos. Chem. Phys., 24, 7687–7698, https://doi.org/10.5194/acp-24-7687-2024, https://doi.org/10.5194/acp-24-7687-2024, 2024
Short summary
Short summary
The chemical composition of atmospheric particles has shown significant changes in recent years. We investigated the potential effects of changes in inorganics on aerosol water uptake and, thus, secondary organic aerosol formation in wintertime haze based on the size-resolved measurements of non-refractory fine particulate matter (NR-PM2.5) in Xi’an, northwestern China. We highlight the key role of aerosol water as a medium to link inorganics and organics in their multiphase processes.
Hongyong Li, Xiaopu Lyu, Likun Xue, Yunxi Huo, Dawen Yao, Haoxian Lu, and Hai Guo
Atmos. Chem. Phys., 24, 7085–7100, https://doi.org/10.5194/acp-24-7085-2024, https://doi.org/10.5194/acp-24-7085-2024, 2024
Short summary
Short summary
Organic aerosol is ubiquitous in the atmosphere and largely explains the gap between current levels of fine particulate matter in many cities and the World Health Organization guideline values. This study highlights the dominant contributions of cooking emissions to organic aerosol when marine air prevailed in Hong Kong, which were occasionally overwhelmed by aromatics-derived secondary organic aerosol in continental ouflows.
Shao Shi, Jinghao Zhai, Xin Yang, Yechun Ruan, Yuanlong Huang, Xujian Chen, Antai Zhang, Jianhuai Ye, Guomao Zheng, Baohua Cai, Yaling Zeng, Yixiang Wang, Chunbo Xing, Yujie Zhang, Tzung-May Fu, Lei Zhu, Huizhong Shen, and Chen Wang
Atmos. Chem. Phys., 24, 7001–7012, https://doi.org/10.5194/acp-24-7001-2024, https://doi.org/10.5194/acp-24-7001-2024, 2024
Short summary
Short summary
The determination of ions in the mass spectra of individual particles remains uncertain. We have developed a standard-free mass calibration algorithm applicable to more than 98 % of ambient particles. With our algorithm, ions with ~ 0.05 Th mass difference could be determined. Therefore, many more atmospheric species could be determined and involved in the source apportionment of aerosols, the study of chemical reaction mechanisms, and the analysis of single-particle mixing states.
Wei Sun, Xiaodong Hu, Yuzhen Fu, Guohua Zhang, Yujiao Zhu, Xinfeng Wang, Caiqing Yan, Likun Xue, He Meng, Bin Jiang, Yuhong Liao, Xinming Wang, Ping'an Peng, and Xinhui Bi
Atmos. Chem. Phys., 24, 6987–6999, https://doi.org/10.5194/acp-24-6987-2024, https://doi.org/10.5194/acp-24-6987-2024, 2024
Short summary
Short summary
The formation pathways of nitrogen-containing compounds (NOCs) in the atmosphere remain unclear. We investigated the composition of aerosols and fog water by state-of-the-art mass spectrometry and compared the formation pathways of NOCs. We found that NOCs in aerosols were mainly formed through nitration reaction, while ammonia addition played a more important role in fog water. The results deepen our understanding of the processes of organic particulate pollution.
Fuzhen Shen, Michaela I. Hegglin, and Yue Yuan
Atmos. Chem. Phys., 24, 6539–6553, https://doi.org/10.5194/acp-24-6539-2024, https://doi.org/10.5194/acp-24-6539-2024, 2024
Short summary
Short summary
We attempt to use a novel structural self-organising map and machine learning models to identify a weather system and quantify the importance of each meteorological factor in driving the unexpected PM2.5 and O3 changes under the specific weather system during the COVID-19 lockdown in China. The result highlights that temperature under the double-centre high-pressure system plays the most crucial role in abnormal events.
Wenshuai Li, Yuxuan Qi, Yingchen Liu, Guanru Wu, Yanjing Zhang, Jinhui Shi, Wenjun Qu, Lifang Sheng, Wencai Wang, Daizhou Zhang, and Yang Zhou
Atmos. Chem. Phys., 24, 6495–6508, https://doi.org/10.5194/acp-24-6495-2024, https://doi.org/10.5194/acp-24-6495-2024, 2024
Short summary
Short summary
Aerosol particles from mainland can transport to oceans and deposit, providing soluble Fe and affecting phytoplankton growth. Thus, we studied the dissolution process of aerosol Fe and found that photochemistry played a key role in promoting Fe dissolution in clean conditions. RH-dependent reactions were more influential in slightly polluted conditions. These results highlight the distinct roles of two weather-related parameters (radiation and RH) in influencing geochemical cycles related to Fe.
Yanqin Ren, Zhenhai Wu, Yuanyuan Ji, Fang Bi, Junling Li, Haijie Zhang, Hao Zhang, Hong Li, and Gehui Wang
Atmos. Chem. Phys., 24, 6525–6538, https://doi.org/10.5194/acp-24-6525-2024, https://doi.org/10.5194/acp-24-6525-2024, 2024
Short summary
Short summary
Nitrated aromatic compounds (NACs) and oxygenated derivatives of polycyclic aromatic hydrocarbons (OPAHs) in PM2.5 were examined from an urban area in Beijing during the autumn and winter. The OPAH and NAC concentrations were much higher during heating than before heating. They majorly originated from the combustion of biomass and automobile emissions, and the secondary generation was the major contributor throughout the whole sampling period.
Gregory P. Schill, Karl D. Froyd, Daniel M. Murphy, Christina J. Williamson, Charles Brock, Tomás Sherwen, Mat J. Evans, Eric A. Ray, Eric C. Apel, Rebecca S. Hornbrook, Alan J. Hills, Jeff Peischl, Tomas B. Ryerson, Chelsea R. Thompson, Ilann Bourgeois, Donald R. Blake, Joshua P. DiGangi, and Glenn S. Diskin
EGUsphere, https://doi.org/10.5194/egusphere-2024-1399, https://doi.org/10.5194/egusphere-2024-1399, 2024
Short summary
Short summary
Using single-particle mass spectrometry, we show that trace concentrations of bromine and iodine are ubiquitous in remote tropospheric aerosol, and suggest that aerosols are an important part of the global reactive iodine budget. Comparisons to a global climate model with detailed iodine chemistry are favorable in the background atmosphere; however, the model cannot replicate our measurements near the ocean surface, in biomass burning plumes, and in the stratosphere.
Marco Paglione, David C. S. Beddows, Anna Jones, Thomas Lachlan-Cope, Matteo Rinaldi, Stefano Decesari, Francesco Manarini, Mara Russo, Karam Mansour, Roy M. Harrison, Andrea Mazzanti, Emilio Tagliavini, and Manuel Dall'Osto
Atmos. Chem. Phys., 24, 6305–6322, https://doi.org/10.5194/acp-24-6305-2024, https://doi.org/10.5194/acp-24-6305-2024, 2024
Short summary
Short summary
Applying factor analysis techniques to H-NMR spectra, we present the organic aerosol (OA) source apportionment of PM1 samples collected in parallel at two Antarctic stations, namely Signy and Halley, allowing investigation of aerosol–climate interactions in an unperturbed atmosphere. Our results show remarkable differences between pelagic (open-ocean) and sympagic (sea-ice-influenced) air masses and indicate that various sources and processes are controlling Antarctic aerosols.
Zhichao Dong, Chandra Mouli Pavuluri, Peisen Li, Zhanjie Xu, Junjun Deng, Xueyan Zhao, Xiaomai Zhao, Pingqing Fu, and Cong-Qiang Liu
Atmos. Chem. Phys., 24, 5887–5905, https://doi.org/10.5194/acp-24-5887-2024, https://doi.org/10.5194/acp-24-5887-2024, 2024
Short summary
Short summary
Comprehensive study of optical properties of brown carbon (BrC) in fine aerosols from Tianjin, China, implied that biological emissions are major sources of BrC in summer, whereas fossil fuel combustion and biomass burning emissions are in cold periods. The direct radiation absorption caused by BrC in short wavelengths contributed about 40 % to that caused by BrC in 300–700 nm. Water-insoluble but methanol-soluble BrC contains more protein-like chromophores (PLOM) than that of water-soluble BrC.
Kumiko Goto-Azuma, Yoshimi Ogawa-Tsukagawa, Kaori Fukuda, Koji Fujita, Motohiro Hirabayashi, Remi Dallmayr, Jun Ogata, Nobuhiro Moteki, Tatsuhiro Mori, Sho Ohata, Yutaka Kondo, Makoto Koike, Sumito Matoba, and Teruo Aoki
EGUsphere, https://doi.org/10.5194/egusphere-2024-1498, https://doi.org/10.5194/egusphere-2024-1498, 2024
Short summary
Short summary
Monthly records spanning 350 years from a Greenland ice core reveal trends in black carbon (BC) concentrations and sizes. BC concentrations have risen since the late 19th century due to the inflow of anthropogenic BC, with these particles being larger than those from biomass burning (BB). High BB BC concentration peaks in summer originating from BB could reduce albedo. However, BB BC showed no upward trend until the early 2000s. Our findings are crucial for validating aerosol and climate models.
Shan Wang, Kezheng Liao, Zijing Zhang, Yuk Ying Cheng, Qiongqiong Wang, Hanzhe Chen, and Jian Zhen Yu
Atmos. Chem. Phys., 24, 5803–5821, https://doi.org/10.5194/acp-24-5803-2024, https://doi.org/10.5194/acp-24-5803-2024, 2024
Short summary
Short summary
In this work, hourly primary and secondary organic carbon were estimated by a novel Bayesian inference approach in suburban Hong Kong. Their multi-temporal-scale variations and evolution characteristics during PM2.5 episodes were examined. The methodology could serve as a guide for other locations with similar monitoring capabilities. The observation-based results are helpful for understanding the evolving nature of secondary organic aerosols and refining the accuracy of model simulations.
Andreas Aktypis, Dontavious Sippial, Christina Vasilakopoulou, Angeliki Matrali, Christos Kaltsonoudis, Andrea Simonati, Marco Paglione, Matteo Rinaldi, Stefano Decesari, and Spyros Pandis
EGUsphere, https://doi.org/10.5194/egusphere-2024-1317, https://doi.org/10.5194/egusphere-2024-1317, 2024
Short summary
Short summary
A dual chamber system was deployed in two different environments (Po Valley, Italy and Pertouli forest, Greece) to study the potential of ambient air directly injected into the chambers, to form secondary aerosol. In the Po Valley, the system reacts rapidly forming large amounts of SOA, while in Pertouli the corresponding SOA formation chemistry appears to have been practically terminated before the beginning of most experiments, so there is little additional SOA formation potential left.
Cited articles
Aiken, A. C., Decarlo, P. F., Kroll, J. H., Worsnop, D. R., Huffman, J. A., Docherty, K. S., Ulbrich, I. M., Mohr, C., Kimmel, J. R., Sueper, D., Sun, Y., Zhang, Q., Trimborn, A., Northway, M., Ziemann, P. J., Canagaratna, M. R., Onasch, T. B., Alfarra, M. R., Prevot, A. S. H., Dommen, J., Duplissy, J., Metzger, A., Baltensperger, U., and Jimenez, J. L.: O/C and OM/OC ratios of primary, secondary, and ambient organic aerosols with high-resolution time-of-flight aerosol mass spectrometry, Environ. Sci. Technol., 42, 4478–4485, 2008.
Alastuey, A., Minguillón, M. C., Pérez, N., Querol, X., Viana, M., and de Leeuw, F.: PM10 measurement methods and correction factors: 2009 status report, ETC/ACM Technical Paper 2011/21, 2011.
Alfarra, M. R., Prevot, A. S. H., Szidat, S., Sandradewi, J., Weimer, S., Lanz, V. A., Schreiber, D., Mohr, M., and Baltensperger, U.: Identification of the mass spectral signature of organic aerosols from wood burning emissions, Environ. Sci. Technol., 41, 5770–5777, 2007.
Alves, C., Vicente, A., Pio, C., Kiss, G., Hoffer, A., Decesari, S., Prevôt, A. S. H., Minguillón, M. C., Querol, X., Hillamo, R., Spindler, G., and Swietlicki, E.: Organic compounds in aerosols from selected European sites – Biogenic versus anthropogenic sources, Atmos. Environ., 59, 243–255, 2012.
Bougiatioti, A., Stavroulas, I., Kostenidou, E., Zarmpas, P., Theodosi, C., Kouvarakis, G., Canonaco, F., Prévôt, A. S. H., Nenes, A., Pandis, S. N., and Mihalopoulos, N.: Processing of biomass-burning aerosol in the eastern Mediterranean during summertime, Atmos. Chem. Phys., 14, 4793–4807, https://doi.org/10.5194/acp-14-4793-2014, 2014.
Budisulistiorini, S. H., Canagaratna, M. R., Croteau, P. L., Marth, W. J., Baumann, K., Edgerton, E. S., Shaw, S. L., Knipping, E. M., Worsnop, D. R., Jayne, J. T., Gold, A., and Surratt, J. D.: Real-time continuous characterization of secondary organic aerosol derived from isoprene epoxydiols in downtown Atlanta, Georgia, using the aerodyne aerosol chemical speciation monitor, Environ. Sci. Technol., 47, 5686–5694, 2013.
Budisulistiorini, S. H., Canagaratna, M. R., Croteau, P. L., Baumann, K., Edgerton, E. S., Kollman, M. S., Ng, N. L., Verma, V., Shaw, S. L., Knipping, E. M., Worsnop, D. R., Jayne, J. T., Weber, R. J., and Surratt, J. D.: Intercomparison of an Aerosol Chemical Speciation Monitor (ACSM) with ambient fine aerosol measurements in downtown Atlanta, Georgia, Atmos. Meas. Tech., 7, 1929–1941, https://doi.org/10.5194/amt-7-1929-2014, 2014.
Canagaratna, M. R., Jayne, J. T., Jimenez, J. L., Allan, J. D., Alfarra, M. R., Zhang, Q., Onasch, T. B., Drewnick, F., Coe, H., Middlebrook, A., Delia, A., Williams, L. R., Trimborn, A. M., Northway, M. J., DeCarlo, P. F., Kolb, C. E., Davidovits, P., and Worsnop, D. R.: Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer, Mass Spectrom. Rev., 26, 185–222, 2007.
Canonaco, F., Crippa, M., Slowik, J. G., Baltensperger, U., and Prévôt, A. S. H.: SoFi, an IGOR-based interface for the efficient use of the generalized multilinear engine (ME-2) for the source apportionment: ME-2 application to aerosol mass spectrometer data, Atmos. Meas. Tech., 6, 3649–3661, https://doi.org/10.5194/amt-6-3649-2013, 2013.
Canonaco, F., Slowik, J. G., Baltensperger, U., and Prévôt, A. S. H.: Inverse relationship between the degree of oxidation of OOA (oxygenated organic aerosol) and the oxidant OX (O3 +NO2) due to biogenic emissions, Atmos. Chem. Phys. Discuss., 14, 28079–28104, https://doi.org/10.5194/acpd-14-28079-2014, 2014.
Carbone, S., Saarikoski, S., Frey, A., Reyes, F., Reyes, P., Castillo, M., Gramsch, E., Oyola, P., Jayne, J., Worsnop, D., and Hillamo, R.: Chemical characterization of submicron Aerosol particles in Santiago de Chile, Aerosol Air Qual. Res., 13, 462–473, 2013.
Cavalli, F., Viana, M., Yttri, K. E., Genberg, J., and Putaud, J.-P.: Toward a standardised thermal-optical protocol for measuring atmospheric organic and elemental carbon: the EUSAAR protocol, Atmos. Meas. Tech., 3, 79–89, https://doi.org/10.5194/amt-3-79-2010, 2010.
Crippa, M., DeCarlo, P. F., Slowik, J. G., Mohr, C., Heringa, M. F., Chirico, R., Poulain, L., Freutel, F., Sciare, J., Cozic, J., Di Marco, C. F., Elsasser, M., Nicolas, J. B., Marchand, N., Abidi, E., Wiedensohler, A., Drewnick, F., Schneider, J., Borrmann, S., Nemitz, E., Zimmermann, R., Jaffrezo, J.-L., Prévôt, A. S. H., and Baltensperger, U.: Wintertime aerosol chemical composition and source apportionment of the organic fraction in the metropolitan area of Paris, Atmos. Chem. Phys., 13, 961–981, https://doi.org/10.5194/acp-13-961-2013, 2013.
Crippa, M., Canonaco, F., Lanz, V. A., Äijälä, M., Allan, J. D., Carbone, S., Capes, G., Ceburnis, D., Dall'Osto, M., Day, D. A., DeCarlo, P. F., Ehn, M., Eriksson, A., Freney, E., Hildebrandt Ruiz, L., Hillamo, R., Jimenez, J. L., Junninen, H., Kiendler-Scharr, A., Kortelainen, A.-M., Kulmala, M., Laaksonen, A., Mensah, A. A., Mohr, C., Nemitz, E., O'Dowd, C., Ovadnevaite, J., Pandis, S. N., Petäjä, T., Poulain, L., Saarikoski, S., Sellegri, K., Swietlicki, E., Tiitta, P., Worsnop, D. R., Baltensperger, U., and Prévôt, A. S. H.: Organic aerosol components derived from 25 AMS data sets across Europe using a consistent ME-2 based source apportionment approach, Atmos. Chem. Phys., 14, 6159–6176, https://doi.org/10.5194/acp-14-6159-2014, 2014.
Cubison, M. J., Ortega, A. M., Hayes, P. L., Farmer, D. K., Day, D., Lechner, M. J., Brune, W. H., Apel, E., Diskin, G. S., Fisher, J. A., Fuelberg, H. E., Hecobian, A., Knapp, D. J., Mikoviny, T., Riemer, D., Sachse, G. W., Sessions, W., Weber, R. J., Weinheimer, A. J., Wisthaler, A., and Jimenez, J. L.: Effects of aging on organic aerosol from open biomass burning smoke in aircraft and laboratory studies, Atmos. Chem. Phys., 11, 12049–12064, https://doi.org/10.5194/acp-11-12049-2011, 2011.
Cusack, M., Alastuey, A., Pérez, N., Pey, J., and Querol, X.: Trends of particulate matter (PM2.5) and chemical composition at a regional background site in the Western Mediterranean over the last nine years (2002–2010), Atmos. Chem. Phys., 12, 8341–8357, https://doi.org/10.5194/acp-12-8341-2012, 2012.
Cusack, M., Pérez, N., Pey, J., Wiedensohler, A., Alastuey, A., and Querol, X.: Variability of sub-micrometer particle number size distributions and concentrations in the Western Mediterranean regional background, Tellus, Ser. B, 65, 19243, https://doi.org/10.3402/tellusb.v65i0.19243, 2013.
Fröhlich, R., Crenn, V., Setyan, A., Belis, C. A., Canonaco, F., Favez, O., Riffault, V., Slowik, J. G., Aas, W., Aijälä, M., Alastuey, A., Artiñano, B., Bonnaire, N., Bozzetti, C., Bressi, M., Carbone, C., Coz, E., Croteau, P. L., Cubison, M. J., Esser-Gietl, J. K., Green, D. C., Gros, V., Heikkinen, L., Herrmann, H., Jayne, J. T., Lunder, C. R., Minguillón, M. C., Močnik, G., O'Dowd, C. D., Ovadnevaite, J., Petralia, E., Poulain, L., Priestman, M., Ripoll, A., Sarda-Estève, R., Wiedensohler, A., Baltensperger, U., Sciare, J., and Prévôt, A. S. H.: ACTRIS ACSM intercomparison – Part 2: Intercomparison of ME-2 organic source apportionment results from 15 individual, co-located aerosol mass spectrometers, Atmos. Meas. Tech. Discuss., 8, 1559–1613, https://doi.org/10.5194/amtd-8-1559-2015, 2015.
Hawkins, L. N., Russell, L. M., Covert, D. S., Quinn, P. K., and Bates, T. S.: Carboxylic acids, sulfates, and organosulfates in processed continental organic aerosol over the southeast Pacific Ocean during VOCALS-REx 2008, J. Geophys. Res.-Atmos., 115, D13201, https://doi.org/10.1029/2009jd013276, 2010.
Heringa, M. F., DeCarlo, P. F., Chirico, R., Tritscher, T., Dommen, J., Weingartner, E., Richter, R., Wehrle, G., Prévôt, A. S. H., and Baltensperger, U.: Investigations of primary and secondary particulate matter of different wood combustion appliances with a high-resolution time-of-flight aerosol mass spectrometer, Atmos. Chem. Phys., 11, 5945–5957, https://doi.org/10.5194/acp-11-5945-2011, 2011.
IPCC: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp., 2013.
Liu, P. S. K., Deng, R., Smith, K. A., Williams, L. R., Jayne, J. T., Canagaratna, M. R., Moore, K., Onasch, T. B., Worsnop, D. R., and Deshler, T.: Transmission efficiency of an aerodynamic focusing lens system: Comparison of model calculations and laboratory measurements for the aerodyne aerosol mass spectrometer, Aerosol Sci. Technol., 41, 721–733, 2007.
Middlebrook, A. M., Bahreini, R., Jimenez, J. L., and Canagaratna, M. R.: Evaluation of composition-dependent collection efficiencies for the Aerodyne aerosol mass spectrometer using field data, Aerosol Sci. Technol., 46, 258–271, 2012.
Millán, M. M., Salvador, R., Mantilla, E., and Kallos, G.: Photooxidant dynamics in the Mediterranean basin in summer: Results from European research projects, J. Geophys. Res.-Atmos., 102, 8811–8823, 1997.
Minguillón, M. C., Perron, N., Querol, X., Szidat, S., Fahrni, S. M., Alastuey, A., Jimenez, J. L., Mohr, C., Ortega, A. M., Day, D. A., Lanz, V. A., Wacker, L., Reche, C., Cusack, M., Amato, F., Kiss, G., Hoffer, A., Decesari, S., Moretti, F., Hillamo, R., Teinilä, K., Seco, R., Peñuelas, J., Metzger, A., Schallhart, S., Müller, M., Hansel, A., Burkhart, J. F., Baltensperger, U., and Prévôt, A. S. H.: Fossil versus contemporary sources of fine elemental and organic carbonaceous particulate matter during the DAURE campaign in Northeast Spain, Atmos. Chem. Phys., 11, 12067–12084, https://doi.org/10.5194/acp-11-12067-2011, 2011.
Ng, N. L., Canagaratna, M. R., Zhang, Q., Jimenez, J. L., Tian, J., Ulbrich, I. M., Kroll, J. H., Docherty, K. S., Chhabra, P. S., Bahreini, R., Murphy, S. M., Seinfeld, J. H., Hildebrandt, L., Donahue, N. M., DeCarlo, P. F., Lanz, V. A., Prévôt, A. S. H., Dinar, E., Rudich, Y., and Worsnop, D. R.: Organic aerosol components observed in Northern Hemispheric datasets from Aerosol Mass Spectrometry, Atmos. Chem. Phys., 10, 4625–4641, https://doi.org/10.5194/acp-10-4625-2010, 2010.
Ng, N. L., Canagaratna, M. R., Jimenez, J. L., Zhang, Q., Ulbrich, I. M., and Worsnop, D. R.: Real-time methods for estimating organic component mass concentrations from aerosol mass spectrometer data, Environ. Sci. Technol., 45, 910–916, 2011a.
Ng, N. L., Herndon, S. C., Trimborn, A., Canagaratna, M. R., Croteau, P. L., Onasch, T. B., Sueper, D., Worsnop, D. R., Zhang, Q., Sun, Y. L., and Jayne, J. T.: An Aerosol Chemical Speciation Monitor (ACSM) for routine monitoring of the composition and mass concentrations of ambient aerosol, Aerosol Sci. Technol., 45, 770–784, 2011b.
Paatero, P.: The multilinear engine – a table-driven, least squares program for solving multilinear problems, including the n-way parallel factor analysis model, J. Comput. Graph. Stat., 8, 854–888, 1999.
Paatero, P. and Tapper, U.: Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values, Environmetrics, 5, 111–126, 1994.
Pérez, N., Pey, J., Castillo, S., Viana, M., Alastuey, A., and Querol, X.: Interpretation of the variability of levels of regional background aerosols in the Western Mediterranean, Sci. Total Environ., 407, 527–540, 2008.
Petit, J.-E., Favez, O., Sciare, J., Crenn, V., Sarda-Estève, R., Bonnaire, N., Močnik, G., Dupont, J.-C., Haeffelin, M., and Leoz-Garziandia, E.: Two years of near real-time chemical composition of submicron aerosols in the region of Paris using an Aerosol Chemical Speciation Monitor (ACSM) and a multi-wavelength Aethalometer, Atmos. Chem. Phys., 15, 2985–3005, https://doi.org/10.5194/acp-15-2985-2015, 2015.
Petzold, A., Ogren, J. A., Fiebig, M., Laj, P., Li, S.-M., Baltensperger, U., Holzer-Popp, T., Kinne, S., Pappalardo, G., Sugimoto, N., Wehrli, C., Wiedensohler, A., and Zhang, X.-Y.: Recommendations for reporting "black carbon" measurements, Atmos. Chem. Phys., 13, 8365–8379, https://doi.org/10.5194/acp-13-8365-2013, 2013.
Pey, J., Pérez, N., Castillo, S., Viana, M., Moreno, T., Pandolfi, M., López-Sebastián, J. M., Alastuey, A., and Querol, X.: Geochemistry of regional background aerosols in the Western Mediterranean, Atmos. Res., 94, 422–435, 2009.
Pey, J., Pérez, N., Querol, X., Alastuey, A., Cusack, M., and Reche, C.: Intense winter atmospheric pollution episodes affecting the Western Mediterranean, Sci. Total Environ., 408, 1951–1959, 2010.
Pope III, C. A., and Dockery, D. W.: Health effects of fine particulate air pollution: Lines that connect, J. Air Waste Manage. Assoc., 56, 709–742, 2006.
Querol, X., Alastuey, A., Pey, J., Cusack, M., Pérez, N., Mihalopoulos, N., Theodosi, C., Gerasopoulos, E., Kubilay, N., and Koçak, M.: Variability in regional background aerosols within the Mediterranean, Atmos. Chem. Phys., 9, 4575–4591, https://doi.org/10.5194/acp-9-4575-2009, 2009.
Querol, X., Alastuey, A., Viana, M., Moreno, T., Reche, C., Minguillón, M. C., Ripoll, A., Pandolfi, M., Amato, F., Karanasiou, A., Pérez, N., Pey, J., Cusack, M., Vázquez, R., Plana, F., Dall'Osto, M., de la Rosa, J., Sánchez de la Campa, A., Fernández-Camacho, R., Rodr\'iguez, S., Pio, C., Alados-Arboledas, L., Titos, G., Art\'iñano, B., Salvador, P., Garc\'ia Dos Santos, S., and Fernández Patier, R.: Variability of carbonaceous aerosols in remote, rural, urban and industrial environments in Spain: implications for air quality policy, Atmos. Chem. Phys., 13, 6185–6206, https://doi.org/10.5194/acp-13-6185-2013, 2013.
Querol, X., Alastuey, A., Pandolfi, M., Reche, C., Pérez, N., Minguillón, M. C., Moreno, T., Viana, M., Escudero, M., Orio, A., Pallarés, M., and Reina, F.: 2001-2012 trends on air quality in Spain, Sci. Total Environ., 490, 957–969, 2014.
Ripoll, A., Minguillón, M. C., Pey, J., Jimenez, J. L., Day, D. A., Sosedova, Y., Canonaco, F., Prévôt, A. S. H., Querol, X., and Alastuey, A.: Long-term real-time chemical characterization of submicron aerosols at Montsec (southern Pyrenees, 1570 m a.s.l.), Atmos. Chem. Phys., 15, 2935–2951, https://doi.org/10.5194/acp-15-2935-2015, 2015a.
Ripoll, A., Minguillón, M. C., Pey, J., Pérez, N., Querol, X., and Alastuey, A.: Joint analysis of continental and regional background environments in the western Mediterranean: PM1 and PM10 concentrations and composition, Atmos. Chem. Phys., 15, 1129–1145, https://doi.org/10.5194/acp-15-1129-2015, 2015b.
Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and Physics: from Air Pollution to Climate Change, John Wiley, New York, 1203 pp., 2006.
Shaw, S. L., Baumann, K., Budisulistiorini, S., Canagaratna, M., Croteau, P., Edgerton, E., Jansen, J., Jayne, J., Knipping, E., Marth, W., Mueller, S., Ng, S., Surratt, J., Tanner, R., and Weber, R.: Operation of the aerosol chemical speciation monitor (ACSM) in the southeastern US, Air and Waste Management Association – Air Quality Measurement Methods and Technology Conference 2012 2012, 110–-114, Durham, NC, United States; 24–26 April 2012.
Sun, Y., Wang, Z., Dong, H., Yang, T., Li, J., Pan, X., Chen, P., and Jayne, J. T.: Characterization of summer organic and inorganic aerosols in Beijing, China with an Aerosol Chemical Speciation Monitor, Atmos. Environ., 51, 250–259, 2012.
Sun, Y., Wang, Z., Fu, P., Jiang, Q., Yang, T., Li, J., and Ge, X.: The impact of relative humidity on aerosol composition and evolution processes during wintertime in Beijing, China, Atmos. Environ., 77, 927–934, 2013a.
Sun, Y. L., Wang, Z. F., Fu, P. Q., Yang, T., Jiang, Q., Dong, H. B., Li, J., and Jia, J. J.: Aerosol composition, sources and processes during wintertime in Beijing, China, Atmos. Chem. Phys., 13, 4577–4592, https://doi.org/10.5194/acp-13-4577-2013, 2013b.
Takahama, S., Johnson, A., Guzman Morales, J., Russell, L. M., Duran, R., Rodriguez, G., Zheng, J., Zhang, R., Toom-Sauntry, D., and Leaitch, W. R.: Submicron organic aerosol in Tijuana, Mexico, from local and Southern California sources during the CalMex campaign, Atmos. Environ., 70, 500–512, 2013.
Van Drooge, B. L., Cusack, M., Reche, C., Mohr, C., Alastuey, A., Querol, X., Prevot, A. S. H., Day, D. A., Jimenez, J. L., and Grimalt, J. O.: Molecular marker characterization of the organic composition of submicron aerosols from Mediterranean urban and rural environments under contrasting meteorological conditions, Atmos. Environ., 61, 482–489, 2012.
Wiedensohler, A., Birmili, W., Nowak, A., Sonntag, A., Weinhold, K., Merkel, M., Wehner, B., Tuch, T., Pfeifer, S., Fiebig, M., Fjäraa, A. M., Asmi, E., Sellegri, K., Depuy, R., Venzac, H., Villani, P., Laj, P., Aalto, P., Ogren, J. A., Swietlicki, E., Williams, P., Roldin, P., Quincey, P., Hüglin, C., Fierz-Schmidhauser, R., Gysel, M., Weingartner, E., Riccobono, F., Santos, S., Grüning, C., Faloon, K., Beddows, D., Harrison, R., Monahan, C., Jennings, S. G., O'Dowd, C. D., Marinoni, A., Horn, H.-G., Keck, L., Jiang, J., Scheckman, J., McMurry, P. H., Deng, Z., Zhao, C. S., Moerman, M., Henzing, B., de Leeuw, G., Löschau, G., and Bastian, S.: Mobility particle size spectrometers: harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions, Atmos. Meas. Tech., 5, 657–685, https://doi.org/10.5194/amt-5-657-2012, 2012.
Short summary
The study focuses on the aerosol variations found in the regional background of the western Mediterranean basin and their relation with atmospheric conditions and scenarios. An Aerosol Chemical Speciation Monitor (ACSM) was deployed for 1 year and the results were validated with co-located PM1 measurements. The organic sources were investigated and the local secondary organic aerosol (SOA) formation was estimated.
The study focuses on the aerosol variations found in the regional background of the western...
Altmetrics
Final-revised paper
Preprint