Articles | Volume 22, issue 13
https://doi.org/10.5194/acp-22-8951-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-8951-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Budget of nitrous acid (HONO) at an urban site in the fall season of Guangzhou, China
Yihang Yu
Institute of Mass Spectrometry and Atmospheric Environment, Jinan
University, Guangzhou 510632, China
Guangdong Provincial Engineering Research Center for Online Source
Apportionment System of Air Pollution, Guangzhou 510632, China
Institute of Mass Spectrometry and Atmospheric Environment, Jinan
University, Guangzhou 510632, China
Guangdong Provincial Engineering Research Center for Online Source
Apportionment System of Air Pollution, Guangzhou 510632, China
Guangdong–Hong Kong–Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 511443, China
Huirong Li
Institute of Mass Spectrometry and Atmospheric Environment, Jinan
University, Guangzhou 510632, China
Guangdong Provincial Engineering Research Center for Online Source
Apportionment System of Air Pollution, Guangzhou 510632, China
Wenda Yang
Institute of Mass Spectrometry and Atmospheric Environment, Jinan
University, Guangzhou 510632, China
Guangdong Provincial Engineering Research Center for Online Source
Apportionment System of Air Pollution, Guangzhou 510632, China
Baobin Han
Institute of Mass Spectrometry and Atmospheric Environment, Jinan
University, Guangzhou 510632, China
Guangdong Provincial Engineering Research Center for Online Source
Apportionment System of Air Pollution, Guangzhou 510632, China
Wei Song
State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
Weiwei Hu
State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
Xinming Wang
State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
Institute for Environmental and Climate Research, Jinan University,
Guangzhou 511443, China
Guangdong–Hong Kong–Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 511443, China
Min Shao
Institute for Environmental and Climate Research, Jinan University,
Guangzhou 511443, China
Guangdong–Hong Kong–Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 511443, China
Zhijiong Huang
Institute for Environmental and Climate Research, Jinan University,
Guangzhou 511443, China
Zhen Li
Institute for Environmental and Climate Research, Jinan University,
Guangzhou 511443, China
Junyu Zheng
Institute for Environmental and Climate Research, Jinan University,
Guangzhou 511443, China
Guangdong–Hong Kong–Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 511443, China
Haichao Wang
School of Atmospheric Sciences, Sun Yat-Sen University, Zhuhai, China
Xiaofang Yu
Institute of Mass Spectrometry and Atmospheric Environment, Jinan
University, Guangzhou 510632, China
Guangdong Provincial Engineering Research Center for Online Source
Apportionment System of Air Pollution, Guangzhou 510632, China
Related authors
No articles found.
Wenhui Zhao, Weiwei Hu, Zhaoce Liu, Tianle Pan, Tingting Feng, Jun Wang, Yiyu Cai, Lin Liang, Shan Huang, Bin Yuan, Nan Ma, Min Shao, Guohua Zhang, Xinhui Bi, Xinming Wang, and Pengfei Yu
EGUsphere, https://doi.org/10.5194/egusphere-2025-2974, https://doi.org/10.5194/egusphere-2025-2974, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Our study examined brown carbon—organic aerosols that absorb light—at the remote Tibet and urban Guangzhou. Field data showed Tibet’s brown carbon absorbs about 10 times less than Guangzhou’s, due to cleaner air. Yet, over 75 % of its light absorption still comes from primary emission, which causes over 98 % of its climate-warming effect in both places. This study advances understanding of BrC dynamics and its sources in diverse environments for global climate effects.
Sara L. Farrell, Quazi Z. Rasool, Havala O. T. Pye, Yue Zhang, Ying Li, Yuzhi Chen, Chi-Tsan Wang, Haofei Zhang, Ryan Schmedding, Manabu Shiraiwa, Jaime Greene, Sri H. Budisulistiorini, Jose L. Jimenez, Weiwei Hu, Jason D. Surratt, and William Vizuete
EGUsphere, https://doi.org/10.5194/egusphere-2025-2253, https://doi.org/10.5194/egusphere-2025-2253, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Fine particulate matter (PM2.5) has become increasingly important to regulate and model. In this study, we parameterize non-ideal aerosol mixing and phase state into the Community Multiscale Air Quality (CMAQ) model and analyze its impact on the formation of a globally important source of PM2.5, isoprene epoxydiol (IEPOX)-derived PM2.5. Incorporating these features furthers model bias in IEPOX-derived PM2.5, however, this work provides potential phase state bounds for future PM2.5 modeling work.
Yu Li, Momei Qin, Weiwei Hu, Bin Zhao, Ying Li, Havala O. T. Pye, Jingyi Li, Linghan Zeng, Song Guo, Min Hu, and Jianlin Hu
EGUsphere, https://doi.org/10.5194/egusphere-2025-2879, https://doi.org/10.5194/egusphere-2025-2879, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
We evaluated how well a widely used air quality model simulates key properties of organic particles in the atmosphere, such as volatility and oxygen content, which influence how particles age, spread, and affect both air quality and climate. Using observations from eastern China, we found the model underestimated particle mass and misrepresented their chemical makeup. Our results highlight the need for improved emissions and chemical treatments to better predict air quality and climate impacts.
Zhouxing Zou, Tianshu Chen, Qianjie Chen, Weihang Sun, Shichun Han, Zhuoyue Ren, Xinyi Li, Wei Song, Aoqi Ge, Qi Wang, Xiao Tian, Chenglei Pei, Xinming Wang, Yanli Zhang, and Tao Wang
Atmos. Chem. Phys., 25, 8147–8161, https://doi.org/10.5194/acp-25-8147-2025, https://doi.org/10.5194/acp-25-8147-2025, 2025
Short summary
Short summary
We measured ambient OH and HO2* (HO2 and contribution from RO2, organic peroxyl radicals) concentrations at a subtropical rural site and compared our observations with model results. During warm periods, the model overestimated concentrations of OH and HO2, leading to overestimation of ozone and nitric acid production. Our findings highlight the need to better understand how OH and HO2 are formed and removed, which is important for accurate air quality and climate predictions.
Gaojie Chen, Xiaolong Fan, Haichao Wang, Yee Jun Tham, Ziyi Lin, Xiaoting Ji, Lingling Xu, Baoye Hu, and Jinsheng Chen
Atmos. Chem. Phys., 25, 7815–7828, https://doi.org/10.5194/acp-25-7815-2025, https://doi.org/10.5194/acp-25-7815-2025, 2025
Short summary
Short summary
Our study revealed that the nighttime heterogeneous dinitrogen pentoxide (N2O5) uptake process was the major contributor of nitryl chloride (ClNO2) sources, while nitrate photolysis may promote the elevation of daytime ClNO2 concentrations. The rates of alkane oxidation by chlorine (Cl) radical in the early morning exceeded those by OH radical, significantly promoted the formation of ROx and ozone (O3), and further enhanced the atmospheric oxidation capacity levels.
Xiao Tian, Jianqiang Zeng, Yanli Zhang, Weihua Pang, Yuting Lu, Haofan Ran, Hao Guo, Zhaobin Mu, Wei Song, and Xinming Wang
EGUsphere, https://doi.org/10.5194/egusphere-2025-3226, https://doi.org/10.5194/egusphere-2025-3226, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
This study measured a statistically representative number of 2-month-old and 2-year-old eucalyptus trees using both leaf cuvettes and dynamic branch chambers. It demonstrated equivalent isoprene results between the two enclosure methods, yet contrasting emission magnitude and speciation among age groups. Current seedling- and adult-tree-mixed emission factor databases may thus misjudge ozone and secondary organic aerosol simulation, thus age-resolved data will improve air quality forecasts.
Yuwen Peng, Bin Yuan, Sihang Wang, Xin Song, Zhe Peng, Wenjie Wang, Suxia Yang, Jipeng Qi, Xianjun He, Yibo Huangfu, Xiao-Bing Li, and Min Shao
Atmos. Chem. Phys., 25, 7037–7052, https://doi.org/10.5194/acp-25-7037-2025, https://doi.org/10.5194/acp-25-7037-2025, 2025
Short summary
Short summary
A structural-based parameterization for the photolysis rates of oxygenated volatile organic compounds (OVOCs) was integrated into an updated chemical mechanism. This method links photolysis rates to species' structure, bypassing limitations of insufficient quantum yield data. Box model results show that non-HCHO OVOCs, particularly multifunctional carbonyl compounds, significantly contribute to radical production, with alkene and aromatic oxidation products playing key roles.
Yibo Huangfu, Ziyang Liu, Bin Yuan, Sihang Wang, Xianjun He, Wei Zhou, Fei Wang, Ping Tian, Wei Xiao, Yuanmou Du, Jiujiang Sheng, and Min Shao
EGUsphere, https://doi.org/10.5194/egusphere-2025-2988, https://doi.org/10.5194/egusphere-2025-2988, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Severe air pollution over the North China Plain has posed significant threats to human health. Emerging evidence highlights the vital role of vertical pollutant transport in influencing surface air quality. In this study, we summarized the vertical profiles of key pollutants based on aircraft surveys up to 4,000 m. The influence of regional transport on the vertical distribution patterns was analyzed, offering essential data for evaluating the impact of aloft pollutants on surface air quality.
Jiayin Li, Tianyu Zhai, Xiaorui Chen, Haichao Wang, Shuyang Xie, Shiyi Chen, Chunmeng Li, Yuanjun Gong, Huabin Dong, and Keding Lu
Atmos. Chem. Phys., 25, 6395–6406, https://doi.org/10.5194/acp-25-6395-2025, https://doi.org/10.5194/acp-25-6395-2025, 2025
Short summary
Short summary
We directly measured the dinitrogen pentoxide (N2O5) uptake coefficient using an aerosol flow tube, which critically impacts the NOx fate and particulate nitrate formation in a typical highland city, Kunming, in China. We found that the performance of current γ (N2O5) parameterizations showed deviations with the varying aerosol liquid water content (ALWC). Such differences would lead to biased estimation of particulate nitrate production potential. We give suggestions for future research directions.
Shengjun Xi, Yuhang Wang, Xiangyang Yuan, Zhaozhong Feng, Fanghe Zhao, Yanli Zhang, and Xinming Wang
EGUsphere, https://doi.org/10.5194/egusphere-2025-2899, https://doi.org/10.5194/egusphere-2025-2899, 2025
Short summary
Short summary
We developed the Speciated Isoprene Emission Model with MEGAN Algorithm for China to improve biogenic emission estimates using updated vegetation data, environmental factors, and local emission factors. The model predicts summer 2013 emissions of 10.92–11.37 Tg C, with broadleaf trees contributing 76 %. Validation against ground observations and satellite data shows superior performance over existing models, revealing underestimated isoprene impacts on ozone pollution in eastern China.
Tianyu Zhang, Yizhu Chen, Huanhuan Zhang, Lei Liu, Chengpeng Huang, Zhengyang Fang, Yifan Zhang, Fu Wang, Lan Luo, Guohua Zhang, Xinming Wang, and Mingjin Tang
EGUsphere, https://doi.org/10.5194/egusphere-2025-2235, https://doi.org/10.5194/egusphere-2025-2235, 2025
Short summary
Short summary
This work investigated seasonal variations of aerosol Al solubility for supermicron and submicron particles at two locations in northern China. We conclude that atmospheric chemical processing, in which aerosol liquid water and acidity play vital roles, dictates aerosol Al solubility.
Weichao Huang, Sihang Wang, Peng Cheng, Bingna Chen, Bin Yuan, Pengfei Yu, Haichao Wang, Nan Ma, Mei Li, and Keding Lu
EGUsphere, https://doi.org/10.5194/egusphere-2025-1835, https://doi.org/10.5194/egusphere-2025-1835, 2025
Short summary
Short summary
We studied vehicle emissions from 10 3000-metre tunnels in the Qinghai-Tibet plateau. Since low pressure causes fuel evaporation, emissions of volatile organic compounds rise with elevation, unlike in low-altitude areas where exhaust gas is predominant. This indicates the need for specific emission control measures. Electric vehicles can use renewable energy in Tibet to reduce emissions. The study aims to understand emissions at high altitudes and guide cleaner transport.
Yunfeng He, Xiang Ding, Quanfu He, Yuqing Zhang, Duohong Chen, Tao Zhang, Kong Yang, Junqi Wang, Qian Cheng, Hao Jiang, Zirui Wang, Ping Liu, Xinming Wang, and Michael Boy
EGUsphere, https://doi.org/10.5194/egusphere-2025-2204, https://doi.org/10.5194/egusphere-2025-2204, 2025
Short summary
Short summary
The long-term field measurements in the Pearl River Delta revealed a significant decline in PM2.5 main components. As air quality improved, secondary species became more dominant. In addition, the proportion of nitrate had doubled. The changes in chemical composition led to the reductions in aerosol acidity, liquid water content and light extinction coefficient. Our results help to improve understanding of the secondary species formation under decreasing anthropogenic emissions.
Bowen Zhong, Bin Jiang, Jun Zhou, Tao Zhang, Duohong Chen, Yuhong Zhai, Junqing Luo, Minhui Deng, Mao Xiao, Jianhui Jiang, Jing Li, and Min Shao
EGUsphere, https://doi.org/10.5194/egusphere-2025-1618, https://doi.org/10.5194/egusphere-2025-1618, 2025
Short summary
Short summary
Understanding ozone production is vital for pollution control, as it directly affects ozone levels. Conventional models often lack key mechanisms, like certain volatile organic compounds, reducing the reliability of ozone production and sensitivity assessments. To fix this, we used a detection system to measure these factors during 2023 autumn field observations in rural China. Combining the system with a box model enabled a detailed study of ozone production and sensitivity.
Jianqiang Zeng, Yanli Zhang, Haofan Ran, Weihua Pang, Hao Guo, Zhaobin Mu, Wei Song, and Xinming Wang
Atmos. Meas. Tech., 18, 1811–1821, https://doi.org/10.5194/amt-18-1811-2025, https://doi.org/10.5194/amt-18-1811-2025, 2025
Short summary
Short summary
This study revealed the existence of significant species-specific adsorptive and reactive losses of monoterpenes and sesquiterpenes in dynamic chambers. The deuterated α-pinene-d3 and β-caryophyllene-d2 were proven as effective surrogates in tracing these losses for some key monoterpenes and sesquiterpenes. The findings highlight the importance of selecting internal surrogates that closely match the adsorptive and reactive behaviors of target compounds for precise loss correction.
Chunmeng Li, Xiaorui Chen, Haichao Wang, Tianyu Zhai, Xuefei Ma, Xinping Yang, Shiyi Chen, Min Zhou, Shengrong Lou, Xin Li, Limin Zeng, and Keding Lu
Atmos. Chem. Phys., 25, 3905–3918, https://doi.org/10.5194/acp-25-3905-2025, https://doi.org/10.5194/acp-25-3905-2025, 2025
Short summary
Short summary
This study reports an observation of organic nitrate (including total peroxy nitrates and total alkyl nitrates) in Shanghai, China, during the summer of 2021, by homemade thermal dissociation cavity-enhanced absorption spectroscopy (TD-CEAS; Atmos. Meas. Tech., 14, 4033–4051, 2021). The distribution of organic nitrates and their effects on local ozone production are analyzed based on field observations in conjunction with model simulations.
Ye Kuang, Biao Luo, Shan Huang, Junwen Liu, Weiwei Hu, Yuwen Peng, Duohong Chen, Dingli Yue, Wanyun Xu, Bin Yuan, and Min Shao
Atmos. Chem. Phys., 25, 3737–3752, https://doi.org/10.5194/acp-25-3737-2025, https://doi.org/10.5194/acp-25-3737-2025, 2025
Short summary
Short summary
This research reveals the potential importance of nighttime NO3 radical chemistry and aerosol water in the rapid formation of secondary brown carbon from diluted biomass burning emissions. The findings enhance our understanding of nighttime biomass burning evolution and its implications for climate and regional air quality, especially regarding interactions with background aerosol water and water-rich fogs and clouds.
Chujun Chen, Weihua Chen, Linhao Guo, Yongkang Wu, Xianzhong Duan, Xuemei Wang, and Min Shao
EGUsphere, https://doi.org/10.5194/egusphere-2025-687, https://doi.org/10.5194/egusphere-2025-687, 2025
Short summary
Short summary
Background O3 forms the baseline level of O3 pollution, even without local human activities. This review examines how background O3 is defined and estimated, revealing significant variations across China, with higher level in the Northwest and lower in the Northeast region. Globally, China’s background O3 levels are medium-to-high and rising. The study calls for integrated estimation methods, international collaboration, and research on climate-ozone links to improve air quality strategies.
Hengjia Ou, Mingfu Cai, Yongyun Zhang, Xue Ni, Baoling Liang, Qibin Sun, Shixin Mai, Cuizhi Sun, Shengzhen Zhou, Haichao Wang, Jiaren Sun, and Jun Zhao
Atmos. Chem. Phys., 25, 2495–2513, https://doi.org/10.5194/acp-25-2495-2025, https://doi.org/10.5194/acp-25-2495-2025, 2025
Short summary
Short summary
Two shipborne observations in the South China Sea (SCS) in summer and winter 2021 were conducted. Our study found aerosol hygroscopicity is higher in the SCS in summer than winter, with significant influences from various terrestrial air masses. Aerosol size distribution had a stronger effect on activation ratio than aerosol hygroscopicity in summer and vice versa in winter. Our study provides valuable information to enhance our understanding of cloud condensation nuclei activities in the SCS.
Xiao-Bing Li, Bin Yuan, Yibo Huangfu, Suxia Yang, Xin Song, Jipeng Qi, Xianjun He, Sihang Wang, Yubin Chen, Qing Yang, Yongxin Song, Yuwen Peng, Guiqian Tang, Jian Gao, Dasa Gu, and Min Shao
Atmos. Chem. Phys., 25, 2459–2472, https://doi.org/10.5194/acp-25-2459-2025, https://doi.org/10.5194/acp-25-2459-2025, 2025
Short summary
Short summary
Online vertical gradient measurements of volatile organic compounds (VOCs), ozone, and NOx were conducted based on a 325 m tall tower in urban Beijing. Vertical changes in the concentrations, compositions, key drivers, and environmental impacts of VOCs were analyzed in this study. We find that VOC species display differentiated vertical variation patterns and distinct roles in contributing to photochemical ozone formation with increasing height in the urban planetary boundary layer.
Mingfu Cai, Chenshuo Ye, Bin Yuan, Shan Huang, E Zheng, Suxia Yang, Zelong Wang, Yi Lin, Tiange Li, Weiwei Hu, Wei Chen, Qicong Song, Wei Li, Yuwen Peng, Baoling Liang, Qibin Sun, Jun Zhao, Duohong Chen, Jiaren Sun, Zhiyong Yang, and Min Shao
Atmos. Chem. Phys., 24, 13065–13079, https://doi.org/10.5194/acp-24-13065-2024, https://doi.org/10.5194/acp-24-13065-2024, 2024
Short summary
Short summary
This study investigated the daytime secondary organic aerosol (SOA) formation in urban plumes. We observed a significant daytime SOA formation through gas–particle partitioning when the site was affected by urban plumes. A box model simulation indicated that urban pollutants (nitrogen oxide and volatile organic compounds) could enhance the oxidizing capacity, while the elevated volatile organic compounds were mainly responsible for promoting daytime SOA formation.
Siting Li, Yiming Liu, Yuqi Zhu, Yinbao Jin, Yingying Hong, Ao Shen, Yifei Xu, Haofan Wang, Haichao Wang, Xiao Lu, Shaojia Fan, and Qi Fan
Atmos. Chem. Phys., 24, 11521–11544, https://doi.org/10.5194/acp-24-11521-2024, https://doi.org/10.5194/acp-24-11521-2024, 2024
Short summary
Short summary
This study establishes an inventory of anthropogenic chlorine emissions in China in 2019 with expanded species (HCl, Cl-, Cl2, HOCl) and sources (41 specific sources). The inventory is validated by a modeling study against the observations. This study enhances the understanding of anthropogenic chlorine emissions in the atmosphere, identifies key sources, and provides scientific support for pollution control and climate change.
Jun Zhou, Chunsheng Zhang, Aiming Liu, Bin Yuan, Yan Wang, Wenjie Wang, Jie-Ping Zhou, Yixin Hao, Xiao-Bing Li, Xianjun He, Xin Song, Yubin Chen, Suxia Yang, Shuchun Yang, Yanfeng Wu, Bin Jiang, Shan Huang, Junwen Liu, Yuwen Peng, Jipeng Qi, Minhui Deng, Bowen Zhong, Yibo Huangfu, and Min Shao
Atmos. Chem. Phys., 24, 9805–9826, https://doi.org/10.5194/acp-24-9805-2024, https://doi.org/10.5194/acp-24-9805-2024, 2024
Short summary
Short summary
In-depth understanding of the near-ground vertical variability in photochemical ozone (O3) formation is crucial for mitigating O3 pollution. Utilizing a self-built vertical observation system, a direct net photochemical O3 production rate detection system, and an observation-based model, we diagnosed the vertical distributions and formation mechanism of net photochemical O3 production rates and sensitivity in the Pearl River Delta region, one of the most O3-polluted areas in China.
Tianle Pan, Andrew T. Lambe, Weiwei Hu, Yicong He, Minghao Hu, Huaishan Zhou, Xinming Wang, Qingqing Hu, Hui Chen, Yue Zhao, Yuanlong Huang, Doug R. Worsnop, Zhe Peng, Melissa A. Morris, Douglas A. Day, Pedro Campuzano-Jost, Jose-Luis Jimenez, and Shantanu H. Jathar
Atmos. Meas. Tech., 17, 4915–4939, https://doi.org/10.5194/amt-17-4915-2024, https://doi.org/10.5194/amt-17-4915-2024, 2024
Short summary
Short summary
This study systematically characterizes the temperature enhancement in the lamp-enclosed oxidation flow reactor (OFR). The enhancement varied multiple dimensional factors, emphasizing the complexity of temperature inside of OFR. The effects of temperature on the flow field and gas- or particle-phase reaction inside OFR were also evaluated with experiments and model simulations. Finally, multiple mitigation strategies were demonstrated to minimize this temperature increase.
Yuanyuan Qin, Xinghua Zhang, Wei Huang, Juanjuan Qin, Xiaoyu Hu, Yuxuan Cao, Tianyi Zhao, Yang Zhang, Jihua Tan, Ziyin Zhang, Xinming Wang, and Zhenzhen Wang
Atmos. Chem. Phys., 24, 8737–8750, https://doi.org/10.5194/acp-24-8737-2024, https://doi.org/10.5194/acp-24-8737-2024, 2024
Short summary
Short summary
Environmental persistent free radicals (EPFRs) and reactive oxygen species (ROSs) play an active role in the atmosphere. Despite control measures having effectively reduced their emissions, reductions were less than in PM2.5. Emission control measures performed well in achieving Parade Blue, but reducing the impact of the atmosphere on human health remains challenging. Thus, there is a need to reassess emission control measures to better address the challenges posed by EPFRs and ROSs.
Xianzhong Duan, Ming Chang, Guotong Wu, Suping Situ, Shengjie Zhu, Qi Zhang, Yibo Huangfu, Weiwen Wang, Weihua Chen, Bin Yuan, and Xuemei Wang
Atmos. Meas. Tech., 17, 4065–4079, https://doi.org/10.5194/amt-17-4065-2024, https://doi.org/10.5194/amt-17-4065-2024, 2024
Short summary
Short summary
Accurately estimating biogenic volatile organic compound (BVOC) emissions in forest ecosystems has been challenging. This research presents a framework that utilizes drone-based lidar, photogrammetry, and image recognition technologies to identify plant species and estimate BVOC emissions. The largest cumulative isoprene emissions were found in the Myrtaceae family, while those of monoterpenes were from the Rubiaceae family.
Juanjuan Qin, Leiming Zhang, Yuanyuan Qin, Shaoxuan Shi, Jingnan Li, Zhao Shu, Yuwei Gao, Ting Qi, Jihua Tan, and Xinming Wang
Atmos. Chem. Phys., 24, 7575–7589, https://doi.org/10.5194/acp-24-7575-2024, https://doi.org/10.5194/acp-24-7575-2024, 2024
Short summary
Short summary
The present research unveiled that acidity dominates while transition metal ions harmonize with the light absorption properties of humic-like substances (HULIS). Cu2+ has quenching effects on HULIS by complexation, hydrogen substitution, or electrostatic adsorption, with aromatic structures of HULIS. Such effects are less pronounced if from Mn2+, Ni2+, Zn2+, and Cu2+. Oxidized HULIS might contain electron-donating groups, whereas N-containing compounds might contain electron-withdrawing groups.
Sihang Wang, Bin Yuan, Xianjun He, Ru Cui, Xin Song, Yubin Chen, Caihong Wu, Chaomin Wang, Yibo Huangfu, Xiao-Bing Li, Boguang Wang, and Min Shao
Atmos. Chem. Phys., 24, 7101–7121, https://doi.org/10.5194/acp-24-7101-2024, https://doi.org/10.5194/acp-24-7101-2024, 2024
Short summary
Short summary
Emissions of reactive organic gases from industrial volatile chemical product sources are measured. There are large differences among these industrial sources. We show that oxygenated species account for significant contributions to reactive organic gas emissions, especially for industrial sources utilizing water-borne chemicals.
Wei Sun, Xiaodong Hu, Yuzhen Fu, Guohua Zhang, Yujiao Zhu, Xinfeng Wang, Caiqing Yan, Likun Xue, He Meng, Bin Jiang, Yuhong Liao, Xinming Wang, Ping'an Peng, and Xinhui Bi
Atmos. Chem. Phys., 24, 6987–6999, https://doi.org/10.5194/acp-24-6987-2024, https://doi.org/10.5194/acp-24-6987-2024, 2024
Short summary
Short summary
The formation pathways of nitrogen-containing compounds (NOCs) in the atmosphere remain unclear. We investigated the composition of aerosols and fog water by state-of-the-art mass spectrometry and compared the formation pathways of NOCs. We found that NOCs in aerosols were mainly formed through nitration reaction, while ammonia addition played a more important role in fog water. The results deepen our understanding of the processes of organic particulate pollution.
Qing Yang, Xiao-Bing Li, Bin Yuan, Xiaoxiao Zhang, Yibo Huangfu, Lei Yang, Xianjun He, Jipeng Qi, and Min Shao
Atmos. Chem. Phys., 24, 6865–6882, https://doi.org/10.5194/acp-24-6865-2024, https://doi.org/10.5194/acp-24-6865-2024, 2024
Short summary
Short summary
Online vertical gradient measurements of formic and isocyanic acids were made based on a 320 m tower in a megacity. Vertical variations and sources of the two acids were analyzed in this study. We find that formic and isocyanic acids exhibited positive vertical gradients and were mainly contributed by photochemical formations. The formation of formic and isocyanic acids was also significantly enhanced in urban regions aloft.
Ping Liu, Xiang Ding, Bo-Xuan Li, Yu-Qing Zhang, Daniel J. Bryant, and Xin-Ming Wang
Atmos. Meas. Tech., 17, 3067–3079, https://doi.org/10.5194/amt-17-3067-2024, https://doi.org/10.5194/amt-17-3067-2024, 2024
Short summary
Short summary
In this paper, we further optimize the measurement of atmospheric organosulfates by hydrophilic interaction liquid chromatography (HILIC), offering an improved method for quantifying and speciating atmospheric organosulfates. These efforts will contribute to a deeper understanding of secondary organic aerosol precursors, formation mechanisms, and the contribution of organosulfate to atmospheric aerosols, ultimately guiding research in the field of air pollution prevention and control.
Zhiqiang Zhang, Ying Li, Haiyan Ran, Junling An, Yu Qu, Wei Zhou, Weiqi Xu, Weiwei Hu, Hongbin Xie, Zifa Wang, Yele Sun, and Manabu Shiraiwa
Atmos. Chem. Phys., 24, 4809–4826, https://doi.org/10.5194/acp-24-4809-2024, https://doi.org/10.5194/acp-24-4809-2024, 2024
Short summary
Short summary
Secondary organic aerosols (SOAs) can exist in liquid, semi-solid, or amorphous solid states, which are rarely accounted for in current chemical transport models. We predict the phase state of SOA particles over China and find that in northwestern China SOA particles are mostly highly viscous or glassy solid. Our results indicate that the particle phase state should be considered in SOA formation in chemical transport models for more accurate prediction of SOA mass concentrations.
Fangbing Li, Dan Dan Huang, Linhui Tian, Bin Yuan, Wen Tan, Liang Zhu, Penglin Ye, Douglas Worsnop, Ka In Hoi, Kai Meng Mok, and Yong Jie Li
Atmos. Meas. Tech., 17, 2415–2427, https://doi.org/10.5194/amt-17-2415-2024, https://doi.org/10.5194/amt-17-2415-2024, 2024
Short summary
Short summary
The responses of protonated, adduct, and fragmented ions of 21 volatile organic compounds (VOCs) were investigated with varying instrument settings and relative humidity (RH) in a Vocus proton-transfer-reaction mass spectrometer (PTR-MS). The protonated ions of most VOCs studied show < 15 % variation in sensitivity, except for some long-chain aldehydes. The relationship between sensitivity and PTR rate constant is complicated by the influences from ion transmission and protonated ion fraction.
Wenjie Wang, Bin Yuan, Hang Su, Yafang Cheng, Jipeng Qi, Sihang Wang, Wei Song, Xinming Wang, Chaoyang Xue, Chaoqun Ma, Fengxia Bao, Hongli Wang, Shengrong Lou, and Min Shao
Atmos. Chem. Phys., 24, 4017–4027, https://doi.org/10.5194/acp-24-4017-2024, https://doi.org/10.5194/acp-24-4017-2024, 2024
Short summary
Short summary
This study investigates the important role of unmeasured volatile organic compounds (VOCs) in ozone formation. Based on results in a megacity of China, we show that unmeasured VOCs can contribute significantly to ozone fomation and also influence the determination of ozone control strategy. Our results show that these unmeasured VOCs are mainly from human sources.
Yiming Wang, Haolin Wang, Yujie Qin, Xinqi Xu, Guowen He, Nanxi Liu, Shengjie Miao, Xiao Lu, Haichao Wang, and Shaojia Fan
Atmos. Chem. Phys., 24, 2267–2285, https://doi.org/10.5194/acp-24-2267-2024, https://doi.org/10.5194/acp-24-2267-2024, 2024
Short summary
Short summary
We conducted a vertical measurement of winter PM2.5 using a mobile multi-lidar system in four cities. Combined with the surface PM2.5 data, the ERA5 reanalysis data, and GEOS-Chem simulations during Dec 2018–Feb 2019, we found that transport nocturnal PM2.5 enhancement by subsidence (T-NPES) events widely occurred with high frequencies in plains regions in eastern China but happened less often in basin regions like Xi’an and Chengdu. We propose a conceptual model of the T-NPES events.
Hua Fang, Ting Wu, Shutan Ma, Qina Jia, Fengyu Zan, Juan Zhao, Jintao Zhang, Zhi Yang, Hongling Xu, Yuzhe Huang, and Xinming Wang
EGUsphere, https://doi.org/10.5194/egusphere-2023-2998, https://doi.org/10.5194/egusphere-2023-2998, 2024
Preprint archived
Short summary
Short summary
Using in situ VOC flux measurements, we reveal that the freshwater wetland is a potential source of atmospheric VOCs and that litter decomposition enhances net VOC emission. Ambient temperature is the key factor driving the seasonal variation of net VOC flux. Notably, the release or uptake of VOCs varies depending on chemical groups and is jointly controlled by biotic and abiotic processes.
Jie Wang, Haichao Wang, Yee Jun Tham, Lili Ming, Zelong Zheng, Guizhen Fang, Cuizhi Sun, Zhenhao Ling, Jun Zhao, and Shaojia Fan
Atmos. Chem. Phys., 24, 977–992, https://doi.org/10.5194/acp-24-977-2024, https://doi.org/10.5194/acp-24-977-2024, 2024
Short summary
Short summary
Many works report NO3 chemistry in inland regions while less target marine regions. We measured N2O5 and related species on a typical island and found intensive nighttime chemistry and rapid NO3 loss. NO contributed significantly to NO3 loss despite its sub-ppbv level, suggesting nocturnal NO3 reactions would be largely enhanced once free from NO emissions in the open ocean. This highlights the strong influences of urban outflow on downward marine areas in terms of nighttime chemistry.
Can Ye, Keding Lu, Xuefei Ma, Wanyi Qiu, Shule Li, Xinping Yang, Chaoyang Xue, Tianyu Zhai, Yuhan Liu, Xuan Li, Yang Li, Haichao Wang, Zhaofeng Tan, Xiaorui Chen, Huabin Dong, Limin Zeng, Min Hu, and Yuanhang Zhang
Atmos. Chem. Phys., 23, 15455–15472, https://doi.org/10.5194/acp-23-15455-2023, https://doi.org/10.5194/acp-23-15455-2023, 2023
Short summary
Short summary
In this study, combining comprehensive field measurements and a box model, we found NO2 conversion on the ground surface was the most important source for HONO production among the proposed heterogeneous and gas-phase HONO sources. In addition, HONO was found to evidently enhance O3 production and aggravate O3 pollution in summer in China. Our study improved our understanding of the relative importance of different HONO sources and the crucial role of HONO in O3 formation in polluted areas.
Guowen He, Cheng He, Haofan Wang, Xiao Lu, Chenglei Pei, Xiaonuan Qiu, Chenxi Liu, Yiming Wang, Nanxi Liu, Jinpu Zhang, Lei Lei, Yiming Liu, Haichao Wang, Tao Deng, Qi Fan, and Shaojia Fan
Atmos. Chem. Phys., 23, 13107–13124, https://doi.org/10.5194/acp-23-13107-2023, https://doi.org/10.5194/acp-23-13107-2023, 2023
Short summary
Short summary
We analyze nighttime ozone in the lower boundary layer (up to 500 m) from the 2017–2019 measurements at the Canton Tower and the WRF-CMAQ model. We identify a strong ability of the residual layer to store daytime ozone in the convective mixing layer, investigate the chemical and meteorological factors controlling nighttime ozone in the residual layer, and quantify the contribution of nighttime ozone in the residual layer to both the nighttime and the following day’s surface ozone air quality.
Bojiang Su, Xinhui Bi, Zhou Zhang, Yue Liang, Congbo Song, Tao Wang, Yaohao Hu, Lei Li, Zhen Zhou, Jinpei Yan, Xinming Wang, and Guohua Zhang
Atmos. Chem. Phys., 23, 10697–10711, https://doi.org/10.5194/acp-23-10697-2023, https://doi.org/10.5194/acp-23-10697-2023, 2023
Short summary
Short summary
During the R/V Xuelong cruise observation over the Ross Sea, Antarctica, the mass concentrations of water-soluble Ca2+ and the mass spectra of individual calcareous particles were measured. Our results indicated that lower temperature, lower wind speed, and the presence of sea ice may facilitate Ca2+ enrichment in sea spray aerosols and highlighted the potential contribution of organically complexed calcium to calcium enrichment, which is inaccurate based solely on water-soluble Ca2+ estimation.
Yixin Hao, Jun Zhou, Jie-Ping Zhou, Yan Wang, Suxia Yang, Yibo Huangfu, Xiao-Bing Li, Chunsheng Zhang, Aiming Liu, Yanfeng Wu, Yaqing Zhou, Shuchun Yang, Yuwen Peng, Jipeng Qi, Xianjun He, Xin Song, Yubin Chen, Bin Yuan, and Min Shao
Atmos. Chem. Phys., 23, 9891–9910, https://doi.org/10.5194/acp-23-9891-2023, https://doi.org/10.5194/acp-23-9891-2023, 2023
Short summary
Short summary
By employing an improved net photochemical ozone production rate (NPOPR) detection system based on the dual-channel reaction chamber technique, we measured the net photochemical ozone production rate in the Pearl River Delta in China. The photochemical ozone formation mechanisms in the reaction and reference chambers were investigated using the observation-data-constrained box model, which helped us to validate the NPOPR detection system and understand photochemical ozone formation mechanism.
Yiyu Cai, Chenshuo Ye, Wei Chen, Weiwei Hu, Wei Song, Yuwen Peng, Shan Huang, Jipeng Qi, Sihang Wang, Chaomin Wang, Caihong Wu, Zelong Wang, Baolin Wang, Xiaofeng Huang, Lingyan He, Sasho Gligorovski, Bin Yuan, Min Shao, and Xinming Wang
Atmos. Chem. Phys., 23, 8855–8877, https://doi.org/10.5194/acp-23-8855-2023, https://doi.org/10.5194/acp-23-8855-2023, 2023
Short summary
Short summary
We studied the variability and molecular composition of ambient oxidized organic nitrogen (OON) in both gas and particle phases using a state-of-the-art online mass spectrometer in urban air. Biomass burning and secondary formation were found to be the two major sources of OON. Daytime nitrate radical chemistry for OON formation was more important than previously thought. Our results improved the understanding of the sources and molecular composition of OON in the polluted urban atmosphere.
Hejun Hu, Haichao Wang, Keding Lu, Jie Wang, Zelong Zheng, Xuezhen Xu, Tianyu Zhai, Xiaorui Chen, Xiao Lu, Wenxing Fu, Xin Li, Limin Zeng, Min Hu, Yuanhang Zhang, and Shaojia Fan
Atmos. Chem. Phys., 23, 8211–8223, https://doi.org/10.5194/acp-23-8211-2023, https://doi.org/10.5194/acp-23-8211-2023, 2023
Short summary
Short summary
Nitrate radical chemistry is critical to the degradation of volatile organic compounds (VOCs) and secondary organic aerosol formation. This work investigated the level, seasonal variation, and trend of nitrate radical reactivity towards volatile organic compounds (kNO3) in Beijing. We show the key role of isoprene and styrene in regulating seasonal variation in kNO3 and rebuild a long-term record of kNO3 based on the reported VOC measurements.
Kevin J. Nihill, Matthew M. Coggon, Christopher Y. Lim, Abigail R. Koss, Bin Yuan, Jordan E. Krechmer, Kanako Sekimoto, Jose L. Jimenez, Joost de Gouw, Christopher D. Cappa, Colette L. Heald, Carsten Warneke, and Jesse H. Kroll
Atmos. Chem. Phys., 23, 7887–7899, https://doi.org/10.5194/acp-23-7887-2023, https://doi.org/10.5194/acp-23-7887-2023, 2023
Short summary
Short summary
In this work, we collect emissions from controlled burns of biomass fuels that can be found in the western United States into an environmental chamber in order to simulate their oxidation as they pass through the atmosphere. These findings provide a detailed characterization of the composition of the atmosphere downwind of wildfires. In turn, this will help to explore the effects of these changing emissions on downwind populations and will also directly inform atmospheric and climate models.
Yaqin Gao, Hongli Wang, Lingling Yuan, Shengao Jing, Bin Yuan, Guofeng Shen, Liang Zhu, Abigail Koss, Yingjie Li, Qian Wang, Dan Dan Huang, Shuhui Zhu, Shikang Tao, Shengrong Lou, and Cheng Huang
Atmos. Chem. Phys., 23, 6633–6646, https://doi.org/10.5194/acp-23-6633-2023, https://doi.org/10.5194/acp-23-6633-2023, 2023
Short summary
Short summary
A near-complete speciation of reactive organic gases from residential combustion was developed to get more insights into their atmospheric effects. Oxygenated species, higher hydrocarbons and nitrogen-containing species played larger roles in these emissions compared with common hydrocarbons. Based on the near-complete speciation, these emissions were largely underestimated, leading to more underestimation of their hydroxyl radical reactivity and secondary organic aerosol formation potential.
Juan Hong, Min Tang, Qiaoqiao Wang, Nan Ma, Shaowen Zhu, Shaobin Zhang, Xihao Pan, Linhong Xie, Guo Li, Uwe Kuhn, Chao Yan, Jiangchuan Tao, Ye Kuang, Yao He, Wanyun Xu, Runlong Cai, Yaqing Zhou, Zhibin Wang, Guangsheng Zhou, Bin Yuan, Yafang Cheng, and Hang Su
Atmos. Chem. Phys., 23, 5699–5713, https://doi.org/10.5194/acp-23-5699-2023, https://doi.org/10.5194/acp-23-5699-2023, 2023
Short summary
Short summary
A comprehensive investigation of the characteristics of new particle formation (NPF) events was conducted at a rural site on the North China Plain (NCP), China, during the wintertime of 2018 by covering the particle number size distribution down to sub–3 nm. Potential mechanisms for NPF under the current environment were explored, followed by a further discussion on the factors governing the occurrence of NPF at this rural site compared with other regions (e.g., urban areas) in the NCP region.
Joanna E. Dyson, Lisa K. Whalley, Eloise J. Slater, Robert Woodward-Massey, Chunxiang Ye, James D. Lee, Freya Squires, James R. Hopkins, Rachel E. Dunmore, Marvin Shaw, Jacqueline F. Hamilton, Alastair C. Lewis, Stephen D. Worrall, Asan Bacak, Archit Mehra, Thomas J. Bannan, Hugh Coe, Carl J. Percival, Bin Ouyang, C. Nicholas Hewitt, Roderic L. Jones, Leigh R. Crilley, Louisa J. Kramer, W. Joe F. Acton, William J. Bloss, Supattarachai Saksakulkrai, Jingsha Xu, Zongbo Shi, Roy M. Harrison, Simone Kotthaus, Sue Grimmond, Yele Sun, Weiqi Xu, Siyao Yue, Lianfang Wei, Pingqing Fu, Xinming Wang, Stephen R. Arnold, and Dwayne E. Heard
Atmos. Chem. Phys., 23, 5679–5697, https://doi.org/10.5194/acp-23-5679-2023, https://doi.org/10.5194/acp-23-5679-2023, 2023
Short summary
Short summary
The hydroxyl (OH) and closely coupled hydroperoxyl (HO2) radicals are vital for their role in the removal of atmospheric pollutants. In less polluted regions, atmospheric models over-predict HO2 concentrations. In this modelling study, the impact of heterogeneous uptake of HO2 onto aerosol surfaces on radical concentrations and the ozone production regime in Beijing in the summertime is investigated, and the implications for emissions policies across China are considered.
Huanhuan Zhang, Rui Li, Chengpeng Huang, Xiaofei Li, Shuwei Dong, Fu Wang, Tingting Li, Yizhu Chen, Guohua Zhang, Yan Ren, Qingcai Chen, Ru-jin Huang, Siyu Chen, Tao Xue, Xinming Wang, and Mingjin Tang
Atmos. Chem. Phys., 23, 3543–3559, https://doi.org/10.5194/acp-23-3543-2023, https://doi.org/10.5194/acp-23-3543-2023, 2023
Short summary
Short summary
This work investigated the seasonal variation of aerosol Fe solubility for coarse and fine particles in Xi’an, a megacity in northwestern China severely affected by anthropogenic emission and desert dust aerosol. In addition, we discussed in depth what controlled aerosol Fe solubility at different seasons for coarse and fine particles.
Tianyu Zhai, Keding Lu, Haichao Wang, Shengrong Lou, Xiaorui Chen, Renzhi Hu, and Yuanhang Zhang
Atmos. Chem. Phys., 23, 2379–2391, https://doi.org/10.5194/acp-23-2379-2023, https://doi.org/10.5194/acp-23-2379-2023, 2023
Short summary
Short summary
Particulate nitrate is a growing issue in air pollution. Based on comprehensive field measurement, we show heavy nitrate pollution in eastern China in summer. OH reacting with NO2 at daytime dominates nitrate formation on clean days, while N2O5 hydrolysis largely enhances and become comparable with that of OH reacting with O2 on polluted days (67.2 % and 30.2 %). Model simulation indicates that VOC : NOx = 2 : 1 is effective in mitigating the O3 and nitrate pollution coordinately.
Tingting Feng, Yingkun Wang, Weiwei Hu, Ming Zhu, Wei Song, Wei Chen, Yanyan Sang, Zheng Fang, Wei Deng, Hua Fang, Xu Yu, Cheng Wu, Bin Yuan, Shan Huang, Min Shao, Xiaofeng Huang, Lingyan He, Young Ro Lee, Lewis Gregory Huey, Francesco Canonaco, Andre S. H. Prevot, and Xinming Wang
Atmos. Chem. Phys., 23, 611–636, https://doi.org/10.5194/acp-23-611-2023, https://doi.org/10.5194/acp-23-611-2023, 2023
Short summary
Short summary
To investigate the impact of aging processes on organic aerosols (OA), we conducted a comprehensive field study at a continental remote site using an on-line mass spectrometer. The results show that OA in the Chinese outflows were strongly influenced by upwind anthropogenic emissions. The aging processes can significantly decrease the OA volatility and result in a varied viscosity of OA under different circumstances, signifying the complex physiochemical properties of OA in aged plumes.
Xiaorui Chen, Haichao Wang, Tianyu Zhai, Chunmeng Li, and Keding Lu
Atmos. Meas. Tech., 15, 7019–7037, https://doi.org/10.5194/amt-15-7019-2022, https://doi.org/10.5194/amt-15-7019-2022, 2022
Short summary
Short summary
N2O5 is an important reservoir of atmospheric nitrogen, on whose interface reaction ambient particles can largely influence the fate of nitrogen oxides and air quality. In this study, we develop an approach to enable the reactions of N2O5 on ambient particles directly in a tube reactor, deriving the reaction rates with high accuracy by means of a chemistry model. Its successful application helps complement the data scarcity and to fill the knowledge gap between laboratory and field results.
Yubin Chen, Bin Yuan, Chaomin Wang, Sihang Wang, Xianjun He, Caihong Wu, Xin Song, Yibo Huangfu, Xiao-Bing Li, Yijia Liao, and Min Shao
Atmos. Meas. Tech., 15, 6935–6947, https://doi.org/10.5194/amt-15-6935-2022, https://doi.org/10.5194/amt-15-6935-2022, 2022
Short summary
Short summary
In this study, we demonstrate that selective online measurements of cycloalkanes can be achieved using proton transfer reaction time-of-flight mass spectrometry with NO+ chemical ionization (NO+ PTR-ToF-MS), with fast response and low detection limits. Applications of this method in both urban air and emission sources will be shown.
Cheng He, Xiao Lu, Haolin Wang, Haichao Wang, Yan Li, Guowen He, Yuanping He, Yurun Wang, Youlang Zhang, Yiming Liu, Qi Fan, and Shaojia Fan
Atmos. Chem. Phys., 22, 15243–15261, https://doi.org/10.5194/acp-22-15243-2022, https://doi.org/10.5194/acp-22-15243-2022, 2022
Short summary
Short summary
We report that nocturnal ozone enhancement (NOE) events are observed at a high annual frequency of 41 % over 800 sites in China in 2014–2019 (about 50 % higher than that over Europe or the US). High daytime ozone provides a rich ozone source in the nighttime residual layer, determining the overall high frequency of NOE events in China, and enhanced atmospheric mixing then triggers NOE events by allowing the ozone-rich air in the residual layer to be mixed into the nighttime boundary layer.
Haichao Wang, Bin Yuan, E Zheng, Xiaoxiao Zhang, Jie Wang, Keding Lu, Chenshuo Ye, Lei Yang, Shan Huang, Weiwei Hu, Suxia Yang, Yuwen Peng, Jipeng Qi, Sihang Wang, Xianjun He, Yubin Chen, Tiange Li, Wenjie Wang, Yibo Huangfu, Xiaobing Li, Mingfu Cai, Xuemei Wang, and Min Shao
Atmos. Chem. Phys., 22, 14837–14858, https://doi.org/10.5194/acp-22-14837-2022, https://doi.org/10.5194/acp-22-14837-2022, 2022
Short summary
Short summary
We present intensive field measurement of ClNO2 in the Pearl River Delta in 2019. Large variation in the level, formation, and atmospheric impacts of ClNO2 was found in different air masses. ClNO2 formation was limited by the particulate chloride (Cl−) and aerosol surface area. Our results reveal that Cl− originated from various anthropogenic emissions rather than sea sources and show minor contribution to the O3 pollution and photochemistry.
Xinping Yang, Keding Lu, Xuefei Ma, Yue Gao, Zhaofeng Tan, Haichao Wang, Xiaorui Chen, Xin Li, Xiaofeng Huang, Lingyan He, Mengxue Tang, Bo Zhu, Shiyi Chen, Huabin Dong, Limin Zeng, and Yuanhang Zhang
Atmos. Chem. Phys., 22, 12525–12542, https://doi.org/10.5194/acp-22-12525-2022, https://doi.org/10.5194/acp-22-12525-2022, 2022
Short summary
Short summary
We present the OH and HO2 radical observations at the Shenzhen site (Pearl River Delta, China) in the autumn of 2018. The diurnal maxima were 4.5 × 106 cm−3 for OH and 4.2 × 108 cm−3 for HO2 (including an estimated interference of 23 %–28 % from RO2 radicals during the daytime). The OH underestimation was identified again, and it was attributable to the missing OH sources. HO2 heterogeneous uptake, ROx sources and sinks, and the atmospheric oxidation capacity were evaluated as well.
Biao Luo, Ye Kuang, Shan Huang, Qicong Song, Weiwei Hu, Wei Li, Yuwen Peng, Duohong Chen, Dingli Yue, Bin Yuan, and Min Shao
Atmos. Chem. Phys., 22, 12401–12415, https://doi.org/10.5194/acp-22-12401-2022, https://doi.org/10.5194/acp-22-12401-2022, 2022
Short summary
Short summary
We performed comprehensive analysis on biomass burning organic aerosol (BBOA) size distributions, as well as mass scattering and absorption efficiencies, with an improved method of on-line quantification of brown carbon absorptions. Both BBOA volume size distribution and retrieved refractive index depend highly on combustion conditions represented by the black carbon content, which has significant implications for BBOA climate effect simulations.
Xiao-Bing Li, Bin Yuan, Sihang Wang, Chunlin Wang, Jing Lan, Zhijie Liu, Yongxin Song, Xianjun He, Yibo Huangfu, Chenglei Pei, Peng Cheng, Suxia Yang, Jipeng Qi, Caihong Wu, Shan Huang, Yingchang You, Ming Chang, Huadan Zheng, Wenda Yang, Xuemei Wang, and Min Shao
Atmos. Chem. Phys., 22, 10567–10587, https://doi.org/10.5194/acp-22-10567-2022, https://doi.org/10.5194/acp-22-10567-2022, 2022
Short summary
Short summary
High-time-resolution measurements of volatile organic compounds (VOCs) were made using an online mass spectrometer at a 600 m tall tower in urban region. Compositions, temporal variations, and sources of VOCs were quantitatively investigated in this study. We find that VOC measurements in urban regions aloft could better characterize source characteristics of anthropogenic emissions. Our results could provide important implications in making future strategies for control of VOCs.
Xueyin Ruan, Chun Zhao, Rahul A. Zaveri, Pengzhen He, Xinming Wang, Jingyuan Shao, and Lei Geng
Geosci. Model Dev., 15, 6143–6164, https://doi.org/10.5194/gmd-15-6143-2022, https://doi.org/10.5194/gmd-15-6143-2022, 2022
Short summary
Short summary
Accurate prediction of aerosol pH in chemical transport models is essential to aerosol modeling. This study examines the performance of the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) on aerosol pH predictions and the sensitivities to emissions of nonvolatile cations and NH3, aerosol-phase state assumption, and heterogeneous sulfate production. Temporal evolution of aerosol pH during haze cycles in Beijing and the driving factors are also presented and discussed.
Sihang Wang, Bin Yuan, Caihong Wu, Chaomin Wang, Tiange Li, Xianjun He, Yibo Huangfu, Jipeng Qi, Xiao-Bing Li, Qing'e Sha, Manni Zhu, Shengrong Lou, Hongli Wang, Thomas Karl, Martin Graus, Zibing Yuan, and Min Shao
Atmos. Chem. Phys., 22, 9703–9720, https://doi.org/10.5194/acp-22-9703-2022, https://doi.org/10.5194/acp-22-9703-2022, 2022
Short summary
Short summary
Volatile organic compound (VOC) emissions from vehicles are measured using online mass spectrometers. Differences between gasoline and diesel vehicles are observed with higher emission factors of most oxygenated VOCs (OVOCs) and heavier aromatics from diesel vehicles. A higher aromatics / toluene ratio could provide good indicators to distinguish emissions from both vehicle types. We show that OVOCs account for significant contributions to VOC emissions from vehicles, especially diesel vehicles.
Guohua Zhang, Xiaodong Hu, Wei Sun, Yuxiang Yang, Ziyong Guo, Yuzhen Fu, Haichao Wang, Shengzhen Zhou, Lei Li, Mingjin Tang, Zongbo Shi, Duohong Chen, Xinhui Bi, and Xinming Wang
Atmos. Chem. Phys., 22, 9571–9582, https://doi.org/10.5194/acp-22-9571-2022, https://doi.org/10.5194/acp-22-9571-2022, 2022
Short summary
Short summary
We show a significant enhancement of nitrate mass fraction in cloud water and relative intensity of nitrate in the cloud residual particles and highlight that hydrolysis of N2O5 serves as the critical route for the in-cloud formation of nitrate, even during the daytime. Given that N2O5 hydrolysis acts as a major sink of NOx in the atmosphere, further model updates may improve our understanding about the processes contributing to nitrate production in cloud and the cycling of odd nitrogen.
Qi Zhang, Shiguo Jia, Weihua Chen, Jingying Mao, Liming Yang, Padmaja Krishnan, Sayantan Sarkar, Min Shao, and Xuemei Wang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-394, https://doi.org/10.5194/acp-2022-394, 2022
Revised manuscript not accepted
Short summary
Short summary
We use satellite data in the establishment of methylamines marine biological emission (MBE) inventory for the first time, which considers effects of actual marine environment on methylamines emission fluxes. MBE fluxes of monomethylamine and trimethylamines can be comparable with or even higher than that of terrestrial anthropogenic emissions , while for dimethylamines, the ocean acts as a sink. Wind and Chlorophyll-a were potentially the most important factors affecting MBE fluxes.
Mingfu Cai, Shan Huang, Baoling Liang, Qibin Sun, Li Liu, Bin Yuan, Min Shao, Weiwei Hu, Wei Chen, Qicong Song, Wei Li, Yuwen Peng, Zelong Wang, Duohong Chen, Haobo Tan, Hanbin Xu, Fei Li, Xuejiao Deng, Tao Deng, Jiaren Sun, and Jun Zhao
Atmos. Chem. Phys., 22, 8117–8136, https://doi.org/10.5194/acp-22-8117-2022, https://doi.org/10.5194/acp-22-8117-2022, 2022
Short summary
Short summary
This study investigated the size dependence and diurnal variation in organic aerosol hygroscopicity, volatility, and cloud condensation nuclei (CCN) activity. We found that the physical properties of OA could vary in a large range at different particle sizes and affected the number concentration of CCN (NCCN) at all supersaturations. Our results highlight the importance of evaluating the atmospheric evolution processes of OA at different size ranges and their impact on climate effects.
Li Liu, Ye Kuang, Miaomiao Zhai, Biao Xue, Yao He, Jun Tao, Biao Luo, Wanyun Xu, Jiangchuan Tao, Changqin Yin, Fei Li, Hanbing Xu, Tao Deng, Xuejiao Deng, Haobo Tan, and Min Shao
Atmos. Chem. Phys., 22, 7713–7726, https://doi.org/10.5194/acp-22-7713-2022, https://doi.org/10.5194/acp-22-7713-2022, 2022
Short summary
Short summary
Using simultaneous measurements of a humidified nephelometer system and an aerosol chemical speciation monitor in winter in Guangzhou, the strongest scattering ability of more oxidized oxygenated organic aerosol (MOOA) among aerosol components considering their dry-state scattering ability and water uptake ability was revealed, leading to large impacts of MOOA on visibility degradation. This has important implications for visibility improvement in China and aerosol radiative effect simulation.
Xuefei Ma, Zhaofeng Tan, Keding Lu, Xinping Yang, Xiaorui Chen, Haichao Wang, Shiyi Chen, Xin Fang, Shule Li, Xin Li, Jingwei Liu, Ying Liu, Shengrong Lou, Wanyi Qiu, Hongli Wang, Limin Zeng, and Yuanhang Zhang
Atmos. Chem. Phys., 22, 7005–7028, https://doi.org/10.5194/acp-22-7005-2022, https://doi.org/10.5194/acp-22-7005-2022, 2022
Short summary
Short summary
This paper presents the first OH and HO2 radical observations made in the Yangtze River Delta in China, and strong oxidation capacity is discovered based on direct measurements. The impacts of new OH regeneration mechanisms, monoterpene oxidation, and HO2 uptake processes are examined and discussed. The sources and the factors to sustain such strong oxidation are the key to understanding the ozone pollution formed in this area.
Lu Chen, Fang Zhang, Dongmei Zhang, Xinming Wang, Wei Song, Jieyao Liu, Jingye Ren, Sihui Jiang, Xue Li, and Zhanqing Li
Atmos. Chem. Phys., 22, 6773–6786, https://doi.org/10.5194/acp-22-6773-2022, https://doi.org/10.5194/acp-22-6773-2022, 2022
Short summary
Short summary
Aerosol hygroscopicity is critical when evaluating its effect on visibility and climate. Here, the size-resolved particle hygroscopicity at five sites in China is characterized using field measurements. We show the distinct behavior of hygroscopic particles during pollution evolution among the five sites. Moreover, different hygroscopic behavior during NPF events were also observed. The dataset is helpful for understanding the spatial variability in particle composition and formation mechanisms.
Ziyong Guo, Yuxiang Yang, Xiaodong Hu, Xiaocong Peng, Yuzhen Fu, Wei Sun, Guohua Zhang, Duohong Chen, Xinhui Bi, Xinming Wang, and Ping'an Peng
Atmos. Chem. Phys., 22, 4827–4839, https://doi.org/10.5194/acp-22-4827-2022, https://doi.org/10.5194/acp-22-4827-2022, 2022
Short summary
Short summary
We show that in-cloud aqueous processing facilitates the formation of brown carbon (BrC), based on the simultaneous measurements of the light-absorption properties of the cloud residuals, cloud interstitial, and cloud-free particles. While extensive laboratory evidence indicated the formation of BrC in aqueous phase, our study represents the first attempt to show the possibility in real clouds, which would have potential implications in the atmospheric evolution and radiation forcing of BrC.
Suxia Yang, Bin Yuan, Yuwen Peng, Shan Huang, Wei Chen, Weiwei Hu, Chenglei Pei, Jun Zhou, David D. Parrish, Wenjie Wang, Xianjun He, Chunlei Cheng, Xiao-Bing Li, Xiaoyun Yang, Yu Song, Haichao Wang, Jipeng Qi, Baolin Wang, Chen Wang, Chaomin Wang, Zelong Wang, Tiange Li, E Zheng, Sihang Wang, Caihong Wu, Mingfu Cai, Chenshuo Ye, Wei Song, Peng Cheng, Duohong Chen, Xinming Wang, Zhanyi Zhang, Xuemei Wang, Junyu Zheng, and Min Shao
Atmos. Chem. Phys., 22, 4539–4556, https://doi.org/10.5194/acp-22-4539-2022, https://doi.org/10.5194/acp-22-4539-2022, 2022
Short summary
Short summary
We use a model constrained using observations to study the formation of nitrate aerosol in and downwind of a representative megacity. We found different contributions of various chemical reactions to ground-level nitrate concentrations between urban and suburban regions. We also show that controlling VOC emissions are effective for decreasing nitrate formation in both urban and regional environments, although VOCs are not direct precursors of nitrate aerosol.
Wenjie Wang, Bin Yuan, Yuwen Peng, Hang Su, Yafang Cheng, Suxia Yang, Caihong Wu, Jipeng Qi, Fengxia Bao, Yibo Huangfu, Chaomin Wang, Chenshuo Ye, Zelong Wang, Baolin Wang, Xinming Wang, Wei Song, Weiwei Hu, Peng Cheng, Manni Zhu, Junyu Zheng, and Min Shao
Atmos. Chem. Phys., 22, 4117–4128, https://doi.org/10.5194/acp-22-4117-2022, https://doi.org/10.5194/acp-22-4117-2022, 2022
Short summary
Short summary
From thorough measurements of numerous oxygenated volatile organic compounds, we show that their photodissociation can be important for radical production and ozone formation in the atmosphere. This effect was underestimated in previous studies, as measurements of them were lacking.
Xiajie Yang, Qiaoqiao Wang, Nan Ma, Weiwei Hu, Yang Gao, Zhijiong Huang, Junyu Zheng, Bin Yuan, Ning Yang, Jiangchuan Tao, Juan Hong, Yafang Cheng, and Hang Su
Atmos. Chem. Phys., 22, 3743–3762, https://doi.org/10.5194/acp-22-3743-2022, https://doi.org/10.5194/acp-22-3743-2022, 2022
Short summary
Short summary
We use the GEOS-Chem model with additional anthropogenic and biomass burning chlorine emissions combined with updated parameterizations for N2O5 + Cl chemistry to investigate the impacts of chlorine chemistry on air quality in China. Our study not only significantly improves the model's performance but also demonstrates the importance of non-sea-salt chlorine sources as well as an appropriate parameterization for N2O5 + Cl chemistry to the impact of chlorine chemistry in China.
Xiaorui Chen, Haichao Wang, and Keding Lu
Atmos. Chem. Phys., 22, 3525–3533, https://doi.org/10.5194/acp-22-3525-2022, https://doi.org/10.5194/acp-22-3525-2022, 2022
Short summary
Short summary
We use a complete set of simulations to evaluate whether equilibrium and steady state are appropriate for a chemical system involving several reactive nitrogen-containing species (NO2, NO3, and N2O5) under various conditions. A previously neglected bias for the coefficient applied for interpreting their effects is disclosed, and the relevant ambient factors are examined. We therefore provide a good solution to an accurate representation of nighttime chemistry in high-aerosol areas.
Yaqing Zhou, Nan Ma, Qiaoqiao Wang, Zhibin Wang, Chunrong Chen, Jiangchuan Tao, Juan Hong, Long Peng, Yao He, Linhong Xie, Shaowen Zhu, Yuxuan Zhang, Guo Li, Wanyun Xu, Peng Cheng, Uwe Kuhn, Guangsheng Zhou, Pingqing Fu, Qiang Zhang, Hang Su, and Yafang Cheng
Atmos. Chem. Phys., 22, 2029–2047, https://doi.org/10.5194/acp-22-2029-2022, https://doi.org/10.5194/acp-22-2029-2022, 2022
Short summary
Short summary
This study characterizes size-resolved particle effective densities and their evolution associated with emissions and aging processes in a rural area of the North China Plain. Particle effective density exhibits a high-frequency bimodal distribution, and two density modes exhibit opposite trends with increasing particle size. SIA and BC mass fractions are key factors of particle effective density, and a value of 0.6 g cm−3 is appropriate to represent BC effective density in bulk particles.
Haichao Wang, Chao Peng, Xuan Wang, Shengrong Lou, Keding Lu, Guicheng Gan, Xiaohong Jia, Xiaorui Chen, Jun Chen, Hongli Wang, Shaojia Fan, Xinming Wang, and Mingjin Tang
Atmos. Chem. Phys., 22, 1845–1859, https://doi.org/10.5194/acp-22-1845-2022, https://doi.org/10.5194/acp-22-1845-2022, 2022
Short summary
Short summary
Via combining laboratory and modeling work, we found that heterogeneous reaction of N2O5 with saline mineral dust aerosol could be an important source of tropospheric ClNO2 in inland regions.
Douglas A. Day, Pedro Campuzano-Jost, Benjamin A. Nault, Brett B. Palm, Weiwei Hu, Hongyu Guo, Paul J. Wooldridge, Ronald C. Cohen, Kenneth S. Docherty, J. Alex Huffman, Suzane S. de Sá, Scot T. Martin, and Jose L. Jimenez
Atmos. Meas. Tech., 15, 459–483, https://doi.org/10.5194/amt-15-459-2022, https://doi.org/10.5194/amt-15-459-2022, 2022
Short summary
Short summary
Particle-phase nitrates are an important component of atmospheric aerosols and chemistry. In this paper, we systematically explore the application of aerosol mass spectrometry (AMS) to quantify the organic and inorganic nitrate fractions of aerosols in the atmosphere. While AMS has been used for a decade to quantify nitrates, methods are not standardized. We make recommendations for a more universal approach based on this analysis of a large range of field and laboratory observations.
Juanjuan Qin, Jihua Tan, Xueming Zhou, Yanrong Yang, Yuanyuan Qin, Xiaobo Wang, Shaoxuan Shi, Kang Xiao, and Xinming Wang
Atmos. Chem. Phys., 22, 465–479, https://doi.org/10.5194/acp-22-465-2022, https://doi.org/10.5194/acp-22-465-2022, 2022
Short summary
Short summary
Water-soluble organic compounds (WSOCs) play important roles in atmospheric particle formation, migration, and transformation processes. In this work, size-segregated atmospheric particles were collected in a rural area of Beijing, and 3D fluorescence spectroscopy was used to investigate the optical properties of WSOCs as a means of inferring information about their atmospheric sources. It was found that these data could efficiently reveal the secondary transformation processes of WSOCs.
Jianqiang Zeng, Yanli Zhang, Huina Zhang, Wei Song, Zhenfeng Wu, and Xinming Wang
Atmos. Meas. Tech., 15, 79–93, https://doi.org/10.5194/amt-15-79-2022, https://doi.org/10.5194/amt-15-79-2022, 2022
Short summary
Short summary
The emission of biogenic volatile organic compounds (BVOCs) from plant leaves is an essential part of biosphere–atmosphere interactions. Here we demonstrate how a dynamic chamber for measuring branch-scale BVOC emissions could be characterized both in the lab for adsorptive losses and in the field for ambient–enclosure environmental differences. The results also imply emission factors for terpenes might be underestimated if measured using dynamic chambers without certified transfer efficiencies.
Wei Sun, Yuzhen Fu, Guohua Zhang, Yuxiang Yang, Feng Jiang, Xiufeng Lian, Bin Jiang, Yuhong Liao, Xinhui Bi, Duohong Chen, Jianmin Chen, Xinming Wang, Jie Ou, Ping'an Peng, and Guoying Sheng
Atmos. Chem. Phys., 21, 16631–16644, https://doi.org/10.5194/acp-21-16631-2021, https://doi.org/10.5194/acp-21-16631-2021, 2021
Short summary
Short summary
We sampled cloud water at a remote mountain site and investigated the molecular characteristics. CHON and CHO are dominant in cloud water. No statistical difference in the oxidation state is observed between cloud water and interstitial PM2.5. Most of the formulas are aliphatic and olefinic species. CHON, with aromatic structures and organosulfates, are abundant, especially in nighttime samples. The in-cloud and multi-phase dark reactions likely contribute significantly.
Ziwei Mo, Ru Cui, Bin Yuan, Huihua Cai, Brian C. McDonald, Meng Li, Junyu Zheng, and Min Shao
Atmos. Chem. Phys., 21, 13655–13666, https://doi.org/10.5194/acp-21-13655-2021, https://doi.org/10.5194/acp-21-13655-2021, 2021
Short summary
Short summary
There is a lack of detailed understanding of NMVOC emissions from the use of volatile chemical products (VCPs) in China. This study used a mass balance method to compile a long-term emission inventory for solvent use (including coatings, adhesives, inks, pesticides, cleaners and personal care products) in China during 2000–2017. The striking growth and recent trend of solvent use NMVOC emissions can give important implications for air quality modeling and NMVOC control strategies in China.
Lei Li, Chao Lu, Pak-Wai Chan, Zi-Juan Lan, Wen-Hai Zhang, Hong-Long Yang, and Hai-Chao Wang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-579, https://doi.org/10.5194/acp-2021-579, 2021
Revised manuscript not accepted
Short summary
Short summary
The COVID-19 induced lockdown provided a time-window to study the impact of emission decrease on atmospheric environment. A 350 m meteorological tower in the Pearl River Delta recorded the vertical distribution of pollutants during the lockdown period. The observation confirmed that an extreme emission reduction, can reduce the concentrations of fine particles and the peak concentration of ozone at the same time, which had been taken as difficult to realize in the past in many regions.
Luolin Wu, Jian Hang, Xuemei Wang, Min Shao, and Cheng Gong
Geosci. Model Dev., 14, 4655–4681, https://doi.org/10.5194/gmd-14-4655-2021, https://doi.org/10.5194/gmd-14-4655-2021, 2021
Short summary
Short summary
In order to investigate street-scale flow and air quality, this study has developed APFoam 1.0 to examine the reactive pollutant formation and dispersion in the urban area. The model has been validated and shows good agreement with wind tunnel experimental data. Model sensitivity cases reveal that vehicle emissions, background concentrations, and wind conditions are the key factors affecting the photochemical reaction process.
Benjamin A. Nault, Duseong S. Jo, Brian C. McDonald, Pedro Campuzano-Jost, Douglas A. Day, Weiwei Hu, Jason C. Schroder, James Allan, Donald R. Blake, Manjula R. Canagaratna, Hugh Coe, Matthew M. Coggon, Peter F. DeCarlo, Glenn S. Diskin, Rachel Dunmore, Frank Flocke, Alan Fried, Jessica B. Gilman, Georgios Gkatzelis, Jacqui F. Hamilton, Thomas F. Hanisco, Patrick L. Hayes, Daven K. Henze, Alma Hodzic, James Hopkins, Min Hu, L. Greggory Huey, B. Thomas Jobson, William C. Kuster, Alastair Lewis, Meng Li, Jin Liao, M. Omar Nawaz, Ilana B. Pollack, Jeffrey Peischl, Bernhard Rappenglück, Claire E. Reeves, Dirk Richter, James M. Roberts, Thomas B. Ryerson, Min Shao, Jacob M. Sommers, James Walega, Carsten Warneke, Petter Weibring, Glenn M. Wolfe, Dominique E. Young, Bin Yuan, Qiang Zhang, Joost A. de Gouw, and Jose L. Jimenez
Atmos. Chem. Phys., 21, 11201–11224, https://doi.org/10.5194/acp-21-11201-2021, https://doi.org/10.5194/acp-21-11201-2021, 2021
Short summary
Short summary
Secondary organic aerosol (SOA) is an important aspect of poor air quality for urban regions around the world, where a large fraction of the population lives. However, there is still large uncertainty in predicting SOA in urban regions. Here, we used data from 11 urban campaigns and show that the variability in SOA production in these regions is predictable and is explained by key emissions. These results are used to estimate the premature mortality associated with SOA in urban regions.
Ye Kuang, Shan Huang, Biao Xue, Biao Luo, Qicong Song, Wei Chen, Weiwei Hu, Wei Li, Pusheng Zhao, Mingfu Cai, Yuwen Peng, Jipeng Qi, Tiange Li, Sihang Wang, Duohong Chen, Dingli Yue, Bin Yuan, and Min Shao
Atmos. Chem. Phys., 21, 10375–10391, https://doi.org/10.5194/acp-21-10375-2021, https://doi.org/10.5194/acp-21-10375-2021, 2021
Short summary
Short summary
We found that organic aerosol factors with identified sources perform much better than oxidation level parameters in characterizing variations in organic aerosol hygroscopicity, and secondary aerosol formations associated with different sources have distinct effects on organic aerosol hygroscopicity. It reveals that source-oriented organic aerosol hygroscopicity investigations might result in more appropriate parameterization approaches in chemical and climate models.
Peng Wang, Juanyong Shen, Men Xia, Shida Sun, Yanli Zhang, Hongliang Zhang, and Xinming Wang
Atmos. Chem. Phys., 21, 10347–10356, https://doi.org/10.5194/acp-21-10347-2021, https://doi.org/10.5194/acp-21-10347-2021, 2021
Short summary
Short summary
Ozone (O3) pollution has received extensive attention due to worsening air quality and rising health risks. The Chinese National Day holiday (CNDH), which is associated with intensive commercial and tourist activities, serves as a valuable experiment to evaluate the O3 response during the holiday. We find sharply increasing trends of observed O3 concentrations throughout China during the CNDH, leading to 33 % additional total daily deaths.
Gang Zhao, Yishu Zhu, Zhijun Wu, Taomou Zong, Jingchuan Chen, Tianyi Tan, Haichao Wang, Xin Fang, Keding Lu, Chunsheng Zhao, and Min Hu
Atmos. Chem. Phys., 21, 9995–10004, https://doi.org/10.5194/acp-21-9995-2021, https://doi.org/10.5194/acp-21-9995-2021, 2021
Short summary
Short summary
New particle formation is thought to contribute half of the global cloud condensation nuclei. We find that the new particle formation is more likely to happen in the upper boundary layer than that at the ground, which can be partially explained by the aerosol–radiation interaction. Our study emphasizes the influence of aerosol–radiation interaction on the NPF.
Hua Fang, Xiaoqing Huang, Yanli Zhang, Chenglei Pei, Zuzhao Huang, Yujun Wang, Yanning Chen, Jianhong Yan, Jianqiang Zeng, Shaoxuan Xiao, Shilu Luo, Sheng Li, Jun Wang, Ming Zhu, Xuewei Fu, Zhenfeng Wu, Runqi Zhang, Wei Song, Guohua Zhang, Weiwei Hu, Mingjin Tang, Xiang Ding, Xinhui Bi, and Xinming Wang
Atmos. Chem. Phys., 21, 10005–10013, https://doi.org/10.5194/acp-21-10005-2021, https://doi.org/10.5194/acp-21-10005-2021, 2021
Short summary
Short summary
A tunnel test was initiated to measure the vehicular IVOC emissions under real-world driving conditions. Higher SOA formation estimated from vehicular IVOCs compared to those from traditional VOCs emphasized the greater importance of IVOCs in modulating urban SOA. The results also revealed that non-road diesel-fueled engines greatly contributed to IVOCs in China.
Mingfu Cai, Baoling Liang, Qibin Sun, Li Liu, Bin Yuan, Min Shao, Shan Huang, Yuwen Peng, Zelong Wang, Haobo Tan, Fei Li, Hanbin Xu, Duohong Chen, and Jun Zhao
Atmos. Chem. Phys., 21, 8575–8592, https://doi.org/10.5194/acp-21-8575-2021, https://doi.org/10.5194/acp-21-8575-2021, 2021
Short summary
Short summary
This study investigated the contribution of new particle formation (NPF) events to the number concentration of cloud condensation nuclei (NCCN) and its controlling factors in the Pearl River Delta region. The results show that the surfactant effect can decrease the critical diameter and significantly increase the NCCN during the NPF event. In addition, the growth rate is founded to be the most important controlling factor that affects NCCN for growth of newly-formed particles to the CCN sizes.
Anke Mutzel, Yanli Zhang, Olaf Böge, Maria Rodigast, Agata Kolodziejczyk, Xinming Wang, and Hartmut Herrmann
Atmos. Chem. Phys., 21, 8479–8498, https://doi.org/10.5194/acp-21-8479-2021, https://doi.org/10.5194/acp-21-8479-2021, 2021
Short summary
Short summary
This study investigates secondary organic aerosol (SOA) formation and particle growth from α-pinene, limonene, and m-cresol oxidation through NO3 and OH radicals and the effect of relative humidity. The formed SOA is comprehensively characterized with respect to the content of OC / EC, WSOC, SOA-bound peroxides, and SOA marker compounds. The findings present new insights and implications of nighttime chemistry, which can form SOA more efficiently than OH radical reaction during daytime.
Chenshuo Ye, Bin Yuan, Yi Lin, Zelong Wang, Weiwei Hu, Tiange Li, Wei Chen, Caihong Wu, Chaomin Wang, Shan Huang, Jipeng Qi, Baolin Wang, Chen Wang, Wei Song, Xinming Wang, E Zheng, Jordan E. Krechmer, Penglin Ye, Zhanyi Zhang, Xuemei Wang, Douglas R. Worsnop, and Min Shao
Atmos. Chem. Phys., 21, 8455–8478, https://doi.org/10.5194/acp-21-8455-2021, https://doi.org/10.5194/acp-21-8455-2021, 2021
Short summary
Short summary
We performed measurements of gaseous and particulate organic compounds using a state-of-the-art online mass spectrometer in urban air. Using the dataset, we provide a holistic chemical characterization of oxygenated organic compounds in the polluted urban atmosphere, which can serve as a reference for the future field measurements of organic compounds in cities.
Chunmeng Li, Haichao Wang, Xiaorui Chen, Tianyu Zhai, Shiyi Chen, Xin Li, Limin Zeng, and Keding Lu
Atmos. Meas. Tech., 14, 4033–4051, https://doi.org/10.5194/amt-14-4033-2021, https://doi.org/10.5194/amt-14-4033-2021, 2021
Short summary
Short summary
We present a feasible instrument for the measurement of NO2, total peroxy nitrates (PNs, RO2NO2), and total alkyl nitrates (ANs, RONO2) in the atmosphere. The instrument samples sequentially from three channels at different temperature settings and then measures spectra using one cavity-enhanced absorption spectrometer. The concentrations are determined by spectral fitting and corrected using the lookup table method conveniently. The instrument will promote the study of PNs and ANs.
Kai Song, Song Guo, Haichao Wang, Ying Yu, Hui Wang, Rongzhi Tang, Shiyong Xia, Yuanzheng Gong, Zichao Wan, Daqi Lv, Rui Tan, Wenfei Zhu, Ruizhe Shen, Xin Li, Xuena Yu, Shiyi Chen, Liming Zeng, and Xiaofeng Huang
Atmos. Chem. Phys., 21, 7917–7932, https://doi.org/10.5194/acp-21-7917-2021, https://doi.org/10.5194/acp-21-7917-2021, 2021
Short summary
Short summary
Nitrated phenols (NPs) are crucial components of brown carbon. To comprehend the constitutes and sources of NPs in winter of Beijing, their concentrations were measured by a CI-LToF-MS. The secondary formation process was simulated by a box model. NPs were mainly influenced by primary emissions and regional transport. Primary emitted phenol rather than benzene oxidation was crucial in the heavy pollution episode in Beijing. This provides more insight into pollution control strategies of NPs.
Chao Peng, Patricia N. Razafindrambinina, Kotiba A. Malek, Lanxiadi Chen, Weigang Wang, Ru-Jin Huang, Yuqing Zhang, Xiang Ding, Maofa Ge, Xinming Wang, Akua A. Asa-Awuku, and Mingjin Tang
Atmos. Chem. Phys., 21, 7135–7148, https://doi.org/10.5194/acp-21-7135-2021, https://doi.org/10.5194/acp-21-7135-2021, 2021
Short summary
Short summary
Organosulfates are important constituents in tropospheric aerosol particles, but their hygroscopic properties and cloud condensation nuclei activities are not well understood. In our work, three complementary techniques were employed to investigate the interactions of 11 organosulfates with water vapor under sub- and supersaturated conditions.
Claire E. Reeves, Graham P. Mills, Lisa K. Whalley, W. Joe F. Acton, William J. Bloss, Leigh R. Crilley, Sue Grimmond, Dwayne E. Heard, C. Nicholas Hewitt, James R. Hopkins, Simone Kotthaus, Louisa J. Kramer, Roderic L. Jones, James D. Lee, Yanhui Liu, Bin Ouyang, Eloise Slater, Freya Squires, Xinming Wang, Robert Woodward-Massey, and Chunxiang Ye
Atmos. Chem. Phys., 21, 6315–6330, https://doi.org/10.5194/acp-21-6315-2021, https://doi.org/10.5194/acp-21-6315-2021, 2021
Short summary
Short summary
The impact of isoprene on atmospheric chemistry is dependent on how its oxidation products interact with other pollutants, specifically nitrogen oxides. Such interactions can lead to isoprene nitrates. We made measurements of the concentrations of individual isoprene nitrate isomers in Beijing and used a model to test current understanding of their chemistry. We highlight areas of uncertainty in understanding, in particular the chemistry following oxidation of isoprene by the nitrate radical.
Long Peng, Lei Li, Guohua Zhang, Xubing Du, Xinming Wang, Ping'an Peng, Guoying Sheng, and Xinhui Bi
Atmos. Chem. Phys., 21, 5605–5613, https://doi.org/10.5194/acp-21-5605-2021, https://doi.org/10.5194/acp-21-5605-2021, 2021
Short summary
Short summary
We build a novel system that utilizes an aerodynamic aerosol classifier (AAC) combined with a single-particle aerosol mass spectrometry (SPAMS) to simultaneously characterize the volume equivalent diameter (Dve), chemical compositions, and effective density (ρe) of individual particles in real time. A test of the AAC-SPAMS with both spherical and aspherical particles shows that the deviations between the measured and theoretical values are less than 6 %.
Wenjie Wang, Jipeng Qi, Jun Zhou, Bin Yuan, Yuwen Peng, Sihang Wang, Suxia Yang, Jonathan Williams, Vinayak Sinha, and Min Shao
Atmos. Meas. Tech., 14, 2285–2298, https://doi.org/10.5194/amt-14-2285-2021, https://doi.org/10.5194/amt-14-2285-2021, 2021
Short summary
Short summary
We designed a new reactor for measurements of OH reactivity (i.e., OH radical loss frequency) based on the comparative reactivity method under
high-NOx conditions, such as in cities. We performed a series of laboratory tests to evaluate the new reactor. The new reactor was used in the field and performed well in measuring OH reactivity in air influenced by upwind cities.
Duseong S. Jo, Alma Hodzic, Louisa K. Emmons, Simone Tilmes, Rebecca H. Schwantes, Michael J. Mills, Pedro Campuzano-Jost, Weiwei Hu, Rahul A. Zaveri, Richard C. Easter, Balwinder Singh, Zheng Lu, Christiane Schulz, Johannes Schneider, John E. Shilling, Armin Wisthaler, and Jose L. Jimenez
Atmos. Chem. Phys., 21, 3395–3425, https://doi.org/10.5194/acp-21-3395-2021, https://doi.org/10.5194/acp-21-3395-2021, 2021
Short summary
Short summary
Secondary organic aerosol (SOA) is a major component of submicron particulate matter, but there are a lot of uncertainties in the future prediction of SOA. We used CESM 2.1 to investigate future IEPOX SOA concentration changes. The explicit chemistry predicted substantial changes in IEPOX SOA depending on the future scenario, but the parameterization predicted weak changes due to simplified chemistry, which shows the importance of correct physicochemical dependencies in future SOA prediction.
Lisa K. Whalley, Eloise J. Slater, Robert Woodward-Massey, Chunxiang Ye, James D. Lee, Freya Squires, James R. Hopkins, Rachel E. Dunmore, Marvin Shaw, Jacqueline F. Hamilton, Alastair C. Lewis, Archit Mehra, Stephen D. Worrall, Asan Bacak, Thomas J. Bannan, Hugh Coe, Carl J. Percival, Bin Ouyang, Roderic L. Jones, Leigh R. Crilley, Louisa J. Kramer, William J. Bloss, Tuan Vu, Simone Kotthaus, Sue Grimmond, Yele Sun, Weiqi Xu, Siyao Yue, Lujie Ren, W. Joe F. Acton, C. Nicholas Hewitt, Xinming Wang, Pingqing Fu, and Dwayne E. Heard
Atmos. Chem. Phys., 21, 2125–2147, https://doi.org/10.5194/acp-21-2125-2021, https://doi.org/10.5194/acp-21-2125-2021, 2021
Short summary
Short summary
To understand how emission controls will impact ozone, an understanding of the sources and sinks of OH and the chemical cycling between peroxy radicals is needed. This paper presents measurements of OH, HO2 and total RO2 taken in central Beijing. The radical observations are compared to a detailed chemistry model, which shows that under low NO conditions, there is a missing OH source. Under high NOx conditions, the model under-predicts RO2 and impacts our ability to model ozone.
Mike J. Newland, Daniel J. Bryant, Rachel E. Dunmore, Thomas J. Bannan, W. Joe F. Acton, Ben Langford, James R. Hopkins, Freya A. Squires, William Dixon, William S. Drysdale, Peter D. Ivatt, Mathew J. Evans, Peter M. Edwards, Lisa K. Whalley, Dwayne E. Heard, Eloise J. Slater, Robert Woodward-Massey, Chunxiang Ye, Archit Mehra, Stephen D. Worrall, Asan Bacak, Hugh Coe, Carl J. Percival, C. Nicholas Hewitt, James D. Lee, Tianqu Cui, Jason D. Surratt, Xinming Wang, Alastair C. Lewis, Andrew R. Rickard, and Jacqueline F. Hamilton
Atmos. Chem. Phys., 21, 1613–1625, https://doi.org/10.5194/acp-21-1613-2021, https://doi.org/10.5194/acp-21-1613-2021, 2021
Short summary
Short summary
We report the formation of secondary pollutants in the urban megacity of Beijing that are typically associated with remote regions such as rainforests. This is caused by extremely low levels of nitric oxide (NO), typically expected to be high in urban areas, observed in the afternoon. This work has significant implications for how we understand atmospheric chemistry in the urban environment and thus for how to implement effective policies to improve urban air quality.
Wenjie Wang, David D. Parrish, Xin Li, Min Shao, Ying Liu, Ziwei Mo, Sihua Lu, Min Hu, Xin Fang, Yusheng Wu, Limin Zeng, and Yuanhang Zhang
Atmos. Chem. Phys., 20, 15617–15633, https://doi.org/10.5194/acp-20-15617-2020, https://doi.org/10.5194/acp-20-15617-2020, 2020
Short summary
Short summary
During the past decade, China has devoted very substantial resources to improving the environment. These efforts have improved atmospheric particulate matter loading, but ambient ozone levels have continued to increase. In this paper we investigate the causes of the increasing ozone concentrations through analysis of a data set that is, to our knowledge, unique: a 12-year data set including ground-level O3, NOx, and VOC precursors collected at an urban site in Beijing.
W. Joe F. Acton, Zhonghui Huang, Brian Davison, Will S. Drysdale, Pingqing Fu, Michael Hollaway, Ben Langford, James Lee, Yanhui Liu, Stefan Metzger, Neil Mullinger, Eiko Nemitz, Claire E. Reeves, Freya A. Squires, Adam R. Vaughan, Xinming Wang, Zhaoyi Wang, Oliver Wild, Qiang Zhang, Yanli Zhang, and C. Nicholas Hewitt
Atmos. Chem. Phys., 20, 15101–15125, https://doi.org/10.5194/acp-20-15101-2020, https://doi.org/10.5194/acp-20-15101-2020, 2020
Short summary
Short summary
Air quality in Beijing is of concern to both policy makers and the general public. In order to address concerns about air quality it is vital that the sources of atmospheric pollutants are understood. This work presents the first top-down measurement of volatile organic compound (VOC) emissions in Beijing. These measurements are used to evaluate the emissions inventory and assess the impact of VOC emission from the city centre on atmospheric chemistry.
Caihong Wu, Chaomin Wang, Sihang Wang, Wenjie Wang, Bin Yuan, Jipeng Qi, Baolin Wang, Hongli Wang, Chen Wang, Wei Song, Xinming Wang, Weiwei Hu, Shengrong Lou, Chenshuo Ye, Yuwen Peng, Zelong Wang, Yibo Huangfu, Yan Xie, Manni Zhu, Junyu Zheng, Xuemei Wang, Bin Jiang, Zhanyi Zhang, and Min Shao
Atmos. Chem. Phys., 20, 14769–14785, https://doi.org/10.5194/acp-20-14769-2020, https://doi.org/10.5194/acp-20-14769-2020, 2020
Short summary
Short summary
Based on measurements from an online mass spectrometer, we quantify volatile organic compound (VOC) concentrations from numerous ions of the mass spectrometer, using information from laboratory-obtained calibration results. We find that most VOC concentrations are from oxygenated VOCs (OVOCs). We further show that these OVOCs also contribute significantly to OH reactivity. Our results suggest the important role of OVOCs in VOC emissions and chemistry in urban air.
Eloise J. Slater, Lisa K. Whalley, Robert Woodward-Massey, Chunxiang Ye, James D. Lee, Freya Squires, James R. Hopkins, Rachel E. Dunmore, Marvin Shaw, Jacqueline F. Hamilton, Alastair C. Lewis, Leigh R. Crilley, Louisa Kramer, William Bloss, Tuan Vu, Yele Sun, Weiqi Xu, Siyao Yue, Lujie Ren, W. Joe F. Acton, C. Nicholas Hewitt, Xinming Wang, Pingqing Fu, and Dwayne E. Heard
Atmos. Chem. Phys., 20, 14847–14871, https://doi.org/10.5194/acp-20-14847-2020, https://doi.org/10.5194/acp-20-14847-2020, 2020
Short summary
Short summary
The paper details atmospheric chemistry in a megacity (Beijing), focussing on radicals which mediate the formation of secondary pollutants such as ozone and particles. Highly polluted conditions were experienced, including the highest ever levels of nitric oxide (NO), with simultaneous radical measurements. Radical concentrations were large during "haze" events, demonstrating active photochemistry. Modelling showed that our understanding of the chemistry at high NOx levels is incomplete.
Qingqing Yu, Xiang Ding, Quanfu He, Weiqiang Yang, Ming Zhu, Sheng Li, Runqi Zhang, Ruqin Shen, Yanli Zhang, Xinhui Bi, Yuesi Wang, Ping'an Peng, and Xinming Wang
Atmos. Chem. Phys., 20, 14581–14595, https://doi.org/10.5194/acp-20-14581-2020, https://doi.org/10.5194/acp-20-14581-2020, 2020
Short summary
Short summary
We carried out a 1-year PM concurrent observation at 12 sites across six regions of China, and size-segregated PAHs were measured. We found both PAHs and BaPeq were concentrated in PM1.1, and northern China had higher PAHs' pollution and inhalation cancer risk than southern China. Nationwide increases in both PAH levels and inhalation cancer risk occurred in winter. We suggest reducing coal and biofuel consumption in the residential sector is an important option to mitigate PAHs' health risks.
Sarah E. Benish, Hao He, Xinrong Ren, Sandra J. Roberts, Ross J. Salawitch, Zhanqing Li, Fei Wang, Yuying Wang, Fang Zhang, Min Shao, Sihua Lu, and Russell R. Dickerson
Atmos. Chem. Phys., 20, 14523–14545, https://doi.org/10.5194/acp-20-14523-2020, https://doi.org/10.5194/acp-20-14523-2020, 2020
Short summary
Short summary
Airborne observations of ozone and related pollutants show smog was pervasive in spring 2016 over Hebei Province, China. We find high amounts of ozone precursors throughout and even above the PBL, continuing to generate ozone at high rates to be potentially transported downwind. Concentrations even in the rural areas of this highly industrialized province promote widespread ozone production, and we show that to improve air quality over Hebei both NOx and VOCs should be targeted.
Chaomin Wang, Bin Yuan, Caihong Wu, Sihang Wang, Jipeng Qi, Baolin Wang, Zelong Wang, Weiwei Hu, Wei Chen, Chenshuo Ye, Wenjie Wang, Yele Sun, Chen Wang, Shan Huang, Wei Song, Xinming Wang, Suxia Yang, Shenyang Zhang, Wanyun Xu, Nan Ma, Zhanyi Zhang, Bin Jiang, Hang Su, Yafang Cheng, Xuemei Wang, and Min Shao
Atmos. Chem. Phys., 20, 14123–14138, https://doi.org/10.5194/acp-20-14123-2020, https://doi.org/10.5194/acp-20-14123-2020, 2020
Short summary
Short summary
We utilized a novel online mass spectrometry method to measure the total concentration of higher alkanes at each carbon number at two different sites in China, allowing us to take into account SOA contributions from all isomers for higher alkanes. We found that higher alkanes account for significant fractions of SOA formation at the two sites. The contributions are comparable to or even higher than single-ring aromatics, the most-recognized SOA precursors in urban air.
Yuzhen Fu, Qinhao Lin, Guohua Zhang, Yuxiang Yang, Yiping Yang, Xiufeng Lian, Long Peng, Feng Jiang, Xinhui Bi, Lei Li, Yuanyuan Wang, Duohong Chen, Jie Ou, Xinming Wang, Ping'an Peng, Jianxi Zhu, and Guoying Sheng
Atmos. Chem. Phys., 20, 14063–14075, https://doi.org/10.5194/acp-20-14063-2020, https://doi.org/10.5194/acp-20-14063-2020, 2020
Short summary
Short summary
Based on the analysis of the morphology and mixing structure of the activated and unactivated particles, our results emphasize the role of in-cloud processes in the chemistry and microphysical properties of individual activated particles. Given that organic coatings may determine the particle hygroscopicity and heterogeneous chemical reactivity, the increase of OM-shelled particles upon in-cloud processes should have considerable implications for their evolution and climate impact.
Benjamin A. Nault, Pedro Campuzano-Jost, Douglas A. Day, Hongyu Guo, Duseong S. Jo, Anne V. Handschy, Demetrios Pagonis, Jason C. Schroder, Melinda K. Schueneman, Michael J. Cubison, Jack E. Dibb, Alma Hodzic, Weiwei Hu, Brett B. Palm, and Jose L. Jimenez
Atmos. Meas. Tech., 13, 6193–6213, https://doi.org/10.5194/amt-13-6193-2020, https://doi.org/10.5194/amt-13-6193-2020, 2020
Short summary
Short summary
Collecting particulate matter, or aerosols, onto filters to be analyzed offline is a widely used method to investigate the mass concentration and chemical composition of the aerosol, especially the inorganic portion. Here, we show that acidic aerosol (sulfuric acid) collected onto filters and then exposed to high ammonia mixing ratios (from human emissions) will lead to biases in the ammonium collected onto filters, and the uptake of ammonia is rapid (< 10 s), which impacts the filter data.
Chao Peng, Yu Wang, Zhijun Wu, Lanxiadi Chen, Ru-Jin Huang, Weigang Wang, Zhe Wang, Weiwei Hu, Guohua Zhang, Maofa Ge, Min Hu, Xinming Wang, and Mingjin Tang
Atmos. Chem. Phys., 20, 13877–13903, https://doi.org/10.5194/acp-20-13877-2020, https://doi.org/10.5194/acp-20-13877-2020, 2020
Lanxiadi Chen, Chao Peng, Wenjun Gu, Hanjing Fu, Xing Jian, Huanhuan Zhang, Guohua Zhang, Jianxi Zhu, Xinming Wang, and Mingjin Tang
Atmos. Chem. Phys., 20, 13611–13626, https://doi.org/10.5194/acp-20-13611-2020, https://doi.org/10.5194/acp-20-13611-2020, 2020
Short summary
Short summary
We investigated hygroscopic properties of a number of mineral dust particles in a quantitative manner, via measuring the sample mass at different relative humidities. The robust and comprehensive data obtained would significantly improve our knowledge of hygroscopicity of mineral dust and its impacts on atmospheric chemistry and climate.
Yiqi Zheng, Joel A. Thornton, Nga Lee Ng, Hansen Cao, Daven K. Henze, Erin E. McDuffie, Weiwei Hu, Jose L. Jimenez, Eloise A. Marais, Eric Edgerton, and Jingqiu Mao
Atmos. Chem. Phys., 20, 13091–13107, https://doi.org/10.5194/acp-20-13091-2020, https://doi.org/10.5194/acp-20-13091-2020, 2020
Short summary
Short summary
This study aims to address a challenge in biosphere–atmosphere interactions: to what extent can biogenic organic aerosol (OA) be modified through human activities? From three surface network observations, we show OA is weakly dependent on sulfate and aerosol acidity in the summer southeast US, on both long-term trends and monthly variability. The results are in strong contrast to a global model, GEOS-Chem, suggesting the need to revisit the representation of aqueous-phase secondary OA formation.
Zhenhao Ling, Qianqian Xie, Min Shao, Zhe Wang, Tao Wang, Hai Guo, and Xuemei Wang
Atmos. Chem. Phys., 20, 11451–11467, https://doi.org/10.5194/acp-20-11451-2020, https://doi.org/10.5194/acp-20-11451-2020, 2020
Short summary
Short summary
The observation data from a receptor site in the Pearl River Delta region were analyzed by a photochemical box model with near-explicit chemical mechanisms (i.e., the Master Chemical Mechanism, MCM), improvements with reversible and irreversible heterogeneous processes of glyoxal and methylglyoxal, and the gas-particle partitioning of oxidation products in the present study.
Cited articles
Acker, K., Spindler, G., and Brüggemann, E.: Nitrous and nitric acid
measurements during the INTERCOMP2000 campaign in Melpitz, Atmos.
Environ., 38, 6497–6505, https://doi.org/10.1016/j.atmosenv.2004.08.030, 2004.
Acker, K., Febo, A., Trick, S., Perrino, C., Bruno, P., Wiesen, P.,
Möller, D., Wieprecht, W., Auel, R., Giusto, M., Geyer, A., Platt, U.,
and Allegrini, I.: Nitrous acid in the urban area of Rome, Atmos.
Environ., 40, 3123–3133, https://doi.org/10.1016/j.atmosenv.2006.01.028, 2006.
Alicke, B., Geyer, A., Hofzumahaus, A., Holland, F., Konrad, S., Pätz,
H. W., Schäfer, J., Stutz, J., Volz-Thomas, A., and Platt, U.: OH
formation by HONO photolysis during the BERLIOZ experiment, J.
Geophys. Res.-Atmos., 108, 8247, https://doi.org/10.1029/2001JD000579, 2003.
Ammann, M., Kalberer, M., Jost, D. T., Tobler, L., Rössler, E., Piguet,
D., Gäggeler, H. W., and Baltensperger, U.: Heterogeneous production of
nitrous acid on soot in polluted air masses, Nature, 395, 157–160,
https://doi.org/10.1038/25965, 1998.
Aubin, D. G. and Abbatt, J. P. D.: Interaction of NO2 with Hydrocarbon
Soot: Focus on HONO Yield, Surface Modification, and Mechanism, J.
Phys. Chem. A, 111, 6263–6273, https://doi.org/10.1021/jp068884h, 2007.
Bejan, I., Abd-el-Aal, Y., Barnes, I., Benter, T., Bohn, B., Wiesen, P., and
Kleffmann, J.: The photolysis of ortho-nitrophenols: a new gas phase source
of HONO, Phys. Chem. Chem. Phys., 8, 2028–2035, https://doi.org/10.1039/B516590C, 2006.
Chan, C. K. and Yao, X.: Air pollution in mega cities in China, Atmos.
Environ., 42, 1–42, https://doi.org/10.1016/j.atmosenv.2007.09.003, 2008.
Colussi, A. J., Enami, S., Yabushita, A., Hoffmann, M. R., Liu, W.-G.,
Mishra, H., and Goddard, I. I. I. W. A.: Tropospheric aerosol as a reactive
intermediate, Faraday Discuss., 165, 407–420, https://doi.org/10.1039/C3FD00040K, 2013.
Cui, L., Li, R., Zhang, Y., Meng, Y., Fu, H., and Chen, J.: An observational
study of nitrous acid (HONO) in Shanghai, China: The aerosol impact on HONO
formation during the haze episodes, Sci. Total Environ., 630,
1057–1070, https://doi.org/10.1016/j.scitotenv.2018.02.063,
2018.
Dillon, M. B., Lamanna, M. S., Schade, G. W., Goldstein, A. H., and Cohen,
R. C.: Chemical evolution of the Sacramento urban plume: Transport and
oxidation, J. Geophys. Res.-Atmos., 107, ACH 3-1–ACH
3-15, https://doi.org/10.1029/2001JD000969, 2002.
Elshorbany, Y. F., Kurtenbach, R., Wiesen, P., Lissi, E., Rubio, M., Villena, G., Gramsch, E., Rickard, A. R., Pilling, M. J., and Kleffmann, J.: Oxidation capacity of the city air of Santiago, Chile, Atmos. Chem. Phys., 9, 2257–2273, https://doi.org/10.5194/acp-9-2257-2009, 2009.
El Zein, A. and Bedjanian, Y.: Reactive Uptake of HONO to TiO2 Surface:
“Dark” Reaction, J. Phys. Chem. A, 116, 3665–3672,
https://doi.org/10.1021/jp300859w, 2012.
El Zein, A., Romanias, M. N., and Bedjanian, Y.: Kinetics and Products of
Heterogeneous Reaction of HONO with Fe2O3 and Arizona Test Dust,
Environ. Sci. Technol., 47, 6325–6331, https://doi.org/10.1021/es400794c, 2013.
Fan, S., Wang, B., Tesche, M., Engelmann, R., Althausen, A., Liu, J., Zhu,
W., Fan, Q., Li, M., Ta, N., Song, L., and Leong, K.: Meteorological
conditions and structures of atmospheric boundary layer in October 2004 over
Pearl River Delta area, Atmos. Environ., 42, 6174–6186, https://doi.org/10.1016/j.atmosenv.2008.01.067, 2008.
Febo, A., Perrino, C., and Allegrini, I.: Measurement of nitrous acid in
milan, italy, by doas and diffusion denuders, Atmos. Environ., 30,
3599–3609, https://doi.org/10.1016/1352-2310(96)00069-6, 1996.
Feng, Y., Ning, M., Lei, Y., Sun, Y., Liu, W., and Wang, J.: Defending blue
sky in China: Effectiveness of the “Air Pollution Prevention and Control
Action Plan” on air quality improvements from 2013 to 2017, J.
Environ. Manage., 252, 109603, https://doi.org/10.1016/j.jenvman.2019.109603, 2019.
Finlayson-Pitts, B. J. and Pitts, J. N.: CHAPTER 4 – Photochemistry of
Important Atmospheric Species, in: Chemistry of the Upper and Lower
Atmosphere, edited by: Finlayson-Pitts, B. J. and Pitts, J. N., Academic
Press, San Diego, 86–129, https://doi.org/10.1016/B978-012257060-5/50006-X, 2000.
Finlayson-Pitts, B. J., Wingen, L. M., Sumner, A. L., Syomin, D., and
Ramazan, K. A.: The heterogeneous hydrolysis of NO2 in laboratory systems
and in outdoor and indoor atmospheres: An integrated mechanism, Phys.
Chem. Chem. Phys., 5, 223–242, https://doi.org/10.1039/B208564J, 2003.
Gall, E. T., Griffin, R. J., Steiner, A. L., Dibb, J., Scheuer, E., Gong,
L., Rutter, A. P., Cevik, B. K., Kim, S., Lefer, B., and Flynn, J.:
Evaluation of nitrous acid sources and sinks in urban outflow, Atmos.
Environ., 127, 272–282, https://doi.org/10.1016/j.atmosenv.2015.12.044, 2016.
Ge, S., Wang, G., Zhang, S., Li, D., Xie, Y., Wu, C., Yuan, Q., Chen, J.,
and Zhang, H.: Abundant NH3 in China Enhances Atmospheric HONO
Production by Promoting the Heterogeneous Reaction of SO2 with
NO2, Environ. Sci. Technol., 53, 14339–14347, https://doi.org/10.1021/acs.est.9b04196, 2019.
Gen, M., Zhang, R., and Chan, C. K.: Nitrite/Nitrous Acid Generation from
the Reaction of Nitrate and Fe(II) Promoted by Photolysis of Iron–Organic
Complexes, Environ. Sci. Technol., 55, 15715–15723,
https://doi.org/10.1021/acs.est.1c05641, 2021.
Gerecke, A., Thielmann, A., Gutzwiller, L., and Rossi, M. J.: The chemical
kinetics of HONO formation resulting from heterogeneous interaction of NO2
with flame soot, Geophys. Res. Lett., 25, 2453–2456, https://doi.org/10.1029/98GL01796, 1998.
Gu, R., Shen, H., Xue, L., Wang, T., Gao, J., Li, H., Liang, Y., Xia, M.,
Yu, C., Liu, Y., and Wang, W.: Investigating the sources of atmospheric
nitrous acid (HONO) in the megacity of Beijing, China, Sci. Total
Environ., 812, 152270, https://doi.org/10.1016/j.scitotenv.2021.152270, 2021.
Gutzwiller, L., Arens, F., Baltensperger, U., Gäggeler, H. W., and
Ammann, M.: Significance of Semivolatile Diesel Exhaust Organics for
Secondary HONO Formation, Environ. Sci. Technol., 36,
677–682, https://doi.org/10.1021/es015673b, 2002.
Han, C., Liu, Y., and He, H.: Heterogeneous reaction of NO2 with soot at
different relative humidity, Environ. Sci. Pollut. R.,
24, 21248–21255, https://doi.org/10.1007/s11356-017-9766-y,
2017a.
Han, C., Yang, W., Yang, H., and Xue, X.: Enhanced photochemical conversion
of NO2 to HONO on humic acids in the presence of benzophenone, Environ.
Pollut., 231, 979–986, https://doi.org/10.1016/j.envpol.2017.08.107, 2017b.
Hao, Q., Jiang, N., Zhang, R., Yang, L., and Li, S.: Characteristics, sources, and reactions of nitrous acid during winter at an urban site in the Central Plains Economic Region in China, Atmos. Chem. Phys., 20, 7087–7102, https://doi.org/10.5194/acp-20-7087-2020, 2020.
Harrison, R. M. and Kitto, A.-M. N.: Evidence for a surface source of
atmospheric nitrous acid, Atmos. Environ., 28, 1089–1094, https://doi.org/10.1016/1352-2310(94)90286-0, 1994.
Heard, D. E., Carpenter, L. J., Creasey, D. J., Hopkins, J. R., Lee, J. D.,
Lewis, A. C., Pilling, M. J., Seakins, P. W., Carslaw, N., and Emmerson, K.
M.: High levels of the hydroxyl radical in the winter urban troposphere,
Geophys. Res. Lett., 31, L18112, https://doi.org/10.1029/2004GL020544, 2004.
Heland, J., Kleffmann, J., Kurtenbach, R., and Wiesen, P.: A New Instrument
To Measure Gaseous Nitrous Acid (HONO) in the Atmosphere, Environ.
Sci. Technol., 35, 3207–3212, https://doi.org/10.1021/es000303t, 2001.
Hendrick, F., Müller, J.-F., Clémer, K., Wang, P., De Mazière, M., Fayt, C., Gielen, C., Hermans, C., Ma, J. Z., Pinardi, G., Stavrakou, T., Vlemmix, T., and Van Roozendael, M.: Four years of ground-based MAX-DOAS observations of HONO and NO2 in the Beijing area, Atmos. Chem. Phys., 14, 765–781, https://doi.org/10.5194/acp-14-765-2014, 2014.
Hofzumahaus, A., Rohrer, F., Lu, K., Bohn, B., Brauers, T., Chang, C.-C.,
Fuchs, H., Holland, F., Kita, K., Kondo, Y., Li, X., Lou, S., Shao, M.,
Zeng, L., Wahner, A., and Zhang, Y.: Amplified Trace Gas Removal in the
Troposphere, Science, 324, 1702–1704, https://doi.org/10.1126/science.1164566, 2009.
Hou, S., Tong, S., Ge, M., and An, J.: Comparison of atmospheric nitrous
acid during severe haze and clean periods in Beijing, China, Atmos.
Environ., 124, 199–206, https://doi.org/10.1016/j.atmosenv.2015.06.023, 2016.
Hu, M., Zhou, F., Shao, K., Zhang, Y., Tang, X., and Slanina, J.: Diurnal
variations of aerosol chemical compositions and related gaseous pollutants
in Beijing and Guangzhou, J. Environ. Sci. Heal. A, 37, 479–488, https://doi.org/10.1081/ESE-120003229, 2002.
Huang, R. J., Yang, L., Cao, J., Wang, Q., Tie, X., Ho, K. F., Shen, Z.,
Zhang, R., Li, G., Zhu, C., Zhang, N., Dai, W., Zhou, J., Liu, S., Chen, Y.,
Chen, J., and O'Dowd, C. D.: Concentration and sources of atmospheric
nitrous acid (HONO) at an urban site in Western China, Sci. Total
Environ., 593–594, 165–172, https://doi.org/10.1016/j.scitotenv.2017.02.166, 2017.
Huang, Z., Zhong, Z., Sha, Q., Xu, Y., Zhang, Z., Wu, L., Wang, Y., Zhang,
L., Cui, X., Tang, M., Shi, B., Zheng, C., Li, Z., Hu, M., Bi, L., Zheng,
J., and Yan, M.: An updated model-ready emission inventory for Guangdong
Province by incorporating big data and mapping onto multiple chemical
mechanisms, Sci. Total Environ., 769, 144535, https://doi.org/10.1016/j.scitotenv.2020.144535, 2021.
Jia, C., Tong, S., Zhang, W., Zhang, X., Li, W., Wang, Z., Wang, L., Liu,
Z., Hu, B., Zhao, P., and Ge, M.: Pollution characteristics and potential
sources of nitrous acid (HONO) in early autumn 2018 of Beijing, Sci.
Total Environ., 735, 139317, https://doi.org/10.1016/j.scitotenv.2020.139317, 2020.
Jiang, Y., Xue, L., Gu, R., Jia, M., Zhang, Y., Wen, L., Zheng, P., Chen, T., Li, H., Shan, Y., Zhao, Y., Guo, Z., Bi, Y., Liu, H., Ding, A., Zhang, Q., and Wang, W.: Sources of nitrous acid (HONO) in the upper boundary layer and lower free troposphere of the North China Plain: insights from the Mount Tai Observatory, Atmos. Chem. Phys., 20, 12115–12131, https://doi.org/10.5194/acp-20-12115-2020, 2020.
Kaiser, E. W. and Wu, C. H.: A kinetic study of the gas phase formation and
decomposition reactions of nitrous acid, J. Phys. Chem.,
81, 1701–1706, https://doi.org/10.1021/j100533a001, 1977.
Kalberer, M., Ammann, M., Arens, F., Gäggeler, H. W., and Baltensperger,
U.: Heterogeneous formation of nitrous acid (HONO) on soot aerosol
particles, J. Geophys. Res.-Atmos., 104, 13825–13832,
https://doi.org/10.1029/1999JD900141, 1999.
Kinugawa, T., Enami, S., Yabushita, A., Kawasaki, M., Hoffmann, M. R., and
Colussi, A. J.: Conversion of gaseous nitrogen dioxide to nitrate and
nitrite on aqueous surfactants, Phys. Chem. Chem. Phys., 13,
5144–5149, https://doi.org/10.1039/C0CP01497D, 2011.
Kirchstetter, T. W., Harley, R. A., and Littlejohn, D.: Measurement of
Nitrous Acid in Motor Vehicle Exhaust, Environ. Sci.
Technol., 30, 2843–2849, https://doi.org/10.1021/es960135y,
1996.
Kleffmann, J., Kurtenbach, R., Lörzer, J., Wiesen, P., Kalthoff, N.,
Vogel, B., and Vogel, H.: Measured and simulated vertical profiles of
nitrous acid—Part I: Field measurements, Atmos. Environ., 37,
2949–2955, https://doi.org/10.1016/S1352-2310(03)00242-5, 2003.
Kleffmann, J., Gavriloaiei, T., Hofzumahaus, A., Holland, F., Koppmann, R.,
Rupp, L., Schlosser, E., Siese, M., and Wahner, A.: Daytime formation of
nitrous acid: A major source of OH radicals in a forest, Geophys.
Res. Lett., 32, L05818, https://doi.org/10.1029/2005GL022524,
2005.
Kleffmann, J., Lörzer, J. C., Wiesen, P., Kern, C., Trick, S., Volkamer,
R., Rodenas, M., and Wirtz, K.: Intercomparison of the DOAS and LOPAP
techniques for the detection of nitrous acid (HONO), Atmos.
Environ., 40, 3640–3652, https://doi.org/10.1016/j.atmosenv.2006.03.027, 2006.
Kramer, L. J., Crilley, L. R., Adams, T. J., Ball, S. M., Pope, F. D., and Bloss, W. J.: Nitrous acid (HONO) emissions under real-world driving conditions from vehicles in a UK road tunnel, Atmos. Chem. Phys., 20, 5231–5248, https://doi.org/10.5194/acp-20-5231-2020, 2020.
Kurtenbach, R., Becker, K. H., Gomes, J. A. G., Kleffmann, J., Lörzer,
J. C., Spittler, M., Wiesen, P., Ackermann, R., Geyer, A., and Platt, U.:
Investigations of emissions and heterogeneous formation of HONO in a road
traffic tunnel, Atmos. Environ., 35, 3385–3394, https://doi.org/10.1016/S1352-2310(01)00138-8, 2001.
Lammel, G. and Cape, J. N.: Nitrous acid and nitrite in the atmosphere,
Chem. Soc. Rev., 25, 361–369, https://doi.org/10.1039/CS9962500361, 1996.
Lee, J. D., Whalley, L. K., Heard, D. E., Stone, D., Dunmore, R. E., Hamilton, J. F., Young, D. E., Allan, J. D., Laufs, S., and Kleffmann, J.: Detailed budget analysis of HONO in central London reveals a missing daytime source, Atmos. Chem. Phys., 16, 2747–2764, https://doi.org/10.5194/acp-16-2747-2016, 2016.
Lelieveld, J., Gromov, S., Pozzer, A., and Taraborrelli, D.: Global tropospheric hydroxyl distribution, budget and reactivity, Atmos. Chem. Phys., 16, 12477–12493, https://doi.org/10.5194/acp-16-12477-2016, 2016.
Li, D., Xue, L., Wen, L., Wang, X., Chen, T., Mellouki, A., Chen, J., and
Wang, W.: Characteristics and sources of nitrous acid in an urban atmosphere
of northern China: Results from 1-yr continuous observations, Atmos.
Environ., 182, 296–306, https://doi.org/10.1016/j.atmosenv.2018.03.033, 2018.
Li, J., Lu, K., Lv, W., Li, J., Zhong, L., Ou, Y., Chen, D., Huang, X., and
Zhang, Y.: Fast increasing of surface ozone concentrations in Pearl River
Delta characterized by a regional air quality monitoring network during
2006–2011, J. Environ. Sci., 26, 23–36, https://doi.org/10.1016/S1001-0742(13)60377-0, 2014.
Li, L., Duan, Z., Li, H., Zhu, C., Henkelman, G., Francisco, J. S., and
Zeng, X. C.: Formation of HONO from the NH3 promoted hydrolysis of
NO2 dimers in the atmosphere, P. Natl. Acad.
Sci., 115, 7236–7241, https://doi.org/10.1073/pnas.1807719115, 2018.
Li, W., Tong, S., Cao, J., Su, H., Zhang, W., Wang, L., Jia, C., Zhang, X.,
Wang, Z., Chen, M., and Ge, M.: Comparative observation of atmospheric
nitrous acid (HONO) in Xi'an and Xianyang located in the GuanZhong basin of
western China, Environ. Pollut., 289, 117679, https://doi.org/10.1016/j.envpol.2021.117679, 2021.
Li, X., Brauers, T., Häseler, R., Bohn, B., Fuchs, H., Hofzumahaus, A., Holland, F., Lou, S., Lu, K. D., Rohrer, F., Hu, M., Zeng, L. M., Zhang, Y. H., Garland, R. M., Su, H., Nowak, A., Wiedensohler, A., Takegawa, N., Shao, M., and Wahner, A.: Exploring the atmospheric chemistry of nitrous acid (HONO) at a rural site in Southern China, Atmos. Chem. Phys., 12, 1497–1513, https://doi.org/10.5194/acp-12-1497-2012, 2012.
Li, X., Rohrer, F., Hofzumahaus, A., Brauers, T., Häseler, R., Bohn, B.,
Broch, S., Fuchs, H., Gomm, S., Holland, F., Jäger, J., Kaiser, J.,
Keutsch, F. N., Lohse, I., Lu, K., Tillmann, R., Wegener, R., Wolfe, G. M.,
Mentel, T. F., Kiendler-Scharr, A., and Wahner, A.: Missing Gas-Phase Source
of HONO Inferred from Zeppelin Measurements in the Troposphere, Science,
344, 292–296, https://doi.org/10.1126/science.1248999, 2014.
Li, Y., An, J., Min, M., Zhang, W., Wang, F., and Xie, P.: Impacts of HONO
sources on the air quality in Beijing, Tianjin and Hebei Province of China,
Atmos. Environ., 45, 4735–4744, https://doi.org/10.1016/j.atmosenv.2011.04.086, 2011.
Liao, B., Huang, J., Wang, C., Weng, J., Li, L., Cai, H., and D, W.:
Comparative analysis on the boundary layer features of haze processes and
cleaning process in Guangzhou, China Environmental Science, 38, 4432–4443,
http://www.zghjkx.com.cn/CN/Y2018/V38/I12/4432 (last access: 10 June 2022), 2018.
Liao, W., Wu, L., Zhou, S., Wang, X., and Chen, D.: Impact of Synoptic
Weather Types on Ground-Level Ozone Concentrations in Guangzhou, China,
Asia-Pac. J. Atmos. Sci., https://doi.org/10.1007/s13143-020-00186-2, 2020.
Lin, Y.-C., Cheng, M.-T., Ting, W.-Y., and Yeh, C.-R.: Characteristics of
gaseous HNO2, HNO3, NH3 and particulate ammonium nitrate in
an urban city of Central Taiwan, Atmos. Environ., 40, 4725–4733,
https://doi.org/10.1016/j.atmosenv.2006.04.037, 2006.
Liu, J., Liu, Z., Ma, Z., Yang, S., Yao, D., Zhao, S., Hu, B., Tang, G.,
Sun, J., Cheng, M., Xu, Z., and Wang, Y.: Detailed budget analysis of HONO
in Beijing, China: Implication on atmosphere oxidation capacity in polluted
megacity, Atmos. Environ., 244, 117957, https://doi.org/10.1016/j.atmosenv.2020.117957, 2021.
Liu, Y.: Observations and parameterized modelling of ambient nitrous acid
(HONO) in the megacity areas of the eastern China, PhD thesis, College of
Environmental Sciences and Engineering, Peking University, China, 2017.
Liu, Y., Lu, K., Ma, Y., Yang, X., Zhang, W., Wu, Y., Peng, J., Shuai, S.,
Hu, M., and Zhang, Y.: Direct emission of nitrous acid (HONO) from gasoline
cars in China determined by vehicle chassis dynamometer experiments,
Atmos. Environ., 169, 89–96, https://doi.org/10.1016/j.atmosenv.2017.07.019, 2017.
Liu, Y., Lu, K., Li, X., Dong, H., Tan, Z., Wang, H., Zou, Q., Wu, Y., Zeng,
L., Hu, M., Min, K. E., Kecorius, S., Wiedensohler, A., and Zhang, Y.: A
Comprehensive Model Test of the HONO Sources Constrained to Field
Measurements at Rural North China Plain, Environ. Sci. Technol., 53, 3517–3525, https://doi.org/10.1021/acs.est.8b06367, 2019a.
Liu, Y., Nie, W., Xu, Z., Wang, T., Wang, R., Li, Y., Wang, L., Chi, X., and Ding, A.: Semi-quantitative understanding of source contribution to nitrous acid (HONO) based on 1 year of continuous observation at the SORPES station in eastern China, Atmos. Chem. Phys., 19, 13289–13308, https://doi.org/10.5194/acp-19-13289-2019, 2019b.
Liu, Y., Ni, S., Jiang, T., Xing, S., Zhang, Y., Bao, X., Feng, Z., Fan, X.,
Zhang, L., and Feng, H.: Influence of Chinese New Year overlapping COVID-19
lockdown on HONO sources in Shijiazhuang, Sci. Total Environ.,
745, 141025, https://doi.org/10.1016/j.scitotenv.2020.141025,
2020a.
Liu, Y., Zhang, Y., Lian, C., Yan, C., Feng, Z., Zheng, F., Fan, X., Chen, Y., Wang, W., Chu, B., Wang, Y., Cai, J., Du, W., Daellenbach, K. R., Kangasluoma, J., Bianchi, F., Kujansuu, J., Petäjä, T., Wang, X., Hu, B., Wang, Y., Ge, M., He, H., and Kulmala, M.: The promotion effect of nitrous acid on aerosol formation in wintertime in Beijing: the possible contribution of traffic-related emissions, Atmos. Chem. Phys., 20, 13023–13040, https://doi.org/10.5194/acp-20-13023-2020, 2020b.
Liu, Z., Wang, Y., Costabile, F., Amoroso, A., Zhao, C., Huey, L. G.,
Stickel, R., Liao, J., and Zhu, T.: Evidence of aerosols as a media for
rapid daytime HONO production over China, Environ. Sci. Technol., 48,
14386–14391, https://doi.org/10.1021/es504163z, 2014.
Lou, S., Holland, F., Rohrer, F., Lu, K., Bohn, B., Brauers, T., Chang, C. C., Fuchs, H., Häseler, R., Kita, K., Kondo, Y., Li, X., Shao, M., Zeng, L., Wahner, A., Zhang, Y., Wang, W., and Hofzumahaus, A.: Atmospheric OH reactivities in the Pearl River Delta – China in summer 2006: measurement and model results, Atmos. Chem. Phys., 10, 11243–11260, https://doi.org/10.5194/acp-10-11243-2010, 2010.
Lu, K. D., Rohrer, F., Holland, F., Fuchs, H., Bohn, B., Brauers, T., Chang, C. C., Häseler, R., Hu, M., Kita, K., Kondo, Y., Li, X., Lou, S. R., Nehr, S., Shao, M., Zeng, L. M., Wahner, A., Zhang, Y. H., and Hofzumahaus, A.: Observation and modelling of OH and HO2 concentrations in the Pearl River Delta 2006: a missing OH source in a VOC rich atmosphere, Atmos. Chem. Phys., 12, 1541–1569, https://doi.org/10.5194/acp-12-1541-2012, 2012.
Lu, K. D., Hofzumahaus, A., Holland, F., Bohn, B., Brauers, T., Fuchs, H., Hu, M., Häseler, R., Kita, K., Kondo, Y., Li, X., Lou, S. R., Oebel, A., Shao, M., Zeng, L. M., Wahner, A., Zhu, T., Zhang, Y. H., and Rohrer, F.: Missing OH source in a suburban environment near Beijing: observed and modelled OH and HO2 concentrations in summer 2006, Atmos. Chem. Phys., 13, 1057–1080, https://doi.org/10.5194/acp-13-1057-2013, 2013.
Lu, K. D., Rohrer, F., Holland, F., Fuchs, H., Brauers, T., Oebel, A., Dlugi, R., Hu, M., Li, X., Lou, S. R., Shao, M., Zhu, T., Wahner, A., Zhang, Y. H., and Hofzumahaus, A.: Nighttime observation and chemistry of HOx in the Pearl River Delta and Beijing in summer 2006, Atmos. Chem. Phys., 14, 4979–4999, https://doi.org/10.5194/acp-14-4979-2014, 2014.
Lu, X., Hong, J., Zhang, L., Cooper, O. R., Schultz, M. G., Xu, X., Wang,
T., Gao, M., Zhao, Y., and Zhang, Y.: Severe Surface Ozone Pollution in
China: A Global Perspective, Environ. Sci. Tech. Let.,
5, 487–494, https://doi.org/10.1021/acs.estlett.8b00366, 2018.
Mebel, A. M., Lin, M. C., and Melius, C. F.: Rate Constant of the HONO + HONO → H2O + NO + NO2 Reaction from ab Initio MO and TST
Calculations, J. Phys. Chem. A, 102, 1803–1807,
https://doi.org/10.1021/jp973449w, 1998.
Meng, F., Qin, M., Tang, K., Duan, J., Fang, W., Liang, S., Ye, K., Xie, P., Sun, Y., Xie, C., Ye, C., Fu, P., Liu, J., and Liu, W.: High-resolution vertical distribution and sources of HONO and NO2 in the nocturnal boundary layer in urban Beijing, China, Atmos. Chem. Phys., 20, 5071–5092, https://doi.org/10.5194/acp-20-5071-2020, 2020.
Meusel, H., Kuhn, U., Reiffs, A., Mallik, C., Harder, H., Martinez, M., Schuladen, J., Bohn, B., Parchatka, U., Crowley, J. N., Fischer, H., Tomsche, L., Novelli, A., Hoffmann, T., Janssen, R. H. H., Hartogensis, O., Pikridas, M., Vrekoussis, M., Bourtsoukidis, E., Weber, B., Lelieveld, J., Williams, J., Pöschl, U., Cheng, Y., and Su, H.: Daytime formation of nitrous acid at a coastal remote site in Cyprus indicating a common ground source of atmospheric HONO and NO, Atmos. Chem. Phys., 16, 14475–14493, https://doi.org/10.5194/acp-16-14475-2016, 2016.
Michoud, V., Kukui, A., Camredon, M., Colomb, A., Borbon, A., Miet, K., Aumont, B., Beekmann, M., Durand-Jolibois, R., Perrier, S., Zapf, P., Siour, G., Ait-Helal, W., Locoge, N., Sauvage, S., Afif, C., Gros, V., Furger, M., Ancellet, G., and Doussin, J. F.: Radical budget analysis in a suburban European site during the MEGAPOLI summer field campaign, Atmos. Chem. Phys., 12, 11951–11974, https://doi.org/10.5194/acp-12-11951-2012, 2012.
Michoud, V., Colomb, A., Borbon, A., Miet, K., Beekmann, M., Camredon, M., Aumont, B., Perrier, S., Zapf, P., Siour, G., Ait-Helal, W., Afif, C., Kukui, A., Furger, M., Dupont, J. C., Haeffelin, M., and Doussin, J. F.: Study of the unknown HONO daytime source at a European suburban site during the MEGAPOLI summer and winter field campaigns, Atmos. Chem. Phys., 14, 2805–2822, https://doi.org/10.5194/acp-14-2805-2014, 2014.
Monge, M. E., D'Anna, B., Mazri, L., Giroir-Fendler, A., Ammann, M.,
Donaldson, D. J., and George, C.: Light changes the atmospheric reactivity
of soot, P. Natl. Acad. Sci., 107, 6605–6609,
https://doi.org/10.1073/pnas.0908341107, 2010.
Nakashima, Y. and Kajii, Y.: Determination of nitrous acid emission factors
from a gasoline vehicle using a chassis dynamometer combined with incoherent
broadband cavity-enhanced absorption spectroscopy, Sci. Total
Environ., 575, 287–293, https://doi.org/10.1016/j.scitotenv.2016.10.050, 2017.
Oswald, R., Behrendt, T., Ermel, M., Wu, D., Su, H., Cheng, Y., Breuninger,
C., Moravek, A., Mougin, E., Delon, C., Loubet, B., Pommerening-Röser,
A., Sörgel, M., Pöschl, U., Hoffmann, T., Andreae, M. O., Meixner,
F. X., and Trebs, I.: HONO Emissions from Soil Bacteria as a Major Source of
Atmospheric Reactive Nitrogen, Science, 341, 1233–1235, https://doi.org/10.1126/science.1242266, 2013.
Perner, D. and Platt, U.: Detection of nitrous acid in the atmosphere by
differential optical absorption, Geophys. Res. Lett., 6, 917–920,
https://doi.org/10.1029/GL006i012p00917, 1979.
Pitts, J. N., Biermann, H. W., Winer, A. M., and Tuazon, E. C.:
Spectroscopic identification and measurement of gaseous nitrous acid in
dilute auto exhaust, Atmos. Environ., 18, 847–854, https://doi.org/10.1016/0004-6981(84)90270-1, 1984.
Pusede, S. E., VandenBoer, T. C., Murphy, J. G., Markovic, M. Z., Young, C.
J., Veres, P. R., Roberts, J. M., Washenfelder, R. A., Brown, S. S., Ren,
X., Tsai, C., Stutz, J., Brune, W. H., Browne, E. C., Wooldridge, P. J.,
Graham, A. R., Weber, R., Goldstein, A. H., Dusanter, S., Griffith, S. M.,
Stevens, P. S., Lefer, B. L., and Cohen, R. C.: An Atmospheric Constraint on
the NO2 Dependence of Daytime Near-Surface Nitrous Acid (HONO),
Environ. Sci. Technol., 49, 12774–12781, https://doi.org/10.1021/acs.est.5b02511, 2015.
Qin, M., Xie, P., Su, H., Gu, J., Peng, F., Li, S., Zeng, L., Liu, J., Liu,
W., and Zhang, Y.: An observational study of the HONO–NO2 coupling at an
urban site in Guangzhou City, South China, Atmos. Environ., 43,
5731–5742, https://doi.org/10.1016/j.atmosenv.2009.08.017,
2009.
Rappenglück, B., Lubertino, G., Alvarez, S., Golovko, J., Czader, B.,
and Ackermann, L.: Radical precursors and related species from traffic as
observed and modeled at an urban highway junction, J. Air Waste Manage., 63, 1270–1286, https://doi.org/10.1080/10962247.2013.822438, 2013.
Reisinger, A. R.: Observations of HNO2 in the polluted winter atmosphere:
possible heterogeneous production on aerosols, Atmos. Environ., 34,
3865–3874, https://doi.org/10.1016/S1352-2310(00)00179-5, 2000.
Rohrer, F. and Berresheim, H.: Strong correlation between levels of
tropospheric hydroxyl radicals and solar ultraviolet radiation, Nature, 442,
184–187, https://doi.org/10.1038/nature04924, 2006.
Romanias, M. N., El Zein, A., and Bedjanian, Y.: Reactive uptake of HONO on
aluminium oxide surface, J. Photoch. Photobio. A, 250, 50–57, https://doi.org/10.1016/j.jphotochem.2012.09.018, 2012.
Saliba, N. A., Yang, H., and Finlayson-Pitts, B. J.: Reaction of Gaseous
Nitric Oxide with Nitric Acid on Silica Surfaces in the Presence of Water at
Room Temperature, J. Phys. Chem. A, 105, 10339–10346, https://doi.org/10.1021/jp012330r, 2001.
Shao, M., Ren, X., Wang, H., Zeng, L., Zhang, Y., and Tang, X.: Quantitative
relationship between production and removal of OH and HO2 radicals in urban
atmosphere, Chinese Sci. Bull., 49, 2253–2258, https://link.springer.com/article/10.1360/04wb0006 (last access: 30 June 2022), 2004.
Shi, X., Ge, Y., Zheng, J., Ma, Y., Ren, X., and Zhang, Y.: Budget of
nitrous acid and its impacts on atmospheric oxidative capacity at an urban
site in the central Yangtze River Delta region of China, Atmos.
Environ., 238, 117725, https://doi.org/10.1016/j.atmosenv.2020.117725, 2020.
Slater, E. J., Whalley, L. K., Woodward-Massey, R., Ye, C., Lee, J. D., Squires, F., Hopkins, J. R., Dunmore, R. E., Shaw, M., Hamilton, J. F., Lewis, A. C., Crilley, L. R., Kramer, L., Bloss, W., Vu, T., Sun, Y., Xu, W., Yue, S., Ren, L., Acton, W. J. F., Hewitt, C. N., Wang, X., Fu, P., and Heard, D. E.: Elevated levels of OH observed in haze events during wintertime in central Beijing, Atmos. Chem. Phys., 20, 14847–14871, https://doi.org/10.5194/acp-20-14847-2020, 2020.
Song, L., Deng, T., and Wu, D.: Study on planetary boundary layer height in
a typical haze period and different weather types over Guangzhou, Acta
Scientiae Circumstantiae, 39, 1381–1391, https://doi.org/10.13671/j.hjkxxb.2019.0080, 2019.
Sörgel, M., Regelin, E., Bozem, H., Diesch, J.-M., Drewnick, F., Fischer, H., Harder, H., Held, A., Hosaynali-Beygi, Z., Martinez, M., and Zetzsch, C.: Quantification of the unknown HONO daytime source and its relation to NO2, Atmos. Chem. Phys., 11, 10433–10447, https://doi.org/10.5194/acp-11-10433-2011, 2011a.
Sörgel, M., Trebs, I., Serafimovich, A., Moravek, A., Held, A., and Zetzsch, C.: Simultaneous HONO measurements in and above a forest canopy: influence of turbulent exchange on mixing ratio differences, Atmos. Chem. Phys., 11, 841–855, https://doi.org/10.5194/acp-11-841-2011, 2011b.
Stemmler, K., Ammann, M., Donders, C., Kleffmann, J., and George, C.:
Photosensitized reduction of nitrogen dioxide on humic acid as a source of
nitrous acid, Nature, 440, 195–198, https://doi.org/10.1038/nature04603, 2006.
Stutz, J., Kim, E. S., Platt, U., Bruno, P., Perrino, C., and Febo, A.:
UV-visible absorption cross sections of nitrous acid, J. Geophys.
Res.-Atmos., 105, 14585–14592, https://doi.org/10.1029/2000JD900003, 2000.
Stutz, J., Alicke, B., and Neftel, A.: Nitrous acid formation in the urban
atmosphere: Gradient measurements of NO2 and HONO over grass in Milan,
Italy, J. Geophys. Res.-Atmos., 107, 8192, https://doi.org/10.1029/2001JD000390, 2002.
Stutz, J., Alicke, B., Ackermann, R., Geyer, A., Wang, S., White, A. B.,
Williams, E. J., Spicer, C. W., and Fast, J. D.: Relative humidity
dependence of HONO chemistry in urban areas, J. Geophys.
Res.-Atmos., 109, D03307, https://doi.org/10.1029/2003JD004135, 2004.
Su, H.: HONO: a study to its sources and impacts from field measurements at
the sub-urban areas of PRD region, PhD thesis, College of Environmental
Sciences and Engineering, Peking University, China, http://cdmd.cnki.com.cn/Article/CDMD-10001-2008082105.htm (last access: 10 June 2022), 2008.
Su, H., Cheng, Y. F., Cheng, P., Zhang, Y. H., Dong, S., Zeng, L. M., Wang,
X., Slanina, J., Shao, M., and Wiedensohler, A.: Observation of nighttime
nitrous acid (HONO) formation at a non-urban site during PRIDE-PRD2004 in
China, Atmos. Environ., 42, 6219–6232, https://doi.org/10.1016/j.atmosenv.2008.04.006, 2008a.
Su, H., Cheng, Y. F., Shao, M., Gao, D. F., Yu, Z. Y., Zeng, L. M., Slanina,
J., Zhang, Y. H., and Wiedensohler, A.: Nitrous acid (HONO) and its daytime
sources at a rural site during the 2004 PRIDE-PRD experiment in China,
J. Geophys. Res., 113, D14312, https://doi.org/10.1029/2007JD009060, 2008b.
Su, H., Cheng, Y., Oswald, R., Behrendt, T., Trebs, I., Meixner, F. X.,
Andreae, M. O., Cheng, P., Zhang, Y., and Pöschl, U.: Soil Nitrite as a
Source of Atmospheric HONO and OH Radicals, Science, 333, 1616–1618,
https://doi.org/10.1126/science.1207687, 2011.
Tan, Z., Fuchs, H., Lu, K., Hofzumahaus, A., Bohn, B., Broch, S., Dong, H., Gomm, S., Häseler, R., He, L., Holland, F., Li, X., Liu, Y., Lu, S., Rohrer, F., Shao, M., Wang, B., Wang, M., Wu, Y., Zeng, L., Zhang, Y., Wahner, A., and Zhang, Y.: Radical chemistry at a rural site (Wangdu) in the North China Plain: observation and model calculations of OH, HO2 and RO2 radicals, Atmos. Chem. Phys., 17, 663–690, https://doi.org/10.5194/acp-17-663-2017, 2017.
Tan, Z., Rohrer, F., Lu, K., Ma, X., Bohn, B., Broch, S., Dong, H., Fuchs, H., Gkatzelis, G. I., Hofzumahaus, A., Holland, F., Li, X., Liu, Y., Liu, Y., Novelli, A., Shao, M., Wang, H., Wu, Y., Zeng, L., Hu, M., Kiendler-Scharr, A., Wahner, A., and Zhang, Y.: Wintertime photochemistry in Beijing: observations of ROx radical concentrations in the North China Plain during the BEST-ONE campaign, Atmos. Chem. Phys., 18, 12391–12411, https://doi.org/10.5194/acp-18-12391-2018, 2018.
Tan, Z., Lu, K., Hofzumahaus, A., Fuchs, H., Bohn, B., Holland, F., Liu, Y., Rohrer, F., Shao, M., Sun, K., Wu, Y., Zeng, L., Zhang, Y., Zou, Q., Kiendler-Scharr, A., Wahner, A., and Zhang, Y.: Experimental budgets of OH, HO2, and RO2 radicals and implications for ozone formation in the Pearl River Delta in China 2014, Atmos. Chem. Phys., 19, 7129–7150, https://doi.org/10.5194/acp-19-7129-2019, 2019.
Tang, X. Y.: The characteristics of urban air pollution in China, in
Urbanization, energy, and air pollution in China: The challenges ahead,
Proceedings of A Symposium, National Academies Press, 47–54, ISBN 978-0-309-09323-1 https://doi.org/10.17226/11192, 2004.
Tian, Z., Yang, W., Yu, X., Zhang, M., Zhang, H., Cheng, D., Cheng, P., and
Wang, B.: HONO pollution characteristics and nighttime sources during autumn
in Guangzhou, China Environmental Science, 39, 2000–2009, https://doi.org/10.13227/j.hjkx.201709269, 2018.
Tong, S., Hou, S., Zhang, Y., Chu, B., Liu, Y., He, H., Zhao, P., and Ge,
M.: Comparisons of measured nitrous acid (HONO) concentrations in a
pollution period at urban and suburban Beijing, in autumn of 2014, Science
China Chemistry, 58, 1393–1402, https://doi.org/10.1007/s11426-015-5454-2, 2015.
Tong, S., Hou, S., Zhang, Y., Chu, B., Liu, Y., He, H., Zhao, P., and Ge,
M.: Exploring the nitrous acid (HONO) formation mechanism in winter Beijing:
direct emissions and heterogeneous production in urban and suburban areas,
Faraday Discuss., 189, 213–230, https://doi.org/10.1039/C5FD00163C, 2016.
Trinh, H. T., Imanishi, K., Morikawa, T., Hagino, H., and Takenaka, N.:
Gaseous nitrous acid (HONO) and nitrogen oxides (NOx) emission from gasoline
and diesel vehicles under real-world driving test cycles, J. Air
Waste Manage., 67, 412–420, https://doi.org/10.1080/10962247.2016.1240726, 2017.
Tsai, C., Spolaor, M., Colosimo, S. F., Pikelnaya, O., Cheung, R., Williams, E., Gilman, J. B., Lerner, B. M., Zamora, R. J., Warneke, C., Roberts, J. M., Ahmadov, R., de Gouw, J., Bates, T., Quinn, P. K., and Stutz, J.: Nitrous acid formation in a snow-free wintertime polluted rural area, Atmos. Chem. Phys., 18, 1977–1996, https://doi.org/10.5194/acp-18-1977-2018, 2018.
VandenBoer, T. C., Brown, S. S., Murphy, J. G., Keene, W. C., Young, C. J.,
Pszenny, A. A. P., Kim, S., Warneke, C., de Gouw, J. A., Maben, J. R.,
Wagner, N. L., Riedel, T. P., Thornton, J. A., Wolfe, D. E., Dubé, W.
P., Öztürk, F., Brock, C. A., Grossberg, N., Lefer, B., Lerner, B.,
Middlebrook, A. M., and Roberts, J. M.: Understanding the role of the ground
surface in HONO vertical structure: High resolution vertical profiles during
NACHTT-11, J. Geophys. Res.-Atmos., 118,
10155–110171, https://doi.org/10.1002/jgrd.50721, 2013.
Villena, G., Kleffmann, J., Kurtenbach, R., Wiesen, P., Lissi, E., Rubio, M.
A., Croxatto, G., and Rappenglück, B.: Vertical gradients of HONO, NOx
and O3 in Santiago de Chile, Atmos. Environ., 45, 3867–3873,
https://doi.org/10.1016/j.atmosenv.2011.01.073, 2011.
Vogel, B., Vogel, H., Kleffmann, J., and Kurtenbach, R.: Measured and
simulated vertical profiles of nitrous acid – Part II. Model simulations and
indications for a photolytic source, Atmos. Environ., 37, 2957–2966,
https://doi.org/10.1016/S1352-2310(03)00243-7, 2003.
Voogt, J. A. and Oke, T. R.: Complete Urban Surface Temperatures, J. Appl. Meteorol., 36, 1117–1132, https://doi.org/10.1175/1520-0450(1997)036<1117:CUST>2.0.CO;2, 1997.
Wall, K. J. and Harris, G. W.: Uptake of nitrogen dioxide (NO2) on acidic
aqueous humic acid (HA) solutions as a missing daytime nitrous acid (HONO)
surface source, J. Atmos. Chem., 74, 283–321, https://doi.org/10.1007/s10874-016-9342-8, 2017.
Wang, G., Zhang, R., Gomez, M. E., Yang, L., Levy Zamora, M., Hu, M., Lin,
Y., Peng, J., Guo, S., Meng, J., Li, J., Cheng, C., Hu, T., Ren, Y., Wang,
Y., Gao, J., Cao, J., An, Z., Zhou, W., Li, G., Wang, J., Tian, P.,
Marrero-Ortiz, W., Secrest, J., Du, Z., Zheng, J., Shang, D., Zeng, L.,
Shao, M., Wang, W., Huang, Y., Wang, Y., Zhu, Y., Li, Y., Hu, J., Pan, B.,
Cai, L., Cheng, Y., Ji, Y., Zhang, F., Rosenfeld, D., Liss, P. S., Duce, R.
A., Kolb, C. E., and Molina, M. J.: Persistent sulfate formation from London
Fog to Chinese haze, P. Natl. Acad. Sci. USA, 113,
13630–13635, https://doi.org/10.1073/pnas.1616540113, 2016.
Wang, G., Ma, S., Niu, X., Chen, X., Liu, F., Li, X., Li, L., Shi, G., and
Wu, Z.: Barrierless HONO and HOS(O)2-NO2 Formation via NH3-Promoted
Oxidation of SO2 by NO2, J. Phys. Chem. A, 125,
2666–2672, https://doi.org/10.1021/acs.jpca.1c00539, 2021.
Wang, J., Zhang, X., Guo, J., Wang, Z., and Zhang, M.: Observation of
nitrous acid (HONO) in Beijing, China: Seasonal variation, nocturnal
formation and daytime budget, Sci. Total Environ., 587–588,
350–359, https://doi.org/10.1016/j.scitotenv.2017.02.159,
2017.
Wang, S., Zhou, R., Zhao, H., Wang, Z., Chen, L., and Zhou, B.: Long-term
observation of atmospheric nitrous acid (HONO) and its implication to local
NO2 levels in Shanghai, China, Atmos. Environ., 77, 718–724,
https://doi.org/10.1016/j.atmosenv.2013.05.071, 2013.
Wang, T., Wei, X. L., Ding, A. J., Poon, C. N., Lam, K. S., Li, Y. S., Chan, L. Y., and Anson, M.: Increasing surface ozone concentrations in the background atmosphere of Southern China, 1994–2007, Atmos. Chem. Phys., 9, 6217–6227, https://doi.org/10.5194/acp-9-6217-2009, 2009.
Wang, T., Xue, L., Brimblecombe, P., Lam, Y. F., Li, L., and Zhang, L.:
Ozone pollution in China: A review of concentrations, meteorological
influences, chemical precursors, and effects, Sci. Total
Environ., 575, 1582–1596, https://doi.org/10.1016/j.scitotenv.2016.10.081, 2017.
Wang, Y., Fu, X., Wu, D., Wang, M., Lu, K., Mu, Y., Liu, Z., Zhang, Y., and
Wang, T.: Agricultural Fertilization Aggravates Air Pollution by Stimulating
Soil Nitrous Acid Emissions at High Soil Moisture, Environ. Sci. Technol., 55, 14556–14566, https://doi.org/10.1021/acs.est.1c04134, 2021.
Weber, B., Wu, D., Tamm, A., Ruckteschler, N., Rodriguez-Caballero, E.,
Steinkamp, J., Meusel, H., Elbert, W., Behrendt, T., Sorgel, M., Cheng, Y.,
Crutzen, P. J., Su, H., and Pöschl, U.: Biological soil crusts accelerate
the nitrogen cycle through large NO and HONO emissions in drylands,
P. Natl. Acad. Sci. USA, 112, 15384–15389,
https://doi.org/10.1073/pnas.1515818112, 2015.
Wong, K. W., Oh, H.-J., Lefer, B. L., Rappenglück, B., and Stutz, J.: Vertical profiles of nitrous acid in the nocturnal urban atmosphere of Houston, TX, Atmos. Chem. Phys., 11, 3595–3609, https://doi.org/10.5194/acp-11-3595-2011, 2011.
Wong, K. W., Tsai, C., Lefer, B., Haman, C., Grossberg, N., Brune, W. H., Ren, X., Luke, W., and Stutz, J.: Daytime HONO vertical gradients during SHARP 2009 in Houston, TX, Atmos. Chem. Phys., 12, 635–652, https://doi.org/10.5194/acp-12-635-2012, 2012.
Wong, K. W., Tsai, C., Lefer, B., Grossberg, N., and Stutz, J.: Modeling of daytime HONO vertical gradients during SHARP 2009, Atmos. Chem. Phys., 13, 3587–3601, https://doi.org/10.5194/acp-13-3587-2013, 2013.
Wu, C., Wu, D., and Yu, J. Z.: Quantifying black carbon light absorption enhancement with a novel statistical approach, Atmos. Chem. Phys., 18, 289–309, https://doi.org/10.5194/acp-18-289-2018, 2018.
Wu, D., Horn, M. A., Behrendt, T., Müller, S., Li, J., Cole, J. A., Xie, B.,
Ju, X., Li, G., Ermel, M., Oswald, R., Fröhlich-Nowoisky, J., Hoor, P., Hu,
C., Liu, M., Andreae, M. O., Pöschl, U., Cheng, Y., Su, H., Trebs, I.,
Weber, B., and Sörgel, M.: Soil HONO emissions at high moisture content are
driven by microbial nitrate reduction to nitrite: tackling the HONO puzzle,
ISME J., 13, 1688–1699, https://doi.org/10.1038/s41396-019-0379-y, 2019.
Wu, Y., Li, S., and Yu, S.: Monitoring urban expansion and its effects on
land use and land cover changes in Guangzhou city, China, Environ.
Monit. Assess., 188, 54, https://doi.org/10.1007/s10661-015-5069-2, 2015.
Xia, D., Zhang, X., Chen, J., Tong, S., Xie, H.-B., Wang, Z., Xu, T., Ge,
M., and Allen, D. T.: Heterogeneous Formation of HONO Catalyzed by CO2,
Environ. Sci. Technol., 55, 12215–12222, https://doi.org/10.1021/acs.est.1c02706, 2021.
Xu, W., Kuang, Y., Zhao, C., Tao, J., Zhao, G., Bian, Y., Yang, W., Yu, Y., Shen, C., Liang, L., Zhang, G., Lin, W., and Xu, X.: NH3-promoted hydrolysis of NO2 induces explosive growth in HONO, Atmos. Chem. Phys., 19, 10557–10570, https://doi.org/10.5194/acp-19-10557-2019, 2019.
Xu, Z., Wang, T., Xue, L. K., Louie, P. K. K., Luk, C. W. Y., Gao, J., Wang,
S. L., Chai, F. H., and Wang, W. X.: Evaluating the uncertainties of thermal
catalytic conversion in measuring atmospheric nitrogen dioxide at four
differently polluted sites in China, Atmos. Environ., 76, 221–226,
https://doi.org/10.1016/j.atmosenv.2012.09.043, 2013.
Xu, Z., Wang, T., Wu, J., Xue, L., Chan, J., Zha, Q., Zhou, S., Louie, P. K.
K., and Luk, C. W. Y.: Nitrous acid (HONO) in a polluted subtropical
atmosphere: Seasonal variability, direct vehicle emissions and heterogeneous
production at ground surface, Atmos. Environ., 106, 100–109,
https://doi.org/10.1016/j.atmosenv.2015.01.061, 2015.
Xue, C., Zhang, C., Ye, C., Liu, P., Catoire, V., Krysztofiak, G., Chen, H.,
Ren, Y., Zhao, X., Wang, J., Zhang, F., Zhang, C., Zhang, J., An, J., Wang,
T., Chen, J., Kleffmann, J., Mellouki, A., and Mu, Y.: HONO Budget and Its
Role in Nitrate Formation in the Rural North China Plain, Environ. Sci.
Technol., 54, 11048–11057, https://doi.org/10.1021/acs.est.0c01832, 2020.
Xue, L., Gu, R., Wang, T., Wang, X., Saunders, S., Blake, D., Louie, P. K. K., Luk, C. W. Y., Simpson, I., Xu, Z., Wang, Z., Gao, Y., Lee, S., Mellouki, A., and Wang, W.: Oxidative capacity and radical chemistry in the polluted atmosphere of Hong Kong and Pearl River Delta region: analysis of a severe photochemical smog episode, Atmos. Chem. Phys., 16, 9891–9903, https://doi.org/10.5194/acp-16-9891-2016, 2016.
Xue, L. K., Wang, T., Gao, J., Ding, A. J., Zhou, X. H., Blake, D. R., Wang, X. F., Saunders, S. M., Fan, S. J., Zuo, H. C., Zhang, Q. Z., and Wang, W. X.: Ground-level ozone in four Chinese cities: precursors, regional transport and heterogeneous processes, Atmos. Chem. Phys., 14, 13175–13188, https://doi.org/10.5194/acp-14-13175-2014, 2014.
Yabushita, A., Enami, S., Sakamoto, Y., Kawasaki, M., Hoffmann, M. R., and
Colussi, A. J.: Anion-Catalyzed Dissolution of NO2 on Aqueous Microdroplets, J. Phys. Chem. A, 113, 4844–4848, https://doi.org/10.1021/jp900685f, 2009.
Yang, Q.: Observations and sources analysis of gaseous nitrous acid – A
case study in Beijing and Pearl River Delta area, PhD thesis, College of
Environmental Sciences and Engineering, Peking University, China, 2014.
Yang, Q., Su, H., Li, X., Cheng, Y., Lu, K., Cheng, P., Gu, J., Guo, S., Hu,
M., Zeng, L., Zhu, T., and Zhang, Y.: Daytime HONO formation in the suburban
area of the megacity Beijing, China, Science China Chemistry, 57, 1032–1042,
https://doi.org/10.1007/s11426-013-5044-0, 2014.
Yang, W., Cheng, P., Tian, Z., Zhang, H., Zhang, M., and Wang, B.: Study on
HONO pollution characteristics and daytime unknown sources during summer and
autumn in Guangzhou, China, China Environmental Science, 37,
2029–2039, https://doi.org/10.3969/j.issn.1000-6923.2017.06.005, 2017.
Yang, W., You, D., Li, C., Han, C., Tang, N., Yang, H., and Xue, X.:
Photolysis of Nitroaromatic Compounds under Sunlight: A Possible Daytime
Photochemical Source of Nitrous Acid?, Environ. Sci. Tech.
Let., 8, 747–752, https://doi.org/10.1021/acs.estlett.1c00614, 2021.
Yang, Y., Shao, M., Keßel, S., Li, Y., Lu, K., Lu, S., Williams, J., Zhang, Y., Zeng, L., Nölscher, A. C., Wu, Y., Wang, X., and Zheng, J.: How the OH reactivity affects the ozone production efficiency: case studies in Beijing and Heshan, China, Atmos. Chem. Phys., 17, 7127–7142, https://doi.org/10.5194/acp-17-7127-2017, 2017.
Yang, Y., Li, X., Zu, K., Lian, C., Chen, S., Dong, H., Feng, M., Liu, H.,
Liu, J., Lu, K., Lu, S., Ma, X., Song, D., Wang, W., Yang, S., Yang, X., Yu,
X., Zhu, Y., Zeng, L., Tan, Q., and Zhang, Y.: Elucidating the effect of
HONO on O3 pollution by a case study in southwest China, Sci.
Total Environ., 756, 144127, https://doi.org/10.1016/j.scitotenv.2020.144127, 2021.
Ye, C., Gao, H., Zhang, N., and Zhou, X.: Photolysis of Nitric Acid and
Nitrate on Natural and Artificial Surfaces, Environ. Sci. Technol., 50,
3530–3536, https://doi.org/10.1021/acs.est.5b05032, 2016.
Ye, C., Zhang, N., Gao, H., and Zhou, X.: Photolysis of Particulate Nitrate
as a Source of HONO and NOx, Environ. Sci. Technol., 51,
6849–6856, https://doi.org/10.1021/acs.est.7b00387, 2017.
Yu, Y., Galle, B., Panday, A., Hodson, E., Prinn, R., and Wang, S.: Observations of high rates of NO2-HONO conversion in the nocturnal atmospheric boundary layer in Kathmandu, Nepal, Atmos. Chem. Phys., 9, 6401–6415, https://doi.org/10.5194/acp-9-6401-2009, 2009.
Yue, D. L., Hu, M., Wu, Z. J., Guo, S., Wen, M. T., Nowak, A., Wehner, B., Wiedensohler, A., Takegawa, N., Kondo, Y., Wang, X. S., Li, Y. P., Zeng, L. M., and Zhang, Y. H.: Variation of particle number size distributions and chemical compositions at the urban and downwind regional sites in the Pearl River Delta during summertime pollution episodes, Atmos. Chem. Phys., 10, 9431–9439, https://doi.org/10.5194/acp-10-9431-2010, 2010.
Yue, D. L., Zhong, L., Shen, J., Zhang, T., Zhou, Y., Zeng, L., and Dong,
H.: Pollution properties of atmospheric HNO2 and its effect on OH
radical formation in the PRD region in autumn, Environ. Sci.
Technol., 39, 162–166, https://d.wanfangdata.com.cn/periodical/hjkxyjs201602030 (last access: 30 June 2022), 2016.
Yun, H., Wang, Z., Zha, Q., Wang, W., Xue, L., Zhang, L., Li, Q., Cui, L.,
Lee, S., Poon, S. C. N., and Wang, T.: Nitrous acid in a street canyon
environment: Sources and contributions to local oxidation capacity,
Atmos. Environ., 167, 223–234, https://doi.org/10.1016/j.atmosenv.2017.08.018, 2017.
Yun, H.: Reactive nitrogen ocides (HONO, N2O5 and ClNO2) in
different atmospheric environment in China: concentrations formation and the
impact on atmospheric oxidation capacity, PhD thesis, Department of Civil
and Environmental Engineering, The Hong Kong Polytechnic University, China,
2018.
Zha, Q., Xue, L., Wang, T., Xu, Z., Yeung, C., Louie, P. K. K., and Luk, C.
W. Y.: Large conversion rates of NO2 to HNO2 observed in air
masses from the South China Sea: Evidence of strong production at sea
surface?, Geophys. Res. Lett., 41, 7710–7715, https://doi.org/10.1002/2014GL061429, 2014.
Zhang, N., Zhou, X., Shepson, P. B., Gao, H., Alaghmand, M., and Stirm, B.:
Aircraft measurement of HONO vertical profiles over a forested region,
Geophys. Res. Lett., 36, L15820, https://doi.org/10.1029/2009GL038999, 2009.
Zhang, S., Sarwar, G., Xing, J., Chu, B., Xue, C., Sarav, A., Ding, D., Zheng, H., Mu, Y., Duan, F., Ma, T., and He, H.: Improving the representation of HONO chemistry in CMAQ and examining its impact on haze over China, Atmos. Chem. Phys., 21, 15809–15826, https://doi.org/10.5194/acp-21-15809-2021, 2021.
Zhang, W., Tong, S., Ge, M., An, J., Shi, Z., Hou, S., Xia, K., Qu, Y.,
Zhang, H., Chu, B., Sun, Y., and He, H.: Variations and sources of nitrous
acid (HONO) during a severe pollution episode in Beijing in winter 2016,
Sci. Total Environ., 648, 253–262, https://doi.org/10.1016/j.scitotenv.2018.08.133, 2019.
Zhao, X., Shi, X., Ma, X., Wang, J., Xu, F., Zhang, Q., Li, Y., Teng, Z.,
Han, Y., Wang, Q., and Wang, W.: Simulation Verification of Barrierless HONO
Formation from the Oxidation Reaction System of NO, Cl, and Water in the
Atmosphere, Environ. Sci. Technol., 55, 7850–7857, https://doi.org/10.1021/acs.est.1c01773, 2021.
Zheng, J., Zhong, L., Wang, T., Louie, P. K. K., and Li, Z.: Ground-level
ozone in the Pearl River Delta region: Analysis of data from a recently
established regional air quality monitoring network, Atmos.
Environ., 44, 814–823, https://doi.org/10.1016/j.atmosenv.2009.11.032, 2010.
Zheng, J., Shi, X., Ma, Y., Ren, X., Jabbour, H., Diao, Y., Wang, W., Ge, Y., Zhang, Y., and Zhu, W.: Contribution of nitrous acid to the atmospheric oxidation capacity in an industrial zone in the Yangtze River Delta region of China, Atmos. Chem. Phys., 20, 5457–5475, https://doi.org/10.5194/acp-20-5457-2020, 2020.
Zhong, L., Louie, P. K. K., Zheng, J., Yuan, Z., Yue, D., Ho, J. W. K., and
Lau, A. K. H.: Science–policy interplay: Air quality management in the
Pearl River Delta region and Hong Kong, Atmos. Environ., 76, 3–10,
https://doi.org/10.1016/j.atmosenv.2013.03.012, 2013.
Zhou, X., Civerolo, K., Dai, H., Huang, G., Schwab, J., and Demerjian, K.:
Summertime nitrous acid chemistry in the atmospheric boundary layer at a
rural site in New York State, J. Geophys. Res.-Atmos.,
107, 4590, https://doi.org/10.1029/2001JD001539,
2002a.
Zhou, X., He, Y., Huang, G., Thornberry, T. D., Carroll, M. A., and Bertman,
S. B.: Photochemical production of nitrous acid on glass sample manifold
surface, Geophys. Res. Lett., 29, 1681, https://doi.org/10.1029/2002GL015080, 2002b.
Zhou, X., Gao, H., He, Y., Huang, G., Bertman, S. B., Civerolo, K., and
Schwab, J.: Nitric acid photolysis on surfaces in low-NOx environments:
Significant atmospheric implications, Geophys. Res. Lett., 30, 2217,
https://doi.org/10.1029/2003GL018620, 2003.
Zhou, X., Huang, G., Civerolo, K., Roychowdhury, U., and Demerjian, K. L.:
Summertime observations of HONO, HCHO, and O3 at the summit of Whiteface
Mountain, New York, J. Geophys. Res.-Atmos., 112, D08311,
https://doi.org/10.1029/2006JD007256, 2007.
Zhou, X., Zhang, N., TerAvest, M., Tang, D., Hou, J., Bertman, S.,
Alaghmand, M., Shepson, P. B., Carroll, M. A., Griffith, S., Dusanter, S.,
and Stevens, P. S.: Nitric acid photolysis on forest canopy surface as a
source for tropospheric nitrous acid, Nat. Geosci., 4, 440–443,
https://doi.org/10.1038/ngeo1164, 2011.
Short summary
We have investigated the budget of HONO at an urban site in Guangzhou. Budget and comprehensive uncertainty analysis suggest that at such locations as ours, HONO direct emissions and NO + OH can become comparable or even surpass other HONO sources that typically receive greater attention and interest, such as the NO2 heterogeneous source and the unknown daytime photolytic source. Our findings emphasize the need to reduce the uncertainties of both conventional and novel HONO sources and sinks.
We have investigated the budget of HONO at an urban site in Guangzhou. Budget and comprehensive...
Altmetrics
Final-revised paper
Preprint