Preprints
https://doi.org/10.5194/acp-2016-50
https://doi.org/10.5194/acp-2016-50
01 Mar 2016
 | 01 Mar 2016
Status: this preprint was under review for the journal ACP but the revision was not accepted.

Chamber simulation on the formation of secondary organic aerosols (SOA) from diesel vehicle exhaust in China

Wei Deng, Qihou Hu, Tengyu Liu, Xinming Wang, Yanli Zhang, Xiang Ding, Yele Sun, Xinhui Bi, Jianzhen Yu, Weiqiang Yang, Xinyu Huang, Zhou Zhang, Zhonghui Huang, Quanfu He, A. Mellouki, and Christian George

Abstract. In China primary particulate matter emission from on-road vehicles is predominantly coming from diesels, yet secondary organic aerosols (SOA) formed from diesel emission may be also of greater significance due to more intermediate volatile organic compounds (IVOC) in the exhaust. Here we introduced exhaust from in-use diesel vehicles under warm idling condition directly into an indoor smog chamber with a 30 m3 Teflon reactor, and investigated the SOA formation as well as chemical aging of organic aerosols during photo-oxidation. The emission factors of primary organic aerosol (POA) and black carbon (BC) for the three typical Chinese diesel vehicles ranged 0.18–0.91 and 0.15–0.51 g kg-fuel−1, respectively; and the SOA production factors ranged 0.50–1.8 g kg-fuel−1 with an average SOA/POA ratio of 1.6. Aromatic hydrocarbons could only explain less than 3 % of SOA formed during aging, and IVOC and oxygenated VOC might contribute substantially to SOA formation. High resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) resolved that POA dominated by CH classes (alkanes, cycloalkanes and alkenes) with high abundances of the CnH2n+1 and CnH2n-1 fragments, and after photo-oxidation the fraction of CH classes and the H/C ratios decreased, while the fraction of CHO, as well as the ratios of O/C and of organic matter to organic carbon (OM/OC), all increased. The plot of f44 (ratio of m/z 44 to the total signal in a mass spectrum) versus f43 indicated that diesel SOA were semi-volatile oxygenated organic aerosols (SV-OOA). The slopes of O:C versus H:C element ratios in the Van Krevelen diagram ranged from −0.47 to −0.68, suggesting a combination of carboxylic acid and alcohols/peroxides formed during the aging of diesel exhaust.

Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this preprint. The responsibility to include appropriate place names lies with the authors.
Wei Deng, Qihou Hu, Tengyu Liu, Xinming Wang, Yanli Zhang, Xiang Ding, Yele Sun, Xinhui Bi, Jianzhen Yu, Weiqiang Yang, Xinyu Huang, Zhou Zhang, Zhonghui Huang, Quanfu He, A. Mellouki, and Christian George
 
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
 
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Wei Deng, Qihou Hu, Tengyu Liu, Xinming Wang, Yanli Zhang, Xiang Ding, Yele Sun, Xinhui Bi, Jianzhen Yu, Weiqiang Yang, Xinyu Huang, Zhou Zhang, Zhonghui Huang, Quanfu He, A. Mellouki, and Christian George
Wei Deng, Qihou Hu, Tengyu Liu, Xinming Wang, Yanli Zhang, Xiang Ding, Yele Sun, Xinhui Bi, Jianzhen Yu, Weiqiang Yang, Xinyu Huang, Zhou Zhang, Zhonghui Huang, Quanfu He, A. Mellouki, and Christian George

Viewed

Total article views: 2,226 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
1,451 673 102 2,226 81 122
  • HTML: 1,451
  • PDF: 673
  • XML: 102
  • Total: 2,226
  • BibTeX: 81
  • EndNote: 122
Views and downloads (calculated since 01 Mar 2016)
Cumulative views and downloads (calculated since 01 Mar 2016)

Cited

Saved

Latest update: 24 May 2024
Download
Altmetrics