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Abstract. High concentrations of nitrous acid (HONO) have been observed in the Pearl River Delta (PRD)
region of China in recent years, contributing to an elevated atmospheric oxidation capacity due to the production
of OH through HONO photolysis. We investigated the budget of HONO at an urban site in Guangzhou from
27 September to 9 November 2018 using data from a comprehensive atmospheric observation campaign. During
this period, measured concentrations of HONO were 0.02 to 4.43 ppbv, with an average of 0.74± 0.70 ppbv. An
emission ratio (HONO/NOx) of 0.9± 0.4 % was derived from 11 fresh plumes. The primary emission rate of
HONO at night was calculated to be between 0.04± 0.02 and 0.30± 0.15 ppbv h−1 based on a high-resolution
NOx emission inventory. Heterogeneous conversion of NO2 on the ground surface (0.27± 0.13 ppbv h−1), pri-
mary emissions from vehicle exhaust (between 0.04± 0.02 and 0.30± 0.15 ppbv h−1, with a middle value
of 0.16± 0.07 ppbv h−1), and the homogeneous reaction of NO+OH (0.14± 0.30 ppbv h−1) were found
to be the three largest sources of HONO at night. Heterogeneous NO2 conversion on aerosol surfaces
(0.03± 0.02 ppbv h−1) and soil emission (0.019± 0.009 ppbv h−1) were two other minor sources. Correlation
analysis shows that NH3 and the relative humidity (RH) may have participated in the heterogeneous transfor-
mation of NO2 to HONO at night. Dry deposition (0.41± 0.31 ppbv h−1) was the main removal process of
HONO at night, followed by dilution (0.18± 0.16 ppbv h−1), while HONO loss at aerosol surfaces was much
slower (0.008± 0.006 ppbv h−1). In the daytime, the average primary emission Pemis was 0.12± 0.02 ppbv h−1,
and the homogeneous reaction POH+NO was 0.79± 0.61 ppbv h−1, larger than the unknown source PUnknown
(0.65± 0.46 ppbv h−1). Similar to previous studies, PUnknown appeared to be related to the photo-enhanced con-
version of NO2.

Our results show that primary emissions and the reaction of NO+OH can significantly affect HONO at a site
with intensive emissions during both the daytime and nighttime. Uncertainty in parameter values assumed in the
calculation of HONO sources can have a strong impact on the relative importance of HONO sources at night, and
could be reduced by improving knowledge of key parameters such as the NO2 uptake coefficient. The uncertainty
in the estimated direct emission can be reduced by using emission data with higher resolution and quality. Our
study highlights the importance of better constraining both conventional and novel HONO sources by reducing
uncertainties in their key parameters for advancing our knowledge of this important source of atmospheric OH.
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1 Introduction

Nitrous acid (HONO) is an important primary source of hy-
droxyl radical (OH) through photolysis (Reaction R1), con-
tributing up to 33 %–92 % of the OH at rural and urban sites
(Kleffmann et al., 2005; Michoud et al., 2012; Tan et al.,
2017; Xue et al., 2020; Hendrick et al., 2014).

HONO+hv→ OH+NO(300nm< λ < 405nm) (R1)

OH is the principal atmospheric oxidant responsible for ox-
idizing and removing most natural and anthropogenic trace
gases. OH initiates the oxidation of volatile organic com-
pounds (VOC) to produce hydroperoxyl radicals (HO2) and
organic peroxy radicals (RO2), which further leads to the for-
mation of ground-level ozone (O3) in the presence of nitro-
gen oxides (NOx =NO+NO2) (Xue et al., 2016; Finlayson-
Pitts and Pitts, 2000; Hofzumahaus et al., 2009; Lelieveld
et al., 2016; Tan et al., 2018) as well as secondary organic
aerosols (SOA). However, the detailed formation mecha-
nisms of HONO are still not well understood, and the
observed HONO concentrations cannot be completely ex-
plained by current knowledge (Sörgel et al., 2011a; Kleff-
mann et al., 2005; Liu et al., 2019a; Lee et al., 2016; Liu
et al., 2020b; Pusede et al., 2015). So far, numerous HONO
sources have been found, and they can be categorized as di-
rect emissions, homogeneous reactions, and heterogeneous
reactions. Fossil fuel combustion is the most important di-
rect emission source of HONO (Kurtenbach et al., 2001;
Kirchstetter et al., 1996; Rappenglück et al., 2013; Kramer
et al., 2020; Xu et al., 2015; Trinh et al., 2017). In gen-
eral, the emission ratios HONO/NOx obtained from fresh air
masses mixed with vehicle exhaust (0.03 %–1.7 %) (Kurten-
bach et al., 2001; Kirchstetter et al., 1996; Rappenglück et
al., 2013; Trinh et al., 2017; Liu et al., 2017; Pitts et al.,
1984; Nakashima and Kajii, 2017) are much smaller than
the ratios HONO/NOx observed in the low boundary layer
(2.3 %–9 %) (Yang et al., 2014; Zhou et al., 2002a; Hao et al.,
2020; Gu et al., 2021; Li et al., 2018a; Yu et al., 2009; Acker
et al., 2006; Kleffmann et al., 2003; VandenBoer et al., 2013;
Vogel et al., 2003), reflecting substantial secondary forma-
tion of HONO away from direct emissions. Recent studies
have found that soil might be another major source of di-
rect HONO emissions (Su et al., 2011; Oswald et al., 2013;
Weber et al., 2015; Wu et al., 2019; Y. Wang et al., 2021
), although the confirmation of its atmospheric significance
requires further comparisons between laboratory and field
measurements. It should be noted that direct emissions may
surpass secondary sources at sampling sites with heavy emis-
sion impacts (Liu et al., 2019a; Tong et al., 2015; Zhang et
al., 2019; Tong et al., 2016; Meusel et al., 2016).

The homogeneous gas-phase reaction between NO and
OH (Reaction R2) is the most well-known secondary source
of HONO (Perner and Platt, 1979). HONO concentrations

measured in the atmosphere cannot be explained by direct
emissions and this reaction alone, especially during the day-
time (Kleffmann et al., 2005; Lee et al., 2016), when a large
source of HONO is necessary to sustain the measured level of
HONO against fast photolysis. Some homogeneous HONO
formation mechanisms have been proposed to explain the
gap between the observed and predicted HONO, including
HONO formation by photolysis of o-nitrophenol (Bejan et
al., 2006; W. Yang et al., 2021) and the reaction of NO2 with
HO2

qH2O (X. Li et al., 2014). However, they are yet to be
confirmed to occur in the atmosphere, and are unlikely to be
the main HONO source.

NO+OH→ HONO (R2)
2NO2+H2O→ HONO+HNO3 (surface) (R3)
NO2+ redads→ HONO+ oxads (R4)

Heterogeneous reactions of NO2 on various surfaces have
drawn substantial interest due to the observed correlation be-
tween HONO and NO2 during many field observations. Ver-
tical gradient observations suggest that HONO is more likely
produced from the ground surface (Wong et al., 2012; Kleff-
mann et al., 2003; Stutz et al., 2002; VandenBoer et al., 2013;
Wong et al., 2011; Villena et al., 2011), while some obser-
vations have found a good correlation between HONO and
aerosol surface area (Reisinger, 2000; Su et al., 2008a; Jia et
al., 2020; Zheng et al., 2020; Liu et al., 2014), which can be
related to the concentration and composition of particulate
matter (Cui et al., 2018; Liu et al., 2014; Colussi et al., 2013;
Yabushita et al., 2009; Kinugawa et al., 2011). Both labora-
tory studies and field observations have found that hydrolysis
of NO2 on wet surfaces can produce HONO (Reaction R3),
and the uptake coefficient of NO2 (γ ) can vary by several
orders of magnitude (Finlayson-Pitts et al., 2003; Stutz et
al., 2004; Acker et al., 2004). HONO can also be generated
by NO2 reduction on various surfaces (soot, semivolatile or-
ganic compounds, humic acid, etc.) (Reaction R4) at a much
faster rate than NO2 hydrolysis, but the surfaces could be
inactivated in a short period of time (Ammann et al., 1998;
Han et al., 2017a, 2017b; Gerecke et al., 1998; Monge et al.,
2010; Gutzwiller et al., 2002; Wall and Harris, 2017; Stemm-
ler et al., 2006; Aubin and Abbatt, 2007). However, irradia-
tion could enhance the reaction and maintain the activity of
the surfaces, making it possible for it to play an important
role in HONO formation during daytime. Both laboratory
and field studies found that photolysis of adsorbed HNO3
and particulate nitrate (NO−3 ) could produce HONO (Ye et
al., 2016, 2017; Zhou et al., 2003, 2002b, 2011), which might
be an important HONO source, at least in remote areas and
polar regions. Evidence of other new pathways and mecha-
nisms has also been found and their atmospheric relevance
discussed (Ge et al., 2019; Wang et al., 2016; Xu et al., 2019;
L. Li et al., 2018; Xia et al., 2021; Zhao et al., 2021; Gen et
al., 2021).
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The Pearl River Delta (PRD) region is one of the biggest
city clusters in the world, with a dense population and large
anthropogenic emissions. Rapid economic development and
urbanization have led to severe air pollution in this re-
gion, which has been characterized by atmospheric “com-
pound pollution” with concurrently high fine particulate mat-
ter (PM2.5) and ozone (O3) (Tang, 2004; Chan and Yao,
2008; Yue et al., 2010; T. Wang et al., 2017; Xue et al., 2014;
Zheng et al., 2010). In recent years, O3 has been increasing
along with reduced PM2.5 in the region (J. Li et al., 2014;
Liao et al., 2020; Wang et al., 2009; Zhong et al., 2013; Lu
et al., 2018), and this has become the dominant reason that
the air quality index exceeds the national standard (Feng et
al., 2019), indicating an enhancement of the atmospheric ox-
idation capacity. So far, two comprehensive atmospheric ob-
servations have been conducted in the PRD region, focus-
ing on the balance and dynamics of OH sources and sinks
(Hofzumahaus et al., 2009; Tan et al., 2019). A substantial
amount of HONO was suggested to be a major source of the
OH–HO2–RO2 radical system in these two campaigns (Lu et
al., 2012; Tan et al., 2019) as well as in other previous cam-
paigns (Hu et al., 2002; Su et al., 2008a, b; Qin et al., 2009;
Li et al., 2012; Shao et al., 2004).

In this work, we performed continuous measurements of
HONO, along with trace gases, photolysis frequencies, and
meteorological conditions, at an urban site in Guangzhou
from 27 September to 9 November 2018 as part of the field
campaign “Particles, Radicals, Intermediates from oxiDa-
tion of primary Emissions in Greater Bay Area” (PRIDE-
GBA2018). Benefiting from numerous prior field observa-
tional studies in the PRD region, our study is strongly po-
sitioned to ensure high-quality data acquisition and analysis
of HONO along with a full suite of other chemical species,
providing a unique and valuable opportunity to refine our
knowledge of HONO sources and sinks as well as the role
of HONO in the photochemistry of O3 and OH in such a re-
gion with extensive air pollution as well as rigorous emission
control in recent years.

Departing from the valuable knowledge and experiences
gained from numerous previous HONO studies in the PRD
region and around the world, we aim to draw useful and
unique insights from a detailed analysis of our dataset in the
context of a comprehensive review of previous data and find-
ings, with special attention paid to reducing and/or character-
izing the uncertainties in parameterizations and their impli-
cations for the relative importance of various HONO sources
and sinks. Specifically, (1) a high-resolution (3 km× 3 km)
NOx emission inventory for Guangzhou City (Huang et al.,
2021) was used to estimate the primary emission rates of
NOx and HONO, which would reduce the uncertainty of
the HONO primary emission rate; (2) a wide range of pos-
sible parameter values have been evaluated for each source
to quantify their strengths and rank their importance; and (3)
uncertainties associated with each source and other possible
factors are discussed in detail.

2 Experiment

2.1 Observation site

The sampling site (23.14◦ N, 113.36◦ E) is located in the
Guangzhou Institute of Geochemistry Chinese Academy of
Sciences (GIGCAS). The instruments were deployed in the
cabin on the rooftop of a seven-story building (∼ 40 m above
the ground). The site is surrounded by residential communi-
ties and schools with no industrial manufacturers or power
plants around, thus representing a typical urban environ-
ment in the PRD region. The South China Expressway and
Guangyuan Expressway, both with heavy traffic loading, are
located west and south of the site at distances of about 300 m.
As a result, the site often experienced local emissions from
traffic. The location and surroundings of the site are shown
in Fig. S1 in the Supplement.

2.2 Measurements

HONO was measured by a custom-built LOPAP (long-path
absorption photometer) (Heland et al., 2001; Kleffmann et
al., 2006). More information about our custom-built LOPAP
(including its principle, quality assurance/quality control, in-
strument parameters, and an intercomparison) are introduced
in the Supplement.

In addition to HONO, NOx (NO+NO2) was measured
by a nitrogen oxide analyzer (Thermo Scientific, model
42i), which used a NO-NOx chemiluminescence detector
equipped with a molybdenum-based converter with a time
resolution and detection limit of 1 min and 0.4 ppbv, respec-
tively. It should be noted that molybdenum oxide (MoO) con-
verters may also convert some NOz (=NOy−NOx) (e.g.,
HONO, peroxyacetyl nitrate (PAN), HNO3, and so on)
species to NO and hence could overestimate the ambient
NO2 concentrations. The degree of overestimation depends
on both the air mass age and the composition of NOy . At
our site, which was greatly affected by fresh emissions,
the relative interferences of NOz with NO2 have been es-
timated to be around 10 % (see the Supplement), which is
close to the results of Xu et al. (2013) and negligible for
our discussion of the HONO budget. O3 was measured by
an O3 analyzer (Thermo Scientific, model 49i) via an ultra-
violet absorption method with a time resolution and detec-
tion limit of 1 min and 1 ppbv, respectively. SO2 was mea-
sured by an SO2 analyzer (Thermo Scientific, model 43i)
via a pulsed fluorescence method with a time resolution
and detection limit of 1 min and 0.5 ppbv, respectively. CO
was measured by a CO analyzer (Thermo Scientific, model
48i) with a time resolution and detection limit of 1 min and
0.04 ppmv, respectively. NH3 was measured by laser absorp-
tion spectroscopy (PICARRO, G2508) with a precision of
<3 ppbv at 1 min. Gaseous HNO3 was detected by a time-
of-flight chemical ionization mass spectrometer (Aerodyne
Research Inc., TOF-CIMS) with a time resolution of 1 min.
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Particulate nitrate (NO−3 ) was measured by a time-of-flight
aerosol mass spectrometer (Aerodyne Research Inc., TOF-
AMS) with a time resolution of 1 min. PM2.5 was measured
by a beta attenuation monitor (MET One Instruments Inc.,
BAM-1020) with a time resolution and detection limit of 1 h
and 4.0 µg m−3, respectively. The meteorological data, in-
cluding temperature (T ), relative humidity (RH), and wind
speed and direction (WS, WD), were recorded by a Van-
tage Pro2 weather station (Davis Instruments Inc.) with a
time resolution of 1 min. Photolysis frequencies, including
J (HONO), J (NO2), and J (O1D), were measured by a spec-
trometer (Focused Photonics Inc., PFS-100) with a time res-
olution of 1 min.

3 Results and discussion

3.1 Data overview

The time series of meteorological parameters and pollutants
during the campaign are shown in Fig. 1. The HONO con-
centrations ranged from 0.02 to 4.43 ppbv, with an average
of 0.74± 0.70 ppbv. Table 1 summarizes the HONO obser-
vations reported in the PRD region since 2002. HONO ap-
pears to have shown a decreasing trend in Guangzhou, as an
improvement in air quality in Guangzhou was witnessed dur-
ing the past decade. Spikes of NO occurred frequently, even
up to 134.8 ppbv, as a result of traffic emissions from two
major roads near the site. The concentrations of NO2, SO2,
NH3, and PM2.5 were 5.4–102.0, 0–6.3, 2.8–7.8 ppbv, and 4–
109 µg m−3, respectively, with average values of 50.8± 17.2,
1.9± 1.2, 6.3± 2.7 ppbv, and 36± 16 µg m−3, respectively.
The O3 concentration ranged from 0.3 to 149.8 ppbv with an
average peak concentration of 73.9± 28.4 ppbv. During the
observations, the temperature ranged from 17 to 30 ◦C with
an average of 24± 3 ◦C, and the relative humidity ranged
from 28 % to 97 % with an average of 70± 17 %. The av-
erage wind speed was 6.8± 4.5 m s−1, while the maximum
wind speed was 22.7 m s−1. There was a pollution period
from 8 to 10 October with elevated PM2.5 (60± 12 µg m−3)
and HONO (0.94± 0.58 ppbv). By contrast, from 29 October
to 3 November, efficient ventilation driven by strong winds
(>11 m s−1) led to low levels of most pollutants in this pe-
riod, with average concentrations of PM2.5 and HONO at
28± 11 µg m−3 and 0.56± 0.34 ppbv, respectively.

The time series of the photolysis frequencies J (HONO),
J (O1D), and J (NO2) across the whole observation period
are shown in Fig. S3. The maximum values of J (HONO),
J (O1D) and J (NO2) are 1.58× 10−3, 2.54× 10−5, and
9.31× 10−3 s−1, respectively. These J values tracked a sim-
ilar diurnal pattern, reaching a maximum at noon (with high
solar radiation) and decreasing to zero at night.

The diurnal variations of HONO, NO2, HONO/NO2, and
NO are shown in Fig. 2. A daytime trough and a night-
time peak of HONO were observed, as typically seen at
urban and rural sites (Lee et al., 2016; Xue et al., 2020;

Villena et al., 2011; Y. Yang et al., 2021). The observed
high HONO concentration of around 0.5 ppbv in the day-
time implies strong HONO production to balance its rapid
loss through photolysis. NO2 showed a similar diurnal pat-
tern. It is worth noting that the diurnal variation of NO was
quite similar to that of HONO, implying a potential associa-
tion between them. Additionally, the observed large amount
of NO (10.8± 17.2 ppbv) at night indicated strong primary
emission near the site. The ratio HONO/NO2, an indicator
of NO2 to HONO conversion, rose at night and decreased
after sunrise due to photolysis, ranging from 0.002 to 0.091
with an average of 0.023± 0.013, which is lower than most
previous field observations in the PRD region (Li et al., 2012;
Qin et al., 2009; Xu et al., 2015) and is typical of relatively
fresh plumes (Febo et al., 1996; Lammel and Cape, 1996;
Sörgel et al., 2011b; Stutz et al., 2004; Zhou et al., 2007; Su
et al., 2008a).

3.2 Nocturnal HONO sources and sinks

3.2.1 Direct emissions

As noted in Sect. 2.1, the site was expected to receive
substantial direct emissions of HONO from two major
roads nearby. We obtained the emitted HONO/NOx ra-
tios in fresh plumes defined with the following criteria
(Xu et al., 2015): (a) NOx>49.7 ppbv (highest 25 % of
the NOx data); (b) NO/NOx >0.8; (c) good correlation
between NOx and HONO (R2>0.70, P<0.05); (d) short
plume duration (<2 h); and (e) global radiation<10 W m−2

(J (NO2)<0.25× 10−3 s−1).
During the campaign, 11 fresh plumes were found to sat-

isfy all of the criteria (see Table S2 in the Supplement). Two
cases among them are shown in Fig. S4. The HONO/NOx
ratios in these selected plumes varied from 0.1 % to 1.5 %
with an average value of 0.9± 0.4 %, which is comparable
to the average values of 1.2 % (Xu et al., 2015) and 1.0 %
(Yun et al., 2017) measured in Hong Kong, 0.79 % mea-
sured in Nanjing (Liu et al., 2019b), and 0.69 % observed
in Changzhou (Shi et al., 2020). It should be noted that the
emission factor derived in this study was based on field ob-
servation and the screening criterion for fresh air mass was
NO/NOx >0.8, while the fresh air mass was characterized
by NO/NOx >0.9 in the tunnel experiments conducted by
Kurtenbach et al. (2001), so the air masses we selected were
still slightly aged and the emission factor derived in this study
is slightly overestimated.

To quantify the primary emission rate of HONO, three
methods have been used in previous studies (Liu et al.,
2019b; Liu et al., 2020a; Meng et al., 2020). In method
(1), the observed NOx concentration is assumed to repre-
sent the accumulation of emissions, but the sinks of NOx
and HONO are ignored, as are transport and convection. On
this basis, [HONO]emis (the primary emission contribution
to the HONO concentration) is estimated as the product of
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Figure 1. Temporal variations of meteorological parameters and pollutants during the observation period.

Figure 2. Diurnal profiles of (a) HONO, (b) NO2, (c) HONO/NO2, and (d) NO during the observation period. In each box, the blue line
and the red circle refer to the median and mean, respectively. The upper and lower boundaries of each box represent the 75th and the 25th
percentiles; the whiskers above and below each box represent the 95th and 5th percentiles. The box plots presented in this study were
generated by an Igor-Pro-based computer program, Histbox (Wu et al., 2018).
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Table 1. Overview of the ambient HONO, NO2, and NOx measurements as well as the HONO/NO2 ratios in the PRD region ordered
chronologically. Data from Guangzhou are in italics.

Location Date HONO (ppbv) HONO (ppbv) NO2 (ppbv) NOx (ppbv) HONO/NO2 Reference

Night Day Night Day Night Day Night Day

Guangzhou (China)
July 2002 1.89 – – – – – – – –

1
November 2002 1.52 – – – – – – – –

Xinken (China) October–November 2004 1.20 1.30 0.80 34.8 30.0 37.8 40.0 0.037 0.027 2

Back Garden (China) July 2006 0.93 0.95 0.24 16.5 4.5 20.9 5.5 0.057 0.053 3

Guangzhou (China) July 2006 2.80 3.50 2.00 20.0 30.0 – – 0.175 0.067 4

Guangzhou (China) October 2015 1.64 2.25 0.90 40.5 27.3 57.9 39.8 0.060 0.030 5

Guangzhou (China) July 2016 1.03 1.27 0.70 35.0 25.9 66.3 52.1 0.040 0.070 6

Guangzhou (China) September–November 2018 0.74 0.91 0.44 36.9 23.3 47.7 30.1 0.026 0.022 –

Jiangmen (China) October–November 2008 0.60 – 0.48 – – – 9.1 – – 7

Hong Kong (China)

August 2011 0.66 0.66 0.70 21.8 18.1 29.3 29.3 0.031 0.042

8
November 2011 0.93 0.95 0.89 27.2 29.0 37.2 40.6 0.034 0.030
February 2012 0.91 0.88 0.92 22.2 25.8 37.8 48.3 0.036 0.035
May 2012 0.35 0.33 0.40 14.7 15.0 19.1 21.1 0.022 0.030

Hong Kong (China) September–December 2012 0.13 – – – – – – – – 9

Heshan (China) October 2013 1.57 – – – – – – – – 10

Heshan (China) October–November 2014 1.40 1.78 0.77 19.3 17.9 21.5 22.7 0.093 0.055 11

Hong Kong (China) March–May 2015 3.30 2.86 3.91 – – – – – – 12

Heshan (China) January 2017 2.70 3.10 2.30 – – – – 0.116 0.089 13
References: 1: Hu et al. (2002); 2: Su et al. (2008a) and (2008b); 3: Su (2008) and Li et al. (2012); 4: Qin et al. (2009); 5: Tian et al. (2018); 6: W. Yang et al. (2017); 7: Yang (2014); 8: Xu et al. (2015);
9: Zha et al. (2014); 10: Yue et al. (2016); 11: Liu (2017); 12: Yun et al. (2017); 13: Yun (2018).

the emission coefficient K and the observed NOx concen-
tration (Cui et al., 2018; Huang et al., 2017) (see Eq. 1).
Since it is difficult to determine the time of NOx emissions,
method (1) can not exclude the NOx levels before emission
begins. With this in mind, in method (2), the primary emis-
sion rate Pemis is estimated as the product of the emission
coefficient K and [1NOx]/1t , where [1NOx] is the differ-
ence between the NOx observed at two time points (Liu et
al., 2019b; Zheng et al., 2020) (see Eq. 2). Obviously, this
can only be used when NOx is increasing. It should be noted
that any loss of NOx and HONO can be a source of error in
these two methods, especially during the daytime. In method
(3), the primary emission rate Pemis is equal to the product of
the emission coefficientK and NO∗x , the NOx emission from
the source emission inventory (Michoud et al., 2014; Su et
al., 2008b) (see Eq. 3). This method adheres to the definition
of the HONO emission rate which assumes that the primary
sources are evenly mixed in a specific area. It is desirable to
use emission inventory data with high spatial and temporal
resolution to obtain an accurate estimate.

[HONO]emis =K × [NOx] (1)
Pemis =K × [1NOx]/1t (2)
Pemis =K ×NO∗x (3)

PHONO =
[HONO]t2 − [HONO]t1

t2− t1
(4)

In this study, we first used the NOx emission rate from a high-
resolution emission inventory (Huang et al., 2021) to calcu-
late the emission rate of HONO Pemis at night (18:00–06:00).
The NOx emission rate was extracted from a 3 km× 3 km
grid cell centered around our site. As a comparison, we also
used the 2017 NOx emission inventory of Guangzhou City
to repeat the calculation. The two inventories primarily differ
in their spatial resolutions. The high-resolution 3 km× 3 km
data are expected to better represent local traffic emissions,
whereas the city-level emission inventory represents the total
emissions. Since we cannot quantify the relative contribution
of the local and regional emissions to this site, two results
are used to represent the upper and lower limits of the con-
tribution of primary emissions to the HONO production. The
nighttime height of the boundary layer is assuming to 200 m,
based on a previous study of the PRD region in autumn by
Fan et al. (2008).

The observed HONO accumulation rate PHONO is calcu-
lated using Eq. (4), where [HONO]t1 and [HONO]t2 repre-
sent the HONO concentrations at 18:00 and 06:00 LT, respec-
tively. An average PHONO of 0.02± 0.06 ppbv h−1 can then
be derived. The hourly HONO primary emission rates calcu-
lated with the two inventories are shown in Fig. 5a. Pemis cal-
culated with the high-resolution emission data (3 km× 3 km)
shows a steep downward trend from 18:00 (0.56 ppbv h−1)
to 04:00 (0.14 ppbv h−1) followed by an upward trend from
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04:00 (0.14 ppbv h−1) to 06:00 (0.25 ppbv h−1), with an aver-
age of 0.30± 0.15 ppbv h−1. By contrast, the Pemis obtained
with the city-level emission data (Guangzhou) is much lower
(0.04± 0.02 ppbv h−1) and varied smoothly throughout the
night. Similar results have been obtained at urban sites (Liu
et al., 2020a, b; Gu et al., 2021) and a suburban site (Michoud
et al., 2014) but a much lower result was obtained at a rural
site (Su et al., 2008b) in the PRD region. The uncertainty of
Pemis stems from the uncertainty of the inventories (−25 %
to 28 %) (Huang et al., 2021). Regardless, direct emission of
HONO represents a large HONO source at night, along with
other sources of HONO that remain to be considered.

We also calculated the contribution of primary emissions
to the HONO concentration ([HONO]emis/[HONO])
using Method (1) and made comparisons with
[HONO]emis/[HONO] ratios obtained previously from
urban sites in China (Table S3). The values varied widely
from 12 % to 52 %, with seasonal differences of more than a
factor of 2 for the same site, reflecting a large variability of
HONO emissions spatially and temporally. In comparison,
the ratio [HONO]emis/[HONO] at our site is relatively high
at 47 %, as can be expected from the relatively strong vehicle
exhaust emissions near our site.

In addition to traffic emissions, we also estimated the
HONO emission rate from soil Psoil (ppbv h−1) according to
Eq. (5) (Liu et al., 2020a):

Psoil =
αFsoil

H
, (5)

where Fsoil is the emission flux (g m−2 s−1); H is the height
of the boundary layer (m), assumed to be 200 m (Fan et al.,
2008); α is the conversion factor (α = 1×109

×3600×R×T
M×P

=

2.99×1013
×T

M×P
); T is the temperature (K); M is the molecular

weight (g mol−1); and P is the atmospheric pressure (Pa).
The HONO emission flux from soil depends on the temper-
ature, water content, and nitrogen nutrient content of soil,
which were considered here using parameters reported in
the literature (Oswald et al., 2013). Since grassland, conif-
erous forest, and tropical rain forest are the typical plants in
the Guangzhou City area (Wu et al., 2015) and their emis-
sion fluxes are comparable (Oswald et al., 2013), the emis-
sion flux from grassland was adopted to represent the soil
HONO emission in Guangzhou. The average nighttime Psoil
varied from 0.011 to 0.035 ppbv h−1, with a mean value of
0.019± 0.009 ppbv h−1. The HONO emission rate from soil
at our site is slightly larger than the result reported in the Shi-
jiangzhuang urban area (Liu et al., 2020a) and comparable to
that in the Beijing urban area (Liu et al., 2020b). A caveat is
that the calculation relies on laboratory results and is there-
fore prone to errors due to any possible inconsistency be-
tween laboratory simulations and field observations. Overall,
soil emission is a minor source compared to other sources.

3.2.2 Homogeneous NO+OH reaction

The reaction between NO and OH is the most well-known
homogeneous HONO source. It can contribute a substantial
fraction of the HONO formed when NO and OH concentra-
tions are high (Alicke et al., 2003; Liu et al., 2019b; Wong
et al., 2011; Tong et al., 2015; Zhang et al., 2019). Taking
the homogeneous Reactions (R2) and (R5) into account, the
net HONO homogeneous production rate can be calculated
using Eq. (6):

HONO+OH→ NO2+H2O, (R5)

P net
OH+NO = kNO+OH [NO][OH]− kHONO+OH [HONO][OH] . (6)

In Eq. (6), kNO+OH (7.2× 10−12 cm3 s−1) and kHONO+OH
(5.0× 10−12 cm3 s−1) are the reaction rate constants of Re-
actions (R2) and (R5) at 298 K, respectively (Li et al., 2012).
Since the OH concentration was not measured, the average
nighttime value of 0.5× 106 cm−3 measured in Heshan in the
PRD region in the autumn of 2014 was assumed (Tan et al.,
2019). As shown in Fig. 3, the variation of P net

OH+NO largely
followed that of NO, since the concentration of NO was 10
times larger than that of HONO. Also, the average value
of P net

OH+NO is 0.13± 0.30 ppbv h−1, leading to a cumulative
HONO contribution of 1.62 ppbv. The obtained P net

OH+NO is
similar to those in previous studies, such as 0.12 ppbv h−1

in Xianyang (Li et al., 2021), 0.13 ppbv h−1 in Zhengzhou
(Hao et al., 2020), 0.26 ppbv h−1 in Xi’an (Huang et al.,
2017), and 0.28 ppbv h−1 in Guangzhou Back Garden (Li et
al., 2012). We note that the measured HONO only increased
by 0.26 ppbv in this period, much smaller than the cumula-
tive production of HONO from the reaction between NO and
OH, indicating the presence of a large sink to balance this
source and other sources that will be discussed below.

Since OH was not measured in our study, we carried out
sensitivity tests using one-fifth and twice the assumed OH
concentration (0.5× 106 cm−3) (Lou et al., 2010). As shown
in Table S4, within the range of nighttime OH concentra-
tions, the cumulative production from the homogeneous re-
action of NO+OH in this study is always large enough to
surpass the average measured accumulation of HONO, indi-
cating that the NO+OH source is a major source term re-
gardless of uncertainties in OH concentrations.

3.2.3 Heterogeneous NO2 to HONO conversion

Our analysis so far suggests that direct emissions and the
homogeneous reaction between NO and OH are two major
sources of HONO at night. This finding is in line with the rel-
atively high correlation (R2

= 0.5927) between HONO and
NO (Fig. 4a). In the following, we present results from cor-
relation analysis to explore possible pathways for heteroge-
neous NO2 to HONO conversion at night (18:00–06:00).
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Figure 3. The mean nocturnal variations of (a) P net
OH+NO, (b) NO,

and (c) HONO. In each box, the blue line and red circle refer to the
median and mean, respectively. The upper and lower boundaries in
each box represent the 75th and the 25th percentiles; the whiskers
above and below each box represent the 95th and 5th percentiles.

The ratio HONO/NO2 has often been used to indicate
the heterogeneous conversion efficiency of NO2 to HONO
(Lammel and Cape, 1996; Stutz et al., 2002), as it is
less influenced by transport processes or convection. Fig-
ure 4c shows a weak correlation (R2

= 0.0638) between
HONO/NO2 and PM2.5, suggesting that the formation of
HONO on aerosol surfaces might not be the main pathway
(Kalberer et al., 1999; Kleffmann et al., 2003; Wong et al.,
2011; Zhang et al., 2009; Sörgel et al., 2011a; VandenBoer et
al., 2013). Because the surface area of the ground (including
vegetation surfaces, building surfaces, soil, etc.) is generally
larger than the surface area of aerosols, some studies have
suggested that the heterogeneous reaction of NO2 and water
vapor on ground surfaces is the main source of HONO (Har-
rison and Kitto, 1994; Li et al., 2012; Wong et al., 2012). Fur-
thermore, the correlations between HONO/NO2 and NH3
and RH are 0.3746 and 0.2381, respectively, and the cor-
relation between HONO/NO2 and the product of NH3 and
RH is even stronger (R2

= 0.4597). Some studies have pro-
posed that NH3 can decrease the free-energy barrier in the

hydrolysis of NO2, thus enhancing HONO formation (Xu et
al., 2019; L. Li et al., 2018; G. Wang et al., 2021).

In Fig. S5, we further explore the RH effect by fo-
cusing on high HONO/NO2 values, i.e., the five highest
HONO/NO2 values in 5 % RH intervals (Stutz et al., 2004).
When RH was lower than 87.5 %, HONO/NO2 increased
with RH, which is in accordance with the reaction kinetics
of the disproportionation reaction of NO2 and H2O. Fur-
thermore, the slope of the linear fit between HONO/NO2
and RH was much smaller in the RH range of 30 %–70 %
(slope= 0.04 %; R2

= 0.5202) than in the RH range of
70 %–87.5 % (slope= 0.25 %, R2

= 0.8767). Similar piece-
wise correlations between HONO/NO2 and RH have been
found in previous studies (Qin et al., 2009; Zhang et al.,
2019), which have been interpreted as evidence for the non-
linear dependence of the NO2-to-HONO conversion effi-
ciency on RH. Once the relative humidity exceeded 87.5 %,
NO2-to-HONO conversion appeared to be inhibited by the
RH (slope=−0.32 %;R2

= 0.9750). A possible explanation
is that the number of water layers formed on various surfaces
increased rapidly with RH, resulting in effective uptake of
HONO and making the surface inaccessible or less reactive
to NO2. Previous studies also found fast growth of aqueous
layers when RH was over 70 % for glass (Saliba et al., 2001)
and when it was over 80 % for stone (Stutz et al., 2004). The
tipping point inferred from ambient observations appears to
vary depending on the locale (likely reflecting the different
compositions of the ground surfaces), e.g., 60 % for Chengdu
(Y. Yang et al., 2021), 65 %–70 % for Beijing (J. Wang et
al., 2017), 70 % for Back Garden (Li et al., 2012), 75 % for
Shanghai (Wang et al., 2013), and 85 % for Xi’an (Huang et
al., 2017).

We calculated the strength of HONO formation from
the heterogeneous reaction of NO2 on the ground surface
(Pground) and on the aerosol surface (Paerosol) based on em-
pirical data derived from either experiments or observations:

Pground =
1
8
γNO2→ground× [NO2]×CNO2 ×

Sg

V
, (7)

Paerosol =
1
4
γNO2→aerosol× [NO2]×CNO2 ×

Sa

V
, (8)

Sg

V
=

2.2
H
, (9)

where CNO2 is the mean molecular velocity of NO2 (m s−1),
γNO2→ground and γNO2→aerosol represent the uptake coeffi-
cients of NO2 on the ground surface and aerosol surface,
respectively, while Sg/V and Sa/V are the surface area to
volume ratios (m−1) for both the ground and aerosol, re-
spectively. Considering the land-use type of the study site,
we treated the ground as an uneven surface, and a factor of
2.2 per unit of ground surface, as measured by Voogt and
Oke (1997), was adopted to calculate the total active surface.
Hence, Sg/V can be calculated by Eq. (9), where H is the
mixing layer height. The surface area to volume ratio Sa/V
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Figure 4. Correlations between HONO, HONO/NO2, and various parameters during the time interval of 18:00–06:00.

of PM10 was not available in this study and was estimated ac-
cording to the PM2.5 and Sa/V values in Guangzhou Xinken
reported by Su et al. (2008a). The uptake coefficients of NO2
on the ground surface and aerosol surface were assumed to be
4× 10−6 following previous studies (D. Li et al., 2018; Liu et
al., 2019a; Zhang et al., 2021) (a summary of the parameter-
izations used for nighttime HONO budget calculation can be
found in Table S5). With these assumptions, an average value
of Pground of 0.27± 0.13 ppbv h−1 can be derived, which is
far larger than Paerosol (0.03± 0.02 ppbv h−1) (Fig. 5c and d).

In sum, our correlation analysis for HONO/NO2 and pa-
rameterized calculations suggested that nighttime heteroge-
neous conversion of NO2 into HONO at our site mainly oc-
curred on the ground rather than on aerosol sources, while
correlation analysis provides evidence for the roles of NH3
and water vapor in HONO formation. It should be noted that,
unlike the NO+OH reaction or primary emission, which
were found to be major HONO sources even at their lower
limits considering uncertainties, the magnitude of the het-
erogeneous source as well as its contribution to the overall
HONO budget varied greatly with the assumed uptake coef-
ficients of NO2, which can span two orders of magnitude.

3.2.4 Removal of HONO

As discussed above, strong sinks are required to balance
the nighttime HONO production. Since the reactions of
HONO+OH and HONO+HONO are negligible (Kaiser
and Wu, 1977; Mebel et al., 1998), it is conceivable that
nighttime HONO is mainly removed through deposition
LDep (El Zein and Bedjanian, 2012; Li et al., 2012; Hao et
al., 2020; Meng et al., 2020), transport processes, e.g., en-
trainment of background air Ldilution (Gall et al., 2016; Meng
et al., 2020), and uptake on aerosols Laerosol. These terms can
be expressed as follows:

LDep =
Vd× [HONO]

H
, (10)

Laerosol =
1
4
γHONO→aerosol× [HONO]×CHONO×

Sa

V
, (11)

Ldilution = k(dilution)×
(
[HONO]− [HONO]background

)
, (12)

where Vd is the average deposition velocity, γHONO→aerosol
is the uptake coefficient of HONO on the aerosol surface,
and k(dilution) is the dilution rate (including both vertical
and horizontal transport) (Dillon et al., 2002). CHONO is the
mean molecular velocity of HONO (m s−1), and [HONO]
and [HONO]background represent the HONO concentrations
at the observation site and the background site, respectively.
In this work, the lowest nighttime HONO concentration was
taken as the [HONO]background.

The average loss rate of HONO by dilution was calcu-
lated to be 0.18± 0.16 ppbv h−1, which is in the range of
prior results (Gall et al., 2016; Liu et al., 2020a, b). The av-
erage values of Laerosol and LOH+HONO were 0.008± 0.006
and 0.008± 0.012 ppbv h−1, respectively. In order to balance
the nighttime HONO budget, and assuming dry deposition to
be responsible for the remaining amount of HONO loss, a
dry deposition rate of ∼ 2.5 cm s−1 was adopted, accounting
for an average loss rate of 0.41± 0.31 ppbv h−1 by deposi-
tion between 18:00–06:00, when using the median parame-
ter values in Table S5 to calculate the HONO sources and
sinks. This result is consistent with previous studies suggest-
ing dry deposition as the dominant loss pathway for HONO
during the night (Li et al., 2012; Hao et al., 2020; Meng et al.,
2020; VandenBoer et al., 2013). The upper limit of Laerosol is
only 0.10± 0.08 ppbv h−1, suggesting that the HONO loss
on aerosols was not a major sink, as also suggested by prior
studies (El Zein and Bedjanian, 2012; El Zein et al., 2013;
Romanias et al., 2012).

3.2.5 Nighttime HONO budget: relative importance of
sources and their uncertainties

It is useful to evaluate the balance of the HONO budget
by evaluating calculated/parameterized sources and sinks
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against the observed HONO level and variability. The ob-
served production rate of HONO Pobs can be defined as the
sum of the total loss rates and change rates of HONO (Gu et
al., 2021). When using the median values of parameters (Ta-
ble S5) and taking the average throughout the night (18:00–
06:00), all five sources are greater than or close to the average
accumulation rate of HONO at night derived from the ob-
served HONO variation (0.02± 0.06 ppbv h−1), indicating a
balanced HONO budget considering all uncertainties. Rank-
ing the source strengths with their median estimates sug-
gested that heterogeneous conversion of NO2 on the ground
surface (0.27± 0.13 ppbv h−1), primary emission from vehi-
cle exhaust (between 0.04± 0.02 and 0.30± 0.15 ppbv h−1,
with a middle value of 0.16± 0.07 ppbv h−1), and the ho-
mogeneous reaction of NO+OH (0.14± 0.30 ppbv h−1)
were major sources of HONO at night. The night-
time soil emission rate (0.019± 0.009 ppbv h−1) and het-
erogeneous NO2 conversion on the aerosol surfaces
(0.03± 0.02 ppbv h−1) were two other minor sources.
Dry deposition (0.41± 0.31 ppbv h−1) was the principal
loss process of nighttime HONO, followed by dilution
(0.18± 0.16 ppbv h−1), while the homogeneous reaction of
HONO+OH (0.008± 0.012 ppbv h−1) and HONO uptake
on the aerosol surfaces (0.008± 0.006 ppbv h−1) were in-
significant.

We also made an attempt to obtain a time-resolved HONO
budget on an hourly basis, although the results are not sat-
isfactory for all the hours at night, with obvious differences
seen between observed and calculated rates of HONO vari-
ation, e.g., at 22:00 and from 02:00 to 05:00 (Fig. S6). This
is expected considering the much more amplified uncertain-
ties associated with the hourly variabilities of various quan-
tities, which can be considerably reduced by averaging all
hours. This is why subtle and careful data filtering is nec-
essary when nightime HONO chemistry is examined in de-
tail (Wong et al., 2011). Such a granular analysis is more
appropriate for the daytime, when the HONO lifetime is
much shorter and uncertainties affecting the interpretation
of HONO chemistry (e.g., emission and transport) are much
more muted. As a matter of fact, because the rate of HONO
change shown in Fig. S6 is a first-order derivative of the
HONO concentration itself, one would expect that HONO
concentrations from each source would show greater varia-
tions, making it more difficult to compare on an hourly basis.
Another challenge is that since the parameters used for calcu-
lating HONO source strengths have ranges for their estimates
(Table S5), the HONO source strengths also have a wide
range individually, and therefore there are numerous possible
combinations of these sources with different strengths and
rankings to close the budget.

The comparison and ranking of sources considering vari-
ability and uncertainty is less straightforward than ranking
the nighttime average source strengths (Fig. 5). Among the
three largest sources, both primary (non-soil) emission and
the NO2 heterogeneous source on the ground showed an

evening peak and decreased after midnight. The NO+OH
source showed a different trend, with its lowest level occur-
ring in the evening, making it the smallest source among the
three at that time. Although the NO2 heterogeneous source
on the ground appeared to be the largest based on its median
parameter value, it also had the largest range of estimates,
suggesting that its importance is more uncertain compared
to the other sources. On the other hand, the other two mi-
nor sources, i.e., the NO2 heterogeneous source on aerosols
and soil emission, are substantially less important than these
three sources given their ranges of low estimates. The vari-
ability and uncertainty of dry deposition are entirely depen-
dent on other terms of sources and sinks, since it is derived
as a final term to balance the budget.

3.3 Daytime HONO budget and unknown sources
analysis

3.3.1 Budget analysis

In this section, we move on to a detailed budget analysis for
HONO during the daytime, when the chemistry is distinctly
different from that at night. Similar to the nighttime analysis,
by exploring different terms for the daytime chemistry, the
time variation of the HONO concentration at our site can be
related to its sources and sinks as follows:

∂ [HONO]
∂t

= PHONO−LHONO

= (POH+NO+PUnknown+Pemis+Psoil

+ TV+ TH)− (LOH+HONO+LPhot+LDep), (13)

where ∂[HONO]/∂t represents the time variation of HONO;
PHONO and LHONO are the sources and sinks of HONO, re-
spectively; POH+NO and LOH+HONO are the homogeneous
HONO formation and loss rates in Reactions (R2) and (R5),
respectively; PUnknown is the HONO production rate from un-
known sources; TV and TH are two terms representing ver-
tical and horizontal transport processes, respectively; LPhot
denotes the photolysis loss rate of HONO, which can be cal-
culated as LPhot = J (HONO)× [HONO]; and the deposition
loss rate of HONO LDep can be calculated using Eq. (10).
Assuming a daytime Vd of 1.6 cm s−1 (Hou et al., 2016; Li
et al., 2011) and a daytime mixing height (H ) of 1000 m
(Liao et al., 2018; Song et al., 2019), the average LDep is
0.003± 0.001 ppbv h−1, which is three orders of magnitude
smaller than LPhot and can therefore be ignored in the fol-
lowing discussion.

OH was not measured; it was calculated with a parame-
terized approach based on the strong correlation between ob-
served OH radicals and J (O1D). The parameterization was
first proposed by Rohrer and Berresheim (2006) and has
been applied in several studies in China (Lu et al., 2013,
2012, 2014). In this study, OH was estimated with the ob-
served J (O1D) along with parameters obtained by fitting
the observed OH radicals and J (O1D) data for Guangzhou
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Figure 5. Nocturnal variations of the terms in the HONO budget: (a) primary emission from vehicle exhaust, (b) homogeneous reaction
of NO+OH, (c) heterogeneous conversion of NO2 on ground surfaces, (d) heterogeneous conversion of NO2 on aerosol surfaces, (e)
soil emission, and HONO losses from (f) dry deposition, (g) dilution, (h) uptake on aerosols, and (i) HONO+OH during 27 September–
9 November 2018 in Guangzhou. In each plot, the black line is the HONO production rate with the median parameter value, and the gray
shadow represents their lower and upper limits.

Back Garden from Lu et al. (2012). The daytime maxi-
mum OH concentration was estimated to be 1.3× 107 cm−3,
which is slightly smaller than the daily peak values of
1.5–2.6× 107 cm−3 observed in the summer in Guangzhou
by Lu et al. (2012). Also, the estimated daily average
OH concentration is 6.7× 106 cm−3, close to the value of
7.5× 106 cm−3 measured in the PRD region in the autumn
of 2014 by Y. Yang et al. (2017). The daytime Pemis was cal-
culated based on method (3) (mentioned in Sect. 3.2.1). Be-
cause the HONO lifetime was of the order of 20 min under
typical daytime conditions (Stutz et al., 2000) and the trans-
port distance is only a few kilometers, the NOx emission rate
extracted from the 3 km× 3 km grid cell centered around the
sampling site was used to calculate the impact of primary
emission on HONO.

To minimize interferences, we chose the period from 09:00
to 15:00, with intense solar radiation and a short HONO
lifetime. The horizontal transport TH was assumed negligi-
ble, as cases with low wind speeds (below 3 m s−1) were
selected (Su et al., 2008b; Yang et al., 2014). The magni-
tude of the vertical transport TV can be estimated by using
a parameterization for dilution by background air accord-
ing to Dillon et al. (2002), i.e., TV = k(dilution)× ([HONO]−
[HONO]background), where k(dilution) is the dilution rate and
[HONO]background represents the background HONO con-
centration. Assuming a k(dilution) of 0.23 h−1 (Dillon et al.,
2002; Sörgel et al., 2011a) and a [HONO]background value

of 10 pptv (Zhang et al., 2009), and taking the mean noon-
time [HONO] value of 400 pptv in this study, a value of
about 0.09 ppbv h−1 can be derived, which is much smaller
than LPhot and can be ignored in the following discus-
sion. The average daytime HONO emission rate from soil
Psoil varied from 0.002 to 0.007 with a mean value of
0.004± 0.002 ppbv h−1, which is three orders of magni-
tude smaller than LPhot and can also be ignored in the
following discussion. As a result, PUnknown can be ex-
pressed by Eq. (14), in which ∂[HONO]/∂t is substituted by
1[HONO]/1t .

1 [HONO]
1t

= (POH+NO+Pemis+PUnknown)

− (LOH+HONO+LPhot) (14)

Figure 6 shows the budget of HONO from 09:00 to 15:00.
As expected, photolysis HONO loss was the main loss
pathway in the day (LPhot was 1.58± 0.82 ppbv h−1), fol-
lowed by a small contribution from the homogeneous re-
action of HONO+OH (LOH+HONO, 0.07± 0.03 ppbv h−1).
Among the sources, POH+NO and PUnknown were compa-
rable in magnitude, with an average of 0.79± 0.61 and
0.65± 0.46 ppbv h−1, respectively. PUnknown showed a pho-
toenhanced feature, reaching its maximum at 12:00 at
0.97 ppbv h−1, similar to observations in Xinken (Su et
al., 2008b), Beijing (Yang et al., 2014), Wangdu (Liu et
al., 2019a), Changzhou (Zheng et al., 2020), and Cyprus
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Figure 6. Items in the HONO budget (Eq. 14) for Guangzhou dur-
ing the observation period.

(Meusel et al., 2016). The average of PUnknown is compa-
rable to that observed in Back Garden (0.77 ppbv h−1) by
Li et al. (2012), but smaller than those found in Xinken
(≈ 2.0 ppbv h−1) by Su et al. (2008b) and the Guangzhou
City area (1.25 ppbv h−1) by W. Yang et al. (2017). The ho-
mogeneous reaction of NO+OH reached its maximum in
the early morning and contributed the largest fraction during
the whole day. Apparently, high NO concentrations at our
site made POH+NO the biggest daytime source of HONO, ex-
ceeding PUnknown, similar to observations at other high-NOx
sites such as the Uintah Basin (Tsai et al., 2018), Houston
(Wong et al., 2013), Denver (VandenBoer et al., 2013), Santi-
ago de Chile (Elshorbany et al., 2009), London (Heard et al.,
2004), Paris (Michoud et al., 2014), Beijing (Liu et al., 2021;
Slater et al., 2020; Zhang et al., 2019; Liu et al., 2020b),
Hebei (Xue et al., 2020), and Taiwan (Lin et al., 2006). Next,
we investigate possible factors relating to PUnknown.

3.3.2 Possible mechanisms for daytime HONO
production

Figure 7 shows that the correlations of PUnknown with NO2
and J (NO2) were 0.0681 and 0.2713, respectively, while
the correlation between PUnknown and NO2× J (NO2) was
greater: 0.4116, indicating that PUnknown may be related to
the photoenhanced reaction of NO2 (Jiang et al., 2020; D. Li
et al., 2018; Liu et al., 2019a, b; Su et al., 2008b; Zheng et al.,
2020; Huang et al., 2017). No correlation was found between
PUnknown and PM2.5 (R2

= 0.0001), indicating that particu-
late matter may not be a key factor in daytime HONO pro-
duction (Wong et al., 2012; D. Li et al., 2018; Sörgel et al.,
2011a; J. Wang et al., 2017; Zheng et al., 2020). Meanwhile,
the correlations of PUnknown with nitrate in PM1 and the sum
of gaseous nitric acid and nitrate in PM1 were very low, with
R2 values of 0.0348 and 0.0062, respectively. The correla-
tion between PUnknown and the product of nitrate and J (NO2)
was also poor (R2

= 0.0073), indicating that PUnknown was

not related to the photolysis of nitrate or gaseous nitric acid.
Wang et al. (2016) and Ge et al. (2019) suggested that NH3
can efficiently promote the reaction of NO2 and SO2 to form
HONO and sulfate. However, we did not find good correla-
tions of PUnknown vs. NH3, PUnknown vs. SO2, or PUnknown vs.
NH3×SO2.

In summary, at our site with a relatively strong traffic
impact and high NO, NO+OH appears to be the largest
daytime HONO source, followed by an unknown photolytic
source that does not seem to be related to aerosols, nor the
photolysis of nitrate/nitric acid, nor the reaction between
NO2, SO2, and NH3.

4 Conclusions

Nitrous acid (HONO) was measured with a custom-built
LOPAP instrument, along with meteorological parameters
and other atmospheric constituents, at an urban site in
Guangzhou in the Pearl River Delta from 27 September to
9 November 2018. The HONO concentrations varied from
0.02 to 4.43 ppbv with an average of 0.74± 0.70 ppbv. Com-
pared to prior measurements in Guangzhou, a decreasing
trend in HONO can be seen along with improved air qual-
ity in the city over the past decade.

We have investigated the budget of HONO at this site us-
ing these data, and our key findings are summarized as fol-
lows.

We found that the emission ratios (HONO/NOx) de-
rived from an analysis of 11 fresh plumes varied from
0.1 % to 1.5 % with an average value of 0.9 %± 0.4 %. Us-
ing this estimated emission ratio and an estimate of the
NOx emission rate extracted from a grid cell around our
site in a high-resolution (3 km× 3 km) NOx emission in-
ventory, we estimated a primary HONO emission rate of
0.30± 0.15 ppbv h−1, which turned out to be far larger (by
almost an order of magnitude) than what would be estimated
with a city-level NOx emission estimate that does not ade-
quately represent the NOx emission rate specifically for the
observation site. Thus, in future analyses of HONO data, to
properly estimate the direct emissions of HONO, we suggest
that high-quality emission data should be used to reduce un-
certainty. This is especially crucial for a site like ours that
receives nearby traffic emissions.

HONO was produced at night at a rate of
0.14± 0.30 ppbv h−1 by the homogeneous reaction of
NO+OH, which represents a secondary HONO source.
Another major secondary HONO source at night is the
heterogeneous conversion of NO2 on the ground sur-
face (0.27± 0.13 ppbv h−1). Correlation analysis shows
that the heterogeneous reaction of NO2, which is re-
lated to NH3 and the RH, may contribute to nighttime
HONO formation. These two secondary sources and
the primary emissions from vehicle exhaust (between
0.04± 0.02 and 0.30± 0.15 ppbv h−1, with a median value
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Figure 7. Correlations between the unknown daytime HONO source PUnknown and related parameters.

of 0.16± 0.07 ppbv h−1) were found to be the three largest
sources of HONO at night. Because of the large ranges
assumed for those parameter values when calculating
them (e.g., the NO2 uptake coefficient, which spans two
orders of magnitude), the relative importance of the three
major sources depends on these assumptions. Soil emission
(0.019± 0.009 ppbv h−1) and heterogeneous NO2 conver-
sion on aerosol surfaces (0.03± 0.02 ppbv h−1) were two
other minor sources. Our calculations suggested that dilution
acted as a major sink (0.18± 0.16 ppbv h−1), while the loss
of HONO on aerosol surfaces played a much less important
role. In order to balance the nighttime HONO budget, and
assuming dry deposition to be responsible for the remaining
amount of HONO loss, a dry deposition rate of 2.5 cm s−1 is
required, equivalent to a loss rate of 0.41± 0.31 ppbv h−1.

Daytime HONO budget analysis revealed that in order
to sustain the observed HONO concentration at around
450 pptv despite the fast photolysis of HONO, an ad-
ditional unknown source production rate (PUnknown) of
0.65± 0.46 ppbv h−1 was needed in addition to the primary
emission Pemis of 0.12± 0.02 ppbv h−1 and the homoge-
neous reaction source POH+NO of 0.79± 0.61 ppbv h−1. It
is worth noting that the homogeneous HONO source from
NO+OH appeared to be a stronger source of HONO than
the unknown source (PUnknown), because of the high levels
of NO at our site. Correlation analysis between PUnknown and
proxies for different mechanisms showed that PUnknown ap-
pears to have been photoenhanced, but the mechanism re-
mains unclear. As suggested by the weak correlation between
PUnknown and PM2.5, aerosols did not appear to be as impor-
tant a heterogeneous reaction medium as the ground. No cor-

relations were found between PUnknown and nitrate or HNO3,
NH3, and SO2.

Overall, these results from our study offer a unique per-
spective on the HONO at an urban site receiving heavy traf-
fic emissions in the PRD region. Our budget calculations and
comprehensive uncertainty analysis suggest that at such lo-
cations as ours, direct HONO emissions and NO+OH can
become comparable to or even surpass other HONO sources
that typically receive greater attention and interest, such as
the NO2 heterogeneous source and the unknown daytime
photolytic source. Our findings emphasize the need to re-
duce the uncertainties of both conventional and novel HONO
sources and sinks to advance our understanding of this im-
portant source of atmospheric OH.
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