Research article
09 Aug 2017
Research article
| 09 Aug 2017
Volatile organic compounds (VOCs) in photochemically aged air from the eastern and western Mediterranean
Bettina Derstroff et al.
Related authors
A. M. Yáñez-Serrano, A. C. Nölscher, E. Bourtsoukidis, B. Derstroff, N. Zannoni, V. Gros, M. Lanza, J. Brito, S. M. Noe, E. House, C. N. Hewitt, B. Langford, E. Nemitz, T. Behrendt, J. Williams, P. Artaxo, M. O. Andreae, and J. Kesselmeier
Atmos. Chem. Phys., 16, 10965–10984, https://doi.org/10.5194/acp-16-10965-2016, https://doi.org/10.5194/acp-16-10965-2016, 2016
Short summary
Short summary
This paper provides a general overview of methyl ethyl ketone (MEK) ambient observations in different ecosystems around the world in order to provide insights into the sources, sink and role of MEK in the atmosphere.
Matthias Karl, Liisa Pirjola, Tiia Grönholm, Mona Kurppa, Srinivasan Anand, Xiaole Zhang, Andreas Held, Rolf Sander, Miikka Dal Maso, David Topping, Shuai Jiang, Leena Kangas, and Jaakko Kukkonen
Geosci. Model Dev., 15, 3969–4026, https://doi.org/10.5194/gmd-15-3969-2022, https://doi.org/10.5194/gmd-15-3969-2022, 2022
Short summary
Short summary
The community aerosol dynamics model MAFOR includes several advanced features: coupling with an up-to-date chemistry mechanism for volatile organic compounds, a revised Brownian coagulation kernel that takes into account the fractal geometry of soot particles, a multitude of nucleation parameterizations, size-resolved partitioning of semi-volatile inorganics, and a hybrid method for the formation of secondary organic aerosols within the framework of condensation and evaporation.
Mohamed Abdelkader, Georgiy Stenchikov, Andrea Pozzer, Holger Tost, and Jos Lelieveld
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-177, https://doi.org/10.5194/acp-2022-177, 2022
Preprint under review for ACP
Short summary
Short summary
We study the effect of injected volcanic ash, water vapor, and SO2 on the development of the volcanic cloud and the stratospheric aerosol optical depth (AOD). Both are sensitive to the initial injection height and to the aging of the volcanic ash shaped by heterogeneous chemistry coupled with the ozone cycle. The manuscript explains the large differences in AOD for different injection scenarios which could improve the estimate of the radiative forcing of volcanic eruptions.
Clara M. Nussbaumer, Andrea Pozzer, Ivan Tadic, Lenard Röder, Florian Obersteiner, Hartwig Harder, Jos Lelieveld, and Horst Fischer
Atmos. Chem. Phys., 22, 6151–6165, https://doi.org/10.5194/acp-22-6151-2022, https://doi.org/10.5194/acp-22-6151-2022, 2022
Short summary
Short summary
The European COVID-19 lockdowns have significantly reduced the emission of primary pollutants such as NOx, which impacts the tropospheric photochemical processes and the abundance of O3. In this study, we present how the lockdowns have affected tropospheric trace gases and ozone production based on in situ observations and modeling simulations. We additionally show that the chemical regime shifted from a transition point to a NOx limitation in the upper troposphere.
Laura Tomsche, Andreas Marsing, Tina Jurkat-Witschas, Johannes Lucke, Stefan Kaufmann, Katharina Kaiser, Johannes Schneider, Monika Scheibe, Hans Schlager, Lenard Röder, Horst Fischer, Florian Obersteiner, Andreas Zahn, Jos Lelieveld, and Christiane Voigt
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-274, https://doi.org/10.5194/acp-2022-274, 2022
Preprint under review for ACP
Short summary
Short summary
The detection of sulfur compounds in the upper troposphere (UT) and lower stratosphere (LS) is a challenge. In-flight measurements of SO2 and sulfate aerosol were performed during the BLUESKY mission in spring 2020 under exceptional atmospheric conditions. Reduced sinks in the dry UTLS and lower but still significant air traffic influenced the enhanced SO2 in the UT and aged volcanic plumes enhanced the LS sulfate aerosol both impacting the atmospheric radiation budget and global climate.
Mireia Papke Chica, Valerian Hahn, Tiziana Braeuer, Elena de la Torre Castro, Florian Ewald, Mathias Gergely, Simon Kirschler, Luca Bugliaro Goggia, Stefanie Knobloch, Martina Kraemer, Johannes Lucke, Johanna Mayer, Raphael Maerkl, Manuel Moser, Laura Tomsche, Tina Jurkat-Witschas, Martin Zoeger, Christian von Savigny, and Christiane Voigt
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-255, https://doi.org/10.5194/acp-2022-255, 2022
Preprint under review for ACP
Short summary
Short summary
The mixed-phase temperature regime in convective clouds challenges our understanding of microphysical and radiative cloud properties. We provide a rare and unique dataset of aircraft in situ measurements in a strong mid-latitude convective system. We find that mechanisms initiating ice nucleation and growth strongly depend on temperature, relative humidity, and vertical velocity and variate within the measured system, resulting in altitude dependent changes of the cloud liquid and ice fraction.
Wenyu Sun, Matias Berasategui, Andrea Pozzer, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 22, 4969–4984, https://doi.org/10.5194/acp-22-4969-2022, https://doi.org/10.5194/acp-22-4969-2022, 2022
Short summary
Short summary
The reaction between OH and SO2 is a termolecular process that in the atmosphere results in the formation of H2SO4 and thus aerosols. We present the first temperature- and pressure-dependent measurements of the rate coefficients in N2. This is also the first study to examine the effects of water vapour on the kinetics of this reaction. Our results indicate the rate coefficient is larger than that recommended by evaluation panels, with deviations of up to 30 % in some parts of the atmosphere.
Jacky Yat Sing Pang, Anna Novelli, Martin Kaminski, Ismail-Hakki Acir, Birger Bohn, Philip Thomas Michael Carlsson, Changmin Cho, Hans-Peter Dorn, Andreas Hofzumahaus, Xin Li, Anna Lutz, Sascha Nehr, David Reimer, Franz Rohrer, Ralf Tillmann, Robert Wegener, Astrid Kiendler-Scharr, Andreas Wahner, and Hendrik Fuchs
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-239, https://doi.org/10.5194/acp-2022-239, 2022
Preprint under review for ACP
Short summary
Short summary
This study investigates the radical chemical budget during the limonene oxidation at different atmospheric-relevant NO concentrations in chamber experiments under atmospheric conditions. It is found that the model-measurements discrepancies of HO2 and RO2 are very large at low NO concentrations that are typical for forested environments. Possible additional processes impacting HO2 and RO2 concentrations are discussed.
Andrea Pozzer, Simon F. Reifenberg, Vinod Kumar, Bruno Franco, Matthias Kohl, Domenico Taraborrelli, Sergey Gromov, Sebastian Ehrhart, Patrick Jöckel, Rolf Sander, Veronica Fall, Simon Rosanka, Vlassis Karydis, Dimitris Akritidis, Tamara Emmerichs, Monica Crippa, Diego Guizzardi, Johannes W. Kaiser, Lieven Clarisse, Astrid Kiendler-Scharr, Holger Tost, and Alexandra Tsimpidi
Geosci. Model Dev., 15, 2673–2710, https://doi.org/10.5194/gmd-15-2673-2022, https://doi.org/10.5194/gmd-15-2673-2022, 2022
Short summary
Short summary
A newly developed setup of the chemistry general circulation model EMAC (ECHAM5/MESSy for Atmospheric Chemistry) is evaluated here. A comprehensive organic degradation mechanism is used and coupled with a volatility base model.
The results show that the model reproduces most of the tracers and aerosols satisfactorily but shows discrepancies for oxygenated organic gases. It is also shown that this model configuration can be used for further research in atmospheric chemistry.
Patrick Dewald, Clara M. Nussbaumer, Jan Schuladen, Akima Ringsdorf, Achim Edtbauer, Horst Fischer, Jonathan Williams, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-163, https://doi.org/10.5194/acp-2022-163, 2022
Revised manuscript accepted for ACP
Short summary
Short summary
We measured the gas-phase reactivity of the NO3 radical on the summit (825 m a.s.l.) of a semi-rural mountain in south-west Germany in July 2021. The impact of VOC-induced NO3 losses (mostly monoterpenes) in competition to loss by reaction with NO and photolysis throughout the diel cycle was estimated. Beside chemistry, boundary layer dynamics and plant-physiological processes presumably have a great impact on our observations, which were compared to previous NO3 measurements on the same site.
Zaneta Teresa Hamryszczak, Andrea Pozzer, Florian Obersteiner, Birger Bohn, Benedikt Steil, Jos Lelieveld, and Horst Fischer
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-89, https://doi.org/10.5194/acp-2022-89, 2022
Preprint under review for ACP
Short summary
Short summary
Hydrogen peroxide plays a pivotal role in the chemistry of the atmosphere. Together with organic hydroperoxides, it forms a reservoir for peroxy radicals, which are known to be the key contributors to the self-cleaning processes of the atmosphere. Hydroperoxides were measured over Europe during the BLUESKY campaign in May/June 2020. The paper gives an overview of the distribution of the species in the troposphere and investigates the impact of wet scavenging and deposition on the budget of H2O2.
Charlotte M. Beall, Thomas C. J. Hill, Paul J. DeMott, Tobias Köneman, Michael Pikridas, Frank Drewnick, Hartwig Harder, Christopher Pöhlker, Jos Lelieveld, Bettina Weber, Minas Iakovides, Roman Prokeš, Jean Sciare, Meinrat O. Andreae, M. Dale Stokes, and Kimberly A. Prather
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-1101, https://doi.org/10.5194/acp-2021-1101, 2022
Preprint under review for ACP
Short summary
Short summary
Ice-nucleating particles (INPs) are rare aerosols that can trigger ice formation in clouds and affect multiple climate-relevant cloud properties such as phase, reflectivity and lifetime. Dust is the dominant INP source, yet few measurements have been reported near major dust sources. Here we report INP observations within 100s of km of the two biggest dust source regions globally: the Sahara and the Arabian Peninsula. Results show that at temperatures > −15 °C, INPs are dominated by organics.
Yanan Zhao, Dennis Booge, Christa A. Marandino, Cathleen Schlundt, Astrid Bracher, Elliot L. Atlas, Jonathan Williams, and Hermann W. Bange
Biogeosciences, 19, 701–714, https://doi.org/10.5194/bg-19-701-2022, https://doi.org/10.5194/bg-19-701-2022, 2022
Short summary
Short summary
We present here, for the first time, simultaneously measured dimethylsulfide (DMS) seawater concentrations and DMS atmospheric mole fractions from the Peruvian upwelling region during two cruises in December 2012 and October 2015. Our results indicate low oceanic DMS concentrations and atmospheric DMS molar fractions in surface waters and the atmosphere, respectively. In addition, the Peruvian upwelling region was identified as an insignificant source of DMS emissions during both periods.
Marco Wietzoreck, Marios Kyprianou, Benjamin A. Musa Bandowe, Siddika Celik, John N. Crowley, Frank Drewnick, Philipp Eger, Nils Friedrich, Minas Iakovides, Petr Kukučka, Jan Kuta, Barbora Nežiková, Petra Pokorná, Petra Přibylová, Roman Prokeš, Roland Rohloff, Ivan Tadic, Sebastian Tauer, Jake Wilson, Hartwig Harder, Jos Lelieveld, Ulrich Pöschl, Euripides G. Stephanou, and Gerhard Lammel
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-32, https://doi.org/10.5194/acp-2022-32, 2022
Revised manuscript accepted for ACP
Short summary
Short summary
A unique dataset of concentrations and sources of PAHs and their alkylated, oxygenated and nitrated derivatives, in total 74 individual species, in the marine atmosphere is presented. Exposure to these substances poses a major health risk. We found very low concentrations over the Arabian Sea, while both local and long-range transported pollution caused elevated levels over the Mediterranean Sea and the Arabian Gulf.
Ovid Oktavian Krüger, Bruna A. Holanda, Sourangsu Chowdhury, Andrea Pozzer, David Walter, Christopher Pöhlker, Maria Dolores Andrés Hernández, John Phillip Burrows, Christiane Voigt, Jos Lelieveld, Johannes Quaas, Ulrich Pöschl, and Mira L. Pöhlker
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-1100, https://doi.org/10.5194/acp-2021-1100, 2022
Revised manuscript under review for ACP
Short summary
Short summary
The abrupt reduction in human activities during the first COVID-19 lockdown created unprecedented atmospheric conditions. We took the opportunity to quantify changes in black carbon (BC) as a major anthropogenic air pollutant. Therefore, we measured BC onboard a research aircraft over Europe during the lockdown and compared the results to measurements from 2017. With model simulations we account for different weather conditions and find a lockdown-related decrease in BC of 40 %.
Clara M. Nussbaumer, John N. Crowley, Jan Schuladen, Jonathan Williams, Sascha Hafermann, Andreas Reiffs, Raoul Axinte, Hartwig Harder, Cheryl Ernest, Anna Novelli, Katrin Sala, Monica Martinez, Chinmay Mallik, Laura Tomsche, Christian Plass-Dülmer, Birger Bohn, Jos Lelieveld, and Horst Fischer
Atmos. Chem. Phys., 21, 18413–18432, https://doi.org/10.5194/acp-21-18413-2021, https://doi.org/10.5194/acp-21-18413-2021, 2021
Short summary
Short summary
HCHO is an important atmospheric trace gas influencing the photochemical processes in the Earth’s atmosphere, including the budget of HOx and the abundance of tropospheric O3. This research presents the photochemical calculations of HCHO and O3 based on three field campaigns across Europe. We show that HCHO production via the oxidation of only four volatile organic compound precursors, i.e., CH4, CH3CHO, C5H8 and CH3OH, can balance the observed loss at all sites well.
Simon Felix Reifenberg, Anna Martin, Matthias Kohl, Zaneta Hamryszczak, Ivan Tadic, Lenard Röder, Daniel J. Crowley, Horst Fischer, Katharina Kaiser, Johannes Schneider, Raphael Dörich, John N. Crowley, Laura Tomsche, Andreas Marsing, Christiane Voigt, Andreas Zahn, Christopher Pöhlker, Bruna Holanda, Ovid O. Krüger, Ulrich Pöschl, Mira Pöhlker, Patrick Jöckel, Marcel Dorf, Ulrich Schumann, Jonathan Williams, Joachim Curtius, Hardwig Harder, Hans Schlager, Jos Lelieveld, and Andrea Pozzer
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-1005, https://doi.org/10.5194/acp-2021-1005, 2021
Preprint under review for ACP
Short summary
Short summary
In this work we use a combination of observational data from an aircraft campaign and model results to investigate the effect of the European lockdown due to COVID-19 in spring 2020. Using model results, we show that the largest relative changes to the atmospheric composition caused by the reduced emissionsare located in the upper troposphere, around the aircraft cruise altitude, while largest absolute changes are present at the surface.
Dirk Dienhart, John N. Crowley, Efstratios Bourtsoukidis, Achim Edtbauer, Philipp G. Eger, Lisa Ernle, Hartwig Harder, Bettina Hottmann, Monica Martinez, Uwe Parchatka, Jean-Daniel Paris, Eva Y. Pfannerstill, Roland Rohloff, Jan Schuladen, Christof Stönner, Ivan Tadic, Sebastian Tauer, Nijing Wang, Jonathan Williams, Jos Lelieveld, and Horst Fischer
Atmos. Chem. Phys., 21, 17373–17388, https://doi.org/10.5194/acp-21-17373-2021, https://doi.org/10.5194/acp-21-17373-2021, 2021
Short summary
Short summary
We present the first ship-based in situ measurements of formaldehyde (HCHO), hydroxyl radicals (OH) and the OH reactivity around the Arabian Peninsula. Regression analysis of the HCHO production rate and the related OH chemistry revealed the regional HCHO yield αeff, which represents the different chemical regimes encountered. Highest values were found for the Arabian Gulf (also known as the Persian Gulf), which highlights this region as a hotspot of photochemical air pollution.
Zhaofeng Tan, Luisa Hantschke, Martin Kaminski, Ismail-Hakki Acir, Birger Bohn, Changmin Cho, Hans-Peter Dorn, Xin Li, Anna Novelli, Sascha Nehr, Franz Rohrer, Ralf Tillmann, Robert Wegener, Andreas Hofzumahaus, Astrid Kiendler-Scharr, Andreas Wahner, and Hendrik Fuchs
Atmos. Chem. Phys., 21, 16067–16091, https://doi.org/10.5194/acp-21-16067-2021, https://doi.org/10.5194/acp-21-16067-2021, 2021
Short summary
Short summary
The photo-oxidation of myrcene, a monoterpene species emitted by plants, was investigated at atmospheric conditions in the outdoor simulation chamber SAPHIR. The chemical structure of myrcene is partly similar to isoprene. Therefore, it can be expected that hydrogen shift reactions could play a role as observed for isoprene. In this work, their potential impact on the regeneration efficiency of hydroxyl radicals is investigated.
Clara M. Nussbaumer, Uwe Parchatka, Ivan Tadic, Birger Bohn, Daniel Marno, Monica Martinez, Roland Rohloff, Hartwig Harder, Flora Kluge, Klaus Pfeilsticker, Florian Obersteiner, Martin Zöger, Raphael Doerich, John N. Crowley, Jos Lelieveld, and Horst Fischer
Atmos. Meas. Tech., 14, 6759–6776, https://doi.org/10.5194/amt-14-6759-2021, https://doi.org/10.5194/amt-14-6759-2021, 2021
Short summary
Short summary
NO2 plays a central role in atmospheric photochemical processes and requires accurate measurements. This research presents NO2 data obtained via chemiluminescence using a photolytic converter from airborne studies around Cabo Verde and laboratory investigations. We show the limits and error-proneness of a conventional blue light converter in aircraft measurements affected by humidity and NO levels and suggest the use of an alternative quartz converter for more reliable results.
Vlassis A. Karydis, Alexandra P. Tsimpidi, Andrea Pozzer, and Jos Lelieveld
Atmos. Chem. Phys., 21, 14983–15001, https://doi.org/10.5194/acp-21-14983-2021, https://doi.org/10.5194/acp-21-14983-2021, 2021
Short summary
Short summary
Aerosol particle pH is well-buffered by alkaline compounds, notably NH3 and crustal elements. NH3 is found to supply remarkable buffering capacity on a global scale, from the polluted continents to the remote oceans. Potential future changes in agricultural NH3 must be accompanied by strong reductions of SO2 and NOx to avoid particles becoming highly acidic, with implications for human health (aerosol toxicity), ecosystems (acid deposition), clouds, and climate (aerosol hygroscopicity).
Philipp G. Eger, Luc Vereecken, Rolf Sander, Jan Schuladen, Nicolas Sobanski, Horst Fischer, Einar Karu, Jonathan Williams, Ville Vakkari, Tuukka Petäjä, Jos Lelieveld, Andrea Pozzer, and John N. Crowley
Atmos. Chem. Phys., 21, 14333–14349, https://doi.org/10.5194/acp-21-14333-2021, https://doi.org/10.5194/acp-21-14333-2021, 2021
Short summary
Short summary
We determine the impact of pyruvic acid photolysis on the formation of acetaldehyde and peroxy radicals during summer and autumn in the Finnish boreal forest using a data-constrained box model. Our results are dependent on the chosen scenario in which the overall quantum yield and the photolysis products are varied. We highlight that pyruvic acid photolysis can be an important contributor to acetaldehyde and peroxy radical formation in remote, forested regions.
Maria Prass, Meinrat O. Andreae, Alessandro C. de Araùjo, Paulo Artaxo, Florian Ditas, Wolfgang Elbert, Jan-David Förster, Marco Aurélio Franco, Isabella Hrabe de Angelis, Jürgen Kesselmeier, Thomas Klimach, Leslie Ann Kremper, Eckhard Thines, David Walter, Jens Weber, Bettina Weber, Bernhard M. Fuchs, Ulrich Pöschl, and Christopher Pöhlker
Biogeosciences, 18, 4873–4887, https://doi.org/10.5194/bg-18-4873-2021, https://doi.org/10.5194/bg-18-4873-2021, 2021
Short summary
Short summary
Bioaerosols in the atmosphere over the Amazon rain forest were analyzed by molecular biological staining and microscopy. Eukaryotic, bacterial, and archaeal aerosols were quantified in time series and altitude profiles which exhibited clear differences in number concentrations and vertical distributions. Our results provide insights into the sources and dispersion of different Amazonian bioaerosol types as a basis for a better understanding of biosphere–atmosphere interactions.
R. Anthony Cox, Markus Ammann, John N. Crowley, Paul T. Griffiths, Hartmut Herrmann, Erik H. Hoffmann, Michael E. Jenkin, V. Faye McNeill, Abdelwahid Mellouki, Christopher J. Penkett, Andreas Tilgner, and Timothy J. Wallington
Atmos. Chem. Phys., 21, 13011–13018, https://doi.org/10.5194/acp-21-13011-2021, https://doi.org/10.5194/acp-21-13011-2021, 2021
Short summary
Short summary
The term open-air factor was coined in the 1960s, establishing that rural air had powerful germicidal properties possibly resulting from immediate products of the reaction of ozone with alkenes, unsaturated compounds ubiquitously present in natural and polluted environments. We have re-evaluated those early experiments, applying the recently substantially improved knowledge, and put them into the context of the lifetime of aerosol-borne pathogens that are so important in the Covid-19 pandemic.
Luisa Hantschke, Anna Novelli, Birger Bohn, Changmin Cho, David Reimer, Franz Rohrer, Ralf Tillmann, Marvin Glowania, Andreas Hofzumahaus, Astrid Kiendler-Scharr, Andreas Wahner, and Hendrik Fuchs
Atmos. Chem. Phys., 21, 12665–12685, https://doi.org/10.5194/acp-21-12665-2021, https://doi.org/10.5194/acp-21-12665-2021, 2021
Short summary
Short summary
The reactions of Δ3-carene with ozone and the hydroxyl radical (OH) and the photolysis and OH reaction of caronaldehyde were investigated in the simulation chamber SAPHIR. Reaction rate constants of these reactions were determined. Caronaldehyde yields of the ozonolysis and OH reaction were determined. The organic nitrate yield of the reaction of Δ3-carene and caronaldehyde-derived peroxy radicals with NO was determined. The ROx budget (ROx = OH+HO2+RO2) was also investigated.
Mengze Li, Andrea Pozzer, Jos Lelieveld, and Jonathan Williams
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2021-246, https://doi.org/10.5194/essd-2021-246, 2021
Revised manuscript under review for ESSD
Short summary
Short summary
We present a global airborne measurement dataset of atmospheric ethane, propane and methane and temporal trends for the time period 2006-2016 in the UTLS. The Copernicus CAMS-GLOB ethane emission inventory coupled with atmospheric model EMAC was optimized by the observational data with 12 ethane sectoral emission sources distinguished. The global ethane emission budget is estimated to be 19.28 Tg/yr for 2006–2016.
James Weber, Scott Archer-Nicholls, Nathan Luke Abraham, Youngsub M. Shin, Thomas J. Bannan, Carl J. Percival, Asan Bacak, Paulo Artaxo, Michael Jenkin, M. Anwar H. Khan, Dudley E. Shallcross, Rebecca H. Schwantes, Jonathan Williams, and Alex T. Archibald
Geosci. Model Dev., 14, 5239–5268, https://doi.org/10.5194/gmd-14-5239-2021, https://doi.org/10.5194/gmd-14-5239-2021, 2021
Short summary
Short summary
The new mechanism CRI-Strat 2 features state-of-the-art isoprene chemistry not previously available in UKCA and improves UKCA's ability to reproduce observed concentrations of isoprene, monoterpenes, and OH in tropical regions. The enhanced ability to model isoprene, the most widely emitted non-methane volatile organic compound (VOC), will allow understanding of how isoprene and other biogenic VOCs affect atmospheric composition and, through biosphere–atmosphere feedbacks, climate change.
Jean-Daniel Paris, Aurélie Riandet, Efstratios Bourtsoukidis, Marc Delmotte, Antoine Berchet, Jonathan Williams, Lisa Ernle, Ivan Tadic, Hartwig Harder, and Jos Lelieveld
Atmos. Chem. Phys., 21, 12443–12462, https://doi.org/10.5194/acp-21-12443-2021, https://doi.org/10.5194/acp-21-12443-2021, 2021
Short summary
Short summary
We measured atmospheric methane and CO2 by ship in the Middle East. We probe the origin of methane with a combination of light alkane measurements and modeling. We find strong influence from nearby oil and gas production over the Arabian Gulf. Comparing our data to inventories indicates that inventories overestimate sources from the upstream gas industry but underestimate emissions from oil extraction and processing. The Red Sea was under a complex mixture of sources due to human activity.
Jennifer Schallock, Christoph Brühl, Christine Bingen, Michael Höpfner, Landon Rieger, and Jos Lelieveld
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-654, https://doi.org/10.5194/acp-2021-654, 2021
Revised manuscript under review for ACP
Short summary
Short summary
This paper presents model simulations of stratospheric aerosols with a focus on explosive volcanic eruptions. Using occulation and limb-based satellite instruments with vertical profiles of sulfur dioxide and aerosol extinction, we characterised the influence of volcanic aerosols for the period between 1990–2019. We established a volcanic sulfur emission inventory that includes more than 500 eruptions. Our results show that also smaller eruptions can contribute to the stratospheric aerosol layer.
Patrick Dewald, Raphael Dörich, Jan Schuladen, Jos Lelieveld, and John N. Crowley
Atmos. Meas. Tech., 14, 5501–5519, https://doi.org/10.5194/amt-14-5501-2021, https://doi.org/10.5194/amt-14-5501-2021, 2021
Short summary
Short summary
Organic nitrates generated from the reaction between isoprene and the nitrate radical (ISOP-NITs) were detected via their thermal dissociation in heated quartz inlets to nitrogen dioxide monitored by cavity ring-down spectroscopy. The temperature-dependent dissociation profiles of ISOP-NITs in the presence of ozone (O3) are broad in contrast to narrow profiles of common reference compounds. We demonstrate that this broadening is caused by O3-assisted reactions of ISOP-NITs on quartz surfaces.
Raphael Dörich, Philipp Eger, Jos Lelieveld, and John N. Crowley
Atmos. Meas. Tech., 14, 5319–5332, https://doi.org/10.5194/amt-14-5319-2021, https://doi.org/10.5194/amt-14-5319-2021, 2021
Short summary
Short summary
We demonstrate in laboratory experiments that the formation of IOx anions (formed in reactions of I− with O3) or acetate anions (formed e.g. by the reaction of I− with peracetic acid) results in unexpected sensitivity of an iodide chemical ionisation mass spectrometer (I-CIMS) to HNO3 at a mass-to-charge ratio of 62. This helps explain observations of apparent high daytime levels of N2O5. Airborne measurements using I-CIMS confirm these conclusions.
Vinod Kumar, Julia Remmers, Steffen Beirle, Joachim Fallmann, Astrid Kerkweg, Jos Lelieveld, Mariano Mertens, Andrea Pozzer, Benedikt Steil, Marc Barra, Holger Tost, and Thomas Wagner
Atmos. Meas. Tech., 14, 5241–5269, https://doi.org/10.5194/amt-14-5241-2021, https://doi.org/10.5194/amt-14-5241-2021, 2021
Short summary
Short summary
We present high-resolution regional atmospheric chemistry model simulations focused around Germany. We highlight the importance of spatial resolution of the model itself as well as the input emissions inventory and short-scale temporal variability of emissions for simulations. We propose a consistent approach for evaluating the simulated vertical distribution of NO2 using MAX-DOAS measurements while also considering its spatial sensitivity volume and change in sensitivity within this volume.
Klaus Klingmüller and Jos Lelieveld
Geosci. Model Dev., 14, 4429–4441, https://doi.org/10.5194/gmd-14-4429-2021, https://doi.org/10.5194/gmd-14-4429-2021, 2021
Short summary
Short summary
Soil moisture is of great importance for weather and climate. We present a machine learning model that produces accurate predictions of satellite-observed surface soil moisture, based on meteorological data from a climate model. It can be used as soil moisture parametrisation in climate models and to produce comprehensive global soil moisture datasets. Moreover, it may motivate similar applications of machine learning in climate science.
Rongrong Wu, Luc Vereecken, Epameinondas Tsiligiannis, Sungah Kang, Sascha R. Albrecht, Luisa Hantschke, Defeng Zhao, Anna Novelli, Hendrik Fuchs, Ralf Tillmann, Thorsten Hohaus, Philip T. M. Carlsson, Justin Shenolikar, François Bernard, John N. Crowley, Juliane L. Fry, Bellamy Brownwood, Joel A. Thornton, Steven S. Brown, Astrid Kiendler-Scharr, Andreas Wahner, Mattias Hallquist, and Thomas F. Mentel
Atmos. Chem. Phys., 21, 10799–10824, https://doi.org/10.5194/acp-21-10799-2021, https://doi.org/10.5194/acp-21-10799-2021, 2021
Short summary
Short summary
Isoprene is the biogenic volatile organic compound with the largest emissions rates. The nighttime reaction of isoprene with the NO3 radical has a large potential to contribute to SOA. We classified isoprene nitrates into generations and proposed formation pathways. Considering the potential functionalization of the isoprene nitrates we propose that mainly isoprene dimers contribute to SOA formation from the isoprene NO3 reactions with at least a 5 % mass yield.
Simon Rosanka, Rolf Sander, Andreas Wahner, and Domenico Taraborrelli
Geosci. Model Dev., 14, 4103–4115, https://doi.org/10.5194/gmd-14-4103-2021, https://doi.org/10.5194/gmd-14-4103-2021, 2021
Short summary
Short summary
The Jülich Aqueous-phase Mechanism of Organic Chemistry (JAMOC) is developed and implemented into the Module Efficiently Calculating the Chemistry of the Atmosphere (MECCA). JAMOC is an explicit in-cloud oxidation scheme for oxygenated volatile organic compounds (OVOCs), which is suitable for global model applications. Within a box-model study, we show that JAMOC yields reduced gas-phase concentrations of most OVOCs and oxidants, except for nitrogen oxides.
Simon Rosanka, Rolf Sander, Bruno Franco, Catherine Wespes, Andreas Wahner, and Domenico Taraborrelli
Atmos. Chem. Phys., 21, 9909–9930, https://doi.org/10.5194/acp-21-9909-2021, https://doi.org/10.5194/acp-21-9909-2021, 2021
Short summary
Short summary
In-cloud destruction of ozone depends on hydroperoxyl radicals in cloud droplets, where they are produced by oxygenated volatile organic compound (OVOC) oxygenation. Only rudimentary representations of these processes, if any, are currently available in global atmospheric models. By using a comprehensive atmospheric model that includes a complex in-cloud OVOC oxidation scheme, we show that atmospheric oxidants are reduced and models ignoring this process will underpredict clouds as ozone sinks.
Ivan Tadic, Clara M. Nussbaumer, Birger Bohn, Hartwig Harder, Daniel Marno, Monica Martinez, Florian Obersteiner, Uwe Parchatka, Andrea Pozzer, Roland Rohloff, Martin Zöger, Jos Lelieveld, and Horst Fischer
Atmos. Chem. Phys., 21, 8195–8211, https://doi.org/10.5194/acp-21-8195-2021, https://doi.org/10.5194/acp-21-8195-2021, 2021
Short summary
Short summary
Although mechanisms of tropospheric ozone (O3) formation are well understood, studies reporting on ozone formation derived from field measurements are challenging and remain sparse in number. We use airborne measurements to quantify nitric oxide (NO) and O3 distributions in the upper troposphere over the Atlantic Ocean and western Africa and compare our measurements to model simulations. Our results show that NO and ozone formation are greatest over the tropical areas of western Africa.
Clara M. Nussbaumer, Ivan Tadic, Dirk Dienhart, Nijing Wang, Achim Edtbauer, Lisa Ernle, Jonathan Williams, Florian Obersteiner, Isidoro Gutiérrez-Álvarez, Hartwig Harder, Jos Lelieveld, and Horst Fischer
Atmos. Chem. Phys., 21, 7933–7945, https://doi.org/10.5194/acp-21-7933-2021, https://doi.org/10.5194/acp-21-7933-2021, 2021
Short summary
Short summary
Lightning over continental and coastal areas is frequent and accompanied by deep convection, while lightning over marine areas and particularly in tropical cyclones is rare. This research presents in situ observations of the tropical storm Florence 2018 near Cabo Verde. We show the absence of lightning in the tropical storm despite the occurrence of deep convective processes by atmospheric trace gas measurements of O3, NO, CO, H2O2, DMS and CH2I.
Nils Friedrich, Philipp Eger, Justin Shenolikar, Nicolas Sobanski, Jan Schuladen, Dirk Dienhart, Bettina Hottmann, Ivan Tadic, Horst Fischer, Monica Martinez, Roland Rohloff, Sebastian Tauer, Hartwig Harder, Eva Y. Pfannerstill, Nijing Wang, Jonathan Williams, James Brooks, Frank Drewnick, Hang Su, Guo Li, Yafang Cheng, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 21, 7473–7498, https://doi.org/10.5194/acp-21-7473-2021, https://doi.org/10.5194/acp-21-7473-2021, 2021
Short summary
Short summary
This paper uses NOx and NOz measurements from the 2017 AQABA ship campaign in the Mediterranean Sea and around the Arabian Peninsula to examine the influence e.g. of emissions from shipping and oil and gas production. Night-time losses of NOx dominated in the Arabian Gulf and in the Red Sea, whereas daytime losses were more important in the Mediterranean Sea. Nitric acid and organic nitrates were the most prevalent components of NOz.
Eva Y. Pfannerstill, Nina G. Reijrink, Achim Edtbauer, Akima Ringsdorf, Nora Zannoni, Alessandro Araújo, Florian Ditas, Bruna A. Holanda, Marta O. Sá, Anywhere Tsokankunku, David Walter, Stefan Wolff, Jošt V. Lavrič, Christopher Pöhlker, Matthias Sörgel, and Jonathan Williams
Atmos. Chem. Phys., 21, 6231–6256, https://doi.org/10.5194/acp-21-6231-2021, https://doi.org/10.5194/acp-21-6231-2021, 2021
Short summary
Short summary
Tropical forests are globally significant for atmospheric chemistry. However, the mixture of reactive organic gases emitted by these ecosystems is poorly understood. By comprehensive observations at an Amazon forest site, we show that oxygenated species were previously underestimated in their contribution to the tropical-forest reactant mix. Our results show rain and temperature effects and have implications for models and the understanding of ozone and particle formation above tropical forests.
Alexander Zaytsev, Martin Breitenlechner, Anna Novelli, Hendrik Fuchs, Daniel A. Knopf, Jesse H. Kroll, and Frank N. Keutsch
Atmos. Meas. Tech., 14, 2501–2513, https://doi.org/10.5194/amt-14-2501-2021, https://doi.org/10.5194/amt-14-2501-2021, 2021
Short summary
Short summary
We have developed an online method for speciated measurements of organic peroxy radicals and stabilized Criegee intermediates using chemical derivatization combined with chemical ionization mass spectrometry. Chemical derivatization prevents secondary radical reactions and eliminates potential interferences. Comparison between our measurements and results from numeric modeling shows that the method can be used for the quantification of a wide range of atmospheric radicals and intermediates.
Abdelwahid Mellouki, Markus Ammann, R. Anthony Cox, John N. Crowley, Hartmut Herrmann, Michael E. Jenkin, V. Faye McNeill, Jürgen Troe, and Timothy J. Wallington
Atmos. Chem. Phys., 21, 4797–4808, https://doi.org/10.5194/acp-21-4797-2021, https://doi.org/10.5194/acp-21-4797-2021, 2021
Short summary
Short summary
Volatile organic compounds play an important role in atmospheric chemistry. This article, the eighth in the series, presents kinetic and photochemical data sheets evaluated by the IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation. It covers the gas-phase reactions of organic species with four, or more, carbon atoms (≥ C4) including thermal reactions of closed-shell organic species with HO and NO3 radicals and their photolysis. These data are important for atmospheric models.
Wenjie Wang, Jipeng Qi, Jun Zhou, Bin Yuan, Yuwen Peng, Sihang Wang, Suxia Yang, Jonathan Williams, Vinayak Sinha, and Min Shao
Atmos. Meas. Tech., 14, 2285–2298, https://doi.org/10.5194/amt-14-2285-2021, https://doi.org/10.5194/amt-14-2285-2021, 2021
Short summary
Short summary
We designed a new reactor for measurements of OH reactivity (i.e., OH radical loss frequency) based on the comparative reactivity method under
high-NOx conditions, such as in cities. We performed a series of laboratory tests to evaluate the new reactor. The new reactor was used in the field and performed well in measuring OH reactivity in air influenced by upwind cities.
Denis Leppla, Nora Zannoni, Leslie Kremper, Jonathan Williams, Christopher Pöhlker, Marta Sá, Maria Christina Solci, and Thorsten Hoffmann
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-150, https://doi.org/10.5194/acp-2021-150, 2021
Publication in ACP not foreseen
Changmin Cho, Andreas Hofzumahaus, Hendrik Fuchs, Hans-Peter Dorn, Marvin Glowania, Frank Holland, Franz Rohrer, Vaishali Vardhan, Astrid Kiendler-Scharr, Andreas Wahner, and Anna Novelli
Atmos. Meas. Tech., 14, 1851–1877, https://doi.org/10.5194/amt-14-1851-2021, https://doi.org/10.5194/amt-14-1851-2021, 2021
Short summary
Short summary
This study describes the implementation and characterization of the chemical modulation reactor (CMR) used in the laser-induced fluorescence instrument of the Forschungszentrum Jülich. The CMR allows for interference-free OH radical measurement in ambient air. During a field campaign in a rural environment, the observed interference was mostly below the detection limit of the instrument and fully explained by the known ozone interference.
Einar Karu, Mengze Li, Lisa Ernle, Carl A. M. Brenninkmeijer, Jos Lelieveld, and Jonathan Williams
Atmos. Meas. Tech., 14, 1817–1831, https://doi.org/10.5194/amt-14-1817-2021, https://doi.org/10.5194/amt-14-1817-2021, 2021
Short summary
Short summary
A gas measurement device was developed to measure trace gases (ppt level) in the air based on an atomic emission detector. It combines a cryogenic pre-concentrator (CryoTrap), a gas chromatograph (GC), and a new high-resolution atomic emission detector (AED). The CryoTrap–GC–AED instrumental setup, limits of detection, and elemental performance are presented and discussed. Two measurement case studies are reported: one in a Finnish boreal forest and the other based on an aircraft campaign.
Julian Rüdiger, Alexandra Gutmann, Nicole Bobrowski, Marcello Liotta, J. Maarten de Moor, Rolf Sander, Florian Dinger, Jan-Lukas Tirpitz, Martha Ibarra, Armando Saballos, María Martínez, Elvis Mendoza, Arnoldo Ferrufino, John Stix, Juan Valdés, Jonathan M. Castro, and Thorsten Hoffmann
Atmos. Chem. Phys., 21, 3371–3393, https://doi.org/10.5194/acp-21-3371-2021, https://doi.org/10.5194/acp-21-3371-2021, 2021
Short summary
Short summary
We present an innovative approach to study halogen chemistry in the plume of Masaya volcano in Nicaragua. An unique data set was collected using multiple techniques, including drones. These data enabled us to determine the fraction of activation of the respective halogens at various plume ages, where in-mixing of ambient air causes chemical reactions. An atmospheric chemistry box model was employed to further examine the field results and help our understanding of volcanic plume chemistry.
Demetrios Pagonis, Pedro Campuzano-Jost, Hongyu Guo, Douglas A. Day, Melinda K. Schueneman, Wyatt L. Brown, Benjamin A. Nault, Harald Stark, Kyla Siemens, Alex Laskin, Felix Piel, Laura Tomsche, Armin Wisthaler, Matthew M. Coggon, Georgios I. Gkatzelis, Hannah S. Halliday, Jordan E. Krechmer, Richard H. Moore, David S. Thomson, Carsten Warneke, Elizabeth B. Wiggins, and Jose L. Jimenez
Atmos. Meas. Tech., 14, 1545–1559, https://doi.org/10.5194/amt-14-1545-2021, https://doi.org/10.5194/amt-14-1545-2021, 2021
Short summary
Short summary
We describe the airborne deployment of an extractive electrospray time-of-flight mass spectrometer (EESI-MS). The instrument provides a quantitative 1 Hz measurement of the chemical composition of organic aerosol up to altitudes of
7 km, with single-compound detection limits as low as 50 ng per standard cubic meter.
Domenico Taraborrelli, David Cabrera-Perez, Sara Bacer, Sergey Gromov, Jos Lelieveld, Rolf Sander, and Andrea Pozzer
Atmos. Chem. Phys., 21, 2615–2636, https://doi.org/10.5194/acp-21-2615-2021, https://doi.org/10.5194/acp-21-2615-2021, 2021
Short summary
Short summary
Atmospheric pollutants from anthropogenic activities and biomass burning are usually regarded as ozone precursors. Monocyclic aromatics are no exception. Calculations with a comprehensive atmospheric model are consistent with this view but only for air masses close to pollution source regions. However, the same model predicts that aromatics, when transported to remote areas, may effectively destroy ozone. This loss of tropospheric ozone rivals the one attributed to bromine.
Sara Bacer, Sylvia C. Sullivan, Odran Sourdeval, Holger Tost, Jos Lelieveld, and Andrea Pozzer
Atmos. Chem. Phys., 21, 1485–1505, https://doi.org/10.5194/acp-21-1485-2021, https://doi.org/10.5194/acp-21-1485-2021, 2021
Short summary
Short summary
We investigate the relative importance of the rates of both microphysical processes and unphysical correction terms that act as sources or sinks of ice crystals in cold clouds. By means of numerical simulations performed with a global chemistry–climate model, we assess the relevance of these rates at global and regional scales. This estimation is of fundamental importance to assign priority to the development of microphysics parameterizations and compare model output with observations.
Bianca Lauster, Steffen Dörner, Steffen Beirle, Sebastian Donner, Sergey Gromov, Katharina Uhlmannsiek, and Thomas Wagner
Atmos. Meas. Tech., 14, 769–783, https://doi.org/10.5194/amt-14-769-2021, https://doi.org/10.5194/amt-14-769-2021, 2021
Short summary
Short summary
In urban areas, road traffic is a dominant source of nitrogen oxides. In this study, two multi-axis differential optical absorption spectroscopy (MAX-DOAS) instruments on opposite sides of a motorway were used to measure the nitrogen dioxide absorption near Mainz, Germany. Total nitrogen oxide emissions are estimated for the occurring traffic flux. We show that the measured emissions systematically exceed the maximum expected emissions calculated from the European emission standards.
Klaus Klingmüller, Vlassis A. Karydis, Sara Bacer, Georgiy L. Stenchikov, and Jos Lelieveld
Atmos. Chem. Phys., 20, 15285–15295, https://doi.org/10.5194/acp-20-15285-2020, https://doi.org/10.5194/acp-20-15285-2020, 2020
Short summary
Short summary
Particulate air pollution cools the climate and partially masks the greenhouse warming by reflecting sunlight and enhancing the reflection by clouds. The intensity of this cooling depends on interactions between pollution and desert dust within the atmosphere. Our simulations with a global atmospheric chemistry-climate model indicate that these interactions significantly weaken the cooling.
Matias Berasategui, Damien Amedro, Luc Vereecken, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 20, 13541–13555, https://doi.org/10.5194/acp-20-13541-2020, https://doi.org/10.5194/acp-20-13541-2020, 2020
Short summary
Short summary
Peracetic acid is one of the most abundant organic peroxides in the atmosphere. We combine experiments and theory to show that peracetic acid reacts orders of magnitude more slowly with OH than presently accepted, which results in a significant extension of its atmospheric lifetime.
R. Anthony Cox, Markus Ammann, John N. Crowley, Hartmut Herrmann, Michael E. Jenkin, V. Faye McNeill, Abdelwahid Mellouki, Jürgen Troe, and Timothy J. Wallington
Atmos. Chem. Phys., 20, 13497–13519, https://doi.org/10.5194/acp-20-13497-2020, https://doi.org/10.5194/acp-20-13497-2020, 2020
Short summary
Short summary
Criegee intermediates, formed from alkene–ozone reactions, play a potentially important role as tropospheric oxidants. Evaluated kinetic data are provided for reactions governing their formation and removal for use in atmospheric models. These include their formation from reactions of simple and complex alkenes and removal by decomposition and reaction with a number of atmospheric species (e.g. H2O, SO2). An overview of the tropospheric chemistry of Criegee intermediates is also provided.
Nina Löbs, David Walter, Cybelli G. G. Barbosa, Sebastian Brill, Rodrigo P. Alves, Gabriela R. Cerqueira, Marta de Oliveira Sá, Alessandro C. de Araújo, Leonardo R. de Oliveira, Florian Ditas, Daniel Moran-Zuloaga, Ana Paula Pires Florentino, Stefan Wolff, Ricardo H. M. Godoi, Jürgen Kesselmeier, Sylvia Mota de Oliveira, Meinrat O. Andreae, Christopher Pöhlker, and Bettina Weber
Biogeosciences, 17, 5399–5416, https://doi.org/10.5194/bg-17-5399-2020, https://doi.org/10.5194/bg-17-5399-2020, 2020
Short summary
Short summary
Cryptogamic organisms, such as bryophytes, lichens, and algae, cover major parts of vegetation in the Amazonian rain forest, but their relevance in biosphere–atmosphere exchange, climate processes, and nutrient cycling is largely unknown.
Over the duration of 2 years we measured their water content, temperature, and light conditions to get better insights into their physiological activity patterns and thus their potential impact on local, regional, and even global biogeochemical processes.
Bettina Hottmann, Sascha Hafermann, Laura Tomsche, Daniel Marno, Monica Martinez, Hartwig Harder, Andrea Pozzer, Marco Neumaier, Andreas Zahn, Birger Bohn, Greta Stratmann, Helmut Ziereis, Jos Lelieveld, and Horst Fischer
Atmos. Chem. Phys., 20, 12655–12673, https://doi.org/10.5194/acp-20-12655-2020, https://doi.org/10.5194/acp-20-12655-2020, 2020
Short summary
Short summary
During OMO we observed enhanced mixing ratios of hydroperoxides (ROOH) in the Asian monsoon anticyclone (AMA) relative to the background. The observed mixing ratios are higher than steady-state calculations and EMAC simulations, especially in the AMA, indicating atmospheric transport of ROOH. Uncertainties in the scavenging efficiencies likely cause deviations from EMAC. Longitudinal gradients indicate a pool of ROOH towards the center of the AMA associated with upwind convection over India.
Nils Friedrich, Ivan Tadic, Jan Schuladen, James Brooks, Eoghan Darbyshire, Frank Drewnick, Horst Fischer, Jos Lelieveld, and John N. Crowley
Atmos. Meas. Tech., 13, 5739–5761, https://doi.org/10.5194/amt-13-5739-2020, https://doi.org/10.5194/amt-13-5739-2020, 2020
Short summary
Short summary
We present a new instrument for the measurement of NOx and NOy based on a combination of the thermal dissociation of NOy to NOx and cavity ring-down spectroscopic detection of NO2. It features a denuder to separate the contributions of gas-phase and particulate nitrates to NOy. We provide a detailed characterization of the instrument and briefly outline results from first deployments.
Nijing Wang, Achim Edtbauer, Christof Stönner, Andrea Pozzer, Efstratios Bourtsoukidis, Lisa Ernle, Dirk Dienhart, Bettina Hottmann, Horst Fischer, Jan Schuladen, John N. Crowley, Jean-Daniel Paris, Jos Lelieveld, and Jonathan Williams
Atmos. Chem. Phys., 20, 10807–10829, https://doi.org/10.5194/acp-20-10807-2020, https://doi.org/10.5194/acp-20-10807-2020, 2020
Short summary
Short summary
Carbonyl compounds were measured on a ship travelling around the Arabian Peninsula in summer 2017, crossing both highly polluted and extremely clean regions of the marine boundary layer. We investigated the sources and sinks of carbonyls. The results from a global model showed a significant model underestimation for acetaldehyde, a molecule that can influence regional air chemistry. By adding a diurnal oceanic source, the model estimation was highly improved.
Patrick Dewald, Jonathan M. Liebmann, Nils Friedrich, Justin Shenolikar, Jan Schuladen, Franz Rohrer, David Reimer, Ralf Tillmann, Anna Novelli, Changmin Cho, Kangming Xu, Rupert Holzinger, François Bernard, Li Zhou, Wahid Mellouki, Steven S. Brown, Hendrik Fuchs, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 20, 10459–10475, https://doi.org/10.5194/acp-20-10459-2020, https://doi.org/10.5194/acp-20-10459-2020, 2020
Short summary
Short summary
We present direct measurements of NO3 reactivity resulting from the oxidation of isoprene by NO3 during an intensive simulation chamber study. Measurements were in excellent agreement with values calculated from measured isoprene amounts and the rate coefficient for the reaction of NO3 with isoprene. Comparison of the measurement with NO3 reactivities from non-steady-state and model calculations suggests that isoprene-derived RO2 and HO2 radicals account to ~ 50 % of overall NO3 losses.
Dominik Stolzenburg, Mario Simon, Ananth Ranjithkumar, Andreas Kürten, Katrianne Lehtipalo, Hamish Gordon, Sebastian Ehrhart, Henning Finkenzeller, Lukas Pichelstorfer, Tuomo Nieminen, Xu-Cheng He, Sophia Brilke, Mao Xiao, António Amorim, Rima Baalbaki, Andrea Baccarini, Lisa Beck, Steffen Bräkling, Lucía Caudillo Murillo, Dexian Chen, Biwu Chu, Lubna Dada, António Dias, Josef Dommen, Jonathan Duplissy, Imad El Haddad, Lukas Fischer, Loic Gonzalez Carracedo, Martin Heinritzi, Changhyuk Kim, Theodore K. Koenig, Weimeng Kong, Houssni Lamkaddam, Chuan Ping Lee, Markus Leiminger, Zijun Li, Vladimir Makhmutov, Hanna E. Manninen, Guillaume Marie, Ruby Marten, Tatjana Müller, Wei Nie, Eva Partoll, Tuukka Petäjä, Joschka Pfeifer, Maxim Philippov, Matti P. Rissanen, Birte Rörup, Siegfried Schobesberger, Simone Schuchmann, Jiali Shen, Mikko Sipilä, Gerhard Steiner, Yuri Stozhkov, Christian Tauber, Yee Jun Tham, António Tomé, Miguel Vazquez-Pufleau, Andrea C. Wagner, Mingyi Wang, Yonghong Wang, Stefan K. Weber, Daniela Wimmer, Peter J. Wlasits, Yusheng Wu, Qing Ye, Marcel Zauner-Wieczorek, Urs Baltensperger, Kenneth S. Carslaw, Joachim Curtius, Neil M. Donahue, Richard C. Flagan, Armin Hansel, Markku Kulmala, Jos Lelieveld, Rainer Volkamer, Jasper Kirkby, and Paul M. Winkler
Atmos. Chem. Phys., 20, 7359–7372, https://doi.org/10.5194/acp-20-7359-2020, https://doi.org/10.5194/acp-20-7359-2020, 2020
Short summary
Short summary
Sulfuric acid is a major atmospheric vapour for aerosol formation. If new particles grow fast enough, they can act as cloud droplet seeds or affect air quality. In a controlled laboratory set-up, we demonstrate that van der Waals forces enhance growth from sulfuric acid. We disentangle the effects of ammonia, ions and particle hydration, presenting a complete picture of sulfuric acid growth from molecular clusters onwards. In a climate model, we show its influence on the global aerosol budget.
Ivan Tadic, John N. Crowley, Dirk Dienhart, Philipp Eger, Hartwig Harder, Bettina Hottmann, Monica Martinez, Uwe Parchatka, Jean-Daniel Paris, Andrea Pozzer, Roland Rohloff, Jan Schuladen, Justin Shenolikar, Sebastian Tauer, Jos Lelieveld, and Horst Fischer
Atmos. Chem. Phys., 20, 6769–6787, https://doi.org/10.5194/acp-20-6769-2020, https://doi.org/10.5194/acp-20-6769-2020, 2020
Short summary
Short summary
We present shipborne observations of NO, NO2, O3, HCHO, OH, HO2, H2O and the actinic flux obtained in the marine boundary layer (MBL) around the Arabian Peninsula during the summer 2017 AQABA ship campaign. NOx (NO+NO2) and O3 observations clearly showed anthropogenic influence in the MBL around the Arabian Peninsula. The observations were also used to calculate net O3 production in the MBL around the Arabian Peninsula, which was greatest over the northern Red Sea, Oman Gulf and Arabian Gulf.
Daniel Marno, Cheryl Ernest, Korbinian Hens, Umar Javed, Thomas Klimach, Monica Martinez, Markus Rudolf, Jos Lelieveld, and Hartwig Harder
Atmos. Meas. Tech., 13, 2711–2731, https://doi.org/10.5194/amt-13-2711-2020, https://doi.org/10.5194/amt-13-2711-2020, 2020
Short summary
Short summary
In this study, a calibration device for OH and HO2 instruments is characterized at pressures of 275 to 1000 mbar, allowing instrument pressure sensitivity to be quantified to an accuracy of 22 % (1σ). Computational fluid dynamic simulations supporting the understanding of interactions between generated HOx and the instrument inlet led to enhanced determination of factors affecting instrument sensitivity.
Achim Edtbauer, Christof Stönner, Eva Y. Pfannerstill, Matias Berasategui, David Walter, John N. Crowley, Jos Lelieveld, and Jonathan Williams
Atmos. Chem. Phys., 20, 6081–6094, https://doi.org/10.5194/acp-20-6081-2020, https://doi.org/10.5194/acp-20-6081-2020, 2020
Short summary
Short summary
Marine regions where deep nutrient-rich water is pushed towards the surface are called upwelling regions. In these nutrient-rich waters large algal blooms form which are the basis of the marine food web. We measured methane sulfonamide, a molecule containing sulfur and nitrogen, for the first time in ambient air and could show that the origin of this emission is an algal bloom near the Somalia upwelling. Sulfur-containing compounds from algae can promote particle formation over the oceans.
Peter H. Zimmermann, Carl A. M. Brenninkmeijer, Andrea Pozzer, Patrick Jöckel, Franziska Winterstein, Andreas Zahn, Sander Houweling, and Jos Lelieveld
Atmos. Chem. Phys., 20, 5787–5809, https://doi.org/10.5194/acp-20-5787-2020, https://doi.org/10.5194/acp-20-5787-2020, 2020
Short summary
Short summary
The atmospheric abundance of the greenhouse gas methane is determined by interacting emission sources and sinks in a dynamic global environment. In this study, its global budget from 1997 to 2016 is simulated with a general circulation model using emission estimates of 11 source categories. The model results are evaluated against 17 ground station and 320 intercontinental flight observation series. Deviations are used to re-scale the emission quantities with the aim of matching observations.
Siddika Celik, Frank Drewnick, Friederike Fachinger, James Brooks, Eoghan Darbyshire, Hugh Coe, Jean-Daniel Paris, Philipp G. Eger, Jan Schuladen, Ivan Tadic, Nils Friedrich, Dirk Dienhart, Bettina Hottmann, Horst Fischer, John N. Crowley, Hartwig Harder, and Stephan Borrmann
Atmos. Chem. Phys., 20, 4713–4734, https://doi.org/10.5194/acp-20-4713-2020, https://doi.org/10.5194/acp-20-4713-2020, 2020
Short summary
Short summary
Analysis of 252 ship emission plumes in the Mediterranean Sea and around the Arabian Peninsula examined particulate- and gas-phase characteristics. By identifying the corresponding ships, source features and plume age were determined. Emission factors (amount of pollutant per kilogram of fuel burned) were calculated and investigated for dependencies on source characteristics, atmospheric conditions, and transport time, providing insight into the most relevant influences on ship emissions.
Philipp G. Eger, Jan Schuladen, Nicolas Sobanski, Horst Fischer, Einar Karu, Jonathan Williams, Matthieu Riva, Qiaozhi Zha, Mikael Ehn, Lauriane L. J. Quéléver, Simon Schallhart, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 20, 3697–3711, https://doi.org/10.5194/acp-20-3697-2020, https://doi.org/10.5194/acp-20-3697-2020, 2020
Short summary
Short summary
Pyruvic acid, CH3C(O)C(O)OH, is an organic acid of biogenic origin that plays a crucial role in plant metabolism, is present in tropospheric air in both gas-phase and aerosol-phase, and is implicated in the formation of secondary organic aerosols. From the first gas-phase measurements of pyruvic acid in the Finnish boreal forest in September 2016 we derive its source strength and discuss potential sources and sinks, with a focus on the relevance of gas-phase pyruvic acid for radical chemistry.
Anna Novelli, Luc Vereecken, Birger Bohn, Hans-Peter Dorn, Georgios I. Gkatzelis, Andreas Hofzumahaus, Frank Holland, David Reimer, Franz Rohrer, Simon Rosanka, Domenico Taraborrelli, Ralf Tillmann, Robert Wegener, Zhujun Yu, Astrid Kiendler-Scharr, Andreas Wahner, and Hendrik Fuchs
Atmos. Chem. Phys., 20, 3333–3355, https://doi.org/10.5194/acp-20-3333-2020, https://doi.org/10.5194/acp-20-3333-2020, 2020
Short summary
Short summary
Experimental evidence from a simulation chamber study shows that the regeneration efficiency of the hydroxyl radical is maintained globally at values higher than 0.5 for a wide range of nitrogen oxide concentrations as a result of isomerizations of peroxy radicals originating from the OH oxidation of isoprene. The available models were tested, and suggestions on how to improve their ability to reproduce the measured radical and oxygenated volatile organic compound concentrations are provided.
Matthew Forrest, Holger Tost, Jos Lelieveld, and Thomas Hickler
Geosci. Model Dev., 13, 1285–1309, https://doi.org/10.5194/gmd-13-1285-2020, https://doi.org/10.5194/gmd-13-1285-2020, 2020
Short summary
Short summary
We have integrated the LPJ-GUESS dynamic global vegetation model into the EMAC atmospheric chemistry-enabled GCM (general circulation model). This combined framework will enable the investigation of many land–atmosphere interactions and feedbacks with state-of-the-art simulation models. Initial results show that using the climate produced by EMAC together with LPJ-GUESS produces an acceptable representation of the global vegetation.
Damien Amedro, Matias Berasategui, Arne J. C. Bunkan, Andrea Pozzer, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 20, 3091–3105, https://doi.org/10.5194/acp-20-3091-2020, https://doi.org/10.5194/acp-20-3091-2020, 2020
Short summary
Short summary
Our laboratory experiments show that the rate coefficient for the termolecular reaction between OH and NO2 is enhanced in the presence of water vapour. Using a chemistry transport model we show that our new parameterization of the temperature, pressure, and bath-gas dependence of this reaction has a significant impact on, for example, NOx and the HNO2 / NO2 ratio when compared to present recommendations.
Matias Berasategui, Damien Amedro, Achim Edtbauer, Jonathan Williams, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 20, 2695–2707, https://doi.org/10.5194/acp-20-2695-2020, https://doi.org/10.5194/acp-20-2695-2020, 2020
Short summary
Short summary
We have determined the rate coefficient and mechanism for the reaction of the OH radical with methane sulphonamide, a trace gas which has recently been found in the atmosphere. The rate coefficient is 1.4 × 10−13 cm3 molec.−1 s−1, which indicates a tropospheric lifetime of > 2 months. The observation of CO, CO2, SO2, HNO3, HCOOH, and N2O products enabled us to derive a detailed reaction mechanism for the reaction, which proceeds predominantly by H abstraction from the CH3 group.
Ying Chen, Yafang Cheng, Nan Ma, Chao Wei, Liang Ran, Ralf Wolke, Johannes Größ, Qiaoqiao Wang, Andrea Pozzer, Hugo A. C. Denier van der Gon, Gerald Spindler, Jos Lelieveld, Ina Tegen, Hang Su, and Alfred Wiedensohler
Atmos. Chem. Phys., 20, 771–786, https://doi.org/10.5194/acp-20-771-2020, https://doi.org/10.5194/acp-20-771-2020, 2020
Short summary
Short summary
Particulate nitrate is one of the most important climate cooling agents. Our results show that interaction with sea-salt aerosol can shift nitrate to larger sized particles (redistribution effect), weakening its direct cooling effect. The modelling results indicate strong redistribution over coastal and offshore regions worldwide as well as continental Europe. Improving the consideration of the redistribution effect in global models fosters a better understanding of climate change.
Nina Löbs, Cybelli G. G. Barbosa, Sebastian Brill, David Walter, Florian Ditas, Marta de Oliveira Sá, Alessandro C. de Araújo, Leonardo R. de Oliveira, Ricardo H. M. Godoi, Stefan Wolff, Meike Piepenbring, Jürgen Kesselmeier, Paulo Artaxo, Meinrat O. Andreae, Ulrich Pöschl, Christopher Pöhlker, and Bettina Weber
Atmos. Meas. Tech., 13, 153–164, https://doi.org/10.5194/amt-13-153-2020, https://doi.org/10.5194/amt-13-153-2020, 2020
Short summary
Short summary
Bioaerosols are considered to play a relevant role in atmospheric processes, but their sources, properties, and spatiotemporal distribution in the atmosphere are not yet well characterized. Measurement data on the release of fungal spores under natural conditions are also sparse. Here, we present an experimental approach to analyze and quantify the spore release from fungi and other spore-producing organisms under natural and laboratory conditions.
Tanja J. Schuck, Ann-Katrin Blank, Elisa Rittmeier, Jonathan Williams, Carl A. M. Brenninkmeijer, Andreas Engel, and Andreas Zahn
Atmos. Meas. Tech., 13, 73–84, https://doi.org/10.5194/amt-13-73-2020, https://doi.org/10.5194/amt-13-73-2020, 2020
Short summary
Short summary
Air sample collection aboard aircraft is a tool to measure atmospheric trace gas mixing ratios at altitude. We present results on the stability of 28 halocarbons during storage of air samples collected in stainless-steel flasks inside an automated air sampling unit which is part of the CARIBIC instrument package. Selected fluorinated compounds grew during the experiments while short-lived compounds were depleted. Individual substances were additionally influenced by high mixing ratios of ozone.
Philipp G. Eger, Nils Friedrich, Jan Schuladen, Justin Shenolikar, Horst Fischer, Ivan Tadic, Hartwig Harder, Monica Martinez, Roland Rohloff, Sebastian Tauer, Frank Drewnick, Friederike Fachinger, James Brooks, Eoghan Darbyshire, Jean Sciare, Michael Pikridas, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 19, 12121–12140, https://doi.org/10.5194/acp-19-12121-2019, https://doi.org/10.5194/acp-19-12121-2019, 2019
Short summary
Short summary
Shipborne measurements of nitryl chloride (ClNO2) were made during the AQABA (Air Quality and climate change in the Arabian BAsin) ship campaign in summer 2017. The dataset includes measurements over the Mediterranean Sea and around the Arabian Peninsula with observed mixing ratios ranging from the limit of detection to 600 pptv. We examined the regional variability in the generation of ClNO2 and its importance for Cl atom generation in a marine boundary layer influenced by ships and industry.
Horst Fischer, Raoul Axinte, Heiko Bozem, John N. Crowley, Cheryl Ernest, Stefan Gilge, Sascha Hafermann, Hartwig Harder, Korbinian Hens, Ruud H. H. Janssen, Rainer Königstedt, Dagmar Kubistin, Chinmay Mallik, Monica Martinez, Anna Novelli, Uwe Parchatka, Christian Plass-Dülmer, Andrea Pozzer, Eric Regelin, Andreas Reiffs, Torsten Schmidt, Jan Schuladen, and Jos Lelieveld
Atmos. Chem. Phys., 19, 11953–11968, https://doi.org/10.5194/acp-19-11953-2019, https://doi.org/10.5194/acp-19-11953-2019, 2019
Short summary
Short summary
We use in situ observations of H2O2 to study the interplay between photochemistry, transport and deposition processes. The data were obtained during five ground-based field campaigns across Europe. A budget calculation indicates that the photochemical production rate was much larger than photochemical loss and that dry deposition is the dominant loss process. To reproduce the change in H2O2 mixing ratios after sunrise, a variable contribution of entrainment from the residual layer is required.
Matthias Kippenberger, Gerhard Schuster, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 19, 11939–11951, https://doi.org/10.5194/acp-19-11939-2019, https://doi.org/10.5194/acp-19-11939-2019, 2019
Short summary
Short summary
We investigated the uptake of several trace gases to growing ice surfaces at temperatures relevant to cirrus clouds. HCl, a strong inorganic acid that ionises at the surface, was efficiently trapped in the growing ice, whereas oxidised organic trace gases, which attach to ice by hydrogen bonding, were not. HCl can be efficiently and rapidly removed from the gas phase in supersaturated ice clouds.
Jianzhong Ma, Christoph Brühl, Qianshan He, Benedikt Steil, Vlassis A. Karydis, Klaus Klingmüller, Holger Tost, Bin Chen, Yufang Jin, Ningwei Liu, Xiangde Xu, Peng Yan, Xiuji Zhou, Kamal Abdelrahman, Andrea Pozzer, and Jos Lelieveld
Atmos. Chem. Phys., 19, 11587–11612, https://doi.org/10.5194/acp-19-11587-2019, https://doi.org/10.5194/acp-19-11587-2019, 2019
Short summary
Short summary
We find a pronounced maximum in aerosol extinction in the upper troposphere and lower stratosphere over the Tibetan Plateau during the Asian summer monsoon, caused mainly by mineral dust emitted from the northern Tibetan Plateau and slope area, lofted to and accumulating within the anticyclonic circulation. Mineral dust, water-soluble compounds, such as nitrate and sulfate, and associated liquid water dominate aerosol extinction around the tropopause within the Asian summer monsoon anticyclone.
Eva Y. Pfannerstill, Nijing Wang, Achim Edtbauer, Efstratios Bourtsoukidis, John N. Crowley, Dirk Dienhart, Philipp G. Eger, Lisa Ernle, Horst Fischer, Bettina Hottmann, Jean-Daniel Paris, Christof Stönner, Ivan Tadic, David Walter, Jos Lelieveld, and Jonathan Williams
Atmos. Chem. Phys., 19, 11501–11523, https://doi.org/10.5194/acp-19-11501-2019, https://doi.org/10.5194/acp-19-11501-2019, 2019
Short summary
Short summary
The Arabian Peninsula is a global hot spot of ozone pollution. Our measurements, made on a ship in summer 2017, indicate underlying reasons. Despite being at sea, we observed ozone-forming reactive trace gases (measured as so-called total OH reactivity) comparable to highly populated urban regions in amount and composition. This is due to strong emissions from oil extraction and ship traffic. These emissions were quickly converted to ozone due to intense solar irradiation and high temperatures.
Damien Amedro, Arne J. C. Bunkan, Matias Berasategui, and John N. Crowley
Atmos. Chem. Phys., 19, 10643–10657, https://doi.org/10.5194/acp-19-10643-2019, https://doi.org/10.5194/acp-19-10643-2019, 2019
Short summary
Short summary
The reaction between the OH radical and nitrogen dioxide plays a critical role in controlling abundances of HOx and NOx from the boundary layer to the stratosphere. Uncertainties associated with the rate coefficient for this reaction lead to uncertainty in model predictions of the oxidizing capacity of the atmosphere and photochemical ozone production. We present accurate measurements of the rate coefficient over a range of temperatures and pressures.
Jonathan Liebmann, Nicolas Sobanski, Jan Schuladen, Einar Karu, Heidi Hellén, Hannele Hakola, Qiaozhi Zha, Mikael Ehn, Matthieu Riva, Liine Heikkinen, Jonathan Williams, Horst Fischer, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 19, 10391–10403, https://doi.org/10.5194/acp-19-10391-2019, https://doi.org/10.5194/acp-19-10391-2019, 2019
Short summary
Short summary
The formation of alkyl nitrates in the boreal forest was dominated by reactions of the NO3 radical with terpenes, both during the day and the night, with fewer contributions from OH and ozone. The alkyl nitrates formed had lifetimes on the order of 2 h, reflecting efficient loss via uptake to aerosol and deposition.
Erin Evoy, Adrian M. Maclean, Grazia Rovelli, Ying Li, Alexandra P. Tsimpidi, Vlassis A. Karydis, Saeid Kamal, Jos Lelieveld, Manabu Shiraiwa, Jonathan P. Reid, and Allan K. Bertram
Atmos. Chem. Phys., 19, 10073–10085, https://doi.org/10.5194/acp-19-10073-2019, https://doi.org/10.5194/acp-19-10073-2019, 2019
Short summary
Short summary
We measured the diffusion rates of organic molecules in a number of proxies for secondary organic aerosol (SOA) and compared measured diffusion with predictions from two relations: the Stokes–Einstein relation and a fractional Stokes–Einstein relation. The fractional relation does a better job of predicting diffusion rates in this case. Output from an atmospheric model shows that mixing times predicted using the two relations differ by up to 1 order of magnitude at an altitude of ~ 3 km.
Klaus Klingmüller, Jos Lelieveld, Vlassis A. Karydis, and Georgiy L. Stenchikov
Atmos. Chem. Phys., 19, 7397–7408, https://doi.org/10.5194/acp-19-7397-2019, https://doi.org/10.5194/acp-19-7397-2019, 2019
Short summary
Short summary
Within the atmosphere, desert dust and anthropogenic pollution are mixed and interact, which affects the abundance and optical properties of the particulate matter. This results in an anthropogenic climate forcing associated with mineral dust notwithstanding the natural origin of most aeolian dust. With a global chemistry–climate model, we estimate this forcing to represent a considerable fraction of the total dust forcing.
Efstratios Bourtsoukidis, Lisa Ernle, John N. Crowley, Jos Lelieveld, Jean-Daniel Paris, Andrea Pozzer, David Walter, and Jonathan Williams
Atmos. Chem. Phys., 19, 7209–7232, https://doi.org/10.5194/acp-19-7209-2019, https://doi.org/10.5194/acp-19-7209-2019, 2019
Short summary
Short summary
We report on results that demonstrate the utility of non-methane hydrocarbons as source/sink identification tracers while providing their mixing ratios around the Arabian Peninsula. By introducing novel data-analysis approaches, we establish a new method for separating associated and non-associated (with liquids) gases. We formulate a relationship between hydrocarbon oxidative pairs that can be used to evaluate the relative abundance of the hydroxyl and chlorine radicals in the troposphere.
Ralph Dlugi, Martina Berger, Chinmay Mallik, Anywhere Tsokankunku, Michael Zelger, Otávio C. Acevedo, Efstratios Bourtsoukidis, Andreas Hofzumahaus, Jürgen Kesselmeier, Gerhard Kramm, Daniel Marno, Monica Martinez, Anke C. Nölscher, Huug Ouwersloot, Eva Y. Pfannerstill, Franz Rohrer, Sebastian Tauer, Jonathan Williams, Ana-Maria Yáñez-Serrano, Meinrat O. Andreae, Hartwig Harder, and Matthias Sörgel
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-1325, https://doi.org/10.5194/acp-2018-1325, 2019
Publication in ACP not foreseen
Short summary
Short summary
Incomplete mixing (segregation) results in reduced chemical reaction rates compared to those expected from mean values and rate constants. Segregation has been suggested to cause discrepancies between modelled and measured OH radical concentrations. In this work, we summarize the intensities of segregation for the reaction of OH and isoprene for different field and modelling studies and compare those to our results from measurements in a pristine environment.
Meryem Tanarhte, Sara Bacer, Susannah M. Burrows, J. Alex Huffman, Kyle M. Pierce, Andrea Pozzer, Roland Sarda-Estève, Nicole J. Savage, and Jos Lelieveld
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-251, https://doi.org/10.5194/acp-2019-251, 2019
Publication in ACP not foreseen
Short summary
Short summary
Bioaerosols have been an important topic in atmospheric science in the last two decades. This paper compares different emission parametrizations used in fungal spores modeling and compare their results to two sets of new observational datasets. It emphasises their uncertainties in order to improve their modeling in the future. This comparison is addressed primarily to the scientific community (publishing in ACP) interested in this type of modeling and the related experimental work in this field.
Rolf Sander, Andreas Baumgaertner, David Cabrera-Perez, Franziska Frank, Sergey Gromov, Jens-Uwe Grooß, Hartwig Harder, Vincent Huijnen, Patrick Jöckel, Vlassis A. Karydis, Kyle E. Niemeyer, Andrea Pozzer, Hella Riede, Martin G. Schultz, Domenico Taraborrelli, and Sebastian Tauer
Geosci. Model Dev., 12, 1365–1385, https://doi.org/10.5194/gmd-12-1365-2019, https://doi.org/10.5194/gmd-12-1365-2019, 2019
Short summary
Short summary
We present the atmospheric chemistry box model CAABA/MECCA which
now includes a number of new features: skeletal mechanism
reduction, the MOM chemical mechanism for volatile organic
compounds, an option to include reactions from the Master
Chemical Mechanism (MCM) and other chemical mechanisms, updated
isotope tagging, improved and new photolysis modules, and the new
feature of coexisting multiple chemistry mechanisms.
CAABA/MECCA is a community model published under the GPL.
Philipp G. Eger, Frank Helleis, Gerhard Schuster, Gavin J. Phillips, Jos Lelieveld, and John N. Crowley
Atmos. Meas. Tech., 12, 1935–1954, https://doi.org/10.5194/amt-12-1935-2019, https://doi.org/10.5194/amt-12-1935-2019, 2019
Short summary
Short summary
We present a chemical ionization quadrupole mass spectrometer (CI-QMS) with a novel discharge ion source. In addition to the expected detection of PAN, peracetic acid and ClNO2, the instrument is also sensitive to SO2, HCl and acetic acid through ion chemistry unique for our ion source. We present ionization schemes along with illustrative datasets from field campaigns underlining the potential of the CI-QMS as an alternative to polonium, especially for application in the marine boundary layer.
Thomas Behrendt, Elisa C. P. Catão, Rüdiger Bunk, Zhigang Yi, Elena Schweer, Steffen Kolb, Jürgen Kesselmeier, and Susan Trumbore
SOIL, 5, 121–135, https://doi.org/10.5194/soil-5-121-2019, https://doi.org/10.5194/soil-5-121-2019, 2019
Short summary
Short summary
We measured net fluxes of OCS from nine soils with different land use in a dynamic chamber system and analyzed for one soil RNA relative abundance and gene transcripts. Our data suggest that indeed carbonic anhydrase (CA) plays an important role for OCS exchange, but the role of other enzymes might have been underestimated. Our study is the first assessment of the environmental significance of different microbial groups producing and consuming OCS by various enzymes other than CA.
Umar Javed, Dagmar Kubistin, Monica Martinez, Jan Pollmann, Markus Rudolf, Uwe Parchatka, Andreas Reiffs, Jim Thieser, Gerhard Schuster, Martin Horbanski, Denis Pöhler, John N. Crowley, Horst Fischer, Jos Lelieveld, and Hartwig Harder
Atmos. Meas. Tech., 12, 1461–1481, https://doi.org/10.5194/amt-12-1461-2019, https://doi.org/10.5194/amt-12-1461-2019, 2019
Short summary
Short summary
Nitrogen dioxide (NO2) affects the concentration of key species like ozone, hydroxyl radical, and nitrate radical in the atmosphere. In situ, direct, and interference-free NO2 measurements are important for validating our understanding of NOx chemistry related to ozone formation and the radical loss process. This article describes the important features and performance of a newly developed NO2 instrument during a field intercomparison.
Guo Li, Yafang Cheng, Uwe Kuhn, Rongjuan Xu, Yudong Yang, Hannah Meusel, Zhibin Wang, Nan Ma, Yusheng Wu, Meng Li, Jonathan Williams, Thorsten Hoffmann, Markus Ammann, Ulrich Pöschl, Min Shao, and Hang Su
Atmos. Chem. Phys., 19, 2209–2232, https://doi.org/10.5194/acp-19-2209-2019, https://doi.org/10.5194/acp-19-2209-2019, 2019
Short summary
Short summary
VOCs play a key role in atmospheric chemistry. Emission and deposition on soil have been suggested as important sources and sinks of atmospheric trace gases. The exchange characteristics and heterogeneous chemistry of VOCs on soil, however, are not well understood. We used a newly designed differential coated-wall flow tube system to investigate the long-term variability of bidirectional air–soil exchange of 13 VOCs at ambient air conditions of an urban background site in Beijing.
Laura Tomsche, Andrea Pozzer, Narendra Ojha, Uwe Parchatka, Jos Lelieveld, and Horst Fischer
Atmos. Chem. Phys., 19, 1915–1939, https://doi.org/10.5194/acp-19-1915-2019, https://doi.org/10.5194/acp-19-1915-2019, 2019
Short summary
Short summary
The Asian monsoon anticyclone (AMA) is an annual phenomenon in the northern hemispheric upper troposphere (UT) and lower stratosphere. We performed in situ measurements of carbon monoxide (CO) and methane (CH4) in the monsoon outflow region and in background air in the UT (Mediterranean, Arabian Peninsula, Arabian Sea) using airborne optical absorption spectroscopy during the Oxidation Mechanism Observations mission (summer 2015). The trace gases increased within the AMA, particularly CH4.
Sascha R. Albrecht, Anna Novelli, Andreas Hofzumahaus, Sungah Kang, Yare Baker, Thomas Mentel, Andreas Wahner, and Hendrik Fuchs
Atmos. Meas. Tech., 12, 891–902, https://doi.org/10.5194/amt-12-891-2019, https://doi.org/10.5194/amt-12-891-2019, 2019
Short summary
Short summary
Within this study we demonstrate reliable measurement of hydroperoxy (HO2) radicals via chemical ionisation mass spectrometry. HO2 is detected as an ion cluster with bromide ions, which allows a selective detection. This direct and sensitive measurement provides reliable data of HO2 radical concentrations in the atmosphere as demonstrated in the first application in simulation chamber experiments.
Yingying Yan, David Cabrera-Perez, Jintai Lin, Andrea Pozzer, Lu Hu, Dylan B. Millet, William C. Porter, and Jos Lelieveld
Geosci. Model Dev., 12, 111–130, https://doi.org/10.5194/gmd-12-111-2019, https://doi.org/10.5194/gmd-12-111-2019, 2019
Short summary
Short summary
The GEOS-Chem model has been updated with the SAPRC-11 aromatics chemical mechanism to evaluate global and regional effects of aromatics on tropospheric oxidation capacity. Our results reveal relatively slight changes in ozone, hydroxyl radical, and nitrogen oxides on a global mean basis (1–4 %), although remarkable regional differences (5–20 %) exist near the source regions. Improved representation of aromatics is important to simulate the tropospheric oxidation.
Sebastian Ehrhart, Eimear M. Dunne, Hanna E. Manninen, Tuomo Nieminen, Jos Lelieveld, and Andrea Pozzer
Geosci. Model Dev., 11, 4987–5001, https://doi.org/10.5194/gmd-11-4987-2018, https://doi.org/10.5194/gmd-11-4987-2018, 2018
Sara Bacer, Sylvia C. Sullivan, Vlassis A. Karydis, Donifan Barahona, Martina Krämer, Athanasios Nenes, Holger Tost, Alexandra P. Tsimpidi, Jos Lelieveld, and Andrea Pozzer
Geosci. Model Dev., 11, 4021–4041, https://doi.org/10.5194/gmd-11-4021-2018, https://doi.org/10.5194/gmd-11-4021-2018, 2018
Short summary
Short summary
The complexity of ice nucleation mechanisms and aerosol--ice interactions makes their representation still challenging in atmospheric models. We have implemented a comprehensive ice crystal formation parameterization in the global chemistry-climate model EMAC to improve the representation of ice crystal number concentrations. The newly implemented parameterization takes into account processes which were previously neglected by the standard version of the model.
Terry J. Dillon and John N. Crowley
Atmos. Chem. Phys., 18, 14005–14015, https://doi.org/10.5194/acp-18-14005-2018, https://doi.org/10.5194/acp-18-14005-2018, 2018
Short summary
Short summary
The reactions between electronically excited NO2* and NO3* with water vapour were studied using laser excitation of NO2 (532–647 nm) or NO3 (623–662 nm). No evidence for OH production was observed in either reaction. The reaction of NO2* with water is not a significant source of OH in the atmosphere.
John N. Crowley, Nicolas Pouvesle, Gavin J. Phillips, Raoul Axinte, Horst Fischer, Tuukka Petäjä, Anke Nölscher, Jonathan Williams, Korbinian Hens, Hartwig Harder, Monica Martinez-Harder, Anna Novelli, Dagmar Kubistin, Birger Bohn, and Jos Lelieveld
Atmos. Chem. Phys., 18, 13457–13479, https://doi.org/10.5194/acp-18-13457-2018, https://doi.org/10.5194/acp-18-13457-2018, 2018
Short summary
Short summary
Simultaneous observations of PAA, PAN and H2O2 are used to provide insight into processes influencing the HOx chemistry of the boreal forest, including two biomass-burning-impacted periods. A significant contribution from photolytic HOx sources was included in a box model analysis to align model predictions with measurements. The model predicts high levels of organic peroxy radicals, also at night-time.
Zhaofeng Tan, Franz Rohrer, Keding Lu, Xuefei Ma, Birger Bohn, Sebastian Broch, Huabin Dong, Hendrik Fuchs, Georgios I. Gkatzelis, Andreas Hofzumahaus, Frank Holland, Xin Li, Ying Liu, Yuhan Liu, Anna Novelli, Min Shao, Haichao Wang, Yusheng Wu, Limin Zeng, Min Hu, Astrid Kiendler-Scharr, Andreas Wahner, and Yuanhang Zhang
Atmos. Chem. Phys., 18, 12391–12411, https://doi.org/10.5194/acp-18-12391-2018, https://doi.org/10.5194/acp-18-12391-2018, 2018
Short summary
Short summary
We present the first wintertime OH, HO2, and RO2 measurements in Beijing, China. OH concentrations are nearly 2-fold larger than those observed in foreign cities during wintertime. The high OH and large OH reactivities indicate photochemical processes can be effective even during wintertime. A box model largely underestimated HO2 and RO2 concentrations during pollution episodes correlated with high NOx, indicating a deficit current chemistry in the high NOx regime.
Jonathan M. Liebmann, Jennifer B. A. Muller, Dagmar Kubistin, Anja Claude, Robert Holla, Christian Plass-Dülmer, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 18, 12045–12059, https://doi.org/10.5194/acp-18-12045-2018, https://doi.org/10.5194/acp-18-12045-2018, 2018
Short summary
Short summary
We present direct measurements of the summertime total reactivity (inverse lifetime) of NO3 towards organic trace gases at a rural mountain site. High daytime and low night-time values were found. The reactivity was dominated by reaction with monoterpenes and sufficiently high to compete with photolysis and reaction with NO during daytime. NO3 radical measurements from one night are presented. For the first time, direct measurements of OH and NO3 reactivity are compared.
Alexandra P. Tsimpidi, Vlassis A. Karydis, Andrea Pozzer, Spyros N. Pandis, and Jos Lelieveld
Geosci. Model Dev., 11, 3369–3389, https://doi.org/10.5194/gmd-11-3369-2018, https://doi.org/10.5194/gmd-11-3369-2018, 2018
Short summary
Short summary
A new module, ORACLE 2-D, that calculates the concentrations of surrogate organic species in two-dimensional space defined by volatility and oxygen-to-carbon ratio has been developed and evaluated. ORACLE 2-D uses a simple photochemical aging scheme that efficiently simulates the net effects of fragmentation and functionalization. ORACLE 2-D can be used to compute the ability of organic particles to act as cloud condensation nuclei and serves as a tool to quantify their climatic impact.
Zacharias Marinou Nikolaou, Jyh-Yuan Chen, Yiannis Proestos, Jos Lelieveld, and Rolf Sander
Geosci. Model Dev., 11, 3391–3407, https://doi.org/10.5194/gmd-11-3391-2018, https://doi.org/10.5194/gmd-11-3391-2018, 2018
Short summary
Short summary
Chemistry is an important component of the atmosphere that describes many important physical processes. However, atmospheric chemical mechanisms include hundreds of species and reactions, posing a significant computational load. In this work, we use a powerful reduction method in order to develop a computationally faster chemical mechanism from a detailed mechanism. This enables accelerated simulations, which can be used to examine a wider range of processes in increased detail.
Anna Novelli, Martin Kaminski, Michael Rolletter, Ismail-Hakki Acir, Birger Bohn, Hans-Peter Dorn, Xin Li, Anna Lutz, Sascha Nehr, Franz Rohrer, Ralf Tillmann, Robert Wegener, Frank Holland, Andreas Hofzumahaus, Astrid Kiendler-Scharr, Andreas Wahner, and Hendrik Fuchs
Atmos. Chem. Phys., 18, 11409–11422, https://doi.org/10.5194/acp-18-11409-2018, https://doi.org/10.5194/acp-18-11409-2018, 2018
Short summary
Short summary
The impact of photooxidation of 2-methyl-3-butene-2-ol (MBO) on the concentration of radical species was studied in the atmospheric simulation chamber SAPHIR. MBO is a volatile organic compound mainly emitted by ponderosa and lodgepole pines which are very abundant in forests in the central-west USA. A very good agreement between measured and modelled radical concentrations and products from the oxidation of MBO was observed in an environment with NO of ~ 200 pptv.
Chinmay Mallik, Laura Tomsche, Efstratios Bourtsoukidis, John N. Crowley, Bettina Derstroff, Horst Fischer, Sascha Hafermann, Imke Hüser, Umar Javed, Stephan Keßel, Jos Lelieveld, Monica Martinez, Hannah Meusel, Anna Novelli, Gavin J. Phillips, Andrea Pozzer, Andreas Reiffs, Rolf Sander, Domenico Taraborrelli, Carina Sauvage, Jan Schuladen, Hang Su, Jonathan Williams, and Hartwig Harder
Atmos. Chem. Phys., 18, 10825–10847, https://doi.org/10.5194/acp-18-10825-2018, https://doi.org/10.5194/acp-18-10825-2018, 2018
Short summary
Short summary
OH and HO2 control the transformation of air pollutants and O3 formation. Their implication for air quality over the climatically sensitive Mediterranean region was studied during a field campaign in Cyprus. Production of OH, HO2, and recycled OH was lower in aged marine air masses. Box model simulations of OH and HO2 agreed with measurements except at high terpene concentrations when model RO2 due to terpenes caused large HO2 loss. Autoxidation schemes for RO2 improved the agreement.
Mira L. Pöhlker, Florian Ditas, Jorge Saturno, Thomas Klimach, Isabella Hrabě de Angelis, Alessandro C. Araùjo, Joel Brito, Samara Carbone, Yafang Cheng, Xuguang Chi, Reiner Ditz, Sachin S. Gunthe, Bruna A. Holanda, Konrad Kandler, Jürgen Kesselmeier, Tobias Könemann, Ovid O. Krüger, Jošt V. Lavrič, Scot T. Martin, Eugene Mikhailov, Daniel Moran-Zuloaga, Luciana V. Rizzo, Diana Rose, Hang Su, Ryan Thalman, David Walter, Jian Wang, Stefan Wolff, Henrique M. J. Barbosa, Paulo Artaxo, Meinrat O. Andreae, Ulrich Pöschl, and Christopher Pöhlker
Atmos. Chem. Phys., 18, 10289–10331, https://doi.org/10.5194/acp-18-10289-2018, https://doi.org/10.5194/acp-18-10289-2018, 2018
Short summary
Short summary
This paper presents the aerosol and cloud condensation nuclei (CCN) variability for characteristic atmospheric states – such as biomass burning, long-range transport, and pristine rain forest conditions – in the vulnerable and climate-relevant Amazon Basin. It summarizes the key properties of aerosol and CCN and, thus, provides a basis for an in-depth analysis of aerosol–cloud interactions in the Amazon region.
Franziska Frank, Patrick Jöckel, Sergey Gromov, and Martin Dameris
Atmos. Chem. Phys., 18, 9955–9973, https://doi.org/10.5194/acp-18-9955-2018, https://doi.org/10.5194/acp-18-9955-2018, 2018
Short summary
Short summary
It is frequently assumed that one methane molecule produces two water molecules. Applying various modeling concepts, we find that the yield of water from methane is vertically not constantly 2. In the upper stratosphere and lower mesosphere, transport of intermediate H2 molecules even led to a yield greater than 2. We conclude that for a realistic chemical source of stratospheric water vapor, one must also take other sources (H2), intermediates and the chemical removal of water into account.
Sergey Gromov, Carl A. M. Brenninkmeijer, and Patrick Jöckel
Atmos. Chem. Phys., 18, 9831–9843, https://doi.org/10.5194/acp-18-9831-2018, https://doi.org/10.5194/acp-18-9831-2018, 2018
Short summary
Short summary
Using the observational data on 13C (CO) and 13C (CH4) from the extra-tropical Southern Hemisphere (ETSH) and EMAC model we (1) provide an independent, observation-based evaluation of Cl atom concentration variations in the ETSH throughout 1994–2000, (2) show that the role of tropospheric Cl as a sink of CH4 is seriously overestimated in the literature, (3) demonstrate that the 13C/12C ratio of CO is a sensitive indicator for the isotopic composition of reacted CH4 and therefore for its sources.
Aristeidis K. Georgoulias, Athanasios Tsikerdekis, Vassilis Amiridis, Eleni Marinou, Angela Benedetti, Prodromos Zanis, Georgia Alexandri, Lucia Mona, Konstantinos A. Kourtidis, and Jos Lelieveld
Atmos. Chem. Phys., 18, 8601–8620, https://doi.org/10.5194/acp-18-8601-2018, https://doi.org/10.5194/acp-18-8601-2018, 2018
Short summary
Short summary
In this work, the MACC reanalysis dust product is evaluated over Europe, Northern Africa and the Middle East using the EARLINET-optimized CALIOP/CALIPSO pure dust satellite-based product LIVAS (2007–2012). As dust plays a determinant role in processes related to weather and climate, human healt, and the economy, it is obvious that adequately simulating the amount of dust and its optical properties is essential. Our results could be used as a reference in future climate model evaluations.
Hendrik Fuchs, Sascha Albrecht, Ismail–Hakki Acir, Birger Bohn, Martin Breitenlechner, Hans-Peter Dorn, Georgios I. Gkatzelis, Andreas Hofzumahaus, Frank Holland, Martin Kaminski, Frank N. Keutsch, Anna Novelli, David Reimer, Franz Rohrer, Ralf Tillmann, Luc Vereecken, Robert Wegener, Alexander Zaytsev, Astrid Kiendler-Scharr, and Andreas Wahner
Atmos. Chem. Phys., 18, 8001–8016, https://doi.org/10.5194/acp-18-8001-2018, https://doi.org/10.5194/acp-18-8001-2018, 2018
Short summary
Short summary
The photooxidation of methyl vinyl ketone MVK, one of the most important products of isoprene that is emitted by plants, was investigated in the atmospheric simulation chamber SAPHIR for conditions found in forested areas. The comparison of measured trace gas time series with model calculations shows a gap in the understanding of radical chemistry in the MVK oxidation scheme. The possibility of unimolecular isomerization reactions were investigated by means of quantum-chemical calculations.
Meryem Tanarhte, Sara Bacer, Susannah M. Burrows, J. Alex Huffman, Kyle M. Pierce, Andrea Pozzer, Roland Sarda-Estève, Nicole J. Savage, and Jos Lelieveld
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-361, https://doi.org/10.5194/acp-2018-361, 2018
Revised manuscript not accepted
Yingying Yan, Andrea Pozzer, Narendra Ojha, Jintai Lin, and Jos Lelieveld
Atmos. Chem. Phys., 18, 5589–5605, https://doi.org/10.5194/acp-18-5589-2018, https://doi.org/10.5194/acp-18-5589-2018, 2018
Short summary
Short summary
Surface-based measurements from the EMEP network and EMAC model simulations are used to estimate the European surface ozone changes over 1995–2014. It shows a significantly decreasing trend in the 95th percentile ozone concentrations, while increasing in the 5th percentile ozone. Sensitivity simulations and statistical analysis show that a decrease in European anthropogenic emissions had contrasting effects on surface ozone trends between the 95th and 5th percentile levels.
Klaus Klingmüller, Swen Metzger, Mohamed Abdelkader, Vlassis A. Karydis, Georgiy L. Stenchikov, Andrea Pozzer, and Jos Lelieveld
Geosci. Model Dev., 11, 989–1008, https://doi.org/10.5194/gmd-11-989-2018, https://doi.org/10.5194/gmd-11-989-2018, 2018
Short summary
Short summary
More than 1 billion tons of mineral dust particles are raised into the atmosphere every year, which has a significant impact on climate, society and ecosystems. The location, time and amount of dust emissions depend on surface and wind conditions. In the atmospheric chemistry–climate model EMAC, we have updated the relevant surface data and equations. Our validation shows that the updates substantially improve the agreement of model results and observations.
Jonathan Liebmann, Einar Karu, Nicolas Sobanski, Jan Schuladen, Mikael Ehn, Simon Schallhart, Lauriane Quéléver, Heidi Hellen, Hannele Hakola, Thorsten Hoffmann, Jonathan Williams, Horst Fischer, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 18, 3799–3815, https://doi.org/10.5194/acp-18-3799-2018, https://doi.org/10.5194/acp-18-3799-2018, 2018
Short summary
Short summary
Using a newly developed experimental setup, we have made the first direct measurements (during autumn 2016) of NO3 reactivity in the Finnish boreal forest. The NO3 reactivity was generally very high (maximum value of 0.94/s) so that daytime reaction with organics was a substantial fraction of the NO3 loss. Observations of biogenic hydrocarbons (BVOCs) suggested a dominant role for monoterpenes in determining the NO3 reactivity, which displayed a strong vertical gradient between 8.5 and 25 m.
Ana María Yáñez-Serrano, Anke Christine Nölscher, Efstratios Bourtsoukidis, Eliane Gomes Alves, Laurens Ganzeveld, Boris Bonn, Stefan Wolff, Marta Sa, Marcia Yamasoe, Jonathan Williams, Meinrat O. Andreae, and Jürgen Kesselmeier
Atmos. Chem. Phys., 18, 3403–3418, https://doi.org/10.5194/acp-18-3403-2018, https://doi.org/10.5194/acp-18-3403-2018, 2018
Short summary
Short summary
This study shows the measurements of concentration of different monoterpene species in terms of height, time of day and season. Speciation seems similar during the dry seasons but changes with season. Furthermore, reactivity with the different oxidants demonstrated that a higher abundance of a monoterpene species does not automatically imply higher reactivity and that the most abundant monoterpene may not be the most atmospheric chemically relevant compound.
Katrin Dulitz, Damien Amedro, Terry J. Dillon, Andrea Pozzer, and John N. Crowley
Atmos. Chem. Phys., 18, 2381–2394, https://doi.org/10.5194/acp-18-2381-2018, https://doi.org/10.5194/acp-18-2381-2018, 2018
Short summary
Short summary
The reaction between the OH radical and HNO3 represents an important route for the release of NOx (NO and NO2) from HNO3, the most important NOx reservoir in many parts of the atmosphere. In our laboratory study, we have generated an extensive, high-quality set of rate coefficients for this reaction at different temperatures and pressures and used these to derive a new parameterisation of the rate coefficient for atmospheric modelling.
Defeng Zhao, Sebastian H. Schmitt, Mingjin Wang, Ismail-Hakki Acir, Ralf Tillmann, Zhaofeng Tan, Anna Novelli, Hendrik Fuchs, Iida Pullinen, Robert Wegener, Franz Rohrer, Jürgen Wildt, Astrid Kiendler-Scharr, Andreas Wahner, and Thomas F. Mentel
Atmos. Chem. Phys., 18, 1611–1628, https://doi.org/10.5194/acp-18-1611-2018, https://doi.org/10.5194/acp-18-1611-2018, 2018
Short summary
Short summary
Air pollutants emitted by human activities such as NOx and SO2 can influence the abundance of secondary organic aerosol (SOA) from biogenic volatile organic compounds (VOCs). We found that NOx suppressed new particle formation and SOA mass formation. When both SO2 and NOx are present, the suppressing effect of NOx on SOA mass formation was counteracted by SO2. High NOx changed SOA chemical composition, forming more organic nitrate, because NOx changed radical chemistry during VOC oxidation.
Rüdiger Bunk, Zhigang Yi, Thomas Behrendt, Dianming Wu, Meinrat Otto Andreae, and Jürgen Kesselmeier
Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-20, https://doi.org/10.5194/bg-2018-20, 2018
Manuscript not accepted for further review
Short summary
Short summary
We examined the OCS exchange of four soils with the atmosphere. The laboratory setup used allowed to monitor this exchange while simultaneously monitor soil moisture. The OCS exchange of those soils was measured over full range from very wet to very dry.
We found that uptake of OCS is highly dependent on soil moisture, that probably heterotroph and autotrophs drive the uptake at different soil moistures and that the role of soils as net consumer or producers of OCS may vary with soil moisture.
Hannah Meusel, Alexandra Tamm, Uwe Kuhn, Dianming Wu, Anna Lena Leifke, Sabine Fiedler, Nina Ruckteschler, Petya Yordanova, Naama Lang-Yona, Mira Pöhlker, Jos Lelieveld, Thorsten Hoffmann, Ulrich Pöschl, Hang Su, Bettina Weber, and Yafang Cheng
Atmos. Chem. Phys., 18, 799–813, https://doi.org/10.5194/acp-18-799-2018, https://doi.org/10.5194/acp-18-799-2018, 2018
Short summary
Short summary
The photolysis of nitrous acid (HONO) forms the OH radical. However, not all sources are known. Recent studies showed that HONO can be emitted from soil but they did not evaluate the importance to the HONO budget. In this work HONO emissions from 43 soil and biological soil crust samples from Cyprus were measured in a dynamic chamber and extrapolated to the real atmosphere. A large fraction of the local missing source (published earlier; Meusel et al., 2016) could be assigned to soil emissions.
Efstratios Bourtsoukidis, Frank Helleis, Laura Tomsche, Horst Fischer, Rolf Hofmann, Jos Lelieveld, and Jonathan Williams
Atmos. Meas. Tech., 10, 5089–5105, https://doi.org/10.5194/amt-10-5089-2017, https://doi.org/10.5194/amt-10-5089-2017, 2017
Terry J. Dillon, Katrin Dulitz, Christoph B. M. Groß, and John N. Crowley
Atmos. Chem. Phys., 17, 15137–15150, https://doi.org/10.5194/acp-17-15137-2017, https://doi.org/10.5194/acp-17-15137-2017, 2017
Short summary
Short summary
A great quantity and variety of organic compounds is released to the atmosphere annually. These compounds greatly impact air chemistry, quality and climate. Laser-based experiments were used to study the atmospheric breakdown of three organics: isoprene, alpha-pinene, and delta-3-carene. Results provided important missing information for low-temperature atmospheric conditions, resolved discrepancies from previous work, and allowed estimation of lifetimes of a few hours for each compound.
Amit Sharma, Narendra Ojha, Andrea Pozzer, Kathleen A. Mar, Gufran Beig, Jos Lelieveld, and Sachin S. Gunthe
Atmos. Chem. Phys., 17, 14393–14413, https://doi.org/10.5194/acp-17-14393-2017, https://doi.org/10.5194/acp-17-14393-2017, 2017
Short summary
Short summary
We evaluate the numerical simulations of surface ozone during pre-monsoon season against a network of stations including clean, rural and polluted urban environments in the south Asian region. Significant effects of the employed emission inventory and chemical mechanism on the simulated ozone are found during the noon hours of intense photochemistry. The presented evaluation on the diurnal timescale would have implications for assessing ozone buildup and impacts on human health and crop yields.
Andrea Pozzer, Alexandra P. Tsimpidi, Vlassis A. Karydis, Alexander de Meij, and Jos Lelieveld
Atmos. Chem. Phys., 17, 12813–12826, https://doi.org/10.5194/acp-17-12813-2017, https://doi.org/10.5194/acp-17-12813-2017, 2017
Short summary
Short summary
This study shows that agricultural emissions are important for air quality and their reduction can effectively reduce the concentration of fine particles and their associated premature mortality. Therefore, emission control policies, especially in North America and Europe, should also involve strong ammonia emission decreases to optimally reduce fine-particle concentration.
Hendrik Fuchs, Anna Novelli, Michael Rolletter, Andreas Hofzumahaus, Eva Y. Pfannerstill, Stephan Kessel, Achim Edtbauer, Jonathan Williams, Vincent Michoud, Sebastien Dusanter, Nadine Locoge, Nora Zannoni, Valerie Gros, Francois Truong, Roland Sarda-Esteve, Danny R. Cryer, Charlotte A. Brumby, Lisa K. Whalley, Daniel Stone, Paul W. Seakins, Dwayne E. Heard, Coralie Schoemaecker, Marion Blocquet, Sebastien Coudert, Sebastien Batut, Christa Fittschen, Alexander B. Thames, William H. Brune, Cheryl Ernest, Hartwig Harder, Jennifer B. A. Muller, Thomas Elste, Dagmar Kubistin, Stefanie Andres, Birger Bohn, Thorsten Hohaus, Frank Holland, Xin Li, Franz Rohrer, Astrid Kiendler-Scharr, Ralf Tillmann, Robert Wegener, Zhujun Yu, Qi Zou, and Andreas Wahner
Atmos. Meas. Tech., 10, 4023–4053, https://doi.org/10.5194/amt-10-4023-2017, https://doi.org/10.5194/amt-10-4023-2017, 2017
Short summary
Short summary
Hydroxyl radical reactivity (k(OH)) is closely related to processes that lead to the formation of oxidised, secondary pollutants such as ozone and aerosol. In order to compare the performances of instruments measuring k(OH), experiments were conducted in the simulation chamber SAPHIR. Chemical conditions were chosen either to be representative of the atmosphere or to test potential limitations of instruments. Overall, the results show that instruments are capable of measuring k(OH).
David Cabrera-Perez, Domenico Taraborrelli, Jos Lelieveld, Thorsten Hoffmann, and Andrea Pozzer
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-928, https://doi.org/10.5194/acp-2017-928, 2017
Revised manuscript not accepted
Short summary
Short summary
Aromatic compounds are present in rural and urban atmospheres. The aim of this work is to disentangle the impacts of these compounds in different important atmospheric chemical species with the help of a numerical model. Aromatics have low impact OH, NOx and Ozone concentrations in the global scale (below 4 %). The impact however is larger in the regional scale (up to 10 %). The largest impact is in glyoxal and NO3 concentrations, with changes up to 10 % globally and 40 % regionally.
Heiko Bozem, Andrea Pozzer, Hartwig Harder, Monica Martinez, Jonathan Williams, Jos Lelieveld, and Horst Fischer
Atmos. Chem. Phys., 17, 11835–11848, https://doi.org/10.5194/acp-17-11835-2017, https://doi.org/10.5194/acp-17-11835-2017, 2017
Short summary
Short summary
We present a case study of deep convection over Germany in July 2007 within the framework of the HOOVER II project. Airborne in situ measurements within the in- and outflow regions of an isolated thunderstorm provide a unique data set to study the influence of deep convection on the transport efficiency of soluble and insoluble trace gases. Despite their high solubility HCHO and H2O2 show enhanced concentrations in the outflow presumably due to degassing from cloud droplets during freezing.
Hannah Meusel, Yasin Elshorbany, Uwe Kuhn, Thorsten Bartels-Rausch, Kathrin Reinmuth-Selzle, Christopher J. Kampf, Guo Li, Xiaoxiang Wang, Jos Lelieveld, Ulrich Pöschl, Thorsten Hoffmann, Hang Su, Markus Ammann, and Yafang Cheng
Atmos. Chem. Phys., 17, 11819–11833, https://doi.org/10.5194/acp-17-11819-2017, https://doi.org/10.5194/acp-17-11819-2017, 2017
Short summary
Short summary
In this study we investigated protein nitration and decomposition by light in the presence of NO2 via flow tube measurements. Nitrated proteins have an enhanced allergenic potential but so far nitration was only studied in dark conditions. Under irradiated conditions we found that proteins predominantly decompose while forming nitrous acid (HONO) an important precursor of the OH radical. Unlike other studies on heterogeneous NO2 conversion we found a stable HONO formation over a long period.
Imke Hüser, Hartwig Harder, Angelika Heil, and Johannes W. Kaiser
Atmos. Chem. Phys., 17, 10955–10967, https://doi.org/10.5194/acp-17-10955-2017, https://doi.org/10.5194/acp-17-10955-2017, 2017
Short summary
Short summary
The impact of pollution sources on downwind sites can be quantified by Lagrangian dispersion models. We identified the representation of the mixing layer dynamics as a crucial factor for the vertical mixing of surface pollutants. Our application examples show that inaccuracies may introduce errors in the impact assessment on downwind sites. For vegetation fires, mixing by pyrogenic convection is under-represented. We find an overestimation of downwind smoke concentration of more than 60 %.
Heiko Bozem, Tim M. Butler, Mark G. Lawrence, Hartwig Harder, Monica Martinez, Dagmar Kubistin, Jos Lelieveld, and Horst Fischer
Atmos. Chem. Phys., 17, 10565–10582, https://doi.org/10.5194/acp-17-10565-2017, https://doi.org/10.5194/acp-17-10565-2017, 2017
Short summary
Short summary
We present airborne measurements and model simulations in the tropics and mid-latitudes during GABRIEL and HOOVER, respectively. Based only on in situ data net ozone formation/destruction tendencies (NOPR) are calculated and compared to a 3-D chemistry transport model. The NOPR is positive in the continental boundary layer and the upper troposphere above 6 km. In the marine boundary layer and the middle troposphere ozone destruction prevails. Fresh convection shows strong net ozone formation.
Stephan Keßel, David Cabrera-Perez, Abraham Horowitz, Patrick R. Veres, Rolf Sander, Domenico Taraborrelli, Maria Tucceri, John N. Crowley, Andrea Pozzer, Christof Stönner, Luc Vereecken, Jos Lelieveld, and Jonathan Williams
Atmos. Chem. Phys., 17, 8789–8804, https://doi.org/10.5194/acp-17-8789-2017, https://doi.org/10.5194/acp-17-8789-2017, 2017
Short summary
Short summary
In this study we identify an often overlooked stable oxide of carbon, namely carbon suboxide (C3O2), in ambient air. We have made C3O2 and in the laboratory determined its absorption cross section data and the rate of reaction with two important atmospheric oxidants, OH and O3. By incorporating known sources and sinks in a global model we have generated a first global picture of the distribution of this species in the atmosphere.
Sergey Gromov, Carl A. M. Brenninkmeijer, and Patrick Jöckel
Atmos. Chem. Phys., 17, 8525–8552, https://doi.org/10.5194/acp-17-8525-2017, https://doi.org/10.5194/acp-17-8525-2017, 2017
Short summary
Short summary
We revisit the proxies/uncertainties for the 13C/12C ratios of emissions of reactive C into the atmosphere. Our main findings are (i) a factor of 2 less uncertain estimate of tropospheric CO surface sources δ13C, (ii) a confirmed disagreement between the bottom-up and top-down 13CO-inclusive emission estimates, and (iii) a novel estimate of the δ13C signatures of a range of NMHCs/VOCs to be used in modelling studies. Results are based on the EMAC model emission set-up evaluated for 2000.
Anna Novelli, Korbinian Hens, Cheryl Tatum Ernest, Monica Martinez, Anke C. Nölscher, Vinayak Sinha, Pauli Paasonen, Tuukka Petäjä, Mikko Sipilä, Thomas Elste, Christian Plass-Dülmer, Gavin J. Phillips, Dagmar Kubistin, Jonathan Williams, Luc Vereecken, Jos Lelieveld, and Hartwig Harder
Atmos. Chem. Phys., 17, 7807–7826, https://doi.org/10.5194/acp-17-7807-2017, https://doi.org/10.5194/acp-17-7807-2017, 2017
Short summary
Short summary
The ambient concentration of stabilised Criegee intermediates (SCIs) was estimated for two
environments using field data. The low concentrations predicted indicate that SCIs are
unlikely to have a large impact on atmospheric chemistry. Concurrent measurements of an OH background signal using the Mainz IPI-LIF-FAGE instrument were found to be consistent with the chemistry of SCIs during the measurement campaigns.
Alexandra P. Tsimpidi, Vlassis A. Karydis, Spyros N. Pandis, and Jos Lelieveld
Atmos. Chem. Phys., 17, 7345–7364, https://doi.org/10.5194/acp-17-7345-2017, https://doi.org/10.5194/acp-17-7345-2017, 2017
Short summary
Short summary
We analyzed the sensitivity of model-predicted global-scale OA to parameters and assumptions that control primary emissions, photochemical aging, and the scavenging efficiency of LVOCs, SVOCs, and IVOCs. The simulated OA concentrations were evaluated against a global dataset of AMS measurements. According to our analysis, a combination of increased IVOCs and decreased hygroscopicity of the freshly emitted IVOCs can help reduce discrepancies between simulated SOA and observed OOA concentrations.
Yudong Yang, Min Shao, Stephan Keßel, Yue Li, Keding Lu, Sihua Lu, Jonathan Williams, Yuanhang Zhang, Liming Zeng, Anke C. Nölscher, Yusheng Wu, Xuemei Wang, and Junyu Zheng
Atmos. Chem. Phys., 17, 7127–7142, https://doi.org/10.5194/acp-17-7127-2017, https://doi.org/10.5194/acp-17-7127-2017, 2017
Short summary
Short summary
Total OH reactivity is an important parameter to evaluate understanding of atmospheric chemistry, especially the VOC contribution to air pollution. Measured by comparative reactivity methods, total OH reactivity in Beijing and Heshan revealed significant differences between measured and calculated results, such as missing reactivity, which were related to unmeasured primary or secondary species. This missing reactivity would introduce a 21–30 % underestimation for ozone production efficiency.
Narendra Ojha, Andrea Pozzer, Dimitris Akritidis, and Jos Lelieveld
Atmos. Chem. Phys., 17, 6743–6757, https://doi.org/10.5194/acp-17-6743-2017, https://doi.org/10.5194/acp-17-6743-2017, 2017
Short summary
Short summary
We investigate the processes, frequency of occurrence and seasonality, and effects of strongly enhanced ozone layers in the middle–upper troposphere (SOPs) over the Himalayas using a global model (EMAC). Rapid transport of stratospheric air masses is found as a key underlying process. Model predicts more frequent SOP events during the pre-monsoon. SOPs are found to significantly enhance the tropospheric ozone column over the Himalayas.
Vlassis A. Karydis, Alexandra P. Tsimpidi, Sara Bacer, Andrea Pozzer, Athanasios Nenes, and Jos Lelieveld
Atmos. Chem. Phys., 17, 5601–5621, https://doi.org/10.5194/acp-17-5601-2017, https://doi.org/10.5194/acp-17-5601-2017, 2017
Short summary
Short summary
The importance of mineral dust for cloud droplet formation is studied by considering the adsorption activation of insoluble dust particles and the thermodynamic interactions between mineral cations and inorganic anions. This study demonstrates that a comprehensive treatment of the CCN activity of mineral dust and its chemical and thermodynamic interactions with inorganic species by chemistry climate models is important to realistically account for aerosol–chemistry–cloud–climate interaction.
Jonathan M. Liebmann, Gerhard Schuster, Jan B. Schuladen, Nicolas Sobanski, Jos Lelieveld, and John N. Crowley
Atmos. Meas. Tech., 10, 1241–1258, https://doi.org/10.5194/amt-10-1241-2017, https://doi.org/10.5194/amt-10-1241-2017, 2017
Short summary
Short summary
We describe the first instrument for measurement of the rate constant for reactive loss (i.e. the total reactivity) of NO3 in ambient air. This is essentially a measureement of the lifetime of NO3 and will help assess the role of NO3 and N2O5 in conversion of reactive nitrogen oxides to reservoir species in the troposphere.
Nicolas Sobanski, Jim Thieser, Jan Schuladen, Carina Sauvage, Wei Song, Jonathan Williams, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 17, 4115–4130, https://doi.org/10.5194/acp-17-4115-2017, https://doi.org/10.5194/acp-17-4115-2017, 2017
Short summary
Short summary
We investigated the formation of gas-phase organic nitrates at a forested semi-urban site. This work constitutes the first detailed analysis of the sum of organic nitrate mixing ratios measured by thermal dissociation cavity ring-down spectroscopy in continental Europe. Day (OH-initiated) and night-time (NO3-initiated) production of alkyl nitrates proceed at similar rates.
Mohamed Abdelkader, Swen Metzger, Benedikt Steil, Klaus Klingmüller, Holger Tost, Andrea Pozzer, Georgiy Stenchikov, Leonard Barrie, and Jos Lelieveld
Atmos. Chem. Phys., 17, 3799–3821, https://doi.org/10.5194/acp-17-3799-2017, https://doi.org/10.5194/acp-17-3799-2017, 2017
Short summary
Short summary
We present a modeling study on the impacts of the key processes (dust emission flux, convection and dust aging parameterizations) that control the transatlantic dust transport using an advanced version of the EMAC atmospheric chemistry general circulation model. We define the
direct effect of dust agingas an increase in the AOD as a result of hygroscopic growth. We define the
indirect effectas a reduction in the dust AOD due to the higher removal of the aged dust particles.
Nga Lee Ng, Steven S. Brown, Alexander T. Archibald, Elliot Atlas, Ronald C. Cohen, John N. Crowley, Douglas A. Day, Neil M. Donahue, Juliane L. Fry, Hendrik Fuchs, Robert J. Griffin, Marcelo I. Guzman, Hartmut Herrmann, Alma Hodzic, Yoshiteru Iinuma, José L. Jimenez, Astrid Kiendler-Scharr, Ben H. Lee, Deborah J. Luecken, Jingqiu Mao, Robert McLaren, Anke Mutzel, Hans D. Osthoff, Bin Ouyang, Benedicte Picquet-Varrault, Ulrich Platt, Havala O. T. Pye, Yinon Rudich, Rebecca H. Schwantes, Manabu Shiraiwa, Jochen Stutz, Joel A. Thornton, Andreas Tilgner, Brent J. Williams, and Rahul A. Zaveri
Atmos. Chem. Phys., 17, 2103–2162, https://doi.org/10.5194/acp-17-2103-2017, https://doi.org/10.5194/acp-17-2103-2017, 2017
Short summary
Short summary
Oxidation of biogenic volatile organic compounds by NO3 is an important interaction between anthropogenic
and natural emissions. This review results from a June 2015 workshop and includes the recent literature
on kinetics, mechanisms, organic aerosol yields, and heterogeneous chemistry; advances in analytical
instrumentation; the current state NO3-BVOC chemistry in atmospheric models; and critical needs for
future research in modeling, field observations, and laboratory studies.
Imran A. Girach, Narendra Ojha, Prabha R. Nair, Andrea Pozzer, Yogesh K. Tiwari, K. Ravi Kumar, and Jos Lelieveld
Atmos. Chem. Phys., 17, 257–275, https://doi.org/10.5194/acp-17-257-2017, https://doi.org/10.5194/acp-17-257-2017, 2017
Short summary
Short summary
This study presents first ship-borne measurements of trace gases over the Bay of Bengal during summer monsoon. The observed variations in trace gases are shown to be due to dynamics/transport and en route photochemistry. Analysis of meteorological and chemical fields shows that significantly lower ozone during rainfall is associated with the downdrafts. A regional model reproduces the observed variations and revealed the rapid transport of ozone across the Bay of Bengal during an event.
Mira L. Pöhlker, Christopher Pöhlker, Florian Ditas, Thomas Klimach, Isabella Hrabe de Angelis, Alessandro Araújo, Joel Brito, Samara Carbone, Yafang Cheng, Xuguang Chi, Reiner Ditz, Sachin S. Gunthe, Jürgen Kesselmeier, Tobias Könemann, Jošt V. Lavrič, Scot T. Martin, Eugene Mikhailov, Daniel Moran-Zuloaga, Diana Rose, Jorge Saturno, Hang Su, Ryan Thalman, David Walter, Jian Wang, Stefan Wolff, Henrique M. J. Barbosa, Paulo Artaxo, Meinrat O. Andreae, and Ulrich Pöschl
Atmos. Chem. Phys., 16, 15709–15740, https://doi.org/10.5194/acp-16-15709-2016, https://doi.org/10.5194/acp-16-15709-2016, 2016
Short summary
Short summary
The paper presents a systematic characterization of cloud condensation nuclei (CCN) concentration in the central Amazonian atmosphere. Our results show that the CCN population in this globally important ecosystem follows a pollution-related seasonal cycle, in which it mainly depends on changes in total aerosol size distribution and to a minor extent in the aerosol chemical composition. Our results allow an efficient modeling and prediction of the CCN population based on a novel approach.
Hannah Meusel, Uwe Kuhn, Andreas Reiffs, Chinmay Mallik, Hartwig Harder, Monica Martinez, Jan Schuladen, Birger Bohn, Uwe Parchatka, John N. Crowley, Horst Fischer, Laura Tomsche, Anna Novelli, Thorsten Hoffmann, Ruud H. H. Janssen, Oscar Hartogensis, Michael Pikridas, Mihalis Vrekoussis, Efstratios Bourtsoukidis, Bettina Weber, Jos Lelieveld, Jonathan Williams, Ulrich Pöschl, Yafang Cheng, and Hang Su
Atmos. Chem. Phys., 16, 14475–14493, https://doi.org/10.5194/acp-16-14475-2016, https://doi.org/10.5194/acp-16-14475-2016, 2016
Short summary
Short summary
There are many studies which show discrepancies between modeled and measured nitrous acid (HONO, precursor of OH radical) in the troposphere but with no satisfactory explanation. Ideal conditions to study the unknown sources of HONO were found on Cyprus, a remote Mediterranean island. Budget analysis of trace gas measurements indicates a common source of NO and HONO, which is not related to anthropogenic activity and is most likely derived from biologic activity in soils and subsequent emission.
Dimitris Akritidis, Andrea Pozzer, Prodromos Zanis, Evangelos Tyrlis, Bojan Škerlak, Michael Sprenger, and Jos Lelieveld
Atmos. Chem. Phys., 16, 14025–14039, https://doi.org/10.5194/acp-16-14025-2016, https://doi.org/10.5194/acp-16-14025-2016, 2016
Short summary
Short summary
We investigate the contribution of tropopause folds in the summertime tropospheric ozone pool over the eastern Mediterranean and the Middle East. For this purpose we use the EMAC atmospheric chemistry–climate model and a fold identification algorithm. A clear increase of ozone is found in the middle troposphere due to fold activity. The interannual variability of near-surface ozone over the eastern Mediterranean is related to that of both tropopause folds and ozone in the free troposphere.
Aristeidis K. Georgoulias, Georgia Alexandri, Konstantinos A. Kourtidis, Jos Lelieveld, Prodromos Zanis, Ulrich Pöschl, Robert Levy, Vassilis Amiridis, Eleni Marinou, and Athanasios Tsikerdekis
Atmos. Chem. Phys., 16, 13853–13884, https://doi.org/10.5194/acp-16-13853-2016, https://doi.org/10.5194/acp-16-13853-2016, 2016
Short summary
Short summary
In this work, single pixel observations from MODIS Terra and Aqua are analyzed together with data from other satellite sensors, reanalysis projects and a chemistry–aerosol-transport model to study the spatiotemporal variability of different aerosol types. The results are in accordance with previous works and are a good reference for future studies in the area focusing on aerosols, clouds, radiation and the effects of particle pollution on human health.
Gavin J. Phillips, Jim Thieser, Mingjin Tang, Nicolas Sobanski, Gerhard Schuster, Johannes Fachinger, Frank Drewnick, Stephan Borrmann, Heinz Bingemer, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 16, 13231–13249, https://doi.org/10.5194/acp-16-13231-2016, https://doi.org/10.5194/acp-16-13231-2016, 2016
Short summary
Short summary
We use trace gas measurements (N2O5, ClNO2, NO3) and particle properties (surface area, nitrate content etc.) to derive uptake coefficients (the probability of removal from the gas-phase on a per-collision basis) for the interaction of N2O5 with ambient aerosol and also the efficiency of formation of ClNO2. The uptake coefficients show high variability but are reasonably well captured by parameterisations based on laboratory measurements.
Nicolas Sobanski, Jan Schuladen, Gerhard Schuster, Jos Lelieveld, and John N. Crowley
Atmos. Meas. Tech., 9, 5103–5118, https://doi.org/10.5194/amt-9-5103-2016, https://doi.org/10.5194/amt-9-5103-2016, 2016
Short summary
Short summary
We report the characteristics and performances of a cavity ring-down spectrometer (CRDS) designed for field measurements that uses light absorption at 662 and 405 nm to detect different reactive nitrogen species or group of species in the gas phase, either directly or after thermal decomposition. We report improvements compared to currently existing instruments, and describe the corrections applied to the raw data to account for chemical and optical interferences.
Jos Lelieveld, Sergey Gromov, Andrea Pozzer, and Domenico Taraborrelli
Atmos. Chem. Phys., 16, 12477–12493, https://doi.org/10.5194/acp-16-12477-2016, https://doi.org/10.5194/acp-16-12477-2016, 2016
Short summary
Short summary
The self-cleaning capacity of the atmosphere is controlled by hydroxyl (OH) radicals in the troposphere. There are primary and secondary OH sources, the former through the photodissociation of ozone, the latter through OH recycling. We used a global model, showing that secondary sources are larger than assumed previously, which buffers OH. Complementary OH formation mechanisms in pristine and polluted environments, connected through transport of ozone, can maintain stable global OH levels.
A. M. Yáñez-Serrano, A. C. Nölscher, E. Bourtsoukidis, B. Derstroff, N. Zannoni, V. Gros, M. Lanza, J. Brito, S. M. Noe, E. House, C. N. Hewitt, B. Langford, E. Nemitz, T. Behrendt, J. Williams, P. Artaxo, M. O. Andreae, and J. Kesselmeier
Atmos. Chem. Phys., 16, 10965–10984, https://doi.org/10.5194/acp-16-10965-2016, https://doi.org/10.5194/acp-16-10965-2016, 2016
Short summary
Short summary
This paper provides a general overview of methyl ethyl ketone (MEK) ambient observations in different ecosystems around the world in order to provide insights into the sources, sink and role of MEK in the atmosphere.
Jan Zörner, Marloes Penning de Vries, Steffen Beirle, Holger Sihler, Patrick R. Veres, Jonathan Williams, and Thomas Wagner
Atmos. Chem. Phys., 16, 9457–9487, https://doi.org/10.5194/acp-16-9457-2016, https://doi.org/10.5194/acp-16-9457-2016, 2016
Short summary
Short summary
We present a top-down approach to infer and quantify rain-induced emission pulses of nitrogen oxides from soils using satellite-borne measurements of NO2. We found strong enhancements of NO2 induced by the first intense precipitation after prolonged droughts in many semi-arid regions of the world, in particular in the Sahel. Apart from the clear first-day peak, NO2 VCDs are moderately enhanced compared to background over the following 2 weeks suggesting potential further emissions.
Alexandra P. Tsimpidi, Vlassis A. Karydis, Spyros N. Pandis, and Jos Lelieveld
Atmos. Chem. Phys., 16, 8939–8962, https://doi.org/10.5194/acp-16-8939-2016, https://doi.org/10.5194/acp-16-8939-2016, 2016
Short summary
Short summary
In this work we use a global chemistry climate model together with a comprehensive global AMS data set in order to provide valuable insights into the temporal and geographical variability of the contribution of the emitted particles and the chemically processed organic material from combustion sources to total OA. This study reveals the high importance of SOA from anthropogenic sources on global OA concentrations and identifies plausible sources of discrepancy between models and measurements.
Swen Metzger, Benedikt Steil, Mohamed Abdelkader, Klaus Klingmüller, Li Xu, Joyce E. Penner, Christos Fountoukis, Athanasios Nenes, and Jos Lelieveld
Atmos. Chem. Phys., 16, 7213–7237, https://doi.org/10.5194/acp-16-7213-2016, https://doi.org/10.5194/acp-16-7213-2016, 2016
Short summary
Short summary
We introduce an unique single parameter framework to efficiently parameterize the aerosol water uptake for mixtures of semi-volatile and non-volatile compounds, being entirely based on the single solute specific coefficient introduced in Metzger et al. (2012).
David Cabrera-Perez, Domenico Taraborrelli, Rolf Sander, and Andrea Pozzer
Atmos. Chem. Phys., 16, 6931–6947, https://doi.org/10.5194/acp-16-6931-2016, https://doi.org/10.5194/acp-16-6931-2016, 2016
Short summary
Short summary
The global atmospheric budget and distribution of monocyclic aromatic compounds is estimated, using an atmospheric chemistry general circulation model. Simulation results are evaluated with observations with the goal of understanding emission, production and removal of these compounds. Anthropogenic and biomass burning are the main sources of aromatic compounds to the atmosphere. The main sink is photochemical decomposition and in lesser importance dry deposition.
Klaus Klingmüller, Andrea Pozzer, Swen Metzger, Georgiy L. Stenchikov, and Jos Lelieveld
Atmos. Chem. Phys., 16, 5063–5073, https://doi.org/10.5194/acp-16-5063-2016, https://doi.org/10.5194/acp-16-5063-2016, 2016
Short summary
Short summary
During the last decade, the Middle East experienced the strongest increase in atmospheric aerosol concentrations worldwide. Based on satellite observations, the present study corroborates this trend and reveals correlations with soil moisture and precipitation in and surrounding the Fertile Crescent. This suggests that the increasing drought conditions in this region have enhanced dust emissions, a tendency which is expected to be intensified by climate change.
N. Sobanski, M. J. Tang, J. Thieser, G. Schuster, D. Pöhler, H. Fischer, W. Song, C. Sauvage, J. Williams, J. Fachinger, F. Berkes, P. Hoor, U. Platt, J. Lelieveld, and J. N. Crowley
Atmos. Chem. Phys., 16, 4867–4883, https://doi.org/10.5194/acp-16-4867-2016, https://doi.org/10.5194/acp-16-4867-2016, 2016
Short summary
Short summary
The nitrate radical (NO3) is an important nocturnal oxidant. By measuring NO3, its precursors (nitrogen dioxide and ozone) and several trace gases with which it reacts, we examined the chemical and meteorological factors influencing the lifetime of NO3 at a semi-rural mountain site. Unexpectedly long lifetimes, approaching 1 h, were observed on several nights and were associated with a low-lying residual layer. We discuss the role of other reactions that convert NO2 to NO3.
Jérôme Ogée, Joana Sauze, Jürgen Kesselmeier, Bernard Genty, Heidi Van Diest, Thomas Launois, and Lisa Wingate
Biogeosciences, 13, 2221–2240, https://doi.org/10.5194/bg-13-2221-2016, https://doi.org/10.5194/bg-13-2221-2016, 2016
Short summary
Short summary
Estimates of photosynthesis and respiration at large scales are needed to improve our predictions of the global CO2 cycle. Carbonyl sulfide (OCS) has been proposed as a new tracer of photosynthesis, as it was shown that the uptake of OCS from leaves is nearly proportional to photosynthesis. But soils also exchange OCS with the atmosphere. Here we propose a mechanistic model of this exchange and show, using this new model, how we are able to explain several observed features of soil OCS fluxes.
Patrick Jöckel, Holger Tost, Andrea Pozzer, Markus Kunze, Oliver Kirner, Carl A. M. Brenninkmeijer, Sabine Brinkop, Duy S. Cai, Christoph Dyroff, Johannes Eckstein, Franziska Frank, Hella Garny, Klaus-Dirk Gottschaldt, Phoebe Graf, Volker Grewe, Astrid Kerkweg, Bastian Kern, Sigrun Matthes, Mariano Mertens, Stefanie Meul, Marco Neumaier, Matthias Nützel, Sophie Oberländer-Hayn, Roland Ruhnke, Theresa Runde, Rolf Sander, Dieter Scharffe, and Andreas Zahn
Geosci. Model Dev., 9, 1153–1200, https://doi.org/10.5194/gmd-9-1153-2016, https://doi.org/10.5194/gmd-9-1153-2016, 2016
Short summary
Short summary
With an advanced numerical global chemistry climate model (CCM) we performed several detailed
combined hind-cast and projection simulations of the period 1950 to 2100 to assess the
past, present, and potential future dynamical and chemical state of the Earth atmosphere.
The manuscript documents the model and the various applied model set-ups and provides
a first evaluation of the simulation results from a global perspective as a quality check of the data.
Armin Rauthe-Schöch, Angela K. Baker, Tanja J. Schuck, Carl A. M. Brenninkmeijer, Andreas Zahn, Markus Hermann, Greta Stratmann, Helmut Ziereis, Peter F. J. van Velthoven, and Jos Lelieveld
Atmos. Chem. Phys., 16, 3609–3629, https://doi.org/10.5194/acp-16-3609-2016, https://doi.org/10.5194/acp-16-3609-2016, 2016
Short summary
Short summary
The flying laboratory CARIBIC onboard a passenger aircraft measured trace gases and aerosol particles in the upper tropospheric Indian summer monsoon anticyclone in summer 2008. We used the measurements together with meteorological analyses to investigate the chemical signature of the northern and southern part of the monsoon, the source regions from where the air was entrained into the monsoon and which parts of the world received polluted air that had been chemically processed in the monsoon.
Narendra Ojha, Andrea Pozzer, Armin Rauthe-Schöch, Angela K. Baker, Jongmin Yoon, Carl A. M. Brenninkmeijer, and Jos Lelieveld
Atmos. Chem. Phys., 16, 3013–3032, https://doi.org/10.5194/acp-16-3013-2016, https://doi.org/10.5194/acp-16-3013-2016, 2016
Short summary
Short summary
We compare simulations of ozone and carbon monoxide using a regional chemistry transport model (WRF-Chem) with aircraft observations from CARIBIC program over India during monsoon period. Sensitivity simulations are conducted to assess the influences of regional emissions and long-range transport.
Shang Sun, Alexander Moravek, Lisa von der Heyden, Andreas Held, Matthias Sörgel, and Jürgen Kesselmeier
Atmos. Meas. Tech., 9, 599–617, https://doi.org/10.5194/amt-9-599-2016, https://doi.org/10.5194/amt-9-599-2016, 2016
Short summary
Short summary
We present a dynamic twin-cuvette system for quantifying the trace gas exchange fluxes between plants and the atmosphere under controlled temperature, light, and humidity conditions. We found out that at a relative humidity of 40 %, the deposition velocity ratio of O3 and PAN was determined to be 0.45. At that humidity, the O3-deposition to the plant leaves was found to be only controlled by leaf stomata. For PAN, an additional resistance inhibited the uptake of PAN by the leaves.
J. Thieser, G. Schuster, J. Schuladen, G. J. Phillips, A. Reiffs, U. Parchatka, D. Pöhler, J. Lelieveld, and J. N. Crowley
Atmos. Meas. Tech., 9, 553–576, https://doi.org/10.5194/amt-9-553-2016, https://doi.org/10.5194/amt-9-553-2016, 2016
Short summary
Short summary
We report on the use of thermal dissociation cavity ring-down spectroscopy to detect NO2, peroxy nitrates and alkyl nitrates. We present both laboratory studies that characterise the chemical formation and loss of NO2 in the heated inlets and also result from a first field deployment.
V. A. Karydis, A. P. Tsimpidi, A. Pozzer, M. Astitha, and J. Lelieveld
Atmos. Chem. Phys., 16, 1491–1509, https://doi.org/10.5194/acp-16-1491-2016, https://doi.org/10.5194/acp-16-1491-2016, 2016
Short summary
Short summary
We provide an assessment of the chemical composition and global aerosol load of aerosol nitrate and determine the effect of mineral dust on its formation due to thermodynamical interactions. For this purpose we used an explicit geographical representation of the emitted soil particle size distribution and chemical composition. We conclude mineral dust aerosol chemistry is important for nitrate aerosol formation and significantly affects its global distribution, especially in the coarse mode.
A. J. G. Baumgaertner, P. Jöckel, A. Kerkweg, R. Sander, and H. Tost
Geosci. Model Dev., 9, 125–135, https://doi.org/10.5194/gmd-9-125-2016, https://doi.org/10.5194/gmd-9-125-2016, 2016
Short summary
Short summary
The Community Earth System Model (CESM1) is connected to the the Modular Earth Submodel System (MESSy) as a new base model. This allows MESSy users the option to utilize either the state-of-the art spectral element atmosphere dynamical core or the finite volume core of CESM1. Additionally, this makes several other component models available to MESSy users.
M. O. Andreae, O. C. Acevedo, A. Araùjo, P. Artaxo, C. G. G. Barbosa, H. M. J. Barbosa, J. Brito, S. Carbone, X. Chi, B. B. L. Cintra, N. F. da Silva, N. L. Dias, C. Q. Dias-Júnior, F. Ditas, R. Ditz, A. F. L. Godoi, R. H. M. Godoi, M. Heimann, T. Hoffmann, J. Kesselmeier, T. Könemann, M. L. Krüger, J. V. Lavric, A. O. Manzi, A. P. Lopes, D. L. Martins, E. F. Mikhailov, D. Moran-Zuloaga, B. W. Nelson, A. C. Nölscher, D. Santos Nogueira, M. T. F. Piedade, C. Pöhlker, U. Pöschl, C. A. Quesada, L. V. Rizzo, C.-U. Ro, N. Ruckteschler, L. D. A. Sá, M. de Oliveira Sá, C. B. Sales, R. M. N. dos Santos, J. Saturno, J. Schöngart, M. Sörgel, C. M. de Souza, R. A. F. de Souza, H. Su, N. Targhetta, J. Tóta, I. Trebs, S. Trumbore, A. van Eijck, D. Walter, Z. Wang, B. Weber, J. Williams, J. Winderlich, F. Wittmann, S. Wolff, and A. M. Yáñez-Serrano
Atmos. Chem. Phys., 15, 10723–10776, https://doi.org/10.5194/acp-15-10723-2015, https://doi.org/10.5194/acp-15-10723-2015, 2015
Short summary
Short summary
This paper describes the Amazon Tall Tower Observatory (ATTO), a new atmosphere-biosphere observatory located in the remote Amazon Basin. It presents results from ecosystem ecology, meteorology, trace gas, and aerosol measurements collected at the ATTO site during the first 3 years of operation.
M. Abdelkader, S. Metzger, R. E. Mamouri, M. Astitha, L. Barrie, Z. Levin, and J. Lelieveld
Atmos. Chem. Phys., 15, 9173–9189, https://doi.org/10.5194/acp-15-9173-2015, https://doi.org/10.5194/acp-15-9173-2015, 2015
H. G. Ouwersloot, A. Pozzer, B. Steil, H. Tost, and J. Lelieveld
Geosci. Model Dev., 8, 2435–2445, https://doi.org/10.5194/gmd-8-2435-2015, https://doi.org/10.5194/gmd-8-2435-2015, 2015
H. Fischer, A. Pozzer, T. Schmitt, P. Jöckel, T. Klippel, D. Taraborrelli, and J. Lelieveld
Atmos. Chem. Phys., 15, 6971–6980, https://doi.org/10.5194/acp-15-6971-2015, https://doi.org/10.5194/acp-15-6971-2015, 2015
K. Violaki, J. Sciare, J. Williams, A. R. Baker, M. Martino, and N. Mihalopoulos
Biogeosciences, 12, 3131–3140, https://doi.org/10.5194/bg-12-3131-2015, https://doi.org/10.5194/bg-12-3131-2015, 2015
S. Zheng, A. Pozzer, C. X. Cao, and J. Lelieveld
Atmos. Chem. Phys., 15, 5715–5725, https://doi.org/10.5194/acp-15-5715-2015, https://doi.org/10.5194/acp-15-5715-2015, 2015
Short summary
Short summary
The present study uses aerosol optical depth as proxy to estimate 12 years of PM2.5 data for the Beijing central area and calculate the yearly premature mortality by different diseases attributable to PM2.5. The estimated average total mortality due to PM2.5 is about 5100 individuals/year for the period 2001--2012 in the Beijing central area, and the per capita mortality for all ages due to PM2.5 is around 15 per 10,000 person-years for the period 2010--2012.
R. Sander
Atmos. Chem. Phys., 15, 4399–4981, https://doi.org/10.5194/acp-15-4399-2015, https://doi.org/10.5194/acp-15-4399-2015, 2015
D. Mogensen, R. Gierens, J. N. Crowley, P. Keronen, S. Smolander, A. Sogachev, A. C. Nölscher, L. Zhou, M. Kulmala, M. J. Tang, J. Williams, and M. Boy
Atmos. Chem. Phys., 15, 3909–3932, https://doi.org/10.5194/acp-15-3909-2015, https://doi.org/10.5194/acp-15-3909-2015, 2015
A. M. Yáñez-Serrano, A. C. Nölscher, J. Williams, S. Wolff, E. Alves, G. A. Martins, E. Bourtsoukidis, J. Brito, K. Jardine, P. Artaxo, and J. Kesselmeier
Atmos. Chem. Phys., 15, 3359–3378, https://doi.org/10.5194/acp-15-3359-2015, https://doi.org/10.5194/acp-15-3359-2015, 2015
S. Gromov and C. A. M. Brenninkmeijer
Atmos. Chem. Phys., 15, 1901–1912, https://doi.org/10.5194/acp-15-1901-2015, https://doi.org/10.5194/acp-15-1901-2015, 2015
Short summary
Short summary
We present observational data on δ18O(O3) from the UT/LMS, the region to date not covered by the ozone isotope composition measurements. It is to bridge the gap between the tropospheric (mostly surface) and stratospheric measurement data.
We demonstrate an approach suitable for isotope mass-balance calculations (“Keeling plot”) in intricate cases, i.e. admixing of the (unknown) source in question to the reservoirs with (unknown) variable starting compositions.
E. Mesarchaki, C. Kräuter, K. E. Krall, M. Bopp, F. Helleis, J. Williams, and B. Jähne
Ocean Sci., 11, 121–138, https://doi.org/10.5194/os-11-121-2015, https://doi.org/10.5194/os-11-121-2015, 2015
Short summary
Short summary
Our article presents successful gas exchange measurements obtained in a large-scale wind-wave tank. The adopted box model methodology, experimental produce and instrumentation are described in detail. For the first time, parallel measurements of total transfer velocities for 14 individual gases within a wide range of solubility have been achieved. Various wind speed conditions and the effect of surfactant layers have been investigated providing exciting results.
R. Oswald, M. Ermel, K. Hens, A. Novelli, H. G. Ouwersloot, P. Paasonen, T. Petäjä, M. Sipilä, P. Keronen, J. Bäck, R. Königstedt, Z. Hosaynali Beygi, H. Fischer, B. Bohn, D. Kubistin, H. Harder, M. Martinez, J. Williams, T. Hoffmann, I. Trebs, and M. Sörgel
Atmos. Chem. Phys., 15, 799–813, https://doi.org/10.5194/acp-15-799-2015, https://doi.org/10.5194/acp-15-799-2015, 2015
Short summary
Short summary
Nitrous acid (HONO) is a key species in atmospheric photochemistry since the photolysis leads to the important hydroxyl radical (OH). Although the importance of HONO as a precursor of OH is known, the formation pathways of HONO, especially during daytime, are a major challenge in atmospheric science. We present a detailed analysis of sources and sinks for HONO in the atmosphere for a field measurement campaign in the boreal forest in Finland and wonder if there is really a source term missing.
C. E. Stockwell, P. R. Veres, J. Williams, and R. J. Yokelson
Atmos. Chem. Phys., 15, 845–865, https://doi.org/10.5194/acp-15-845-2015, https://doi.org/10.5194/acp-15-845-2015, 2015
Short summary
Short summary
We used a high-resolution proton-transfer-reaction time-of-flight mass spectrometer to measure emissions from peat, crop residue, cooking fires, etc. We assigned > 80% of the mass of gas-phase organic compounds and much of it was secondary organic aerosol precursors. The open cooking emissions were much larger than from advanced cookstoves. Little-studied N-containing organic compounds accounted for 0.1-8.7% of the fuel N and may influence new particle formation.
A. P. Tsimpidi, V. A. Karydis, A. Pozzer, S. N. Pandis, and J. Lelieveld
Geosci. Model Dev., 7, 3153–3172, https://doi.org/10.5194/gmd-7-3153-2014, https://doi.org/10.5194/gmd-7-3153-2014, 2014
Short summary
Short summary
A computationally efficient module for the description of OA composition and evolution in the atmosphere has been developed. This module subdivides OA into several compounds based on their source of origin and volatility, allowing the quantification of POA vs. SOA as well as biogenic vs. anthropogenic contributions to OA concentrations. Such fundamental information can shed light on long-term changes in OA abundance, and hence project the effects of OA on future air quality and climate.
R. Sander, P. Jöckel, O. Kirner, A. T. Kunert, J. Landgraf, and A. Pozzer
Geosci. Model Dev., 7, 2653–2662, https://doi.org/10.5194/gmd-7-2653-2014, https://doi.org/10.5194/gmd-7-2653-2014, 2014
K. Klingmüller, B. Steil, C. Brühl, H. Tost, and J. Lelieveld
Geosci. Model Dev., 7, 2503–2516, https://doi.org/10.5194/gmd-7-2503-2014, https://doi.org/10.5194/gmd-7-2503-2014, 2014
B. Bonn, E. Bourtsoukidis, T. S. Sun, H. Bingemer, L. Rondo, U. Javed, J. Li, R. Axinte, X. Li, T. Brauers, H. Sonderfeld, R. Koppmann, A. Sogachev, S. Jacobi, and D. V. Spracklen
Atmos. Chem. Phys., 14, 10823–10843, https://doi.org/10.5194/acp-14-10823-2014, https://doi.org/10.5194/acp-14-10823-2014, 2014
T. Behrendt, P. R. Veres, F. Ashuri, G. Song, M. Flanz, B. Mamtimin, M. Bruse, J. Williams, and F. X. Meixner
Biogeosciences, 11, 5463–5492, https://doi.org/10.5194/bg-11-5463-2014, https://doi.org/10.5194/bg-11-5463-2014, 2014
A. Novelli, K. Hens, C. Tatum Ernest, D. Kubistin, E. Regelin, T. Elste, C. Plass-Dülmer, M. Martinez, J. Lelieveld, and H. Harder
Atmos. Meas. Tech., 7, 3413–3430, https://doi.org/10.5194/amt-7-3413-2014, https://doi.org/10.5194/amt-7-3413-2014, 2014
H. Bozem, H. Fischer, C. Gurk, C. L. Schiller, U. Parchatka, R. Koenigstedt, A. Stickler, M. Martinez, H. Harder, D. Kubistin, J. Williams, G. Eerdekens, and J. Lelieveld
Atmos. Chem. Phys., 14, 8917–8931, https://doi.org/10.5194/acp-14-8917-2014, https://doi.org/10.5194/acp-14-8917-2014, 2014
D. Y. Chang, H. Tost, B. Steil, and J. Lelieveld
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-14-21975-2014, https://doi.org/10.5194/acpd-14-21975-2014, 2014
Preprint withdrawn
K. Hens, A. Novelli, M. Martinez, J. Auld, R. Axinte, B. Bohn, H. Fischer, P. Keronen, D. Kubistin, A. C. Nölscher, R. Oswald, P. Paasonen, T. Petäjä, E. Regelin, R. Sander, V. Sinha, M. Sipilä, D. Taraborrelli, C. Tatum Ernest, J. Williams, J. Lelieveld, and H. Harder
Atmos. Chem. Phys., 14, 8723–8747, https://doi.org/10.5194/acp-14-8723-2014, https://doi.org/10.5194/acp-14-8723-2014, 2014
P. R. Veres, T. Behrendt, A. Klapthor, F. X. Meixner, and J. Williams
Biogeosciences Discuss., https://doi.org/10.5194/bgd-11-12009-2014, https://doi.org/10.5194/bgd-11-12009-2014, 2014
Revised manuscript not accepted
A. K. Mishra, K. Klingmueller, E. Fredj, J. Lelieveld, Y. Rudich, and I. Koren
Atmos. Chem. Phys., 14, 7213–7231, https://doi.org/10.5194/acp-14-7213-2014, https://doi.org/10.5194/acp-14-7213-2014, 2014
E. Bourtsoukidis, J. Williams, J. Kesselmeier, S. Jacobi, and B. Bonn
Atmos. Chem. Phys., 14, 6495–6510, https://doi.org/10.5194/acp-14-6495-2014, https://doi.org/10.5194/acp-14-6495-2014, 2014
T. Christoudias, Y. Proestos, and J. Lelieveld
Atmos. Chem. Phys., 14, 4607–4616, https://doi.org/10.5194/acp-14-4607-2014, https://doi.org/10.5194/acp-14-4607-2014, 2014
G. W. Mann, K. S. Carslaw, C. L. Reddington, K. J. Pringle, M. Schulz, A. Asmi, D. V. Spracklen, D. A. Ridley, M. T. Woodhouse, L. A. Lee, K. Zhang, S. J. Ghan, R. C. Easter, X. Liu, P. Stier, Y. H. Lee, P. J. Adams, H. Tost, J. Lelieveld, S. E. Bauer, K. Tsigaridis, T. P. C. van Noije, A. Strunk, E. Vignati, N. Bellouin, M. Dalvi, C. E. Johnson, T. Bergman, H. Kokkola, K. von Salzen, F. Yu, G. Luo, A. Petzold, J. Heintzenberg, A. Clarke, J. A. Ogren, J. Gras, U. Baltensperger, U. Kaminski, S. G. Jennings, C. D. O'Dowd, R. M. Harrison, D. C. S. Beddows, M. Kulmala, Y. Viisanen, V. Ulevicius, N. Mihalopoulos, V. Zdimal, M. Fiebig, H.-C. Hansson, E. Swietlicki, and J. S. Henzing
Atmos. Chem. Phys., 14, 4679–4713, https://doi.org/10.5194/acp-14-4679-2014, https://doi.org/10.5194/acp-14-4679-2014, 2014
S. Bleicher, J. C. Buxmann, R. Sander, T. P. Riedel, J. A. Thornton, U. Platt, and C. Zetzsch
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-14-10135-2014, https://doi.org/10.5194/acpd-14-10135-2014, 2014
Revised manuscript has not been submitted
M. S. Long, W. C. Keene, R. C. Easter, R. Sander, X. Liu, A. Kerkweg, and D. Erickson
Atmos. Chem. Phys., 14, 3397–3425, https://doi.org/10.5194/acp-14-3397-2014, https://doi.org/10.5194/acp-14-3397-2014, 2014
W. Song, M. Staudt, I. Bourgeois, and J. Williams
Biogeosciences, 11, 1435–1447, https://doi.org/10.5194/bg-11-1435-2014, https://doi.org/10.5194/bg-11-1435-2014, 2014
J. A. Adame, M. Martínez, M. Sorribas, P. J. Hidalgo, H. Harder, J.-M. Diesch, F. Drewnick, W. Song, J. Williams, V. Sinha, M. A. Hernández-Ceballos, J. Vilà-Guerau de Arellano, R. Sander, Z. Hosaynali-Beygi, H. Fischer, J. Lelieveld, and B. De la Morena
Atmos. Chem. Phys., 14, 2325–2342, https://doi.org/10.5194/acp-14-2325-2014, https://doi.org/10.5194/acp-14-2325-2014, 2014
C. Liu, S. Beirle, T. Butler, P. Hoor, C. Frankenberg, P. Jöckel, M. Penning de Vries, U. Platt, A. Pozzer, M. G. Lawrence, J. Lelieveld, H. Tost, and T. Wagner
Atmos. Chem. Phys., 14, 1717–1732, https://doi.org/10.5194/acp-14-1717-2014, https://doi.org/10.5194/acp-14-1717-2014, 2014
Y. F. Elshorbany, P. J. Crutzen, B. Steil, A. Pozzer, H. Tost, and J. Lelieveld
Atmos. Chem. Phys., 14, 1167–1184, https://doi.org/10.5194/acp-14-1167-2014, https://doi.org/10.5194/acp-14-1167-2014, 2014
D. Giannadaki, A. Pozzer, and J. Lelieveld
Atmos. Chem. Phys., 14, 957–968, https://doi.org/10.5194/acp-14-957-2014, https://doi.org/10.5194/acp-14-957-2014, 2014
M. J. Tang, G. Schuster, and J. N. Crowley
Atmos. Chem. Phys., 14, 245–254, https://doi.org/10.5194/acp-14-245-2014, https://doi.org/10.5194/acp-14-245-2014, 2014
P. Zanis, P. Hadjinicolaou, A. Pozzer, E. Tyrlis, S. Dafka, N. Mihalopoulos, and J. Lelieveld
Atmos. Chem. Phys., 14, 115–132, https://doi.org/10.5194/acp-14-115-2014, https://doi.org/10.5194/acp-14-115-2014, 2014
R. Sander, A. A. P. Pszenny, W. C. Keene, E. Crete, B. Deegan, M. S. Long, J. R. Maben, and A. H. Young
Earth Syst. Sci. Data, 5, 385–392, https://doi.org/10.5194/essd-5-385-2013, https://doi.org/10.5194/essd-5-385-2013, 2013
A. L. Corrigan, L. M. Russell, S. Takahama, M. Äijälä, M. Ehn, H. Junninen, J. Rinne, T. Petäjä, M. Kulmala, A. L. Vogel, T. Hoffmann, C. J. Ebben, F. M. Geiger, P. Chhabra, J. H. Seinfeld, D. R. Worsnop, W. Song, J. Auld, and J. Williams
Atmos. Chem. Phys., 13, 12233–12256, https://doi.org/10.5194/acp-13-12233-2013, https://doi.org/10.5194/acp-13-12233-2013, 2013
H. Keller-Rudek, G. K. Moortgat, R. Sander, and R. Sörensen
Earth Syst. Sci. Data, 5, 365–373, https://doi.org/10.5194/essd-5-365-2013, https://doi.org/10.5194/essd-5-365-2013, 2013
J. Yoon, A. Pozzer, P. Hoor, D. Y. Chang, S. Beirle, T. Wagner, S. Schloegl, J. Lelieveld, and H. M. Worden
Atmos. Chem. Phys., 13, 11307–11316, https://doi.org/10.5194/acp-13-11307-2013, https://doi.org/10.5194/acp-13-11307-2013, 2013
A. L. Vogel, M. Äijälä, A. L. Corrigan, H. Junninen, M. Ehn, T. Petäjä, D. R. Worsnop, M. Kulmala, L. M. Russell, J. Williams, and T. Hoffmann
Atmos. Chem. Phys., 13, 10933–10950, https://doi.org/10.5194/acp-13-10933-2013, https://doi.org/10.5194/acp-13-10933-2013, 2013
E. Regelin, H. Harder, M. Martinez, D. Kubistin, C. Tatum Ernest, H. Bozem, T. Klippel, Z. Hosaynali-Beygi, H. Fischer, R. Sander, P. Jöckel, R. Königstedt, and J. Lelieveld
Atmos. Chem. Phys., 13, 10703–10720, https://doi.org/10.5194/acp-13-10703-2013, https://doi.org/10.5194/acp-13-10703-2013, 2013
A. Bracho-Nunez, N. M. Knothe,, S. Welter, M. Staudt, W. R. Costa, M. A. R. Liberato, M. T. F. Piedade, and J. Kesselmeier
Biogeosciences, 10, 5855–5873, https://doi.org/10.5194/bg-10-5855-2013, https://doi.org/10.5194/bg-10-5855-2013, 2013
J. Schmale, J. Schneider, E. Nemitz, Y. S. Tang, U. Dragosits, T. D. Blackall, P. N. Trathan, G. J. Phillips, M. Sutton, and C. F. Braban
Atmos. Chem. Phys., 13, 8669–8694, https://doi.org/10.5194/acp-13-8669-2013, https://doi.org/10.5194/acp-13-8669-2013, 2013
M. Ammann, R. A. Cox, J. N. Crowley, M. E. Jenkin, A. Mellouki, M. J. Rossi, J. Troe, and T. J. Wallington
Atmos. Chem. Phys., 13, 8045–8228, https://doi.org/10.5194/acp-13-8045-2013, https://doi.org/10.5194/acp-13-8045-2013, 2013
J. Lelieveld, C. Barlas, D. Giannadaki, and A. Pozzer
Atmos. Chem. Phys., 13, 7023–7037, https://doi.org/10.5194/acp-13-7023-2013, https://doi.org/10.5194/acp-13-7023-2013, 2013
A.C. Nölscher, E. Bourtsoukidis, B. Bonn, J. Kesselmeier, J. Lelieveld, and J. Williams
Biogeosciences, 10, 4241–4257, https://doi.org/10.5194/bg-10-4241-2013, https://doi.org/10.5194/bg-10-4241-2013, 2013
M. D. Andrés-Hernández, D. Kartal, J. N. Crowley, V. Sinha, E. Regelin, M. Martínez-Harder, V. Nenakhov, J. Williams, H. Harder, H. Bozem, W. Song, J. Thieser, M. J. Tang, Z. Hosaynali Beigi, and J. P. Burrows
Atmos. Chem. Phys., 13, 5731–5749, https://doi.org/10.5194/acp-13-5731-2013, https://doi.org/10.5194/acp-13-5731-2013, 2013
H.-P. Dorn, R. L. Apodaca, S. M. Ball, T. Brauers, S. S. Brown, J. N. Crowley, W. P. Dubé, H. Fuchs, R. Häseler, U. Heitmann, R. L. Jones, A. Kiendler-Scharr, I. Labazan, J. M. Langridge, J. Meinen, T. F. Mentel, U. Platt, D. Pöhler, F. Rohrer, A. A. Ruth, E. Schlosser, G. Schuster, A. J. L. Shillings, W. R. Simpson, J. Thieser, R. Tillmann, R. Varma, D. S. Venables, and A. Wahner
Atmos. Meas. Tech., 6, 1111–1140, https://doi.org/10.5194/amt-6-1111-2013, https://doi.org/10.5194/amt-6-1111-2013, 2013
C. Brühl, J. Lelieveld, M. Höpfner, and H. Tost
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-13-11395-2013, https://doi.org/10.5194/acpd-13-11395-2013, 2013
Revised manuscript not accepted
M. S. Long, W. C. Keene, R. Easter, R. Sander, A. Kerkweg, D. Erickson, X. Liu, and S. Ghan
Geosci. Model Dev., 6, 255–262, https://doi.org/10.5194/gmd-6-255-2013, https://doi.org/10.5194/gmd-6-255-2013, 2013
A. L. Vogel, M. Äijälä, M. Brüggemann, M. Ehn, H. Junninen, T. Petäjä, D. R. Worsnop, M. Kulmala, J. Williams, and T. Hoffmann
Atmos. Meas. Tech., 6, 431–443, https://doi.org/10.5194/amt-6-431-2013, https://doi.org/10.5194/amt-6-431-2013, 2013
G. J. Phillips, U. Makkonen, G. Schuster, N. Sobanski, H. Hakola, and J. N. Crowley
Atmos. Meas. Tech., 6, 231–237, https://doi.org/10.5194/amt-6-231-2013, https://doi.org/10.5194/amt-6-231-2013, 2013
G. J. Phillips, N. Pouvesle, J. Thieser, G. Schuster, R. Axinte, H. Fischer, J. Williams, J. Lelieveld, and J. N. Crowley
Atmos. Chem. Phys., 13, 1129–1139, https://doi.org/10.5194/acp-13-1129-2013, https://doi.org/10.5194/acp-13-1129-2013, 2013
C. Breuninger, F. X. Meixner, and J. Kesselmeier
Atmos. Chem. Phys., 13, 773–790, https://doi.org/10.5194/acp-13-773-2013, https://doi.org/10.5194/acp-13-773-2013, 2013
J. Lelieveld, M. G. Lawrence, and D. Kunkel
Atmos. Chem. Phys., 13, 31–34, https://doi.org/10.5194/acp-13-31-2013, https://doi.org/10.5194/acp-13-31-2013, 2013
A. Jugold, F. Althoff, M. Hurkuck, M. Greule, K. Lenhart, J. Lelieveld, and F. Keppler
Biogeosciences, 9, 5291–5301, https://doi.org/10.5194/bg-9-5291-2012, https://doi.org/10.5194/bg-9-5291-2012, 2012
R. Sander and J. Bottenheim
Earth Syst. Sci. Data, 4, 215–282, https://doi.org/10.5194/essd-4-215-2012, https://doi.org/10.5194/essd-4-215-2012, 2012
A. C. Nölscher, V. Sinha, S. Bockisch, T. Klüpfel, and J. Williams
Atmos. Meas. Tech., 5, 2981–2992, https://doi.org/10.5194/amt-5-2981-2012, https://doi.org/10.5194/amt-5-2981-2012, 2012
Related subject area
Subject: Gases | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Atmospheric gas-phase composition over the Indian Ocean
Joint occurrence of heatwaves and ozone pollution and increased health risks in Beijing, China: role of synoptic weather pattern and urbanization
Using atmospheric trace gas vertical profiles to evaluate model fluxes: a case study of Arctic-CAP observations and GEOS simulations for the ABoVE domain
An evaluation of new particle formation events in Helsinki during a Baltic Sea cyanobacterial summer bloom
Oceanic emissions of dimethyl sulfide and methanethiol and their contribution to sulfur dioxide production in the marine atmosphere
An investigation into the chemistry of HONO in the marine boundary layer at Tudor Hill Marine Atmospheric Observatory in Bermuda
Tropospheric ozone production and chemical regime analysis during the COVID-19 lockdown over Europe
Overview: On the transport and transformation of pollutants in the outflow of major population centres – observational data from the EMeRGe European intensive operational period in summer 2017
Interannual variability of terpenoid emissions in an alpine city
Observations and modelling of glyoxal in the tropical Atlantic marine boundary layer
Top-down and bottom-up estimates of anthropogenic methyl bromide emissions from eastern China
Direct measurements of ozone response to emissions perturbations in California
Ground-based investigation of HOx and ozone chemistry in biomass burning plumes in rural Idaho
Insights into the significant increase in ozone during COVID-19 in a typical urban city of China
Quantification and assessment of methane emissions from offshore oil and gas facilities on the Norwegian continental shelf
Full latitudinal marine atmospheric measurements of iodine monoxide
Direct observations indicate photodegradable oxygenated volatile organic compounds (OVOCs) as larger contributors to radicals and ozone production in the atmosphere
Assessing vehicle fuel efficiency using a dense network of CO2 observations
Odds and ends of atmospheric mercury in Europe and over the North Atlantic Ocean: temporal trends of 25 years of measurements
Interpretation of NO3–N2O5 observation via steady state in high-aerosol air mass: the impact of equilibrium coefficient in ambient conditions
Global emissions of perfluorocyclobutane (PFC-318, c-C4F8) resulting from the use of hydrochlorofluorocarbon-22 (HCFC-22) feedstock to produce polytetrafluoroethylene (PTFE) and related fluorochemicals
Atmospheric measurements at Mt. Tai – Part I: HONO formation and its role in the oxidizing capacity of the upper boundary layer
Fate of the nitrate radical at the summit of a semi-rural mountain site in Germany assessed with direct reactivity measurements
Urban inland wintertime N2O5 and ClNO2 influenced by snow-covered ground, air turbulence, and precipitation
First observation of mercury species on an important water vapor channel in the southeastern Tibetan Plateau
Swiss halocarbon emissions for 2019 to 2020 assessed from regional atmospheric observations
Measurement report: Long-term measurements of aerosol precursor concentrations in the Finnish subarctic boreal forest
The Fires, Asian, and Stratospheric Transport–Las Vegas Ozone Study (FAST-LVOS)
Measurement report: Long-term variations in surface NOx and SO2 mixing ratios from 2006 to 2016 at a background site in the Yangtze River Delta region, China
Atmospheric measurements at Mt. Tai – Part II: HONO budget and radical (ROx + NO3) chemistry in the lower boundary layer
Exploration of the atmospheric chemistry of nitrous acid in a coastal city of southeastern China: results from measurements across four seasons
Eddy Covariance Measurements Highlight Sources of Nitrogen Oxide Emissions Missing from Inventories for Central London
Measurement report: Variations in surface SO2 and NOx mixing ratios from 2004 to 2016 at a background site in the North China Plain
OH and HO2 radicals chemistry at a suburban site during the EXPLORE-YRD campaign in 2018
Measurement report: Ambient volatile organic compounds (VOCs) pollution at urban Beijing: characteristics, sources, and implications for pollution control
Formaldehyde evolution in US wildfire plumes during the Fire Influence on Regional to Global Environments and Air Quality experiment (FIREX-AQ)
Measurement report: Photochemical production and loss rates of formaldehyde and ozone across Europe
Is the ocean surface a source of nitrous acid (HONO) in the marine boundary layer?
Measurement report: High contributions of halocarbon and aromatic compounds to atmospheric volatile organic compounds in an industrial area
Measurement report: Fast photochemical production of peroxyacetyl nitrate (PAN) over the rural North China Plain during haze events in autumn
Long-term atmospheric emissions for the Coal Oil Point natural marine hydrocarbon seep field, offshore California
Measurement report: Observation-based formaldehyde production rates and their relation to OH reactivity around the Arabian Peninsula
Comment on “Isotopic evidence for dominant secondary production of HONO in near-ground wildfire plumes” by Chai et al. (2021)
Measurement report: Regional characteristics of seasonal and long-term variations in greenhouse gases at Nainital, India, and Comilla, Bangladesh
Nighttime and daytime dark oxidation chemistry in wildfire plumes: an observation and model analysis of FIREX-AQ aircraft data
The effects of the COVID-19 lockdowns on the composition of the troposphere as seen by In-service Aircraft for a Global Observing System (IAGOS) at Frankfurt
Winter ClNO2 formation in the region of fresh anthropogenic emissions: seasonal variability and insights into daytime peaks in northern China
Speciated atmospheric mercury at the Waliguan Global Atmosphere Watch station in the northeastern Tibetan Plateau: implication of dust-related sources for particulate bound mercury
Measurement report: Variability in the composition of biogenic volatile organic compounds in a Southeastern US forest and their role in atmospheric reactivity
Susann Tegtmeier, Christa Marandino, Yue Jia, Birgit Quack, and Anoop S. Mahajan
Atmos. Chem. Phys., 22, 6625–6676, https://doi.org/10.5194/acp-22-6625-2022, https://doi.org/10.5194/acp-22-6625-2022, 2022
Short summary
Short summary
In the atmosphere over the Indian Ocean, intense anthropogenic pollution from Southeast Asia mixes with pristine oceanic air. During the winter monsoon, high pollution levels are regularly observed over the entire northern Indian Ocean, while during the summer monsoon, clean air dominates. Here, we review current progress in detecting and understanding atmospheric gas-phase composition over the Indian Ocean and its impacts on the upper atmosphere, oceanic biogeochemistry, and marine ecosystems.
Lian Zong, Yuanjian Yang, Haiyun Xia, Meng Gao, Zhaobin Sun, Zuofang Zheng, Xianxiang Li, Guicai Ning, Yubin Li, and Simone Lolli
Atmos. Chem. Phys., 22, 6523–6538, https://doi.org/10.5194/acp-22-6523-2022, https://doi.org/10.5194/acp-22-6523-2022, 2022
Short summary
Short summary
Heatwaves (HWs) paired with higher ozone (O3) concentration at surface level pose a serious threat to human health. Taking Beijing as an example, three unfavorable synoptic weather patterns were identified to dominate the compound HW and O3 pollution events. Under the synergistic stress of HWs and O3 pollution, public mortality risk increased, and synoptic patterns and urbanization enhanced the compound risk of events in Beijing by 33.09 % and 18.95 %, respectively.
Colm Sweeney, Abhishek Chatterjee, Sonja Wolter, Kathryn McKain, Robert Bogue, Stephen Conley, Tim Newberger, Lei Hu, Lesley Ott, Benjamin Poulter, Luke Schiferl, Brad Weir, Zhen Zhang, and Charles E. Miller
Atmos. Chem. Phys., 22, 6347–6364, https://doi.org/10.5194/acp-22-6347-2022, https://doi.org/10.5194/acp-22-6347-2022, 2022
Short summary
Short summary
The Arctic Carbon Atmospheric Profiles (Arctic-CAP) project demonstrates the utility of aircraft profiles for independent evaluation of model-derived emissions and uptake of atmospheric CO2, CH4, and CO from land and ocean. Comparison with the Goddard Earth Observing System (GEOS) modeling system suggests that fluxes of CO2 are very consistent with observations, while those of CH4 have some regional and seasonal biases, and that CO comparison is complicated by transport errors.
Roseline C. Thakur, Lubna Dada, Lisa J. Beck, Lauriane L. J. Quéléver, Tommy Chan, Marjan Marbouti, Xu-Cheng He, Carlton Xavier, Juha Sulo, Janne Lampilahti, Markus Lampimäki, Yee Jun Tham, Nina Sarnela, Katrianne Lehtipalo, Alf Norkko, Markku Kulmala, Mikko Sipilä, and Tuija Jokinen
Atmos. Chem. Phys., 22, 6365–6391, https://doi.org/10.5194/acp-22-6365-2022, https://doi.org/10.5194/acp-22-6365-2022, 2022
Short summary
Short summary
Every year intense cyanobacterial and macroalgal blooms occur in the Baltic Sea and in the coastal areas surrounding Helsinki, yet no studies have addressed the impact of biogenic emissions from these blooms on gas vapor concentrations, which in turn could influence new particle formation. This is the first study of its kind to address the chemistry driving new particle formation (NPF) during a bloom period in this region, highlighting the role of biogenic sulfuric acid and iodic acid.
Gordon A. Novak, Delaney B. Kilgour, Christopher M. Jernigan, Michael P. Vermeuel, and Timothy H. Bertram
Atmos. Chem. Phys., 22, 6309–6325, https://doi.org/10.5194/acp-22-6309-2022, https://doi.org/10.5194/acp-22-6309-2022, 2022
Short summary
Short summary
We describe field measurements of the mixing ratio and oceanic emission flux of dimethyl sulfide (DMS) and methanethiol (MeSH) from a coastal ocean site. DMS is known to impact aerosol formation and growth in the marine atmosphere, influencing cloud formation and climate. Measurements of MeSH, which is produced by the same oceanic source as DMS, are rare. We show that MeSH emissions are large and must be measured alongside DMS to understand marine sulfur chemistry and aerosol formation.
Yuting Zhu, Youfeng Wang, Xianliang Zhou, Yasin F. Elshorbany, Chunxiang Ye, Matthew Hayden, and Andrew J. Peters
Atmos. Chem. Phys., 22, 6327–6346, https://doi.org/10.5194/acp-22-6327-2022, https://doi.org/10.5194/acp-22-6327-2022, 2022
Short summary
Short summary
The daytime chemistry of nitrous acid (HONO), which plays an important role in the oxidation capacity of the troposphere, is not well understood. In this work, we report new field measurement results of HONO and the relevant parameters in the marine boundary layer at Tudor Hill Marine Atmospheric Observatory in Bermuda. We evaluate the daytime HONO budgets in air masses under different types of interaction with the island and examine the strengths of different HONO formation and loss mechanisms.
Clara M. Nussbaumer, Andrea Pozzer, Ivan Tadic, Lenard Röder, Florian Obersteiner, Hartwig Harder, Jos Lelieveld, and Horst Fischer
Atmos. Chem. Phys., 22, 6151–6165, https://doi.org/10.5194/acp-22-6151-2022, https://doi.org/10.5194/acp-22-6151-2022, 2022
Short summary
Short summary
The European COVID-19 lockdowns have significantly reduced the emission of primary pollutants such as NOx, which impacts the tropospheric photochemical processes and the abundance of O3. In this study, we present how the lockdowns have affected tropospheric trace gases and ozone production based on in situ observations and modeling simulations. We additionally show that the chemical regime shifted from a transition point to a NOx limitation in the upper troposphere.
M. Dolores Andrés Hernández, Andreas Hilboll, Helmut Ziereis, Eric Förster, Ovid O. Krüger, Katharina Kaiser, Johannes Schneider, Francesca Barnaba, Mihalis Vrekoussis, Jörg Schmidt, Heidi Huntrieser, Anne-Marlene Blechschmidt, Midhun George, Vladyslav Nenakhov, Theresa Harlass, Bruna A. Holanda, Jennifer Wolf, Lisa Eirenschmalz, Marc Krebsbach, Mira L. Pöhlker, Anna B. Kalisz Hedegaard, Linlu Mei, Klaus Pfeilsticker, Yangzhuoran Liu, Ralf Koppmann, Hans Schlager, Birger Bohn, Ulrich Schumann, Andreas Richter, Benjamin Schreiner, Daniel Sauer, Robert Baumann, Mariano Mertens, Patrick Jöckel, Markus Kilian, Greta Stratmann, Christopher Pöhlker, Monica Campanelli, Marco Pandolfi, Michael Sicard, José L. Gómez-Amo, Manuel Pujadas, Katja Bigge, Flora Kluge, Anja Schwarz, Nikos Daskalakis, David Walter, Andreas Zahn, Ulrich Pöschl, Harald Bönisch, Stephan Borrmann, Ulrich Platt, and John P. Burrows
Atmos. Chem. Phys., 22, 5877–5924, https://doi.org/10.5194/acp-22-5877-2022, https://doi.org/10.5194/acp-22-5877-2022, 2022
Short summary
Short summary
EMeRGe provides a unique set of in situ and remote sensing airborne measurements of trace gases and aerosol particles along selected flight routes in the lower troposphere over Europe. The interpretation uses also complementary collocated ground-based and satellite measurements. The collected data help to improve the current understanding of the complex spatial distribution of trace gases and aerosol particles resulting from mixing, transport, and transformation of pollution plumes over Europe.
Lisa Kaser, Arianna Peron, Martin Graus, Marcus Striednig, Georg Wohlfahrt, Stanislav Juráň, and Thomas Karl
Atmos. Chem. Phys., 22, 5603–5618, https://doi.org/10.5194/acp-22-5603-2022, https://doi.org/10.5194/acp-22-5603-2022, 2022
Short summary
Short summary
Biogenic volatile organic compounds (e.g., terpenoids) play an essential role in atmospheric chemistry. Urban greening activities need to consider the ozone- and aerosol-forming potential of these compounds released from vegetation. NMVOC emissions in urban environments are complex, and the biogenic component remains poorly quantified. For summer conditions biogenic emissions dominate terpene emissions and heat waves can significantly modulate urban biogenic terpenoid emissions.
Hannah Walker, Daniel Stone, Trevor Ingham, Sina Hackenberg, Danny Cryer, Shalini Punjabi, Katie Read, James Lee, Lisa Whalley, Dominick V. Spracklen, Lucy J. Carpenter, Steve R. Arnold, and Dwayne E. Heard
Atmos. Chem. Phys., 22, 5535–5557, https://doi.org/10.5194/acp-22-5535-2022, https://doi.org/10.5194/acp-22-5535-2022, 2022
Short summary
Short summary
Glyoxal is a ubiquitous reactive organic compound in the atmosphere, which may form organic aerosol and impact the atmosphere's oxidising capacity. There are limited measurements of glyoxal's abundance in the remote marine atmosphere. We made new measurements of glyoxal using a highly sensitive technique over two 4-week periods in the tropical Atlantic atmosphere. We show that daytime measurements are mostly consistent with our chemical understanding but a potential missing source at night.
Haklim Choi, Mi-Kyung Park, Paul J. Fraser, Hyeri Park, Sohyeon Geum, Jens Mühle, Jooil Kim, Ian Porter, Peter K. Salameh, Christina M. Harth, Bronwyn L. Dunse, Paul B. Krummel, Ray F. Weiss, Simon O'Doherty, Dickon Young, and Sunyoung Park
Atmos. Chem. Phys., 22, 5157–5173, https://doi.org/10.5194/acp-22-5157-2022, https://doi.org/10.5194/acp-22-5157-2022, 2022
Short summary
Short summary
We observed 12-year continuous CH3Br pollution signals at Gosan and estimated anthropogenic CH3Br emissions in eastern China. The analysis revealed a significant discrepancy between top-down estimates and the bottom-up emissions from the fumigation usage reported to the United Nations Environment Programme, likely due to unreported or inaccurately reported fumigation usage. This result provides information to monitor international compliance with the Montreal Protocol.
Shenglun Wu, Hyung Joo Lee, Andrea Anderson, Shang Liu, Toshihiro Kuwayama, John H. Seinfeld, and Michael J. Kleeman
Atmos. Chem. Phys., 22, 4929–4949, https://doi.org/10.5194/acp-22-4929-2022, https://doi.org/10.5194/acp-22-4929-2022, 2022
Short summary
Short summary
An ozone control experiment usually conducted in the laboratory was installed in a trailer and moved to the outdoor environment to directly confirm that we are controlling the right sources in order to lower ambient ozone concentrations. Adding small amounts of precursor oxides of nitrogen and volatile organic compounds to ambient air showed that the highest ozone concentrations are best controlled by reducing concentrations of oxides of nitrogen. The results confirm satellite measurements.
Andrew J. Lindsay, Daniel C. Anderson, Rebecca A. Wernis, Yutong Liang, Allen H. Goldstein, Scott C. Herndon, Joseph R. Roscioli, Christoph Dyroff, Ed C. Fortner, Philip L. Croteau, Francesca Majluf, Jordan E. Krechmer, Tara I. Yacovitch, Walter B. Knighton, and Ezra C. Wood
Atmos. Chem. Phys., 22, 4909–4928, https://doi.org/10.5194/acp-22-4909-2022, https://doi.org/10.5194/acp-22-4909-2022, 2022
Short summary
Short summary
Wildfire smoke dramatically impacts air quality and often has elevated concentrations of ozone. We present measurements of ozone and its precursors at a rural site periodically impacted by wildfire smoke. Measurements of total peroxy radicals, key ozone precursors that have been studied little within wildfires, compare well with chemical box model predictions. Our results indicate no serious issues with using current chemistry mechanisms to model chemistry in aged wildfire plumes.
Kun Zhang, Zhiqiang Liu, Xiaojuan Zhang, Qing Li, Andrew Jensen, Wen Tan, Ling Huang, Yangjun Wang, Joost de Gouw, and Li Li
Atmos. Chem. Phys., 22, 4853–4866, https://doi.org/10.5194/acp-22-4853-2022, https://doi.org/10.5194/acp-22-4853-2022, 2022
Short summary
Short summary
A significant increase in O3 concentrations was found during the lockdown period of COVID-19 in most areas of China. By field measurements coupled with machine learning, an observation-based model (OBM) and sensitivity analysis, we found the changes in the NOx / VOC ratio were a key reason for the significant rise in O3. To restrain O3 pollution, more efforts should be devoted to the control of anthropogenic OVOCs, alkenes and aromatics.
Amy Foulds, Grant Allen, Jacob T. Shaw, Prudence Bateson, Patrick A. Barker, Langwen Huang, Joseph R. Pitt, James D. Lee, Shona E. Wilde, Pamela Dominutti, Ruth M. Purvis, David Lowry, James L. France, Rebecca E. Fisher, Alina Fiehn, Magdalena Pühl, Stéphane J. B. Bauguitte, Stephen A. Conley, Mackenzie L. Smith, Tom Lachlan-Cope, Ignacio Pisso, and Stefan Schwietzke
Atmos. Chem. Phys., 22, 4303–4322, https://doi.org/10.5194/acp-22-4303-2022, https://doi.org/10.5194/acp-22-4303-2022, 2022
Short summary
Short summary
We measured CH4 emissions from 21 offshore oil and gas facilities in the Norwegian Sea in 2019. Measurements compared well with operator-reported emissions but were greatly underestimated when compared with a 2016 global fossil fuel inventory. This study demonstrates the need for up-to-date and accurate inventories for use in research and policy and the important benefits of best-practice reporting methods by operators. Airborne measurements are an effective tool to validate such inventories.
Hisahiro Takashima, Yugo Kanaya, Saki Kato, Martina M. Friedrich, Michel Van Roozendael, Fumikazu Taketani, Takuma Miyakawa, Yuichi Komazaki, Carlos A. Cuevas, Alfonso Saiz-Lopez, and Takashi Sekiya
Atmos. Chem. Phys., 22, 4005–4018, https://doi.org/10.5194/acp-22-4005-2022, https://doi.org/10.5194/acp-22-4005-2022, 2022
Short summary
Short summary
We have undertaken atmospheric iodine monoxide (IO) observations in the global marine boundary layer with a wide latitudinal coverage and sea surface temperature (SST) range. We conclude that atmospheric iodine is abundant over the Western Pacific warm pool, appearing as an iodine fountain, where ozone (O3) minima occur. Our study also found negative correlations between IO and O3 concentrations over IO maxima, which requires reconsideration of the initiation process of halogen activation.
Wenjie Wang, Bin Yuan, Yuwen Peng, Hang Su, Yafang Cheng, Suxia Yang, Caihong Wu, Jipeng Qi, Fengxia Bao, Yibo Huangfu, Chaomin Wang, Chenshuo Ye, Zelong Wang, Baolin Wang, Xinming Wang, Wei Song, Weiwei Hu, Peng Cheng, Manni Zhu, Junyu Zheng, and Min Shao
Atmos. Chem. Phys., 22, 4117–4128, https://doi.org/10.5194/acp-22-4117-2022, https://doi.org/10.5194/acp-22-4117-2022, 2022
Short summary
Short summary
From thorough measurements of numerous oxygenated volatile organic compounds, we show that their photodissociation can be important for radical production and ozone formation in the atmosphere. This effect was underestimated in previous studies, as measurements of them were lacking.
Helen L. Fitzmaurice, Alexander J. Turner, Jinsol Kim, Katherine Chan, Erin R. Delaria, Catherine Newman, Paul Wooldridge, and Ronald C. Cohen
Atmos. Chem. Phys., 22, 3891–3900, https://doi.org/10.5194/acp-22-3891-2022, https://doi.org/10.5194/acp-22-3891-2022, 2022
Short summary
Short summary
On-road emissions are thought to vary widely from existing predictions, as the effects of the age of the vehicle fleet, the performance of emission control systems, and variations in speed are difficult to assess under ambient driving conditions. We present an observational approach to characterize on-road emissions and show that the method is consistent with other approaches to within ~ 3 %.
Danilo Custódio, Katrine Aspmo Pfaffhuber, T. Gerard Spain, Fidel F. Pankratov, Iana Strigunova, Koketso Molepo, Henrik Skov, Johannes Bieser, and Ralf Ebinghaus
Atmos. Chem. Phys., 22, 3827–3840, https://doi.org/10.5194/acp-22-3827-2022, https://doi.org/10.5194/acp-22-3827-2022, 2022
Short summary
Short summary
As a poison in the air that we breathe and the food that we eat, mercury is a human health concern for society as a whole. In that regard, this work deals with monitoring and modelling mercury in the environment, improving wherewithal, identifying the strength of the different components at play, and interpreting information to support the efforts that seek to safeguard public health.
Xiaorui Chen, Haichao Wang, and Keding Lu
Atmos. Chem. Phys., 22, 3525–3533, https://doi.org/10.5194/acp-22-3525-2022, https://doi.org/10.5194/acp-22-3525-2022, 2022
Short summary
Short summary
We use a complete set of simulations to evaluate whether equilibrium and steady state are appropriate for a chemical system involving several reactive nitrogen-containing species (NO2, NO3, and N2O5) under various conditions. A previously neglected bias for the coefficient applied for interpreting their effects is disclosed, and the relevant ambient factors are examined. We therefore provide a good solution to an accurate representation of nighttime chemistry in high-aerosol areas.
Jens Mühle, Lambert J. M. Kuijpers, Kieran M. Stanley, Matthew Rigby, Luke M. Western, Jooil Kim, Sunyoung Park, Christina M. Harth, Paul B. Krummel, Paul J. Fraser, Simon O'Doherty, Peter K. Salameh, Roland Schmidt, Dickon Young, Ronald G. Prinn, Ray H. J. Wang, and Ray F. Weiss
Atmos. Chem. Phys., 22, 3371–3378, https://doi.org/10.5194/acp-22-3371-2022, https://doi.org/10.5194/acp-22-3371-2022, 2022
Short summary
Short summary
Emissions of the strong greenhouse gas perfluorocyclobutane (c-C4F8) into the atmosphere have been increasing sharply since the early 2000s. These c-C4F8 emissions are highly correlated with the amount of hydrochlorofluorocarbon-22 produced to synthesize polytetrafluoroethylene (known for its non-stick properties) and related chemicals. From this process, c-C4F8 by-product is vented to the atmosphere. Avoiding these unnecessary c-C4F8 emissions could reduce the climate impact of this industry.
Chaoyang Xue, Can Ye, Jörg Kleffmann, Chenglong Zhang, Valéry Catoire, Fengxia Bao, Abdelwahid Mellouki, Likun Xue, Jianmin Chen, Keding Lu, Yong Zhao, Hengde Liu, Zhaoxin Guo, and Yujing Mu
Atmos. Chem. Phys., 22, 3149–3167, https://doi.org/10.5194/acp-22-3149-2022, https://doi.org/10.5194/acp-22-3149-2022, 2022
Short summary
Short summary
Summertime measurements of nitrous acid (HONO) and related parameters were conducted at the foot and the summit of Mt. Tai (1534 m above sea level). We proposed a rapid vertical air mass exchange between the foot and the summit level, which enhances the role of HONO in the oxidizing capacity of the upper boundary layer. Kinetics for aerosol-derived HONO sources were constrained. HONO formation from different paths was quantified and discussed.
Patrick Dewald, Clara M. Nussbaumer, Jan Schuladen, Akima Ringsdorf, Achim Edtbauer, Horst Fischer, Jonathan Williams, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-163, https://doi.org/10.5194/acp-2022-163, 2022
Revised manuscript accepted for ACP
Short summary
Short summary
We measured the gas-phase reactivity of the NO3 radical on the summit (825 m a.s.l.) of a semi-rural mountain in south-west Germany in July 2021. The impact of VOC-induced NO3 losses (mostly monoterpenes) in competition to loss by reaction with NO and photolysis throughout the diel cycle was estimated. Beside chemistry, boundary layer dynamics and plant-physiological processes presumably have a great impact on our observations, which were compared to previous NO3 measurements on the same site.
Kathryn D. Kulju, Stephen M. McNamara, Qianjie Chen, Hannah S. Kenagy, Jacinta Edebeli, Jose D. Fuentes, Steven B. Bertman, and Kerri A. Pratt
Atmos. Chem. Phys., 22, 2553–2568, https://doi.org/10.5194/acp-22-2553-2022, https://doi.org/10.5194/acp-22-2553-2022, 2022
Short summary
Short summary
N2O5 uptake by chloride-containing surfaces produces ClNO2, which photolyzes, producing NO2 and highly reactive Cl radicals that impact air quality. In the inland urban atmosphere, ClNO2 was elevated during lower air turbulence and over snow-covered ground, from snowpack ClNO2 production. N2O5 and ClNO2 levels were lowest, on average, during rainfall and fog because of scavenging, with N2O5 scavenging by fog droplets likely contributing to observed increased particulate nitrate concentrations.
Huiming Lin, Yindong Tong, Chenghao Yu, Long Chen, Xiufeng Yin, Qianggong Zhang, Shichang Kang, Lun Luo, James Schauer, Benjamin de Foy, and Xuejun Wang
Atmos. Chem. Phys., 22, 2651–2668, https://doi.org/10.5194/acp-22-2651-2022, https://doi.org/10.5194/acp-22-2651-2022, 2022
Short summary
Short summary
The Tibetan Plateau is known as
The Third Poleand is generally considered to be a clean area owing to its high altitude. However, it may receive be impacted by air pollutants transported from the Indian subcontinent. Pollutants generally enter the Tibetan Plateau in several ways. Among them is the Yarlung Zangbu–Brahmaputra Grand Canyon. In this study, we identified the influence of the Indian summer monsoon on the origin, transport, and behavior of mercury in this area.
Dominique Rust, Ioannis Katharopoulos, Martin K. Vollmer, Stephan Henne, Simon O'Doherty, Daniel Say, Lukas Emmenegger, Renato Zenobi, and Stefan Reimann
Atmos. Chem. Phys., 22, 2447–2466, https://doi.org/10.5194/acp-22-2447-2022, https://doi.org/10.5194/acp-22-2447-2022, 2022
Short summary
Short summary
Artificial halocarbons contribute to ozone layer depletion and to global warming. We measured the atmospheric concentrations of halocarbons at the Beromünster tower, modelled the Swiss emissions, and compared the results to the internationally reported Swiss emissions inventory. For most of the halocarbons, we found good agreement, whereas one refrigerant might be overestimated in the inventory. In addition, we present first emission estimates of the newest types of halocarbons.
Tuija Jokinen, Katrianne Lehtipalo, Roseline Cutting Thakur, Ilona Ylivinkka, Kimmo Neitola, Nina Sarnela, Totti Laitinen, Markku Kulmala, Tuukka Petäjä, and Mikko Sipilä
Atmos. Chem. Phys., 22, 2237–2254, https://doi.org/10.5194/acp-22-2237-2022, https://doi.org/10.5194/acp-22-2237-2022, 2022
Short summary
Short summary
New particle formation is an important source of cloud condensation nuclei; however, long-term measurements of aerosol-forming vapors are close to nonexistent in the Arctic. Here, we report 7 months of CI-APi-TOF measurements of sulfuric acid, iodic acid, methane sulfonic acid and the sum of highly oxygenated organic molecules from the SMEAR I station in the Finnish subarctic. The results help us to understand atmospheric chemical processes and aerosol formation in this rapidly changing area.
Andrew O. Langford, Christoph J. Senff, Raul J. Alvarez II, Ken C. Aikin, Sunil Baidar, Timothy A. Bonin, W. Alan Brewer, Jerome Brioude, Steven S. Brown, Joel D. Burley, Dani J. Caputi, Stephen A. Conley, Patrick D. Cullis, Zachary C. J. Decker, Stéphanie Evan, Guillaume Kirgis, Meiyun Lin, Mariusz Pagowski, Jeff Peischl, Irina Petropavlovskikh, R. Bradley Pierce, Thomas B. Ryerson, Scott P. Sandberg, Chance W. Sterling, Ann M. Weickmann, and Li Zhang
Atmos. Chem. Phys., 22, 1707–1737, https://doi.org/10.5194/acp-22-1707-2022, https://doi.org/10.5194/acp-22-1707-2022, 2022
Short summary
Short summary
The Fires, Asian, and Stratospheric Transport–Las Vegas Ozone Study (FAST-LVOS) combined lidar, aircraft, and in situ measurements with global models to investigate the contributions of stratospheric intrusions, regional and Asian pollution, and wildfires to background ozone in the southwestern US during May and June 2017 and demonstrated that these processes contributed to background ozone levels that exceeded 70 % of the US National Ambient Air Quality Standard during the 6-week campaign.
Qingqing Yin, Qianli Ma, Weili Lin, Xiaobin Xu, and Jie Yao
Atmos. Chem. Phys., 22, 1015–1033, https://doi.org/10.5194/acp-22-1015-2022, https://doi.org/10.5194/acp-22-1015-2022, 2022
Short summary
Short summary
China has been experiencing rapid changes in emissions of air pollutants in recent decades. NOx and SO2 measurements from 2006 to 2016 at the Lin’an World Meteorological Organization Global Atmospheric Watch station were used to characterize the seasonal and diurnal variations and study the long-term trends. This study reaffirms China’s success in controlling both NOx and SO2 in the Yangtze River Delta but indicates at the same time a necessity to strengthen the NOx emission control.
Chaoyang Xue, Can Ye, Jörg Kleffmann, Wenjin Zhang, Xiaowei He, Pengfei Liu, Chenglong Zhang, Xiaoxi Zhao, Chengtang Liu, Zhuobiao Ma, Junfeng Liu, Jinhe Wang, Keding Lu, Valéry Catoire, Abdelwahid Mellouki, and Yujing Mu
Atmos. Chem. Phys., 22, 1035–1057, https://doi.org/10.5194/acp-22-1035-2022, https://doi.org/10.5194/acp-22-1035-2022, 2022
Short summary
Short summary
Nitrous acid (HONO) and related parameters were measured at the foot and the summit of Mt. Tai in the summer of 2018. Based on measurements at the foot station, we utilized a box model to explore the roles of different sources in the HONO budget. We also studied radical chemistry in this high-ozone region.
Baoye Hu, Jun Duan, Youwei Hong, Lingling Xu, Mengren Li, Yahui Bian, Min Qin, Wu Fang, Pinhua Xie, and Jinsheng Chen
Atmos. Chem. Phys., 22, 371–393, https://doi.org/10.5194/acp-22-371-2022, https://doi.org/10.5194/acp-22-371-2022, 2022
Short summary
Short summary
There has been a lack of research into HONO in coastal cities with low concentrations of PM2.5, but strong sunlight and high humidity. Insufficient research on coastal cities with good air quality has resulted in certain obstacles to assessing the photochemical processes in these areas. Furthermore, HONO contributes to the atmospheric photochemistry depending on the season. Therefore, observations of HONO across four seasons in the southeastern coastal area of China are urgently needed.
Will S. Drysdale, Adam R. Vaughan, Freya A. Squires, Sam J. Cliff, Stefan Metzger, David Durden, Natchaya Pingintha-Durden, Carole Helfter, Eiko Nemitz, C. Sue B. Grimmond, Janet Barlow, Sean Beevers, Gregor Stewart, David Dajnak, Ruth M. Purvis, and James D. Lee
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-982, https://doi.org/10.5194/acp-2021-982, 2022
Revised manuscript accepted for ACP
Short summary
Short summary
Measurements of nitrogen oxide and nitrogen dioxide (NOx) emissions are important for a good understanding of air quality. While there are many direct measurements of NOx concentration, there are very few measurements of its emission. Measurements of emissions provide constraints to emissions inventories and air quality models. This article presents measurements of NOx emission from the BT Tower in central London in 2017, and compares them with inventories, finding they underestimate by ~1.48 x.
Xueli Liu, Liang Ran, Weili Lin, Xiaobin Xu, Zhiqiang Ma, Fan Dong, Di He, Liyan Zhou, Qingfeng Shi, and Yao Wang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-866, https://doi.org/10.5194/acp-2021-866, 2022
Revised manuscript accepted for ACP
Short summary
Short summary
Significant decreases in the annual mean NOx from 2011 to 2016 and SO2 from 2008 to 2016 affirm the effectiveness of relevant control measures on the reduction in NOx and SO2 emissions in the North China Plain (NCP). NOx at SDZ had weaker influence than SO2 by the emission reduction in Beijing and other areas in NCP. The increase in the amount of motor vehicles and the weak traffic restrictions have caused vehicle emissions on NOx that indicated that NOx emission control should be strengthened.
Xuefei Ma, Zhaofeng Tan, Keding Lu, Xinping Yang, Xiaorui Chen, Haichao Wang, Shiyi Chen, Xin Fang, Shule Li, Xin Li, Jingwei Liu, Ying Liu, Shengrong Lou, Wanyi Qiu, Hongli Wang, Limin Zeng, and Yuanhang Zhang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-1021, https://doi.org/10.5194/acp-2021-1021, 2022
Revised manuscript accepted for ACP
Short summary
Short summary
This paper presents the first OH and HO2 radicals observation made in Yangtze River Delta in China and strong oxidation capacity is discovered based on direct measurements. The impacts of new OH regeneration mechanism, monoterpene oxidation and HO2 uptake process are examined and discussed. The sources and the factors to sustain such strong oxidation is the key to understand the ozone pollutions formed in this area.
Lulu Cui, Di Wu, Shuxiao Wang, Qingcheng Xu, Ruolan Hu, and Jiming Hao
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-959, https://doi.org/10.5194/acp-2021-959, 2021
Revised manuscript accepted for ACP
Short summary
Short summary
A one-year campaign was conducted to characterize VOCs at an urban site in Beijing during different episodes. VOCs from fuel evaporation and diesel exhaust particularly toluene, xylenes, trans-2-butene, acrolein, methyl methacrylate, vinyl acetate, 1-butene and 1-hexene were the main contributors. VOCs from diesel exhaust and coal/biomass combustion were found to be the dominant contributors for SOAFP, particularly the VOC species of toluene, 1-hexene, xylenes, ethylbenzene and styrene.
Jin Liao, Glenn M. Wolfe, Reem A. Hannun, Jason M. St. Clair, Thomas F. Hanisco, Jessica B. Gilman, Aaron Lamplugh, Vanessa Selimovic, Glenn S. Diskin, John B. Nowak, Hannah S. Halliday, Joshua P. DiGangi, Samuel R. Hall, Kirk Ullmann, Christopher D. Holmes, Charles H. Fite, Anxhelo Agastra, Thomas B. Ryerson, Jeff Peischl, Ilann Bourgeois, Carsten Warneke, Matthew M. Coggon, Georgios I. Gkatzelis, Kanako Sekimoto, Alan Fried, Dirk Richter, Petter Weibring, Eric C. Apel, Rebecca S. Hornbrook, Steven S. Brown, Caroline C. Womack, Michael A. Robinson, Rebecca A. Washenfelder, Patrick R. Veres, and J. Andrew Neuman
Atmos. Chem. Phys., 21, 18319–18331, https://doi.org/10.5194/acp-21-18319-2021, https://doi.org/10.5194/acp-21-18319-2021, 2021
Short summary
Short summary
Formaldehyde (HCHO) is an important oxidant precursor and affects the formation of O3 and other secondary pollutants in wildfire plumes. We disentangle the processes controlling HCHO evolution from wildfire plumes sampled by NASA DC-8 during FIREX-AQ. We find that OH abundance rather than normalized OH reactivity is the main driver of fire-to-fire variability in HCHO secondary production and estimate an effective HCHO yield per volatile organic compound molecule oxidized in wildfire plumes.
Clara M. Nussbaumer, John N. Crowley, Jan Schuladen, Jonathan Williams, Sascha Hafermann, Andreas Reiffs, Raoul Axinte, Hartwig Harder, Cheryl Ernest, Anna Novelli, Katrin Sala, Monica Martinez, Chinmay Mallik, Laura Tomsche, Christian Plass-Dülmer, Birger Bohn, Jos Lelieveld, and Horst Fischer
Atmos. Chem. Phys., 21, 18413–18432, https://doi.org/10.5194/acp-21-18413-2021, https://doi.org/10.5194/acp-21-18413-2021, 2021
Short summary
Short summary
HCHO is an important atmospheric trace gas influencing the photochemical processes in the Earth’s atmosphere, including the budget of HOx and the abundance of tropospheric O3. This research presents the photochemical calculations of HCHO and O3 based on three field campaigns across Europe. We show that HCHO production via the oxidation of only four volatile organic compound precursors, i.e., CH4, CH3CHO, C5H8 and CH3OH, can balance the observed loss at all sites well.
Leigh R. Crilley, Louisa J. Kramer, Francis D. Pope, Chris Reed, James D. Lee, Lucy J. Carpenter, Lloyd D. J. Hollis, Stephen M. Ball, and William J. Bloss
Atmos. Chem. Phys., 21, 18213–18225, https://doi.org/10.5194/acp-21-18213-2021, https://doi.org/10.5194/acp-21-18213-2021, 2021
Short summary
Short summary
Nitrous acid (HONO) is a key source of atmospheric oxidants. We evaluate if the ocean surface is a source of HONO for the marine boundary layer, using measurements from two contrasting coastal locations. We observed no evidence for a night-time ocean surface source, in contrast to previous work. This points to significant geographical variation in the predominant HONO formation mechanisms in marine environments, reflecting possible variability in the sea-surface microlayer composition.
Ahsan Mozaffar, Yan-Lin Zhang, Yu-Chi Lin, Feng Xie, Mei-Yi Fan, and Fang Cao
Atmos. Chem. Phys., 21, 18087–18099, https://doi.org/10.5194/acp-21-18087-2021, https://doi.org/10.5194/acp-21-18087-2021, 2021
Short summary
Short summary
We performed a long-term investigation of ambient volatile organic compounds (VOCs) in an industrial area in Nanjing, China. Followed by alkanes, halocarbons and aromatics were the most abundant VOC groups. Vehicle-related emissions were the major VOC sources in the study area. Aromatic and alkene VOCs were responsible for most of the atmospheric reactions.
Yulu Qiu, Zhiqiang Ma, Ke Li, Mengyu Huang, Jiujiang Sheng, Ping Tian, Jia Zhu, Weiwei Pu, Yingxiao Tang, Tingting Han, Huaigang Zhou, and Hong Liao
Atmos. Chem. Phys., 21, 17995–18010, https://doi.org/10.5194/acp-21-17995-2021, https://doi.org/10.5194/acp-21-17995-2021, 2021
Short summary
Short summary
Photochemical pollution over the North China Plain (NCP) is attracting much concern. Our observations at a rural site in the NCP identified high peroxyacetyl nitrate (PAN) concentrations, even on cold days. Increased acetaldehyde concentration and hydroxyl radical production rates drive fast PAN formation. Moreover, our study emphasizes the importance of formaldehyde photolysis in PAN formation and calls for implementing strict volatile organic compound controls after summer over the NCP.
Ira Leifer, Christopher Melton, and Donald R. Blake
Atmos. Chem. Phys., 21, 17607–17629, https://doi.org/10.5194/acp-21-17607-2021, https://doi.org/10.5194/acp-21-17607-2021, 2021
Short summary
Short summary
We demonstrate a novel application using air quality station data to derive 3-decade-averaged emissions from the Coal Oil Point (COP) seep field, a highly spatially and temporally variable geological migration system. Emissions were 19 Gg per year, suggesting that the COP seep field contributes 0.27 % of the global marine seep budget based on a recent estimate. This provides an advance over snapshot survey values by accounting for seasonal and interannual variations.
Dirk Dienhart, John N. Crowley, Efstratios Bourtsoukidis, Achim Edtbauer, Philipp G. Eger, Lisa Ernle, Hartwig Harder, Bettina Hottmann, Monica Martinez, Uwe Parchatka, Jean-Daniel Paris, Eva Y. Pfannerstill, Roland Rohloff, Jan Schuladen, Christof Stönner, Ivan Tadic, Sebastian Tauer, Nijing Wang, Jonathan Williams, Jos Lelieveld, and Horst Fischer
Atmos. Chem. Phys., 21, 17373–17388, https://doi.org/10.5194/acp-21-17373-2021, https://doi.org/10.5194/acp-21-17373-2021, 2021
Short summary
Short summary
We present the first ship-based in situ measurements of formaldehyde (HCHO), hydroxyl radicals (OH) and the OH reactivity around the Arabian Peninsula. Regression analysis of the HCHO production rate and the related OH chemistry revealed the regional HCHO yield αeff, which represents the different chemical regimes encountered. Highest values were found for the Arabian Gulf (also known as the Persian Gulf), which highlights this region as a hotspot of photochemical air pollution.
James M. Roberts
Atmos. Chem. Phys., 21, 16793–16795, https://doi.org/10.5194/acp-21-16793-2021, https://doi.org/10.5194/acp-21-16793-2021, 2021
Short summary
Short summary
This comment provides evidence that recently reported measurements of the isotope composition of wildfire-derived oxides of nitrogen have a significant interference from other nitrogen compounds. In addition, the conceptual model used to interpret the results was missing several key reactions.
Shohei Nomura, Manish Naja, M. Kawser Ahmed, Hitoshi Mukai, Yukio Terao, Toshinobu Machida, Motoki Sasakawa, and Prabir K. Patra
Atmos. Chem. Phys., 21, 16427–16452, https://doi.org/10.5194/acp-21-16427-2021, https://doi.org/10.5194/acp-21-16427-2021, 2021
Short summary
Short summary
Long-term measurements of greenhouse gases (GHGs) in India and Bangladesh unveiled specific characteristics in their variations in these regions. Plants including rice cultivated in winter and summer strongly affected seasonal variations and levels in CO2 and CH4. Long-term variability of GHGs showed quite different features in their growth rates from those in Mauna Loa. GHG trends in this region seemed to be hardly affected by El Niño–Southern Oscillation (ENSO).
Zachary C. J. Decker, Michael A. Robinson, Kelley C. Barsanti, Ilann Bourgeois, Matthew M. Coggon, Joshua P. DiGangi, Glenn S. Diskin, Frank M. Flocke, Alessandro Franchin, Carley D. Fredrickson, Georgios I. Gkatzelis, Samuel R. Hall, Hannah Halliday, Christopher D. Holmes, L. Gregory Huey, Young Ro Lee, Jakob Lindaas, Ann M. Middlebrook, Denise D. Montzka, Richard Moore, J. Andrew Neuman, John B. Nowak, Brett B. Palm, Jeff Peischl, Felix Piel, Pamela S. Rickly, Andrew W. Rollins, Thomas B. Ryerson, Rebecca H. Schwantes, Kanako Sekimoto, Lee Thornhill, Joel A. Thornton, Geoffrey S. Tyndall, Kirk Ullmann, Paul Van Rooy, Patrick R. Veres, Carsten Warneke, Rebecca A. Washenfelder, Andrew J. Weinheimer, Elizabeth Wiggins, Edward Winstead, Armin Wisthaler, Caroline Womack, and Steven S. Brown
Atmos. Chem. Phys., 21, 16293–16317, https://doi.org/10.5194/acp-21-16293-2021, https://doi.org/10.5194/acp-21-16293-2021, 2021
Short summary
Short summary
To understand air quality impacts from wildfires, we need an accurate picture of how wildfire smoke changes chemically both day and night as sunlight changes the chemistry of smoke. We present a chemical analysis of wildfire smoke as it changes from midday through the night. We use aircraft observations from the FIREX-AQ field campaign with a chemical box model. We find that even under sunlight typical
nighttimechemistry thrives and controls the fate of key smoke plume chemical processes.
Hannah Clark, Yasmine Bennouna, Maria Tsivlidou, Pawel Wolff, Bastien Sauvage, Brice Barret, Eric Le Flochmoën, Romain Blot, Damien Boulanger, Jean-Marc Cousin, Philippe Nédélec, Andreas Petzold, and Valérie Thouret
Atmos. Chem. Phys., 21, 16237–16256, https://doi.org/10.5194/acp-21-16237-2021, https://doi.org/10.5194/acp-21-16237-2021, 2021
Short summary
Short summary
We examined 27 years of IAGOS (In-service Aircraft for a Global Observing System) profiles at Frankfurt to see if there were unusual features during the spring of 2020 related to COVID-19 lockdowns in Europe. Increased ozone near the surface was partly linked to the reduction in emissions. Carbon monoxide decreased near the surface, but the impact of the lockdowns was offset by polluted air masses from elsewhere. There were small reductions in ozone and carbon monoxide in the free troposphere.
Men Xia, Xiang Peng, Weihao Wang, Chuan Yu, Zhe Wang, Yee Jun Tham, Jianmin Chen, Hui Chen, Yujing Mu, Chenglong Zhang, Pengfei Liu, Likun Xue, Xinfeng Wang, Jian Gao, Hong Li, and Tao Wang
Atmos. Chem. Phys., 21, 15985–16000, https://doi.org/10.5194/acp-21-15985-2021, https://doi.org/10.5194/acp-21-15985-2021, 2021
Short summary
Short summary
ClNO2 is an important precursor of chlorine radical that affects photochemistry. However, its production and impact are not well understood. Our study presents field observations of ClNO2 at three sites in northern China. These observations provide new insights into nighttime processes that produce ClNO2 and the significant impact of ClNO2 on secondary pollutions during daytime. The results improve the understanding of photochemical pollution in the lower part of the atmosphere.
Hui Zhang, Xuewu Fu, Ben Yu, Baoxin Li, Peng Liu, Guoqing Zhang, Leiming Zhang, and Xinbin Feng
Atmos. Chem. Phys., 21, 15847–15859, https://doi.org/10.5194/acp-21-15847-2021, https://doi.org/10.5194/acp-21-15847-2021, 2021
Short summary
Short summary
Our observations of speciated atmospheric mercury at the Waliguan GAW Baseline Observatory show that concentrations of gaseous elemental mercury (GEM) and particulate bound mercury (PBM) were elevated compared to the Northern Hemisphere background. We propose that the major sources of GEM and PBM were mainly related to anthropogenic emissions and desert dust sources. This study highlights that dust-related sources played an important role in the variations of PBM in the Tibetan Plateau.
Deborah F. McGlynn, Laura E. R. Barry, Manuel T. Lerdau, Sally E. Pusede, and Gabriel Isaacman-VanWertz
Atmos. Chem. Phys., 21, 15755–15770, https://doi.org/10.5194/acp-21-15755-2021, https://doi.org/10.5194/acp-21-15755-2021, 2021
Short summary
Short summary
We present 1 year of hourly