Articles | Volume 20, issue 21
https://doi.org/10.5194/acp-20-12905-2020
https://doi.org/10.5194/acp-20-12905-2020
Research article
 | 
05 Nov 2020
Research article |  | 05 Nov 2020

Trends in global tropospheric hydroxyl radical and methane lifetime since 1850 from AerChemMIP

David S. Stevenson, Alcide Zhao, Vaishali Naik, Fiona M. O'Connor, Simone Tilmes, Guang Zeng, Lee T. Murray, William J. Collins, Paul T. Griffiths, Sungbo Shim, Larry W. Horowitz, Lori T. Sentman, and Louisa Emmons

Related authors

Evaluating tropospheric nitrogen dioxide in UKCA using OMI satellite retrievals over south and east Asia
Alok K. Pandey, David S. Stevenson, Alcide Zhao, Richard J. Pope, Ryan Hossaini, Krishan Kumar, and Martyn P. Chipperfield
Atmos. Chem. Phys., 25, 4785–4802, https://doi.org/10.5194/acp-25-4785-2025,https://doi.org/10.5194/acp-25-4785-2025, 2025
Short summary
A dynamical process-based model for quantifying global agricultural ammonia emissions – AMmonia–CLIMate v1.0 (AMCLIM v1.0) – Part 2: livestock farming
Jize Jiang, David S. Stevenson, Aimable Uwizeye, Giuseppe Tempio, Alessandra Falcucci, Flavia Casu, and Mark A. Sutton
EGUsphere, https://doi.org/10.5194/egusphere-2024-3803,https://doi.org/10.5194/egusphere-2024-3803, 2024
Short summary
A dynamical process-based model for quantifying global agricultural ammonia emissions – AMmonia–CLIMate v1.0 (AMCLIM v1.0) – Part 1: Land module for simulating emissions from synthetic fertilizer use
Jize Jiang, David S. Stevenson, and Mark A. Sutton
Geosci. Model Dev., 17, 8181–8222, https://doi.org/10.5194/gmd-17-8181-2024,https://doi.org/10.5194/gmd-17-8181-2024, 2024
Short summary
Soil Deposition of Atmospheric Hydrogen Constrained using Planetary Scale Observations
Alexander Karim Tardito Chaudhri and David S. Stevenson
EGUsphere, https://doi.org/10.5194/egusphere-2024-3247,https://doi.org/10.5194/egusphere-2024-3247, 2024
Short summary
Evaluation of WRF-Chem-simulated meteorology and aerosols over northern India during the severe pollution episode of 2016
Prerita Agarwal, David S. Stevenson, and Mathew R. Heal
Atmos. Chem. Phys., 24, 2239–2266, https://doi.org/10.5194/acp-24-2239-2024,https://doi.org/10.5194/acp-24-2239-2024, 2024
Short summary

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Assessing the ability to quantify the decrease in NOx anthropogenic emissions in 2019 compared to 2005 using OMI and TROPOMI satellite observations
Audrey Fortems-Cheiney, Grégoire Broquet, Elise Potier, Antoine Berchet, Isabelle Pison, Adrien Martinez, Robin Plauchu, Rimal Abeed, Aurélien Sicsik-Paré, Gaelle Dufour, Adriana Coman, Dilek Savas, Guillaume Siour, Henk Eskes, Hugo A. C. Denier van der Gon, and Stijn N. C. Dellaert
Atmos. Chem. Phys., 25, 6047–6068, https://doi.org/10.5194/acp-25-6047-2025,https://doi.org/10.5194/acp-25-6047-2025, 2025
Short summary
Tracking daily NOx emissions from an urban agglomeration based on TROPOMI NO2 and a local ensemble transform Kalman filter
Yawen Kong, Bo Zheng, and Yuxi Liu
Atmos. Chem. Phys., 25, 5959–5976, https://doi.org/10.5194/acp-25-5959-2025,https://doi.org/10.5194/acp-25-5959-2025, 2025
Short summary
Evaluation of O3, H2O, CO, and NOy climatologies simulated by four global models in the upper troposphere–lower stratosphere with IAGOS measurements
Yann Cohen, Didier Hauglustaine, Nicolas Bellouin, Marianne Tronstad Lund, Sigrun Matthes, Agnieszka Skowron, Robin Thor, Ulrich Bundke, Andreas Petzold, Susanne Rohs, Valérie Thouret, Andreas Zahn, and Helmut Ziereis
Atmos. Chem. Phys., 25, 5793–5836, https://doi.org/10.5194/acp-25-5793-2025,https://doi.org/10.5194/acp-25-5793-2025, 2025
Short summary
Source contribution to ozone pollution during June 2021 fire events in Arizona: insights from WRF-Chem-tagged O3 and CO
Yafang Guo, Mohammad Amin Mirrezaei, Armin Sorooshian, and Avelino F. Arellano
Atmos. Chem. Phys., 25, 5591–5616, https://doi.org/10.5194/acp-25-5591-2025,https://doi.org/10.5194/acp-25-5591-2025, 2025
Short summary
High-resolution mapping of on-road vehicle emissions with real-time traffic datasets based on big data
Yujia Wang, Hongbin Wang, Bo Zhang, Peng Liu, Xinfeng Wang, Shuchun Si, Likun Xue, Qingzhu Zhang, and Qiao Wang
Atmos. Chem. Phys., 25, 5537–5555, https://doi.org/10.5194/acp-25-5537-2025,https://doi.org/10.5194/acp-25-5537-2025, 2025
Short summary

Cited articles

Allan, W., Struthers, H., and Lowe, D.: Methane carbon isotope effects caused by atomic chlorine in the marine boundary layer: Global model results compared with Southern Hemisphere measurements, J. Geophys. Res.-Atmos., 112, D04306, https://doi.org/10.1029/2006JD007369, 2007. 
Bousquet, P., Hauglustaine, D. A., Peylin, P., Carouge, C., and Ciais, P.: Two decades of OH variability as inferred by an inversion of atmospheric transport and chemistry of methyl chloroform, Atmos. Chem. Phys., 5, 2635–2656, https://doi.org/10.5194/acp-5-2635-2005, 2005. 
Collins, W. J., Lamarque, J.-F., Schulz, M., Boucher, O., Eyring, V., Hegglin, M. I., Maycock, A., Myhre, G., Prather, M., Shindell, D., and Smith, S. J.: AerChemMIP: quantifying the effects of chemistry and aerosols in CMIP6, Geosci. Model Dev., 10, 585–607, https://doi.org/10.5194/gmd-10-585-2017, 2017. 
Derwent R. G.: The influence of human activities on the distribution of hydroxyl radicals in the troposphere, Philos. T. Roy. Soc. A, 354, 501–531, https://doi.org/10.1098/rsta.1996.0018, 1996. 
Download
Short summary
We present historical trends in atmospheric oxidizing capacity (OC) since 1850 from the latest generation of global climate models and compare these with estimates from measurements. OC controls levels of many key reactive gases, including methane (CH4). We find small model trends up to 1980, then increases of about 9 % up to 2014, disagreeing with (uncertain) measurement-based trends. Major drivers of OC trends are emissions of CH4, NOx, and CO; these will be important for future CH4 trends.
Share
Altmetrics
Final-revised paper
Preprint