Articles | Volume 18, issue 10
Atmos. Chem. Phys., 18, 7439–7452, 2018

Special issue: Chemistry–Climate Modelling Initiative (CCMI) (ACP/AMT/ESSD/GMD...

Atmos. Chem. Phys., 18, 7439–7452, 2018

Research article 29 May 2018

Research article | 29 May 2018

Spatial and temporal variability of interhemispheric transport times

Xiaokang Wu et al.

Related authors

Molecular characterization of alkyl nitrates in atmospheric aerosols by ion mobility mass spectrometry
Xuan Zhang, Haofei Zhang, Wen Xu, Xiaokang Wu, Geoffrey S. Tyndall, John J. Orlando, John T. Jayne, Douglas R. Worsnop, and Manjula R. Canagaratna
Atmos. Meas. Tech., 12, 5535–5545,,, 2019
Short summary

Related subject area

Subject: Dynamics | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Robust winter warming over Eurasia under stratospheric sulfate geoengineering – the role of stratospheric dynamics
Antara Banerjee, Amy H. Butler, Lorenzo M. Polvani, Alan Robock, Isla R. Simpson, and Lantao Sun
Atmos. Chem. Phys., 21, 6985–6997,,, 2021
Short summary
Parameterizing the vertical downward dispersion of ship exhaust gas in the near field
Ronny Badeke, Volker Matthias, and David Grawe
Atmos. Chem. Phys., 21, 5935–5951,,, 2021
Short summary
Anthropogenic aerosol forcing of the Atlantic meridional overturning circulation and the associated mechanisms in CMIP6 models
Taufiq Hassan, Robert J. Allen, Wei Liu, and Cynthia A. Randles
Atmos. Chem. Phys., 21, 5821–5846,,, 2021
Short summary
Sensitivities of the Madden–Julian oscillation forecasts to configurations of physics in the ECMWF global model
Jun-Ichi Yano and Nils P. Wedi
Atmos. Chem. Phys., 21, 4759–4778,,, 2021
Short summary
Sensitivity of modeled Indian monsoon to Chinese and Indian aerosol emissions
Peter Sherman, Meng Gao, Shaojie Song, Alex T. Archibald, Nathan Luke Abraham, Jean-François Lamarque, Drew Shindell, Gregory Faluvegi, and Michael B. McElroy
Atmos. Chem. Phys., 21, 3593–3605,,, 2021
Short summary

Cited articles

Bowman, K. P.: Transport of carbon monoxide from the tropics to the extratropics, J. Geophys. Res.-Atmos., 111,, 2006. a
Bowman, K. P. and Carrie, G. D.: The mean-meridional transport circulation of the troposphere in an idealized GCM, J. Atmos. Sci., 59, 1502–1514, 2002. a, b
Bowman, K. P. and Cohen, P. J.: Interhemispheric exchange by seasonal modulation of the Hadley circulation, J. Atmos. Sci., 54, 2045–2059, 1997. a
Bowman, K. P. and Erukhimova, T.: Comparison of global-scale Lagrangian transport properties of the NCEP reanalysis and CCM3, J. Climate, 17, 1135–1146, 2004. a, b
Deleersnijder, E., Delhez, E., and Beckers, J.: Some properties of generalized age-distribution equations in fluid dynamics, SIAM J. Appl. Math., 61, 1526–1544, 2001. a
Short summary
The seasonal and interannual variability of transport times from northern mid-latitudes into the southern hemisphere is examined using simulations of age tracers. The largest variability occurs near the surface close to the tropical convergence zones, but the peak is further south and there is a smaller tropical–extratropical contrast for tracers with more rapid loss. Hence the variability of trace gases in the southern extratropics will vary with their chemical lifetime.
Final-revised paper