Articles | Volume 18, issue 17
Research article
06 Sep 2018
Research article |  | 06 Sep 2018

The climate impact of aerosols on the lightning flash rate: is it detectable from long-term measurements?

Qianqian Wang, Zhanqing Li, Jianping Guo, Chuanfeng Zhao, and Maureen Cribb

Related authors

Elucidating the boundary layer turbulence dissipation rate using high-resolution measurements from a radar wind profiler network over the Tibetan Plateau
Deli Meng, Jianping Guo, Xiaoran Guo, Yinjun Wang, Ning Li, Yuping Sun, Zhen Zhang, Na Tang, Haoran Li, Fan Zhang, Bing Tong, Hui Xu, and Tianmeng Chen
EGUsphere,,, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Extending the wind profile beyond the surface layer by combining physical and machine learning approaches
Boming Liu, Xin Ma, Jianping Guo, Renqiang Wen, Hui Li, Shikuan Jin, Yingying Ma, Xiaoran Guo, and Wei Gong
Atmos. Chem. Phys., 24, 4047–4063,,, 2024
Short summary
Revisiting the evolution of downhill thunderstorms over Beijing: A new perspective from radar wind profiler mesonet
Xiaoran Guo, Jianping Guo, Tianmeng Chen, Ning Li, Fan Zhang, and Yuping Sun
EGUsphere,,, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
LGHAP v2: A global gap-free aerosol optical depth and PM2.5 concentration dataset since 2000 derived via big earth data analytics
Kaixu Bai, Ke Li, Liuqing Shao, Xinran Li, Chaoshun Liu, Zhengqiang Li, Mingliang Ma, Di Han, Yibing Sun, Zhe Zheng, Ruijie Li, Ni-Bin Chang, and Jianping Guo
Earth Syst. Sci. Data Discuss.,,, 2024
Revised manuscript accepted for ESSD
Short summary
A merged continental planetary boundary layer height dataset based on high-resolution radiosonde measurements, ERA5 reanalysis, and GLDAS
Jianping Guo, Jian Zhang, Jia Shao, Tianmeng Chen, Kaixu Bai, Yuping Sun, Ning Li, Jingyan Wu, Rui Li, Jian Li, Qiyun Guo, Jason B. Cohen, Panmao Zhai, Xiaofeng Xu, and Fei Hu
Earth Syst. Sci. Data, 16, 1–14,,, 2024
Short summary

Related subject area

Subject: Aerosols | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Opposite effects of aerosols and meteorological parameters on warm clouds in two contrasting regions over eastern China
Yuqin Liu, Tao Lin, Jiahua Zhang, Fu Wang, Yiyi Huang, Xian Wu, Hong Ye, Guoqin Zhang, Xin Cao, and Gerrit de Leeuw
Atmos. Chem. Phys., 24, 4651–4673,,, 2024
Short summary
Effect of wind speed on marine aerosol optical properties over remote oceans with use of spaceborne lidar observations
Kangwen Sun, Guangyao Dai, Songhua Wu, Oliver Reitebuch, Holger Baars, Jiqiao Liu, and Suping Zhang
Atmos. Chem. Phys., 24, 4389–4409,,, 2024
Short summary
Assessment of smoke plume height products derived from multisource satellite observations using lidar-derived height metrics for wildfires in the western US
Jingting Huang, S. Marcela Loría-Salazar, Min Deng, Jaehwa Lee, and Heather A. Holmes
Atmos. Chem. Phys., 24, 3673–3698,,, 2024
Short summary
A remote sensing algorithm for vertically resolved cloud condensation nuclei number concentrations from airborne and spaceborne lidar observations
Piyushkumar N. Patel, Jonathan H. Jiang, Ritesh Gautam, Harish Gadhavi, Olga Kalashnikova, Michael J. Garay, Lan Gao, Feng Xu, and Ali Omar
Atmos. Chem. Phys., 24, 2861–2883,,, 2024
Short summary
Opinion: Aerosol remote sensing over the next 20 years
Lorraine A. Remer, Robert C. Levy, and J. Vanderlei Martins
Atmos. Chem. Phys., 24, 2113–2127,,, 2024
Short summary

Cited articles

Altaratz, O., Koren, I., Yair, Y., and Price, C.: Lightning response to smoke from Amazonian fires, Geophys. Res. Lett., 37, L07801,, 2010.
Altaratz, O., Kucienska, B., Kostinski, A., Raga, G. B., and Koren, I.: Global association of aerosol with flash density of intense lightning, Environ. Res. Lett., 12, 114037,, 2017.
Andreae, M. O.: Biomass burning: its history, use, and distribution and its impact, in: Global Biomass Burning: Atmospheric, Climatic, and Biospheric Implications, MIT Press, Cambridge, MA, 3–21, 1991.
Andreae, M. O.: Correlation between cloud condensation nuclei concentration and aerosol optical thickness in remote and polluted regions, Atmos. Chem. Phys., 9, 543–556,, 2009.
Bang, S. D. and Zipser, E. J.: Seeking reasons for the differences in size spectra of electrified storms over land and ocean, J. Geophys. Res.-Atmos., 121, 9048–9068,, 2016.
Short summary
Based on 11-year data of lightning flashes, aerosol optical depth (AOD) and composion, and meteorological variables, we investigated the roles of aerosol and meteorological variables in lightning. Pronounced differences in lightning were found between clean and polluted conditions. Systematic changes of boomerang shape were found in lightning frequency with AOD, with a turning point around AOD = 0.3, beyond which lightning activity is saturated for smoke aerosols but always suppressed by dust.
Final-revised paper