Articles | Volume 18, issue 17
https://doi.org/10.5194/acp-18-12797-2018
https://doi.org/10.5194/acp-18-12797-2018
Research article
 | 
06 Sep 2018
Research article |  | 06 Sep 2018

The climate impact of aerosols on the lightning flash rate: is it detectable from long-term measurements?

Qianqian Wang, Zhanqing Li, Jianping Guo, Chuanfeng Zhao, and Maureen Cribb

Related authors

Development and application of the Round-trip Drifting Sounding System (RDSS)
Xiaozhong Cao, Qiyun Guo, Haowen Luo, Rongkang Yang, Peng Zhang, Jianping Guo, Jincheng Wang, Die Xiao, Jianping Du, Zhongliang Sun, Shijun Liu, Sijie Chen, and Anfan Huang
EGUsphere, https://doi.org/10.5194/egusphere-2025-2012,https://doi.org/10.5194/egusphere-2025-2012, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Machine learning significantly improves the simulation of hourly-to-yearly scale cloud nuclei concentration and radiative forcing in polluted atmosphere
Jingye Ren, Songjian Zou, Honghao Xu, Guiquan Liu, Zhe Wang, Anran Zhang, Chuanfeng Zhao, Min Hu, Dongjie Shang, Lizi Tang, Ru-Jin Huang, Yele Sun, and Fang Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-1483,https://doi.org/10.5194/egusphere-2025-1483, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
IMPMCT: a dataset of Integrated Multi-source Polar Meso-Cyclone Tracks
Runzhuo Fang, Jinfeng Ding, Wenjuan Gao, Xi Liang, Zhuoqi Chen, Chuanfeng Zhao, Haijin Dai, and Lei Liu
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-186,https://doi.org/10.5194/essd-2025-186, 2025
Preprint under review for ESSD
Short summary
Wildfires heat the middle troposphere over the Himalayas and Tibetan Plateau during the peak of fire season
Qiaomin Pei, Chuanfeng Zhao, Yikun Yang, Annan Chen, Zhiyuan Cong, Xin Wan, Haotian Zhang, and Guangming Wu
EGUsphere, https://doi.org/10.5194/egusphere-2025-1172,https://doi.org/10.5194/egusphere-2025-1172, 2025
Short summary
Low-level atmospheric turbulence dataset in China generated by combining radar wind profiler and radiosonde observations
Deli Meng, Jianping Guo, Juan Chen, Xiaoran Guo, Ning Li, Yuping Sun, Zhen Zhang, Na Tang, Hui Xu, Tianmeng Chen, Rongfang Yang, and Jiajia Hua
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-138,https://doi.org/10.5194/essd-2025-138, 2025
Revised manuscript accepted for ESSD
Short summary

Related subject area

Subject: Aerosols | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Fluorescence spectra of atmospheric aerosols
Jens Reichardt, Felix Lauermann, and Oliver Behrendt
Atmos. Chem. Phys., 25, 5857–5892, https://doi.org/10.5194/acp-25-5857-2025,https://doi.org/10.5194/acp-25-5857-2025, 2025
Short summary
Invisible aerosol layers: improved lidar detection capabilities by means of laser-induced aerosol fluorescence
Benedikt Gast, Cristofer Jimenez, Albert Ansmann, Moritz Haarig, Ronny Engelmann, Felix Fritzsch, Athena A. Floutsi, Hannes Griesche, Kevin Ohneiser, Julian Hofer, Martin Radenz, Holger Baars, Patric Seifert, and Ulla Wandinger
Atmos. Chem. Phys., 25, 3995–4011, https://doi.org/10.5194/acp-25-3995-2025,https://doi.org/10.5194/acp-25-3995-2025, 2025
Short summary
Wildfires heat the middle troposphere over the Himalayas and Tibetan Plateau during the peak of fire season
Qiaomin Pei, Chuanfeng Zhao, Yikun Yang, Annan Chen, Zhiyuan Cong, Xin Wan, Haotian Zhang, and Guangming Wu
EGUsphere, https://doi.org/10.5194/egusphere-2025-1172,https://doi.org/10.5194/egusphere-2025-1172, 2025
Short summary
Characterization of aerosol optical depth (AOD) anomalies in September and October 2022 over Skukuza in South Africa
Marion Ranaivombola, Nelson Bègue, Lucas Vaz Peres, Farahnaz Fazel-Rastgar, Venkataraman Sivakumar, Gisèle Krysztofiak, Gwenaël Berthet, Fabrice Jegou, Stuart Piketh, and Hassan Bencherif
Atmos. Chem. Phys., 25, 3519–3540, https://doi.org/10.5194/acp-25-3519-2025,https://doi.org/10.5194/acp-25-3519-2025, 2025
Short summary
Technical note: Evolution of convective boundary layer height estimated by Ka-band continuous millimeter wave radar at Wuhan in central China
Zirui Zhang, Kaiming Huang, Fan Yi, Wei Cheng, Fuchao Liu, Jian Zhang, and Yue Jia
Atmos. Chem. Phys., 25, 3347–3361, https://doi.org/10.5194/acp-25-3347-2025,https://doi.org/10.5194/acp-25-3347-2025, 2025
Short summary

Cited articles

Altaratz, O., Koren, I., Yair, Y., and Price, C.: Lightning response to smoke from Amazonian fires, Geophys. Res. Lett., 37, L07801, https://doi.org/10.1029/2010GL042679, 2010.
Altaratz, O., Kucienska, B., Kostinski, A., Raga, G. B., and Koren, I.: Global association of aerosol with flash density of intense lightning, Environ. Res. Lett., 12, 114037, https://doi.org/10.1088/1748-9326/aa922b, 2017.
Andreae, M. O.: Biomass burning: its history, use, and distribution and its impact, in: Global Biomass Burning: Atmospheric, Climatic, and Biospheric Implications, MIT Press, Cambridge, MA, 3–21, 1991.
Andreae, M. O.: Correlation between cloud condensation nuclei concentration and aerosol optical thickness in remote and polluted regions, Atmos. Chem. Phys., 9, 543–556, https://doi.org/10.5194/acp-9-543-2009, 2009.
Bang, S. D. and Zipser, E. J.: Seeking reasons for the differences in size spectra of electrified storms over land and ocean, J. Geophys. Res.-Atmos., 121, 9048–9068, https://doi.org/10.1002/2016JD025150, 2016.
Download
Short summary
Based on 11-year data of lightning flashes, aerosol optical depth (AOD) and composion, and meteorological variables, we investigated the roles of aerosol and meteorological variables in lightning. Pronounced differences in lightning were found between clean and polluted conditions. Systematic changes of boomerang shape were found in lightning frequency with AOD, with a turning point around AOD = 0.3, beyond which lightning activity is saturated for smoke aerosols but always suppressed by dust.
Share
Altmetrics
Final-revised paper
Preprint