Preprints
https://doi.org/10.5194/acp-2019-248
https://doi.org/10.5194/acp-2019-248
29 Mar 2019
 | 29 Mar 2019
Status: this preprint was under review for the journal ACP but the revision was not accepted.

Evaluation of Anthropogenic Emissions and Ozone Pollution in the North China Plain: Insights from the Air Chemistry Research in Asia (ARIAs) Campaign

Hao He, Xinrong Ren, Sarah E. Benish, Zhanqing Li, Fei Wang, Yuying Wang, Timothy P. Canty, Xiaobo Dong, Feng Lv, Yongtao Hu, Tong Zhu, and Russell R. Dickerson

Abstract. To study the air pollution in the North China Plain (NCP), the Air Chemistry Research in Asia (ARIAs) campaign conducted airborne measurements of air pollutants including O3, CO, NO and NO2 in spring 2016. High concentrations of pollutants, > 100 ppbv of O3, > 500 ppbv of CO, and > 10 ppbv of NO2, were observed throughout the boundary layer during the campaign. CMAQ simulations with the 2010 EDGAR emissions can capture the basic spatial and temporal variations of ozone and its major precursors such as CO, NOx and VOCs, but significantly underestimate their concentrations. Observed emission enhancements of CO and NOx with respect to CO2 suggest the existence of combustion with high emissions such as biomass burning in the NCP. The comparison with emission factors from the 2010 EDGAR emission inventory indicates that the contribution of combustion with high emissions has been overestimated. Differences between CMAQ simulations with 2010 emissions and satellite observations in 2016 can reflect the change in anthropogenic emissions. NOx emissions decreased in megacities such as Beijing and Shanghai confirming the effectiveness of recent control measures in China, while in other cities and rural areas NOx emissions slightly increased, e.g., CMAQ predicts only ~ 80 % of NOx observed in the aircraft campaign area. CMAQ also underestimates HCHO (a proxy of VOCs, by ~ 20 %) and CO (by ~ 60 %) over the NCP, suggesting adjustments of the 2010 EDGAR emissions are needed to improve the model performance. HCHO/NO2 column ratios derived from OMI measurements and CMAQ simulations show that VOC-sensitive chemistry dominates the ozone photochemical production in eastern China, suggesting the importance of tightening regulations on VOCs emissions. We adjusted EDGAR emissions based on satellite observations, conducted sensitivity experiments of CMAQ, and achieved better model performance in simulating ozone, but underestimation still exists. Because of the VOC-sensitive environment in ozone chemistry over the NCP, future study and regulations should focus on VOCs emissions with the continuous controls on NOx emissions in China.

Hao He, Xinrong Ren, Sarah E. Benish, Zhanqing Li, Fei Wang, Yuying Wang, Timothy P. Canty, Xiaobo Dong, Feng Lv, Yongtao Hu, Tong Zhu, and Russell R. Dickerson
 
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
 
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Hao He, Xinrong Ren, Sarah E. Benish, Zhanqing Li, Fei Wang, Yuying Wang, Timothy P. Canty, Xiaobo Dong, Feng Lv, Yongtao Hu, Tong Zhu, and Russell R. Dickerson
Hao He, Xinrong Ren, Sarah E. Benish, Zhanqing Li, Fei Wang, Yuying Wang, Timothy P. Canty, Xiaobo Dong, Feng Lv, Yongtao Hu, Tong Zhu, and Russell R. Dickerson

Viewed

Total article views: 1,544 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
1,081 430 33 1,544 150 34 43
  • HTML: 1,081
  • PDF: 430
  • XML: 33
  • Total: 1,544
  • Supplement: 150
  • BibTeX: 34
  • EndNote: 43
Views and downloads (calculated since 29 Mar 2019)
Cumulative views and downloads (calculated since 29 Mar 2019)

Viewed (geographical distribution)

Total article views: 1,408 (including HTML, PDF, and XML) Thereof 1,406 with geography defined and 2 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Latest update: 23 Apr 2024
Download
Short summary
We conducted aircraft measurements of air pollution in the North China Plain. Concentrations of air pollutants higher than the air quality standards were observed. Our modeling study indicates that the rate of ozone (one major air pollutant) production is determined by volatile organic compounds (VOCs), which is confirmed by satellite observations. Currently, VOCs are not well regulated in China, so this study suggests the future direction of control measures to improve air quality in China.
Altmetrics