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Abstract 30 

To study the air pollution in the North China Plain (NCP), the Air Chemistry Research in 31 

Asia (ARIAs) campaign conducted airborne measurements of air pollutants including O3, CO, 32 

NO and NO2 in spring 2016. High concentrations of pollutants, >100 ppbv of O3, >500 ppbv of 33 

CO, and >10 ppbv of NO2, were observed throughout the boundary layer during the campaign. 34 

CMAQ simulations with the 2010 EDGAR emissions can capture the basic spatial and temporal 35 

variations of ozone and its major precursors such as CO, NOx and VOCs, but significantly 36 

underestimate their concentrations. Observed emission enhancements of CO and NOx with 37 

respect to CO2 suggest the existence of combustion with high emissions such as biomass burning 38 

in the NCP. The comparison with emission factors from the 2010 EDGAR emission inventory 39 

indicates that the contribution of combustion with high emissions has been overestimated. 40 

Differences between CMAQ simulations with 2010 emissions and satellite observations in 2016 41 

can reflect the change in anthropogenic emissions. NOx emissions decreased in megacities such 42 

as Beijing and Shanghai confirming the effectiveness of recent control measures in China, while 43 

in other cities and rural areas NOx emissions slightly increased, e.g., CMAQ predicts only ~80% 44 

of NOx observed in the aircraft campaign area. CMAQ also underestimates HCHO (a proxy of 45 

VOCs, by ~20%) and CO (by ~60%) over the NCP, suggesting adjustments of the 2010 EDGAR 46 

emissions are needed to improve the model performance. HCHO/NO2 column ratios derived 47 

from OMI measurements and CMAQ simulations show that VOC-sensitive chemistry dominates 48 

the ozone photochemical production in eastern China, suggesting the importance of tightening 49 

regulations on VOCs emissions. We adjusted EDGAR emissions based on satellite observations, 50 

conducted sensitivity experiments of CMAQ, and achieved better model performance in 51 

simulating ozone, but underestimation still exists. Because of the VOC-sensitive environment in 52 

ozone chemistry over the NCP, future study and regulations should focus on VOCs emissions 53 

with the continuous controls on NOx emissions in China. 54 
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1. Introduction 56 

 With rapid economic growth in the past three decades, the consumption of energy in 57 

China increased dramatically (Zhang and Cheng, 2009; Guan et al., 2018; Shan et al., 2018). 58 

Fossil fuels dominate total energy consumption, with coal still accounting for more than 50% of 59 

the carbon dioxide (CO2) emissions in China (Shan et al., 2018). This drastic increase in fossil 60 

fuel energy consumption is accompanied with deterioration of air quality (Chan and Yao, 2008; 61 

Fang et al., 2009), posing a threat to public health (Tie et al., 2009; Kan et al., 2012; Chen et al., 62 

2013; Lelieveld et al., 2015). Particulate matter (PM) pollution, especially PM2.5 in the North 63 

China Plain (NCP), drew public concern and governmental actions (He et al., 2001; Ye et al., 64 

2003; Wang et al., 2005; Sun et al., 2006; Yang et al., 2011; Zhang et al., 2012; Zhang et al., 65 

2013). PM pollution also has complex interactions with the planetary boundary layer (PBL) and 66 

its evolution, which can further degrade the air quality (Guo et al., 2016; Li et al., 2017b). Recent 67 

studies showed that tropospheric ozone (O3) pollution increased in China which exacerbated its 68 

complex air pollution problem (Xue et al., 2014; Verstraeten et al., 2015; Wang et al., 2017b; Ni 69 

et al., 2018). 70 

Elevated ozone concentrations have adverse impacts on both human health (WHO, 2003; 71 

Anderson, 2009; Jerrett et al., 2009) and the ecosystem (Adams et al., 1989; Chameides et al., 72 

1999; Ashmore, 2005). Tropospheric ozone absorbs thermal radiation and acts as the third most 73 

important anthropogenic contribution to radiative forcing of climate (Ramanathan and 74 

Dickinson, 1979; Lacis et al., 1990; IPCC, 2014). In the lower troposphere, the photolysis of 75 

ozone is an important source of atmospheric hydroxyl (OH) radicals that control the lifetimes of 76 

atmospheric species such as CO and volatile organic compounds (VOCs) (Logan et al., 1981; 77 

Thompson, 1992; Finlayson-Pitts and Pitts, 1999). Tropospheric ozone has a relatively long 78 

lifetime of several days to weeks (Stevenson et al., 2006; Young et al., 2013), leading to 79 

significant long-range transport of ozone and its precursors (Jacob et al., 1999; Derwent et al., 80 

2004; Lin et al., 2008). Thus, investigation of ozone pollution in China is essential to support the 81 

national and international policy decision for air quality and the climate. 82 

 Tropospheric ozone is produced through complex photochemical reactions of precursors 83 

including nitrogen oxides (NOx = NO + NO2) and VOCs in the presence of sunlight 84 

(Haagensmit, 1952; Crutzen, 1974; Fishman et al., 1979; Seinfeld and Pandis, 2006). In China, 85 

sectors of power generation, industry, and transportation dominates the NOx emissions (Streets et 86 
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al., 2003; Ohara et al., 2007; Zhao et al., 2013a). Before 2010, NOx emissions in China increased 87 

substantially (Lin et al., 2010a; Zhao et al., 2013c). Analysis of satellite data revealed that 88 

recently NOx emissions have started decreasing in highly developed regions such as the Pearl 89 

River Delta (PRD), but still increased in other regions (Gu et al., 2013; Duncan et al., 2016; Liu 90 

et al., 2016). Anthropogenic VOCs emissions had a similar increasing trend in the past decades 91 

(Bo et al., 2008; Wei et al., 2011; Kurokawa et al., 2013; Zhao et al., 2017) and are projected to 92 

increase in the future (Zhang et al., 2018). Therefore the recent increase of tropospheric ozone in 93 

China could likely be explained by the enhanced anthropogenic emissions of ozone precursors. 94 

 Due to the complex O3-NOx-VOCs chemistry, we need to investigate the photochemical 95 

regime for local ozone production, i.e., NOx-sensitive or VOC-sensitive (Dodge, 1987; 96 

Kleinman, 1994). Duncan et al. (2010) used the ratio of tropospheric columns of formaldehyde 97 

(HCHO) and nitrogen dioxide (NO2) observed by the National Aeronautics and Space 98 

Administration (NASA) Aura Ozone Monitoring Instrument (OMI) to characterize ozone 99 

sensitivity. Studies show that a NOx-sensitive regime dominates in the United States, except in 100 

megacities such as Los Angles and New York City where the local ozone production is in VOC-101 

sensitive or in transition regimes (Duncan et al., 2010; Jin et al., 2017; Ring et al., 2018). 102 

However, VOC-sensitive and transition regimes for ozone photochemical production exist 103 

ubiquitously in China due to large amount of NOx emissions, especially over the NCP (Chou et 104 

al., 2009; Xing et al., 2011; Jin and Holloway, 2015; Jin et al., 2017). As such, although the 105 

current regulations in China focus only on reduction of NOx emissions (Wang and Hao, 2012; 106 

Wang et al., 2014a), air quality might also benefit from VOCs controls. 107 

 Aircraft measurements are essential to study the precursor emissions, photochemical 108 

production, and transport of ozone pollution at regional scale. However, airborne campaigns are 109 

sparse in China (Dickerson et al., 2007; Zhang et al., 2014; Ding et al., 2015; Huang et al., 2015; 110 

Wang et al., 2017a). To better understand the characteristics of ozone pollution, the Air 111 

Chemistry Research in Asia (ARIAs) aircraft campaign was conducted in Hebei Province of the 112 

NCP during May-June 2016, which was affiliated with the surface Aerosol Atmosphere 113 

Boundary-Layer Cloud (A
2
BC) experiment (Wang et al., 2018a; Wang et al., 2018b). 114 

Concentrations of major air pollutants in the lower atmosphere were measured during 11 115 

research flights in the NCP, which were conducted in association with the NASA Korea U.S. – 116 

Air Quality (KORUS-AQ) campaign in downwind South Korea. Measurements collected in the 117 
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ARIAs research flights and the A
2
BC surface observations provide a comprehensive dataset to 118 

thoroughly study the tropospheric ozone pollution and emissions of its precursors in China.  119 

 In this study, we evaluate anthropogenic emissions and the ozone pollution in the NCP 120 

using a combination of aircraft measurements, surface monitoring data, satellite observations, 121 

and modeling results. The Environmental Protection Agency (EPA) Community Multiscale Air 122 

Quality (CMAQ) model was used to simulate the atmospheric chemistry for the ARIAs 123 

campaign. We evaluate the emission data by comparing with the aircraft measurements and 124 

satellite products, and then adjust emissions to improve the CMAQ performance. Lastly, we 125 

investigate the sensitivity of ozone production derived from CMAQ simulations and OMI 126 

observations and discuss the future ozone pollution in China. 127 

 128 

2. Data and Method 129 

2.1 Aircraft campaign in the NCP 130 

 With more than 250 million tons of iron and steel produced in 2016 (data from 131 

http://data.stats.gov.cn, accessed in September 2018), Hebei Province in the NCP is the most 132 

industrialized area in China. Due to its high emissions and proximity to megacities Beijing and 133 

Tianjin, the Beijing-Tianjin-Hebei area has experienced severe air pollution in the past decade 134 

(Zhao et al., 2013b; Wang et al., 2014b). In May and June 2016, the ARIAs aircraft campaign 135 

was conducted over Hebei Province to investigate the emissions, chemical evolution, and 136 

transport of air pollutants. The airborne campaign was coordinated with the A
2
BC field campaign 137 

in Xingtai (XT, 37.18 °N, 114.36 °E, 182 m above sea level, ASL) and the NASA KORUS-AQ 138 

campaign to expand the study to East Asia. A Harbin Y12 research airplane (similar to the de 139 

Havilland Twin Otter) was employed to measure concentrations of air pollutants including O3, 140 

carbon monoxide (CO), CO2, NO2, and aerosol optical properties. The research airplane was 141 

located in Luancheng airport, hereafter referred to as LC (LC, 37.91 °N, 114.59 °E, 58 m ASL), 142 

south of Shijiazhuang, the capital city of Hebei province with a population of 10 million. Eleven 143 

research flights were conducted during the ARIAs campaign (Fig. 1a). Vertical profiles of air 144 

pollutants from near surface (~100 m above ground level, AGL) to the free troposphere (> 3000 145 

m) were conducted over LC, XT (the supersite of the A
2
BC campaign), Julu (JL, 37.22 °N, 146 

115.02 °E, 30 m ASL), and Quzhou (QZ, 36.76 °N, 114.96 °E, 40 m ASL). 147 

 The airborne measurements of ozone were conducted using a commercially available 148 
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analyzer (Model 49C, Thermo Environmental Instruments, TEI, Franklin, Massachusetts) 149 

(Taubman et al., 2006). NO2 was measured using a modified commercially available cavity ring-150 

down spectroscopy (CRDS) detector (Castellanos et al., 2009; Brent et al., 2013). Concentrations 151 

of CO and CO2 were monitored with a 4-channel Picarro CRDS instrument (Model G2401-m, 152 

Picarro Inc., Santa Clara, CA), calibrated with CO/CO2 standards certified at the National 153 

Institute of Standards and Technology (Ren et al., 2018). All the instruments were routinely 154 

serviced, calibrated and used for airborne measurements in the United States and China 155 

(Taubman et al., 2006; Dickerson et al., 2007; Hains et al., 2008; He et al., 2012; He et al., 2014; 156 

Ren et al., 2018; Salmon et al., 2018). Measurements of ambient air pollutants were made at 1 157 

Hz frequency and synchronized with time, geolocation and altitude from the Global Position 158 

System (GPS). 159 

 In the ARIAs research flights, 28 whole air samples (WAS) were collected in vertical 160 

spirals at different altitudes from ~400 m to ~3500 m. The WAS were analyzed using gas 161 

chromatography (GC) with Flame Ionization Detection (FID) and Mass Spectroscopy (MS) by 162 

the College of Environmental Sciences and Engineering at Peking University. 74 species of 163 

alkanes, alkenes/alkynes, aromatics, and halocarbons were identified and quantified for a study 164 

on ozone photochemical chemistry (see details in Benish et al., 2019). Detection limits for the 165 

compounds ranged from 2 to 50 pptv. Surface observation of trace gases including O3, CO, NO, 166 

and NOx were measured at the A
2
BC Xingtai supersite using analyzers manufactured by Ecotech 167 

(Wang et al., 2018b); detailed description of the analyzers is discussed in Zhu et al. (2016). 168 

Surface HCHO concentrations were monitored using a formaldehyde analyzer (AERO LASER, 169 

Germany, Model 4021) based on fluorometric Hantzsch reactions (Gilpin et al., 1997; 170 

Rappenglück et al., 2010). All surface observations were collected as 1-min averaged data and 171 

processed to hourly mean values. 172 

 173 

2.2 Satellite products 174 

 To evaluate the emissions and atmospheric chemistry in the NCP and greater East Asia, 175 

we used satellite observations of CO, NO2, and HCHO for May and June 2016. The 176 

Measurements of Pollution In the Troposphere (MOPITT) instrument onboard the NASA Terra 177 

satellite retrieved CO column contents with ~10:30 am local overpass time (Deeter et al., 2003). 178 

We used the latest version 7 MOPITT Level 3 daily gridded average products (1° × 1° spatial 179 
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resolution, available at https://eosweb.larc.nasa.gov/project/mopitt/mop03j_v007) for the ARIAs 180 

campaign period (MOPITT Science Team, 2013). MOPITT thermal-infrared and near-infrared 181 

(TIR + NIR) products shows improved sensitivity to near surface CO in China (Worden et al., 182 

2010). We used MOPITT near surface CO (~ 900 hPa) products and related averaging kernels 183 

(AKs) to evaluate the CMAQ results (Deeter et al., 2012). 184 

 OMI, onboard the NASA Aura satellite, is a UV/Vis solar backscatter spectrometer in a 185 

polar sun-synchronous orbit with a ~1:35 pm local overpass time. With high spatial resolution 186 

(13 km × 24 km for the center at nadir) and nearly daily coverage, OMI has provided monitoring 187 

of trace gases and aerosol properties since 2005 (Levelt et al., 2006). The Version 3 OMI Level 2 188 

NO2 products (https://disc.gsfc.nasa.gov/datasets/OMNO2_V003/summary) (Krotkov et al., 189 

2018) were used to evaluate the emissions and atmospheric chemistry in East Asia. Under clear 190 

sky, tropospheric NO2 columns from OMI has precision of ~0.5 × 10
16

 molecules cm
-2

 and an 191 

accuracy of ±30% (Krotkov et al., 2017). OMI HCHO Version 3 Smithsonian Astronomical 192 

Observatory (SAO) (https://disc.gsfc.nasa.gov/datasets/OMHCHO_V003/summary) Level 2 193 

products were used in this study (Chance, 2007; González Abad et al., 2015). The precision of 194 

column HCHO is ~1.0 × 10
16

 molecules cm
-2

 and SAO products have an accuracy of ±25-30% 195 

without cloud (Millet et al., 2006; Boeke et al., 2011). Data in OMI pixels affected by the row 196 

anomaly and contaminated by clouds were filtered out using quality flags for both NO2 and 197 

HCHO columns. 198 

 199 

2.3 Model set-up 200 

 We used CMAQ version 5.2 (EPA, 2017) to simulate atmospheric chemistry for the 201 

ARIAs campaign. The Weather Research and Forecasting (WRF) model Version 3.8.1 202 

(Skamarock et al., 2008) was driven by the European Centre for Medium-Range Weather 203 

Forecasts (ECMWF) ERA-Interim products (ds627.0, https://rda.ucar.edu/datasets/ds627.0) (Dee 204 

et al., 2011) to simulate meteorological fields. Two domains with spatial resolution of 36 km and 205 

12 km (Fig. 1b) were used to cover East Asia, with 35 layers from the surface to 50 hPa and ~20 206 

layers in the lowest 2 km. Major physical options in WRF include the Rapid Radiative Transfer 207 

Model (RRTM) radiation scheme (Clough et al., 2005), the Pleim-Xiu surface layer and land 208 

surface model (Pleim and Xiu, 1995; Xiu and Pleim, 2001), the Asymmetric Convective Model 209 

(ACM2) boundary layer scheme (Pleim, 2007), the Kain-Fritsch cumulus scheme (Kain, 2004), 210 
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and the WRF Single-Moment 6 (WSM-6) microphysics (Hong and Lim, 2006). The National 211 

Centers for Environmental Prediction (NCEP) ADP Global Surface and Upper Air Observational 212 

Weather Data (ds461.0 and ds351.0, https://rda.ucar.edu) were used to perform observational and 213 

analysis nudging on all domains following the method developed for NASA aircraft campaigns 214 

(He et al., 2014; Mazzuca et al., 2016). WRF outputs were processed by the EPA Meteorology-215 

Chemistry Interface Processor Version 4.3 (MCIP v4.3, released in November 2015) for emission 216 

processing and CMAQ simulations. 217 

 Anthropogenic emissions were from the Emissions Database for Global Atmospheric 218 

Research Version 4.2 (EDGAR v4.2, 0.1° × 0.1° resolution) of year 2010, which are widely used 219 

for chemical transport modeling (European Commission, 2011). We used the EPA Sparse Matrix 220 

Operator Kernel Emissions (SMOKE) modeling system Version 4.5 (UNC, 2017) to project 221 

EDGAR emissions to the modeling domain. Emissions of air pollutants were speciated into 222 

Carbon Bond 05 chemical mechanism (Yarwood et al., 2005) and updated AERO6 aerosol 223 

module (Appel et al., 2013). The EDGAR v4.2 inventory has emissions for energy, industry, 224 

residential, and transport sectors. Without stack height information for power plants in the energy 225 

sector, we followed the approach developed in He et al. (2012) to locate these anthropogenic 226 

emissions at ~200 m above the surface as an approximation for averaged stack height and plume 227 

rise. We used the United States Geological Survey (USGS) 24 category land use dataset 228 

combined with the Biogenic Emission Inventory System (BEIS) emission factors table to 229 

generate the input files for the CMAQ inline biogenic emissions modeling. Biogenic emissions 230 

were estimated using the BEIS module inline in CMAQ (EPA, 2017). 231 

CMAQ v5.2 uses the updated Carbon Bond 6 (CB6r3) chemical mechanism (Yarwood et 232 

al., 2010) including improved chemistry mechanism for organic nitrates and peroxyacyl nitrates 233 

(PAN) chemistry and will lead to better performance for simulating Secondary Organic Aerosols 234 

(SOA) and tropospheric ozone in the United States (Appel et al., 2016). CMAQ was run with a 235 

coarse domain and a nested domain (Fig. 1b). Chemical initial and boundary conditions for the 236 

coarse domain were obtained from the default concentration profiles built in CMAQ (EPA, 237 

2017). Results from the CMAQ coarse domain were used to generate boundary conditions for 238 

the nested domain. The WRF-CMAQ system was run from mid-April to June with the first 2 239 

weeks as spin-up. Hourly concentrations of air pollutants were saved for further analysis and 240 

model evaluation. 241 

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-248
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 29 March 2019
c© Author(s) 2019. CC BY 4.0 License.



9 

 

3. Results and discussion 242 

3.1 Air Pollution in the NCP and CMAQ performance 243 

 Figure 2 summarizes all aircraft measurements of O3, NO2, CO, and CO2 over the NCP 244 

from eleven research flights. Generally, we observed high concentrations of trace gases, such 245 

as >100 part per billion by volume (ppbv) of O3, >20 ppbv of NO2, >500 ppbv of CO, and >450 246 

part per million by volume (ppmv) of CO2, in the aircraft campaign area (defined as 36.5-247 

38.5°N, 114.0-115.5°E hereafter). We conducted vertical spirals over XT (the A
2
BC supersite), 248 

LC (the airport in south of Shijiazhuang), and two rural areas (JL and QZ) during the ARIAs 249 

research flights. Figure 3a summarizes vertical distributions and the mean profiles of air 250 

pollutants over XT, with mean O3 concentrations of 80 ppbv in the lower atmosphere. We 251 

observed isolated plumes with >10 ppbv of NO2, >1000 ppbv of CO, and >440 ppmv of CO2 252 

over XT, usually with a secondary maximum between 800 and 1200 m. These plumes aloft can 253 

play an important role in long-range transport of air pollutants to downwind regions. Profiles 254 

over LC (Fig. 3b) show higher O3 concentrations (>100 ppbv) and relatively moderate NO2 (~3 255 

ppbv) and CO (~250 ppbv). The rural areas, JL and QZ, have relatively clean environment with 256 

<80 ppbv of O3, <2 ppbv of NO2, and <300 ppbv of CO (Fig. 3c and 3d). Even the 257 

concentrations of air pollutants over the rural region in the NCP are comparable or higher than 258 

values in urban areas in North America and Europe. In summary, we found the south-north and 259 

east-west gradients of air pollution, i.e., higher concentrations of air pollutants in the west XT-260 

LC corridor near the mountain as compared with east side of JL and QZ. Thus, the ARIAs 261 

research flights have good coverage of regions with both high and moderate concentrations of air 262 

pollutants and can fairly represent the regional nature of air pollution over the NCP. 263 

Comparison of the surface trace gas observations at the Xingtai supersite and the CMAQ 264 

simulations driven by the EDGAR inventory (named baseline CMAQ case hereafter) reveals that 265 

CMAQ generally underestimates concentrations of major air pollutants (Fig. S1 in the 266 

supplementary material). The baseline CMAQ run successfully captures the diurnal and daily 267 

variations of surface ozone in Xingtai, although consistently underpredicts its concentrations. For 268 

CO and NOx, two important ozone precursors, CMAQ substantially underestimates their 269 

concentrations in Xingtai by more than 50% and especially fails to capture the extremely high 270 

values such as 6~7 ppmv of CO and ~100 ppbv of NOx. This underestimation could be caused by 271 

local sources poorly represented in the 12-km model simulations. For ambient HCHO, an 272 
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important byproduct of VOC oxidization in ozone photochemical production, the baseline 273 

CMAQ run captures the variations, but substantially underestimates its concentrations. These 274 

results suggest that the underestimation of ozone precursors in CMAQ could lead to the poor 275 

model performance of simulating tropospheric ozone and other pollutants. 276 

Similar analyses were conducted to investigate air pollutant concentrations in the lower 277 

troposphere over the NCP observed by the aircraft. A case of the research flight on June 11, 2016 278 

(Fig. S2 in the supplementary material) shows that CMAQ well captures the vertical gradient of 279 

air pollutants, while substantially underestimates concentrations of all trace gases except NOy. 280 

Following the approach described in Goldberg et al. (2016), we calculated the 10-min average 281 

O3, CO, NO, and NO2 concentrations from aircraft measurements and compared them with the 282 

baseline CMAQ simulations (Fig. 4) and found similar underestimation (50% to 75% for all air 283 

pollutants) as compared with surface measurements (Fig. S1 in the supplementary material). 284 

CMAQ overestimates NOy but substantially underestimates NO and NO2, which suggests that a 285 

significant amount of reactive nitrogen compounds could exist in the format of organic nitrates 286 

or nitrate aerosols in the model. Figure 5 compares total VOCs concentrations from WAS 287 

samples and CMAQ simulations, indicating that VOCs levels are significantly underestimated by 288 

80%. The model evaluation with surface and aircraft measurements suggest that in the NCP 289 

ozone pollution has been significantly underestimated in the baseline CMAQ run, which could 290 

be due to the uncertainty introduced by using the 2010 EDGAR emissions to simulate the 2016 291 

ARIAs campaign period. Thus, we need to evaluate the emissions inventory data to improve the 292 

CMAQ performance and investigate the sensitivity of ozone production. 293 

 294 

3.2 Evaluation of emissions inventory in the NCP 295 

 The EDGAR v4.2 emission inventory in East Asia was created based on the 2010 MIX 296 

emission inventory (Li et al., 2017a), so substantial changes were anticipated when used for the 297 

ARIAs campaign in 2016. Anthropogenic emission inventories are usually based on the “bottom-298 

up” approach, which relies on the statistics of fossil fuel usage and emission factors (EFs) for 299 

each sector defined as the ratio of the amount of air pollutants released by a unit of CO2 300 

emissions, e.g. CO/CO2 and NOx/CO2. To evaluate the emission inventory data in the NCP, we 301 

used a 60-s moving window and conducted linear regression of observed air pollutant (CO, NOx, 302 

etc.) concentrations vs. CO2 concentrations, i.e. ΔCO/ΔCO2 and ΔNOx/ΔCO2, defined as 303 
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emission enhancements (EEs). Through only selecting EEs that are in the PBL (below 1.5 km 304 

AGL in this study) and statistically significant (R
2
 > 0.6), the values of EEs can act as a proxy of 305 

EFs in the air mass observed (Halliday et al., 2018). 306 

 EEs observed during the research flights have a broad range of values. ΔCO/ΔCO2 ranges 307 

from below 1%, a typical value of modern automobile emissions, to higher than 10%, a value 308 

indicating fossil fuel combustion with high emissions such as biomass burning (Fig. 6a and 6b). 309 

The mean of observed EE for CO (3.7%) is close to that calculated from the EDGAR inventory 310 

(4.0%) in the aircraft campaign area. Observed ΔNOx/ΔCO2 ratios also have isolated high values 311 

(>0.1%) with a mean value of 0.05%, which is substantially higher than the EF (~0.03%) derived 312 

from the EDGAR inventory. Since estimation of anthropogenic CO2 flux in an urban/suburban 313 

area is challenging (Cambaliza et al., 2014; Heimburger et al., 2017), the underestimation of CO 314 

and NOx in the NCP could be caused by either underestimated EFs or uncertainty in 315 

anthropogenic CO2 emission data used in the ‘bottom-up’ approach. 316 

To further investigate the characteristics of air pollutant emissions in the NCP, we 317 

conducted a similar analysis of ΔNOx/ΔCO, which are usually co-emitted in combustion 318 

processes. Since around half of the CO and NOx are from mobile sources in the EDGAR 319 

emission inventory, this ratio can approximately represent the emission characteristic of mobile 320 

sources in the NCP. The mean observed ΔNOx/ΔCO ratio is ~1.3%, significantly lower than 321 

5.6% based on the EDGAR emission inventory (Fig. 6c). These results suggest that the EDGAR 322 

emission inventory substantially overestimates the ratios of NOx/CO, while the automobile 323 

emissions over the NCP in 2016 have been greatly improved due to recent regulations focusing 324 

on NOx, i.e., EDGAR overestimates the contribution from combustion with high emissions. It is 325 

worth noting that we only evaluated the emission ratios (EEs or EFs) in the EDGAR inventory, 326 

while the underestimation of CO and NOx emissions could be caused by inaccurate CO2 327 

emissions which have not been examined in this study. 328 

 329 

3.3 Evaluation of CO, NOx, and VOCs emissions using satellite data 330 

 Satellite observations are widely used to evaluate the anthropogenic emissions in East 331 

Asia sometimes supplemented by model simulations, e.g., CO emissions using the MOPITT CO 332 

products (Jiang et al., 2015; Zheng et al., 2018), anthropogenic NOx emissions using OMI NO2 333 

products (Wang et al., 2012; de Foy et al., 2015; Qu et al., 2017), and VOCs emissions using 334 
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OMI HCHO products (Stavrakou et al., 2016). In this study, we used measurements from 335 

multiple satellite instruments to evaluate the CMAQ performance of NO2, HCHO, and CO. Since 336 

NO2 and HCHO can be treated as proxy of NOx and VOCs emissions, we can further improve 337 

the 2010 EDGAR emissions over the NCP base on satellite data. 338 

 We followed the approach developed in Canty et al. (2015) to compare the tropospheric 339 

column contents of NO2 from OMI products and CMAQ simulations. Level 2 OMI NO2 swatch 340 

information including row anomaly and quality flags were used to sample NO2 vertical profiles 341 

from CMAQ outputs, and then CMAQ NO2 column was calculated using the OMI averaging 342 

kernel (AK). Lastly, we averaged OMI and CMAQ NO2 column contents to create daily 0.25° × 343 

0.25° Level 3 products (see details in Canty et al., 2015). A similar approach was used to 344 

integrate HCHO column contents from CMAQ simulations based on OMI HCHO retrievals (see 345 

details in Ring et al., 2018) and construct daily 0.25° × 0.25° Level 3 HCHO products. For 346 

tropospheric CO, we selected the CO concentrations at ~ 900 hPa in CMAQ and averaged them 347 

to 1.0° × 1.0° daily products using MOPITT CO averaging kernel (MOPITT Science Team, 348 

2013). All gridded daily data of satellite and CMAQ were averaged in May and June 2016 for 349 

comparison. 350 

 Figure 7a shows strong signals over the NCP of the OMI NO2 observations. CMAQ 351 

underestimates NO2 columns over the aircraft campaign area, and only predicts 81% of NO2 352 

column as compared with OMI observations. However, in urban regions such as Beijing, the 353 

Yangtze River Delta (YRD), and the PRD, CMAQ substantially overestimates column NO2 by 354 

up to 30%. Because the baseline CMAQ simulations used the 2010 anthropogenic emission data, 355 

these differences should reflect the changes in NOx emissions due to recent air pollution 356 

regulations. The comparison of NO2 column suggests that NOx pollution of megacities in China 357 

has been substantially improved after 2010 while NOx pollution in smaller cities and rural area 358 

has worsened, consistent with results from independent studies using OMI (Duncan et al., 2016; 359 

Krotkov et al., 2016). OMI HCHO retrievals also show high values over the NCP in spring when 360 

plants’ photosynthetic activity is relatively low, reflecting that the domination of anthropogenic 361 

VOCs emissions in north China (Zhao et al., 2017). CMAQ has good agreement with OMI 362 

HCHO within the aircraft campaign area (<20% underestimation), but substantially 363 

underestimates HCHO columns in south China where biogenic VOCs dominate (Fig. 7b). The 364 

MOPPIT products show high near-surface CO concentrations over the eastern China (Fig. 7c), 365 
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while the baseline CMAQ run substantially underestimates CO concentrations over north China 366 

and only predicts 42% of the CO over the aircraft campaign area. 367 

Using NO2 and HCHO as proxies of NOx and anthropogenic VOCs emissions, the 368 

comparison of satellite observations and the baseline CMAQ simulations suggests that both NOx 369 

and VOCs emissions in the aircraft campaign area need to be adjusted for a better simulation of 370 

tropospheric ozone. Also, the underestimation of CO, as an important precursor, can lead to 371 

underprediction of tropospheric ozone. We calculated the model/satellite ratios of NOx, HCHO, 372 

and CO in East Asia (Fig. 8) and used these ratios to adjust their anthropogenic emissions in 373 

CMAQ. The results will be discussed in Section 3.4. 374 

 375 

3.3 Tropospheric ozone production sensitivity from OMI and CMAQ 376 

 Photochemical production of tropospheric ozone is highly non-linear and dependent on 377 

concentrations of NOx and VOCs (Kleinman, 1994; Sillman, 1999; Kleinman, 2000). A 378 

maximum rate of ozone production can be achieved with an optimal VOCs/NOx ratio. With other 379 

VOCs/NOx ratios, ozone production can be either in the VOC-sensitive regime (the rate of ozone 380 

production is controlled by VOCs concentrations) or in the NOx-sensitive regime (the rate of 381 

production is controlled by NOx concentrations). Different pollution control strategies can be 382 

implemented to reduce the tropospheric ozone levels in these two regimes. For instance, in a 383 

VOC-sensitive environment, reducing NOx emissions will lead to limited effects until the ozone 384 

production has been changed to a NOx-sensitive environment with the continuous removal of 385 

NOx from the atmosphere. Duncan et al. (2010) developed an approach using OMI HCHO/NO2 386 

column ratio to estimate the ozone production sensitivity as: 1) HCHO/NO2 <1: VOC-sensitive 387 

regime; 2) HCHO/NO2 1~2: transition regime; 3) HCNO/NO2 > 2: NOx-sensitive regime. 388 

Studies show that urban areas in the U.S. such as Los Angeles, New York City and Houston are 389 

in VOC-sensitive or transition regimes, which lead to difficulty in local regulation of air quality 390 

(Duncan et al., 2010; Mazzuca et al., 2016; Ring et al., 2018). Recent studies suggest new 391 

threshold values of HCHO/NO2 ratios between VOC-sensitive, transition, and NOx-sensitive 392 

regimes in the U.S. (Jin et al., 2017; Schroeder et al., 2017). 393 

 Using the Duncan et al. (2010) approach, studies using OMI products suggest large areas 394 

of eastern China are either in VOC-sensitive regime (mostly megacities such as Beijing) or in 395 

transition regime (Jin and Holloway, 2015; Jin et al., 2017; Xing et al., 2018). We follow the 396 
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approach described in Ring et al. (2018) to calculate the column HCHO/NO2 ratios from OMI 397 

observations and CMAQ simulations for East Asia. OMI column HCHO/NO2 ratios suggest that 398 

the ozone photochemical production is VOC-sensitive or in transition region over the NCP and 399 

other major urban areas such as YRD and PRD (Fig. 9a) if the Duncan et al. (2010) approach is 400 

applicable for these areas. CMAQ successfully captured the spatial distribution of the regional 401 

nature of ozone production sensitivity in eastern China but predicted that the rate of ozone 402 

production is controlled more by VOCs with the CMAQ HCHO/NO2 ratio lower than 1.0 in 403 

Beijing, YRD, and PRD (Fig. 9b). The VOC-sensitive environment suggests the rate of ozone 404 

photochemical production in the NCP is controlled not only by NOx emissions, but also by 405 

VOCs emissions which currently lack regulations in China. With continuous reduction of 406 

anthropogenic NOx emissions in China, VOCs controls might be efficient in these VOC-sensitive 407 

regions. 408 

 409 

3.4 Improvements of tropospheric ozone simulation using satellite products 410 

 Results of the previous two sections show that the baseline CMAQ run substantially 411 

underestimates the concentrations of ozone and its major precursors in the NCP. To identify the 412 

individual and combined effects of the emission discrepancy of impacting major ozone 413 

precursors in the NCP, we designed a series of sensitivity experiments with emissions adjusted to 414 

satellite observations. Unlike the top-down approach using global chemical transport models 415 

such GEOS-Chem (Lin et al., 2010b; Qu et al., 2017), here we simply applied the ratios of air 416 

pollutant column contents from satellite observations and CMAQ simulations on each 0.25 417 

degree grids (Fig. 8) as: COCMAQ/COMOPITT, NO2CMAQ/NO2OMI, and HCHOCMAQ/HCHOOMI ratios 418 

for anthropogenic CO, NOx, and VOCs emissions, respectively. To estimate the contribution 419 

from biogenic VOCs emissions, we conducted one more run with the in-line BEIS module 420 

turned off. Table 1 shows the emission adjustments for the five sensitivity experiments. CMAQ 421 

was run for the nested 12 km domain (D02) with the same meteorology, initial conditions, and 422 

boundary conditions derived from the coarse domain simulations. 423 

 Figure 10 presents the evaluation of surface observations with respect to two sensitivity 424 

experiments (CMAQ_baseline and CMAQ_all, comparison with all CMAQ runs are presented in 425 

Fig. S3 in the supplementary material). CMAQ still might not capture the extreme high values of 426 

surface O3 and CO (Fig. 10a and 10b). For instance, the maximum CO concentration from 427 
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CMAQ simulations are ~1700 ppbv while surface observations have CO peaks higher than 6000 428 

ppbv (Fig. 10b). The adjustments of the emission inventory have improved the model 429 

simulations of NO2/NO (Fig. 10c and 10d) and HCHO (Fig. 10e). During the ARIAs flights, we 430 

observed various sources of emissions in the aircraft campaign area such as small factories and 431 

biomass burning, which are not included in the EDGAR emission inventory. Thus, the reason for 432 

the model underestimation could be that the spatial resolution (12 km) of the nested CMAQ 433 

domain cannot represent the detailed emissions and resolve the local air pollution hotspots. 434 

However it is worth noting that even our CMAQ system is still not capable to reproduce the 435 

surface air quality at Xingtai, the adjustments of EDGAR emissions based on satellite 436 

observations reduce the underestimation. 437 

 The ARIAs flights covered a large area (~10
4
 km

2
) in Hebei Province, which represent 438 

the regional nature of air pollution over the NCP. A case comparison of CMAQ_All case and 439 

Y12 measurements on June 11, 2016 (Fig. 11) shows better results in both concentrations and 440 

vertical gradient of air pollutants (compared with Fig. S2 in the supplementary material), 441 

indicating the effectiveness of improving the emission inventories based on satellite 442 

observations. Table 2 summarizes the model performance of CMAQ as compared with aircraft 443 

measurements. The adjustments of the EDGAR emissions with satellite observations moderately 444 

improved simulations of ozone pollution, with the root mean square error (RSME) decreasing 445 

from 25.1 ppbv (the baseline case) to 21.2 ppbv (CMAQ_All case) and the mean ratio of CMAQ 446 

simulations to aircraft observations increasing from 0.75 to 0.82. The model performance of CO 447 

has also been improved, with the RMSE decreasing from 247.0 ppbv to 203.6 ppbv and the mean 448 

ratio increasing from 0.40 to 0.66. For nitrogen compounds including NO2, NO, and NOy, the 449 

adjustments of EDGAR emissions have small impacts on improving the CMAQ performance. 450 

The reason could be that the ozone photochemistry is mainly VOC-sensitive over the NCP, so the 451 

adjustments of NOx emissions have limited impacts close to sources. 452 

 453 

4. Conclusions and Discussion 454 

 The ARIAs campaign conducted aircraft measurements over the NCP and observed high 455 

concentrations of air pollutants including O3, CO, and NOx. CMAQ simulations driven by the 456 

2010 EDGAR emissions substantially underestimate the levels of ozone and its precursors in the 457 

campaign region. Analysis of emission enhancements of CO and NOx with respect to concurrent 458 
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CO2 measurements suggests that the usage of the 2010 EDGAR emissions for the 2016 ARIAs 459 

campaign could introduce substantial uncertainty due to the recent changes of anthropogenic 460 

emissions in China. Comparison of atmospheric columns of NO2 from CMAQ simulations and 461 

satellite observations suggests that NOx emissions decreased in megacities such as Beijing and 462 

Shanghai but increased in rural areas from 2010 to 2016. Similar analysis of HCHO and CO 463 

shows that the EDGAR VOCs and CO emissions could also be underestimated in the NCP. 464 

HCHO/NO2 column ratio from OMI observations indicates tropospheric ozone production is 465 

mainly in the VOC-sensitive regime in the NCP, which is also confirmed by CMAQ simulations. 466 

To test a hypothesis that the poor model performance is due to emission biases, we adjusted the 467 

EDGAR emissions over East Asia based on satellite observations. Better performance of 468 

simulating ozone and its precursors is achieved, while underestimation still exists. 469 

Both satellite observations and CMAQ simulations indicate that the VOC-sensitive 470 

chemistry dominates the ozone photochemical production in eastern China, so the rate of local 471 

ozone production is mainly controlled by the VOCs emissions. In the past few years, despite 472 

implementation of control measures mainly on SO2 and NOx, ozone concentrations have 473 

increased in China. Our study indicated that high NOx concentrations were pervasive in the PBL 474 

over rural areas of the NCP, where anthropogenic VOCs were also abundant. Reducing NOx 475 

emissions is essential to control ozone on the regional scale, but our model simulations indicated 476 

that reducing VOCs emissions can lower the rate of photochemical smog production. 477 

Currently, studies and regulations on anthropogenic VOCs emissions in China are 478 

lacking, so with expectation of further decreasing NOx emissions in China, more severe ozone 479 

pollution could be anticipated. It is worth noting that while VOCs controls can have beneficial 480 

impact on the local rate of ozone production in the VOC-sensitive regime, the ozone levels will 481 

not decrease until NOx emissions are substantially lower, i.e., regulations on VOCs are needed as 482 

well as the continuous controls on NOx emissions in China. These results can also partially 483 

explain why ozone pollution emerged in the past few years while PM2.5 pollution has been 484 

substantially improved with strict regulations on anthropogenic emissions. New datasets such as 485 

the updated ‘bottom-up’ emissions inventory for East Asia and high resolution satellite 486 

observations such as TROPOMI and GEMS products are needed to improve the modeling of 487 

ozone pollution in China, which can provide scientific evidence for future national and 488 

international regulations on air quality. 489 
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Tables and Figures 926 

 927 

Table 1. List of CMAQ simulations with adjusted emissions based on satellite observations. 928 

Anthropogenic CO, NOx, and VOCs emissions were adjusted using MOPITT CO, OMI NO2, and 929 

OMI HCHO observations. 930 

 931 

Run 

NO. 

Experiment 

Name 

Bio. 

VOCs 

Anthro. 

CO 

Anthro. 

NOx 

Anthro. 

VOCs 

1 CMAQ_baseline BEIS EDGAR EDGAR EDGAR 

2 CMAQ_noBEIS N/A EDGAR EDGAR EDGAR 

3 CMAQ_CO BEIS Adjusted EDGAR EDGAR 

4 CMAQ_NOx BEIS EDGAR Adjusted EDGAR 

5 CMAQ_VOCs BEIS EDGAR EDGAR Adjusted 

6 CMAQ_All BEIS Adjusted Adjusted Adjusted 
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Table 2. Statistics of CMAQ performance of six sensitivity experiments compared with ARIAs 933 

aircraft measurements over the NCP.  934 

 935 

No

. 

Name Mean Diff Slope Stdev Corr. R NMB NME RMSE Mean Ratio 

 

ppbv Unitless ppbv Unitless % % ppbv Unitless 

O3 

1 CMAQ_Baseline -21.35 0.56 13.25 0.37 -25.14 25.86 25.10 0.75 

2 CMAQ_noBEIS -23.74 0.49 12.85 0.41 -27.94 28.34 26.97 0.72 

3 CMAQ_NOx -19.83 0.59 13.63 0.34 -23.34 24.18 24.03 0.77 

4 CMAQ_VOCs -19.26 0.66 13.66 0.36 -22.67 23.81 23.58 0.77 

5 CMAQ_CO -20.35 0.61 13.52 0.36 -23.96 24.83 24.40 0.76 

6 CMAQ_All -15.18 0.81 14.83 0.33 -17.87 20.33 21.18 0.82 

CO 

1 CMAQ_Baseline -183.56 0.21 165.92 0.23 -60.26 60.26 246.98 0.40 

2 CMAQ_noBEIS -186.34 0.21 165.52 0.25 -61.17 61.17 248.79 0.39 

3 CMAQ_NOx -184.25 0.21 165.76 0.24 -60.48 60.50 247.39 0.40 

4 CMAQ_VOCs -181.89 0.22 166.32 0.22 -59.71 59.78 246.01 0.40 

5 CMAQ_CO -148.55 0.36 167.90 0.22 -48.76 50.32 223.67 0.51 

6 CMAQ_All -104.45 0.52 175.48 0.21 -34.29 45.03 203.60 0.66 

NO2 

1 CMAQ_Baseline -1.72 0.31 3.09 0.58 -59.91 64.59 3.52 0.40 

2 CMAQ_noBEIS -1.73 0.31 3.09 0.58 -60.47 64.90 3.52 0.40 

3 CMAQ_NOx -1.45 0.38 2.99 0.60 -50.61 61.26 3.31 0.49 

4 CMAQ_VOCs -1.76 0.31 3.10 0.58 -61.60 65.66 3.55 0.38 

5 CMAQ_CO -1.70 0.31 3.09 0.58 -59.28 64.20 3.51 0.41 

6 CMAQ_All -1.47 0.38 3.01 0.59 -51.23 61.62 3.33 0.49 

NO 

1 CMAQ_Baseline -0.25 0.99 0.47 0.68 -32.23 45.4 0.53 0.68 

2 CMAQ_noBEIS -0.24 1.02 0.48 0.68 -31.09 45.66 0.54 0.69 

3 CMAQ_NOx -0.08 1.31 0.59 0.67 -9.75 50.01 0.59 0.90 

4 CMAQ_VOCs -0.30 0.89 0.45 0.68 -38.63 46.58 0.54 0.61 

5 CMAQ_CO -0.26 0.96 0.47 0.68 -33.08 45.26 0.53 0.67 

6 CMAQ_All -0.16 1.13 0.52 0.67 -20.31 45.46 0.54 0.80 

NOy 

1 CMAQ_Baseline -15.26 0.30 10.15 0.39 -77.58 77.58 18.27 0.22 

2 CMAQ_noBEIS -15.50 0.29 10.15 0.40 -78.81 78.81 18.47 0.21 

3 CMAQ_NOx -14.24 0.37 10.20 0.37 -72.39 72.39 17.46 0.28 

4 CMAQ_VOCs -15.23 0.30 10.16 0.39 -77.42 77.42 18.25 0.23 

5 CMAQ_CO -15.26 0.30 10.15 0.39 -77.56 77.56 18.27 0.22 

6 CMAQ_All -14.21 0.37 10.20 0.37 -72.26 72.26 17.44 0.28 
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Figure 1. ARIAs flights over the NCP and the WRF-CMAQ domains. Eleven Research Flights 937 

(RF) were conducted in May to Mid-June 2016. CMAQ has two domains, the coarse domain 938 

(d01, 36 km resolution) covering East Asia and the nested domain (d02, 12 km resolution) 939 

focusing on eastern China. a) Summary of flight routes; b) WRF-CMAQ modeling domain (the 940 

red dot represents the location of the Xingtai supersite). 941 

a) 942 

 943 
b) 944 
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Figure 2. Summary of air pollutant concentrations in the NCP observed by Y12 aircraft. a) O3, b) 946 

NO2, c) CO, and d) CO2. 947 

 948 
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Figure 3. Vertical profiles of air pollutants over four locations in the NCP. a) Xingtai (XT), b) 951 

Luancheng (LC), c) Julu (JL), and d) Quzhou (QZ). Red lines show the mean profiles. 952 

a) 953 

 954 
b) 955 
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Figure 4. Comparison of 10-min averaged aircraft data and CMAQ simulations from 11 ARIAs 961 

research flights. a) O3, b) CO, c) NO, and d) NO2. Black line shows the 1:1 ratio; red line stands 962 

for the linear regression fitting line. M_Diff: mean difference; R: correlation; NMB: normalized 963 

mean bias; NME: normalized mean error; RMSE: root-mean square error; M_Ratio: mean ratio. 964 

a) 965 
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Figure 5. Comparison of total VOCs concentrations from WAS samples and CMAQ simulations. 973 

Values are in unit of parts per billion Carbon (ppbC). Black line shows the 1:1 ratio; red line 974 

stands for the linear regression fitting line. M_Diff: mean difference; R: correlation; NMB: 975 

normalized mean bias; NME: normalized mean error; RMSE: root-mean square error; M_Ratio: 976 

mean ratio. 977 
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Figure 6. Comparison of emission enhancements (EEs) from the ARIAs campaign and emission 979 

factors (EFs) from the EDGAR emission inventory. a) ΔCO/ΔCO2, b) ΔNOx/ΔCO2, c) 980 

ΔNOx/ΔCO. Blue histogram shows the distribution of EEs observed by the Y12 aircraft; red line 981 

shows the ratio calculated using the EDGAR anthropogenic emissions. 982 

a) 983 

 984 
b) 985 
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Figure 7. Comparison of air pollutants from satellite observations and CMAQ simulations. a) 990 

OMI NO2 column (left) and the difference between OMI and CMAQ (right), Unit: Dobson Unit 991 

(1 DU = 2.69 × 10
20

 molecules/cm
2
); b) OMI HCHO column (left) and the difference between 992 

OMI and CMAQ (right), Unit: DU; c) MOPITT near surface CO (left) and the difference 993 

between MOPITT and CMAQ (right), Unit (ppbv). 994 

a) 995 
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c) 999 
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Figure 8. Ratios of column contents of the baseline CMAQ simulations and satellite 1002 

observations. a) CMAQ/OMI NO2; b) CMAQ/OMI HCHO; c) CMAQ/MOPITT CO. 1003 

a) 1004 
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Figure 9. Column HCHO/NO2 ratios over East Asia in spring 2016. a) Ratio derived from 1010 

collocated OMI HCHO and NO2 observation; b) Ratio calculated from CMAQ simulations with 1011 

OMI quality information and averaging kernel (AK). 1012 
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Figure 10. Comparison of surface hourly observations of air pollutants and CMAQ simulations 1017 

at the Xingtai supersite from May to mid-June 2016. a) O3, b) CO, c) NO2
*
, d) NOx, and e) 1018 

HCHO. *Surface NO2 is inferred as NOx-NO from surface observations. 1019 
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Figure 11. A case study comparing aircraft observations and the CMAQ_All case results on June 1031 

11, 2016. Background: CMAQ simulations. Overlay: 1 min Y12 measurements. a) O3, b) CO, c) 1032 

NO2, d) NO, and e) NOy. 1033 
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