Articles | Volume 20, issue 11
https://doi.org/10.5194/acp-20-6479-2020
https://doi.org/10.5194/acp-20-6479-2020
Research article
 | 
05 Jun 2020
Research article |  | 05 Jun 2020

The mechanisms and seasonal differences of the impact of aerosols on daytime surface urban heat island effect

Wenchao Han, Zhanqing Li, Fang Wu, Yuwei Zhang, Jianping Guo, Tianning Su, Maureen Cribb, Jiwen Fan, Tianmeng Chen, Jing Wei, and Seoung-Soo Lee

Related authors

Potential impact of aerosols on convective clouds revealed by Himawari-8 observations over different terrain types in eastern China
Tianmeng Chen, Zhanqing Li, Ralph A. Kahn, Chuanfeng Zhao, Daniel Rosenfeld, Jianping Guo, Wenchao Han, and Dandan Chen
Atmos. Chem. Phys., 21, 6199–6220, https://doi.org/10.5194/acp-21-6199-2021,https://doi.org/10.5194/acp-21-6199-2021, 2021
Short summary
The significant impact of aerosol vertical structure on lower atmosphere stability and its critical role in aerosol–planetary boundary layer (PBL) interactions
Tianning Su, Zhanqing Li, Chengcai Li, Jing Li, Wenchao Han, Chuanyang Shen, Wangshu Tan, Jing Wei, and Jianping Guo
Atmos. Chem. Phys., 20, 3713–3724, https://doi.org/10.5194/acp-20-3713-2020,https://doi.org/10.5194/acp-20-3713-2020, 2020
Short summary

Related subject area

Subject: Aerosols | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Atmospheric processing and aerosol aging responsible for observed increase in absorptivity of long-range-transported smoke over the southeast Atlantic
Abdulamid A. Fakoya, Jens Redemann, Pablo E. Saide, Lan Gao, Logan T. Mitchell, Calvin Howes, Amie Dobracki, Ian Chang, Gonzalo A. Ferrada, Kristina Pistone, Samuel E. Leblanc, Michal Segal-Rozenhaimer, Arthur J. Sedlacek III, Thomas Eck, Brent Holben, Pawan Gupta, Elena Lind, Paquita Zuidema, Gregory Carmichael, and Connor J. Flynn
Atmos. Chem. Phys., 25, 7879–7902, https://doi.org/10.5194/acp-25-7879-2025,https://doi.org/10.5194/acp-25-7879-2025, 2025
Short summary
Discussion of the spectral slope of the lidar ratio between 355 and 1064 nm from multiwavelength Raman lidar observations
Moritz Haarig, Ronny Engelmann, Holger Baars, Benedikt Gast, Dietrich Althausen, and Albert Ansmann
Atmos. Chem. Phys., 25, 7741–7763, https://doi.org/10.5194/acp-25-7741-2025,https://doi.org/10.5194/acp-25-7741-2025, 2025
Short summary
Observational constraints suggest a smaller effective radiative forcing from aerosol–cloud interactions
Chanyoung Park, Brian J. Soden, Ryan J. Kramer, Tristan S. L'Ecuyer, and Haozhe He
Atmos. Chem. Phys., 25, 7299–7313, https://doi.org/10.5194/acp-25-7299-2025,https://doi.org/10.5194/acp-25-7299-2025, 2025
Short summary
Analysis of a saline dust storm from the Aralkum Desert – Part 1: Consistency between multisensor satellite aerosol products
Xin Xi, Jun Wang, Zhendong Lu, Andrew M. Sayer, Jaehwa Lee, Robert C. Levy, Yujie Wang, Alexei Lyapustin, Hongqing Liu, Istvan Laszlo, Changwoo Ahn, Omar Torres, Sabur Abdullaev, James Limbacher, and Ralph A. Kahn
Atmos. Chem. Phys., 25, 7403–7429, https://doi.org/10.5194/acp-25-7403-2025,https://doi.org/10.5194/acp-25-7403-2025, 2025
Short summary
Retrieval of microphysical properties of dust aerosols from extinction, backscattering and depolarization lidar measurements using various particle scattering models
Yuyang Chang, Qiaoyun Hu, Philippe Goloub, Thierry Podvin, Igor Veselovskii, Fabrice Ducos, Gaël Dubois, Masanori Saito, Anton Lopatin, Oleg Dubovik, and Cheng Chen
Atmos. Chem. Phys., 25, 6787–6821, https://doi.org/10.5194/acp-25-6787-2025,https://doi.org/10.5194/acp-25-6787-2025, 2025
Short summary

Cited articles

Ackerman, B., Changnon, S., Dzurisin, G., Gatz, D. L., and Grosh, R. C.: Summary of METROMEX. Volume 2: Causes of precipitation anomalies, Illinois State Water Survey, Urbana, Bulletin 63, available at: https://www.isws.illinois.edu/pubdoc/B/ISWSB-63.pdf (last access: 30 May 2020), 1978. 
Bornstein, R. and Lin, Q.: Urban heat islands and summertime convective thunderstorms in Atlanta: three case studies, Atmos. Environ., 34, 507–516, https://doi.org/10.1016/S1352-2310(99)00374-X, 2000. 
Cao, C., Lee, X., Liu, S., Schultz, N., Xiao, W., Zhang, M., and Zhao, L.: Urban heat islands in China enhanced by haze pollution, Nat. Commun., 7, 1–7, https://doi.org/10.1038/ncomms12509, 2016. 
Carrió, G. G. and Cotton, W.: Urban growth and aerosol effects on convection over Houston. Part II: Dependence of aerosol effects on instability, Atmos. Res., 102, 167–174, https://doi.org/10.1016/j.atmosres.2011.06.022, 2011. 
Carrió, G. G., Cotton, W. R., and Cheng, W. Y. Y.: Urban growth and aerosol effects on convection over Houston. Part I: The August 2000 case, Atmos. Res., 96, 560–574, https://doi.org/10.1016/j.atmosres.2010.01.005, 2010. 
Download
Short summary
Observational data and model simulation were used to analyze the daytime urban heat island intensity (UHII) under polluted and clean conditions in China. We found that aerosols reduce the UHII in summer but increase the UHII in winter. Two mechanisms, the aerosol radiative effect (ARE) and the aerosol dynamic effect (ADE), behave differently in summer and winter. In summer, the UHII is mainly affected by the ARE, and the ADE is weak, and the opposite is the case in winter.
Share
Altmetrics
Final-revised paper
Preprint