Articles | Volume 15, issue 13
https://doi.org/10.5194/acp-15-7557-2015
https://doi.org/10.5194/acp-15-7557-2015
Research article
 | 
13 Jul 2015
Research article |  | 13 Jul 2015

Wet scavenging limits the detection of aerosol effects on precipitation

E. Gryspeerdt, P. Stier, B. A. White, and Z. Kipling

Related authors

How does the lifetime of detrained cirrus impact the high cloud radiative effect in the tropics?
George Horner and Edward Gryspeerdt
EGUsphere, https://doi.org/10.5194/egusphere-2024-1090,https://doi.org/10.5194/egusphere-2024-1090, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Air mass history linked to the development of Arctic mixed-phase clouds
Rebecca J. Murray-Watson and Edward Gryspeerdt
EGUsphere, https://doi.org/10.5194/egusphere-2024-129,https://doi.org/10.5194/egusphere-2024-129, 2024
Short summary
General circulation models simulate negative liquid water path­–droplet number correlations, but anthropogenic aerosols still increase simulated liquid water path
Johannes Mülmenstädt, Edward Gryspeerdt, Sudhakar Dipu, Johannes Quaas, Andrew S. Ackerman, Ann M. Fridlind, Florian Tornow, Susanne E. Bauer, Andrew Gettelman, Yi Ming, Youtong Zheng, Po-Lun Ma, Hailong Wang, Kai Zhang, Matthew W. Christensen, Adam C. Varble, L. Ruby Leung, Xiaohong Liu, David Neubauer, Daniel G. Partridge, Philip Stier, and Toshihiko Takemura
EGUsphere, https://doi.org/10.5194/egusphere-2024-4,https://doi.org/10.5194/egusphere-2024-4, 2024
Short summary
The evolution of deep convective systems and their associated cirrus outflows
George Horner and Edward Gryspeerdt
Atmos. Chem. Phys., 23, 14239–14253, https://doi.org/10.5194/acp-23-14239-2023,https://doi.org/10.5194/acp-23-14239-2023, 2023
Short summary
Investigating the development of clouds within marine cold-air outbreaks
Rebecca J. Murray-Watson, Edward Gryspeerdt, and Tom Goren
Atmos. Chem. Phys., 23, 9365–9383, https://doi.org/10.5194/acp-23-9365-2023,https://doi.org/10.5194/acp-23-9365-2023, 2023
Short summary

Related subject area

Subject: Aerosols | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Effect of wind speed on marine aerosol optical properties over remote oceans with use of spaceborne lidar observations
Kangwen Sun, Guangyao Dai, Songhua Wu, Oliver Reitebuch, Holger Baars, Jiqiao Liu, and Suping Zhang
Atmos. Chem. Phys., 24, 4389–4409, https://doi.org/10.5194/acp-24-4389-2024,https://doi.org/10.5194/acp-24-4389-2024, 2024
Short summary
Assessment of smoke plume height products derived from multisource satellite observations using lidar-derived height metrics for wildfires in the western US
Jingting Huang, S. Marcela Loría-Salazar, Min Deng, Jaehwa Lee, and Heather A. Holmes
Atmos. Chem. Phys., 24, 3673–3698, https://doi.org/10.5194/acp-24-3673-2024,https://doi.org/10.5194/acp-24-3673-2024, 2024
Short summary
A remote sensing algorithm for vertically resolved cloud condensation nuclei number concentrations from airborne and spaceborne lidar observations
Piyushkumar N. Patel, Jonathan H. Jiang, Ritesh Gautam, Harish Gadhavi, Olga Kalashnikova, Michael J. Garay, Lan Gao, Feng Xu, and Ali Omar
Atmos. Chem. Phys., 24, 2861–2883, https://doi.org/10.5194/acp-24-2861-2024,https://doi.org/10.5194/acp-24-2861-2024, 2024
Short summary
Opinion: Aerosol remote sensing over the next 20 years
Lorraine A. Remer, Robert C. Levy, and J. Vanderlei Martins
Atmos. Chem. Phys., 24, 2113–2127, https://doi.org/10.5194/acp-24-2113-2024,https://doi.org/10.5194/acp-24-2113-2024, 2024
Short summary
Monitoring biomass burning aerosol transport using CALIOP observations and reanalysis models: a Canadian wildfire event in 2019
Xiaoxia Shang, Antti Lipponen, Maria Filioglou, Anu-Maija Sundström, Mark Parrington, Virginie Buchard, Anton S. Darmenov, Ellsworth J. Welton, Eleni Marinou, Vassilis Amiridis, Michael Sicard, Alejandro Rodríguez-Gómez, Mika Komppula, and Tero Mielonen
Atmos. Chem. Phys., 24, 1329–1344, https://doi.org/10.5194/acp-24-1329-2024,https://doi.org/10.5194/acp-24-1329-2024, 2024
Short summary

Cited articles

Ackermann, I. J., Hass, H., Memmesheimer, M., Ebel, A., Binkowski, F. S., and Shankar, U.: Modal aerosol dynamics model for Europe, Atmos. Environ., 32, 2981–2999, https://doi.org/10.1016/S1352-2310(98)00006-5, 1998.
Albrecht, B.: Aerosols, Cloud Microphysics, and Fractional Cloudiness, Science, 245, 1227–1230, https://doi.org/10.1126/science.245.4923.1227, 1989.
Andreae, M. and Rosenfeld, D.: Aerosol cloud precipitation interactions. Part 1. The nature and sources of cloud-active aerosols, Earth Sci. Rev., 89, 13–41, https://doi.org/10.1016/j.earscirev.2008.03.001, 2008.
Benedetti, A., Morcrette, J.-J., Boucher, O., Dethof, A., Engelen, R. J., Fisher, M., Flentje, H., Huneeus, N., Jones, L., Kaiser, J. W., Kinne, S., Mangold, A., Razinger, M., Simmons, A. J., and Suttie, M.: Aerosol analysis and forecast in the European Centre for Medium-Range Weather Forecasts Integrated Forecast System: 2. Data assimilation, J. Geophys. Res., 114, D13205, https://doi.org/10.1029/2008JD011115, 2009.
Boucher, O. and Quaas, J.: Water vapour affects both rain and aerosol optical depth, Nat. Geosci., 6, 4–5, https://doi.org/10.1038/ngeo1692, 2012.
Download
Short summary
Wet scavenging generates differences between the aerosol properties in clear-sky scenes (observed by satellites) and cloudy scenes, leading to different aerosol-precipitation relationships in satellite data and global models. Convective systems usually draw in air from clear-sky regions, but global models have difficulty separating this aerosol from the aerosol in cloudy scenes within a model gridbox. This may prevent models from reproducing the observed aerosol-precipitation relationships.
Altmetrics
Final-revised paper
Preprint