Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.414
IF5.414
IF 5-year value: 5.958
IF 5-year
5.958
CiteScore value: 9.7
CiteScore
9.7
SNIP value: 1.517
SNIP1.517
IPP value: 5.61
IPP5.61
SJR value: 2.601
SJR2.601
Scimago H <br class='widget-line-break'>index value: 191
Scimago H
index
191
h5-index value: 89
h5-index89
Volume 14, issue 3
Atmos. Chem. Phys., 14, 1141–1158, 2014
https://doi.org/10.5194/acp-14-1141-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Chem. Phys., 14, 1141–1158, 2014
https://doi.org/10.5194/acp-14-1141-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 03 Feb 2014

Research article | 03 Feb 2014

Satellite observations of cloud regime development: the role of aerosol processes

E. Gryspeerdt, P. Stier, and D. G. Partridge E. Gryspeerdt et al.
  • Department of Physics, University of Oxford, UK

Abstract. Many different interactions between aerosols and clouds have been postulated, based on correlations between satellite retrieved aerosol and cloud properties. Previous studies highlighted the importance of meteorological covariations to the observed correlations.

In this work, we make use of multiple temporally-spaced satellite retrievals to observe the development of cloud regimes. The observation of cloud regime development allows us to account for the influences of cloud fraction (CF) and meteorological factors on the aerosol retrieval. By accounting for the aerosol index (AI)-CF relationship, we reduce the influence of meteorological correlations compared to "snapshot" studies, finding that simple correlations overestimate any aerosol effect on CF by at least a factor of two.

We find an increased occurrence of transitions into the stratocumulus regime over ocean with increases in MODIS AI, consistent with the hypothesis that aerosols increase stratocumulus persistence. We also observe an increase in transitions into the deep convective regime over land, consistent with the aerosol invigoration hypothesis. We find changes in the transitions from the shallow cumulus regime in different aerosol environments. The strength of these changes is strongly dependent on Low Troposphere Static Stability and 10 m windspeed, but less so on other meteorological factors.

Whilst we have reduced the error due to meteorological and CF effects on the aerosol retrieval, meteorological covariation with the cloud and aerosol properties is harder to remove, so these results likely represent an upper bound on the effect of aerosols on cloud development and CF.

Publications Copernicus
Download
Citation
Altmetrics
Final-revised paper
Preprint