Articles | Volume 18, issue 3
https://doi.org/10.5194/acp-18-2175-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-18-2175-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Low modeled ozone production suggests underestimation of precursor emissions (especially NOx) in Europe
Emmanouil Oikonomakis
Laboratory of Atmospheric Chemistry, Paul Scherrer Institute,
Villigen, Switzerland
Laboratory of Atmospheric Chemistry, Paul Scherrer Institute,
Villigen, Switzerland
Giancarlo Ciarelli
Laboratoire Inter-Universitaire des Systèmes Atmosphériques
(LISA), UMR CNRS 7583, Université Paris Est Créteil et
Université Paris Diderot, Institut Pierre Simon Laplace, Créteil,
France
Urs Baltensperger
Laboratory of Atmospheric Chemistry, Paul Scherrer Institute,
Villigen, Switzerland
André Stephan Henry Prévôt
Laboratory of Atmospheric Chemistry, Paul Scherrer Institute,
Villigen, Switzerland
Related authors
No articles found.
Laurence C. Windell, Saliou Mbengue, Petra Pokorná, Jaroslav Schwarz, André S. H. Prévôt, Manousos I. Manousakas, Stefanos Papagiannis, Jakub Ondráček, Roman Prokeš, and Vladimir Ždímal
Atmos. Meas. Tech., 18, 7021–7038, https://doi.org/10.5194/amt-18-7021-2025, https://doi.org/10.5194/amt-18-7021-2025, 2025
Short summary
Short summary
In this work, we compare the two most widely used online XRF monitors for ambient elemental analysis, the Xact625i and PX-375. We found strong correlations between the online instruments and the reference method (better so for the Xact625i), while in terms of absolute concentrations, some elements were over- and underestimated. Overall, we determined both instruments can be used as powerful tools to produce high-time resolution elemental data for use in air quality monitoring.
Laura Cadeo, Beatrice Biffi, Benjamin Chazeau, Cristina Colombi, Rosario Cosenza, Eleonora Cuccia, Manousos-Ioannis Manousakas, Kaspar R. Daellenbach, André S. H. Prévôt, and Roberta Vecchi
Atmos. Meas. Tech., 18, 6435–6448, https://doi.org/10.5194/amt-18-6435-2025, https://doi.org/10.5194/amt-18-6435-2025, 2025
Short summary
Short summary
This study presents the deployment of the Xact® 625i Ambient Metals Monitor in Milan (Po Valley, Italy) and its performance in measuring particulate matter elemental composition at a high temporal resolution. Our findings demonstrate strong agreement between online and offline X-ray fluorescence analyses, underscoring the potential of advanced monitoring technologies for air quality research.
Sophie Bogler, Jun Zhang, Rico K. Y. Cheung, Kun Li, André S. H. Prévôt, Imad El Haddad, and David M. Bell
Atmos. Chem. Phys., 25, 10229–10243, https://doi.org/10.5194/acp-25-10229-2025, https://doi.org/10.5194/acp-25-10229-2025, 2025
Short summary
Short summary
Authentic aerosols emitted from residential wood stoves and open burning processes are only slightly oxidized by ozone in the atmosphere. Under dry conditions, the reaction does not proceed to completion, while under high humidity conditions, the reactivity proceeds further. These results indicate that the reactivity with ozone is likely impacted by aerosol phase state (e.g., aerosol viscosity).
Manousos I. Manousakas, Olga Zografou, Francesco Canonaco, Evangelia Diapouli, Stefanos Papagiannis, Maria Gini, Vasiliki Vasilatou, Anna Tobler, Stergios Vratolis, Jay G. Slowik, Kaspar R. Daellenbach, André S. H. Prevot, and Konstantinos Eleftheriadis
Atmos. Meas. Tech., 18, 3983–4002, https://doi.org/10.5194/amt-18-3983-2025, https://doi.org/10.5194/amt-18-3983-2025, 2025
Short summary
Short summary
Air pollution from airborne particles is a major health and environmental concern, especially in cities. Understanding the particles' sources is key to addressing this issue, but traditional methods require time-consuming sampling, delaying action. Our study introduces a real-time monitoring system that uses advanced instruments and software to track pollution instantly. This technology allows faster, more precise pollution analysis, helping cities create targeted strategies to improve air quality.
Junke Zhang, Xinyi Fu, Chunying Chen, Yunfei Su, Siyu Liu, Luyao Chen, Yubao Chen, Gehui Wang, and Andre S. H. Prevot
Atmos. Chem. Phys., 25, 8983–9004, https://doi.org/10.5194/acp-25-8983-2025, https://doi.org/10.5194/acp-25-8983-2025, 2025
Short summary
Short summary
We measured (at the molecular level) the 125 organic aerosol (OA) compounds present in Chengdu in winter. OA was dominated by fatty acids, phthalate esters, and anhydrosugars, and it was deeply influenced by anthropogenic sources. As pollution worsened, secondary inorganic species and secondary organic carbon (OC) dominated the increase in PM2.5, fatty acids and anhydrosugars dominated the increase in OA, and the contributions of secondary formation and biomass burning to OC increased markedly.
Myriam Agrò, Manuel Bettineschi, Silvia Melina, Diego Aliaga, Andrea Bergomi, Beatrice Biffi, Alessandro Bigi, Giancarlo Ciarelli, Cristina Colombi, Paola Fermo, Ivan Grigioni, Veli-Matti Kerminen, Markku Kulmala, Janne Lampilahti, Angela Marinoni, Celestine Oliewo, Juha Sulo, Gianluigi Valli, Roberta Vecchi, Tuukka Petäjä, Katrianne Lehtipalo, and Federico Bianchi
EGUsphere, https://doi.org/10.5194/egusphere-2025-2387, https://doi.org/10.5194/egusphere-2025-2387, 2025
Short summary
Short summary
This study investigates New Particle Formation (NPF) in Milan, the most populated city in the Po Valley (Italy), using one year of particle number size distribution data (1.2–480 nm). NPF is enhanced under cleaner air conditions with lower pollution, reduced condensation sink, stronger ventilation, and stronger northwesterly winds (e.g., Foehn events). In contrast, longer air mass residence time in the Po Valley and higher air mass exposure to anthropogenic emissions suppress it.
Jiamao Zhou, Jiarui Wu, Xiaoli Su, Ruonan Wang, Imad EI Haddad, Xia Li, Qian Jiang, Ting Zhang, Wenting Dai, Junji Cao, Andre S. H. Prevot, Xuexi Tie, and Guohui Li
Atmos. Chem. Phys., 25, 7563–7580, https://doi.org/10.5194/acp-25-7563-2025, https://doi.org/10.5194/acp-25-7563-2025, 2025
Short summary
Short summary
Brown carbon (BrC) is a type of airborne particle produced from various combustion sources which is light absorption. Historically, climate models have categorizing organic particles as either non-absorbing or purely reflective. Our study shows that BrC can reduce the usual cooling effect of organic particles. While BrC is often linked to biomass burning, however, BrC from fossil fuels contributes significantly to atmospheric heating.
Ashutosh K. Shukla, Sachchida N. Tripathi, Shamitaksha Talukdar, Vishnu Murari, Sreenivas Gaddamidi, Manousos-Ioannis Manousakas, Vipul Lalchandani, Kuldeep Dixit, Vinayak M. Ruge, Peeyush Khare, Mayank Kumar, Vikram Singh, Neeraj Rastogi, Suresh Tiwari, Atul K. Srivastava, Dilip Ganguly, Kaspar Rudolf Daellenbach, and André S. H. Prévôt
Atmos. Chem. Phys., 25, 3765–3784, https://doi.org/10.5194/acp-25-3765-2025, https://doi.org/10.5194/acp-25-3765-2025, 2025
Short summary
Short summary
Our study delves into the elemental composition of aerosols at three sites across the Indo-Gangetic Plain (IGP), revealing distinct patterns during pollution episodes. We found significant increases in chlorine (Cl)-rich and solid fuel combustion (SFC) sources, indicating dynamic emission sources, agricultural burning impacts, and meteorological influences. Surges in Cl-rich particles during cold periods highlight their role in particle growth under high-relative-humidity conditions.
Tiantian Wang, Jun Zhang, Houssni Lamkaddam, Kun Li, Ka Yuen Cheung, Lisa Kattner, Erlend Gammelsæter, Michael Bauer, Zachary C. J. Decker, Deepika Bhattu, Rujin Huang, Rob L. Modini, Jay G. Slowik, Imad El Haddad, Andre S. H. Prevot, and David M. Bell
Atmos. Chem. Phys., 25, 2707–2724, https://doi.org/10.5194/acp-25-2707-2025, https://doi.org/10.5194/acp-25-2707-2025, 2025
Short summary
Short summary
Our study analyzes real-time emissions of organic vapors from solid fuel combustion. Using the mass spectrometer, we tested various fuels, finding higher emission factors for organic vapors from wood burning. Intermediate-volatility organic compounds constituted a significant fraction of emissions in solid fuel combustion. Statistical tests identified unique potential markers. Our insights benefit air quality, climate, and health, aiding accurate emission assessments.
Hector Navarro-Barboza, Jordi Rovira, Vincenzo Obiso, Andrea Pozzer, Marta Via, Andres Alastuey, Xavier Querol, Noemi Perez, Marjan Savadkoohi, Gang Chen, Jesus Yus-Díez, Matic Ivancic, Martin Rigler, Konstantinos Eleftheriadis, Stergios Vratolis, Olga Zografou, Maria Gini, Benjamin Chazeau, Nicolas Marchand, Andre S. H. Prevot, Kaspar Dallenbach, Mikael Ehn, Krista Luoma, Tuukka Petäjä, Anna Tobler, Jaroslaw Necki, Minna Aurela, Hilkka Timonen, Jarkko Niemi, Olivier Favez, Jean-Eudes Petit, Jean-Philippe Putaud, Christoph Hueglin, Nicolas Pascal, Aurélien Chauvigné, Sébastien Conil, Marco Pandolfi, and Oriol Jorba
Atmos. Chem. Phys., 25, 2667–2694, https://doi.org/10.5194/acp-25-2667-2025, https://doi.org/10.5194/acp-25-2667-2025, 2025
Short summary
Short summary
Brown carbon (BrC) absorbs ultraviolet (UV) and visible light, influencing climate. This study explores BrC's imaginary refractive index (k) using data from 12 European sites. Residential emissions are a major organic aerosol (OA) source in winter, while secondary organic aerosol (SOA) dominates in summer. Source-specific k values were derived, improving model accuracy. The findings highlight BrC's climate impact and emphasize source-specific constraints in atmospheric models.
Imad El Haddad, Danielle Vienneau, Kaspar R. Daellenbach, Robin Modini, Jay G. Slowik, Abhishek Upadhyay, Petros N. Vasilakos, David Bell, Kees de Hoogh, and Andre S. H. Prevot
Atmos. Chem. Phys., 24, 11981–12011, https://doi.org/10.5194/acp-24-11981-2024, https://doi.org/10.5194/acp-24-11981-2024, 2024
Short summary
Short summary
This opinion paper explores how advances in aerosol science inform our understanding of the health impacts of outdoor particulate pollution. We advocate for a shift in the way we target PM pollution, focusing on the most harmful anthropogenic emissions. We highlight key observations, modelling developments, and emission measurements needed to achieve this shift.
Jing Cai, Juha Sulo, Yifang Gu, Sebastian Holm, Runlong Cai, Steven Thomas, Almuth Neuberger, Fredrik Mattsson, Marco Paglione, Stefano Decesari, Matteo Rinaldi, Rujing Yin, Diego Aliaga, Wei Huang, Yuanyuan Li, Yvette Gramlich, Giancarlo Ciarelli, Lauriane Quéléver, Nina Sarnela, Katrianne Lehtipalo, Nora Zannoni, Cheng Wu, Wei Nie, Juha Kangasluoma, Claudia Mohr, Markku Kulmala, Qiaozhi Zha, Dominik Stolzenburg, and Federico Bianchi
Atmos. Chem. Phys., 24, 2423–2441, https://doi.org/10.5194/acp-24-2423-2024, https://doi.org/10.5194/acp-24-2423-2024, 2024
Short summary
Short summary
By combining field measurements, simulations and recent chamber experiments, we investigate new particle formation (NPF) and growth in the Po Valley, where both haze and frequent NPF occur. Our results show that sulfuric acid, ammonia and amines are the dominant NPF precursors there. A high NPF rate and a lower condensation sink lead to a greater survival probability for newly formed particles, highlighting the importance of gas-to-particle conversion for aerosol concentrations.
Giancarlo Ciarelli, Sara Tahvonen, Arineh Cholakian, Manuel Bettineschi, Bruno Vitali, Tuukka Petäjä, and Federico Bianchi
Geosci. Model Dev., 17, 545–565, https://doi.org/10.5194/gmd-17-545-2024, https://doi.org/10.5194/gmd-17-545-2024, 2024
Short summary
Short summary
The terrestrial ecosystem releases large quantities of biogenic gases in the Earth's Atmosphere. These gases can effectively be converted into so-called biogenic aerosol particles and, eventually, affect the Earth's climate. Climate prediction varies greatly depending on how these processes are represented in model simulations. In this study, we present a detailed model evaluation analysis aimed at understanding the main source of uncertainty in predicting the formation of biogenic aerosols.
Jun Zhang, Kun Li, Tiantian Wang, Erlend Gammelsæter, Rico K. Y. Cheung, Mihnea Surdu, Sophie Bogler, Deepika Bhattu, Dongyu S. Wang, Tianqu Cui, Lu Qi, Houssni Lamkaddam, Imad El Haddad, Jay G. Slowik, Andre S. H. Prevot, and David M. Bell
Atmos. Chem. Phys., 23, 14561–14576, https://doi.org/10.5194/acp-23-14561-2023, https://doi.org/10.5194/acp-23-14561-2023, 2023
Short summary
Short summary
We conducted burning experiments to simulate various types of solid fuel combustion, including residential burning, wildfires, agricultural burning, cow dung, and plastic bag burning. The chemical composition of the particles was characterized using mass spectrometers, and new potential markers for different fuels were identified using statistical analysis. This work improves our understanding of emissions from solid fuel burning and offers support for refined source apportionment.
Yong Zhang, Jie Tian, Qiyuan Wang, Lu Qi, Manousos Ioannis Manousakas, Yuemei Han, Weikang Ran, Yele Sun, Huikun Liu, Renjian Zhang, Yunfei Wu, Tianqu Cui, Kaspar Rudolf Daellenbach, Jay Gates Slowik, André S. H. Prévôt, and Junji Cao
Atmos. Chem. Phys., 23, 9455–9471, https://doi.org/10.5194/acp-23-9455-2023, https://doi.org/10.5194/acp-23-9455-2023, 2023
Short summary
Short summary
PM2.5 pollution still frequently occurs in northern China during winter, and it is necessary to figure out the causes of air pollution based on intensive real-time measurement. The findings elaborate the chemical characteristics and source contributions of PM2.5 in three pilot cities, reveal potential formation mechanisms of secondary aerosols, and highlight the importance of controlling biomass burning and inhibiting generation of secondary aerosol for air quality improvement.
Sophie L. Haslett, David M. Bell, Varun Kumar, Jay G. Slowik, Dongyu S. Wang, Suneeti Mishra, Neeraj Rastogi, Atinderpal Singh, Dilip Ganguly, Joel Thornton, Feixue Zheng, Yuanyuan Li, Wei Nie, Yongchun Liu, Wei Ma, Chao Yan, Markku Kulmala, Kaspar R. Daellenbach, David Hadden, Urs Baltensperger, Andre S. H. Prevot, Sachchida N. Tripathi, and Claudia Mohr
Atmos. Chem. Phys., 23, 9023–9036, https://doi.org/10.5194/acp-23-9023-2023, https://doi.org/10.5194/acp-23-9023-2023, 2023
Short summary
Short summary
In Delhi, some aspects of daytime and nighttime atmospheric chemistry are inverted, and parodoxically, vehicle emissions may be limiting other forms of particle production. This is because the nighttime emissions of nitrogen oxide (NO) by traffic and biomass burning prevent some chemical processes that would otherwise create even more particles and worsen the urban haze.
Emelie L. Graham, Cheng Wu, David M. Bell, Amelie Bertrand, Sophie L. Haslett, Urs Baltensperger, Imad El Haddad, Radovan Krejci, Ilona Riipinen, and Claudia Mohr
Atmos. Chem. Phys., 23, 7347–7362, https://doi.org/10.5194/acp-23-7347-2023, https://doi.org/10.5194/acp-23-7347-2023, 2023
Short summary
Short summary
The volatility of an aerosol particle is an important parameter for describing its atmospheric lifetime. We studied the volatility of secondary organic aerosols from nitrate-initiated oxidation of three biogenic precursors with experimental methods and model simulations. We saw higher volatility than for the corresponding ozone system, and our simulations produced variable results with different parameterizations which warrant a re-evaluation of the treatment of the nitrate functional group.
Samira Atabakhsh, Laurent Poulain, Gang Chen, Francesco Canonaco, André S. H. Prévôt, Mira Pöhlker, Alfred Wiedensohler, and Hartmut Herrmann
Atmos. Chem. Phys., 23, 6963–6988, https://doi.org/10.5194/acp-23-6963-2023, https://doi.org/10.5194/acp-23-6963-2023, 2023
Short summary
Short summary
The study focuses on the aerosol chemical variations found in the rural-background station of Melpitz based on ACSM and MAAP measurements. Source apportionment on both organic aerosol (OA) and black carbon (eBC) was performed, and source seasonality was also linked to air mass trajectories. Overall, three anthropogenic sources were identified in OA and eBC plus two additional aged OA. Our results demonstrate the influence of transported coal-combustion-related OA even during summer time.
Lucía Caudillo, Mihnea Surdu, Brandon Lopez, Mingyi Wang, Markus Thoma, Steffen Bräkling, Angela Buchholz, Mario Simon, Andrea C. Wagner, Tatjana Müller, Manuel Granzin, Martin Heinritzi, Antonio Amorim, David M. Bell, Zoé Brasseur, Lubna Dada, Jonathan Duplissy, Henning Finkenzeller, Xu-Cheng He, Houssni Lamkaddam, Naser G. A. Mahfouz, Vladimir Makhmutov, Hanna E. Manninen, Guillaume Marie, Ruby Marten, Roy L. Mauldin, Bernhard Mentler, Antti Onnela, Tuukka Petäjä, Joschka Pfeifer, Maxim Philippov, Ana A. Piedehierro, Birte Rörup, Wiebke Scholz, Jiali Shen, Dominik Stolzenburg, Christian Tauber, Ping Tian, António Tomé, Nsikanabasi Silas Umo, Dongyu S. Wang, Yonghong Wang, Stefan K. Weber, André Welti, Marcel Zauner-Wieczorek, Urs Baltensperger, Richard C. Flagan, Armin Hansel, Jasper Kirkby, Markku Kulmala, Katrianne Lehtipalo, Douglas R. Worsnop, Imad El Haddad, Neil M. Donahue, Alexander L. Vogel, Andreas Kürten, and Joachim Curtius
Atmos. Chem. Phys., 23, 6613–6631, https://doi.org/10.5194/acp-23-6613-2023, https://doi.org/10.5194/acp-23-6613-2023, 2023
Short summary
Short summary
In this study, we present an intercomparison of four different techniques for measuring the chemical composition of nanoparticles. The intercomparison was performed based on the observed chemical composition, calculated volatility, and analysis of the thermograms. We found that the methods generally agree on the most important compounds that are found in the nanoparticles. However, they do see different parts of the organic spectrum. We suggest potential explanations for these differences.
Vaishali Jain, Nidhi Tripathi, Sachchida N. Tripathi, Mansi Gupta, Lokesh K. Sahu, Vishnu Murari, Sreenivas Gaddamidi, Ashutosh K. Shukla, and Andre S. H. Prevot
Atmos. Chem. Phys., 23, 3383–3408, https://doi.org/10.5194/acp-23-3383-2023, https://doi.org/10.5194/acp-23-3383-2023, 2023
Short summary
Short summary
This research chemically characterises 173 different NMVOCs (non-methane volatile organic compounds) measured in real time for three seasons in the city of the central Indo-Gangetic basin of India, Lucknow. Receptor modelling is used to analyse probable sources of NMVOCs and their crucial role in forming ozone and secondary organic aerosols. It is observed that vehicular emissions and solid fuel combustion are the highest contributors to the emission of primary and secondary NMVOCs.
Tingting Feng, Yingkun Wang, Weiwei Hu, Ming Zhu, Wei Song, Wei Chen, Yanyan Sang, Zheng Fang, Wei Deng, Hua Fang, Xu Yu, Cheng Wu, Bin Yuan, Shan Huang, Min Shao, Xiaofeng Huang, Lingyan He, Young Ro Lee, Lewis Gregory Huey, Francesco Canonaco, Andre S. H. Prevot, and Xinming Wang
Atmos. Chem. Phys., 23, 611–636, https://doi.org/10.5194/acp-23-611-2023, https://doi.org/10.5194/acp-23-611-2023, 2023
Short summary
Short summary
To investigate the impact of aging processes on organic aerosols (OA), we conducted a comprehensive field study at a continental remote site using an on-line mass spectrometer. The results show that OA in the Chinese outflows were strongly influenced by upwind anthropogenic emissions. The aging processes can significantly decrease the OA volatility and result in a varied viscosity of OA under different circumstances, signifying the complex physiochemical properties of OA in aged plumes.
Yandong Tong, Lu Qi, Giulia Stefenelli, Dongyu Simon Wang, Francesco Canonaco, Urs Baltensperger, André Stephan Henry Prévôt, and Jay Gates Slowik
Atmos. Meas. Tech., 15, 7265–7291, https://doi.org/10.5194/amt-15-7265-2022, https://doi.org/10.5194/amt-15-7265-2022, 2022
Short summary
Short summary
We present a method for positive matrix factorisation (PMF) analysis on a single dataset that includes measurements from both EESI-TOF and AMS in Zurich, Switzerland. For the first time, we resolved and quantified secondary organic aerosol (SOA) sources. Meanwhile, we also determined the retrieved EESI-TOF factor-dependent sensitivities. This method provides a framework for exploiting semi-quantitative, high-resolution instrumentation for quantitative source apportionment.
David M. Bell, Cheng Wu, Amelie Bertrand, Emelie Graham, Janne Schoonbaert, Stamatios Giannoukos, Urs Baltensperger, Andre S. H. Prevot, Ilona Riipinen, Imad El Haddad, and Claudia Mohr
Atmos. Chem. Phys., 22, 13167–13182, https://doi.org/10.5194/acp-22-13167-2022, https://doi.org/10.5194/acp-22-13167-2022, 2022
Short summary
Short summary
A series of studies designed to investigate the evolution of organic aerosol were performed in an atmospheric simulation chamber, using a common oxidant found at night (NO3). The chemical composition steadily changed from its initial composition via different chemical reactions that were taking place inside of the aerosol particle. These results show that the composition of organic aerosol steadily changes during its lifetime in the atmosphere.
Marta Via, Gang Chen, Francesco Canonaco, Kaspar R. Daellenbach, Benjamin Chazeau, Hasna Chebaicheb, Jianhui Jiang, Hannes Keernik, Chunshui Lin, Nicolas Marchand, Cristina Marin, Colin O'Dowd, Jurgita Ovadnevaite, Jean-Eudes Petit, Michael Pikridas, Véronique Riffault, Jean Sciare, Jay G. Slowik, Leïla Simon, Jeni Vasilescu, Yunjiang Zhang, Olivier Favez, André S. H. Prévôt, Andrés Alastuey, and María Cruz Minguillón
Atmos. Meas. Tech., 15, 5479–5495, https://doi.org/10.5194/amt-15-5479-2022, https://doi.org/10.5194/amt-15-5479-2022, 2022
Short summary
Short summary
This work presents the differences resulting from two techniques (rolling and seasonal) of the positive matrix factorisation model that can be run for organic aerosol source apportionment. The current state of the art suggests that the rolling technique is more accurate, but no proof of its effectiveness has been provided yet. This paper tackles this issue in the context of a synthetic dataset and a multi-site real-world comparison.
Chuan Ping Lee, Mihnea Surdu, David M. Bell, Josef Dommen, Mao Xiao, Xueqin Zhou, Andrea Baccarini, Stamatios Giannoukos, Günther Wehrle, Pascal André Schneider, Andre S. H. Prevot, Jay G. Slowik, Houssni Lamkaddam, Dongyu Wang, Urs Baltensperger, and Imad El Haddad
Atmos. Meas. Tech., 15, 3747–3760, https://doi.org/10.5194/amt-15-3747-2022, https://doi.org/10.5194/amt-15-3747-2022, 2022
Short summary
Short summary
Real-time detection of both the gas and particle phase is needed to elucidate the sources and chemical reaction pathways of organic vapors and particulate matter. The Dual-EESI was developed to measure gas- and particle-phase species to provide new insights into aerosol sources or formation mechanisms. After characterizing the relative gas and particle response factors of EESI via organic aerosol uptake experiments, the Dual-EESI is more sensitive toward gas-phase analyes.
Varun Kumar, Stamatios Giannoukos, Sophie L. Haslett, Yandong Tong, Atinderpal Singh, Amelie Bertrand, Chuan Ping Lee, Dongyu S. Wang, Deepika Bhattu, Giulia Stefenelli, Jay S. Dave, Joseph V. Puthussery, Lu Qi, Pawan Vats, Pragati Rai, Roberto Casotto, Rangu Satish, Suneeti Mishra, Veronika Pospisilova, Claudia Mohr, David M. Bell, Dilip Ganguly, Vishal Verma, Neeraj Rastogi, Urs Baltensperger, Sachchida N. Tripathi, André S. H. Prévôt, and Jay G. Slowik
Atmos. Chem. Phys., 22, 7739–7761, https://doi.org/10.5194/acp-22-7739-2022, https://doi.org/10.5194/acp-22-7739-2022, 2022
Short summary
Short summary
Here we present source apportionment results from the first field deployment in Delhi of an extractive electrospray ionization time-of-flight mass spectrometer (EESI-TOF). The EESI-TOF is a recently developed instrument capable of providing uniquely detailed online chemical characterization of organic aerosol (OA), in particular the secondary OA (SOA) fraction. Here, we are able to apportion not only primary OA but also SOA to specific sources, which is performed for the first time in Delhi.
Svetlana Tsyro, Wenche Aas, Augustin Colette, Camilla Andersson, Bertrand Bessagnet, Giancarlo Ciarelli, Florian Couvidat, Kees Cuvelier, Astrid Manders, Kathleen Mar, Mihaela Mircea, Noelia Otero, Maria-Teresa Pay, Valentin Raffort, Yelva Roustan, Mark R. Theobald, Marta G. Vivanco, Hilde Fagerli, Peter Wind, Gino Briganti, Andrea Cappelletti, Massimo D'Isidoro, and Mario Adani
Atmos. Chem. Phys., 22, 7207–7257, https://doi.org/10.5194/acp-22-7207-2022, https://doi.org/10.5194/acp-22-7207-2022, 2022
Short summary
Short summary
Particulate matter (PM) air pollution causes adverse health effects. In Europe, the emissions caused by anthropogenic activities have been reduced in the last decades. To assess the efficiency of emission reductions in improving air quality, we have studied the evolution of PM pollution in Europe. Simulations with six air quality models and observational data indicate a decrease in PM concentrations by 10 % to 30 % across Europe from 2000 to 2010, which is mainly a result of emission reductions.
Amir Yazdani, Nikunj Dudani, Satoshi Takahama, Amelie Bertrand, André S. H. Prévôt, Imad El Haddad, and Ann M. Dillner
Atmos. Meas. Tech., 15, 2857–2874, https://doi.org/10.5194/amt-15-2857-2022, https://doi.org/10.5194/amt-15-2857-2022, 2022
Short summary
Short summary
While the aerosol mass spectrometer provides high-time-resolution characterization of the overall extent of oxidation, the extensive fragmentation of molecules and specificity of the technique have posed challenges toward deeper understanding of molecular structures in aerosols. This work demonstrates how functional group information can be extracted from a suite of commonly measured mass fragments using collocated infrared spectroscopy measurements.
Dalrin Ampritta Amaladhasan, Claudia Heyn, Christopher R. Hoyle, Imad El Haddad, Miriam Elser, Simone M. Pieber, Jay G. Slowik, Antonio Amorim, Jonathan Duplissy, Sebastian Ehrhart, Vladimir Makhmutov, Ugo Molteni, Matti Rissanen, Yuri Stozhkov, Robert Wagner, Armin Hansel, Jasper Kirkby, Neil M. Donahue, Rainer Volkamer, Urs Baltensperger, Martin Gysel-Beer, and Andreas Zuend
Atmos. Chem. Phys., 22, 215–244, https://doi.org/10.5194/acp-22-215-2022, https://doi.org/10.5194/acp-22-215-2022, 2022
Short summary
Short summary
We use a combination of models for gas-phase chemical reactions and equilibrium gas–particle partitioning of isoprene-derived secondary organic aerosols (SOAs) informed by dark ozonolysis experiments conducted in the CLOUD chamber. Our predictions cover high to low relative humidities (RHs) and quantify how SOA mass yields are enhanced at high RH as well as the impact of inorganic seeds of distinct hygroscopicities and acidities on the coupled partitioning of water and semi-volatile organics.
Clémence Rose, Martine Collaud Coen, Elisabeth Andrews, Yong Lin, Isaline Bossert, Cathrine Lund Myhre, Thomas Tuch, Alfred Wiedensohler, Markus Fiebig, Pasi Aalto, Andrés Alastuey, Elisabeth Alonso-Blanco, Marcos Andrade, Begoña Artíñano, Todor Arsov, Urs Baltensperger, Susanne Bastian, Olaf Bath, Johan Paul Beukes, Benjamin T. Brem, Nicolas Bukowiecki, Juan Andrés Casquero-Vera, Sébastien Conil, Konstantinos Eleftheriadis, Olivier Favez, Harald Flentje, Maria I. Gini, Francisco Javier Gómez-Moreno, Martin Gysel-Beer, Anna Gannet Hallar, Ivo Kalapov, Nikos Kalivitis, Anne Kasper-Giebl, Melita Keywood, Jeong Eun Kim, Sang-Woo Kim, Adam Kristensson, Markku Kulmala, Heikki Lihavainen, Neng-Huei Lin, Hassan Lyamani, Angela Marinoni, Sebastiao Martins Dos Santos, Olga L. Mayol-Bracero, Frank Meinhardt, Maik Merkel, Jean-Marc Metzger, Nikolaos Mihalopoulos, Jakub Ondracek, Marco Pandolfi, Noemi Pérez, Tuukka Petäjä, Jean-Eudes Petit, David Picard, Jean-Marc Pichon, Veronique Pont, Jean-Philippe Putaud, Fabienne Reisen, Karine Sellegri, Sangeeta Sharma, Gerhard Schauer, Patrick Sheridan, James Patrick Sherman, Andreas Schwerin, Ralf Sohmer, Mar Sorribas, Junying Sun, Pierre Tulet, Ville Vakkari, Pieter Gideon van Zyl, Fernando Velarde, Paolo Villani, Stergios Vratolis, Zdenek Wagner, Sheng-Hsiang Wang, Kay Weinhold, Rolf Weller, Margarita Yela, Vladimir Zdimal, and Paolo Laj
Atmos. Chem. Phys., 21, 17185–17223, https://doi.org/10.5194/acp-21-17185-2021, https://doi.org/10.5194/acp-21-17185-2021, 2021
Short summary
Short summary
Aerosol particles are a complex component of the atmospheric system the effects of which are among the most uncertain in climate change projections. Using data collected at 62 stations, this study provides the most up-to-date picture of the spatial distribution of particle number concentration and size distribution worldwide, with the aim of contributing to better representation of aerosols and their interactions with clouds in models and, therefore, better evaluation of their impact on climate.
Lucía Caudillo, Birte Rörup, Martin Heinritzi, Guillaume Marie, Mario Simon, Andrea C. Wagner, Tatjana Müller, Manuel Granzin, Antonio Amorim, Farnoush Ataei, Rima Baalbaki, Barbara Bertozzi, Zoé Brasseur, Randall Chiu, Biwu Chu, Lubna Dada, Jonathan Duplissy, Henning Finkenzeller, Loïc Gonzalez Carracedo, Xu-Cheng He, Victoria Hofbauer, Weimeng Kong, Houssni Lamkaddam, Chuan P. Lee, Brandon Lopez, Naser G. A. Mahfouz, Vladimir Makhmutov, Hanna E. Manninen, Ruby Marten, Dario Massabò, Roy L. Mauldin, Bernhard Mentler, Ugo Molteni, Antti Onnela, Joschka Pfeifer, Maxim Philippov, Ana A. Piedehierro, Meredith Schervish, Wiebke Scholz, Benjamin Schulze, Jiali Shen, Dominik Stolzenburg, Yuri Stozhkov, Mihnea Surdu, Christian Tauber, Yee Jun Tham, Ping Tian, António Tomé, Steffen Vogt, Mingyi Wang, Dongyu S. Wang, Stefan K. Weber, André Welti, Wang Yonghong, Wu Yusheng, Marcel Zauner-Wieczorek, Urs Baltensperger, Imad El Haddad, Richard C. Flagan, Armin Hansel, Kristina Höhler, Jasper Kirkby, Markku Kulmala, Katrianne Lehtipalo, Ottmar Möhler, Harald Saathoff, Rainer Volkamer, Paul M. Winkler, Neil M. Donahue, Andreas Kürten, and Joachim Curtius
Atmos. Chem. Phys., 21, 17099–17114, https://doi.org/10.5194/acp-21-17099-2021, https://doi.org/10.5194/acp-21-17099-2021, 2021
Short summary
Short summary
We performed experiments in the CLOUD chamber at CERN at low temperatures to simulate new particle formation in the upper free troposphere (at −30 ºC and −50 ºC). We measured the particle and gas phase and found that most of the compounds present in the gas phase are detected as well in the particle phase. The major compounds in the particles are C8–10 and C18–20. Specifically, we showed that C5 and C15 compounds are detected in a mixed system with isoprene and α-pinene at −30 ºC, 20 % RH.
Dongyu S. Wang, Chuan Ping Lee, Jordan E. Krechmer, Francesca Majluf, Yandong Tong, Manjula R. Canagaratna, Julia Schmale, André S. H. Prévôt, Urs Baltensperger, Josef Dommen, Imad El Haddad, Jay G. Slowik, and David M. Bell
Atmos. Meas. Tech., 14, 6955–6972, https://doi.org/10.5194/amt-14-6955-2021, https://doi.org/10.5194/amt-14-6955-2021, 2021
Short summary
Short summary
To understand the sources and fate of particulate matter in the atmosphere, the ability to quantitatively describe its chemical composition is essential. In this work, we developed a calibration method for a state-of-the-art measurement technique without the need for chemical standards. Statistical analyses identified the driving factors behind instrument sensitivity variability towards individual components of particulate matter.
Gang Chen, Yulia Sosedova, Francesco Canonaco, Roman Fröhlich, Anna Tobler, Athanasia Vlachou, Kaspar R. Daellenbach, Carlo Bozzetti, Christoph Hueglin, Peter Graf, Urs Baltensperger, Jay G. Slowik, Imad El Haddad, and André S. H. Prévôt
Atmos. Chem. Phys., 21, 15081–15101, https://doi.org/10.5194/acp-21-15081-2021, https://doi.org/10.5194/acp-21-15081-2021, 2021
Short summary
Short summary
A novel, advanced source apportionment technique was applied to a dataset measured in Magadino. Rolling positive matrix factorisation (PMF) allows for retrieving more realistic, time-dependent, and detailed information on organic aerosol sources. The strength of the rolling PMF mechanism is highlighted by comparing it with results derived from conventional seasonal PMF. Overall, this comprehensive interpretation of aerosol chemical speciation monitor data could be a role model for similar work.
Wenfei Zhu, Song Guo, Zirui Zhang, Hui Wang, Ying Yu, Zheng Chen, Ruizhe Shen, Rui Tan, Kai Song, Kefan Liu, Rongzhi Tang, Yi Liu, Shengrong Lou, Yuanju Li, Wenbin Zhang, Zhou Zhang, Shijin Shuai, Hongming Xu, Shuangde Li, Yunfa Chen, Min Hu, Francesco Canonaco, and Andre S. H. Prévôt
Atmos. Chem. Phys., 21, 15065–15079, https://doi.org/10.5194/acp-21-15065-2021, https://doi.org/10.5194/acp-21-15065-2021, 2021
Short summary
Short summary
The experiments of primary emissions and secondary organic aerosol (SOA) formation from urban lifestyle sources (cooking and vehicles) were conducted. The mass spectral features of primary organic aerosol (POA) and SOA were characterized by using a high-resolution time-of-flight aerosol mass spectrometer. This work, for the first time, establishes the vehicle and cooking SOA source profiles and can be further used as source constraints in the OA source apportionment in the ambient atmosphere.
Anna K. Tobler, Alicja Skiba, Francesco Canonaco, Griša Močnik, Pragati Rai, Gang Chen, Jakub Bartyzel, Miroslaw Zimnoch, Katarzyna Styszko, Jaroslaw Nęcki, Markus Furger, Kazimierz Różański, Urs Baltensperger, Jay G. Slowik, and Andre S. H. Prevot
Atmos. Chem. Phys., 21, 14893–14906, https://doi.org/10.5194/acp-21-14893-2021, https://doi.org/10.5194/acp-21-14893-2021, 2021
Short summary
Short summary
Kraków is among the cities with the highest particulate matter levels within Europe. We conducted long-term and highly time-resolved measurements of the chemical composition of submicron particlulate matter (PM1). Combined with advanced source apportionment techniques, which allow for time-dependent factor profiles, our results elucidate that traffic and residential heating (biomass burning and coal combustion) as well as oxygenated organic aerosol are the key PM sources in Kraków.
Cheng Wu, David M. Bell, Emelie L. Graham, Sophie Haslett, Ilona Riipinen, Urs Baltensperger, Amelie Bertrand, Stamatios Giannoukos, Janne Schoonbaert, Imad El Haddad, Andre S. H. Prevot, Wei Huang, and Claudia Mohr
Atmos. Chem. Phys., 21, 14907–14925, https://doi.org/10.5194/acp-21-14907-2021, https://doi.org/10.5194/acp-21-14907-2021, 2021
Short summary
Short summary
Night-time reactions of biogenic volatile organic compounds and nitrate radicals can lead to the formation of secondary organic aerosol (BSOANO3). Here, we study the impacts of light exposure on the BSOANO3 from three biogenic precursors. Our results suggest that photolysis causes photodegradation of a substantial fraction of BSOANO3, changes the chemical composition and bulk volatility, and might be a potentially important loss pathway of BSOANO3 during the night-to-day transition.
Mao Xiao, Christopher R. Hoyle, Lubna Dada, Dominik Stolzenburg, Andreas Kürten, Mingyi Wang, Houssni Lamkaddam, Olga Garmash, Bernhard Mentler, Ugo Molteni, Andrea Baccarini, Mario Simon, Xu-Cheng He, Katrianne Lehtipalo, Lauri R. Ahonen, Rima Baalbaki, Paulus S. Bauer, Lisa Beck, David Bell, Federico Bianchi, Sophia Brilke, Dexian Chen, Randall Chiu, António Dias, Jonathan Duplissy, Henning Finkenzeller, Hamish Gordon, Victoria Hofbauer, Changhyuk Kim, Theodore K. Koenig, Janne Lampilahti, Chuan Ping Lee, Zijun Li, Huajun Mai, Vladimir Makhmutov, Hanna E. Manninen, Ruby Marten, Serge Mathot, Roy L. Mauldin, Wei Nie, Antti Onnela, Eva Partoll, Tuukka Petäjä, Joschka Pfeifer, Veronika Pospisilova, Lauriane L. J. Quéléver, Matti Rissanen, Siegfried Schobesberger, Simone Schuchmann, Yuri Stozhkov, Christian Tauber, Yee Jun Tham, António Tomé, Miguel Vazquez-Pufleau, Andrea C. Wagner, Robert Wagner, Yonghong Wang, Lena Weitz, Daniela Wimmer, Yusheng Wu, Chao Yan, Penglin Ye, Qing Ye, Qiaozhi Zha, Xueqin Zhou, Antonio Amorim, Ken Carslaw, Joachim Curtius, Armin Hansel, Rainer Volkamer, Paul M. Winkler, Richard C. Flagan, Markku Kulmala, Douglas R. Worsnop, Jasper Kirkby, Neil M. Donahue, Urs Baltensperger, Imad El Haddad, and Josef Dommen
Atmos. Chem. Phys., 21, 14275–14291, https://doi.org/10.5194/acp-21-14275-2021, https://doi.org/10.5194/acp-21-14275-2021, 2021
Short summary
Short summary
Experiments at CLOUD show that in polluted environments new particle formation (NPF) is largely driven by the formation of sulfuric acid–base clusters, stabilized by amines, high ammonia concentrations or lower temperatures. While oxidation products of aromatics can nucleate, they play a minor role in urban NPF. Our experiments span 4 orders of magnitude variation of observed NPF rates in ambient conditions. We provide a framework based on NPF and growth rates to interpret ambient observations.
Gloria Titos, María A. Burgos, Paul Zieger, Lucas Alados-Arboledas, Urs Baltensperger, Anne Jefferson, James Sherman, Ernest Weingartner, Bas Henzing, Krista Luoma, Colin O'Dowd, Alfred Wiedensohler, and Elisabeth Andrews
Atmos. Chem. Phys., 21, 13031–13050, https://doi.org/10.5194/acp-21-13031-2021, https://doi.org/10.5194/acp-21-13031-2021, 2021
Short summary
Short summary
This paper investigates the impact of water uptake on aerosol optical properties, in particular the aerosol light-scattering coefficient. Although in situ measurements are performed at low relative humidity (typically at
RH < 40 %), to address the climatic impact of aerosol particles it is necessary to take into account the effect that water uptake may have on the aerosol optical properties.
Chuan Ping Lee, Mihnea Surdu, David M. Bell, Houssni Lamkaddam, Mingyi Wang, Farnoush Ataei, Victoria Hofbauer, Brandon Lopez, Neil M. Donahue, Josef Dommen, Andre S. H. Prevot, Jay G. Slowik, Dongyu Wang, Urs Baltensperger, and Imad El Haddad
Atmos. Meas. Tech., 14, 5913–5923, https://doi.org/10.5194/amt-14-5913-2021, https://doi.org/10.5194/amt-14-5913-2021, 2021
Short summary
Short summary
Extractive electrospray ionization mass spectrometry (EESI-MS) has been deployed for high throughput online detection of particles with minimal fragmentation. Our study elucidates the extraction mechanism between the particles and electrospray (ES) droplets of different properties. The results show that the extraction rate is likely affected by the coagulation rate between the particles and ES droplets. Once coagulated, the particles undergo complete extraction within the ES droplet.
Vaios Moschos, Martin Gysel-Beer, Robin L. Modini, Joel C. Corbin, Dario Massabò, Camilla Costa, Silvia G. Danelli, Athanasia Vlachou, Kaspar R. Daellenbach, Sönke Szidat, Paolo Prati, André S. H. Prévôt, Urs Baltensperger, and Imad El Haddad
Atmos. Chem. Phys., 21, 12809–12833, https://doi.org/10.5194/acp-21-12809-2021, https://doi.org/10.5194/acp-21-12809-2021, 2021
Short summary
Short summary
This study provides a holistic approach to studying the spectrally resolved light absorption by atmospheric brown carbon (BrC) and black carbon using long time series of daily samples from filter-based measurements. The obtained results provide (1) a better understanding of the aerosol absorption profile and its dependence on BrC and on lensing from less absorbing coatings and (2) an estimation of the most important absorbers at typical European locations.
Evelyn Freney, Karine Sellegri, Alessia Nicosia, Leah R. Williams, Matteo Rinaldi, Jonathan T. Trueblood, André S. H. Prévôt, Melilotus Thyssen, Gérald Grégori, Nils Haëntjens, Julie Dinasquet, Ingrid Obernosterer, France Van Wambeke, Anja Engel, Birthe Zäncker, Karine Desboeufs, Eija Asmi, Hilkka Timonen, and Cécile Guieu
Atmos. Chem. Phys., 21, 10625–10641, https://doi.org/10.5194/acp-21-10625-2021, https://doi.org/10.5194/acp-21-10625-2021, 2021
Short summary
Short summary
In this work, we present observations of the organic aerosol content in primary sea spray aerosols (SSAs) continuously generated along a 5-week cruise in the Mediterranean. This information is combined with seawater biogeochemical properties also measured continuously along the ship track to develop a number of parametrizations that can be used in models to determine SSA organic content in oligotrophic waters that represent 60 % of the oceans from commonly measured seawater variables.
Amir Yazdani, Nikunj Dudani, Satoshi Takahama, Amelie Bertrand, André S. H. Prévôt, Imad El Haddad, and Ann M. Dillner
Atmos. Chem. Phys., 21, 10273–10293, https://doi.org/10.5194/acp-21-10273-2021, https://doi.org/10.5194/acp-21-10273-2021, 2021
Short summary
Short summary
Functional group compositions of primary and aged aerosols from wood burning and coal combustion sources from chamber experiments are interpreted through compounds present in the fuels and known gas-phase oxidation products. Infrared spectra of aged wood burning in the chamber and ambient biomass burning samples reveal striking similarities, and a new method for identifying burning-impacted samples in monitoring network measurements is presented.
Yandong Tong, Veronika Pospisilova, Lu Qi, Jing Duan, Yifang Gu, Varun Kumar, Pragati Rai, Giulia Stefenelli, Liwei Wang, Ying Wang, Haobin Zhong, Urs Baltensperger, Junji Cao, Ru-Jin Huang, André S. H. Prévôt, and Jay G. Slowik
Atmos. Chem. Phys., 21, 9859–9886, https://doi.org/10.5194/acp-21-9859-2021, https://doi.org/10.5194/acp-21-9859-2021, 2021
Short summary
Short summary
We investigate SOA sources and formation processes by a field deployment of the EESI-TOF-MS and L-TOF AMS in Beijing in late autumn and early winter. Our study shows that the sources and processes giving rise to haze events in Beijing are variable and seasonally dependent: (1) in the heating season, SOA formation is driven by oxidation of aromatics from solid fuel combustion; and (2) under high-NOx and RH conditions, aqueous-phase chemistry can be a major contributor to SOA formation.
Siqi Hou, Di Liu, Jingsha Xu, Tuan V. Vu, Xuefang Wu, Deepchandra Srivastava, Pingqing Fu, Linjie Li, Yele Sun, Athanasia Vlachou, Vaios Moschos, Gary Salazar, Sönke Szidat, André S. H. Prévôt, Roy M. Harrison, and Zongbo Shi
Atmos. Chem. Phys., 21, 8273–8292, https://doi.org/10.5194/acp-21-8273-2021, https://doi.org/10.5194/acp-21-8273-2021, 2021
Short summary
Short summary
This study provides a newly developed method which combines radiocarbon (14C) with organic tracers to enable source apportionment of primary and secondary fossil vs. non-fossil sources of carbonaceous aerosols at an urban and a rural site of Beijing. The source apportionment results were compared with those by chemical mass balance and AMS/ACSM-PMF methods. Correlations of WINSOC and WSOC with different sources of OC were also performed to elucidate the formation mechanisms of SOC.
Karl Espen Yttri, Francesco Canonaco, Sabine Eckhardt, Nikolaos Evangeliou, Markus Fiebig, Hans Gundersen, Anne-Gunn Hjellbrekke, Cathrine Lund Myhre, Stephen Matthew Platt, André S. H. Prévôt, David Simpson, Sverre Solberg, Jason Surratt, Kjetil Tørseth, Hilde Uggerud, Marit Vadset, Xin Wan, and Wenche Aas
Atmos. Chem. Phys., 21, 7149–7170, https://doi.org/10.5194/acp-21-7149-2021, https://doi.org/10.5194/acp-21-7149-2021, 2021
Short summary
Short summary
Carbonaceous aerosol sources and trends were studied at the Birkenes Observatory. A large decrease in elemental carbon (EC; 2001–2018) and a smaller decline in levoglucosan (2008–2018) suggest that organic carbon (OC)/EC from traffic/industry is decreasing, whereas the abatement of OC/EC from biomass burning has been less successful. Positive matrix factorization apportioned 72 % of EC to fossil fuel sources and 53 % (PM2.5) and 78 % (PM10–2.5) of OC to biogenic sources.
Georgia N. Theodoritsi, Giancarlo Ciarelli, and Spyros N. Pandis
Geosci. Model Dev., 14, 2041–2055, https://doi.org/10.5194/gmd-14-2041-2021, https://doi.org/10.5194/gmd-14-2041-2021, 2021
Short summary
Short summary
Two schemes based on the volatility basis set were used for the simulation of biomass burning organic aerosol (bbOA) in the continental US. The first is the default scheme of the PMCAMx-SR model, and the second is a recently developed scheme based on laboratory experiments. The alternative bbOA scheme predicts much higher concentrations. The default scheme performed better during summer and fall, while the alternative scheme was a little better during spring.
Jianhui Jiang, Imad El Haddad, Sebnem Aksoyoglu, Giulia Stefenelli, Amelie Bertrand, Nicolas Marchand, Francesco Canonaco, Jean-Eudes Petit, Olivier Favez, Stefania Gilardoni, Urs Baltensperger, and André S. H. Prévôt
Geosci. Model Dev., 14, 1681–1697, https://doi.org/10.5194/gmd-14-1681-2021, https://doi.org/10.5194/gmd-14-1681-2021, 2021
Short summary
Short summary
We developed a box model with a volatility basis set to simulate organic aerosol (OA) from biomass burning and optimized the vapor-wall-loss-corrected OA yields with a genetic algorithm. The optimized parameterizations were then implemented in the air quality model CAMx v6.5. Comparisons with ambient measurements indicate that the vapor-wall-loss-corrected parameterization effectively improves the model performance in predicting OA, which reduced the mean fractional bias from −72.9 % to −1.6 %.
Rosaria E. Pileci, Robin L. Modini, Michele Bertò, Jinfeng Yuan, Joel C. Corbin, Angela Marinoni, Bas Henzing, Marcel M. Moerman, Jean P. Putaud, Gerald Spindler, Birgit Wehner, Thomas Müller, Thomas Tuch, Arianna Trentini, Marco Zanatta, Urs Baltensperger, and Martin Gysel-Beer
Atmos. Meas. Tech., 14, 1379–1403, https://doi.org/10.5194/amt-14-1379-2021, https://doi.org/10.5194/amt-14-1379-2021, 2021
Short summary
Short summary
Black carbon (BC), which is an important constituent of atmospheric aerosols, remains difficult to quantify due to various limitations of available methods. This study provides an extensive comparison of co-located field measurements, applying two methods based on different principles. It was shown that both methods indeed quantify the same aerosol property – BC mass concentration. The level of agreement that can be expected was quantified, and some reasons for discrepancy were identified.
Francesco Canonaco, Anna Tobler, Gang Chen, Yulia Sosedova, Jay Gates Slowik, Carlo Bozzetti, Kaspar Rudolf Daellenbach, Imad El Haddad, Monica Crippa, Ru-Jin Huang, Markus Furger, Urs Baltensperger, and André Stephan Henry Prévôt
Atmos. Meas. Tech., 14, 923–943, https://doi.org/10.5194/amt-14-923-2021, https://doi.org/10.5194/amt-14-923-2021, 2021
Short summary
Short summary
Long-term ambient aerosol mass spectrometric data were analyzed with a statistical model (PMF) to obtain source contributions and fingerprints. The new aspects of this paper involve time-dependent source fingerprints by a rolling technique and the replacement of the full visual inspection of each run by a user-defined set of criteria to monitor the quality of each of these runs more efficiently. More reliable sources will finally provide better instruments for political mitigation strategies.
Cited articles
Aksoyoglu, S., Keller, J., Oderbolz, D. C., Barmpadimos, I.,
Prévôt, A. S., and Baltensperger, U.: Sensitivity of ozone and
aerosols to precursor emissions in Europe, Int. J. Environ. Pollut., 50,
451–459, https://doi.org/10.1504/ijep.2012.051215, 2012.
Aksoyoglu, S., Baltensperger, U., and Prévôt, A. S. H.: Contribution
of ship emissions to the concentration and deposition of air pollutants in
Europe, Atmos. Chem. Phys., 16, 1895–1906,
https://doi.org/10.5194/acp-16-1895-2016, 2016.
Alves, C. A., Calvo, A. I., Lopes, D. J., Nunes, T., Charron, A., Goriaux,
M., Tassel, P., and Perret, P.: Emissions of Euro 3-5 Passenger Cars Measured
Over Different Driving Cycles, Int. J. Environ. Chem. Ecol. Geol. Geophys.
Eng., 78, 294–297, 2013.
Andreani-Aksoyoglu, S. and Keller, J.: Estimates of monoterpene and isoprene
emissions from the forests in Switzerland, J. Atmos. Chem., 20, 71–87,
https://doi.org/10.1007/BF01099919, 1995.
Anenberg, S. C., Miller, J., Minjares, R., Du, L., Henze, D. K., Lacey, F.,
Malley, C. S., Emberson, L., Franco, V., and Klimont, Z.: Impacts and
mitigation of excess diesel-related NOx emissions in 11 major vehicle
markets, Nature, 545, 467–471, https://doi.org/10.1038/nature22086, 2017.
Baertsch-Ritter, N., Keller, J., Dommen, J., and Prévôt, A. S. H.:
Effects of various meteorological conditions and spatial emissionresolutions
on the ozone concentration and ROG/NOx limitationin the Milan area (I),
Atmos. Chem. Phys., 4, 423–438, https://doi.org/10.5194/acp-4-423-2004,
2004.
Baltensperger, U.: Spiers Memorial Lecture. Introductory lecture: chemistry
in the urban atmosphere, Faraday Discuss., 189, 9–29, 2016.
Beekmann, M. and Vautard, R.: A modelling study of photochemical regimes over
Europe: robustness and variability, Atmos. Chem. Phys., 10, 10067–10084,
https://doi.org/10.5194/acp-10-10067-2010, 2010.
Bessagnet, B., Hodzic, A., Vautard, R., Beekmann, M., Cheinet, S.,
Honoré, C., Liousse, C., and Rouil, L.: Aerosol modeling with CHIMERE –
preliminary evaluation at the continental scale, Atmos. Environ., 38,
2803–2817, https://doi.org/10.1016/j.atmosenv.2004.02.034, 2004.
Bessagnet, B., Pirovano, G., Mircea, M., Cuvelier, C., Aulinger, A., Calori,
G., Ciarelli, G., Manders, A., Stern, R., Tsyro, S., García Vivanco, M.,
Thunis, P., Pay, M.-T., Colette, A., Couvidat, F., Meleux, F., Rouïl,
L., Ung, A., Aksoyoglu, S., Baldasano, J. M., Bieser, J., Briganti, G.,
Cappelletti, A., D'Isidoro, M., Finardi, S., Kranenburg, R., Silibello, C.,
Carnevale, C., Aas, W., Dupont, J.-C., Fagerli, H., Gonzalez, L., Menut, L.,
Prévôt, A. S. H., Roberts, P., and White, L.: Presentation of the
EURODELTA III intercomparison exercise – evaluation of the chemistry
transport models' performance on criteria pollutants and joint analysis with
meteorology, Atmos. Chem. Phys., 16, 12667–12701,
https://doi.org/10.5194/acp-16-12667-2016, 2016.
Bloomer, B. J., Stehr, J. W., Piety, C. A., Salawitch, R. J., and Dickerson,
R. R.: Observed relationships of ozone air pollution with temperature and
emissions, Geophys. Res. Lett., 36, L09803, https://doi.org/10.1029/2009GL037308, 2009.
Bolton, D.: The Computation of Equivalent Potential Temperature, Mon. Weather
Rev., 108, 1046–1053, 1980.
Boylan, J. W. and Russell, A. G.: PM and light extinction model performance
metrics, goals, and criteria for three-dimensional air quality models, Atmos.
Environ., 40, 4946–4959, https://doi.org/10.1016/j.atmosenv.2005.09.087, 2006.
Brunner, D., Savage, N., Jorba, O., Eder, B., Giordano, L., Badia, A.,
Balzarini, A., Baró, R., Bianconi, R., Chemel, C., Curci, G., Forkel, R.,
Jiménez-Guerrero, P., Hirtl, M., Hodzic, A., Honzak, L., Im, U., Knote,
C., Makar, P., Manders-Groot, A., van Meijgaard, E., Neal, L., Pérez, J.
L., Pirovano, G., San Jose, R., Schröder, W., Sokhi, R. S., Syrakov, D.,
Torian, A., Tuccella, P., Werhahn, J., Wolke, R., Yahya, K., Zabkar, R.,
Zhang, Y., Hogrefe, C., and Galmarini, S.: Comparative analysis of
meteorological performance of coupled chemistry-meteorology models in the
context of AQMEII phase 2, Atmos. Environ., 115, 470–498,
https://doi.org/10.1016/j.atmosenv.2014.12.032, 2015.
Chevalier, A., Gheusi, F., Delmas, R., Ordóñez, C., Sarrat, C.,
Zbinden, R., Thouret, V., Athier, G., and Cousin, J.-M.: Influence of
altitude on ozone levels and variability in the lower troposphere: a
ground-based study for western Europe over the period 2001–2004, Atmos.
Chem. Phys., 7, 4311–4326, https://doi.org/10.5194/acp-7-4311-2007, 2007.
Choi, H.-J., Lee, H. W., Sung, K.-H., Kim, M.-J., Kim, Y.-K., and Jung,
W.-S.: The impact of nudging coefficient for the initialization on the
atmospheric flow field and the photochemical ozone concentration of Seoul,
Korea, Atmos. Environ., 43, 4124–4136, https://doi.org/10.1016/j.atmosenv.2009.05.051,
2009.
Ciarelli, G., Aksoyoglu, S., Crippa, M., Jimenez, J.-L., Nemitz, E.,
Sellegri, K., Äijälä, M., Carbone, S., Mohr, C., O'Dowd, C.,
Poulain, L., Baltensperger, U., and Prévôt, A. S. H.: Evaluation of
European air quality modelled by CAMx including the volatility basis set
scheme, Atmos. Chem. Phys., 16, 10313–10332,
https://doi.org/10.5194/acp-16-10313-2016, 2016.
Colette, A., Granier, C., Hodnebrog, Ø., Jakobs, H., Maurizi, A., Nyiri,
A., Rao, S., Amann, M., Bessagnet, B., D'Angiola, A., Gauss, M., Heyes, C.,
Klimont, Z., Meleux, F., Memmesheimer, M., Mieville, A., Rouïl, L.,
Russo, F., Schucht, S., Simpson, D., Stordal, F., Tampieri, F., and Vrac, M.:
Future air quality in Europe: a multi-model assessment of projected exposure
to ozone, Atmos. Chem. Phys., 12, 10613–10630,
https://doi.org/10.5194/acp-12-10613-2012, 2012.
Dawson, J. P., Adams, P. J., and Pandis, S. N.: Sensitivity of ozone to
summertime climate in the eastern USA: A modeling case study, Atmos.
Environ., 41, 1494–1511, https://doi.org/10.1016/j.atmosenv.2006.10.033, 2007.
de Meij, A., Gzella, A., Cuvelier, C., Thunis, P., Bessagnet, B., Vinuesa, J.
F., Menut, L., and Kelder, H. M.: The impact of MM5 and WRF meteorology over
complex terrain on CHIMERE model calculations, Atmos. Chem. Phys., 9,
6611–6632, https://doi.org/10.5194/acp-9-6611-2009, 2009a.
de Meij, A., Thunis, P., Bessagnet, B., and Cuvelier, C.: The sensitivity of
the CHIMERE model to emissions reduction scenarios on air quality in Northern
Italy, Atmos. Environ., 43, 1897–1907, https://doi.org/10.1016/j.atmosenv.2008.12.036,
2009b.
EEA: Air quality in Europe – 2014 report, EEA Report 5/2014, European
Environment Agency, Copenhagen, 2014.
EEA: EMEP/EEA air pollutant emission inventory guidebook - 2016, European
Environment Agency, Copenhagen, 2016.
Emery, C., Tai, E., and Yarwood, G.: Enhanced Meteorological Modeling and
Performance Evaluation for Two Texas Ozone Episodes, Final Report Submitted
to Texas Natural Resources Conservation Commission, ENVIRON, International
Corp., Novato, 2001.
Emery, C., Jung, J., Johnson, J., Yarwood, G., Madronich, S., and Grell, G.:
Improving the Characterization of Clouds and their Impact on Photolysis Rates
within the CAMx Photochemical Grid Model, prepared for: Texas Commission on
Environmental Quality, Austin, TX, prepared by: ENVIRON International
Corporation, Novato, CA and the National Center for Atmospheric Research,
Boulder, CO, 2010.
ENVIRON: Dallas-Fort Worth Modeling Support: Improving the Representation of
Vertical Mixing Processes in CAMx, Final Report, prepared for: Texas
Commission on Environmental Quality, Austin, TX, WO 582-11-10365-FY11-02,
2011.
EPA: Guidance on the use of models and other analyses for demonstrating
attainment of air quality goals for ozone, PM2.5, and regional haze, US
Environmental Protection Agency, Office of Air Quality Planning and
Standards, 2007.
Filleul, L., Cassadou, S., Médina, S., Fabres, P., Lefranc, A., Eilstein,
D., Le Tertre, A., Pascal, L., Chardon, B., Blanchard, M., Declercq, C.,
Jusot, J.-F., Prouvost, H., and Ledrans, M.: The Relation Between
Temperature, Ozone, and Mortality in Nine French Cities During the Heat Wave
of 2003, Environ. Health Perspect., 114, 1344–1347, https://doi.org/10.1289/ehp.8328,
2006.
Fowler, D., Pilegaard, K., Sutton, M., Ambus, P., Raivonen, M., Duyzer, J.,
Simpson, D., Fagerli, H., Fuzzi, S., and Schjørring, J. K.: Atmospheric
composition change: ecosystems–atmosphere interactions, Atmos. Environ., 43,
5193–5267, https://doi.org/10.1016/j.atmosenv.2009.07.068, 2009.
Giordano, L., Brunner, D., Flemming, J., Hogrefe, C., Im, U., Bianconi, R.,
Badia, A., Balzarini, A., Baró, R., Chemel, C., Curci, G., Forkel, R.,
Jiménez-Guerrero, P., Hirtl, M., Hodzic, A., Honzak, L., Jorba, O.,
Knote, C., Kuenen, J. J. P., Makar, P. A., Manders-Groot, A., Neal, L.,
Pérez, J. L., Pirovano, G., Pouliot, G., San José, R., Savage, N.,
Schröder, W., Sokhi, R. S., Syrakov, D., Torian, A., Tuccella, P.,
Werhahn, J., Wolke, R., Yahya, K., Žabkar, R., Zhang, Y., and Galmarini,
S.: Assessment of the MACC reanalysis and its influence as chemical boundary
conditions for regional air quality modeling in AQMEII-2, Atmos. Environ.,
115, 371–388, https://doi.org/10.1016/j.atmosenv.2015.02.034, 2015.
Guenther, A.: Biological and chemical diversity of biogenic volatile organic
emissions into the atmosphere, ISRN Atmospheric Sciences, 2013, 786290,
https://doi.org/10.1155/2013/786290, 2013.
Hausberger, S.: Fuel consumption and emissions of modern passenger cars, TU
Graz, 494, 1–8, 2010.
Hildebrandt Ruiz, L. H., and Yarwood, G.: Interactions between Organic
Aerosol and NOy: Influence on Oxidant Production, Final Report for AQRP
project 12-012, available at:
http://aqrp.ceer.utexas.edu/projectinfoFY12_13/12-012/12-012 Final Report.pdf, 2013.
Hodzic, A., Madronich, S., Bohn, B., Massie, S., Menut, L., and Wiedinmyer,
C.: Wildfire particulate matter in Europe during summer 2003: meso-scale
modeling of smoke emissions, transport and radiative effects, Atmos. Chem.
Phys., 7, 4043–4064, https://doi.org/10.5194/acp-7-4043-2007, 2007.
Hogrefe, C., Isukapalli, S. S., Tang, X., Georgopoulos, P. G., He, S.,
Zalewsky, E. E., Hao, W., Ku, J.-Y., Key, T., and Sistla, G.: Impact of
biogenic emission uncertainties on the simulated response of ozone and fine
particulate matter to anthropogenic emission reductions, J. Air Waste Man.
Assoc., 61, 92–108, https://doi.org/10.3155/1047-3289.61.1.92, 2011.
Hong, S. Y.: A new stable boundary-layer mixing scheme and its impact on the
simulated East Asian summer monsoon, Q. J. Roy. Meteor. Soc., 136,
1481–1496, https://doi.org/10.1002/qj.665, 2010.
Horowitz, L. W., Walters, S., Mauzerall, D. L., Emmons, L. K., Rasch, P. J.,
Granier, C., Tie, X., Lamarque, J. F., Schultz, M. G., and Tyndall, G. S.: A
global simulation of tropospheric ozone and related tracers: Description and
evaluation of MOZART, version 2, J. Geophys. Res., 108, 4784,
https://doi.org/10.1029/2002JD002853, 2003.
Im, U., Bianconi, R., Solazzo, E., Kioutsioukis, I., Badia, A., Balzarini,
A., Baró, R., Bellasio, R., Brunner, D., Chemel, C., Curci, G., Flemming,
J., Forkel, R., Giordano, L., Jiménez-Guerrero, P., Hirtl, M., Hodzic,
A., Honzak, L., Jorba, O., Knote, C., Kuenen, J. J. P., Makar, P. A.,
Manders-Groot, A., Neal, L., Pérez, J. L., Pirovano, G., Pouliot, G., San
Jose, R., Savage, N., Schroder, W., Sokhi, R. S., Syrakov, D., Torian, A.,
Tuccella, P., Werhahn, J., Wolke, R., Yahya, K., Zabkar, R., Zhang, Y.,
Zhang, J., Hogrefe, C., and Galmarini, S.: Evaluation of operational
on-line-coupled regional air quality models over Europe and North America in
the context of AQMEII phase 2, Part I: Ozone, Atmos. Environ., 115, 404–420,
https://doi.org/10.1016/j.atmosenv.2014.09.042, 2015.
Jacob, D. J. and Winner, D. A.: Effect of climate change on air quality,
Atmos. Environ., 43, 51–63, https://doi.org/10.1016/j.atmosenv.2008.09.051, 2009.
Karl, M., Guenther, A., Köble, R., Leip, A., and Seufert, G.: A new
European plant-specific emission inventory of biogenic volatile organic
compounds for use in atmospheric transport models, Biogeosciences, 6,
1059–1087, https://doi.org/10.5194/bg-6-1059-2009, 2009.
Karl, T., Graus, M., Striednig, M., Lamprecht, C., Hammerle, A., Wohlfahrt,
G., Held, A., Heyden, L., Deventer, M., Krismer, A., Haun, C., Feichter, R.,
and Lee, J.: Urban eddy covariance measurements reveal significant missing
NOx emissions in Central Europe, Sci. Rep.-UK, 7, 2536,
https://doi.org/10.1038/s41598-017-02699-9, 2017.
Katragkou, E., Zanis, P., Tegoulias, I., Melas, D., Kioutsioukis, I.,
Krüger, B. C., Huszar, P., Halenka, T., and Rauscher, S.: Decadal
regional air quality simulations over Europe in present climate: near surface
ozone sensitivity to external meteorological forcing, Atmos. Chem. Phys., 10,
11805–11821, https://doi.org/10.5194/acp-10-11805-2010, 2010.
Kleeman, M. J.: A preliminary assessment of the sensitivity of air quality in
California to global change, Clim. Change, 87, 273–292,
https://doi.org/10.1007/S10584-007-9351-3, 2008.
Kuenen, J. J. P., Visschedijk, A. J. H., Jozwicka, M., and Denier van der
Gon, H. A. C.: TNO-MACC_II emission inventory; a multi-year (2003–2009)
consistent high-resolution European emission inventory for air quality
modelling, Atmos. Chem. Phys., 14, 10963–10976,
https://doi.org/10.5194/acp-14-10963-2014, 2014.
Kuik, F., Lauer, A., Churkina, G., Denier van der Gon, H. A. C., Fenner, D.,
Mar, K. A., and Butler, T. M.: Air quality modelling in the
Berlin-Brandenburg region using WRF-Chem v3.7.1: sensitivity to resolution of
model grid and input data, Geosci. Model Dev., 9, 4339–4363,
https://doi.org/10.5194/gmd-9-4339-2016, 2016.
Lin, J.-T. and McElroy, M. B.: Impacts of boundary layer mixing on pollutant
vertical profiles in the lower troposphere: Implications to satellite remote
sensing, Atmos. Environ., 44, 1726–1739, https://doi.org/10.1016/j.atmosenv.2010.02.009,
2010.
Lin, J.-T., Youn, D., Liang, X.-Z., and Wuebbles, D. J.: Global model
simulation of summertime US ozone diurnal cycle and its sensitivity to PBL
mixing, spatial resolution, and emissions, Atmos. Environ., 42, 8470–8483,
https://doi.org/10.1016/j.atmosenv.2008.08.012, 2008.
Markakis, K., Valari, M., Perrussel, O., Sanchez, O., and Honore, C.:
Climate-forced air-quality modeling at the urban scale: sensitivity to model
resolution, emissions and meteorology, Atmos. Chem. Phys., 15, 7703–7723,
https://doi.org/10.5194/acp-15-7703-2015, 2015.
May, J., Favre, C., and Bosteels, D.: Emissions from Euro 3 to Euro 6
light-duty vehicles equipped with a range of emissions control technologies,
Internal Combustion Engines: Performance, Fuel Economy and Emissions,
IMechE, London, 2013.
Menut, L., Bessagnet, B., Colette, A., and Khvorostiyanov, D.: On the impact
of the vertical resolution on chemistry-transport modelling, Atmos. Environ.,
67, 370–384, https://doi.org/10.1016/j.atmosenv.2012.11.026, 2013.
Meteorological Office: Met Office integrated data archive system (MIDAS) land
and marine surface stations data (1853–current), available at:
http://badc.nerc.ac.uk/data/ukmo-midas, 2013.
Mol, W. and de Leeuw, F.: AirBase: a valuable tool in air quality
assessments, Proceedings of the 5th International Conference on Urban Air
Quality, edited by: Sokhi, R. S., Millán, M. M., and Moussiopoulos, N.,
Valencia, Spain, 2005.
Monks, P. S.: Gas-phase radical chemistry in the troposphere, Chem. Soc.
Rev., 34, 376–395, https://doi.org/10.1039/B307982C, 2005.
Monks, P. S., Archibald, A. T., Colette, A., Cooper, O., Coyle, M., Derwent,
R., Fowler, D., Granier, C., Law, K. S., Mills, G. E., Stevenson, D. S.,
Tarasova, O., Thouret, V., von Schneidemesser, E., Sommariva, R., Wild, O.,
and Williams, M. L.: Tropospheric ozone and its precursors from the urban to
the global scale from air quality to short-lived climate forcer, Atmos. Chem.
Phys., 15, 8889–8973, https://doi.org/10.5194/acp-15-8889-2015, 2015.
NCAR: The Tropospheric Visible and Ultraviolet (TUV) Radiation Model web
page, National Center for Atmospheric Research, Atmospheric Chemistry
Division, Boulder, Colorado, available at:
http://cprm.acd.ucar.edu/Models/TUV/index.shtml, 2011.
Neftel, A., Spirig, C., Prévôt, A. S. H., Furger, M., Stutz, J.,
Vogel, B., and Hjorth, J.: Sensitivity of photooxidant production in the
Milan Basin: An overview of results from a EUROTRAC-2 Limitation of Oxidant
Production field experiment, J. Geophys. Res, 107, 8188,
https://doi.org/10.1029/2001JD001263, 2002.
Nenes, A., Pandis, S. N., and Pilinis, C.: ISORROPIA: A new thermodynamic
equilibrium model for multiphase multicomponent inorganic aerosols, Aquat.
Geochem., 4, 123–152, https://doi.org/10.1023/A:1009604003981, 1998.
Nenes, A., Pandis, S. N., and Pilinis, C.: Continued development and testing
of a new thermodynamic aerosol module for urban and regional air quality
models, Atmos. Environ., 33, 1553–1560, https://doi.org/10.1016/S1352-2310(98)00352-5,
1999.
Nopmongcol, U., Koo, B., Tai, E., Jung, J., Piyachaturawat, P., Emery, C.,
Yarwood, G., Pirovano, G., Mitsakou, C., and Kallos, G.: Modeling Europe with
CAMx for the Air Quality Model Evaluation International Initiative (AQMEII),
Atmos. Environ., 53, 177–185, https://doi.org/10.1016/j.atmosenv.2011.11.023, 2012.
Oderbolz, D. C., Aksoyoglu, S., Keller, J., Barmpadimos, I., Steinbrecher,
R., Skjøth, C. A., Plaß-Dülmer, C., and Prévôt, A. S. H.:
A comprehensive emission inventory of biogenic volatile organic compounds in
Europe: improved seasonality and land-cover, Atmos. Chem. Phys., 13,
1689–1712, https://doi.org/10.5194/acp-13-1689-2013, 2013.
Ordóñez, C., Mathis, H., Furger, M., Henne, S., Hüglin, C.,
Staehelin, J., and Prévôt, A. S. H.: Changes of daily surface ozone
maxima in Switzerland in all seasons from 1992 to 2002 and discussion of
summer 2003, Atmos. Chem. Phys., 5, 1187–1203,
https://doi.org/10.5194/acp-5-1187-2005, 2005.
Pernigotti, D., Georgieva, E., Thunis, P., and Bessagnet, B.: Impact of
meteorology on air quality modeling over the Po valley in northern Italy,
Atmos. Environ., 51, 303–310, https://doi.org/10.1016/j.atmosenv.2011.12.059, 2012.
Pernigotti, D., Thunis, P., Cuvelier, C., Georgieva, E., Gsella, A., De Meij,
A., Pirovano, G., Balzarini, A., Riva, G., Carnevale, C., Pisoni, E., Volta,
M., Bessagnet, B., Kerschbaumer, A., Viaene, P., De Ridder, K., Nyiri, A.,
and Wind, P.: POMI: a model inter-comparison exercise over the Po Valley, Air
Qual. Atmos. Hlth., 6, 701–715, https://doi.org/10.1007/s11869-013-0211-1, 2013.
Pusede, S. E., Steiner, A. L., and Cohen, R. C.: Temperature and Recent
Trends in the Chemistry of Continental Surface Ozone, Chem. Rev., 115,
3898–3918, https://doi.org/10.1021/cr5006815, 2015.
Ramboll Environ: User's guide to the Comprehensive Air Quality Model with
Extensions (CAMx), Version 6.3, available at: http://www.camx.com,
2016.
Richardson, H., Basu, S., and Holtslag, A.: Improving stable boundary-layer
height estimation using a stability-dependent critical bulk Richardson
number, Bound.-Lay. Meteorol., 148, 93–109, https://doi.org/10.1007/s10546-013-9812-3,
2013.
Saarikoski, S., Sillanpää, M., Sofiev, M., Timonen, H., Saarnio, K.,
Teinilä, K., Karppinen, A., Kukkonen, J., and Hillamo, R.: Chemical
composition of aerosols during a major biomass burning episode over northern
Europe in spring 2006: Experimental and modelling assessments, Atmos.
Environ., 41, 3577–3589, https://doi.org/10.1016/j.atmosenv.2006.12.053, 2007.
Seibert, P., Beyrich, F., Gryning, S.-E., Joffre, S., Rasmussen, A., and
Tercier, P.: Review and intercomparison of operational methods for the
determination of the mixing height, Atmos. Environ., 34, 1001–1027,
https://doi.org/10.1016/S1352-2310(99)00349-0, 2000.
Sen, P. K.: Estimates of the Regression Coefficient Based on Kendall's Tau,
J. Am. Stat. Assoc., 63, 1379–1389, https://doi.org/10.1080/01621459.1968.10480934,
1968.
Shaiganfar, R., Beirle, S., Denier van der Gon, H., Jonkers, S., Kuenen, J.,
Petetin, H., Zhang, Q., Beekmann, M., and Wagner, T.: Estimation of the Paris
NOx emissions from mobile MAX-DOAS observations and CHIMERE model
simulations during the MEGAPOLI campaign using the closed integral method,
Atmos. Chem. Phys., 17, 7853–7890, https://doi.org/10.5194/acp-17-7853-2017,
2017.
Sillman, S. and Samson, P. J.: Impact of temperature on oxidant
photochemistry in urban, polluted rural and remote environments, J. Geophys.
Res., 100, 11497–11508, https://doi.org/10.1029/94JD02146, 1995.
Simpson, D., Andersson, C., Christensen, J. H., Engardt, M., Geels, C.,
Nyiri, A., Posch, M., Soares, J., Sofiev, M., Wind, P., and Langner, J.:
Impacts of climate and emission changes on nitrogen deposition in Europe: a
multi-model study, Atmos. Chem. Phys., 14, 6995–7017,
https://doi.org/10.5194/acp-14-6995-2014, 2014.
Skamarock, W., Klemp, J., Dudhia, J., Gill, D., Barker, D., Duda, M., Huang,
X., Wang, W., and Powers, J. G.: A description of the advanced research WRF
version 3, NCAR technical note, National Center for Atmospheric Research,
Boulder, Colorado, USA, available at:
http://box.mmm.ucar.edu/wrf/users/docs/arw_v2.pdf, 2008.
Solazzo, E., Bianconi, R., Pirovano, G., Matthias, V., Vautard, R., Moran, M.
D., Wyat Appel, K., Bessagnet, B., Brandt, J., Christensen, J. H., Chemel,
C., Coll, I., Ferreira, J., Forkel, R., Francis, X. V., Grell, G., Grossi,
P., Hansen, A. B., Miranda, A. I., Nopmongcol, U., Prank, M., Sartelet, K.
N., Schaap, M., Silver, J. D., Sokhi, R. S., Vira, J., Werhahn, J., Wolke,
R., Yarwood, G., Zhang, J., Rao, S. T., and Galmarini, S.: Operational model
evaluation for particulate matter in Europe and North America in the context
of AQMEII, Atmos. Environ., 53, 75–92, https://doi.org/10.1016/j.atmosenv.2012.02.045,
2012a.
Solazzo, E., Bianconi, R., Vautard, R., Appel, K. W., Moran, M. D., Hogrefe,
C., Bessagnet, B., Brandt, J., Christensen, J. H., Chemel, C., Coll, I.,
Denier van der Gon, H., Ferreira, J., Forkel, R., Francis, X. V., Grell, G.,
Grossi, P., Hansen, A. B., Jeričević, A., Kraljević, L., Miranda,
A. I., Nopmongcol, U., Pirovano, G., Prank, M., Riccio, A., Sartelet, K. N.,
Schaap, M., Silver, J. D., Sokhi, R. S., Vira, J., Werhahn, J., Wolke, R.,
Yarwood, G., Zhang, J., Rao, S. T., and Galmarini, S.: Model evaluation and
ensemble modelling of surface-level ozone in Europe and North America in the
context of AQMEII, Atmos. Environ., 53, 60–74,
https://doi.org/10.1016/j.atmosenv.2012.01.003, 2012b.
Solazzo, E., Bianconi, R., Pirovano, G., Moran, M. D., Vautard, R., Hogrefe,
C., Appel, K. W., Matthias, V., Grossi, P., Bessagnet, B., Brandt, J.,
Chemel, C., Christensen, J. H., Forkel, R., Francis, X. V., Hansen, A. B.,
McKeen, S., Nopmongcol, U., Prank, M., Sartelet, K. N., Segers, A., Silver,
J. D., Yarwood, G., Werhahn, J., Zhang, J., Rao, S. T., and Galmarini, S.:
Evaluating the capability of regional-scale air quality models to capture the
vertical distribution of pollutants, Geosci. Model Dev., 6, 791–818,
https://doi.org/10.5194/gmd-6-791-2013, 2013.
Solazzo, E., Bianconi, R., Hogrefe, C., Curci, G., Tuccella, P., Alyuz, U.,
Balzarini, A., Baró, R., Bellasio, R., Bieser, J., Brandt, J.,
Christensen, J. H., Colette, A., Francis, X., Fraser, A., Vivanco, M. G.,
Jiménez-Guerrero, P., Im, U., Manders, A., Nopmongcol, U., Kitwiroon, N.,
Pirovano, G., Pozzoli, L., Prank, M., Sokhi, R. S., Unal, A., Yarwood, G.,
and Galmarini, S.: Evaluation and error apportionment of an ensemble of
atmospheric chemistry transport modeling systems: multivariable temporal and
spatial breakdown, Atmos. Chem. Phys., 17, 3001–3054,
https://doi.org/10.5194/acp-17-3001-2017, 2017.
Stamnes, K., Tsay, S.-C., Wiscombe, W., and Jayaweera, K.: Numerically stable
algorithm for discrete-ordinate-method radiative transfer in multiple
scattering and emitting layered media, Appl. Opt., 27, 2502–2509,
https://doi.org/10.1364/AO.27.002502, 1988.
Steinbacher, M., Zellweger, C., Schwarzenbach, B., Bugmann, S., Buchmann, B.,
Ordóñez, C., Prévôt, A. S. H., and Hueglin, C.: Nitrogen
oxide measurements at rural sites in Switzerland: Bias of conventional
measurement techniques, J. Geophys. Res, 112, D11307,
https://doi.org/10.1029/2006JD007971, 2007.
Strada, S., Mari, C., Filippi, J.-B., and Bosseur, F.: Wildfire and the
atmosphere: Modelling the chemical and dynamic interactions at the regional
scale, Atmos. Environ., 51, 234–249, https://doi.org/10.1016/j.atmosenv.2012.01.023,
2012.
Strader, R., Lurmann, F., and Pandis, S. N.: Evaluation of secondary organic
aerosol formation in winter, Atmos. Environ., 33, 4849–4863,
https://doi.org/10.1016/S1352-2310(99)00310-6, 1999.
Tagaris, E., Sotiropoulou, R. E. P., Gounaris, N., Andronopoulos, S., and
Vlachogiannis, D.: Effect of the Standard Nomenclature for Air Pollution
(SNAP) Categories on Air Quality over Europe, Atmos., 6, 1119–1128,
https://doi.org/10.3390/atmos6081119, 2015.
Tagaris, E., Stergiou, I., and Sotiropoulou, R. E. P.: Impact of shipping
emissions on ozone levels over Europe: assessing the relative importance of
the Standard Nomenclature for Air Pollution (SNAP) categories, Environ. Sci.
Pollut. Res., 24, 14903–14909, https://doi.org/10.1007/s11356-017-9046-x, 2017.
Theloke, J. and Friedrich, R.: Compilation of a database on the composition
of anthropogenic VOC emissions for atmospheric modeling in Europe, Atmos.
Environ., 41, 4148–4160, https://doi.org/10.1016/j.atmosenv.2006.12.026, 2007.
Thunis, P., Pisoni, E., Degraeuwe, B., Kranenburg, R., Schaap, M., and
Clappier, A.: Dynamic evaluation of air quality models over European regions,
Atmos. Environ., 111, 185–194, https://doi.org/10.1016/j.atmosenv.2015.04.016, 2015.
Tressol, M., Ordóñez, C., Zbinden, R., Brioude, J., Thouret, V.,
Mari, C., Nedelec, P., Cammas, J.-P., Smit, H., Patz, H.-W., and Volz-Thomas,
A.: Air pollution during the 2003 European heat wave as seen by MOZAIC
airliners, Atmos. Chem. Phys., 8, 2133–2150,
https://doi.org/10.5194/acp-8-2133-2008, 2008.
Turquety, S., Hurtmans, D., Hadji-Lazaro, J., Coheur, P.-F., Clerbaux, C.,
Josset, D., and Tsamalis, C.: Tracking the emission and transport of
pollution from wildfires using the IASI CO retrievals: analysis of the summer
2007 Greek fires, Atmos. Chem. Phys., 9, 4897–4913,
https://doi.org/10.5194/acp-9-4897-2009, 2009.
Vaughan, A. R., Lee, J. D., Misztal, P. K., Metzger, S., Shaw, M. D., Lewis,
A. C., Purvis, R. M., Carslaw, D. C., Goldstein, A. H., Hewitt, C. N.,
Davison, B., Beevers, S. D., and Karl, T. G.: Spatially resolved flux
measurements of NOx from London suggest significantly higher emissions
than predicted by inventories, Faraday Discuss., 189, 455–472,
https://doi.org/10.1039/c5fd00170f, 2016.
Wagner, W. and Pruß, A.: The IAPWS formulation 1995 for the thermodynamic
properties of ordinary water substance for general and scientific use, J.
Phys. Chem. Ref. Data, 31, 387–535, https://doi.org/10.1063/1.1461829, 2002.
Weiss, M., Bonnel, P., Hummel, R., Manfredi, U., Colombo, R., Lanappe, G.,
Le Lijour, P., and Sculati, M.: Analyzing on-road emissions of light-duty
vehicles with Portable Emission Measurement Systems (PEMS), JRC Scientific
and Technical Reports, EUR, 24697, 2011a.
Weiss, M., Bonnel, P., Hummel, R., Provenza, A., and Manfredi, U.: On-road
emissions of light-duty vehicles in Europe, Environ. Sci. Technol., 45,
8575–8581, https://doi.org/10.1021/es2008424, 2011b.
Weiss, M., Bonnel, P., Kühlwein, J., Provenza, A., Lambrecht, U.,
Alessandrini, S., Carriero, M., Colombo, R., Forni, F., Lanappe, G., Le
Lijour, P., Manfredi, U., Montigny, F., and Sculati, M.: Will Euro 6 reduce
the NOx emissions of new diesel cars? – Insights from on-road tests with
Portable Emissions Measurement Systems (PEMS), Atmos. Environ., 62, 657–665,
https://doi.org/10.1016/j.atmosenv.2012.08.056, 2012.
WHO: Review of evidence on health aspects of air pollution–REVIHAAP
Project, World Health Organization, Copenhagen, Denmark,
available at:
http://www.euro.who.int/en/health-topics/environment-and-health/air-quality/publications/2013/review-of-evidence-on-health-aspects-of-air-pollution-revihaap-project-final-technical-report, 2013.
Wise, E. K. and Comrie, A. C.: Extending the Kolmogorov–Zurbenko filter:
Application to Ozone, Particulate Matter, and Meteorological Trends, J. Air
Waste Man. Assoc., 55, 1208–1216, https://doi.org/10.1080/10473289.2005.10464718, 2005.
Zhang, H., Pu, Z., and Zhang, X.: Examination of Errors in Near Surface
Temperature and Wind from WRF Numerical Simulations in Regions of Complex
Terrain, Weather Forecast., 28, 893–914, https://doi.org/10.1175/WAF-D-12-00109.1, 2013.
Zhang, L., Brook, J. R., and Vet, R.: A revised parameterization for gaseous
dry deposition in air-quality models, Atmos. Chem. Phys., 3, 2067–2082,
https://doi.org/10.5194/acp-3-2067-2003, 2003
Zhang, Y., Gao, Z., Li, D., Li, Y., Zhang, N., Zhao, X., and Chen, J.: On the
computation of planetary boundary-layer height using the bulk Richardson
number method, Geosci. Model Dev., 7, 2599–2611,
https://doi.org/10.5194/gmd-7-2599-2014, 2014.
Short summary
We report a modeling study investigating the uncertainties in ozone production in Europe. Using various methods for different emission and meteorological scenarios, we searched for the possible reasons for underestimation of high ozone levels in Europe by models. Our results suggest that emissions, especially NOx, might be too low in the European inventories. Improvement of the modeled ozone production will contribute to more consistent and effective ozone mitigation strategies for the future.
We report a modeling study investigating the uncertainties in ozone production in Europe. Using...
Altmetrics
Final-revised paper
Preprint