Articles | Volume 19, issue 21
https://doi.org/10.5194/acp-19-13681-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-19-13681-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Nitrification of the lowermost stratosphere during the exceptionally cold Arctic winter 2015–2016
Marleen Braun
CORRESPONDING AUTHOR
Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany
Jens-Uwe Grooß
Institute of Energy and Climate Research, Stratosphere (IEK-7), Forschungszentrum Jülich, Jülich, Germany
Wolfgang Woiwode
Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany
Sören Johansson
Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany
Michael Höpfner
Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany
Felix Friedl-Vallon
Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany
Hermann Oelhaf
Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany
Peter Preusse
Institute of Energy and Climate Research, Stratosphere (IEK-7), Forschungszentrum Jülich, Jülich, Germany
Jörn Ungermann
Institute of Energy and Climate Research, Stratosphere (IEK-7), Forschungszentrum Jülich, Jülich, Germany
Björn-Martin Sinnhuber
Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany
Helmut Ziereis
Institute of Atmospheric Physics, German Aerospace Center, Oberpfaffenhofen, Germany
Peter Braesicke
Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany
Related authors
Helmut Ziereis, Peter Hoor, Jens-Uwe Grooß, Andreas Zahn, Greta Stratmann, Paul Stock, Michael Lichtenstern, Jens Krause, Vera Bense, Armin Afchine, Christian Rolf, Wolfgang Woiwode, Marleen Braun, Jörn Ungermann, Andreas Marsing, Christiane Voigt, Andreas Engel, Björn-Martin Sinnhuber, and Hermann Oelhaf
Atmos. Chem. Phys., 22, 3631–3654, https://doi.org/10.5194/acp-22-3631-2022, https://doi.org/10.5194/acp-22-3631-2022, 2022
Short summary
Short summary
Airborne observations were conducted in the lowermost Arctic stratosphere during the winter of 2015/2016. The observed distribution of reactive nitrogen shows clear indications of nitrification in mid-winter and denitrification in late winter. This was caused by the formation of polar stratospheric cloud particles, which were observed during several flights. The sedimentation and evaporation of these particles and the descent of air masses cause a redistribution of reactive nitrogen.
Sören Johansson, Michelle L. Santee, Jens-Uwe Grooß, Michael Höpfner, Marleen Braun, Felix Friedl-Vallon, Farahnaz Khosrawi, Oliver Kirner, Erik Kretschmer, Hermann Oelhaf, Johannes Orphal, Björn-Martin Sinnhuber, Ines Tritscher, Jörn Ungermann, Kaley A. Walker, and Wolfgang Woiwode
Atmos. Chem. Phys., 19, 8311–8338, https://doi.org/10.5194/acp-19-8311-2019, https://doi.org/10.5194/acp-19-8311-2019, 2019
Short summary
Short summary
We present a study based on GLORIA aircraft and MLS/ACE-FTS/CALIOP satellite measurements during the Arctic winter 2015/16, which demonstrate (for the Arctic) unusual chlorine deactivation into HCl instead of ClONO2 due to low ozone abundances in the lowermost stratosphere, with a focus at 380 K potential temperature. The atmospheric models CLaMS and EMAC are evaluated, and measured ClONO2 is linked with transport and in situ deactivation in the lowermost stratosphere.
Yiran Zhang-Liu, Rolf Müller, Jens-Uwe Grooß, Sabine Robrecht, Bärbel Vogel, Abdul Mannan Zafar, and Ralph Lehmann
Atmos. Chem. Phys., 24, 12557–12574, https://doi.org/10.5194/acp-24-12557-2024, https://doi.org/10.5194/acp-24-12557-2024, 2024
Short summary
Short summary
HCl null cycles in Antarctica are important for maintaining high values of ozone-destroying chlorine in Antarctic spring. These HCl null cycles are not affected by (1) using the most recent recommendations of chemical kinetics (compared to older recommendations), (2) accounting for dehydration in the Antarctic winter vortex, and (3) considering the observed (but unexplained) depletion of HCl in mid-winter in the Antarctic vortex throughout Antarctic winter.
Matthias Kohl, Christoph Brühl, Jennifer Schallock, Holger Tost, Patrick Jöckel, Adrian Jost, Steffen Beirle, Michael Höpfner, and Andrea Pozzer
EGUsphere, https://doi.org/10.5194/egusphere-2024-2200, https://doi.org/10.5194/egusphere-2024-2200, 2024
Short summary
Short summary
SO2 from explosive volcanic eruptions reaching the stratosphere can oxidize and form sulfate aerosols, potentially persisting for several years and influencing climate and the ozone layer. We developed a new submodel for Explosive Volcanic ERuptions (EVER) that seamlessly includes stratospheric volcanic SO2 emissions in global numerical simulations based on a novel standard historical model setup. Sensitivity studies on the Nabro eruption in 2011 evaluate different emission methods.
Sebastian Rhode, Peter Preusse, Jörn Ungermann, Inna Polichtchouk, Kaoru Sato, Shingo Watanabe, Manfred Ern, Karlheinz Nogai, Björn-Martin Sinnhuber, and Martin Riese
Atmos. Meas. Tech., 17, 5785–5819, https://doi.org/10.5194/amt-17-5785-2024, https://doi.org/10.5194/amt-17-5785-2024, 2024
Short summary
Short summary
We investigate the capabilities of a proposed satellite mission, CAIRT, for observing gravity waves throughout the middle atmosphere and present the necessary methodology for in-depth wave analysis. Our findings suggest that such a satellite mission is highly capable of resolving individual wave parameters and could give new insights into the role of gravity waves in general atmospheric circulation and atmospheric processes.
Mingzhao Liu, Lars Hoffmann, Jens-Uwe Grooß, Zhongyin Cai, Sabine Grießbach, and Yi Heng
EGUsphere, https://doi.org/10.5194/egusphere-2024-2596, https://doi.org/10.5194/egusphere-2024-2596, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
We studied the transport and chemical decomposition of volcanic SO2, focusing on the 2019 Raikoke event. By comparing two different chemistry modeling schemes, we found that including complex chemical reactions leads to a more accurate prediction of how long SO2 stays in the atmosphere. This research helps improve our understanding of volcanic pollution and its impact on air quality and climate, providing better tools for scientists to track and predict the movement of these pollutants.
Florian Voet, Felix Plöger, Johannes Laube, Peter Preusse, Paul Konopka, Jens-Uwe Grooß, Jörn Ungermann, Björn-Martin Sinnhuber, Michael Hoepfner, Bernd Funke, Gerald Wetzel, Sören Johansson, Gabriele Stiller, Eric Ray, and Michaela Imelda Hegglin
EGUsphere, https://doi.org/10.5194/egusphere-2024-2624, https://doi.org/10.5194/egusphere-2024-2624, 2024
Short summary
Short summary
This study refines estimates of the stratospheric “age of air,” a measure of how long air circulates in the stratosphere. By analyzing correlations between trace gases measurable by satellites, the research introduces a method that reduces uncertainties and detects small-scale atmospheric features. This improved understanding of stratospheric circulation is crucial for better climate models and predictions, enhancing our ability to assess the impacts of climate change on the atmosphere.
Karolin Voss, Philip Holzbeck, Klaus Pfeilsticker, Ralph Kleinschek, Gerald Wetzel, Blanca Fuentes Andrade, Michael Höpfner, Jörn Ungermann, Björn-Martin Sinnhuber, and André Butz
Atmos. Meas. Tech., 17, 4507–4528, https://doi.org/10.5194/amt-17-4507-2024, https://doi.org/10.5194/amt-17-4507-2024, 2024
Short summary
Short summary
A novel balloon-borne instrument for direct sun and solar occultation measurements of several UV–Vis absorbing gases (e.g. O3, NO2, BrO, IO, and HONO) is described. Its major design features and performance during two stratospheric deployments are discussed. From the measured overhead BrO concentration and a suitable photochemical correction, total stratospheric bromine is inferred to (17.5 ± 2.2) ppt in air masses which entered the stratosphere around early 2017 ± 1 year.
Yann Cohen, Didier Hauglustaine, Nicolas Bellouin, Marianne Tronstad Lund, Sigrun Matthes, Agnieszka Skowron, Robin Thor, Ulrich Bundke, Andreas Petzold, Susanne Rohs, Valérie Thouret, Andreas Zahn, and Helmut Ziereis
EGUsphere, https://doi.org/10.5194/egusphere-2024-2208, https://doi.org/10.5194/egusphere-2024-2208, 2024
Short summary
Short summary
The chemical composition of the atmosphere near the tropopause is a key parameter for evaluating the climate impact of subsonic aviation pollutants. This study uses in-situ data on board passenger aircraft to assess the ability of 5 chemistry-climate models to reproduce (bi-)decadal climatologies in ozone, carbon monoxide, water vapour, and reactive nitrogen in this region. The models reproduce well the very distinct ozone seasonality in the upper troposphere and in the lower stratosphere.
Sören Johansson, Michael Höpfner, Felix Friedl-Vallon, Norbert Glatthor, Thomas Gulde, Vincent Huijnen, Anne Kleinert, Erik Kretschmer, Guido Maucher, Tom Neubert, Hans Nordmeyer, Christof Piesch, Peter Preusse, Martin Riese, Björn-Martin Sinnhuber, Jörn Ungermann, Gerald Wetzel, and Wolfgang Woiwode
Atmos. Chem. Phys., 24, 8125–8138, https://doi.org/10.5194/acp-24-8125-2024, https://doi.org/10.5194/acp-24-8125-2024, 2024
Short summary
Short summary
We present airborne infrared limb sounding GLORIA measurements of ammonia (NH3) in the upper troposphere of air masses within the Asian monsoon and of those connected with biomass burning. Comparing CAMS (Copernicus Atmosphere Monitoring Service) model data, we find that the model reproduces the measured enhanced NH3 within the Asian monsoon well but not that within biomass burning plumes, where no enhanced NH3 is measured in the upper troposphere but considerable amounts are simulated by CAMS.
Tatiana Klimiuk, Patrick Ludwig, Antonio Sanchez-Benitez, Helge F. Goessling, Peter Braesicke, and Joaquim G. Pinto
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2024-16, https://doi.org/10.5194/esd-2024-16, 2024
Preprint under review for ESD
Short summary
Short summary
Our study examines potential changes in heatwaves in Central Europe due to global warming, using the 2019 summer heatwave as an example. By producing high-resolution storylines, we offer insights into how future heatwaves might spread, persist longer, and where stronger or weaker temperature increases may occur. This research helps understand regional thermodynamic responses and highlights the importance of local strategies to protect communities from future heat events.
Björn Linder, Peter Preusse, Qiuyu Chen, Ole Martin Christensen, Lukas Krasauskas, Linda Megner, Manfred Ern, and Jörg Gumbel
Atmos. Meas. Tech., 17, 3829–3841, https://doi.org/10.5194/amt-17-3829-2024, https://doi.org/10.5194/amt-17-3829-2024, 2024
Short summary
Short summary
The Swedish research satellite MATS (Mesospheric Airglow/Aerosol Tomography and Spectroscopy) is designed to study atmospheric waves in the mesosphere and lower thermosphere. These waves perturb the temperature field, and thus, by observing three-dimensional temperature fluctuations, their properties can be quantified. This pre-study uses synthetic MATS data generated from a general circulation model to investigate how well wave properties can be retrieved.
Christina V. Brodowsky, Timofei Sukhodolov, Gabriel Chiodo, Valentina Aquila, Slimane Bekki, Sandip S. Dhomse, Michael Höpfner, Anton Laakso, Graham W. Mann, Ulrike Niemeier, Giovanni Pitari, Ilaria Quaglia, Eugene Rozanov, Anja Schmidt, Takashi Sekiya, Simone Tilmes, Claudia Timmreck, Sandro Vattioni, Daniele Visioni, Pengfei Yu, Yunqian Zhu, and Thomas Peter
Atmos. Chem. Phys., 24, 5513–5548, https://doi.org/10.5194/acp-24-5513-2024, https://doi.org/10.5194/acp-24-5513-2024, 2024
Short summary
Short summary
The aerosol layer is an essential part of the climate system. We characterize the sulfur budget in a volcanically quiescent (background) setting, with a special focus on the sulfate aerosol layer using, for the first time, a multi-model approach. The aim is to identify weak points in the representation of the atmospheric sulfur budget in an intercomparison of nine state-of-the-art coupled global circulation models.
Norbert Glatthor, Thomas von Clarmann, Bernd Funke, Maya García-Comas, Udo Grabowski, Michael Höpfner, Sylvia Kellmann, Michael Kiefer, Alexandra Laeng, Andrea Linden, Manuel López-Puertas, and Gabriele P. Stiller
Atmos. Meas. Tech., 17, 2849–2871, https://doi.org/10.5194/amt-17-2849-2024, https://doi.org/10.5194/amt-17-2849-2024, 2024
Short summary
Short summary
We present global atmospheric methane (CH4) and nitrous oxide (N2O) distributions retrieved from measurements of the MIPAS instrument on board the Environmental Satellite (Envisat) during 2002 to 2012. Monitoring of these gases is of scientific interest because both of them are strong greenhouse gases. We analyze the latest, improved version of calibrated MIPAS measurements. Further, we apply a new retrieval scheme leading to an improved CH4 and N2O data product .
Bärbel Vogel, C. Michael Volk, Johannes Wintel, Valentin Lauther, Jan Clemens, Jens-Uwe Grooß, Gebhard Günther, Lars Hoffmann, Johannes C. Laube, Rolf Müller, Felix Ploeger, and Fred Stroh
Atmos. Chem. Phys., 24, 317–343, https://doi.org/10.5194/acp-24-317-2024, https://doi.org/10.5194/acp-24-317-2024, 2024
Short summary
Short summary
Over the Indian subcontinent, polluted air is rapidly uplifted to higher altitudes during the Asian monsoon season. We present an assessment of vertical transport in this region using different wind data provided by the European Centre for Medium-Range Weather Forecasts (ECMWF), as well as high-resolution aircraft measurements. In general, our findings confirm that the newest ECMWF reanalysis product, ERA5, yields a better representation of transport compared to the predecessor, ERA-Interim.
Yann Cohen, Didier Hauglustaine, Bastien Sauvage, Susanne Rohs, Patrick Konjari, Ulrich Bundke, Andreas Petzold, Valérie Thouret, Andreas Zahn, and Helmut Ziereis
Atmos. Chem. Phys., 23, 14973–15009, https://doi.org/10.5194/acp-23-14973-2023, https://doi.org/10.5194/acp-23-14973-2023, 2023
Short summary
Short summary
The upper troposphere–lower stratosphere (UTLS) is a key region regarding the lower atmospheric composition. This study consists of a comprehensive evaluation of an up-to-date chemistry–climate model in this layer, using regular in situ measurements based on passenger aircraft. For this purpose, a specific software (Interpol-IAGOS) has been updated and made publicly available. The model reproduces the carbon monoxide peaks due to biomass burning over the continental tropics particularly well.
Konstantin Ntokas, Jörn Ungermann, Martin Kaufmann, Tom Neubert, and Martin Riese
Atmos. Meas. Tech., 16, 5681–5696, https://doi.org/10.5194/amt-16-5681-2023, https://doi.org/10.5194/amt-16-5681-2023, 2023
Short summary
Short summary
A nanosatellite was developed to obtain 1-D vertical temperature profiles in the mesosphere and lower thermosphere, which can be used to derive wave parameters needed for atmospheric models. A new processing method is shown, which allows one to extract two 1-D temperature profiles. The location of the two profiles is analyzed, as it is needed for deriving wave parameters. We show that this method is feasible, which however will increase the requirements of an accurate calibration and processing.
Monali Borthakur, Miriam Sinnhuber, Alexandra Laeng, Thomas Reddmann, Peter Braesicke, Gabriele Stiller, Thomas von Clarmann, Bernd Funke, Ilya Usoskin, Jan Maik Wissing, and Olesya Yakovchuk
Atmos. Chem. Phys., 23, 12985–13013, https://doi.org/10.5194/acp-23-12985-2023, https://doi.org/10.5194/acp-23-12985-2023, 2023
Short summary
Short summary
Reduced ozone levels resulting from ozone depletion mean more exposure to UV radiation, which has various effects on human health. We analysed solar events to see what influence it has on the chemistry of Earth's atmosphere and how this atmospheric chemistry change can affect the ozone. To do this, we used an atmospheric model considering only chemistry and compared it with satellite data. The focus was mainly on the contribution of chlorine, and we found about 10 %–20 % ozone loss due to that.
Roland Eichinger, Sebastian Rhode, Hella Garny, Peter Preusse, Petr Pisoft, Aleš Kuchař, Patrick Jöckel, Astrid Kerkweg, and Bastian Kern
Geosci. Model Dev., 16, 5561–5583, https://doi.org/10.5194/gmd-16-5561-2023, https://doi.org/10.5194/gmd-16-5561-2023, 2023
Short summary
Short summary
The columnar approach of gravity wave (GW) schemes results in dynamical model biases, but parallel decomposition makes horizontal GW propagation computationally unfeasible. In the global model EMAC, we approximate it by GW redistribution at one altitude using tailor-made redistribution maps generated with a ray tracer. More spread-out GW drag helps reconcile the model with observations and close the 60°S GW gap. Polar vortex dynamics are improved, enhancing climate model credibility.
Manfred Ern, Mohamadou A. Diallo, Dina Khordakova, Isabell Krisch, Peter Preusse, Oliver Reitebuch, Jörn Ungermann, and Martin Riese
Atmos. Chem. Phys., 23, 9549–9583, https://doi.org/10.5194/acp-23-9549-2023, https://doi.org/10.5194/acp-23-9549-2023, 2023
Short summary
Short summary
Quasi-biennial oscillation (QBO) of the stratospheric tropical winds is an important mode of climate variability but is not well reproduced in free-running climate models. We use the novel global wind observations by the Aeolus satellite and radiosondes to show that the QBO is captured well in three modern reanalyses (ERA-5, JRA-55, and MERRA-2). Good agreement is also found also between Aeolus and reanalyses for large-scale tropical wave modes in the upper troposphere and lower stratosphere.
Sebastian Rhode, Peter Preusse, Manfred Ern, Jörn Ungermann, Lukas Krasauskas, Julio Bacmeister, and Martin Riese
Atmos. Chem. Phys., 23, 7901–7934, https://doi.org/10.5194/acp-23-7901-2023, https://doi.org/10.5194/acp-23-7901-2023, 2023
Short summary
Short summary
Gravity waves (GWs) transport energy vertically and horizontally within the atmosphere and thereby affect wind speeds far from their sources. Here, we present a model that identifies orographic GW sources and predicts the pathways of the excited GWs through the atmosphere for a better understanding of horizontal GW propagation. We use this model to explain physical patterns in satellite observations (e.g., low GW activity above the Himalaya) and predict seasonal patterns of GW propagation.
Midhun George, Maria Dolores Andrés Hernández, Vladyslav Nenakhov, Yangzhuoran Liu, John Philip Burrows, Birger Bohn, Eric Förster, Florian Obersteiner, Andreas Zahn, Theresa Harlaß, Helmut Ziereis, Hans Schlager, Benjamin Schreiner, Flora Kluge, Katja Bigge, and Klaus Pfeilsticker
Atmos. Chem. Phys., 23, 7799–7822, https://doi.org/10.5194/acp-23-7799-2023, https://doi.org/10.5194/acp-23-7799-2023, 2023
Short summary
Short summary
The applicability of photostationary steady-state (PSS) assumptions to estimate the amount of the sum of peroxy radicals (RO2*) during the EMeRGe airborne observations from the known radical chemistry and onboard measurements of RO2* precursors, photolysis frequencies, and other trace gases such as NOx and O3 was investigated. The comparison of the calculated RO2* with the actual measurements provides an insight into the main processes controlling their concentration in the air masses measured.
Markus Kilian, Volker Grewe, Patrick Jöckel, Astrid Kerkweg, Mariano Mertens, Andreas Zahn, and Helmut Ziereis
EGUsphere, https://doi.org/10.5194/egusphere-2023-528, https://doi.org/10.5194/egusphere-2023-528, 2023
Short summary
Short summary
Anthropogenic emissions are a major source of precursors for tropospheric ozone formation. As ozone formation is highly non-linear, we apply a global-regional chemistry-climate model with a source attribution method (tagging) to quantify the contribution of anthropogenic emissions to ozone. We focus on two major polluted areas in Europe, the Po Valley and the Benelux region. Our analysis shows that in particular anthropogenic emissions from Europe contribute largely to ground-level ozone.
Christian Scharun, Roland Ruhnke, and Peter Braesicke
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-91, https://doi.org/10.5194/gmd-2023-91, 2023
Publication in GMD not foreseen
Short summary
Short summary
The identification and quantification of greenhouse gas (GHG) emissions is an important task for monitoring mitigation strategies under climate change. With RICHARD 1.0, we developed a novel approach using spatiotemporal proxy data and a selection algorithm to detect GHG emission hotspots. By using a one year dataset of global climate model output we showed that RICHARD is able to determine and quantify the source strengths of GHG emission hotspots much more precisely than conventional methods.
Michael Kiefer, Thomas von Clarmann, Bernd Funke, Maya García-Comas, Norbert Glatthor, Udo Grabowski, Michael Höpfner, Sylvia Kellmann, Alexandra Laeng, Andrea Linden, Manuel López-Puertas, and Gabriele P. Stiller
Atmos. Meas. Tech., 16, 1443–1460, https://doi.org/10.5194/amt-16-1443-2023, https://doi.org/10.5194/amt-16-1443-2023, 2023
Short summary
Short summary
A new ozone data set, derived from radiation measurements of the space-borne instrument MIPAS, is presented. It consists of more than 2 million single ozone profiles from 2002–2012, covering virtually all latitudes and altitudes between 5 and 70 km. Progress in data calibration and processing methods allowed for significant improvement of the data quality, compared to previous data versions. Hence, the data set will help to better understand e.g. the time evolution of ozone in the stratosphere.
Chuan-Yao Lin, Wan-Chin Chen, Yi-Yun Chien, Charles C. K. Chou, Chian-Yi Liu, Helmut Ziereis, Hans Schlager, Eric Förster, Florian Obersteiner, Ovid O. Krüger, Bruna A. Holanda, Mira L. Pöhlker, Katharina Kaiser, Johannes Schneider, Birger Bohn, Klaus Pfeilsticker, Benjamin Weyland, Maria Dolores Andrés Hernández, and John P. Burrows
Atmos. Chem. Phys., 23, 2627–2647, https://doi.org/10.5194/acp-23-2627-2023, https://doi.org/10.5194/acp-23-2627-2023, 2023
Short summary
Short summary
During the EMeRGe campaign in Asia, atmospheric pollutants were measured on board the HALO aircraft. The WRF-Chem model was employed to evaluate the biomass burning (BB) plume transported from Indochina and its impact on the downstream areas. The combination of BB aerosol enhancement with cloud water resulted in a reduction in incoming shortwave radiation at the surface in southern China and the East China Sea, which potentially has significant regional climate implications.
Ziming Wang, Luca Bugliaro, Tina Jurkat-Witschas, Romy Heller, Ulrike Burkhardt, Helmut Ziereis, Georgios Dekoutsidis, Martin Wirth, Silke Groß, Simon Kirschler, Stefan Kaufmann, and Christiane Voigt
Atmos. Chem. Phys., 23, 1941–1961, https://doi.org/10.5194/acp-23-1941-2023, https://doi.org/10.5194/acp-23-1941-2023, 2023
Short summary
Short summary
Differences in the microphysical properties of contrail cirrus and natural cirrus in a contrail outbreak situation during the ML-CIRRUS campaign over the North Atlantic flight corridor can be observed from in situ measurements. The cirrus radiative effect in the area of the outbreak, derived from satellite observation-based radiative transfer modeling, is warming in the early morning and cooling during the day.
Eric Förster, Harald Bönisch, Marco Neumaier, Florian Obersteiner, Andreas Zahn, Andreas Hilboll, Anna B. Kalisz Hedegaard, Nikos Daskalakis, Alexandros Panagiotis Poulidis, Mihalis Vrekoussis, Michael Lichtenstern, and Peter Braesicke
Atmos. Chem. Phys., 23, 1893–1918, https://doi.org/10.5194/acp-23-1893-2023, https://doi.org/10.5194/acp-23-1893-2023, 2023
Short summary
Short summary
The airborne megacity campaign EMeRGe provided an unprecedented amount of trace gas measurements. We combine measured volatile organic compounds (VOCs) with trajectory-modelled emission uptakes to identify potential source regions of pollution. We also characterise the chemical fingerprints (e.g. biomass burning and anthropogenic signatures) of the probed air masses to corroborate the contributing source regions. Our approach is the first large-scale study of VOCs originating from megacities.
Jennifer Schallock, Christoph Brühl, Christine Bingen, Michael Höpfner, Landon Rieger, and Jos Lelieveld
Atmos. Chem. Phys., 23, 1169–1207, https://doi.org/10.5194/acp-23-1169-2023, https://doi.org/10.5194/acp-23-1169-2023, 2023
Short summary
Short summary
We characterized the influence of volcanic aerosols for the period 1990–2019 and established a volcanic SO2 emission inventory that includes more than 500 eruptions. From limb-based satellite observations of SO2 and extinction, we derive 3D plumes of SO2 perturbations and injected mass by a novel method. We calculate instantaneous radiative forcing with a comprehensive chemisty climate model. Our results show that smaller eruptions can also contribute to the stratospheric aerosol forcing.
Ewa M. Bednarz, Daniele Visioni, Ben Kravitz, Andy Jones, James M. Haywood, Jadwiga Richter, Douglas G. MacMartin, and Peter Braesicke
Atmos. Chem. Phys., 23, 687–709, https://doi.org/10.5194/acp-23-687-2023, https://doi.org/10.5194/acp-23-687-2023, 2023
Short summary
Short summary
Building on Part 1 of this two-part study, we demonstrate the role of biases in climatological circulation and specific aspects of model microphysics in driving the differences in simulated sulfate distributions amongst three Earth system models. We then characterize the simulated changes in stratospheric and free-tropospheric temperatures, ozone, water vapor, and large-scale circulation, elucidating the role of the above aspects in the surface responses discussed in Part 1.
Reimar Bauer, Jens-Uwe Grooß, Jörn Ungermann, May Bär, Markus Geldenhuys, and Lars Hoffmann
Geosci. Model Dev., 15, 8983–8997, https://doi.org/10.5194/gmd-15-8983-2022, https://doi.org/10.5194/gmd-15-8983-2022, 2022
Short summary
Short summary
The Mission Support System (MSS) is an open source software package that has been used for planning flight tracks of scientific aircraft in multiple measurement campaigns during the last decade. Here, we describe the MSS software and its use during the SouthTRAC measurement campaign in 2019. As an example for how the MSS software is used in conjunction with many datasets, we describe the planning of a single flight probing orographic gravity waves propagating up into the lower mesosphere.
Qiuyu Chen, Konstantin Ntokas, Björn Linder, Lukas Krasauskas, Manfred Ern, Peter Preusse, Jörn Ungermann, Erich Becker, Martin Kaufmann, and Martin Riese
Atmos. Meas. Tech., 15, 7071–7103, https://doi.org/10.5194/amt-15-7071-2022, https://doi.org/10.5194/amt-15-7071-2022, 2022
Short summary
Short summary
Observations of phase speed and direction spectra as well as zonal mean net gravity wave momentum flux are required to understand how gravity waves reach the mesosphere–lower thermosphere and how they there interact with background flow. To this end we propose flying two CubeSats, each deploying a spatial heterodyne spectrometer for limb observation of the airglow. End-to-end simulations demonstrate that individual gravity waves are retrieved faithfully for the expected instrument performance.
Manfred Ern, Peter Preusse, and Martin Riese
Atmos. Chem. Phys., 22, 15093–15133, https://doi.org/10.5194/acp-22-15093-2022, https://doi.org/10.5194/acp-22-15093-2022, 2022
Short summary
Short summary
Based on data from the HIRDLS and SABER infrared limb sounding satellite instruments, we investigate the intermittency of global distributions of gravity wave (GW) potential energies and GW momentum fluxes in the stratosphere and mesosphere using probability distribution functions (PDFs) and Gini coefficients. We compare GW intermittency in different regions, seasons, and altitudes. These results can help to improve GW parameterizations and the distributions of GWs resolved in models.
Markus Jesswein, Rafael P. Fernandez, Lucas Berná, Alfonso Saiz-Lopez, Jens-Uwe Grooß, Ryan Hossaini, Eric C. Apel, Rebecca S. Hornbrook, Elliot L. Atlas, Donald R. Blake, Stephen Montzka, Timo Keber, Tanja Schuck, Thomas Wagenhäuser, and Andreas Engel
Atmos. Chem. Phys., 22, 15049–15070, https://doi.org/10.5194/acp-22-15049-2022, https://doi.org/10.5194/acp-22-15049-2022, 2022
Short summary
Short summary
This study presents the global and seasonal distribution of the two major brominated short-lived substances CH2Br2 and CHBr3 in the upper troposphere and lower stratosphere based on observations from several aircraft campaigns. They show similar seasonality for both hemispheres, except in the respective hemispheric autumn lower stratosphere. A comparison with the TOMCAT and CAM-Chem models shows good agreement in the annual mean but larger differences in the seasonal consideration.
Bernard Legras, Clair Duchamp, Pasquale Sellitto, Aurélien Podglajen, Elisa Carboni, Richard Siddans, Jens-Uwe Grooß, Sergey Khaykin, and Felix Ploeger
Atmos. Chem. Phys., 22, 14957–14970, https://doi.org/10.5194/acp-22-14957-2022, https://doi.org/10.5194/acp-22-14957-2022, 2022
Short summary
Short summary
The long-duration atmospheric impact of the Tonga eruption in January 2022 is a plume of water and sulfate aerosols in the stratosphere that persisted for more than 6 months. We study this evolution using several satellite instruments and analyse the unusual behaviour of this plume as sulfates and water first moved down rapidly and then separated into two layers. We also report the self-organization in compact and long-lived patches.
Gerald Wetzel, Michael Höpfner, Hermann Oelhaf, Felix Friedl-Vallon, Anne Kleinert, Guido Maucher, Miriam Sinnhuber, Janna Abalichin, Angelika Dehn, and Piera Raspollini
Atmos. Meas. Tech., 15, 6669–6704, https://doi.org/10.5194/amt-15-6669-2022, https://doi.org/10.5194/amt-15-6669-2022, 2022
Short summary
Short summary
Satellite measurements of stratospheric trace gases are essential for monitoring distributions and trends of these species on a global scale. Here, we compare the final MIPAS ESA Level 2 version 8 data (temperature and trace gases) with measurements obtained with the balloon version of MIPAS in terms of data agreement of both sensors, including combined errors. For most gases, we find a 5 % to 20 % agreement of the retrieved vertical profiles of both MIPAS instruments in the lower stratosphere.
Mohamadou A. Diallo, Felix Ploeger, Michaela I. Hegglin, Manfred Ern, Jens-Uwe Grooß, Sergey Khaykin, and Martin Riese
Atmos. Chem. Phys., 22, 14303–14321, https://doi.org/10.5194/acp-22-14303-2022, https://doi.org/10.5194/acp-22-14303-2022, 2022
Short summary
Short summary
The quasi-biennial oacillation disruption events in both 2016 and 2020 decreased lower-stratospheric water vapour and ozone. Differences in the strength and depth of the anomalous lower-stratospheric circulation and ozone are due to differences in tropical upwelling and cold-point temperature induced by lower-stratospheric planetary and gravity wave breaking. The differences in water vapour are due to higher cold-point temperature in 2020 induced by Australian wildfire.
Ewa M. Bednarz, Ryan Hossaini, Martyn P. Chipperfield, N. Luke Abraham, and Peter Braesicke
Atmos. Chem. Phys., 22, 10657–10676, https://doi.org/10.5194/acp-22-10657-2022, https://doi.org/10.5194/acp-22-10657-2022, 2022
Short summary
Short summary
Atmospheric impacts of chlorinated very short-lived substances (Cl-VSLS) over the first two decades of the 21st century are assessed using the UM-UKCA chemistry–climate model. Stratospheric input of Cl from Cl-VSLS is estimated at ~130 ppt in 2019. The use of model set-up with constrained meteorology significantly increases the abundance of Cl-VSLS in the lower stratosphere relative to the free-running set-up. The growth in Cl-VSLS emissions significantly impacted recent HCl and COCl2 trends.
M. Dolores Andrés Hernández, Andreas Hilboll, Helmut Ziereis, Eric Förster, Ovid O. Krüger, Katharina Kaiser, Johannes Schneider, Francesca Barnaba, Mihalis Vrekoussis, Jörg Schmidt, Heidi Huntrieser, Anne-Marlene Blechschmidt, Midhun George, Vladyslav Nenakhov, Theresa Harlass, Bruna A. Holanda, Jennifer Wolf, Lisa Eirenschmalz, Marc Krebsbach, Mira L. Pöhlker, Anna B. Kalisz Hedegaard, Linlu Mei, Klaus Pfeilsticker, Yangzhuoran Liu, Ralf Koppmann, Hans Schlager, Birger Bohn, Ulrich Schumann, Andreas Richter, Benjamin Schreiner, Daniel Sauer, Robert Baumann, Mariano Mertens, Patrick Jöckel, Markus Kilian, Greta Stratmann, Christopher Pöhlker, Monica Campanelli, Marco Pandolfi, Michael Sicard, José L. Gómez-Amo, Manuel Pujadas, Katja Bigge, Flora Kluge, Anja Schwarz, Nikos Daskalakis, David Walter, Andreas Zahn, Ulrich Pöschl, Harald Bönisch, Stephan Borrmann, Ulrich Platt, and John P. Burrows
Atmos. Chem. Phys., 22, 5877–5924, https://doi.org/10.5194/acp-22-5877-2022, https://doi.org/10.5194/acp-22-5877-2022, 2022
Short summary
Short summary
EMeRGe provides a unique set of in situ and remote sensing airborne measurements of trace gases and aerosol particles along selected flight routes in the lower troposphere over Europe. The interpretation uses also complementary collocated ground-based and satellite measurements. The collected data help to improve the current understanding of the complex spatial distribution of trace gases and aerosol particles resulting from mixing, transport, and transformation of pollution plumes over Europe.
Jörn Ungermann, Anne Kleinert, Guido Maucher, Irene Bartolomé, Felix Friedl-Vallon, Sören Johansson, Lukas Krasauskas, and Tom Neubert
Atmos. Meas. Tech., 15, 2503–2530, https://doi.org/10.5194/amt-15-2503-2022, https://doi.org/10.5194/amt-15-2503-2022, 2022
Short summary
Short summary
GLORIA is a 2-D infrared imaging spectrometer operated on two high-flying research aircraft. This paper details our instrument calibration and characterization efforts, which in particular leverage in-flight data almost exclusively and often exploit the novel 2-D nature of the measurements. We show that the instrument surpasses the original instrument specifications and conclude by analyzing how the derived errors affect temperature and ozone retrievals, two of our main derived quantities.
Helmut Ziereis, Peter Hoor, Jens-Uwe Grooß, Andreas Zahn, Greta Stratmann, Paul Stock, Michael Lichtenstern, Jens Krause, Vera Bense, Armin Afchine, Christian Rolf, Wolfgang Woiwode, Marleen Braun, Jörn Ungermann, Andreas Marsing, Christiane Voigt, Andreas Engel, Björn-Martin Sinnhuber, and Hermann Oelhaf
Atmos. Chem. Phys., 22, 3631–3654, https://doi.org/10.5194/acp-22-3631-2022, https://doi.org/10.5194/acp-22-3631-2022, 2022
Short summary
Short summary
Airborne observations were conducted in the lowermost Arctic stratosphere during the winter of 2015/2016. The observed distribution of reactive nitrogen shows clear indications of nitrification in mid-winter and denitrification in late winter. This was caused by the formation of polar stratospheric cloud particles, which were observed during several flights. The sedimentation and evaporation of these particles and the descent of air masses cause a redistribution of reactive nitrogen.
Sören Johansson, Gerald Wetzel, Felix Friedl-Vallon, Norbert Glatthor, Michael Höpfner, Anne Kleinert, Tom Neubert, Björn-Martin Sinnhuber, and Jörn Ungermann
Atmos. Chem. Phys., 22, 3675–3691, https://doi.org/10.5194/acp-22-3675-2022, https://doi.org/10.5194/acp-22-3675-2022, 2022
Short summary
Short summary
We present GLORIA airborne cross sections of PAN, C2H6, HCOOH, CH3OH, and C2H4 in the South Atlantic UTLS in September/October 2019. Filamentary structures and a large plume were observed. Backward trajectories indicate that measured pollutants come from South America and central Africa. Comparisons to CAMS show structural agreement of the measured distributions. PAN absolute VMRs agree with the GLORIA measurements, C2H6 and HCOOH are simulated too low, and CH3OH and C2H4 are too high.
Florian Haenel, Wolfgang Woiwode, Jennifer Buchmüller, Felix Friedl-Vallon, Michael Höpfner, Sören Johansson, Farahnaz Khosrawi, Oliver Kirner, Anne Kleinert, Hermann Oelhaf, Johannes Orphal, Roland Ruhnke, Björn-Martin Sinnhuber, Jörn Ungermann, Michael Weimer, and Peter Braesicke
Atmos. Chem. Phys., 22, 2843–2870, https://doi.org/10.5194/acp-22-2843-2022, https://doi.org/10.5194/acp-22-2843-2022, 2022
Short summary
Short summary
We compare remote sensing observations of H2O, O3, HNO3 and clouds in the upper troposphere–lowermost stratosphere during an Arctic winter long-range research flight with simulations by two different state-of-the-art model systems. We find good agreement for dynamical structures, trace gas distributions and clouds. We investigate model biases and sensitivities, with the goal of aiding model development and improving our understanding of processes in the upper troposphere–lowermost stratosphere.
Matthias Schneider, Benjamin Ertl, Christopher J. Diekmann, Farahnaz Khosrawi, Andreas Weber, Frank Hase, Michael Höpfner, Omaira E. García, Eliezer Sepúlveda, and Douglas Kinnison
Earth Syst. Sci. Data, 14, 709–742, https://doi.org/10.5194/essd-14-709-2022, https://doi.org/10.5194/essd-14-709-2022, 2022
Short summary
Short summary
We present atmospheric H2O, HDO / H2O ratio, N2O, CH4, and HNO3 data generated by the MUSICA IASI processor using thermal nadir spectra measured by the IASI satellite instrument. The data have global daily coverage and are available for the period between October 2014 and June 2021. Multiple possibilities of data reuse are offered by providing each individual data product together with information about retrieval settings and the products' uncertainty and vertical representativeness.
Dina Khordakova, Christian Rolf, Jens-Uwe Grooß, Rolf Müller, Paul Konopka, Andreas Wieser, Martina Krämer, and Martin Riese
Atmos. Chem. Phys., 22, 1059–1079, https://doi.org/10.5194/acp-22-1059-2022, https://doi.org/10.5194/acp-22-1059-2022, 2022
Short summary
Short summary
Extreme storms transport humidity from the troposphere to the stratosphere. Here it has a strong impact on the climate. With ongoing global warming, we expect more storms and, hence, an enhancement of this effect. A case study was performed in order to measure the impact of the direct injection of water vapor into the lower stratosphere. The measurements displayed a significant transport of water vapor into the lower stratosphere, and this was supported by satellite and reanalysis data.
Manuel Baumgartner, Christian Rolf, Jens-Uwe Grooß, Julia Schneider, Tobias Schorr, Ottmar Möhler, Peter Spichtinger, and Martina Krämer
Atmos. Chem. Phys., 22, 65–91, https://doi.org/10.5194/acp-22-65-2022, https://doi.org/10.5194/acp-22-65-2022, 2022
Short summary
Short summary
An important mechanism for the appearance of ice particles in the upper troposphere at low temperatures is homogeneous nucleation. This process is commonly described by the
Koop line, predicting the humidity at freezing. However, laboratory measurements suggest that the freezing humidities are above the Koop line, motivating the present study to investigate the influence of different physical parameterizations on the homogeneous freezing with the help of a detailed numerical model.
Cornelia Strube, Peter Preusse, Manfred Ern, and Martin Riese
Atmos. Chem. Phys., 21, 18641–18668, https://doi.org/10.5194/acp-21-18641-2021, https://doi.org/10.5194/acp-21-18641-2021, 2021
Short summary
Short summary
High gravity wave (GW) momentum fluxes in the lower stratospheric southern polar vortex around 60° S are still poorly understood. Few GW sources are found at these latitudes. We present a ray tracing case study on waves resolved in high-resolution global model temperatures southeast of New Zealand. We show that lateral propagation of more than 1000 km takes place below 20 km altitude, and a variety of orographic and non-orographic sources located north of 50° S generate the wave field.
Michael Höpfner, Oliver Kirner, Gerald Wetzel, Björn-Martin Sinnhuber, Florian Haenel, Sören Johansson, Johannes Orphal, Roland Ruhnke, Gabriele Stiller, and Thomas von Clarmann
Atmos. Chem. Phys., 21, 18433–18464, https://doi.org/10.5194/acp-21-18433-2021, https://doi.org/10.5194/acp-21-18433-2021, 2021
Short summary
Short summary
BrONO2 is an important reservoir gas for inorganic stratospheric bromine linked to the chemical cycles of stratospheric ozone depletion. Presently infrared limb sounding is the only way to measure BrONO2 in the atmosphere. We provide global distributions of BrONO2 derived from MIPAS observations 2002–2012. Comparisons with EMAC atmospheric modelling show an overall agreement and enable us to derive an independent estimate of stratospheric bromine of 21.2±1.4pptv based on the BrONO2 measurements.
Christopher J. Diekmann, Matthias Schneider, Benjamin Ertl, Frank Hase, Omaira García, Farahnaz Khosrawi, Eliezer Sepúlveda, Peter Knippertz, and Peter Braesicke
Earth Syst. Sci. Data, 13, 5273–5292, https://doi.org/10.5194/essd-13-5273-2021, https://doi.org/10.5194/essd-13-5273-2021, 2021
Short summary
Short summary
The joint analysis of different stable water isotopes in water vapour is a powerful tool for investigating atmospheric moisture pathways. This paper presents a novel global and multi-annual dataset of H2O and HDO in mid-tropospheric water vapour by using data from the satellite sensor Metop/IASI. Due to its unique combination of coverage and resolution in space and time, this dataset is highly promising for studying the hydrological cycle and its representation in weather and climate models.
Yu-Wen Chen, Yi-Chun Chen, Charles C.-K. Chou, Hui-Ming Hung, Shih-Yu Chang, Lisa Eirenschmalz, Michael Lichtenstern, Helmut Ziereis, Hans Schlager, Greta Stratmann, Katharina Kaiser, Johannes Schneider, Stephan Borrmann, Florian Obersteiner, Eric Förster, Andreas Zahn, Wei-Nai Chen, Po-Hsiung Lin, Shuenn-Chin Chang, Maria Dolores Andrés Hernández, Pao-Kuan Wang, and John P. Burrows
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-788, https://doi.org/10.5194/acp-2021-788, 2021
Preprint withdrawn
Short summary
Short summary
By presenting an approach using EMeRGe-Asia airborne field measurements and surface observations, this study shows that the fraction of OH reactivity due to SO2-OH reaction has a significant correlation with the sulfate concentration. Approximately 30 % of sulfate is produced by SO2-OH reaction. Our results underline the importance of SO2-OH gas-phase oxidation in sulfate formation, and demonstrate that the method can be applied to other regions and under different meteorological conditions.
Meike K. Rotermund, Vera Bense, Martyn P. Chipperfield, Andreas Engel, Jens-Uwe Grooß, Peter Hoor, Tilman Hüneke, Timo Keber, Flora Kluge, Benjamin Schreiner, Tanja Schuck, Bärbel Vogel, Andreas Zahn, and Klaus Pfeilsticker
Atmos. Chem. Phys., 21, 15375–15407, https://doi.org/10.5194/acp-21-15375-2021, https://doi.org/10.5194/acp-21-15375-2021, 2021
Short summary
Short summary
Airborne total bromine (Brtot) and tracer measurements suggest Brtot-rich air masses persistently protruded into the lower stratosphere (LS), creating a high Brtot region over the North Atlantic in fall 2017. The main source is via isentropic transport by the Asian monsoon and to a lesser extent transport across the extratropical tropopause as quantified by a Lagrange model. The transport of Brtot via Central American hurricanes is also observed. Lastly, the impact of Brtot on LS O3 is assessed.
Manfred Ern, Mohamadou Diallo, Peter Preusse, Martin G. Mlynczak, Michael J. Schwartz, Qian Wu, and Martin Riese
Atmos. Chem. Phys., 21, 13763–13795, https://doi.org/10.5194/acp-21-13763-2021, https://doi.org/10.5194/acp-21-13763-2021, 2021
Short summary
Short summary
Details of the driving of the semiannual oscillation (SAO) of the tropical winds in the middle atmosphere are still not known. We investigate the SAO and its driving by small-scale gravity waves (GWs) using satellite data and different reanalyses. In a large altitude range, GWs mainly drive the SAO westerlies, but in the upper mesosphere GWs seem to drive both SAO easterlies and westerlies. Reanalyses reproduce some features of the SAO but are limited by model-inherent damping at upper levels.
Markus Geldenhuys, Peter Preusse, Isabell Krisch, Christoph Zülicke, Jörn Ungermann, Manfred Ern, Felix Friedl-Vallon, and Martin Riese
Atmos. Chem. Phys., 21, 10393–10412, https://doi.org/10.5194/acp-21-10393-2021, https://doi.org/10.5194/acp-21-10393-2021, 2021
Short summary
Short summary
A large-scale gravity wave (GW) was observed spanning the whole of Greenland. The GWs proposed in this paper come from a new jet–topography mechanism. The topography compresses the flow and triggers a change in u- and
v-wind components. The jet becomes out of geostrophic balance and sheds energy in the form of GWs to restore the balance. This topography–jet interaction was not previously considered by the community, rendering the impact of the gravity waves largely unaccounted for.
Lukas Krasauskas, Jörn Ungermann, Peter Preusse, Felix Friedl-Vallon, Andreas Zahn, Helmut Ziereis, Christian Rolf, Felix Plöger, Paul Konopka, Bärbel Vogel, and Martin Riese
Atmos. Chem. Phys., 21, 10249–10272, https://doi.org/10.5194/acp-21-10249-2021, https://doi.org/10.5194/acp-21-10249-2021, 2021
Short summary
Short summary
A Rossby wave (RW) breaking event was observed over the North Atlantic during the WISE measurement campaign in October 2017. Infrared limb sounding measurements of trace gases in the lower stratosphere, including high-resolution 3-D tomographic reconstruction, revealed complex spatial structures in stratospheric tracers near the polar jet related to previous RW breaking events. Backward-trajectory analysis and tracer correlations were used to study mixing and stratosphere–troposphere exchange.
Michael Weimer, Jennifer Buchmüller, Lars Hoffmann, Ole Kirner, Beiping Luo, Roland Ruhnke, Michael Steiner, Ines Tritscher, and Peter Braesicke
Atmos. Chem. Phys., 21, 9515–9543, https://doi.org/10.5194/acp-21-9515-2021, https://doi.org/10.5194/acp-21-9515-2021, 2021
Short summary
Short summary
We show that we are able to directly simulate polar stratospheric clouds formed locally in a mountain wave and represent their effect on the ozone chemistry with the global atmospheric chemistry model ICON-ART. Thus, we show the first simulations that close the gap between directly resolved mountain-wave-induced polar stratospheric clouds and their representation at coarse global resolutions.
Felix Ploeger, Mohamadou Diallo, Edward Charlesworth, Paul Konopka, Bernard Legras, Johannes C. Laube, Jens-Uwe Grooß, Gebhard Günther, Andreas Engel, and Martin Riese
Atmos. Chem. Phys., 21, 8393–8412, https://doi.org/10.5194/acp-21-8393-2021, https://doi.org/10.5194/acp-21-8393-2021, 2021
Short summary
Short summary
We investigate the global stratospheric circulation (Brewer–Dobson circulation) in the new ECMWF ERA5 reanalysis based on age of air simulations, and we compare it to results from the preceding ERA-Interim reanalysis. Our results show a slower stratospheric circulation and higher age for ERA5. The age of air trend in ERA5 over the 1989–2018 period is negative throughout the stratosphere, related to multi-annual variability and a potential contribution from changes in the reanalysis system.
Gerald Wetzel, Felix Friedl-Vallon, Norbert Glatthor, Jens-Uwe Grooß, Thomas Gulde, Michael Höpfner, Sören Johansson, Farahnaz Khosrawi, Oliver Kirner, Anne Kleinert, Erik Kretschmer, Guido Maucher, Hans Nordmeyer, Hermann Oelhaf, Johannes Orphal, Christof Piesch, Björn-Martin Sinnhuber, Jörn Ungermann, and Bärbel Vogel
Atmos. Chem. Phys., 21, 8213–8232, https://doi.org/10.5194/acp-21-8213-2021, https://doi.org/10.5194/acp-21-8213-2021, 2021
Short summary
Short summary
Measurements of the pollutants C2H6, C2H2, HCOOH, and PAN were performed in the North Atlantic UTLS region with the airborne limb imager GLORIA in 2017. Enhanced amounts of these species were detected in the upper troposphere and even in the lowermost stratosphere (PAN). Main sources of these gases are forest fires in North America and anthropogenic pollution in South Asia. Simulations of EMAC and CAMS are qualitatively able to reproduce the measured data but underestimate the absolute amounts.
Irene Bartolome Garcia, Reinhold Spang, Jörn Ungermann, Sabine Griessbach, Martina Krämer, Michael Höpfner, and Martin Riese
Atmos. Meas. Tech., 14, 3153–3168, https://doi.org/10.5194/amt-14-3153-2021, https://doi.org/10.5194/amt-14-3153-2021, 2021
Short summary
Short summary
Cirrus clouds contribute to the general radiation budget of the Earth. Measuring optically thin clouds is challenging but the IR limb sounder GLORIA possesses the necessary technical characteristics to make it possible. This study analyses data from the WISE campaign obtained with GLORIA. We developed a cloud detection method and derived characteristics of the observed cirrus-like cloud top, cloud bottom or position with respect to the tropopause.
Robert Wagner, Baptiste Testa, Michael Höpfner, Alexei Kiselev, Ottmar Möhler, Harald Saathoff, Jörn Ungermann, and Thomas Leisner
Atmos. Meas. Tech., 14, 1977–1991, https://doi.org/10.5194/amt-14-1977-2021, https://doi.org/10.5194/amt-14-1977-2021, 2021
Short summary
Short summary
During the Asian summer monsoon period, air pollutants are transported from layers near the ground to high altitudes of 13 to 18 km in the atmosphere. Infrared measurements have shown that particles composed of solid ammonium nitrate are a major part of these pollutants. To enable the quantitative analysis of the infrared spectra, we have determined for the first time accurate optical constants of ammonium nitrate for the low-temperature conditions of the upper atmosphere.
Johannes Schneider, Ralf Weigel, Thomas Klimach, Antonis Dragoneas, Oliver Appel, Andreas Hünig, Sergej Molleker, Franziska Köllner, Hans-Christian Clemen, Oliver Eppers, Peter Hoppe, Peter Hoor, Christoph Mahnke, Martina Krämer, Christian Rolf, Jens-Uwe Grooß, Andreas Zahn, Florian Obersteiner, Fabrizio Ravegnani, Alexey Ulanovsky, Hans Schlager, Monika Scheibe, Glenn S. Diskin, Joshua P. DiGangi, John B. Nowak, Martin Zöger, and Stephan Borrmann
Atmos. Chem. Phys., 21, 989–1013, https://doi.org/10.5194/acp-21-989-2021, https://doi.org/10.5194/acp-21-989-2021, 2021
Short summary
Short summary
During five aircraft missions, we detected aerosol particles containing meteoric material in the lower stratosphere. The stratospheric measurements span a latitude range from 15 to 68° N, and we find that at potential temperature levels of more than 40 K above the tropopause; particles containing meteoric material occur at similar abundance fractions across latitudes and seasons. We conclude that meteoric material is efficiently distributed between high and low latitudes by isentropic mixing.
Jörn Ungermann, Irene Bartolome, Sabine Griessbach, Reinhold Spang, Christian Rolf, Martina Krämer, Michael Höpfner, and Martin Riese
Atmos. Meas. Tech., 13, 7025–7045, https://doi.org/10.5194/amt-13-7025-2020, https://doi.org/10.5194/amt-13-7025-2020, 2020
Short summary
Short summary
This study examines the potential of new IR limb imager instruments and tomographic methods for cloud detection purposes. Simple color-ratio-based methods are examined and compared against more involved nonlinear convex optimization. In a second part, 3-D measurements of the airborne limb sounder GLORIA taken during the Wave-driven ISentropic Exchange campaign are used to exemplarily derive the location and extent of small-scale cirrus clouds with high spatial accuracy.
Wolfgang Woiwode, Andreas Dörnbrack, Inna Polichtchouk, Sören Johansson, Ben Harvey, Michael Höpfner, Jörn Ungermann, and Felix Friedl-Vallon
Atmos. Chem. Phys., 20, 15379–15387, https://doi.org/10.5194/acp-20-15379-2020, https://doi.org/10.5194/acp-20-15379-2020, 2020
Short summary
Short summary
The lowermost-stratosphere moist bias in ECMWF analyses and 12 h forecasts is diagnosed for the Arctic winter-spring 2016 period by using two-dimensional GLORIA water vapor observations. The bias is already present in the initial conditions (i.e., the analyses), and sensitivity forecasts on time scales of < 12 h show hardly any sensitivity to modified spatial resolution and output frequency.
Sören Johansson, Michael Höpfner, Oliver Kirner, Ingo Wohltmann, Silvia Bucci, Bernard Legras, Felix Friedl-Vallon, Norbert Glatthor, Erik Kretschmer, Jörn Ungermann, and Gerald Wetzel
Atmos. Chem. Phys., 20, 14695–14715, https://doi.org/10.5194/acp-20-14695-2020, https://doi.org/10.5194/acp-20-14695-2020, 2020
Short summary
Short summary
We present high-resolution measurements of pollutant trace gases (PAN, C2H2, and HCOOH) in the Asian monsoon UTLS from the airborne limb imager GLORIA during StratoClim 2017. Enhancements are observed up to 16 km altitude, and PAN and C2H2 even up to 18 km. Two atmospheric models, CAMS and EMAC, reproduce the pollutant's large-scale structures but not finer structures. Convection is investigated using backward trajectories of the models ATLAS and TRACZILLA with advanced detection of convection.
Joram J. D. Hooghiem, Maria Elena Popa, Thomas Röckmann, Jens-Uwe Grooß, Ines Tritscher, Rolf Müller, Rigel Kivi, and Huilin Chen
Atmos. Chem. Phys., 20, 13985–14003, https://doi.org/10.5194/acp-20-13985-2020, https://doi.org/10.5194/acp-20-13985-2020, 2020
Short summary
Short summary
Wildfires release a large quantity of pollutants that can reach the stratosphere through pyro-convection events. In September 2017, a stratospheric plume was accidentally sampled during balloon soundings in northern Finland. The source of the plume was identified to be wildfire smoke based on in situ measurements of carbon monoxide (CO) and stable isotope analysis of CO. Furthermore, the age of the plume was estimated using backwards transport modelling to be ~24 d, with its origin in Canada.
Bettina Hottmann, Sascha Hafermann, Laura Tomsche, Daniel Marno, Monica Martinez, Hartwig Harder, Andrea Pozzer, Marco Neumaier, Andreas Zahn, Birger Bohn, Greta Stratmann, Helmut Ziereis, Jos Lelieveld, and Horst Fischer
Atmos. Chem. Phys., 20, 12655–12673, https://doi.org/10.5194/acp-20-12655-2020, https://doi.org/10.5194/acp-20-12655-2020, 2020
Short summary
Short summary
During OMO we observed enhanced mixing ratios of hydroperoxides (ROOH) in the Asian monsoon anticyclone (AMA) relative to the background. The observed mixing ratios are higher than steady-state calculations and EMAC simulations, especially in the AMA, indicating atmospheric transport of ROOH. Uncertainties in the scavenging efficiencies likely cause deviations from EMAC. Longitudinal gradients indicate a pool of ROOH towards the center of the AMA associated with upwind convection over India.
Andrew Orr, J. Scott Hosking, Aymeric Delon, Lars Hoffmann, Reinhold Spang, Tracy Moffat-Griffin, James Keeble, Nathan Luke Abraham, and Peter Braesicke
Atmos. Chem. Phys., 20, 12483–12497, https://doi.org/10.5194/acp-20-12483-2020, https://doi.org/10.5194/acp-20-12483-2020, 2020
Short summary
Short summary
Polar stratospheric clouds (PSCs) are clouds found in the Antarctic winter stratosphere and are implicated in the formation of the ozone hole. These clouds can sometimes be formed or enhanced by mountain waves, formed as air passes over hills or mountains. However, this important mechanism is missing in coarse-resolution climate models, limiting our ability to simulate ozone. This study examines an attempt to include the effects of mountain waves and their impact on PSCs and ozone.
Isabell Krisch, Manfred Ern, Lars Hoffmann, Peter Preusse, Cornelia Strube, Jörn Ungermann, Wolfgang Woiwode, and Martin Riese
Atmos. Chem. Phys., 20, 11469–11490, https://doi.org/10.5194/acp-20-11469-2020, https://doi.org/10.5194/acp-20-11469-2020, 2020
Short summary
Short summary
In 2016, a scientific research flight above Scandinavia acquired various atmospheric data (temperature, gas composition, etc.). Through advanced 3-D reconstruction methods, a superposition of multiple gravity waves was identified. An in-depth analysis enabled the characterisation of these waves as well as the identification of their sources. This work will enable a better understanding of atmosphere dynamics and could lead to improved climate projections.
Cornelia Strube, Manfred Ern, Peter Preusse, and Martin Riese
Atmos. Meas. Tech., 13, 4927–4945, https://doi.org/10.5194/amt-13-4927-2020, https://doi.org/10.5194/amt-13-4927-2020, 2020
Short summary
Short summary
We present how inertial instabilities affect gravity wave background removal filters on different temperature data sets. Vertical filtering has to remove a part of the gravity wave spectrum to eliminate inertial instability remnants, while horizontal filtering leaves typical gravity wave scales untouched. In addition, we show that it is possible to separate inertial instabilities from gravity wave perturbations for infrared limb-sounding satellite profiles using a cutoff zonal wavenumber of 6.
Johannes C. Laube, Emma C. Leedham Elvidge, Karina E. Adcock, Bianca Baier, Carl A. M. Brenninkmeijer, Huilin Chen, Elise S. Droste, Jens-Uwe Grooß, Pauli Heikkinen, Andrew J. Hind, Rigel Kivi, Alexander Lojko, Stephen A. Montzka, David E. Oram, Steve Randall, Thomas Röckmann, William T. Sturges, Colm Sweeney, Max Thomas, Elinor Tuffnell, and Felix Ploeger
Atmos. Chem. Phys., 20, 9771–9782, https://doi.org/10.5194/acp-20-9771-2020, https://doi.org/10.5194/acp-20-9771-2020, 2020
Short summary
Short summary
We demonstrate that AirCore technology, which is based on small low-cost balloons, can provide access to trace gas measurements such as CFCs at ultra-low abundances. This is a new way to quantify ozone-depleting, and related, substances in the stratosphere, which is largely inaccessible to aircraft. We show two potential uses: (a) tracking the stratospheric circulation, which is predicted to change, and (b) assessing three common meteorological reanalyses driving a global stratospheric model.
Rocco Sedona, Lars Hoffmann, Reinhold Spang, Gabriele Cavallaro, Sabine Griessbach, Michael Höpfner, Matthias Book, and Morris Riedel
Atmos. Meas. Tech., 13, 3661–3682, https://doi.org/10.5194/amt-13-3661-2020, https://doi.org/10.5194/amt-13-3661-2020, 2020
Short summary
Short summary
Polar stratospheric clouds (PSCs) play a key role in polar ozone depletion in the stratosphere. In this paper, we explore the potential of applying machine learning (ML) methods to classify PSC observations of infrared spectra to classify PSC types. ML methods have proved to reach results in line with those obtained using well-established approaches. Among the considered ML methods, random forest (RF) seems to be the most promising one, being able to produce explainable classification results.
Bruna A. Holanda, Mira L. Pöhlker, David Walter, Jorge Saturno, Matthias Sörgel, Jeannine Ditas, Florian Ditas, Christiane Schulz, Marco Aurélio Franco, Qiaoqiao Wang, Tobias Donth, Paulo Artaxo, Henrique M. J. Barbosa, Stephan Borrmann, Ramon Braga, Joel Brito, Yafang Cheng, Maximilian Dollner, Johannes W. Kaiser, Thomas Klimach, Christoph Knote, Ovid O. Krüger, Daniel Fütterer, Jošt V. Lavrič, Nan Ma, Luiz A. T. Machado, Jing Ming, Fernando G. Morais, Hauke Paulsen, Daniel Sauer, Hans Schlager, Johannes Schneider, Hang Su, Bernadett Weinzierl, Adrian Walser, Manfred Wendisch, Helmut Ziereis, Martin Zöger, Ulrich Pöschl, Meinrat O. Andreae, and Christopher Pöhlker
Atmos. Chem. Phys., 20, 4757–4785, https://doi.org/10.5194/acp-20-4757-2020, https://doi.org/10.5194/acp-20-4757-2020, 2020
Short summary
Short summary
Biomass burning smoke from African savanna and grassland is transported across the South Atlantic Ocean in defined layers within the free troposphere. The combination of in situ aircraft and ground-based measurements aided by satellite observations showed that these layers are transported into the Amazon Basin during the early dry season. The influx of aged smoke, enriched in black carbon and cloud condensation nuclei, has important implications for the Amazonian aerosol and cloud cycling.
Daniel Kunkel, Peter Hoor, Thorsten Kaluza, Jörn Ungermann, Björn Kluschat, Andreas Giez, Hans-Christoph Lachnitt, Martin Kaufmann, and Martin Riese
Atmos. Chem. Phys., 19, 12607–12630, https://doi.org/10.5194/acp-19-12607-2019, https://doi.org/10.5194/acp-19-12607-2019, 2019
Short summary
Short summary
In this study we present a mixing process around the tropopause in extratropical baroclinic waves. We analyze airborne data from a flight during the WISE campaign in autumn 2017 over the North Atlantic. We use idealized experiments to study the mixing process. Although the process occurs on a small geographical scale, it might be of importance due to its relation to a frequent feature of the extratropical UTLS. The process is relevant for STE but is not fully included in climatologies.
Andreas Marsing, Tina Jurkat-Witschas, Jens-Uwe Grooß, Stefan Kaufmann, Romy Heller, Andreas Engel, Peter Hoor, Jens Krause, and Christiane Voigt
Atmos. Chem. Phys., 19, 10757–10772, https://doi.org/10.5194/acp-19-10757-2019, https://doi.org/10.5194/acp-19-10757-2019, 2019
Short summary
Short summary
We study the partitioning of inorganic chlorine into active (ozone-depleting) and reservoir species in the lowermost stratosphere of the Arctic polar vortex, using novel in situ aircraft measurements in winter 2015/2016. We observe a change in recovery pathways of the reservoirs HCl and ClONO2 with increasing potential temperature. A comparison with the CLaMS model relates the observations to the vortex-wide evolution and confirms unresolved discrepancies in the mid-winter HCl distribution.
Ewa M. Bednarz, Amanda C. Maycock, Peter Braesicke, Paul J. Telford, N. Luke Abraham, and John A. Pyle
Atmos. Chem. Phys., 19, 9833–9846, https://doi.org/10.5194/acp-19-9833-2019, https://doi.org/10.5194/acp-19-9833-2019, 2019
Short summary
Short summary
The atmospheric response to the amplitude of 11-year solar cycle in UM-UKCA is separated into the contributions from changes in direct radiative heating and photolysis rates, and the results compared with a control case with both effects included. We find that while the tropical responses are largely additive, this is not necessarily the case in the high latitudes. We suggest that solar-induced changes in ozone are important for modulating the SH dynamical response to the 11-year solar cycle.
Nils König, Peter Braesicke, and Thomas von Clarmann
Atmos. Meas. Tech., 12, 4113–4129, https://doi.org/10.5194/amt-12-4113-2019, https://doi.org/10.5194/amt-12-4113-2019, 2019
Short summary
Short summary
Inference of the tropopause from temperature profiles of finite vertical resolution entails an uncertainty of the tropopause altitude. We assess this effect by degrading the resolution of the sonde data. The tropopause altitude inferred from coarse grid profiles was found to be lower than that inferred from the original profiles for tropical and midlatitudinal radiosonde profiles. The mean displacement of the lapse rate tropopause inferred from a 3 km resolution profile is −400 m for Hilo.
Dan Chen, Cornelia Strube, Manfred Ern, Peter Preusse, and Martin Riese
Ann. Geophys., 37, 487–506, https://doi.org/10.5194/angeo-37-487-2019, https://doi.org/10.5194/angeo-37-487-2019, 2019
Short summary
Short summary
In this paper, for the first time, absolute gravity wave momentum flux (GWMF) on temporal scales from terannual variation up to solar cycle length is investigated. The systematic spectral analysis of SABER absolute GWMF is presented and physically interpreted. The various roles of filtering and oblique propagating are discussed, which is likely an important factor for MLT dynamics, and hence can be used as a stringent test bed of the reproduction of such features in global models.
Sören Johansson, Michelle L. Santee, Jens-Uwe Grooß, Michael Höpfner, Marleen Braun, Felix Friedl-Vallon, Farahnaz Khosrawi, Oliver Kirner, Erik Kretschmer, Hermann Oelhaf, Johannes Orphal, Björn-Martin Sinnhuber, Ines Tritscher, Jörn Ungermann, Kaley A. Walker, and Wolfgang Woiwode
Atmos. Chem. Phys., 19, 8311–8338, https://doi.org/10.5194/acp-19-8311-2019, https://doi.org/10.5194/acp-19-8311-2019, 2019
Short summary
Short summary
We present a study based on GLORIA aircraft and MLS/ACE-FTS/CALIOP satellite measurements during the Arctic winter 2015/16, which demonstrate (for the Arctic) unusual chlorine deactivation into HCl instead of ClONO2 due to low ozone abundances in the lowermost stratosphere, with a focus at 380 K potential temperature. The atmospheric models CLaMS and EMAC are evaluated, and measured ClONO2 is linked with transport and in situ deactivation in the lowermost stratosphere.
Sabine Robrecht, Bärbel Vogel, Jens-Uwe Grooß, Karen Rosenlof, Troy Thornberry, Andrew Rollins, Martina Krämer, Lance Christensen, and Rolf Müller
Atmos. Chem. Phys., 19, 5805–5833, https://doi.org/10.5194/acp-19-5805-2019, https://doi.org/10.5194/acp-19-5805-2019, 2019
Short summary
Short summary
The potential destruction of stratospheric ozone in the mid-latitudes has been discussed recently. We analysed this ozone loss mechanism and its sensitivities. In a certain temperature range, we found a threshold in water vapour, which has to be exceeded for ozone loss to occur. We show the dependence of this water vapour threshold on temperature, sulfate content and air composition. This study provides a basis to estimate the impact of potential sulphate geoengineering on stratospheric ozone.
Ewa M. Bednarz, Amanda C. Maycock, Paul J. Telford, Peter Braesicke, N. Luke Abraham, and John A. Pyle
Atmos. Chem. Phys., 19, 5209–5233, https://doi.org/10.5194/acp-19-5209-2019, https://doi.org/10.5194/acp-19-5209-2019, 2019
Short summary
Short summary
Following model improvements, the atmospheric response to the 11-year solar cycle forcing simulated in the UM-UKCA chemistry–climate model is discussed for the first time. In contrast to most previous studies in the literature, we compare the results diagnosed using both a composite and a MLR methodology, and we show that apparently different signals can be diagnosed in the troposphere. In addition, we look at the role of internal atmospheric variability for the detection of the solar response.
Corinna Kloss, Marc von Hobe, Michael Höpfner, Kaley A. Walker, Martin Riese, Jörn Ungermann, Birgit Hassler, Stefanie Kremser, and Greg E. Bodeker
Atmos. Meas. Tech., 12, 2129–2138, https://doi.org/10.5194/amt-12-2129-2019, https://doi.org/10.5194/amt-12-2129-2019, 2019
Short summary
Short summary
Are regional and seasonal averages from only a few satellite measurements, all aligned along a specific path, representative? Probably not. We present a method to adjust for the so-called
sampling biasand investigate its influence on derived long-term trends. The method is illustrated and validated for a long-lived trace gas (carbonyl sulfide), and it is shown that the influence of the sampling bias is too small to change scientific conclusions on long-term trends.
Rolf Sander, Andreas Baumgaertner, David Cabrera-Perez, Franziska Frank, Sergey Gromov, Jens-Uwe Grooß, Hartwig Harder, Vincent Huijnen, Patrick Jöckel, Vlassis A. Karydis, Kyle E. Niemeyer, Andrea Pozzer, Hella Riede, Martin G. Schultz, Domenico Taraborrelli, and Sebastian Tauer
Geosci. Model Dev., 12, 1365–1385, https://doi.org/10.5194/gmd-12-1365-2019, https://doi.org/10.5194/gmd-12-1365-2019, 2019
Short summary
Short summary
We present the atmospheric chemistry box model CAABA/MECCA which
now includes a number of new features: skeletal mechanism
reduction, the MOM chemical mechanism for volatile organic
compounds, an option to include reactions from the Master
Chemical Mechanism (MCM) and other chemical mechanisms, updated
isotope tagging, improved and new photolysis modules, and the new
feature of coexisting multiple chemistry mechanisms.
CAABA/MECCA is a community model published under the GPL.
Lukas Krasauskas, Jörn Ungermann, Stefan Ensmann, Isabell Krisch, Erik Kretschmer, Peter Preusse, and Martin Riese
Atmos. Meas. Tech., 12, 853–872, https://doi.org/10.5194/amt-12-853-2019, https://doi.org/10.5194/amt-12-853-2019, 2019
Short summary
Short summary
Many limb sounder measurements from the same atmospheric region taken at different angles can be combined into a 3-D tomographic image of the atmosphere. Mathematically, this is a complex, computationally expensive, underdetermined problem that needs additional constraints (regularisation). We introduce an improved regularisation method based on physical properties of the atmosphere with a new irregular grid implementation. Simulated data tests show improved results and lower computational cost.
Winfried Hoke, Tina Swierczynski, Peter Braesicke, Karin Lochte, Len Shaffrey, Martin Drews, Hilppa Gregow, Ralf Ludwig, Jan Even Øie Nilsen, Elisa Palazzi, Gianmaria Sannino, Lars Henrik Smedsrud, and ECRA network
Adv. Geosci., 46, 1–10, https://doi.org/10.5194/adgeo-46-1-2019, https://doi.org/10.5194/adgeo-46-1-2019, 2019
Short summary
Short summary
The European Climate Research Alliance is a bottom-up association of European research institutions helping to facilitate the development of climate change research, combining the capacities of national research institutions and inducing closer ties between existing national research initiatives, projects and infrastructures. This article briefly introduces the network's structure and organisation, as well as project management issues and prospects.
Ines Tritscher, Jens-Uwe Grooß, Reinhold Spang, Michael C. Pitts, Lamont R. Poole, Rolf Müller, and Martin Riese
Atmos. Chem. Phys., 19, 543–563, https://doi.org/10.5194/acp-19-543-2019, https://doi.org/10.5194/acp-19-543-2019, 2019
Short summary
Short summary
We present Lagrangian simulations of polar stratospheric clouds (PSCs) for the Arctic winter 2009/2010 and the Antarctic winter 2011 using the Chemical Lagrangian Model of the Stratosphere (CLaMS). The paper comprises a detailed model description with ice PSCs and related dehydration being the focus of this study. Comparisons between our simulations and observations from different satellites on season-long and vortex-wide scales as well as for single PSC events show an overall good agreement.
Johannes Eckstein, Roland Ruhnke, Stephan Pfahl, Emanuel Christner, Christopher Diekmann, Christoph Dyroff, Daniel Reinert, Daniel Rieger, Matthias Schneider, Jennifer Schröter, Andreas Zahn, and Peter Braesicke
Geosci. Model Dev., 11, 5113–5133, https://doi.org/10.5194/gmd-11-5113-2018, https://doi.org/10.5194/gmd-11-5113-2018, 2018
Short summary
Short summary
We present ICON-ART-Iso, an extension to the global circulation model ICON, which allows for the simulation of the stable isotopologues of water. The main advantage over other isotope-enabled models is its flexible design with respect to the number of tracers simulated. We compare the results of several simulations to measurements of different scale. ICON-ART-Iso is able to reasonably reproduce the measurements. It is a promising tool to aid in the investigation of the atmospheric water cycle.
Christiane Voigt, Andreas Dörnbrack, Martin Wirth, Silke M. Groß, Michael C. Pitts, Lamont R. Poole, Robert Baumann, Benedikt Ehard, Björn-Martin Sinnhuber, Wolfgang Woiwode, and Hermann Oelhaf
Atmos. Chem. Phys., 18, 15623–15641, https://doi.org/10.5194/acp-18-15623-2018, https://doi.org/10.5194/acp-18-15623-2018, 2018
Short summary
Short summary
The 2015–2016 stratospheric winter was the coldest in the 36-year climatological data record. The extreme conditions promoted the formation of persistent Arctic polar stratospheric ice clouds. An extended ice PSC detected by airborne lidar in January 2016 shows a second mode with higher particle depolarization ratios. Back-trajectories from the high-depol ice matched to CALIOP PSC curtains provide evidence for ice nucleation on NAT. The novel data consolidate our understanding of PSC formation.
Wolfgang Woiwode, Andreas Dörnbrack, Martina Bramberger, Felix Friedl-Vallon, Florian Haenel, Michael Höpfner, Sören Johansson, Erik Kretschmer, Isabell Krisch, Thomas Latzko, Hermann Oelhaf, Johannes Orphal, Peter Preusse, Björn-Martin Sinnhuber, and Jörn Ungermann
Atmos. Chem. Phys., 18, 15643–15667, https://doi.org/10.5194/acp-18-15643-2018, https://doi.org/10.5194/acp-18-15643-2018, 2018
Short summary
Short summary
GLORIA observations during two crossings of the polar front jet stream resolve the fine mesoscale structure of a tropopause fold in high detail. Tracer–tracer correlations of H2O and O3 are presented as a function of potential temperature and reveal an active mixing region. Our study confirms conceptual models of tropopause folds, validates the high quality of ECMWF IFS forecasts, and suggests that mountain waves are capable of modulating exchange processes in the vicinity of tropopause folds.
Thomas von Clarmann and Sören Johansson
Atmos. Chem. Phys., 18, 15363–15386, https://doi.org/10.5194/acp-18-15363-2018, https://doi.org/10.5194/acp-18-15363-2018, 2018
Short summary
Short summary
This review article compiles the characteristics of the gas chlorine nitrate and discusses its role in atmospheric chemistry. Chlorine nitrate is a reservoir of both stratospheric chlorine and nitrogen. Formation and sink processes are discussed, as well as spectral features and spectroscopic studies. Remote sensing, fluorescence, and mass spectroscopic measurement techniques are introduced, and global distributions and the annual cycle are discussed in the context of chlorine de-/activation.
Michael Höpfner, Terry Deshler, Michael Pitts, Lamont Poole, Reinhold Spang, Gabriele Stiller, and Thomas von Clarmann
Atmos. Meas. Tech., 11, 5901–5923, https://doi.org/10.5194/amt-11-5901-2018, https://doi.org/10.5194/amt-11-5901-2018, 2018
Short summary
Short summary
Polar stratospheric clouds (PSC) have major relevance to the processes leading to polar ozone depletion. A good understanding of these particles is a prerequisite to predict their role in a changing climate. We present the first global set of PSC volume density profiles derived from the MIPAS satellite measurements covering the entire mission period between 2002 and 2012. A comparison to CALIOP lidar measurements is provided. The dataset can serve as a basis for evaluation of atmospheric models.
Christiane Schulz, Johannes Schneider, Bruna Amorim Holanda, Oliver Appel, Anja Costa, Suzane S. de Sá, Volker Dreiling, Daniel Fütterer, Tina Jurkat-Witschas, Thomas Klimach, Christoph Knote, Martina Krämer, Scot T. Martin, Stephan Mertes, Mira L. Pöhlker, Daniel Sauer, Christiane Voigt, Adrian Walser, Bernadett Weinzierl, Helmut Ziereis, Martin Zöger, Meinrat O. Andreae, Paulo Artaxo, Luiz A. T. Machado, Ulrich Pöschl, Manfred Wendisch, and Stephan Borrmann
Atmos. Chem. Phys., 18, 14979–15001, https://doi.org/10.5194/acp-18-14979-2018, https://doi.org/10.5194/acp-18-14979-2018, 2018
Short summary
Short summary
Aerosol chemical composition measurements in the tropical upper troposphere over the Amazon region show that 78 % of the aerosol in the upper troposphere consists of organic matter. Up to 20 % of the organic aerosol can be attributed to isoprene epoxydiol secondary organic aerosol (IEPOX-SOA). Furthermore, organic nitrates were identified, suggesting a connection to the IEPOX-SOA formation.
Jennifer Schröter, Daniel Rieger, Christian Stassen, Heike Vogel, Michael Weimer, Sven Werchner, Jochen Förstner, Florian Prill, Daniel Reinert, Günther Zängl, Marco Giorgetta, Roland Ruhnke, Bernhard Vogel, and Peter Braesicke
Geosci. Model Dev., 11, 4043–4068, https://doi.org/10.5194/gmd-11-4043-2018, https://doi.org/10.5194/gmd-11-4043-2018, 2018
Short summary
Short summary
In this paper, we introduce the most up-to-date version of the flexible tracer framework for the ICOsahedral Nonhydrostatic model with
Aerosols and Reactive Trace gases (ICON-ART).
We performed multiple simulations using different ICON physics configurations for weather and climate with ART.
The flexible tracer framework within ICON-ART 2.1 suits the demands of a large variety of different applications ranging from numerical weather prediction to climate integrations.
Christian Borger, Matthias Schneider, Benjamin Ertl, Frank Hase, Omaira E. García, Michael Sommer, Michael Höpfner, Stephen A. Tjemkes, and Xavier Calbet
Atmos. Meas. Tech., 11, 4981–5006, https://doi.org/10.5194/amt-11-4981-2018, https://doi.org/10.5194/amt-11-4981-2018, 2018
Short summary
Short summary
In this paper MUSICA IASI tropospheric water vapour profile retrievals are evaluated by performing theoretical error assessments and comparisons to GRUAN radiosonde measurements. We show that the vertical water vapour distribution is well captured from 1 km above the ground up to the tropopause. Largest error sources are unrecognized clouds and uncertainties in atmospheric temperature, which can reach about 25 %.
Franz Slemr, Andreas Weigelt, Ralf Ebinghaus, Johannes Bieser, Carl A. M. Brenninkmeijer, Armin Rauthe-Schöch, Markus Hermann, Bengt G. Martinsson, Peter van Velthoven, Harald Bönisch, Marco Neumaier, Andreas Zahn, and Helmut Ziereis
Atmos. Chem. Phys., 18, 12329–12343, https://doi.org/10.5194/acp-18-12329-2018, https://doi.org/10.5194/acp-18-12329-2018, 2018
Short summary
Short summary
Total and elemental mercury were measured in the upper troposphere and lower stratosphere onboard a passenger aircraft. Their concentrations in the upper troposphere were comparable implying low concentrations of oxidized mercury in this region. Large scale seasonally dependent influence of emissions from biomass burning was also observed. Their distributions in the lower stratosphere implies a long stratospheric lifetime, which precludes significant mercury oxidation by ozone.
Sören Johansson, Wolfgang Woiwode, Michael Höpfner, Felix Friedl-Vallon, Anne Kleinert, Erik Kretschmer, Thomas Latzko, Johannes Orphal, Peter Preusse, Jörn Ungermann, Michelle L. Santee, Tina Jurkat-Witschas, Andreas Marsing, Christiane Voigt, Andreas Giez, Martina Krämer, Christian Rolf, Andreas Zahn, Andreas Engel, Björn-Martin Sinnhuber, and Hermann Oelhaf
Atmos. Meas. Tech., 11, 4737–4756, https://doi.org/10.5194/amt-11-4737-2018, https://doi.org/10.5194/amt-11-4737-2018, 2018
Short summary
Short summary
We present two-dimensional cross sections of temperature, HNO3, O3, ClONO2, H2O and CFC-12 from measurements of the GLORIA infrared limb imager during the POLSTRACC/GW-LCYCLE/SALSA aircraft campaigns in the Arctic winter 2015/2016. GLORIA sounded the atmosphere between 5 and 14 km with vertical resolutions of 0.4–1 km. Estimated errors are in the range of 1–2 K (temperature) and 10 %–20 % (trace gases). Comparisons to in situ instruments onboard the aircraft and to Aura/MLS are shown.
Isabell Krisch, Jörn Ungermann, Peter Preusse, Erik Kretschmer, and Martin Riese
Atmos. Meas. Tech., 11, 4327–4344, https://doi.org/10.5194/amt-11-4327-2018, https://doi.org/10.5194/amt-11-4327-2018, 2018
Short summary
Short summary
Three-dimensional temperature measurements of the atmosphere are required to address current research questions concerning the propagation of gravity waves. Limited angle tomography (LAT) with measurements from an airborne infrared limb imager can provide such 3-D temperature measurements. Wave parameters derived from such LAT measurements achieve an accuracy similar to that derived from full angle tomography, if the orientation of the flight path is optimized with respect to the gravity wave.
Anne Kleinert, Isabell Krisch, Jörn Ungermann, Albert Adibekyan, Berndt Gutschwager, and Christian Monte
Atmos. Meas. Tech., 11, 3871–3882, https://doi.org/10.5194/amt-11-3871-2018, https://doi.org/10.5194/amt-11-3871-2018, 2018
Short summary
Short summary
This study investigates the required accuracy of radiometric calibration sources for remote sensing instruments to properly resolve decadal trends of climate relevant trace species like ozone, water vapor and temperature. The required temperature knowledge of the calibration source is in the order of 100 mK. This is demonstrated by a Monte Carlo simulation. The results are confirmed using real measurements acquired by the GLORIA instrument.
Farahnaz Khosrawi, Oliver Kirner, Gabriele Stiller, Michael Höpfner, Michelle L. Santee, Sylvia Kellmann, and Peter Braesicke
Atmos. Chem. Phys., 18, 8873–8892, https://doi.org/10.5194/acp-18-8873-2018, https://doi.org/10.5194/acp-18-8873-2018, 2018
Short summary
Short summary
An extensive assessment of the performance of the chemistry–climate model EMAC is given for Arctic winters 2009/2010 and 2010/2011. The EMAC simulations are compared to satellite observations. The comparisons between EMAC simulations and satellite observations show that model and measurements compare well for these two Arctic winters. However, differences between model and observations are found that need improvements in the model in the future.
Jens-Uwe Grooß, Rolf Müller, Reinhold Spang, Ines Tritscher, Tobias Wegner, Martyn P. Chipperfield, Wuhu Feng, Douglas E. Kinnison, and Sasha Madronich
Atmos. Chem. Phys., 18, 8647–8666, https://doi.org/10.5194/acp-18-8647-2018, https://doi.org/10.5194/acp-18-8647-2018, 2018
Short summary
Short summary
We investigate a discrepancy between model simulations and observations of HCl in the dark polar stratosphere. In early winter, the less-well-studied period of the onset of chlorine activation, observations show a much faster depletion of HCl than simulations of three models. This points to some unknown process that is currently not represented in the models. Various hypotheses for potential causes are investigated that partly reduce the discrepancy. The impact on polar ozone depletion is low.
Sandip S. Dhomse, Douglas Kinnison, Martyn P. Chipperfield, Ross J. Salawitch, Irene Cionni, Michaela I. Hegglin, N. Luke Abraham, Hideharu Akiyoshi, Alex T. Archibald, Ewa M. Bednarz, Slimane Bekki, Peter Braesicke, Neal Butchart, Martin Dameris, Makoto Deushi, Stacey Frith, Steven C. Hardiman, Birgit Hassler, Larry W. Horowitz, Rong-Ming Hu, Patrick Jöckel, Beatrice Josse, Oliver Kirner, Stefanie Kremser, Ulrike Langematz, Jared Lewis, Marion Marchand, Meiyun Lin, Eva Mancini, Virginie Marécal, Martine Michou, Olaf Morgenstern, Fiona M. O'Connor, Luke Oman, Giovanni Pitari, David A. Plummer, John A. Pyle, Laura E. Revell, Eugene Rozanov, Robyn Schofield, Andrea Stenke, Kane Stone, Kengo Sudo, Simone Tilmes, Daniele Visioni, Yousuke Yamashita, and Guang Zeng
Atmos. Chem. Phys., 18, 8409–8438, https://doi.org/10.5194/acp-18-8409-2018, https://doi.org/10.5194/acp-18-8409-2018, 2018
Short summary
Short summary
We analyse simulations from the Chemistry-Climate Model Initiative (CCMI) to estimate the return dates of the stratospheric ozone layer from depletion by anthropogenic chlorine and bromine. The simulations from 20 models project that global column ozone will return to 1980 values in 2047 (uncertainty range 2042–2052). Return dates in other regions vary depending on factors related to climate change and importance of chlorine and bromine. Column ozone in the tropics may continue to decline.
Rui Song, Martin Kaufmann, Manfred Ern, Jörn Ungermann, Guang Liu, and Martin Riese
Atmos. Meas. Tech., 11, 3161–3175, https://doi.org/10.5194/amt-11-3161-2018, https://doi.org/10.5194/amt-11-3161-2018, 2018
Short summary
Short summary
In this paper, we propose a new observation strategy, called
sweep mode, for a real three-dimensional tomographic reconstruction of gravity waves in the mesosphere and lower thermosphere by modifying the observation geometry of conventional limb-sounding measurements. It enhances the horizontal resolution that typical limb sounders can achieve while at the same time retaining the good vertical resolution they have.
Jens Krause, Peter Hoor, Andreas Engel, Felix Plöger, Jens-Uwe Grooß, Harald Bönisch, Timo Keber, Björn-Martin Sinnhuber, Wolfgang Woiwode, and Hermann Oelhaf
Atmos. Chem. Phys., 18, 6057–6073, https://doi.org/10.5194/acp-18-6057-2018, https://doi.org/10.5194/acp-18-6057-2018, 2018
Short summary
Short summary
We present tracer measurements of CO and N2O measured during the POLSTRACC aircraft campaign in winter 2015–2016. We found enhanced CO values relative to N2O in the polar lower stratosphere in addition to the ageing of this region during winter. By using model simulations it was possible to link this enhancement to an increased mixing of the tropical tropopause. We thus conclude that the polar lower stratosphere in late winter is strongly influenced by quasi-isentropic mixing from the tropics.
Manfred Ern, Quang Thai Trinh, Peter Preusse, John C. Gille, Martin G. Mlynczak, James M. Russell III, and Martin Riese
Earth Syst. Sci. Data, 10, 857–892, https://doi.org/10.5194/essd-10-857-2018, https://doi.org/10.5194/essd-10-857-2018, 2018
Short summary
Short summary
The gravity wave climatology based on atmospheric infrared limb emissions observed by satellite (GRACILE) is a global data set of gravity wave (GW) distributions in the stratosphere and the mesosphere observed by the infrared limb sounding satellite instruments HIRDLS and SABER. Typical distributions of multiple GW parameters are provided. Possible applications are scientific studies, comparison with other observations, or comparison with resolved or parametrized GW distributions in models.
Klaus-Dirk Gottschaldt, Hans Schlager, Robert Baumann, Duy Sinh Cai, Veronika Eyring, Phoebe Graf, Volker Grewe, Patrick Jöckel, Tina Jurkat-Witschas, Christiane Voigt, Andreas Zahn, and Helmut Ziereis
Atmos. Chem. Phys., 18, 5655–5675, https://doi.org/10.5194/acp-18-5655-2018, https://doi.org/10.5194/acp-18-5655-2018, 2018
Short summary
Short summary
This study places aircraft trace gas measurements from within the Asian summer monsoon anticyclone into the context of regional, intra- and interannual variability. We find that the processes reflected in the measurements are present throughout multiple simulated monsoon seasons. Dynamical instabilities, photochemical ozone production, lightning and entrainments from the lower troposphere and from the tropopause region determine the distinct composition of the anticyclone and its outflow.
Reinhold Spang, Lars Hoffmann, Rolf Müller, Jens-Uwe Grooß, Ines Tritscher, Michael Höpfner, Michael Pitts, Andrew Orr, and Martin Riese
Atmos. Chem. Phys., 18, 5089–5113, https://doi.org/10.5194/acp-18-5089-2018, https://doi.org/10.5194/acp-18-5089-2018, 2018
Short summary
Short summary
This paper represents an unprecedented pole-covering day- and nighttime climatology of the polar stratospheric clouds (PSCs) based on satellite measurements, their spatial distribution, and composition of different particle types. The climatology has a high potential for the validation and improvement of PSC schemes in chemical transport and chemistry–climate models, which is important for a better prediction of future polar ozone loss in a changing climate.
Stefanie Falk and Björn-Martin Sinnhuber
Geosci. Model Dev., 11, 1115–1131, https://doi.org/10.5194/gmd-11-1115-2018, https://doi.org/10.5194/gmd-11-1115-2018, 2018
Short summary
Short summary
Ozone depletion events (ODEs) in the polar boundary layer are observed frequently in spring. ODEs serve as a source of tropospheric BrO at high latitudes. A treatment of bromine release and recycling on sea-ice- and snow-covered surfaces is implemented in global chemistry–climate model EMAC based on a scheme of Toyota et al. (2011). Many aspects of bromine enhancement and associated ODEs are reproduced in both polar regions. Further bromine release mechanisms can now be tested in a global model.
Quang Thai Trinh, Manfred Ern, Eelco Doornbos, Peter Preusse, and Martin Riese
Ann. Geophys., 36, 425–444, https://doi.org/10.5194/angeo-36-425-2018, https://doi.org/10.5194/angeo-36-425-2018, 2018
Neal Butchart, James A. Anstey, Kevin Hamilton, Scott Osprey, Charles McLandress, Andrew C. Bushell, Yoshio Kawatani, Young-Ha Kim, Francois Lott, John Scinocca, Timothy N. Stockdale, Martin Andrews, Omar Bellprat, Peter Braesicke, Chiara Cagnazzo, Chih-Chieh Chen, Hye-Yeong Chun, Mikhail Dobrynin, Rolando R. Garcia, Javier Garcia-Serrano, Lesley J. Gray, Laura Holt, Tobias Kerzenmacher, Hiroaki Naoe, Holger Pohlmann, Jadwiga H. Richter, Adam A. Scaife, Verena Schenzinger, Federico Serva, Stefan Versick, Shingo Watanabe, Kohei Yoshida, and Seiji Yukimoto
Geosci. Model Dev., 11, 1009–1032, https://doi.org/10.5194/gmd-11-1009-2018, https://doi.org/10.5194/gmd-11-1009-2018, 2018
Short summary
Short summary
This paper documents the numerical experiments to be used in phase 1 of the Stratosphere–troposphere Processes And their Role in Climate (SPARC) Quasi-Biennial Oscillation initiative (QBOi), which was set up to improve the representation of the QBO and tropical stratospheric variability in global climate models.
Rolf Müller, Jens-Uwe Grooß, Abdul Mannan Zafar, Sabine Robrecht, and Ralph Lehmann
Atmos. Chem. Phys., 18, 2985–2997, https://doi.org/10.5194/acp-18-2985-2018, https://doi.org/10.5194/acp-18-2985-2018, 2018
Short summary
Short summary
This paper revisits the chemistry leading to strong ozone depletion in the Antarctic. We focus on the heart of the ozone layer in the lowermost stratosphere in the core of the vortex. We argue that chemical cycles (referred to as HCl null cycles) that have hitherto been largely neglected counteract the deactivation of chlorine and are therefore key to ozone depletion in the core of the Antarctic vortex. The key process to full activation of chlorine is the photolysis of formaldehyde.
Annika Günther, Michael Höpfner, Björn-Martin Sinnhuber, Sabine Griessbach, Terry Deshler, Thomas von Clarmann, and Gabriele Stiller
Atmos. Chem. Phys., 18, 1217–1239, https://doi.org/10.5194/acp-18-1217-2018, https://doi.org/10.5194/acp-18-1217-2018, 2018
Short summary
Short summary
Satellite-borne data of sulfur dioxide and a new data set of sulfate aerosol volume densities, as retrieved from MIPAS measurements, are studied in the upper-troposphere–lower-stratosphere region. General patterns of enhanced aerosol are in agreement with SO2. Via chemical transport model simulations for two volcanic eruptions in the Northern Hemisphere midlatitudes, we show that the volcanic enhancements in MIPAS SO2 and sulfate aerosol are consistent in terms of mass and transport patterns.
Meinrat O. Andreae, Armin Afchine, Rachel Albrecht, Bruna Amorim Holanda, Paulo Artaxo, Henrique M. J. Barbosa, Stephan Borrmann, Micael A. Cecchini, Anja Costa, Maximilian Dollner, Daniel Fütterer, Emma Järvinen, Tina Jurkat, Thomas Klimach, Tobias Konemann, Christoph Knote, Martina Krämer, Trismono Krisna, Luiz A. T. Machado, Stephan Mertes, Andreas Minikin, Christopher Pöhlker, Mira L. Pöhlker, Ulrich Pöschl, Daniel Rosenfeld, Daniel Sauer, Hans Schlager, Martin Schnaiter, Johannes Schneider, Christiane Schulz, Antonio Spanu, Vinicius B. Sperling, Christiane Voigt, Adrian Walser, Jian Wang, Bernadett Weinzierl, Manfred Wendisch, and Helmut Ziereis
Atmos. Chem. Phys., 18, 921–961, https://doi.org/10.5194/acp-18-921-2018, https://doi.org/10.5194/acp-18-921-2018, 2018
Short summary
Short summary
We made airborne measurements of aerosol particle concentrations and properties over the Amazon Basin. We found extremely high concentrations of very small particles in the region between 8 and 14 km altitude all across the basin, which had been recently formed by gas-to-particle conversion at these altitudes. This makes the upper troposphere a very important source region of atmospheric particles with significant implications for the Earth's climate system.
Isabell Krisch, Peter Preusse, Jörn Ungermann, Andreas Dörnbrack, Stephen D. Eckermann, Manfred Ern, Felix Friedl-Vallon, Martin Kaufmann, Hermann Oelhaf, Markus Rapp, Cornelia Strube, and Martin Riese
Atmos. Chem. Phys., 17, 14937–14953, https://doi.org/10.5194/acp-17-14937-2017, https://doi.org/10.5194/acp-17-14937-2017, 2017
Short summary
Short summary
Using the infrared limb imager GLORIA, the 3-D structure of mesoscale gravity waves in the lower stratosphere was measured for the first time, allowing for a complete 3-D characterization of the waves. This enables the precise determination of the sources of the waves in the mountain regions of Iceland with backward ray tracing. Forward ray tracing shows oblique propagation, an effect generally neglected in global atmospheric models.
Gerald Wetzel, Hermann Oelhaf, Michael Höpfner, Felix Friedl-Vallon, Andreas Ebersoldt, Thomas Gulde, Sebastian Kazarski, Oliver Kirner, Anne Kleinert, Guido Maucher, Hans Nordmeyer, Johannes Orphal, Roland Ruhnke, and Björn-Martin Sinnhuber
Atmos. Chem. Phys., 17, 14631–14643, https://doi.org/10.5194/acp-17-14631-2017, https://doi.org/10.5194/acp-17-14631-2017, 2017
Short summary
Short summary
We report the first stratospheric measurements of the diurnal variation in the inorganic bromine (Bry) reservoir species BrONO2 around sunrise and sunset. The main goal of these observations was to check the current understanding of stratospheric bromine chemistry and to estimate the amount of lower-stratospheric Bry. The calculated temporal variation in BrONO2 largely reproduces the balloon-borne observations. The amount of Bry was estimated to be about 21–25 pptv in the lower stratosphere.
Rui Song, Martin Kaufmann, Jörn Ungermann, Manfred Ern, Guang Liu, and Martin Riese
Atmos. Meas. Tech., 10, 4601–4612, https://doi.org/10.5194/amt-10-4601-2017, https://doi.org/10.5194/amt-10-4601-2017, 2017
Short summary
Short summary
Gravity waves (GWs) play an important role in atmospheric dynamics. In this work, we propose a new observation strategy for GWs in the mesopause region by combining limb and sub-limb satellite-borne remote sensing measurements for improving the spatial resolution of temperatures that are retrieved from
atmospheric soundings. It shows that one major advantage of this observation strategy is that much smaller-scale GWs can be observed.
Tilman Hüneke, Oliver-Alex Aderhold, Jannik Bounin, Marcel Dorf, Eric Gentry, Katja Grossmann, Jens-Uwe Grooß, Peter Hoor, Patrick Jöckel, Mareike Kenntner, Marvin Knapp, Matthias Knecht, Dominique Lörks, Sabrina Ludmann, Sigrun Matthes, Rasmus Raecke, Marcel Reichert, Jannis Weimar, Bodo Werner, Andreas Zahn, Helmut Ziereis, and Klaus Pfeilsticker
Atmos. Meas. Tech., 10, 4209–4234, https://doi.org/10.5194/amt-10-4209-2017, https://doi.org/10.5194/amt-10-4209-2017, 2017
Short summary
Short summary
This paper describes a novel instrument for the aircraft-borne remote sensing of trace gases and liquid and solid water. Until recently, such measurements could only be evaluated under clear-sky conditions. We present a characterization and error assessment of the novel "scaling method", which allows for the retrieval of absolute trace gas concentrations under all sky conditions, significantly expanding the applicability of such measurements to study atmospheric photochemistry.
Farahnaz Khosrawi, Oliver Kirner, Björn-Martin Sinnhuber, Sören Johansson, Michael Höpfner, Michelle L. Santee, Lucien Froidevaux, Jörn Ungermann, Roland Ruhnke, Wolfgang Woiwode, Hermann Oelhaf, and Peter Braesicke
Atmos. Chem. Phys., 17, 12893–12910, https://doi.org/10.5194/acp-17-12893-2017, https://doi.org/10.5194/acp-17-12893-2017, 2017
Short summary
Short summary
The 2015/2016 Arctic winter was one of the coldest winters in recent years, allowing extensive PSC formation and chlorine activation. Model simulations of the 2015/2016 Arctic winter were performed with the atmospheric chemistry–climate model ECHAM5/MESSy Atmospheric Chemistry (EMAC). We find that ozone loss was quite strong but not as strong as in 2010/2011; denitrification and dehydration were so far the strongest observed in the Arctic stratosphere in at least the past 10 years.
Stefanie Falk, Björn-Martin Sinnhuber, Gisèle Krysztofiak, Patrick Jöckel, Phoebe Graf, and Sinikka T. Lennartz
Atmos. Chem. Phys., 17, 11313–11329, https://doi.org/10.5194/acp-17-11313-2017, https://doi.org/10.5194/acp-17-11313-2017, 2017
Short summary
Short summary
Brominated very short-lived source gases (VSLS) contribute significantly to the tropospheric and stratospheric bromine loading. We find an increase of future ocean–atmosphere flux of brominated VSLS of 8–10 % compared to present day. A decrease in the tropospheric mixing ratios of VSLS and an increase in the lower stratosphere are attributed to changes in atmospheric chemistry and transport. Bromine impact on stratospheric ozone at the end of the 21st century is reduced compared to present day.
Michael Weimer, Jennifer Schröter, Johannes Eckstein, Konrad Deetz, Marco Neumaier, Garlich Fischbeck, Lu Hu, Dylan B. Millet, Daniel Rieger, Heike Vogel, Bernhard Vogel, Thomas Reddmann, Oliver Kirner, Roland Ruhnke, and Peter Braesicke
Geosci. Model Dev., 10, 2471–2494, https://doi.org/10.5194/gmd-10-2471-2017, https://doi.org/10.5194/gmd-10-2471-2017, 2017
Short summary
Short summary
In this paper, the recently developed module for trace gas emissions in the online coupled modelling framework ICON-ART for atmospheric chemistry is presented. Algorithms for offline and online calculation of the emissions are described. The module is validated with ground-based as well as airborne measurements of acetone. It is shown that the module performs well and allows the simulation of annual cycles of emission-driven trace gases.
Klaus-D. Gottschaldt, Hans Schlager, Robert Baumann, Heiko Bozem, Veronika Eyring, Peter Hoor, Patrick Jöckel, Tina Jurkat, Christiane Voigt, Andreas Zahn, and Helmut Ziereis
Atmos. Chem. Phys., 17, 6091–6111, https://doi.org/10.5194/acp-17-6091-2017, https://doi.org/10.5194/acp-17-6091-2017, 2017
Short summary
Short summary
We present upper-tropospheric trace gas measurements in the Asian summer monsoon anticyclone, obtained with the HALO research aircraft in September 2012. The anticyclone is one of the largest atmospheric features on Earth, but many aspects of it are not well understood. With the help of model simulations we find that entrainments from the tropopause region and the lower troposphere, combined with photochemistry and dynamical instabilities, can explain the observations.
Annika Vogel, Jörn Ungermann, and Hendrik Elbern
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-308, https://doi.org/10.5194/acp-2017-308, 2017
Revised manuscript has not been submitted
Short summary
Short summary
The potential for chemical state analysis at tropopause heights was investigated by combining airborne tomographic observations with a chemical data-assimilation system in form of a case study. Related developments include the use of potential vorticity for ozone initialization and flow-dependent horizontal correlations. This setup demonstrated substantial improvements in terms of spatial extend and alignment of atmospheric structures down to filamentary foldings along airmass boundaries.
Johannes Eckstein, Roland Ruhnke, Andreas Zahn, Marco Neumaier, Ole Kirner, and Peter Braesicke
Atmos. Chem. Phys., 17, 2775–2794, https://doi.org/10.5194/acp-17-2775-2017, https://doi.org/10.5194/acp-17-2775-2017, 2017
Short summary
Short summary
Data on atmospheric trace gases have been collected with instruments on-board a commercial airliner for more than 10 years in the CARIBIC project. We investigate which species in the dataset can be used for a representative climatology, by comparing data from the chemistry–climate model EMAC along the flight paths to a larger set of model data. We find that long-lived species are captured quite well by the CARIBIC sample while this is not the case for more variable, shorter-lived species.
Norbert Glatthor, Michael Höpfner, Adrian Leyser, Gabriele P. Stiller, Thomas von Clarmann, Udo Grabowski, Sylvia Kellmann, Andrea Linden, Björn-Martin Sinnhuber, Gisèle Krysztofiak, and Kaley A. Walker
Atmos. Chem. Phys., 17, 2631–2652, https://doi.org/10.5194/acp-17-2631-2017, https://doi.org/10.5194/acp-17-2631-2017, 2017
Short summary
Short summary
To date, information on the global distribution of atmospheric carbonyl sulfide (OCS) is still rather sparse.
However, detailed knowledge of the OCS distribution is of scientific interest, because this trace gas is on one of the major sources of atmospheric sulfur, which is a prerequisite of the stratospheric aerosol layer. Under this aspect we present a comprehensive space-borne data set of global OCS concentrations covering the period from June 2002 to April 2012.
Ulrike Langematz, Franziska Schmidt, Markus Kunze, Gregory E. Bodeker, and Peter Braesicke
Atmos. Chem. Phys., 16, 15619–15627, https://doi.org/10.5194/acp-16-15619-2016, https://doi.org/10.5194/acp-16-15619-2016, 2016
Short summary
Short summary
The extent of anthropogenically driven Antarctic ozone depletion prior to 1980 is examined using transient chemistry–climate model simulations from 1960 to 2000 with prescribed changes of ozone depleting substances in conjunction with observations. All models show a long-term, halogen-induced negative trend in Antarctic ozone from 1960 to 1980, ranging between 26 and 50 % of the total anthropogenic ozone depletion from 1960 to 2000. A stronger ozone decline of 56 % was estimated from observation.
Mingjin Tang, James Keeble, Paul J. Telford, Francis D. Pope, Peter Braesicke, Paul T. Griffiths, N. Luke Abraham, James McGregor, I. Matt Watson, R. Anthony Cox, John A. Pyle, and Markus Kalberer
Atmos. Chem. Phys., 16, 15397–15412, https://doi.org/10.5194/acp-16-15397-2016, https://doi.org/10.5194/acp-16-15397-2016, 2016
Short summary
Short summary
We have investigated for the first time the heterogeneous hydrolysis of ClONO2 on TiO2 and SiO2 aerosol particles at room temperature and at different relative humidities (RHs), using an aerosol flow tube. The kinetic data reported in our current and previous studies have been included in the UKCA chemistry–climate model to assess the impact of TiO2 injection on stratospheric chemistry and stratospheric ozone in particular.
Christiane Voigt, Andreas Dörnbrack, Martin Wirth, Silke M. Groß, Robert Baumann, Benedikt Ehard, Michael C. Pitts, Lamont R. Poole, Björn-Martin Sinnhuber, and Hermann Oelhaf
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2016-1082, https://doi.org/10.5194/acp-2016-1082, 2016
Revised manuscript not accepted
Short summary
Short summary
The letter describes unprecedented observations of widespread and persistent polar stratospheric ice clouds (ice PSCs) in the exceptionally cold Arctic stratospheric winter 2015/16. The unique observations are of global relevance because trends in Arctic ozone loss and in polar temperatures are highly uncertain. The new observations at cold conditions serve to enhance our knowledge on ice PSC formation, Arctic ozone loss and polar stratrospheric temperatures in a changing climate.
Bärbel Vogel, Gebhard Günther, Rolf Müller, Jens-Uwe Grooß, Armin Afchine, Heiko Bozem, Peter Hoor, Martina Krämer, Stefan Müller, Martin Riese, Christian Rolf, Nicole Spelten, Gabriele P. Stiller, Jörn Ungermann, and Andreas Zahn
Atmos. Chem. Phys., 16, 15301–15325, https://doi.org/10.5194/acp-16-15301-2016, https://doi.org/10.5194/acp-16-15301-2016, 2016
Short summary
Short summary
The identification of transport pathways from the Asian monsoon anticyclone into the lower stratosphere is unclear. Global simulations with the CLaMS model demonstrate that source regions in Asia and in the Pacific Ocean have a significant impact on the chemical composition of the lower stratosphere of the Northern Hemisphere by flooding the extratropical lower stratosphere with young moist air masses. Two main horizontal transport pathways from the Asian monsoon anticyclone are identified.
Elisa Castelli, Marco Ridolfi, Massimo Carlotti, Björn-Martin Sinnhuber, Oliver Kirner, Michael Kiefer, and Bianca Maria Dinelli
Atmos. Meas. Tech., 9, 5499–5508, https://doi.org/10.5194/amt-9-5499-2016, https://doi.org/10.5194/amt-9-5499-2016, 2016
Short summary
Short summary
MIPAS is a satellite-borne limb emission sounder. The algorithm used to infer atmospheric composition from its measurements exploits the assumption that the atmosphere is horizontally homogeneous. This assumption can cause significant errors. We use synthetic observations to quantify these errors. Furthermore we show that the inclusion of any kind of horizontal variability model improves all the retrieval targets and that the two-dimensional approach implies the smallest errors.
Michael Höpfner, Rainer Volkamer, Udo Grabowski, Michel Grutter, Johannes Orphal, Gabriele Stiller, Thomas von Clarmann, and Gerald Wetzel
Atmos. Chem. Phys., 16, 14357–14369, https://doi.org/10.5194/acp-16-14357-2016, https://doi.org/10.5194/acp-16-14357-2016, 2016
Short summary
Short summary
Ammonia (NH3) in the atmosphere is important because of its influence on aerosol and cloud formation and its increasing anthropogenic emissions. We report the first detection of NH3 in the upper troposphere by the analysis of infrared limb emission spectra measured by the MIPAS instrument on Envisat. We have found enhanced values of NH3 within the Asian summer monsoon upper troposphere, where it might contribute to the composition of the Asian tropopause aerosol layer.
Ewa M. Bednarz, Amanda C. Maycock, N. Luke Abraham, Peter Braesicke, Olivier Dessens, and John A. Pyle
Atmos. Chem. Phys., 16, 12159–12176, https://doi.org/10.5194/acp-16-12159-2016, https://doi.org/10.5194/acp-16-12159-2016, 2016
Short summary
Short summary
Future trends in springtime Arctic ozone, and its chemical dynamical and radiative drivers, are analysed using a 7-member ensemble of chemistry–climate model integrations, allowing for a detailed assessment of interannual variability. Despite the future long-term recovery of Arctic ozone, there is large interannual variability and episodic reductions in springtime Arctic column ozone. Halogen chemistry will become a smaller but non-negligible driver of Arctic ozone variability over the century.
Reinhold Spang, Lars Hoffmann, Michael Höpfner, Sabine Griessbach, Rolf Müller, Michael C. Pitts, Andrew M. W. Orr, and Martin Riese
Atmos. Meas. Tech., 9, 3619–3639, https://doi.org/10.5194/amt-9-3619-2016, https://doi.org/10.5194/amt-9-3619-2016, 2016
Short summary
Short summary
We present a new classification approach for different polar stratospheric cloud types. The so-called Bayesian classifier estimates the most likely probability that one of the three PSC types (ice, NAT, or STS) dominates the characteristics of a measured infrared spectrum. The entire measurement period of the satellite instrument MIPAS from July 2002 to April 2013 is processed using the new classifier.
Manfred Ern, Quang Thai Trinh, Martin Kaufmann, Isabell Krisch, Peter Preusse, Jörn Ungermann, Yajun Zhu, John C. Gille, Martin G. Mlynczak, James M. Russell III, Michael J. Schwartz, and Martin Riese
Atmos. Chem. Phys., 16, 9983–10019, https://doi.org/10.5194/acp-16-9983-2016, https://doi.org/10.5194/acp-16-9983-2016, 2016
Short summary
Short summary
Sudden stratospheric warmings (SSWs) influence the atmospheric circulation over a large range of altitudes and latitudes. We investigate the global distribution of small-scale gravity waves (GWs) during SSWs as derived from 13 years of satellite observations.
We find that GWs may play an important role for triggering SSWs by preconditioning the polar vortex, as well as during long-lasting vortex recovery phases after SSWs. The GW distribution during SSWs displays strong day-to-day variability.
Wolfgang Woiwode, Michael Höpfner, Lei Bi, Michael C. Pitts, Lamont R. Poole, Hermann Oelhaf, Sergej Molleker, Stephan Borrmann, Marcus Klingebiel, Gennady Belyaev, Andreas Ebersoldt, Sabine Griessbach, Jens-Uwe Grooß, Thomas Gulde, Martina Krämer, Guido Maucher, Christof Piesch, Christian Rolf, Christian Sartorius, Reinhold Spang, and Johannes Orphal
Atmos. Chem. Phys., 16, 9505–9532, https://doi.org/10.5194/acp-16-9505-2016, https://doi.org/10.5194/acp-16-9505-2016, 2016
Short summary
Short summary
The analysis of spectral signatures of a polar stratospheric cloud in airborne infrared remote sensing observations in the Arctic in combination with further collocated measurements supports the view that the observed cloud consisted of highly aspherical nitric acid trihydrate particles. A characteristic "shoulder-like" spectral signature may be exploited for identification of large, highly aspherical nitric acid trihydrate particles involved in denitrification of the polar winter stratosphere.
E. Eckert, A. Laeng, S. Lossow, S. Kellmann, G. Stiller, T. von Clarmann, N. Glatthor, M. Höpfner, M. Kiefer, H. Oelhaf, J. Orphal, B. Funke, U. Grabowski, F. Haenel, A. Linden, G. Wetzel, W. Woiwode, P. F. Bernath, C. Boone, G. S. Dutton, J. W. Elkins, A. Engel, J. C. Gille, F. Kolonjari, T. Sugita, G. C. Toon, and K. A. Walker
Atmos. Meas. Tech., 9, 3355–3389, https://doi.org/10.5194/amt-9-3355-2016, https://doi.org/10.5194/amt-9-3355-2016, 2016
Short summary
Short summary
We investigate the accuracy, precision and long-term stability of the MIPAS Envisat IMK/IAA CFC-11 (CCl3F) and CFC-12 (CCl2F2) products.
For comparisons we use several data products from satellite, airplane and balloon-borne instruments as well as ground-based data.
MIPAS Envisat CFC-11 has a slight high bias at the lower end of the profile.
CFC-12 agrees well with other data products.
The temporal stability is good up to ~ 30 km, but still leaves room for improvement.
R. Hossaini, P. K. Patra, A. A. Leeson, G. Krysztofiak, N. L. Abraham, S. J. Andrews, A. T. Archibald, J. Aschmann, E. L. Atlas, D. A. Belikov, H. Bönisch, L. J. Carpenter, S. Dhomse, M. Dorf, A. Engel, W. Feng, S. Fuhlbrügge, P. T. Griffiths, N. R. P. Harris, R. Hommel, T. Keber, K. Krüger, S. T. Lennartz, S. Maksyutov, H. Mantle, G. P. Mills, B. Miller, S. A. Montzka, F. Moore, M. A. Navarro, D. E. Oram, K. Pfeilsticker, J. A. Pyle, B. Quack, A. D. Robinson, E. Saikawa, A. Saiz-Lopez, S. Sala, B.-M. Sinnhuber, S. Taguchi, S. Tegtmeier, R. T. Lidster, C. Wilson, and F. Ziska
Atmos. Chem. Phys., 16, 9163–9187, https://doi.org/10.5194/acp-16-9163-2016, https://doi.org/10.5194/acp-16-9163-2016, 2016
Markus Kunze, Peter Braesicke, Ulrike Langematz, and Gabriele Stiller
Atmos. Chem. Phys., 16, 8695–8714, https://doi.org/10.5194/acp-16-8695-2016, https://doi.org/10.5194/acp-16-8695-2016, 2016
Khalil Karami, Peter Braesicke, Miriam Sinnhuber, and Stefan Versick
Atmos. Chem. Phys., 16, 8447–8460, https://doi.org/10.5194/acp-16-8447-2016, https://doi.org/10.5194/acp-16-8447-2016, 2016
Short summary
Short summary
We introduce a diagnostic tool to assess in a climatological framework the optimal propagation conditions for stationary planetary waves. Analyzing 50 winters using NCEP/NCAR reanalysis data we demonstrate several problematic features of the refractive index of Rossby waves. We introduced the Rossby waves membership value function to calculate the optimal propagation conditions for Rossby waves. Sensitivity of our diagnostic tool to strong and weak vortex regimes are examined.
Jörn Ungermann, Mandfred Ern, Martin Kaufmann, Rolf Müller, Reinhold Spang, Felix Ploeger, Bärbel Vogel, and Martin Riese
Atmos. Chem. Phys., 16, 8389–8403, https://doi.org/10.5194/acp-16-8389-2016, https://doi.org/10.5194/acp-16-8389-2016, 2016
Short summary
Short summary
This paper presents an analysis of temperature and the trace gases PAN and O3 in
the Asian Summer Monsoon (ASM) region. The positive PAN anomaly consisting of
polluted air is confined vertically within the main ASM anticyclone, whereas a
recently shed eddy exhibits enhanced PAN VMRs for 1 to 2 km above the thermal
tropopause. This implies that eddy shedding provides a very rapid horizontal
transport pathway of Asian pollution into the extratropical lowermost
stratosphere.
Martin Ebert, Ralf Weigel, Konrad Kandler, Gebhard Günther, Sergej Molleker, Jens-Uwe Grooß, Bärbel Vogel, Stephan Weinbruch, and Stephan Borrmann
Atmos. Chem. Phys., 16, 8405–8421, https://doi.org/10.5194/acp-16-8405-2016, https://doi.org/10.5194/acp-16-8405-2016, 2016
Short summary
Short summary
Stratospheric aerosol particles were collected within the arctic vortex in late winter. The chemical composition of refractory particles were analyzed by scanning electron microscopy. More than 750 refractory particles with diameters above 500 nm were found consisting of silicates, Fe- and Ca-rich particles and metal mixtures. The detection of refractory particles in the late winter polar stratosphere has strong implications for the formation of polar stratospheric clouds and ozone depletion.
Quang Thai Trinh, Silvio Kalisch, Peter Preusse, Manfred Ern, Hye-Yeong Chun, Stephen D. Eckermann, Min-Jee Kang, and Martin Riese
Atmos. Chem. Phys., 16, 7335–7356, https://doi.org/10.5194/acp-16-7335-2016, https://doi.org/10.5194/acp-16-7335-2016, 2016
Short summary
Short summary
Convection is an important source of atmospheric gravity waves (GWs). In this work, scales of convective GWs seen by limb sounders were first defined based on observed spectral information. Interactions of these waves with the background were considered. Long-scale convective GWs addressed by this approach showed significant importance in driving the QBO. Zonal mean of GW momentum flux and its vertical gradients are in good agreement with respective observations provided by limb sounders.
Maya García-Comas, Manuel López-Puertas, Bernd Funke, Á. Aythami Jurado-Navarro, Angela Gardini, Gabriele P. Stiller, Thomas von Clarmann, and Michael Höpfner
Atmos. Chem. Phys., 16, 6701–6719, https://doi.org/10.5194/acp-16-6701-2016, https://doi.org/10.5194/acp-16-6701-2016, 2016
Short summary
Short summary
We have analysed IR measurements of PMCs in the NH and SH from 2005 to 2012. This technique is sensitive to the total ice volume independent of particle size. For the first time, we have measured the total ice volume from the midlatitudes to the poles. The data indicate a layer of ice from 81 to 89 km and from the poles to 50–60º in each hemisphere, increasing near the poles. The ice density is larger in the NH than in the SH and located 1 km lower. PMCs also show a diurnal variation.
Ugo Cortesi, Samuele Del Bianco, Simone Ceccherini, Marco Gai, Bianca Maria Dinelli, Elisa Castelli, Hermann Oelhaf, Wolfgang Woiwode, Michael Höpfner, and Daniel Gerber
Atmos. Meas. Tech., 9, 2267–2289, https://doi.org/10.5194/amt-9-2267-2016, https://doi.org/10.5194/amt-9-2267-2016, 2016
Anna E. Luebke, Armin Afchine, Anja Costa, Jens-Uwe Grooß, Jessica Meyer, Christian Rolf, Nicole Spelten, Linnea M. Avallone, Darrel Baumgardner, and Martina Krämer
Atmos. Chem. Phys., 16, 5793–5809, https://doi.org/10.5194/acp-16-5793-2016, https://doi.org/10.5194/acp-16-5793-2016, 2016
Short summary
Short summary
In this study, we present observational evidence to show that two distinct types of cirrus clouds exist – in situ origin and liquid origin cirrus. These two types differ by their formation mechanism and other properties. Airborne, in-cloud measurements of cloud ice water content (IWC), ice crystal concentration (Nice), and ice crystal size from the 2014 ML-CIRRUS campaign provide cloud samples that have been divided and analyzed according to their origin type.
Tina Jurkat, Stefan Kaufmann, Christiane Voigt, Dominik Schäuble, Philipp Jeßberger, and Helmut Ziereis
Atmos. Meas. Tech., 9, 1907–1923, https://doi.org/10.5194/amt-9-1907-2016, https://doi.org/10.5194/amt-9-1907-2016, 2016
Short summary
Short summary
The paper details novel mass spectrometric measurements with AIMS-TG aboard the new German research aircraft HALO. The measurements comprise a wide range of tracers with characteristic source regions. Using these tracers, stratospheric and tropospheric air in the UTLS is tagged. The instrument is equipped with a new discharge ionization source, an in-flight calibration and improved transmission of adhesive gases like HNO3 and HCl. AIMS was built to characterize transport and mixing in the UTLS.
Tobias Wegner, Michael C. Pitts, Lamont R. Poole, Ines Tritscher, Jens-Uwe Grooß, and Hideaki Nakajima
Atmos. Chem. Phys., 16, 4569–4577, https://doi.org/10.5194/acp-16-4569-2016, https://doi.org/10.5194/acp-16-4569-2016, 2016
Short summary
Short summary
Satellite observations are used to constrain areas with large backscatter values areas inside the polar vortex. Surface area is derived from these observations and used in heterogeneous modeling. Satellite gas species observations show a decrease in HCl downwind of areas with large surface area density indicating heterogeneous processing inside these areas. This decrease can only be simulated if a realistic surface area is assumed demonstrating the importance of polar stratospheric cloud.
Peer Johannes Nowack, Nathan Luke Abraham, Peter Braesicke, and John Adrian Pyle
Atmos. Chem. Phys., 16, 4191–4203, https://doi.org/10.5194/acp-16-4191-2016, https://doi.org/10.5194/acp-16-4191-2016, 2016
Short summary
Short summary
Various forms of solar radiation management (SRM) have been proposed to counteract man-made climate change. However, all these countermeasures could have unintended side-effects. We add a novel perspective to this discussion by showing how atmospheric ozone changes under solar geoengineering could affect UV exposure and air pollution. This would have implications for human health and ecology. Atmospheric composition changes are therefore important to consider in the evaluation of any SRM scheme.
Andreas Weigelt, Ralf Ebinghaus, Nicola Pirrone, Johannes Bieser, Jan Bödewadt, Giulio Esposito, Franz Slemr, Peter F. J. van Velthoven, Andreas Zahn, and Helmut Ziereis
Atmos. Chem. Phys., 16, 4135–4146, https://doi.org/10.5194/acp-16-4135-2016, https://doi.org/10.5194/acp-16-4135-2016, 2016
Short summary
Short summary
We show the first mercury profile measurements over Europe since 1996. Besides gaseous elemental mercury (GEM) and total gaseous mercury (TGM), the gases CO, SO2, NOx, and O3 were measured from aboard a research aircraft over four European locations. Compared to the boundary layer, the concentration of GEM and TGM in the free troposphere was 10–30% lower. Inside the individual layers no vertical gradient was apparent. Combined with CARIBIC data, a unique profile from 0.4 to 10.5 km is provided.
Armin Rauthe-Schöch, Angela K. Baker, Tanja J. Schuck, Carl A. M. Brenninkmeijer, Andreas Zahn, Markus Hermann, Greta Stratmann, Helmut Ziereis, Peter F. J. van Velthoven, and Jos Lelieveld
Atmos. Chem. Phys., 16, 3609–3629, https://doi.org/10.5194/acp-16-3609-2016, https://doi.org/10.5194/acp-16-3609-2016, 2016
Short summary
Short summary
The flying laboratory CARIBIC onboard a passenger aircraft measured trace gases and aerosol particles in the upper tropospheric Indian summer monsoon anticyclone in summer 2008. We used the measurements together with meteorological analyses to investigate the chemical signature of the northern and southern part of the monsoon, the source regions from where the air was entrained into the monsoon and which parts of the world received polluted air that had been chemically processed in the monsoon.
Antara Banerjee, Amanda C. Maycock, Alexander T. Archibald, N. Luke Abraham, Paul Telford, Peter Braesicke, and John A. Pyle
Atmos. Chem. Phys., 16, 2727–2746, https://doi.org/10.5194/acp-16-2727-2016, https://doi.org/10.5194/acp-16-2727-2016, 2016
F. Khosrawi, J. Urban, S. Lossow, G. Stiller, K. Weigel, P. Braesicke, M. C. Pitts, A. Rozanov, J. P. Burrows, and D. Murtagh
Atmos. Chem. Phys., 16, 101–121, https://doi.org/10.5194/acp-16-101-2016, https://doi.org/10.5194/acp-16-101-2016, 2016
Short summary
Short summary
Our sensitivity studies based on air parcel trajectories confirm that Polar stratospheric cloud (PSC) formation is quite sensitive to water vapour and temperature changes. Considering water vapour time series from satellite measurements we do not find a consistent, significant trend in water vapour in the lower stratosphere during the past 15 years (2000–2014). Thus, the severe dentrification observed in 2010/2011 cannot be directly related to increases in stratospheric water vapour.
B. Vogel, G. Günther, R. Müller, J.-U. Grooß, and M. Riese
Atmos. Chem. Phys., 15, 13699–13716, https://doi.org/10.5194/acp-15-13699-2015, https://doi.org/10.5194/acp-15-13699-2015, 2015
Short summary
Short summary
The Asian summer monsoon circulation is an important global circulation system associated with strong upward transport of tropospheric source gases. We show that the contribution of different boundary source regions to the Asian monsoon anticyclone strongly depends on its intra-seasonal variability and that emissions from Asia have a significant impact on the chemical compositions of the lowermost stratosphere of the Northern Hemisphere at the end of the monsoon season in Sep./Oct. 2012.
F. Ploeger, C. Gottschling, S. Griessbach, J.-U. Grooß, G. Guenther, P. Konopka, R. Müller, M. Riese, F. Stroh, M. Tao, J. Ungermann, B. Vogel, and M. von Hobe
Atmos. Chem. Phys., 15, 13145–13159, https://doi.org/10.5194/acp-15-13145-2015, https://doi.org/10.5194/acp-15-13145-2015, 2015
Short summary
Short summary
The Asian summer monsoon provides an important pathway of tropospheric source gases and pollution into the lower stratosphere. This transport is characterized by deep convection and steady upwelling, combined with confinement inside a large-scale anticyclonic circulation in the upper troposphere and lower stratosphere. In this paper, we show that a barrier to horizontal transport in the monsoon can be determined from a local maximum in the gradient of potential vorticity.
K. Karami, P. Braesicke, M. Kunze, U. Langematz, M. Sinnhuber, and S. Versick
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-15-33283-2015, https://doi.org/10.5194/acpd-15-33283-2015, 2015
Revised manuscript has not been submitted
A. Butz, J. Orphal, R. Checa-Garcia, F. Friedl-Vallon, T. von Clarmann, H. Bovensmann, O. Hasekamp, J. Landgraf, T. Knigge, D. Weise, O. Sqalli-Houssini, and D. Kemper
Atmos. Meas. Tech., 8, 4719–4734, https://doi.org/10.5194/amt-8-4719-2015, https://doi.org/10.5194/amt-8-4719-2015, 2015
Short summary
Short summary
The Geostationary Emission Explorer for Europe (G3E) is a mission concept for a greenhouse gas sounder in geostationary orbit. It is designed to provide column-average concentrations of carbon dioxide, methane, and carbon monoxide with high spatial and 2-hour temporal resolution throughout the central European continent. The prospective data density, precision and accuracy suggest G3E as a key component of a future carbon emission monitoring system.
J. Plieninger, T. von Clarmann, G. P. Stiller, U. Grabowski, N. Glatthor, S. Kellmann, A. Linden, F. Haenel, M. Kiefer, M. Höpfner, A. Laeng, and S. Lossow
Atmos. Meas. Tech., 8, 4657–4670, https://doi.org/10.5194/amt-8-4657-2015, https://doi.org/10.5194/amt-8-4657-2015, 2015
Short summary
Short summary
We present our revised CH4 and N2O profiles derived from MIPAS-ENVISAT spectra, which are now available for the entire measurement period. We describe the retrieval of the profiles and discuss the improvements compared to earlier versions and their effect on the mixing ratios. We analyse the averaging kernels and the resolution of the profiles. An error discussion for both gases is given.
S. T. Lennartz, G. Krysztofiak, C. A. Marandino, B.-M. Sinnhuber, S. Tegtmeier, F. Ziska, R. Hossaini, K. Krüger, S. A. Montzka, E. Atlas, D. E. Oram, T. Keber, H. Bönisch, and B. Quack
Atmos. Chem. Phys., 15, 11753–11772, https://doi.org/10.5194/acp-15-11753-2015, https://doi.org/10.5194/acp-15-11753-2015, 2015
Short summary
Short summary
Marine-produced short-lived trace gases such as halocarbons and DMS significantly impact atmospheric chemistry. To assess this impact on ozone depletion and the radiative budget, it is critical that their marine emissions in atmospheric chemistry models are quantified as accurately as possible. We show that calculating emissions online with an interactive atmosphere improves the agreement with current observations and should be employed regularly in models where marine sources are important.
C. Rolf, A. Afchine, H. Bozem, B. Buchholz, V. Ebert, T. Guggenmoser, P. Hoor, P. Konopka, E. Kretschmer, S. Müller, H. Schlager, N. Spelten, O. Sumińska-Ebersoldt, J. Ungermann, A. Zahn, and M. Krämer
Atmos. Chem. Phys., 15, 9143–9158, https://doi.org/10.5194/acp-15-9143-2015, https://doi.org/10.5194/acp-15-9143-2015, 2015
T. Guggenmoser, J. Blank, A. Kleinert, T. Latzko, J. Ungermann, F. Friedl-Vallon, M. Höpfner, M. Kaufmann, E. Kretschmer, G. Maucher, T. Neubert, H. Oelhaf, P. Preusse, M. Riese, H. Rongen, M. K. Sha, O. Sumińska-Ebersoldt, and V. Tan
Atmos. Meas. Tech., 8, 3147–3161, https://doi.org/10.5194/amt-8-3147-2015, https://doi.org/10.5194/amt-8-3147-2015, 2015
Short summary
Short summary
The plane-carried Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) measures the thermal radiation emitted by gases and particles in the atmosphere, in a height range of about 5-20 km. In between these measurements, GLORIA is pointed at known radiation sources for calibration. Noise in these calibration measurements can lead to artefacts in the final products. In this paper, we present new techniques which exploit GLORIA's imaging capabilities to reduce these noise effects.
M. Tao, P. Konopka, F. Ploeger, J.-U. Grooß, R. Müller, C. M. Volk, K. A. Walker, and M. Riese
Atmos. Chem. Phys., 15, 8695–8715, https://doi.org/10.5194/acp-15-8695-2015, https://doi.org/10.5194/acp-15-8695-2015, 2015
Short summary
Short summary
A remarkable major stratospheric sudden warming during the boreal winter 2008/09 is studied with the Chemical Lagrangian Model of the Stratosphere (CLaMS). We investigate how mixing triggered by this event correlates the wave forcing and how transport and mixing affect the composition of the whole stratosphere in the Northern Hemisphere, by using the tracer-tracer correlation technique.
G. Wetzel, H. Oelhaf, M. Birk, A. de Lange, A. Engel, F. Friedl-Vallon, O. Kirner, A. Kleinert, G. Maucher, H. Nordmeyer, J. Orphal, R. Ruhnke, B.-M. Sinnhuber, and P. Vogt
Atmos. Chem. Phys., 15, 8065–8076, https://doi.org/10.5194/acp-15-8065-2015, https://doi.org/10.5194/acp-15-8065-2015, 2015
M. Höpfner, C. D. Boone, B. Funke, N. Glatthor, U. Grabowski, A. Günther, S. Kellmann, M. Kiefer, A. Linden, S. Lossow, H. C. Pumphrey, W. G. Read, A. Roiger, G. Stiller, H. Schlager, T. von Clarmann, and K. Wissmüller
Atmos. Chem. Phys., 15, 7017–7037, https://doi.org/10.5194/acp-15-7017-2015, https://doi.org/10.5194/acp-15-7017-2015, 2015
E. Kretschmer, M. Bachner, J. Blank, R. Dapp, A. Ebersoldt, F. Friedl-Vallon, T. Guggenmoser, T. Gulde, V. Hartmann, R. Lutz, G. Maucher, T. Neubert, H. Oelhaf, P. Preusse, G. Schardt, C. Schmitt, A. Schönfeld, and V. Tan
Atmos. Meas. Tech., 8, 2543–2553, https://doi.org/10.5194/amt-8-2543-2015, https://doi.org/10.5194/amt-8-2543-2015, 2015
W. Woiwode, O. Sumińska-Ebersoldt, H. Oelhaf, M. Höpfner, G. V. Belyaev, A. Ebersoldt, F. Friedl-Vallon, J.-U. Grooß, T. Gulde, M. Kaufmann, A. Kleinert, M. Krämer, E. Kretschmer, T. Kulessa, G. Maucher, T. Neubert, C. Piesch, P. Preusse, M. Riese, H. Rongen, C. Sartorius, G. Schardt, A. Schönfeld, D. Schuettemeyer, M. K. Sha, F. Stroh, J. Ungermann, C. M. Volk, and J. Orphal
Atmos. Meas. Tech., 8, 2509–2520, https://doi.org/10.5194/amt-8-2509-2015, https://doi.org/10.5194/amt-8-2509-2015, 2015
J. Ungermann, J. Blank, M. Dick, A. Ebersoldt, F. Friedl-Vallon, A. Giez, T. Guggenmoser, M. Höpfner, T. Jurkat, M. Kaufmann, S. Kaufmann, A. Kleinert, M. Krämer, T. Latzko, H. Oelhaf, F. Olchewski, P. Preusse, C. Rolf, J. Schillings, O. Suminska-Ebersoldt, V. Tan, N. Thomas, C. Voigt, A. Zahn, M. Zöger, and M. Riese
Atmos. Meas. Tech., 8, 2473–2489, https://doi.org/10.5194/amt-8-2473-2015, https://doi.org/10.5194/amt-8-2473-2015, 2015
Short summary
Short summary
The GLORIA sounder is an airborne infrared limb-imager combining a two-dimensional infrared detector with a Fourier transform spectrometer. It was operated aboard the new German Gulfstream G550 research aircraft HALO during the TACTS and ESMVAL campaigns in summer 2012. This paper describes the retrieval of temperature, as well as H2O, HNO3, and O3 cross sections from GLORIA dynamics mode spectra. A high correlation is achieved between the remote sensing and the in situ trace gas measurements.
M. Ern, P. Preusse, and M. Riese
Ann. Geophys., 33, 483–504, https://doi.org/10.5194/angeo-33-483-2015, https://doi.org/10.5194/angeo-33-483-2015, 2015
Short summary
Short summary
The forcings of the semiannual oscillation (SAO) of the tropical zonal wind in the stratopause region are investigated based on ERA-Interim reanalysis and HIRDLS satellite observations. In particular, the SAO driving by mesoscale gravity waves is estimated directly from satellite observations of gravity waves. Our study confirms previous indirect evidence that planetary waves dominate during the westward driving of the SAO, while gravity waves mainly provide eastward forcing.
C. Piesch, C. Sartorius, F. Friedl-Vallon, T. Gulde, S. Heger, E. Kretschmer, G. Maucher, H. Nordmeyer, J. Barthel, A. Ebersoldt, F. Graf, F. Hase, A. Kleinert, T. Neubert, and H. J. Schillings
Atmos. Meas. Tech., 8, 1773–1787, https://doi.org/10.5194/amt-8-1773-2015, https://doi.org/10.5194/amt-8-1773-2015, 2015
Short summary
Short summary
The paper shows the design and the technics of the GLORIA spectrometer, the dedicated cooling system, and the performance during operation on HALO aircraft.
Q. T. Trinh, S. Kalisch, P. Preusse, H.-Y. Chun, S. D. Eckermann, M. Ern, and M. Riese
Atmos. Meas. Tech., 8, 1491–1517, https://doi.org/10.5194/amt-8-1491-2015, https://doi.org/10.5194/amt-8-1491-2015, 2015
A. Orr, J. S. Hosking, L. Hoffmann, J. Keeble, S. M. Dean, H. K. Roscoe, N. L. Abraham, S. Vosper, and P. Braesicke
Atmos. Chem. Phys., 15, 1071–1086, https://doi.org/10.5194/acp-15-1071-2015, https://doi.org/10.5194/acp-15-1071-2015, 2015
N. Glatthor, M. Höpfner, G. P. Stiller, T. von Clarmann, B. Funke, S. Lossow, E. Eckert, U. Grabowski, S. Kellmann, A. Linden, K. A. Walker, and A. Wiegele
Atmos. Chem. Phys., 15, 563–582, https://doi.org/10.5194/acp-15-563-2015, https://doi.org/10.5194/acp-15-563-2015, 2015
M. Kaufmann, J. Blank, T. Guggenmoser, J. Ungermann, A. Engel, M. Ern, F. Friedl-Vallon, D. Gerber, J. U. Grooß, G. Guenther, M. Höpfner, A. Kleinert, E. Kretschmer, Th. Latzko, G. Maucher, T. Neubert, H. Nordmeyer, H. Oelhaf, F. Olschewski, J. Orphal, P. Preusse, H. Schlager, H. Schneider, D. Schuettemeyer, F. Stroh, O. Suminska-Ebersoldt, B. Vogel, C. M. Volk, W. Woiwode, and M. Riese
Atmos. Meas. Tech., 8, 81–95, https://doi.org/10.5194/amt-8-81-2015, https://doi.org/10.5194/amt-8-81-2015, 2015
J. Keeble, P. Braesicke, N. L. Abraham, H. K. Roscoe, and J. A. Pyle
Atmos. Chem. Phys., 14, 13705–13717, https://doi.org/10.5194/acp-14-13705-2014, https://doi.org/10.5194/acp-14-13705-2014, 2014
R. Pommrich, R. Müller, J.-U. Grooß, P. Konopka, F. Ploeger, B. Vogel, M. Tao, C. M. Hoppe, G. Günther, N. Spelten, L. Hoffmann, H.-C. Pumphrey, S. Viciani, F. D'Amato, C. M. Volk, P. Hoor, H. Schlager, and M. Riese
Geosci. Model Dev., 7, 2895–2916, https://doi.org/10.5194/gmd-7-2895-2014, https://doi.org/10.5194/gmd-7-2895-2014, 2014
Short summary
Short summary
A version of the chemical transport model CLaMS is presented, which features a simplified (numerically inexpensive) chemistry scheme. The model results using this version of CLaMS show a good representation of anomaly fields of CO, CH4, N2O, and CFC-11 in the lower stratosphere. CO measurements of three instruments (COLD, HAGAR, and Falcon-CO) in the lower tropical stratosphere (during the campaign TROCCINOX in 2005) have been compared and show a good agreement within the error bars.
A. Kleinert, F. Friedl-Vallon, T. Guggenmoser, M. Höpfner, T. Neubert, R. Ribalda, M. K. Sha, J. Ungermann, J. Blank, A. Ebersoldt, E. Kretschmer, T. Latzko, H. Oelhaf, F. Olschewski, and P. Preusse
Atmos. Meas. Tech., 7, 4167–4184, https://doi.org/10.5194/amt-7-4167-2014, https://doi.org/10.5194/amt-7-4167-2014, 2014
B. Vogel, G. Günther, R. Müller, J.-U. Grooß, P. Hoor, M. Krämer, S. Müller, A. Zahn, and M. Riese
Atmos. Chem. Phys., 14, 12745–12762, https://doi.org/10.5194/acp-14-12745-2014, https://doi.org/10.5194/acp-14-12745-2014, 2014
Short summary
Short summary
Enhanced tropospheric trace gases (e.g. pollutants) were measured in situ in
the lowermost stratosphere over Northern Europe on 26 September 2012
during the TACTS aircraft campaign. We found that the combination of rapid uplift by a typhoon and eastward eddy shedding from the Asian monsoon anticyclone is a novel fast transport pathway
that may carry boundary emissions from Southeast
Asia/western Pacific within approximately 5 weeks to the lowermost
stratosphere in Northern Europe.
A. Ostler, R. Sussmann, M. Rettinger, N. M. Deutscher, S. Dohe, F. Hase, N. Jones, M. Palm, and B.-M. Sinnhuber
Atmos. Meas. Tech., 7, 4081–4101, https://doi.org/10.5194/amt-7-4081-2014, https://doi.org/10.5194/amt-7-4081-2014, 2014
Short summary
Short summary
Ground-based FTIR soundings of column-average methane from NDACC and TCCON can be combined without the need to apply an overall calibration factor. NDACC and TCCON measurements complement one another and provide valuable information for satellite validation, evaluation of chemical-transport models, and source-sink inversions. The impact of dynamical variability on NDACC and TCCON retrievals of column-average methane is reflected in different smoothing effects.
A. Laeng, U. Grabowski, T. von Clarmann, G. Stiller, N. Glatthor, M. Höpfner, S. Kellmann, M. Kiefer, A. Linden, S. Lossow, V. Sofieva, I. Petropavlovskikh, D. Hubert, T. Bathgate, P. Bernath, C. D. Boone, C. Clerbaux, P. Coheur, R. Damadeo, D. Degenstein, S. Frith, L. Froidevaux, J. Gille, K. Hoppel, M. McHugh, Y. Kasai, J. Lumpe, N. Rahpoe, G. Toon, T. Sano, M. Suzuki, J. Tamminen, J. Urban, K. Walker, M. Weber, and J. Zawodny
Atmos. Meas. Tech., 7, 3971–3987, https://doi.org/10.5194/amt-7-3971-2014, https://doi.org/10.5194/amt-7-3971-2014, 2014
R. Weigel, C. M. Volk, K. Kandler, E. Hösen, G. Günther, B. Vogel, J.-U. Grooß, S. Khaykin, G. V. Belyaev, and S. Borrmann
Atmos. Chem. Phys., 14, 12319–12342, https://doi.org/10.5194/acp-14-12319-2014, https://doi.org/10.5194/acp-14-12319-2014, 2014
C. M. Hoppe, L. Hoffmann, P. Konopka, J.-U. Grooß, F. Ploeger, G. Günther, P. Jöckel, and R. Müller
Geosci. Model Dev., 7, 2639–2651, https://doi.org/10.5194/gmd-7-2639-2014, https://doi.org/10.5194/gmd-7-2639-2014, 2014
J. Y. Jia, P. Preusse, M. Ern, H.-Y. Chun, J. C. Gille, S. D. Eckermann, and M. Riese
Ann. Geophys., 32, 1373–1394, https://doi.org/10.5194/angeo-32-1373-2014, https://doi.org/10.5194/angeo-32-1373-2014, 2014
W. Woiwode, J.-U. Grooß, H. Oelhaf, S. Molleker, S. Borrmann, A. Ebersoldt, W. Frey, T. Gulde, S. Khaykin, G. Maucher, C. Piesch, and J. Orphal
Atmos. Chem. Phys., 14, 11525–11544, https://doi.org/10.5194/acp-14-11525-2014, https://doi.org/10.5194/acp-14-11525-2014, 2014
F. Friedl-Vallon, T. Gulde, F. Hase, A. Kleinert, T. Kulessa, G. Maucher, T. Neubert, F. Olschewski, C. Piesch, P. Preusse, H. Rongen, C. Sartorius, H. Schneider, A. Schönfeld, V. Tan, N. Bayer, J. Blank, R. Dapp, A. Ebersoldt, H. Fischer, F. Graf, T. Guggenmoser, M. Höpfner, M. Kaufmann, E. Kretschmer, T. Latzko, H. Nordmeyer, H. Oelhaf, J. Orphal, M. Riese, G. Schardt, J. Schillings, M. K. Sha, O. Suminska-Ebersoldt, and J. Ungermann
Atmos. Meas. Tech., 7, 3565–3577, https://doi.org/10.5194/amt-7-3565-2014, https://doi.org/10.5194/amt-7-3565-2014, 2014
S. Molleker, S. Borrmann, H. Schlager, B. Luo, W. Frey, M. Klingebiel, R. Weigel, M. Ebert, V. Mitev, R. Matthey, W. Woiwode, H. Oelhaf, A. Dörnbrack, G. Stratmann, J.-U. Grooß, G. Günther, B. Vogel, R. Müller, M. Krämer, J. Meyer, and F. Cairo
Atmos. Chem. Phys., 14, 10785–10801, https://doi.org/10.5194/acp-14-10785-2014, https://doi.org/10.5194/acp-14-10785-2014, 2014
P. Preusse, M. Ern, P. Bechtold, S. D. Eckermann, S. Kalisch, Q. T. Trinh, and M. Riese
Atmos. Chem. Phys., 14, 10483–10508, https://doi.org/10.5194/acp-14-10483-2014, https://doi.org/10.5194/acp-14-10483-2014, 2014
X. Yang, N. L. Abraham, A. T. Archibald, P. Braesicke, J. Keeble, P. J. Telford, N. J. Warwick, and J. A. Pyle
Atmos. Chem. Phys., 14, 10431–10438, https://doi.org/10.5194/acp-14-10431-2014, https://doi.org/10.5194/acp-14-10431-2014, 2014
A. Banerjee, A. T. Archibald, A. C. Maycock, P. Telford, N. L. Abraham, X. Yang, P. Braesicke, and J. A. Pyle
Atmos. Chem. Phys., 14, 9871–9881, https://doi.org/10.5194/acp-14-9871-2014, https://doi.org/10.5194/acp-14-9871-2014, 2014
L. Kritten, A. Butz, M. P. Chipperfield, M. Dorf, S. Dhomse, R. Hossaini, H. Oelhaf, C. Prados-Roman, G. Wetzel, and K. Pfeilsticker
Atmos. Chem. Phys., 14, 9555–9566, https://doi.org/10.5194/acp-14-9555-2014, https://doi.org/10.5194/acp-14-9555-2014, 2014
E. Hache, J.-L. Attié, C. Tourneur, P. Ricaud, L. Coret, W. A. Lahoz, L. El Amraoui, B. Josse, P. Hamer, J. Warner, X. Liu, K. Chance, M. Höpfner, R. Spurr, V. Natraj, S. Kulawik, A. Eldering, and J. Orphal
Atmos. Meas. Tech., 7, 2185–2201, https://doi.org/10.5194/amt-7-2185-2014, https://doi.org/10.5194/amt-7-2185-2014, 2014
M. Riese, H. Oelhaf, P. Preusse, J. Blank, M. Ern, F. Friedl-Vallon, H. Fischer, T. Guggenmoser, M. Höpfner, P. Hoor, M. Kaufmann, J. Orphal, F. Plöger, R. Spang, O. Suminska-Ebersoldt, J. Ungermann, B. Vogel, and W. Woiwode
Atmos. Meas. Tech., 7, 1915–1928, https://doi.org/10.5194/amt-7-1915-2014, https://doi.org/10.5194/amt-7-1915-2014, 2014
K.-P. Heue, H. Riede, D. Walter, C. A. M. Brenninkmeijer, T. Wagner, U. Frieß, U. Platt, A. Zahn, G. Stratmann, and H. Ziereis
Atmos. Chem. Phys., 14, 6621–6642, https://doi.org/10.5194/acp-14-6621-2014, https://doi.org/10.5194/acp-14-6621-2014, 2014
M. J. Tang, P. J. Telford, F. D. Pope, L. Rkiouak, N. L. Abraham, A. T. Archibald, P. Braesicke, J. A. Pyle, J. McGregor, I. M. Watson, R. A. Cox, and M. Kalberer
Atmos. Chem. Phys., 14, 6035–6048, https://doi.org/10.5194/acp-14-6035-2014, https://doi.org/10.5194/acp-14-6035-2014, 2014
I. Engel, B. P. Luo, S. M. Khaykin, F. G. Wienhold, H. Vömel, R. Kivi, C. R. Hoyle, J.-U. Grooß, M. C. Pitts, and T. Peter
Atmos. Chem. Phys., 14, 3231–3246, https://doi.org/10.5194/acp-14-3231-2014, https://doi.org/10.5194/acp-14-3231-2014, 2014
J. E. Williams, G. Le Bras, A. Kukui, H. Ziereis, and C. A. M. Brenninkmeijer
Atmos. Chem. Phys., 14, 2363–2382, https://doi.org/10.5194/acp-14-2363-2014, https://doi.org/10.5194/acp-14-2363-2014, 2014
P. Bohlinger, B.-M. Sinnhuber, R. Ruhnke, and O. Kirner
Atmos. Chem. Phys., 14, 1679–1688, https://doi.org/10.5194/acp-14-1679-2014, https://doi.org/10.5194/acp-14-1679-2014, 2014
J.-U. Grooß, I. Engel, S. Borrmann, W. Frey, G. Günther, C. R. Hoyle, R. Kivi, B. P. Luo, S. Molleker, T. Peter, M. C. Pitts, H. Schlager, G. Stiller, H. Vömel, K. A. Walker, and R. Müller
Atmos. Chem. Phys., 14, 1055–1073, https://doi.org/10.5194/acp-14-1055-2014, https://doi.org/10.5194/acp-14-1055-2014, 2014
F. M. O'Connor, C. E. Johnson, O. Morgenstern, N. L. Abraham, P. Braesicke, M. Dalvi, G. A. Folberth, M. G. Sanderson, P. J. Telford, A. Voulgarakis, P. J. Young, G. Zeng, W. J. Collins, and J. A. Pyle
Geosci. Model Dev., 7, 41–91, https://doi.org/10.5194/gmd-7-41-2014, https://doi.org/10.5194/gmd-7-41-2014, 2014
F. Olschewski, A. Ebersoldt, F. Friedl-Vallon, B. Gutschwager, J. Hollandt, A. Kleinert, C. Monte, C. Piesch, P. Preusse, C. Rolf, P. Steffens, and R. Koppmann
Atmos. Meas. Tech., 6, 3067–3082, https://doi.org/10.5194/amt-6-3067-2013, https://doi.org/10.5194/amt-6-3067-2013, 2013
C. Kalicinsky, J.-U. Grooß, G. Günther, J. Ungermann, J. Blank, S. Höfer, L. Hoffmann, P. Knieling, F. Olschewski, R. Spang, F. Stroh, and M. Riese
Atmos. Chem. Phys., 13, 10859–10871, https://doi.org/10.5194/acp-13-10859-2013, https://doi.org/10.5194/acp-13-10859-2013, 2013
I. Engel, B. P. Luo, M. C. Pitts, L. R. Poole, C. R. Hoyle, J.-U. Grooß, A. Dörnbrack, and T. Peter
Atmos. Chem. Phys., 13, 10769–10785, https://doi.org/10.5194/acp-13-10769-2013, https://doi.org/10.5194/acp-13-10769-2013, 2013
J. Ungermann, L. L. Pan, C. Kalicinsky, F. Olschewski, P. Knieling, J. Blank, K. Weigel, T. Guggenmoser, F. Stroh, L. Hoffmann, and M. Riese
Atmos. Chem. Phys., 13, 10517–10534, https://doi.org/10.5194/acp-13-10517-2013, https://doi.org/10.5194/acp-13-10517-2013, 2013
M. Höpfner, N. Glatthor, U. Grabowski, S. Kellmann, M. Kiefer, A. Linden, J. Orphal, G. Stiller, T. von Clarmann, B. Funke, and C. D. Boone
Atmos. Chem. Phys., 13, 10405–10423, https://doi.org/10.5194/acp-13-10405-2013, https://doi.org/10.5194/acp-13-10405-2013, 2013
J. Cuesta, M. Eremenko, X. Liu, G. Dufour, Z. Cai, M. Höpfner, T. von Clarmann, P. Sellitto, G. Foret, B. Gaubert, M. Beekmann, J. Orphal, K. Chance, R. Spurr, and J.-M. Flaud
Atmos. Chem. Phys., 13, 9675–9693, https://doi.org/10.5194/acp-13-9675-2013, https://doi.org/10.5194/acp-13-9675-2013, 2013
C. R. Hoyle, I. Engel, B. P. Luo, M. C. Pitts, L. R. Poole, J.-U. Grooß, and T. Peter
Atmos. Chem. Phys., 13, 9577–9595, https://doi.org/10.5194/acp-13-9577-2013, https://doi.org/10.5194/acp-13-9577-2013, 2013
M. von Hobe, S. Bekki, S. Borrmann, F. Cairo, F. D'Amato, G. Di Donfrancesco, A. Dörnbrack, A. Ebersoldt, M. Ebert, C. Emde, I. Engel, M. Ern, W. Frey, S. Genco, S. Griessbach, J.-U. Grooß, T. Gulde, G. Günther, E. Hösen, L. Hoffmann, V. Homonnai, C. R. Hoyle, I. S. A. Isaksen, D. R. Jackson, I. M. Jánosi, R. L. Jones, K. Kandler, C. Kalicinsky, A. Keil, S. M. Khaykin, F. Khosrawi, R. Kivi, J. Kuttippurath, J. C. Laube, F. Lefèvre, R. Lehmann, S. Ludmann, B. P. Luo, M. Marchand, J. Meyer, V. Mitev, S. Molleker, R. Müller, H. Oelhaf, F. Olschewski, Y. Orsolini, T. Peter, K. Pfeilsticker, C. Piesch, M. C. Pitts, L. R. Poole, F. D. Pope, F. Ravegnani, M. Rex, M. Riese, T. Röckmann, B. Rognerud, A. Roiger, C. Rolf, M. L. Santee, M. Scheibe, C. Schiller, H. Schlager, M. Siciliani de Cumis, N. Sitnikov, O. A. Søvde, R. Spang, N. Spelten, F. Stordal, O. Sumińska-Ebersoldt, A. Ulanovski, J. Ungermann, S. Viciani, C. M. Volk, M. vom Scheidt, P. von der Gathen, K. Walker, T. Wegner, R. Weigel, S. Weinbruch, G. Wetzel, F. G. Wienhold, I. Wohltmann, W. Woiwode, I. A. K. Young, V. Yushkov, B. Zobrist, and F. Stroh
Atmos. Chem. Phys., 13, 9233–9268, https://doi.org/10.5194/acp-13-9233-2013, https://doi.org/10.5194/acp-13-9233-2013, 2013
G. Wetzel, H. Oelhaf, G. Berthet, A. Bracher, C. Cornacchia, D. G. Feist, H. Fischer, A. Fix, M. Iarlori, A. Kleinert, A. Lengel, M. Milz, L. Mona, S. C. Müller, J. Ovarlez, G. Pappalardo, C. Piccolo, P. Raspollini, J.-B. Renard, V. Rizi, S. Rohs, C. Schiller, G. Stiller, M. Weber, and G. Zhang
Atmos. Chem. Phys., 13, 5791–5811, https://doi.org/10.5194/acp-13-5791-2013, https://doi.org/10.5194/acp-13-5791-2013, 2013
C. Brühl, J. Lelieveld, M. Höpfner, and H. Tost
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-13-11395-2013, https://doi.org/10.5194/acpd-13-11395-2013, 2013
Revised manuscript not accepted
P. J. Telford, N. L. Abraham, A. T. Archibald, P. Braesicke, M. Dalvi, O. Morgenstern, F. M. O'Connor, N. A. D. Richards, and J. A. Pyle
Geosci. Model Dev., 6, 161–177, https://doi.org/10.5194/gmd-6-161-2013, https://doi.org/10.5194/gmd-6-161-2013, 2013
J. Aschmann and B.-M. Sinnhuber
Atmos. Chem. Phys., 13, 1203–1219, https://doi.org/10.5194/acp-13-1203-2013, https://doi.org/10.5194/acp-13-1203-2013, 2013
J. Ungermann
Atmos. Meas. Tech., 6, 15–32, https://doi.org/10.5194/amt-6-15-2013, https://doi.org/10.5194/amt-6-15-2013, 2013
S. Kellmann, T. von Clarmann, G. P. Stiller, E. Eckert, N. Glatthor, M. Höpfner, M. Kiefer, J. Orphal, B. Funke, U. Grabowski, A. Linden, G. S. Dutton, and J. W. Elkins
Atmos. Chem. Phys., 12, 11857–11875, https://doi.org/10.5194/acp-12-11857-2012, https://doi.org/10.5194/acp-12-11857-2012, 2012
Related subject area
Subject: Gases | Research Activity: Remote Sensing | Altitude Range: Stratosphere | Science Focus: Chemistry (chemical composition and reactions)
Emissions of methane from coal fields, thermal power plants, and wetlands and their implications for atmospheric methane across the south Asian region
Ozone anomalies over the polar regions during stratospheric warming events
No severe ozone depletion in the tropical stratosphere in recent decades
The Antarctic stratospheric nitrogen hole: Southern Hemisphere and Antarctic springtime total nitrogen dioxide and total ozone variability as observed by Sentinel-5p TROPOMI
Solar FTIR measurements of NOx vertical distributions – Part 1: First observational evidence of a seasonal variation in the diurnal increasing rates of stratospheric NO2 and NO
Trends in polar ozone loss since 1989: potential sign of recovery in the Arctic ozone column
Climatology, sources, and transport characteristics of observed water vapor extrema in the lower stratosphere
Impact of chlorine ion chemistry on ozone loss in the middle atmosphere during very large solar proton events
Total ozone variability and trends over the South Pole during the wintertime
Inferring the photolysis rate of NO2 in the stratosphere based on satellite observations
Technical note: On HALOE stratospheric water vapor variations and trends at Boulder, Colorado
Microwave radiometer observations of the ozone diurnal cycle and its short-term variability over Switzerland
Observed changes in stratospheric circulation: decreasing lifetime of N2O, 2005–2021
Water vapour and ozone in the upper troposphere–lower stratosphere: global climatologies from three Canadian limb-viewing instruments
Updated trends of the stratospheric ozone vertical distribution in the 60° S–60° N latitude range based on the LOTUS regression model
Polar stratospheric nitric acid depletion surveyed from a decadal dataset of IASI total columns
Global total ozone recovery trends attributed to ozone-depleting substance (ODS) changes derived from five merged ozone datasets
Global, regional and seasonal analysis of total ozone trends derived from the 1995–2020 GTO-ECV climate data record
Upper stratospheric ClO and HOCl trends (2005–2020): Aura Microwave Limb Sounder and model results
Challenge of modelling GLORIA observations of upper troposphere–lowermost stratosphere trace gas and cloud distributions at high latitudes: a case study with state-of-the-art models
A single-peak-structured solar cycle signal in stratospheric ozone based on Microwave Limb Sounder observations and model simulations
OClO as observed by TROPOMI: a comparison with meteorological parameters and polar stratospheric cloud observations
The Michelson Interferometer for Passive Atmospheric Sounding global climatology of BrONO2 2002–2012: a test for stratospheric bromine chemistry
Microwave Limb Sounder (MLS) observations of biomass burning products in the stratosphere from Canadian forest fires in August 2017
Exceptional loss in ozone in the Arctic winter/spring of 2019/2020
Fifty years of balloon-borne ozone profile measurements at Uccle, Belgium: a short history, the scientific relevance, and the achievements in understanding the vertical ozone distribution
On the use of satellite observations to fill gaps in the Halley station total ozone record
Pollution trace gases C2H6, C2H2, HCOOH, and PAN in the North Atlantic UTLS: observations and simulations
Measurement report: regional trends of stratospheric ozone evaluated using the MErged GRIdded Dataset of Ozone Profiles (MEGRIDOP)
Indicators of Antarctic ozone depletion: 1979 to 2019
Observational evidence of energetic particle precipitation NOx (EPP-NOx) interaction with chlorine curbing Antarctic ozone loss
Total column ozone in New Zealand and in the UK in the 1950s
Study of the dependence of long-term stratospheric ozone trends on local solar time
Technical note: LIMS observations of lower stratospheric ozone in the southern polar springtime of 1978
Chlorine partitioning near the polar vortex edge observed with ground-based FTIR and satellites at Syowa Station, Antarctica, in 2007 and 2011
Is the recovery of stratospheric O3 speeding up in the Southern Hemisphere? An evaluation from the first IASI decadal record (2008–2017)
Improved FTIR retrieval strategy for HCFC-22 (CHClF2), comparisons with in situ and satellite datasets with the support of models, and determination of its long-term trend above Jungfraujoch
A study on harmonizing total ozone assimilation with multiple sensors
Unusual chlorine partitioning in the 2015/16 Arctic winter lowermost stratosphere: observations and simulations
Dynamically controlled ozone decline in the tropical mid-stratosphere observed by SCIAMACHY
Stratospheric ozone loss in the Arctic winters between 2005 and 2013 derived with ACE-FTS measurements
Space–time variability in UTLS chemical distribution in the Asian summer monsoon viewed by limb and nadir satellite sensors
Using satellite measurements of N2O to remove dynamical variability from HCl measurements
Middle atmospheric ozone, nitrogen dioxide and nitrogen trioxide in 2002–2011: SD-WACCM simulations compared to GOMOS observations
The Network for the Detection of Atmospheric Composition Change (NDACC): history, status and perspectives
Spatio-temporal variations of nitric acid total columns from 9 years of IASI measurements – a driver study
Diurnal variation in middle-atmospheric ozone observed by ground-based microwave radiometry at Ny-Ålesund over 1 year
Total ozone trends from 1979 to 2016 derived from five merged observational datasets – the emergence into ozone recovery
The impact of nonuniform sampling on stratospheric ozone trends derived from occultation instruments
Diurnal variations of BrONO2 observed by MIPAS-B at midlatitudes and in the Arctic
Mahalakshmi Venkata Dangeti, Mahesh Pathakoti, Kanchana Lakshmi Asuri, Sujatha Peethani, Ibrahim Shaik, Rajan Krishnan Sundara, Vijay Kumar Sagar, Raja Pushpanathan, Yogesh Kumar Tiwari, and Prakash Chauhan
Atmos. Chem. Phys., 24, 12843–12859, https://doi.org/10.5194/acp-24-12843-2024, https://doi.org/10.5194/acp-24-12843-2024, 2024
Short summary
Short summary
The present study investigated the space–time variability of XCH4 over coal fields, power plants, and wetlands using long-term GOSAT and S5/TROPOMI data. The XCH4 variability associated with the heterogenous sources present in the south Asian (India) region and their implications for atmospheric XCH4 concentrations were evaluated. The CH4 concentrations were mapped against the emissions in the agro-climatic zones, and a statistically high correlation was found in the Indo-Gangetic Plain region.
Guochun Shi, Witali Krochin, Eric Sauvageat, and Gunter Stober
Atmos. Chem. Phys., 24, 10187–10207, https://doi.org/10.5194/acp-24-10187-2024, https://doi.org/10.5194/acp-24-10187-2024, 2024
Short summary
Short summary
Here we investigated ozone anomalies over polar regions during sudden stratospheric and final stratospheric warming with ground-based microwave radiometers at polar latitudes compared with reanalysis and satellite data. The underlying dynamical and chemical mechanisms are responsible for the observed ozone anomalies in both events. Our research sheds light on these processes, emphasizing the need for a deeper understanding of these processes for more accurate climate modeling and forecasting.
Jayanarayanan Kuttippurath, Gopalakrishna Pillai Gopikrishnan, Rolf Müller, Sophie Godin-Beekmann, and Jerome Brioude
Atmos. Chem. Phys., 24, 6743–6756, https://doi.org/10.5194/acp-24-6743-2024, https://doi.org/10.5194/acp-24-6743-2024, 2024
Short summary
Short summary
The current understanding and observational evidence do not provide any support for the possibility of an ozone hole occurring outside Antarctica today with respect to the present-day stratospheric halogen levels.
Adrianus de Laat, Jos van Geffen, Piet Stammes, Ronald van der A, Henk Eskes, and J. Pepijn Veefkind
Atmos. Chem. Phys., 24, 4511–4535, https://doi.org/10.5194/acp-24-4511-2024, https://doi.org/10.5194/acp-24-4511-2024, 2024
Short summary
Short summary
Removal of stratospheric nitrogen oxides is crucial for the formation of the ozone hole. TROPOMI satellite measurements of nitrogen dioxide reveal the presence of a not dissimilar "nitrogen hole" that largely coincides with the ozone hole. Three very distinct regimes were identified: inside and outside the ozone hole and the transition zone in between. Our results introduce a valuable and innovative application highly relevant for Antarctic ozone hole and ozone layer recovery.
Pinchas Nürnberg, Markus Rettinger, and Ralf Sussmann
Atmos. Chem. Phys., 24, 3743–3757, https://doi.org/10.5194/acp-24-3743-2024, https://doi.org/10.5194/acp-24-3743-2024, 2024
Short summary
Short summary
For a better understanding of stratospheric photochemistry, we analyzed long-term data from spectroscopic measurements at Zugspitze and Garmisch, Germany. We provide information about the seasonal cycle of diurnal nitrogen oxide variation in the stratosphere. For the first time we create an experimental data set to validate stratospheric model simulation that can improve satellite validation to gain further insights into ozone depletion and smog prevention.
Andrea Pazmiño, Florence Goutail, Sophie Godin-Beekmann, Alain Hauchecorne, Jean-Pierre Pommereau, Martyn P. Chipperfield, Wuhu Feng, Franck Lefèvre, Audrey Lecouffe, Michel Van Roozendael, Nis Jepsen, Georg Hansen, Rigel Kivi, Kimberly Strong, and Kaley A. Walker
Atmos. Chem. Phys., 23, 15655–15670, https://doi.org/10.5194/acp-23-15655-2023, https://doi.org/10.5194/acp-23-15655-2023, 2023
Short summary
Short summary
The vortex-averaged ozone loss over the last 3 decades is evaluated for both polar regions using the passive ozone tracer of the chemical transport model TOMCAT/SLIMCAT and total ozone observations from the SAOZ network and MSR2 reanalysis. Three metrics were developed to compute ozone trends since 2000. The study confirms the ozone recovery in the Antarctic and shows a potential sign of quantitative detection of ozone recovery in the Arctic that needs to be robustly confirmed in the future.
Emily N. Tinney and Cameron R. Homeyer
Atmos. Chem. Phys., 23, 14375–14392, https://doi.org/10.5194/acp-23-14375-2023, https://doi.org/10.5194/acp-23-14375-2023, 2023
Short summary
Short summary
A long-term record of satellite observations is used to study extreme water vapor concentrations in the lower stratosphere, which are important to climate variability and change. We use a deeper layer of stratospheric observations than prior work to more comprehensively identify these events. We show that extreme water vapor concentrations are frequent, especially in the lowest layers of the stratosphere that have not been analyzed previously.
Monali Borthakur, Miriam Sinnhuber, Alexandra Laeng, Thomas Reddmann, Peter Braesicke, Gabriele Stiller, Thomas von Clarmann, Bernd Funke, Ilya Usoskin, Jan Maik Wissing, and Olesya Yakovchuk
Atmos. Chem. Phys., 23, 12985–13013, https://doi.org/10.5194/acp-23-12985-2023, https://doi.org/10.5194/acp-23-12985-2023, 2023
Short summary
Short summary
Reduced ozone levels resulting from ozone depletion mean more exposure to UV radiation, which has various effects on human health. We analysed solar events to see what influence it has on the chemistry of Earth's atmosphere and how this atmospheric chemistry change can affect the ozone. To do this, we used an atmospheric model considering only chemistry and compared it with satellite data. The focus was mainly on the contribution of chlorine, and we found about 10 %–20 % ozone loss due to that.
Vitali Fioletov, Xiaoyi Zhao, Ihab Abboud, Michael Brohart, Akira Ogyu, Reno Sit, Sum Chi Lee, Irina Petropavlovskikh, Koji Miyagawa, Bryan J. Johnson, Patrick Cullis, John Booth, Glen McConville, and C. Thomas McElroy
Atmos. Chem. Phys., 23, 12731–12751, https://doi.org/10.5194/acp-23-12731-2023, https://doi.org/10.5194/acp-23-12731-2023, 2023
Short summary
Short summary
Stratospheric ozone within the Southern Hemisphere springtime polar vortex has been a subject of intense research since the discovery of the Antarctic ozone hole. The wintertime ozone in the vortex is less studied. We show that the recent wintertime ozone values over the South Pole were about 12 % below the pre-1980s level; i.e., the decline there was nearly twice as large as that over southern midlatitudes. Thus, wintertime ozone there can be used as an indicator of the ozone layer state.
Jian Guan, Susan Solomon, Sasha Madronich, and Douglas Kinnison
Atmos. Chem. Phys., 23, 10413–10422, https://doi.org/10.5194/acp-23-10413-2023, https://doi.org/10.5194/acp-23-10413-2023, 2023
Short summary
Short summary
This paper provides a novel method to obtain a global and accurate photodissociation coefficient for NO2 (J(NO2)) based on satellite data, and the results are shown to be consistent with model results. The J(NO2) value decreases as the solar zenith angle increases and has a weak altitude dependence. A key finding is that the satellite-derived J(NO2) increases in the polar regions, in good agreement with model predictions, due to the effects of ice and snow on surface albedo.
Ellis Remsberg
Atmos. Chem. Phys., 23, 9637–9646, https://doi.org/10.5194/acp-23-9637-2023, https://doi.org/10.5194/acp-23-9637-2023, 2023
Short summary
Short summary
This study compares analysis of trends in stratospheric water vapor from the Halogen Occultation Experiment satellite instrument with those from local frost-point hygrometers (FPHs) at 30 and 50 hPa over Boulder, Colorado (40°N), for 1993 to 2005. The FPH measurements are assumed correct. However, the seasonal sampling by HALOE is marginal from 2002 to 2005, such that its trends have a bias after 2001. Trend comparisons for 1993 to 2002 at 30 hPa agree within the uncertainties of both datasets.
Eric Sauvageat, Klemens Hocke, Eliane Maillard Barras, Shengyi Hou, Quentin Errera, Alexander Haefele, and Axel Murk
Atmos. Chem. Phys., 23, 7321–7345, https://doi.org/10.5194/acp-23-7321-2023, https://doi.org/10.5194/acp-23-7321-2023, 2023
Short summary
Short summary
In Switzerland, two microwave radiometers can measure continuous ozone profiles in the middle atmosphere. From these instruments, we can study the diurnal variation of ozone, which is difficult to observe otherwise. It is valuable to validate the model simulations of diurnal variations in this region. We present results obtained during the last decade and compare them against various models. For the first time, we also show that the winter diurnal variations have some short-term fluctuations.
Michael J. Prather, Lucien Froidevaux, and Nathaniel J. Livesey
Atmos. Chem. Phys., 23, 843–849, https://doi.org/10.5194/acp-23-843-2023, https://doi.org/10.5194/acp-23-843-2023, 2023
Short summary
Short summary
From satellite data for nitrous oxide (N2O), ozone and temperature, we calculate the monthly loss of N2O and find it is increasing faster than expected, resulting in a shorter lifetime, which reduces the impact of anthropogenic emissions. We identify the cause as enhanced vertical lofting of high-N2O air into the tropical middle stratosphere, where it is destroyed photochemically. Because global warming is due in part to N2O, this finding presents a new negative climate-chemistry feedback.
Paul S. Jeffery, Kaley A. Walker, Chris E. Sioris, Chris D. Boone, Doug Degenstein, Gloria L. Manney, C. Thomas McElroy, Luis Millán, David A. Plummer, Niall J. Ryan, Patrick E. Sheese, and Jiansheng Zou
Atmos. Chem. Phys., 22, 14709–14734, https://doi.org/10.5194/acp-22-14709-2022, https://doi.org/10.5194/acp-22-14709-2022, 2022
Short summary
Short summary
The upper troposphere–lower stratosphere is one of the most variable regions in the atmosphere. To improve our understanding of water vapour and ozone concentrations in this region, climatologies have been developed from 14 years of measurements from three Canadian satellite instruments. Horizontal and vertical coordinates have been chosen to minimize the effects of variability. To aid in analysis, model simulations have been used to characterize differences between instrument climatologies.
Sophie Godin-Beekmann, Niramson Azouz, Viktoria F. Sofieva, Daan Hubert, Irina Petropavlovskikh, Peter Effertz, Gérard Ancellet, Doug A. Degenstein, Daniel Zawada, Lucien Froidevaux, Stacey Frith, Jeannette Wild, Sean Davis, Wolfgang Steinbrecht, Thierry Leblanc, Richard Querel, Kleareti Tourpali, Robert Damadeo, Eliane Maillard Barras, René Stübi, Corinne Vigouroux, Carlo Arosio, Gerald Nedoluha, Ian Boyd, Roeland Van Malderen, Emmanuel Mahieu, Dan Smale, and Ralf Sussmann
Atmos. Chem. Phys., 22, 11657–11673, https://doi.org/10.5194/acp-22-11657-2022, https://doi.org/10.5194/acp-22-11657-2022, 2022
Short summary
Short summary
An updated evaluation up to 2020 of stratospheric ozone profile long-term trends at extrapolar latitudes based on satellite and ground-based records is presented. Ozone increase in the upper stratosphere is confirmed, with significant trends at most latitudes. In this altitude region, a very good agreement is found with trends derived from chemistry–climate model simulations. Observed and modelled trends diverge in the lower stratosphere, but the differences are non-significant.
Catherine Wespes, Gaetane Ronsmans, Lieven Clarisse, Susan Solomon, Daniel Hurtmans, Cathy Clerbaux, and Pierre-François Coheur
Atmos. Chem. Phys., 22, 10993–11007, https://doi.org/10.5194/acp-22-10993-2022, https://doi.org/10.5194/acp-22-10993-2022, 2022
Short summary
Short summary
The first 10-year data record (2008–2017) of HNO3 total columns measured by the IASI-A/MetOp infrared sounder is exploited to monitor the relationship between the temperature decrease and the HNO3 loss observed each year in the Antarctic stratosphere during the polar night. We verify the recurrence of specific regimes in the cycle of IASI HNO3 and identify the day and the 50 hPa temperature (
drop temperature) corresponding to the onset of denitrification in Antarctic winter for each year.
Mark Weber, Carlo Arosio, Melanie Coldewey-Egbers, Vitali E. Fioletov, Stacey M. Frith, Jeannette D. Wild, Kleareti Tourpali, John P. Burrows, and Diego Loyola
Atmos. Chem. Phys., 22, 6843–6859, https://doi.org/10.5194/acp-22-6843-2022, https://doi.org/10.5194/acp-22-6843-2022, 2022
Short summary
Short summary
Long-term trends in column ozone have been determined from five merged total ozone datasets spanning the period 1978–2020. We show that ozone recovery due to the decline in stratospheric halogens after the 1990s (as regulated by the Montreal Protocol) is evident outside the tropical region and amounts to half a percent per decade. The ozone recovery in the Northern Hemisphere is however compensated for by the negative long-term trend contribution from atmospheric dynamics since the year 2000.
Melanie Coldewey-Egbers, Diego G. Loyola, Christophe Lerot, and Michel Van Roozendael
Atmos. Chem. Phys., 22, 6861–6878, https://doi.org/10.5194/acp-22-6861-2022, https://doi.org/10.5194/acp-22-6861-2022, 2022
Short summary
Short summary
Monitoring the long-term evolution of ozone and the evaluation of trends is essential to assess the efficacy of the Montreal Protocol and its amendments. The first signs of recovery as a consequence of decreasing amounts of ozone-depleting substances have been reported, but the impact needs to be investigated in more detail. In the Southern Hemisphere significant positive trends were found, but in the Northern Hemisphere the expected increase is still not yet visible.
Lucien Froidevaux, Douglas E. Kinnison, Michelle L. Santee, Luis F. Millán, Nathaniel J. Livesey, William G. Read, Charles G. Bardeen, John J. Orlando, and Ryan A. Fuller
Atmos. Chem. Phys., 22, 4779–4799, https://doi.org/10.5194/acp-22-4779-2022, https://doi.org/10.5194/acp-22-4779-2022, 2022
Short summary
Short summary
We analyze satellite-derived distributions of chlorine monoxide (ClO) and hypochlorous acid (HOCl) in the upper atmosphere. For 2005–2020, from 50°S to 50°N and over ~30 to 45 km, ClO and HOCl decreased by −0.7 % and −0.4 % per year, respectively. A detailed model of chemistry and dynamics agrees with the results. These decreases confirm the effectiveness of the 1987 Montreal Protocol, which limited emissions of chlorine- and bromine-containing source gases, in order to protect the ozone layer.
Florian Haenel, Wolfgang Woiwode, Jennifer Buchmüller, Felix Friedl-Vallon, Michael Höpfner, Sören Johansson, Farahnaz Khosrawi, Oliver Kirner, Anne Kleinert, Hermann Oelhaf, Johannes Orphal, Roland Ruhnke, Björn-Martin Sinnhuber, Jörn Ungermann, Michael Weimer, and Peter Braesicke
Atmos. Chem. Phys., 22, 2843–2870, https://doi.org/10.5194/acp-22-2843-2022, https://doi.org/10.5194/acp-22-2843-2022, 2022
Short summary
Short summary
We compare remote sensing observations of H2O, O3, HNO3 and clouds in the upper troposphere–lowermost stratosphere during an Arctic winter long-range research flight with simulations by two different state-of-the-art model systems. We find good agreement for dynamical structures, trace gas distributions and clouds. We investigate model biases and sensitivities, with the goal of aiding model development and improving our understanding of processes in the upper troposphere–lowermost stratosphere.
Sandip S. Dhomse, Martyn P. Chipperfield, Wuhu Feng, Ryan Hossaini, Graham W. Mann, Michelle L. Santee, and Mark Weber
Atmos. Chem. Phys., 22, 903–916, https://doi.org/10.5194/acp-22-903-2022, https://doi.org/10.5194/acp-22-903-2022, 2022
Short summary
Short summary
Solar flux variations associated with 11-year sunspot cycle is believed to exert important external climate forcing. As largest variations occur at shorter wavelengths such as ultra-violet part of the solar spectrum, associated changes in stratospheric ozone are thought to provide direct evidence for solar climate interaction. Until now, most of the studies reported double-peak structured solar cycle signal (SCS), but relatively new satellite data suggest only single-peak-structured SCS.
Jānis Puķīte, Christian Borger, Steffen Dörner, Myojeong Gu, and Thomas Wagner
Atmos. Chem. Phys., 22, 245–272, https://doi.org/10.5194/acp-22-245-2022, https://doi.org/10.5194/acp-22-245-2022, 2022
Short summary
Short summary
Chlorine dioxide (OClO) is an indicator for chlorine activation. New OClO data by TROPOMI (S5P) are interpreted in a meteorological context and related to CALIOP PSC observations. We report very high OClO levels for the northern hemispheric winter 2019/20 with an extraordinarily long period with a stable polar vortex. A minor stratospheric warming in the Southern Hemisphere was also observed in September 2019, where usual OClO values rapidly deactivated 1–2 weeks earlier.
Michael Höpfner, Oliver Kirner, Gerald Wetzel, Björn-Martin Sinnhuber, Florian Haenel, Sören Johansson, Johannes Orphal, Roland Ruhnke, Gabriele Stiller, and Thomas von Clarmann
Atmos. Chem. Phys., 21, 18433–18464, https://doi.org/10.5194/acp-21-18433-2021, https://doi.org/10.5194/acp-21-18433-2021, 2021
Short summary
Short summary
BrONO2 is an important reservoir gas for inorganic stratospheric bromine linked to the chemical cycles of stratospheric ozone depletion. Presently infrared limb sounding is the only way to measure BrONO2 in the atmosphere. We provide global distributions of BrONO2 derived from MIPAS observations 2002–2012. Comparisons with EMAC atmospheric modelling show an overall agreement and enable us to derive an independent estimate of stratospheric bromine of 21.2±1.4pptv based on the BrONO2 measurements.
Hugh C. Pumphrey, Michael J. Schwartz, Michelle L. Santee, George P. Kablick III, Michael D. Fromm, and Nathaniel J. Livesey
Atmos. Chem. Phys., 21, 16645–16659, https://doi.org/10.5194/acp-21-16645-2021, https://doi.org/10.5194/acp-21-16645-2021, 2021
Short summary
Short summary
Forest fires in British Columbia in August 2017 caused an unusual phenomonon: smoke and gases from the fires rose quickly to a height of 10 km. From there, the pollution continued to rise more slowly for many weeks, travelling around the world as it did so. In this paper, we describe how we used data from a satellite instrument to observe this polluted volume of air. The satellite has now been working for 16 years but has observed only three events of this type.
Jayanarayanan Kuttippurath, Wuhu Feng, Rolf Müller, Pankaj Kumar, Sarath Raj, Gopalakrishna Pillai Gopikrishnan, and Raina Roy
Atmos. Chem. Phys., 21, 14019–14037, https://doi.org/10.5194/acp-21-14019-2021, https://doi.org/10.5194/acp-21-14019-2021, 2021
Short summary
Short summary
The Arctic winter/spring 2020 was one of the coldest with a strong and long-lasting vortex, high chlorine activation, severe denitrification, and unprecedented ozone loss. The loss was even equal to the levels of some of the warm Antarctic winters. Total column ozone values below 220 DU for several weeks and ozone loss saturation were observed during the period. These results show an unusual meteorology and warrant dedicated studies on the impact of climate change on ozone loss.
Roeland Van Malderen, Dirk De Muer, Hugo De Backer, Deniz Poyraz, Willem W. Verstraeten, Veerle De Bock, Andy W. Delcloo, Alexander Mangold, Quentin Laffineur, Marc Allaart, Frans Fierens, and Valérie Thouret
Atmos. Chem. Phys., 21, 12385–12411, https://doi.org/10.5194/acp-21-12385-2021, https://doi.org/10.5194/acp-21-12385-2021, 2021
Short summary
Short summary
The main aim of initiating measurements of the vertical distribution of the ozone concentration by means of ozonesondes attached to weather balloons at Uccle in 1969 was to improve weather forecasts. Since then, this measurement technique has barely changed, but the dense, long-term, and homogeneous Uccle dataset currently remains crucial for studying the temporal evolution of ozone from the surface to the stratosphere and is also the backbone of the validation of satellite ozone retrievals.
Lily N. Zhang, Susan Solomon, Kane A. Stone, Jonathan D. Shanklin, Joshua D. Eveson, Steve Colwell, John P. Burrows, Mark Weber, Pieternel F. Levelt, Natalya A. Kramarova, and David P. Haffner
Atmos. Chem. Phys., 21, 9829–9838, https://doi.org/10.5194/acp-21-9829-2021, https://doi.org/10.5194/acp-21-9829-2021, 2021
Short summary
Short summary
In the 1980s, measurements at the British Antarctic Survey station in Halley, Antarctica, led to the discovery of the ozone hole. The Halley total ozone record continues to be uniquely valuable for studies of long-term changes in Antarctic ozone. Environmental conditions in 2017 forced a temporary cessation of operations, leading to a gap in the historic record. We develop and test a method for filling in the Halley record using satellite data and find evidence to further support ozone recovery.
Gerald Wetzel, Felix Friedl-Vallon, Norbert Glatthor, Jens-Uwe Grooß, Thomas Gulde, Michael Höpfner, Sören Johansson, Farahnaz Khosrawi, Oliver Kirner, Anne Kleinert, Erik Kretschmer, Guido Maucher, Hans Nordmeyer, Hermann Oelhaf, Johannes Orphal, Christof Piesch, Björn-Martin Sinnhuber, Jörn Ungermann, and Bärbel Vogel
Atmos. Chem. Phys., 21, 8213–8232, https://doi.org/10.5194/acp-21-8213-2021, https://doi.org/10.5194/acp-21-8213-2021, 2021
Short summary
Short summary
Measurements of the pollutants C2H6, C2H2, HCOOH, and PAN were performed in the North Atlantic UTLS region with the airborne limb imager GLORIA in 2017. Enhanced amounts of these species were detected in the upper troposphere and even in the lowermost stratosphere (PAN). Main sources of these gases are forest fires in North America and anthropogenic pollution in South Asia. Simulations of EMAC and CAMS are qualitatively able to reproduce the measured data but underestimate the absolute amounts.
Viktoria F. Sofieva, Monika Szeląg, Johanna Tamminen, Erkki Kyrölä, Doug Degenstein, Chris Roth, Daniel Zawada, Alexei Rozanov, Carlo Arosio, John P. Burrows, Mark Weber, Alexandra Laeng, Gabriele P. Stiller, Thomas von Clarmann, Lucien Froidevaux, Nathaniel Livesey, Michel van Roozendael, and Christian Retscher
Atmos. Chem. Phys., 21, 6707–6720, https://doi.org/10.5194/acp-21-6707-2021, https://doi.org/10.5194/acp-21-6707-2021, 2021
Short summary
Short summary
The MErged GRIdded Dataset of Ozone Profiles is a long-term (2001–2018) stratospheric ozone profile climate data record with resolved longitudinal structure that combines the data from six limb satellite instruments. The dataset can be used for various analyses, some of which are discussed in the paper. In particular, regionally and vertically resolved ozone trends are evaluated, including trends in the polar regions.
Greg E. Bodeker and Stefanie Kremser
Atmos. Chem. Phys., 21, 5289–5300, https://doi.org/10.5194/acp-21-5289-2021, https://doi.org/10.5194/acp-21-5289-2021, 2021
Short summary
Short summary
This paper presents measures of the severity of the Antarctic ozone hole covering the period 1979 to 2019. The paper shows that while the severity of Antarctic ozone depletion grew rapidly through the last two decades of the 20th century, the severity declined thereafter and faster than expected from declines in stratospheric concentrations of the chlorine- and bromine-containing chemical compounds that destroy ozone.
Emily M. Gordon, Annika Seppälä, Bernd Funke, Johanna Tamminen, and Kaley A. Walker
Atmos. Chem. Phys., 21, 2819–2836, https://doi.org/10.5194/acp-21-2819-2021, https://doi.org/10.5194/acp-21-2819-2021, 2021
Short summary
Short summary
Energetic particle precipitation (EPP) is the rain of solar energetic particles into the Earth's atmosphere. EPP is known to deplete O3 in the polar mesosphere–upper stratosphere via the formation of NOx. NOx also causes chlorine deactivation in the lower stratosphere and has, thus, been proposed to potentially result in reduced ozone depletion in the spring. We provide the first evidence to show that NOx formed by EPP is able to remove active chlorine, resulting in enhanced total ozone column.
Stefan Brönnimann and Sylvia Nichol
Atmos. Chem. Phys., 20, 14333–14346, https://doi.org/10.5194/acp-20-14333-2020, https://doi.org/10.5194/acp-20-14333-2020, 2020
Short summary
Short summary
Historical column ozone data from New Zealand and the UK from the 1950s are digitised and re-evaluated. They allow studying the ozone layer prior to the era of ozone depletion. Day-to-day changes are addressed, which reflect the flow near the tropopause and hence may serve as a diagnostic for atmospheric circulation in a time and region of sparse radiosondes. A long-term comparison shows the amount of ozone depletion at southern mid-latitudes and indicates how far we are from full recovery.
Eliane Maillard Barras, Alexander Haefele, Liliane Nguyen, Fiona Tummon, William T. Ball, Eugene V. Rozanov, Rolf Rüfenacht, Klemens Hocke, Leonie Bernet, Niklaus Kämpfer, Gerald Nedoluha, and Ian Boyd
Atmos. Chem. Phys., 20, 8453–8471, https://doi.org/10.5194/acp-20-8453-2020, https://doi.org/10.5194/acp-20-8453-2020, 2020
Short summary
Short summary
To determine the part of the variability of the long-term ozone profile trends coming from measurement timing, we estimate microwave radiometer trends for each hour of the day with a multiple linear regression model. The variation in the trend with local solar time is not significant at the 95 % confidence level either in the stratosphere or in the low mesosphere. We conclude that systematic sampling differences between instruments cannot explain significant differences in trend estimates.
Ellis Remsberg, V. Lynn Harvey, Arlin Krueger, Larry Gordley, John C. Gille, and James M. Russell III
Atmos. Chem. Phys., 20, 3663–3668, https://doi.org/10.5194/acp-20-3663-2020, https://doi.org/10.5194/acp-20-3663-2020, 2020
Short summary
Short summary
The Nimbus 7 limb infrared monitor of the stratosphere (LIMS) instrument operated from October 25, 1978, through May 28, 1979. This note focuses on the lower stratosphere of the southern hemisphere, subpolar regions in relation to the position of the polar vortex. Both LIMS ozone and nitric acid show reductions within the edge of the polar vortex at 46 hPa near 60° S from late October through mid-November 1978, indicating that there was a chemical loss of Antarctic ozone some weeks earlier.
Hideaki Nakajima, Isao Murata, Yoshihiro Nagahama, Hideharu Akiyoshi, Kosuke Saeki, Takeshi Kinase, Masanori Takeda, Yoshihiro Tomikawa, Eric Dupuy, and Nicholas B. Jones
Atmos. Chem. Phys., 20, 1043–1074, https://doi.org/10.5194/acp-20-1043-2020, https://doi.org/10.5194/acp-20-1043-2020, 2020
Short summary
Short summary
This paper presents temporal evolution of stratospheric chlorine and minor species related to Antarctic ozone depletion, based on FTIR measurements at Syowa Station, and satellite measurements by MLS and MIPAS in 2007 and 2011. After chlorine reservoir species were processed on PSCs and active ClO was formed, different chlorine deactivation pathways into reservoir species were identified, depending on the relative location of Syowa Station to the polar vortex boundary.
Catherine Wespes, Daniel Hurtmans, Simon Chabrillat, Gaétane Ronsmans, Cathy Clerbaux, and Pierre-François Coheur
Atmos. Chem. Phys., 19, 14031–14056, https://doi.org/10.5194/acp-19-14031-2019, https://doi.org/10.5194/acp-19-14031-2019, 2019
Short summary
Short summary
This paper highlights the global fingerprint of recent changes in O3 in both the middle–upper and lower stratosphere from the first 10 years of the IASI/Metop-A satellite measurements. The results present the first detection of a significant O3 recovery at middle–high latitudes in winter–spring in the stratosphere as well as in the total column from one single dataset. They also show a speeding up in the recovery at high southern latitudes contrasting with a decline at northern mid-latitudes.
Maxime Prignon, Simon Chabrillat, Daniele Minganti, Simon O'Doherty, Christian Servais, Gabriele Stiller, Geoffrey C. Toon, Martin K. Vollmer, and Emmanuel Mahieu
Atmos. Chem. Phys., 19, 12309–12324, https://doi.org/10.5194/acp-19-12309-2019, https://doi.org/10.5194/acp-19-12309-2019, 2019
Short summary
Short summary
Hydrochlorofluorocarbons (HCFCs) are the first, but temporary, substitution products for the strong ozone-depleting chlorofluorocarbons (CFCs). In this work, we present and validate an improved method to retrieve the most abundant HCFC in the atmosphere, allowing its evolution to be monitored independently in the troposphere and stratosphere. These kinds of contributions are fundamental for scrutinizing the fulfilment of the Montreal Protocol on Substances that Deplete the Ozone Layer.
Yves J. Rochon, Michael Sitwell, and Young-Min Cho
Atmos. Chem. Phys., 19, 9431–9451, https://doi.org/10.5194/acp-19-9431-2019, https://doi.org/10.5194/acp-19-9431-2019, 2019
Short summary
Short summary
This paper describes adaptable methodologies and results of bias correction applied for the assimilation of total column ozone data from different satellite instruments. The results demonstrate the capability of ensuring short-term forecast biases of total column ozone to be typically within 1 % of a reference for latitudinal ranges where measurements are available. The bias estimation and correction software can be utilized for measurements of other constituents.
Sören Johansson, Michelle L. Santee, Jens-Uwe Grooß, Michael Höpfner, Marleen Braun, Felix Friedl-Vallon, Farahnaz Khosrawi, Oliver Kirner, Erik Kretschmer, Hermann Oelhaf, Johannes Orphal, Björn-Martin Sinnhuber, Ines Tritscher, Jörn Ungermann, Kaley A. Walker, and Wolfgang Woiwode
Atmos. Chem. Phys., 19, 8311–8338, https://doi.org/10.5194/acp-19-8311-2019, https://doi.org/10.5194/acp-19-8311-2019, 2019
Short summary
Short summary
We present a study based on GLORIA aircraft and MLS/ACE-FTS/CALIOP satellite measurements during the Arctic winter 2015/16, which demonstrate (for the Arctic) unusual chlorine deactivation into HCl instead of ClONO2 due to low ozone abundances in the lowermost stratosphere, with a focus at 380 K potential temperature. The atmospheric models CLaMS and EMAC are evaluated, and measured ClONO2 is linked with transport and in situ deactivation in the lowermost stratosphere.
Evgenia Galytska, Alexey Rozanov, Martyn P. Chipperfield, Sandip. S. Dhomse, Mark Weber, Carlo Arosio, Wuhu Feng, and John P. Burrows
Atmos. Chem. Phys., 19, 767–783, https://doi.org/10.5194/acp-19-767-2019, https://doi.org/10.5194/acp-19-767-2019, 2019
Short summary
Short summary
In this study we analysed ozone changes in the tropical mid-stratosphere as observed by the SCIAMACHY instrument during 2004–2012. We used simulations from TOMCAT model with different chemical and dynamical forcings to reveal primary causes of ozone changes. We also considered measured NO2 and modelled NOx, NOx, and N2O data. With modelled AoA data we identified seasonal changes in the upwelling speed and explained how those changes affect N2O chemistry which leads to observed ozone changes.
Debora Griffin, Kaley A. Walker, Ingo Wohltmann, Sandip S. Dhomse, Markus Rex, Martyn P. Chipperfield, Wuhu Feng, Gloria L. Manney, Jane Liu, and David Tarasick
Atmos. Chem. Phys., 19, 577–601, https://doi.org/10.5194/acp-19-577-2019, https://doi.org/10.5194/acp-19-577-2019, 2019
Short summary
Short summary
Ozone in the stratosphere is important to protect the Earth from UV radiation. Using measurements taken by the Atmospheric Chemistry Experiment satellite between 2005 and 2013, we examine different methods to calculate the ozone loss in the high Arctic and establish the altitude at which most of the ozone is destroyed. Our results show that the different methods agree within the uncertainties. Recommendations are made on which methods are most appropriate to use.
Jiali Luo, Laura L. Pan, Shawn B. Honomichl, John W. Bergman, William J. Randel, Gene Francis, Cathy Clerbaux, Maya George, Xiong Liu, and Wenshou Tian
Atmos. Chem. Phys., 18, 12511–12530, https://doi.org/10.5194/acp-18-12511-2018, https://doi.org/10.5194/acp-18-12511-2018, 2018
Short summary
Short summary
We analyze upper tropospheric CO and O3 using satellite data from limb-viewing (MLS) and nadir-viewing (IASI and OMI) sensors, together with dynamical variables, to examine how the two types of data complement each other in representing the chemical variability associated with the day-to-day dynamical variability in the Asian summer monsoon anticyclone. The results provide new observational evidence of eddy shedding in upper tropospheric CO distribution.
Richard S. Stolarski, Anne R. Douglass, and Susan E. Strahan
Atmos. Chem. Phys., 18, 5691–5697, https://doi.org/10.5194/acp-18-5691-2018, https://doi.org/10.5194/acp-18-5691-2018, 2018
Short summary
Short summary
Detecting trends in short data sets of stratospheric molecules is difficult because of variability due to dynamical fluctuations. We suggest that one way around this difficulty is using the measurements of one molecule to remove dynamical variability from the measurements of another molecule. We illustrate this using Aura MLS measurements of N2O to help us sort out issues in the determination of trends in HCl. This shows that HCl is decreasing throughout the middle stratosphere as expected.
Erkki Kyrölä, Monika E. Andersson, Pekka T. Verronen, Marko Laine, Simo Tukiainen, and Daniel R. Marsh
Atmos. Chem. Phys., 18, 5001–5019, https://doi.org/10.5194/acp-18-5001-2018, https://doi.org/10.5194/acp-18-5001-2018, 2018
Short summary
Short summary
In this work we compare three key constituents of the middle atmosphere (ozone, NO2, and NO3) from the GOMOS satellite instrument with the WACCM model. We find that in the stratosphere (below 50 km) ozone differences are very small, but in the mesosphere large deviations are found. GOMOS and WACCM NO2 agree reasonably well except in the polar areas. These differences can be connected to the solar particle storms. For NO3, WACCM results agree with GOMOS with a very high correlation.
Martine De Mazière, Anne M. Thompson, Michael J. Kurylo, Jeannette D. Wild, Germar Bernhard, Thomas Blumenstock, Geir O. Braathen, James W. Hannigan, Jean-Christopher Lambert, Thierry Leblanc, Thomas J. McGee, Gerald Nedoluha, Irina Petropavlovskikh, Gunther Seckmeyer, Paul C. Simon, Wolfgang Steinbrecht, and Susan E. Strahan
Atmos. Chem. Phys., 18, 4935–4964, https://doi.org/10.5194/acp-18-4935-2018, https://doi.org/10.5194/acp-18-4935-2018, 2018
Short summary
Short summary
This paper serves as an introduction to the special issue "Twenty-five years of operations of the Network for the Detection of Atmospheric Composition Change (NDACC)". It describes the origins of the network, its actual status, and some perspectives for its future evolution in the context of atmospheric sciences.
Gaétane Ronsmans, Catherine Wespes, Daniel Hurtmans, Cathy Clerbaux, and Pierre-François Coheur
Atmos. Chem. Phys., 18, 4403–4423, https://doi.org/10.5194/acp-18-4403-2018, https://doi.org/10.5194/acp-18-4403-2018, 2018
Short summary
Short summary
The paper aims at understanding the variability of nitric acid (HNO3) in the stratosphere; 9-year time series of IASI measurements are analysed and, for the first time for HNO3, fitted with regression models in order to identify the factors at play. It was found that the annual variability is the main driver and that the polar stratospheric clouds influence greatly HNO3 variability at polar latitudes. The results show the potential of such analyses to better understand the polar processes.
Franziska Schranz, Susana Fernandez, Niklaus Kämpfer, and Mathias Palm
Atmos. Chem. Phys., 18, 4113–4130, https://doi.org/10.5194/acp-18-4113-2018, https://doi.org/10.5194/acp-18-4113-2018, 2018
Short summary
Short summary
We present 1 year of ozone measurements form two ground-based microwave radiometers located at Ny-Ålesund, Svalbard. The ozone measurements cover an altitude range of 25–70 km altitude and have a high time resolution of 1–2 h. With these datasets and model data a comprehensive analysis of the ozone diurnal cycle in the Arctic is performed for the different insolation conditions throughout the year. In the stratosphere we find a diurnal cycle which persists over the whole polar day.
Mark Weber, Melanie Coldewey-Egbers, Vitali E. Fioletov, Stacey M. Frith, Jeannette D. Wild, John P. Burrows, Craig S. Long, and Diego Loyola
Atmos. Chem. Phys., 18, 2097–2117, https://doi.org/10.5194/acp-18-2097-2018, https://doi.org/10.5194/acp-18-2097-2018, 2018
Short summary
Short summary
This paper commemorates the 30-year anniversary of the initial signing of the Montreal Protocol (MP) on substances that deplete the ozone layer. The MP is so far successful in reducing ozone-depleting substances, and total ozone decline was successfully stopped by the late 1990s. Total ozone levels have been mostly stable since then. In some regions, barely significant upward trends are observed that suggest an emergence into the expected ozone recovery phase.
Robert P. Damadeo, Joseph M. Zawodny, Ellis E. Remsberg, and Kaley A. Walker
Atmos. Chem. Phys., 18, 535–554, https://doi.org/10.5194/acp-18-535-2018, https://doi.org/10.5194/acp-18-535-2018, 2018
Short summary
Short summary
An ozone trend analysis that compensates for sampling biases is applied to sparsely sampled occultation data sets. International assessments have noted deficiencies in past trend analyses and this work addresses those sources of uncertainty. The nonuniform sampling patterns in data sets and drifts between data sets can affect derived recovery trends by up to 2 % decade−1. The limitations inherent to all techniques are also described and a potential path forward towards resolution is presented.
Gerald Wetzel, Hermann Oelhaf, Michael Höpfner, Felix Friedl-Vallon, Andreas Ebersoldt, Thomas Gulde, Sebastian Kazarski, Oliver Kirner, Anne Kleinert, Guido Maucher, Hans Nordmeyer, Johannes Orphal, Roland Ruhnke, and Björn-Martin Sinnhuber
Atmos. Chem. Phys., 17, 14631–14643, https://doi.org/10.5194/acp-17-14631-2017, https://doi.org/10.5194/acp-17-14631-2017, 2017
Short summary
Short summary
We report the first stratospheric measurements of the diurnal variation in the inorganic bromine (Bry) reservoir species BrONO2 around sunrise and sunset. The main goal of these observations was to check the current understanding of stratospheric bromine chemistry and to estimate the amount of lower-stratospheric Bry. The calculated temporal variation in BrONO2 largely reproduces the balloon-borne observations. The amount of Bry was estimated to be about 21–25 pptv in the lower stratosphere.
Cited articles
Carslaw, K. S.: A vortex-scale simulation of the growth and sedimentation of
large nitric acid hydrate particles, J. Geophys. Res., 107, SOL 43-1–SOL 43–16,
https://doi.org/10.1029/2001JD000467, 2002. a, b
Carslaw, K. S., Wirth, M., Tsias, A., Luo, B. P., Dörnbrack, A., Leutbecher,
M., Volkert, H., Renger, W., Bacmeister, J. T., and Peter, T.: Particle
microphysics and chemistry in remotely observed mountain polar stratospheric
clouds, J. Geophys. Res.-Atmos., 103, 5785–5796,
https://doi.org/10.1029/97JD03626, 1998. a
Davies, S., Mann, G. W., Carslaw, K. S., Chipperfield, M. P., Kettleborough, J. A., Santee, M. L., Oelhaf, H., Wetzel, G., Sasano, Y., and Sugita, T.: 3-D microphysical model studies of Arctic denitrification: comparison with observations, Atmos. Chem. Phys., 5, 3093–3109, https://doi.org/10.5194/acp-5-3093-2005, 2005. a
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi,
S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P.,
Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C.,
Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B.,
Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M.,
Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park,
B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart,
F.: The ERA-Interim reanalysis: configuration and performance of the data
assimilation system, Q. J. Roy. Meteor. Soc.,
137, 553–597, https://doi.org/10.1002/qj.828,
2011. a
Dibb, J. E., Scheuer, E., Avery, M., Plant, J., and Sachse, G.: In situ
evidence for renitrification in the Arctic lower stratosphere during the
polar aura validation experiment (PAVE), Geophys. Res. Lett., 33, L12815,
https://doi.org/10.1029/2006GL026243,
2006. a, b
Dunkerton, T. J. and Delisi, D. P.: Evolution of potential vorticity in the
winter stratosphere of January-February 1979, J. Geophys.
Res., 91, 1199, https://doi.org/10.1029/JD091iD01p01199, 1986. a
Eckstein, J., Ruhnke, R., Pfahl, S., Christner, E., Diekmann, C., Dyroff, C., Reinert, D., Rieger, D., Schneider, M., Schröter, J., Zahn, A., and Braesicke, P.: From climatological to small-scale applications: simulating water isotopologues with ICON-ART-Iso (version 2.3), Geosci. Model Dev., 11, 5113–5133, https://doi.org/10.5194/gmd-11-5113-2018, 2018. a
Engel, I., Luo, B. P., Pitts, M. C., Poole, L. R., Hoyle, C. R., Grooß, J.-U., Dörnbrack, A., and Peter, T.: Heterogeneous formation of polar stratospheric clouds – Part 2: Nucleation of ice on synoptic scales, Atmos. Chem. Phys., 13, 10769–10785, https://doi.org/10.5194/acp-13-10769-2013, 2013. a
Fahey, D. W., Kelly, K. K., Ferry, G. V., Poole, L. R., Wilson, J. C., Murphy,
D. M., Loewenstein, M., and Chan, K. R.: In situ measurements of total
reactive nitrogen, total water, and aerosol in a polar stratospheric cloud in
the Antarctic, J. Geophys. Res.-Atmos., 94,
11299–11315, https://doi.org/10.1029/JD094iD09p11299,
1989. a, b
Fahey, D. W., Kelly, K. K., Kawa, S. R., Tuck, A. F., Loewenstein, M., Chan,
K. R., and Heidt, L. E.: Observations of denitrification and dehydration in
the winter polar stratospheres, Nature, 344, 321–324,
https://doi.org/10.1038/344321a0, 1990. a, b
Feigl, C., Schlager, H., Ziereis, H., Curtius, J., Arnold, F., and Schiller,
C.: Observation of NOy uptake by particles in the Arctic tropopause region at
low temperatures, Geophys. Res. Lett., 26, 2215–2218,
https://doi.org/10.1029/1999GL900338,
1999. a
Fischer, H., Waibel, A. E., Welling, M., Wienhold, F. G., Zenker, T., Crutzen,
P. J., Arnold, F., Bürger, V., Schneider, J., Bregman, A., Lelieveld, J.,
and Siegmund, P. C.: Observations of high concentrations of total reactive
nitrogen (NOy) and nitric acid (HNO3) in the lower Arctic stratosphere
during the Stratosphere-Troposphere Experiment by Aircraft Measurements
(STREAM) II campaign in February 1995, J. Geophys. Res.-Atmos., 102, 23559–23571, https://doi.org/10.1029/97JD02012,
1997. a
Fischer, H., Birk, M., Blom, C., Carli, B., Carlotti, M., von Clarmann, T., Delbouille, L., Dudhia, A., Ehhalt, D., Endemann, M., Flaud, J. M., Gessner, R., Kleinert, A., Koopman, R., Langen, J., López-Puertas, M., Mosner, P., Nett, H., Oelhaf, H., Perron, G., Remedios, J., Ridolfi, M., Stiller, G., and Zander, R.: MIPAS: an instrument for atmospheric and climate research, Atmos. Chem. Phys., 8, 2151–2188, https://doi.org/10.5194/acp-8-2151-2008, 2008. a
Friedl-Vallon, F., Gulde, T., Hase, F., Kleinert, A., Kulessa, T., Maucher, G., Neubert, T., Olschewski, F., Piesch, C., Preusse, P., Rongen, H., Sartorius, C., Schneider, H., Schönfeld, A., Tan, V., Bayer, N., Blank, J., Dapp, R., Ebersoldt, A., Fischer, H., Graf, F., Guggenmoser, T., Höpfner, M., Kaufmann, M., Kretschmer, E., Latzko, T., Nordmeyer, H., Oelhaf, H., Orphal, J., Riese, M., Schardt, G., Schillings, J., Sha, M. K., Suminska-Ebersoldt, O., and Ungermann, J.: Instrument concept of the imaging Fourier transform spectrometer GLORIA, Atmos. Meas. Tech., 7, 3565–3577, https://doi.org/10.5194/amt-7-3565-2014, 2014. a, b, c
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L.,
Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K.,
Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A.,
da Silva, A. M., Gu, W., Kim, G.-K., Koster, R., Lucchesi, R., Merkova, D.,
Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert,
S. D., Sienkiewicz, M., and Zhao, B.: The Modern-Era Retrospective Analysis
for Research and Applications, Version 2 (MERRA-2), J. Climate, 30,
5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017. a
Gettelman, A., Hoor, P., Pan, L. L., Randel, W. J., Hegglin, M. I., and Birner,
T.: THE EXTRATROPICAL UPPER TROPOSPHERE AND LOWER STRATOSPHERE, Rev.
Geophys., 49, RG3003, https://doi.org/10.1029/2011RG000355,
2011. a, b
Grooß, J.-U., Günther, G., Müller, R., Konopka, P., Bausch, S., Schlager, H., Voigt, C., Volk, C. M., and Toon, G. C.: Simulation of denitrification and ozone loss for the Arctic winter 2002/2003, Atmos. Chem. Phys., 5, 1437–1448, https://doi.org/10.5194/acp-5-1437-2005, 2005. a, b, c
Grooß, J.-U., Engel, I., Borrmann, S., Frey, W., Günther, G., Hoyle, C. R., Kivi, R., Luo, B. P., Molleker, S., Peter, T., Pitts, M. C., Schlager, H., Stiller, G., Vömel, H., Walker, K. A., and Müller, R.: Nitric acid trihydrate nucleation and denitrification in the Arctic stratosphere, Atmos. Chem. Phys., 14, 1055–1073, https://doi.org/10.5194/acp-14-1055-2014, 2014. a, b, c, d, e
Höpfner, M., Larsen, N., Spang, R., Luo, B. P., Ma, J., Svendsen, S. H., Eckermann, S. D., Knudsen, B., Massoli, P., Cairo, F., Stiller, G., v. Clarmann, T., and Fischer, H.: MIPAS detects Antarctic stratospheric belt of NAT PSCs caused by mountain waves, Atmos. Chem. Phys., 6, 1221–1230, https://doi.org/10.5194/acp-6-1221-2006, 2006. a
Höpfner, M., Blom, C. E., Echle, G., Glatthor, N., Hase, F., Stiller, G. P.,
Karlsruhe, F., and Karlsruhe, U. G.: Retrieval simulations for MIPAS-STR
measurements, in: IRS 2000: Current Problems in Atmospheric Radiation,
Proc. of the Internat. Radiation Symp., St.Petersburg, DEEPAK Publ., 2001. a
Hoyle, C. R., Engel, I., Luo, B. P., Pitts, M. C., Poole, L. R., Grooß, J.-U., and Peter, T.: Heterogeneous formation of polar stratospheric clouds – Part 1: Nucleation of nitric acid trihydrate (NAT), Atmos. Chem. Phys., 13, 9577–9595, https://doi.org/10.5194/acp-13-9577-2013, 2013. a, b
Hübler, G., Fahey, D. W., Kelly, K. K., Montzka, D. D., Carroll, M. A., Tuck,
A. F., Heidt, L. E., Pollock, W. H., Gregory, G. L., and Vedder, J. F.:
Redistribution of reactive odd nitrogen in the lower Arctic stratosphere,
Geophys. Res. Lett., 17, 453–456, https://doi.org/10.1029/GL017i004p00453,
1990. a, b
Jin, J. J., Semeniuk, K., Manney, G. L., Jonsson, A. I., Beagley, S. R.,
McConnell, J. C., Rinsland, C. P., Boone, C. D., Walker, K. A., and Bernath,
P. F.: Denitrification in the Arctic winter 2004/2005: Observations from
ACE-FTS, Geophys. Res. Lett., 33, L15S01,
https://doi.org/10.1029/2006GL027687, 2006. a, b
Johansson, S., Woiwode, W., Höpfner, M., Friedl-Vallon, F., Kleinert, A., Kretschmer, E., Latzko, T., Orphal, J., Preusse, P., Ungermann, J., Santee, M. L., Jurkat-Witschas, T., Marsing, A., Voigt, C., Giez, A., Krämer, M., Rolf, C., Zahn, A., Engel, A., Sinnhuber, B.-M., and Oelhaf, H.: Airborne limb-imaging measurements of temperature, HNO3, O3, ClONO2, H2O and CFC-12 during the Arctic winter 2015/2016: characterization, in situ validation and comparison to Aura/MLS, Atmos. Meas. Tech., 11, 4737–4756, https://doi.org/10.5194/amt-11-4737-2018, 2018a. a, b, c, d, e
Johansson, S., Woiwode, W., and Höpfner, M.: GLORIA Chemistry Mode temperature and trace gas retrievals from the POLSTRACC/GW-LCYCLEII/GWEX/SALSA campaigns 2015/2016, KIT Bibliothek, https://doi.org/10.5445/IR/1000086506, 2018b. a
Johansson, S., Santee, M. L., Grooß, J.-U., Höpfner, M., Braun, M., Friedl-Vallon, F., Khosrawi, F., Kirner, O., Kretschmer, E., Oelhaf, H., Orphal, J., Sinnhuber, B.-M., Tritscher, I., Ungermann, J., Walker, K. A., and Woiwode, W.: Unusual chlorine partitioning in the 2015/16 Arctic winter lowermost stratosphere: observations and simulations, Atmos. Chem. Phys., 19, 8311–8338, https://doi.org/10.5194/acp-19-8311-2019, 2019. a, b, c, d
Khosrawi, F., Urban, J., Pitts, M. C., Voelger, P., Achtert, P., Kaphlanov, M., Santee, M. L., Manney, G. L., Murtagh, D., and Fricke, K.-H.: Denitrification and polar stratospheric cloud formation during the Arctic winter 2009/2010, Atmos. Chem. Phys., 11, 8471–8487, https://doi.org/10.5194/acp-11-8471-2011, 2011. a
Khosrawi, F., Kirner, O., Sinnhuber, B.-M., Johansson, S., Höpfner, M., Santee, M. L., Froidevaux, L., Ungermann, J., Ruhnke, R., Woiwode, W., Oelhaf, H., and Braesicke, P.: Denitrification, dehydration and ozone loss during the 2015/2016 Arctic winter, Atmos. Chem. Phys., 17, 12893–12910, https://doi.org/10.5194/acp-17-12893-2017, 2017. a, b, c
Kim, Y., Choi, W., Lee, K., Park, J. H., Massie, S. T., Sasano, Y., Nakajima,
H., and Yokota, T.: Polar stratospheric clouds observed by the ILAS‐II in
the Antarctic region: Dual compositions and variation of compositions during
June to August of 2003, J. Geophys. Res.-Atmos., 111, D13S90,
https://doi.org/10.1029/2005JD006445,
2006. a
Kleinert, A., Friedl-Vallon, F., Guggenmoser, T., Höpfner, M., Neubert, T., Ribalda, R., Sha, M. K., Ungermann, J., Blank, J., Ebersoldt, A., Kretschmer, E., Latzko, T., Oelhaf, H., Olschewski, F., and Preusse, P.: Level 0 to 1 processing of the imaging Fourier transform spectrometer GLORIA: generation of radiometrically and spectrally calibrated spectra, Atmos. Meas. Tech., 7, 4167–4184, https://doi.org/10.5194/amt-7-4167-2014, 2014. a
Krause, J., Hoor, P., Engel, A., Plöger, F., Grooß, J.-U., Bönisch, H., Keber, T., Sinnhuber, B.-M., Woiwode, W., and Oelhaf, H.: Mixing and ageing in the polar lower stratosphere in winter 2015–2016, Atmos. Chem. Phys., 18, 6057–6073, https://doi.org/10.5194/acp-18-6057-2018, 2018. a
Manney, G. L. and Lawrence, Z. D.: The major stratospheric final warming in 2016: dispersal of vortex air and termination of Arctic chemical ozone loss, Atmos. Chem. Phys., 16, 15371–15396, https://doi.org/10.5194/acp-16-15371-2016, 2016. a, b, c, d
Manney, G. L., Zurek, R. W., O'Neill, A., and Swinbank, R.: On the Motion of
Air through the Stratospheric Polar Vortex, J. Atmos.
Sci., 51, 2973–2994,
https://doi.org/10.1175/1520-0469(1994)051<2973:OTMOAT>2.0.CO;2,
1994. a
Matthias, V., Dörnbrack, A., and Stober, G.: The extraordinarily strong
and cold polar vortex in the early northern winter 2015/2016, Geophys.
Res. Lett., 43, 12287–12294, https://doi.org/10.1002/2016GL071676, 2016. a
McKenna, D. S.: A new Chemical Lagrangian Model of the Stratosphere (CLaMS) 1.
Formulation of advection and mixing, J. Geophys. Res., 107,
1435, https://doi.org/10.1029/2000JD000114, 2002a. a
McKenna, D. S.: A new Chemical Lagrangian Model of the Stratosphere (CLaMS) 2.
Formulation of chemistry scheme and initialization, J. Geophys.
Res., 107, 4256, https://doi.org/10.1029/2000JD000113, 2002b. a
Molleker, S., Borrmann, S., Schlager, H., Luo, B., Frey, W., Klingebiel, M., Weigel, R., Ebert, M., Mitev, V., Matthey, R., Woiwode, W., Oelhaf, H., Dörnbrack, A., Stratmann, G., Grooß, J.-U., Günther, G., Vogel, B., Müller, R., Krämer, M., Meyer, J., and Cairo, F.: Microphysical properties of synoptic-scale polar stratospheric clouds: in situ measurements of unexpectedly large HNO3-containing particles in the Arctic vortex, Atmos. Chem. Phys., 14, 10785–10801, https://doi.org/10.5194/acp-14-10785-2014, 2014. a
Nash, E. R., Newman, P. A., Rosenfield, J. E., and Schoeberl, M. R.: An
objective determination of the polar vortex using Ertel's potential
vorticity, J. Geophys. Res.-Atmos., 101, 9471–9478,
https://doi.org/10.1029/96JD00066, 1996. a
Northway, M. J., Gao, R. S., Popp, P. J., Holecek, J. C., Fahey, D. W.,
Carslaw, K. S., Tolbert, M. A., Lait, L. R., Dhaniyala, S., Flagan, R. C.,
Wennberg, P. O., Mahoney, M. J., Herman, R. L., Toon, G. C., and Bui, T. P.:
An analysis of large HNO3-containing particles sampled in the Arctic
stratosphere during the winter of 1999/2000, J. Geophys. Res.-Atmos., 107, SOL 41-1–SOL 41-22, https://doi.org/10.1029/2001JD001079,
2002. a
Pitts, M. C., Poole, L. R., and Gonzalez, R.: Polar stratospheric cloud climatology based on CALIPSO spaceborne lidar measurements from 2006 to 2017, Atmos. Chem. Phys., 18, 10881–10913, https://doi.org/10.5194/acp-18-10881-2018, 2018. a, b, c
Popp, P. J., Northway, M. J., Holecek, J. C., Gao, R. S., Fahey, D. W., Elkins,
J. W., Hurst, D. F., Romashkin, P. A., Toon, G. C., Sen, B., Schauffler,
S. M., Salawitch, R. J., Webster, C. R., Herman, R. L., Jost, H., Bui, T. P.,
Newman, P. A., and Lait, L. R.: Severe and extensive denitrification in the
1999–2000 Arctic winter stratosphere, Geophys. Res. Lett., 28,
2875–2878, https://doi.org/10.1029/2001GL013132, 2001. a
Rex, M., Salawitch, R. J., Deckelmann, H., von der Gathen, P., Harris, N.
R. P., Chipperfield, M. P., Naujokat, B., Reimer, E., Allaart, M., Andersen,
S. B., Bevilacqua, R., Braathen, G. O., Claude, H., Davies, J., de Backer,
H., Dier, H., Dorokhov, V., Fast, H., Gerding, M., Godin-Beekmann, S.,
Hoppel, K., Johnson, B., Kyrö, E., Litynska, Z., Moore, D., Nakane, H.,
Parrondo, M. C., Risley, A. D., Skrivankova, P., Stübi, R., Viatte, P.,
Yushkov, V., and Zerefos, C.: Arctic winter 2005: Implications for
stratospheric ozone loss and climate change, Geophys. Res. Lett.,
33, 221, https://doi.org/10.1029/2006GL026731, 2006. a, b
Riese, M., Ploeger, F., Rap, A., Vogel, B., Konopka, P., Dameris, M., and
Forster, P.: Impact of uncertainties in atmospheric mixing on simulated UTLS
composition and related radiative effects, J. Geophys. Res.-Atmos., 117, D16305, https://doi.org/10.1029/2012JD017751, 2012. a
Riese, M., Oelhaf, H., Preusse, P., Blank, J., Ern, M., Friedl-Vallon, F., Fischer, H., Guggenmoser, T., Höpfner, M., Hoor, P., Kaufmann, M., Orphal, J., Plöger, F., Spang, R., Suminska-Ebersoldt, O., Ungermann, J., Vogel, B., and Woiwode, W.: Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) scientific objectives, Atmos. Meas. Tech., 7, 1915–1928, https://doi.org/10.5194/amt-7-1915-2014, 2014. a
Santee, M. L., Manney, G. L., Froidevaux, L., Read, W. G., and Waters, J. W.:
Six years of UARS Microwave Limb Sounder HNO3 observations: Seasonal,
interhemispheric, and interannual variations in the lower stratosphere,
J. Geophys. Res.-Atmos., 104, 8225–8246,
https://doi.org/10.1029/1998JD100089,
1999. a
Sinnhuber, B.-M., Stiller, G., Ruhnke, R., von Clarmann, T., Kellmann, S., and
Aschmann, J.: Arctic winter 2010/2011 at the brink of an ozone hole,
Geophys. Res. Lett., 38, L24814, https://doi.org/10.1029/2011GL049784, 2011. a
Stiller, G. P., von Clarmann, T., Funke, B., Glatthor, N., Hase, F., Höpfner,
M., and Linden, A.: Sensitivity of trace gas abundances retrievals from
infrared limb emission spectra to simplifying approximations in radiative
transfer modelling, J. Quant. Spectrosc. Ra., 72, 249–280,
https://doi.org/10.1016/S0022-4073(01)00123-6,
2002. a
Stratmann, G., Ziereis, H., Stock, P., Brenninkmeijer, C., Zahn, A.,
Rauthe-Schöch, A., Velthoven, P., Schlager, H., and Volz-Thomas, A.: NO and
NOy in the upper troposphere: Nine years of CARIBIC measurements onboard a
passenger aircraft, Atmos. Environ., 133, 93–111,
https://doi.org/10.1016/j.atmosenv.2016.02.035,
2016. a
Tabazadeh, A. and Toon, O. B.: The presence of metastable HNO3∕H2O
solid phases in the stratosphere inferred from ER 2 data, J.
Geophys. Res.-Atmos., 101, 9071–9078, https://doi.org/10.1029/96JD00062,
1996. a
Tuck, A. F., Baumgardner, D., Chan, K. R., Dye, J. E., Elkins, J. W., Hovde,
S. J., Kelly, K. K., Loewenstein, M., Margitan, J. J., May, R. D., Podolske,
J. R., Proffitt, M. H., Rosenlof, K. H., Smith, W. L., Webster, C. R., and
Wilson, J. C.: The Brewer‐Dobson Circulation In the Light of High Altitude
In Situ Aircraft Observations, Q. J. Roy. Meteor.
Soc., 123, 1–69, https://doi.org/10.1002/qj.49712353702, 1997. a
Voigt, C., Dörnbrack, A., Wirth, M., Groß, S. M., Pitts, M. C., Poole, L. R., Baumann, R., Ehard, B., Sinnhuber, B.-M., Woiwode, W., and Oelhaf, H.: Widespread polar stratospheric ice clouds in the 2015–2016 Arctic winter – implications for ice nucleation, Atmos. Chem. Phys., 18, 15623–15641, https://doi.org/10.5194/acp-18-15623-2018, 2018. a, b
Waibel, A. E.: Arctic Ozone Loss Due to Denitrification, Science, 283, 2064–2069, https://doi.org/10.1126/science.283.5410.2064, 1999. a, b
Waters, J. W., Froidevaux, L., Harwood, R. S., Jarnot, R. F., Pickett, H. M.,
Read, W. G., Siegel, P. H., Cofield, R. E., Filipiak, M. J., Flower, D. A.,
Holden, J. R., Lau, G. K., Livesey, N. J., Manney, G. L., Pumphrey, H. C.,
Santee, M. L., Wu, D. L., Cuddy, D. T., Lay, R. R., Loo, M. S., Perun, V. S.,
Schwartz, M. J., Stek, P. C., Thurstans, R. P., Boyles, M. A., Chandra,
K. M., Chavez, M. C., Chen, G.-S., Chudasama, B. V., Dodge, R., Fuller,
R. A., Girard, M. A., Jiang, J. H., Jiang, Y., Knosp, B. W., LaBelle, R. C.,
Lam, J. C., Lee, K. A., Miller, D., Oswald, J. E., Patel, N. C., Pukala,
D. M., Quintero, O., Scaff, D. M., van Snyder, W., Tope, M. C., Wagner,
P. A., and Walch, M. J.: The Earth observing system microwave limb sounder
(EOS MLS) on the aura Satellite, IEEE T. Geosci. Remote
Sens., 44, 1075–1092, https://doi.org/10.1109/TGRS.2006.873771, 2006. a
Werner, A., Volk, C. M., Ivanova, E. V., Wetter, T., Schiller, C., Schlager, H., and Konopka, P.: Quantifying transport into the Arctic lowermost stratosphere, Atmos. Chem. Phys., 10, 11623–11639, https://doi.org/10.5194/acp-10-11623-2010, 2010.
a, b
Woiwode, W., Grooß, J.-U., Oelhaf, H., Molleker, S., Borrmann, S., Ebersoldt, A., Frey, W., Gulde, T., Khaykin, S., Maucher, G., Piesch, C., and Orphal, J.: Denitrification by large NAT particles: the impact of reduced settling velocities and hints on particle characteristics, Atmos. Chem. Phys., 14, 11525–11544, https://doi.org/10.5194/acp-14-11525-2014, 2014. a, b, c
Woiwode, W., Höpfner, M., Bi, L., Pitts, M. C., Poole, L. R., Oelhaf, H., Molleker, S., Borrmann, S., Klingebiel, M., Belyaev, G., Ebersoldt, A., Griessbach, S., Grooß, J.-U., Gulde, T., Krämer, M., Maucher, G., Piesch, C., Rolf, C., Sartorius, C., Spang, R., and Orphal, J.: Spectroscopic evidence of large aspherical β-NAT particles involved in denitrification in the December 2011 Arctic stratosphere, Atmos. Chem. Phys., 16, 9505–9532, https://doi.org/10.5194/acp-16-9505-2016, 2016. a
Zhu, Y., Toon, O. B., Pitts, M. C., Lambert, A., Bardeen, C., and Kinnison,
D. E.: Comparing simulated PSC optical properties with CALIPSO observations
during the 2010 Antarctic winter, J. Geophys. Res.-Atmos., 122, 1175–1202, https://doi.org/10.1002/2016JD025191,
2017. a
Ziereis, H., Minikin, A., Schlager, H., Gayet, J. F., Auriol, F., Stock, P.,
Baehr, J., Petzold, A., Schumann, U., Weinheimer, A., Ridley, B., and Ström,
J.: Uptake of reactive nitrogen on cirrus cloud particles during INCA,
Geophys. Res. Lett., 31, L05115, https://doi.org/10.1029/2003GL018794,
2004. a
Short summary
We analyse nitrification of the LMS in the Arctic winter 2015–2016 based on GLORIA measurements. Vertical cross sections of HNO3 for several flights show complex fine–scale structures and enhanced values down to 9 km. The extent of overall nitrification is quantified based on HNO3–O3 correlations and reaches between 5 ppbv and 7 ppbv at potential temperature levels between 350 and 380 K. Further, we compare our result with the atmospheric model CLaMS.
We analyse nitrification of the LMS in the Arctic winter 2015–2016 based on GLORIA measurements....
Altmetrics
Final-revised paper
Preprint