Articles | Volume 18, issue 7
Review article
11 Apr 2018
Review article |  | 11 Apr 2018

The Network for the Detection of Atmospheric Composition Change (NDACC): history, status and perspectives

Martine De Mazière, Anne M. Thompson, Michael J. Kurylo, Jeannette D. Wild, Germar Bernhard, Thomas Blumenstock, Geir O. Braathen, James W. Hannigan, Jean-Christopher Lambert, Thierry Leblanc, Thomas J. McGee, Gerald Nedoluha, Irina Petropavlovskikh, Gunther Seckmeyer, Paul C. Simon, Wolfgang Steinbrecht, and Susan E. Strahan

Abstract. The Network for the Detection of Atmospheric Composition Change (NDACC) is an international global network of more than 90 stations making high-quality measurements of atmospheric composition that began official operations in 1991 after 5 years of planning. Apart from sonde measurements, all measurements in the network are performed by ground-based remote-sensing techniques. Originally named the Network for the Detection of Stratospheric Change (NDSC), the name of the network was changed to NDACC in 2005 to better reflect the expanded scope of its measurements. The primary goal of NDACC is to establish long-term databases for detecting changes and trends in the chemical and physical state of the atmosphere (mesosphere, stratosphere, and troposphere) and to assess the coupling of such changes with climate and air quality. NDACC's origins, station locations, organizational structure, and data archiving are described. NDACC is structured around categories of ground-based observational techniques (sonde, lidar, microwave radiometers, Fourier-transform infrared, UV-visible DOAS (differential optical absorption spectroscopy)-type, and Dobson–Brewer spectrometers, as well as spectral UV radiometers), timely cross-cutting themes (ozone, water vapour, measurement strategies, cross-network data integration), satellite measurement systems, and theory and analyses. Participation in NDACC requires compliance with strict measurement and data protocols to ensure that the network data are of high and consistent quality. To widen its scope, NDACC has established formal collaborative agreements with eight other cooperating networks and Global Atmosphere Watch (GAW). A brief history is provided, major accomplishments of NDACC during its first 25 years of operation are reviewed, and a forward-looking perspective is presented.

Short summary
This paper serves as an introduction to the special issue "Twenty-five years of operations of the Network for the Detection of Atmospheric Composition Change (NDACC)". It describes the origins of the network, its actual status, and some perspectives for its future evolution in the context of atmospheric sciences.
Final-revised paper