Articles | Volume 18, issue 16
https://doi.org/10.5194/acp-18-12045-2018
https://doi.org/10.5194/acp-18-12045-2018
Research article
 | 
22 Aug 2018
Research article |  | 22 Aug 2018

Direct measurements of NO3 reactivity in and above the boundary layer of a mountaintop site: identification of reactive trace gases and comparison with OH reactivity

Jonathan M. Liebmann, Jennifer B. A. Muller, Dagmar Kubistin, Anja Claude, Robert Holla, Christian Plass-Dülmer, Jos Lelieveld, and John N. Crowley

Related authors

Alkyl nitrates in the boreal forest: formation via the NO3-, OH- and O3-induced oxidation of biogenic volatile organic compounds and ambient lifetimes
Jonathan Liebmann, Nicolas Sobanski, Jan Schuladen, Einar Karu, Heidi Hellén, Hannele Hakola, Qiaozhi Zha, Mikael Ehn, Matthieu Riva, Liine Heikkinen, Jonathan Williams, Horst Fischer, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 19, 10391–10403, https://doi.org/10.5194/acp-19-10391-2019,https://doi.org/10.5194/acp-19-10391-2019, 2019
Short summary
Direct measurement of NO3 radical reactivity in a boreal forest
Jonathan Liebmann, Einar Karu, Nicolas Sobanski, Jan Schuladen, Mikael Ehn, Simon Schallhart, Lauriane Quéléver, Heidi Hellen, Hannele Hakola, Thorsten Hoffmann, Jonathan Williams, Horst Fischer, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 18, 3799–3815, https://doi.org/10.5194/acp-18-3799-2018,https://doi.org/10.5194/acp-18-3799-2018, 2018
Short summary
Measurement of ambient NO3 reactivity: design, characterization and first deployment of a new instrument
Jonathan M. Liebmann, Gerhard Schuster, Jan B. Schuladen, Nicolas Sobanski, Jos Lelieveld, and John N. Crowley
Atmos. Meas. Tech., 10, 1241–1258, https://doi.org/10.5194/amt-10-1241-2017,https://doi.org/10.5194/amt-10-1241-2017, 2017
Short summary

Related subject area

Subject: Gases | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Measurement report: The Palau Atmospheric Observatory and its ozonesonde record – continuous monitoring of tropospheric composition and dynamics in the tropical western Pacific
Katrin Müller, Jordis S. Tradowsky, Peter von der Gathen, Christoph Ritter, Sharon Patris, Justus Notholt, and Markus Rex
Atmos. Chem. Phys., 24, 2169–2193, https://doi.org/10.5194/acp-24-2169-2024,https://doi.org/10.5194/acp-24-2169-2024, 2024
Short summary
Quantifying SO2 oxidation pathways to atmospheric sulfate using stable sulfur and oxygen isotopes: laboratory simulation and field observation
Ziyan Guo, Keding Lu, Pengxiang Qiu, Mingyi Xu, and Zhaobing Guo
Atmos. Chem. Phys., 24, 2195–2205, https://doi.org/10.5194/acp-24-2195-2024,https://doi.org/10.5194/acp-24-2195-2024, 2024
Short summary
Influences of downward transport and photochemistry on surface ozone over East Antarctica during austral summer: in situ observations and model simulations
Imran A. Girach, Narendra Ojha, Prabha R. Nair, Kandula V. Subrahmanyam, Neelakantan Koushik, Mohammed M. Nazeer, Nadimpally Kiran Kumar, Surendran Nair Suresh Babu, Jos Lelieveld, and Andrea Pozzer
Atmos. Chem. Phys., 24, 1979–1995, https://doi.org/10.5194/acp-24-1979-2024,https://doi.org/10.5194/acp-24-1979-2024, 2024
Short summary
Iodine oxoacids and their roles in sub-3 nm particle growth in polluted urban environments
Ying Zhang, Duzitian Li, Xu-Cheng He, Wei Nie, Chenjuan Deng, Runlong Cai, Yuliang Liu, Yishuo Guo, Chong Liu, Yiran Li, Liangduo Chen, Yuanyuan Li, Chenjie Hua, Tingyu Liu, Zongcheng Wang, Jiali Xie, Lei Wang, Tuukka Petäjä, Federico Bianchi, Ximeng Qi, Xuguang Chi, Pauli Paasonen, Yongchun Liu, Chao Yan, Jingkun Jiang, Aijun Ding, and Markku Kulmala
Atmos. Chem. Phys., 24, 1873–1893, https://doi.org/10.5194/acp-24-1873-2024,https://doi.org/10.5194/acp-24-1873-2024, 2024
Short summary
Intensive photochemical oxidation in the marine atmosphere: evidence from direct radical measurements
Guoxian Zhang, Renzhi Hu, Pinhua Xie, Changjin Hu, Xiaoyan Liu, Liujun Zhong, Haotian Cai, Bo Zhu, Shiyong Xia, Xiaofeng Huang, Xin Li, and Wenqing Liu
Atmos. Chem. Phys., 24, 1825–1839, https://doi.org/10.5194/acp-24-1825-2024,https://doi.org/10.5194/acp-24-1825-2024, 2024
Short summary

Cited articles

Aliwell, S. R. and Jones, R. L.: Measurements of tropospheric NO3 at midlatitude, J. Geophys. Res.-Atmos., 103, 5719–5727, 1998. 
Allan, B. J., Plane, J. M. C., Coe, H., and Shillito, J.: Observations of NO3 concentration profiles in the troposphere, J. Geophys. Res.-Atmos., 107, 4588, https://doi.org/10.1029/2002jd002112, 2002. 
Atkinson, R.: Atmospheric chemistry of VOCs and NOx, Atmos. Environ., 34, 2063–2101, 2000. 
Atkinson, R. and Arey, J.: Gas-phase tropospheric chemistry of biogenic volatile organic compounds: a review, Atmos. Environ., 37, S197–S219, 2003a. 
Atkinson, R. and Arey, J.: Atmospheric degradation of volatile organic compounds, Chem. Rev., 103, 4605–4638, https://doi.org/10.1021/cr0206420, 2003b. 
Download
Short summary
We present direct measurements of the summertime total reactivity (inverse lifetime) of NO3 towards organic trace gases at a rural mountain site. High daytime and low night-time values were found. The reactivity was dominated by reaction with monoterpenes and sufficiently high to compete with photolysis and reaction with NO during daytime. NO3 radical measurements from one night are presented. For the first time, direct measurements of OH and NO3 reactivity are compared.
Altmetrics
Final-revised paper
Preprint