Articles | Volume 21, issue 18
https://doi.org/10.5194/acp-21-14019-2021
https://doi.org/10.5194/acp-21-14019-2021
Research article
 | 
21 Sep 2021
Research article |  | 21 Sep 2021

Exceptional loss in ozone in the Arctic winter/spring of 2019/2020

Jayanarayanan Kuttippurath, Wuhu Feng, Rolf Müller, Pankaj Kumar, Sarath Raj, Gopalakrishna Pillai Gopikrishnan, and Raina Roy

Related authors

Impact of particulate matter reductions on aerosol HO2 uptake and rising surface ozone pollution in India
Gopalakrishna Pillai Gopikrishnan, Daniel M. Westervelt, and Jayanarayanan Kuttippurath
EGUsphere, https://doi.org/10.5194/egusphere-2025-1056,https://doi.org/10.5194/egusphere-2025-1056, 2025
Short summary
No severe ozone depletion in the tropical stratosphere in recent decades
Jayanarayanan Kuttippurath, Gopalakrishna Pillai Gopikrishnan, Rolf Müller, Sophie Godin-Beekmann, and Jerome Brioude
Atmos. Chem. Phys., 24, 6743–6756, https://doi.org/10.5194/acp-24-6743-2024,https://doi.org/10.5194/acp-24-6743-2024, 2024
Short summary
Chemical ozone loss and chlorine activation in the Antarctic winters of 2013–2020
Raina Roy, Pankaj Kumar, Jayanarayanan Kuttippurath, and Franck Lefevre
Atmos. Chem. Phys., 24, 2377–2386, https://doi.org/10.5194/acp-24-2377-2024,https://doi.org/10.5194/acp-24-2377-2024, 2024
Short summary
Wintertime direct radiative effects due to black carbon (BC) over the Indo-Gangetic Plain as modelled with new BC emission inventories in CHIMERE
Sanhita Ghosh, Shubha Verma, Jayanarayanan Kuttippurath, and Laurent Menut
Atmos. Chem. Phys., 21, 7671–7694, https://doi.org/10.5194/acp-21-7671-2021,https://doi.org/10.5194/acp-21-7671-2021, 2021
Short summary

Cited articles

Bai, K., Liu, C., Shi, R., and Gao, W.: Comparison of Suomi-NPP OMPS total column ozone with Brewer and Dobson spectrophotometers measurements, Front. Earth Sci., 93, 369–380, https://doi.org/10.1007/S11707-014-0480-5, 2015. 
Bai, K., Chang, N. Bin, Yu, H., and Gao, W.: Statistical bias correction for creating coherent total ozone record from OMI and OMPS observations, Remote Sens. Environ., 182, 150–168, https://doi.org/10.1016/J.RSE.2016.05.007, 2016. 
Bernhard, G. H., Fioletov, V. E., Grooß, J.-U., Ialongo, I., Johnsen, B., Lakkala, K., Manney, G. L., Müller, R., and Svendby, T.: Record-Breaking Increases in Arctic Solar Ultraviolet Radiation Caused by Exceptionally Large Ozone Depletion in 2020, Geophys. Res. Lett., 47, e2020GL090844, https://doi.org/10.1029/2020GL090844, 2020. 
Bodeker, G. E., Shiona, H., and Eskes, H.: Indicators of Antarctic ozone depletion, Atmos. Chem. Phys., 5, 2603–2615, https://doi.org/10.5194/acp-5-2603-2005, 2005. 
Download
Short summary
The Arctic winter/spring 2020 was one of the coldest with a strong and long-lasting vortex, high chlorine activation, severe denitrification, and unprecedented ozone loss. The loss was even equal to the levels of some of the warm Antarctic winters. Total column ozone values below 220 DU for several weeks and ozone loss saturation were observed during the period. These results show an unusual meteorology and warrant dedicated studies on the impact of climate change on ozone loss.
Share
Altmetrics
Final-revised paper
Preprint