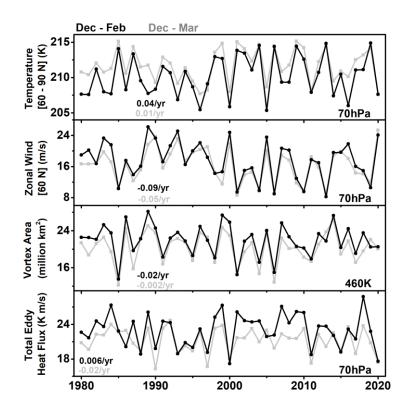
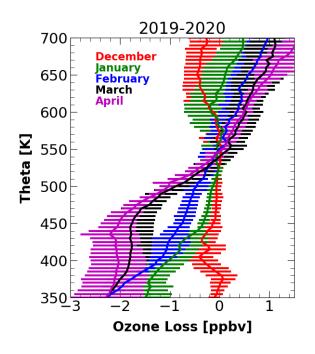

Supplement of

Exceptional loss in ozone in the Arctic winter/spring of 2019/2020


Jayanarayanan Kuttippurath et al.

Correspondence to: Jayanarayanan Kuttippurath (jayan@coral.iitkgp.ac.in)

The copyright of individual parts of the supplement might differ from the article licence.


Figure S1: The temporal evolution of area of PSC and volume of PSC in the Arctic winters from 1979 to 2020, as estimated using the MERRA-2 data. The shaded area is the standard deviation from the mean.

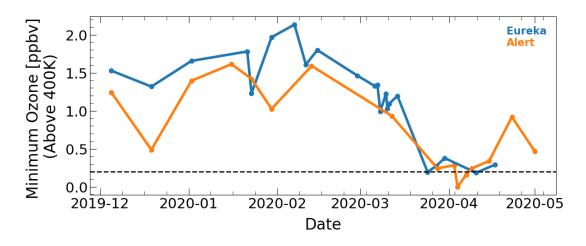

Figure S1b: The temporal evolution of temperature, zonal winds, vortex area, and heat flux in the Arctic winters from 1979 to 2020, as estimated using the MERRA-2 data.

Figure S2: The time evolution correlation between ozone and N_2O in the Arctic winter 2020. The measurements selected inside the vortex.

Figure S3: The monthly averaged ozone loss and the standard deviation (horizontal bars) computed using the tracer descent method.

Figure S4: The temporal evolution stratospheric ozone as observed by the ozonesonde at Eureka and Alert stations.

Table 1: OZONE HOLE DAYS (TCO LESS THAN 220 DU ANYWHERE IN THE VORTEX REGION) OBSERVED IN DIFFERENT DATASETS

OMPS (24 Days)

- Dec 01 05 (5 Days)
- Jan 01 02 (2 Days)
- Jan 23, 25 30 (7 Days)
- Mar 05, 12 19, 28 (10 Days)

<u>MERRA-2 (19 Days)</u>

- Dec 01 05 (5 Days)
- Jan 25 26 (2 Days)
- Mar 05, 12, 17 22 (8 Days)
- Apr 06 07 (2 Days)