Articles | Volume 23, issue 10
https://doi.org/10.5194/acp-23-5885-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-23-5885-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Vertical profiles of volatile organic compounds and fine particles in atmospheric air by using an aerial drone with miniaturized samplers and portable devices
Eka Dian Pusfitasari
Department of Chemistry, P.O. Box 55, 00014 University of Helsinki, Helsinki,
Finland
Institute for Atmospheric and Earth System Research, Chemistry,
Faculty of science, P.O. Box 55, 00014 University of Helsinki, Helsinki, Finland
Jose Ruiz-Jimenez
Department of Chemistry, P.O. Box 55, 00014 University of Helsinki, Helsinki,
Finland
Institute for Atmospheric and Earth System Research, Chemistry,
Faculty of science, P.O. Box 55, 00014 University of Helsinki, Helsinki, Finland
Aleksi Tiusanen
Department of Chemistry, P.O. Box 55, 00014 University of Helsinki, Helsinki,
Finland
Markus Suuronen
Department of Chemistry, P.O. Box 55, 00014 University of Helsinki, Helsinki,
Finland
Jesse Haataja
Institute for Atmospheric and Earth System Research, Physics, Faculty of science, P.O. Box 64, 00014 University of Helsinki, Helsinki, Finland
Yusheng Wu
Institute for Atmospheric and Earth System Research, Physics, Faculty of science, P.O. Box 64, 00014 University of Helsinki, Helsinki, Finland
Juha Kangasluoma
Institute for Atmospheric and Earth System Research, Physics, Faculty of science, P.O. Box 64, 00014 University of Helsinki, Helsinki, Finland
Krista Luoma
Institute for Atmospheric and Earth System Research, Physics, Faculty of science, P.O. Box 64, 00014 University of Helsinki, Helsinki, Finland
Finnish Meteorological Institute, P.O. Box 503, 00101 Helsinki,
Finland
Tuukka Petäjä
Institute for Atmospheric and Earth System Research, Physics, Faculty of science, P.O. Box 64, 00014 University of Helsinki, Helsinki, Finland
Matti Jussila
Department of Chemistry, P.O. Box 55, 00014 University of Helsinki, Helsinki,
Finland
Institute for Atmospheric and Earth System Research, Chemistry,
Faculty of science, P.O. Box 55, 00014 University of Helsinki, Helsinki, Finland
Department of Chemistry, P.O. Box 55, 00014 University of Helsinki, Helsinki,
Finland
Institute for Atmospheric and Earth System Research, Chemistry,
Faculty of science, P.O. Box 55, 00014 University of Helsinki, Helsinki, Finland
Marja-Liisa Riekkola
CORRESPONDING AUTHOR
Department of Chemistry, P.O. Box 55, 00014 University of Helsinki, Helsinki,
Finland
Institute for Atmospheric and Earth System Research, Chemistry,
Faculty of science, P.O. Box 55, 00014 University of Helsinki, Helsinki, Finland
Related authors
No articles found.
Anni Hartikainen, Mika Ihalainen, Deeksha Shukla, Marius Rohkamp, Arya Mukherjee, Quanfu He, Sandra Piel, Aki Virkkula, Delun Li, Tuukka Kokkola, Seongho Jeong, Hanna Koponen, Uwe Etzien, Anusmita Das, Krista Luoma, Lukas Schwalb, Thomas Gröger, Alexandre Barth, Martin Sklorz, Thorsten Streibel, Hendryk Czech, Benedikt Gündling, Markus Kalberer, Bert Buchholz, Andreas Hupfer, Thomas Adam, Thorsten Hohaus, Johan Øvrevik, Ralf Zimmermann, and Olli Sippula
EGUsphere, https://doi.org/10.5194/egusphere-2024-3836, https://doi.org/10.5194/egusphere-2024-3836, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Photochemical reactions altered the properties of kerosene-operated jet engine burner exhaust emissions, which were studied in laboratory using an oxidation flow reactor. Particle mass increased 300-fold as particles and gases became more oxidized. Light absorption increased, but the total direct radiative forcing efficiency was estimated to shift from positive to negative. The results highlight the importance of considering secondary aerosol formation when assessing the impacts of aviation.
Petri Clusius, Metin Baykara, Carlton Xavier, Putian Zhou, Juniper Tyree, Benjamin Foreback, Mikko Äijälä, Frans Graeffe, Tuukka Petäjä, Pauli Paasonen, Markku Kulmala, Paul I. Palmer, and Michael Boy
EGUsphere, https://doi.org/10.5194/egusphere-2025-39, https://doi.org/10.5194/egusphere-2025-39, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Cloud condensation nuclei are necessary to form clouds, and their size distribution affects cloud properties and therefore Earth’s energy budget. This study modelled the origins of cloud condensation nuclei at SMEAR II, Hyytiälä, Finland, and found that primary emissions and new particle formation separately contribute to more than half of the condensation nuclei, but they suppress each other, leading to current concentrations. Largest condensation nuclei originated mostly from emissions.
Matthew Boyer, Diego Aliaga, Lauriane L. J. Quéléver, Silvia Bucci, Hélène Angot, Lubna Dada, Benjamin Heutte, Lisa Beck, Marina Duetsch, Andreas Stohl, Ivo Beck, Tiia Laurila, Nina Sarnela, Roseline C. Thakur, Branka Miljevic, Markku Kulmala, Tuukka Petäjä, Mikko Sipilä, Julia Schmale, and Tuija Jokinen
Atmos. Chem. Phys., 24, 12595–12621, https://doi.org/10.5194/acp-24-12595-2024, https://doi.org/10.5194/acp-24-12595-2024, 2024
Short summary
Short summary
We analyze the seasonal cycle and sources of gases that are relevant for the formation of aerosol particles in the central Arctic. Since theses gases can form new particles, they can influence Arctic climate. We show that the sources of these gases are associated with changes in the Arctic environment during the year, especially with respect to sea ice. Therefore, the concentration of these gases will likely change in the future as the Arctic continues to warm.
Sami D. Harni, Minna Aurela, Sanna Saarikoski, Jarkko V. Niemi, Harri Portin, Hanna Manninen, Ville Leinonen, Pasi Aalto, Phil K. Hopke, Tuukka Petäjä, Topi Rönkkö, and Hilkka Timonen
Atmos. Chem. Phys., 24, 12143–12160, https://doi.org/10.5194/acp-24-12143-2024, https://doi.org/10.5194/acp-24-12143-2024, 2024
Short summary
Short summary
In this study, particle number size distribution data were used in a novel way in positive matrix factorization analysis to find aerosol source profiles in the area. Measurements were made in Helsinki at a street canyon and urban background sites between February 2015 and June 2019. Five different aerosol sources were identified. These sources underline the significance of traffic-related emissions in urban environments despite recent improvements in emission reduction technologies.
Sander Mirme, Rima Balbaaki, Hanna Elina Manninen, Paap Koemets, Eva Sommer, Birte Rörup, Yusheng Wu, Joao Almeida, Sebastian Ehrhart, Stefan Karl Weber, Joschka Pfeifer, Juha Kangasluoma, Markku Kulmala, and Jasper Kirkby
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-138, https://doi.org/10.5194/amt-2024-138, 2024
Preprint under review for AMT
Short summary
Short summary
The manuscript describes the design and performance of the Cluster Ion Counter (CIC, Airel OÜ), a device which simultaneously measures the number concentrations of positively- and negatively-charged ions and particles below 5 nm mobility diameter. The presented measurements and operational experience demonstrate that the CIC provides precise and robust long-term measurements of small ion concentrations of both polarities, with low noise, fast time response and excellent reliability.
Franziska Vogel, Michael P. Adams, Larissa Lacher, Polly B. Foster, Grace C. E. Porter, Barbara Bertozzi, Kristina Höhler, Julia Schneider, Tobias Schorr, Nsikanabasi S. Umo, Jens Nadolny, Zoé Brasseur, Paavo Heikkilä, Erik S. Thomson, Nicole Büttner, Martin I. Daily, Romy Fösig, Alexander D. Harrison, Jorma Keskinen, Ulrike Proske, Jonathan Duplissy, Markku Kulmala, Tuukka Petäjä, Ottmar Möhler, and Benjamin J. Murray
Atmos. Chem. Phys., 24, 11737–11757, https://doi.org/10.5194/acp-24-11737-2024, https://doi.org/10.5194/acp-24-11737-2024, 2024
Short summary
Short summary
Primary ice formation in clouds strongly influences their properties; hence, it is important to understand the sources of ice-nucleating particles (INPs) and their variability. We present 2 months of INP measurements in a Finnish boreal forest using a new semi-autonomous INP counting device based on gas expansion. These results show strong variability in INP concentrations, and we present a case that the INPs we observe are, at least some of the time, of biological origin.
Henning Finkenzeller, Jyri Mikkilä, Cecilia Righi, Paxton Juuti, Mikko Sipilä, Matti Rissanen, Douglas Worsnop, Aleksei Shcherbinin, Nina Sarnela, and Juha Kangasluoma
Atmos. Meas. Tech., 17, 5989–6001, https://doi.org/10.5194/amt-17-5989-2024, https://doi.org/10.5194/amt-17-5989-2024, 2024
Short summary
Short summary
Chemical ionisation mass spectrometry is used in the atmospheric sciences to measure trace gas concentrations. Neutral gases require charging in inlets before the mass-to-charge ratio of the resulting ions can be analysed. This study uses multiphysics modelling to investigate how the MION2 and Eisele type inlets work and shows the effect of tuning parameters and their current limitations. The findings are helpful for inlet users and are expected to aid in developing improved inlets.
Markku Kulmala, Santeri Tuovinen, Sander Mirme, Paap Koemets, Lauri Ahonen, Yongchun Liu, Heikki Junninen, Tuukka Petäjä, and Veli-Matti Kerminen
Aerosol Research, 2, 291–301, https://doi.org/10.5194/ar-2-291-2024, https://doi.org/10.5194/ar-2-291-2024, 2024
Short summary
Short summary
With the recently developed CIC (Cluster Ion Counter) instrument, we can observe dynamics of small air ions and intermediate air ions. Furthermore, we can observe condensation sink and formation and growth rates for intermediated ions.
Zoé Brasseur, Julia Schneider, Janne Lampilahti, Ville Vakkari, Victoria A. Sinclair, Christina J. Williamson, Carlton Xavier, Dmitri Moisseev, Markus Hartmann, Pyry Poutanen, Markus Lampimäki, Markku Kulmala, Tuukka Petäjä, Katrianne Lehtipalo, Erik S. Thomson, Kristina Höhler, Ottmar Möhler, and Jonathan Duplissy
Atmos. Chem. Phys., 24, 11305–11332, https://doi.org/10.5194/acp-24-11305-2024, https://doi.org/10.5194/acp-24-11305-2024, 2024
Short summary
Short summary
Ice-nucleating particles (INPs) strongly influence the formation of clouds by initiating the formation of ice crystals. However, very little is known about the vertical distribution of INPs in the atmosphere. Here, we present aircraft measurements of INP concentrations above the Finnish boreal forest. Results show that near-surface INPs are efficiently transported and mixed within the boundary layer and occasionally reach the free troposphere.
Kimmo Teinilä, Sanna Saarikoski, Henna Lintusaari, Teemu Lepistö, Petteri Marjanen, Minna Aurela, Heidi Hellén, Toni Tykkä, Markus Lampimäki, Janne Lampilahti, Luis Barreira, Timo Mäkelä, Leena Kangas, Juha Hatakka, Sami Harni, Joel Kuula, Jarkko V. Niemi, Harri Portin, Jaakko Yli-Ojanperä, Ville Niemelä, Milja Jäppi, Katrianne Lehtipalo, Joonas Vanhanen, Liisa Pirjola, Hanna E. Manninen, Tuukka Petäjä, Topi Rönkkö, and Hilkka Timonen
EGUsphere, https://doi.org/10.5194/egusphere-2024-2235, https://doi.org/10.5194/egusphere-2024-2235, 2024
Short summary
Short summary
Physical and chemical properties of particulate matter and concentrations of trace gases were measured in a street canyon in Helsinki, Finland and an urban background site in January–February 2022 to investigate the effect of wintertime conditions on pollutants. State-of-the-art instruments, a mobile laboratory was used, and the measurement data was further analysed with modelling tools like positive matrix factorization (PMF) and pollution detection algorithm (PDA).
Alex Rowell, James Brean, David C. S. Beddows, Tuukka Petäjä, Máté Vörösmarty, Imre Salma, Jarkko V. Niemi, Hanna E. Manninen, Dominik van Pinxteren, Thomas Tuch, Kay Weinhold, Zongbo Shi, and Roy M. Harrison
Atmos. Chem. Phys., 24, 9515–9531, https://doi.org/10.5194/acp-24-9515-2024, https://doi.org/10.5194/acp-24-9515-2024, 2024
Short summary
Short summary
Different sources of airborne particles in the atmospheres of four European cities were distinguished by recognising their particle size distributions using a statistical procedure, positive matrix factorisation. The various sources responded differently to the changes in emissions associated with COVID-19 lockdowns, and the reasons are investigated. While traffic emissions generally decreased, particles formed from reactions of atmospheric gases decreased in some cities but increased in others.
Yiliang Liu, Arttu Yli-Kujala, Fabian Schmidt-Ott, Sebastian Holm, Lauri Ahonen, Tommy Chan, Joonas Enroth, Joonas Vanhanen, Runlong Cai, Tuukka Petäjä, Markku Kulmala, Yang Chen, and Juha Kangasluoma
EGUsphere, https://doi.org/10.5194/egusphere-2024-2603, https://doi.org/10.5194/egusphere-2024-2603, 2024
Short summary
Short summary
Accurate measurement of nanoparticles is crucial for understanding their impact on new particle formation and climate change. In our study, we calibrated the Particle Size Magnifier version 2.0, a novel instrument designed for nanoparticle analysis, using both lab-generated and atmospheric particles. Significant differences were observed in the calibration results, with direct calibration using atmospheric particles enhancing measurement accuracy.
Mikko Heikkilä, Krista Luoma, Timo Mäkelä, and Tiia Grönholm
Atmos. Chem. Phys., 24, 8927–8941, https://doi.org/10.5194/acp-24-8927-2024, https://doi.org/10.5194/acp-24-8927-2024, 2024
Short summary
Short summary
Black carbon (BC) concentration was measured from 211 ship exhaust gas plumes at a remote marine station. Emission factors of BC were calculated in grams per kilogram of fuel. Ships with an exhaust gas cleaning system (EGCS) were found to have median BC emissions per fuel consumed 5 times lower than ships without an EGCS. However, this might be because of non-EGCS ships running at low engine loads rather than the EGCS itself. A local speed restriction would increase BC emissions of ships.
Yusheng Zhang, Feixue Zheng, Zemin Feng, Chaofan Lian, Weigang Wang, Xiaolong Fan, Wei Ma, Zhuohui Lin, Chang Li, Gen Zhang, Chao Yan, Ying Zhang, Veli-Matti Kerminen, Federico Bianch, Tuukka Petäjä, Juha Kangasluoma, Markku Kulmala, and Yongchun Liu
Atmos. Chem. Phys., 24, 8569–8587, https://doi.org/10.5194/acp-24-8569-2024, https://doi.org/10.5194/acp-24-8569-2024, 2024
Short summary
Short summary
The nitrous acid (HONO) budget was validated during a COVID-19 lockdown event. The main conclusions are (1) HONO concentrations showed a significant decrease from 0.97 to 0.53 ppb during lockdown; (2) vehicle emissions accounted for 53 % of nighttime sources, with the heterogeneous conversion of NO2 on ground surfaces more important than aerosol; and (3) the dominant daytime source shifted from the homogenous reaction between NO and OH (51 %) to nitrate photolysis (53 %) during lockdown.
Hector Navarro-Barboza, Jordi Rovira, Vincenzo Obiso, Andrea Pozzer, Marta Via, Andres Alastuey, Xavier Querol, Noemi Perez, Marjan Savadkoohi, Gang Chen, Jesus Yus-Díez, Matic Ivancic, Martin Rigler, Konstantinos Eleftheriadis, Stergios Vratolis, Olga Zografou, Maria Gini, Benjamin Chazeau, Nicolas Marchand, Andre Prevot, Kaspar Dallenbach, Mikael Ehn, Krista Luoma, Tuukka Petäjä, Anna Tobler, Jaroslaw Necki, Minna Aurela, Hilkka Timonen, Jarkko Niemi, Olivier Favez, Jean-Eudes Petit, Jean-Philippe Putaud, Christoph Hueglin, Nicolas Pascal, Aurelien Chauvigné, Sebastien Conil, Marco Pandolfi, and Oriol Jorba
EGUsphere, https://doi.org/10.5194/egusphere-2024-2086, https://doi.org/10.5194/egusphere-2024-2086, 2024
Short summary
Short summary
Brown carbon (BrC) absorbs UV and visible light, affecting climate. Our study investigates BrC's imaginary refractive index (k ) using data from 12 European sites. Residential emissions are a major OA source in winter, while secondary organic aerosols (SOA) dominate in summer. We derived source-specific k values, enhancing model accuracy. This research improves understanding of BrC's climate role, emphasizing the need for source-specific constraints in atmospheric models.
Ella Häkkinen, Huan Yang, Runlong Cai, and Juha Kangasluoma
Atmos. Meas. Tech., 17, 4211–4225, https://doi.org/10.5194/amt-17-4211-2024, https://doi.org/10.5194/amt-17-4211-2024, 2024
Short summary
Short summary
We report measurements of evaporation kinetics and surface equilibrium vapor pressures for various laboratory-generated organic nanoparticles using the dynamic-aerosol-size electrical mobility spectrometer (DEMS), a recent advancement in aerosol process characterization. Our findings align well with literature values, demonstrating DEMS's effectiveness. We suggest future improvements to DEMS and anticipate its potential for probing aerosol-related kinetic processes with unknown mechanisms.
Benjamin Heutte, Nora Bergner, Hélène Angot, Jakob B. Pernov, Lubna Dada, Jessica A. Mirrielees, Ivo Beck, Andrea Baccarini, Matthew Boyer, Jessie M. Creamean, Kaspar R. Daellenbach, Imad El Haddad, Markus M. Frey, Silvia Henning, Tiaa Laurila, Vaios Moschos, Tuukka Petäjä, Kerri A. Pratt, Lauriane L. J. Quéléver, Matthew D. Shupe, Paul Zieger, Tuija Jokinen, and Julia Schmale
EGUsphere, https://doi.org/10.5194/egusphere-2024-1912, https://doi.org/10.5194/egusphere-2024-1912, 2024
Short summary
Short summary
Limited aerosol measurements in the central Arctic hinder our understanding of aerosol-climate interactions in the region. Our year-long observations of aerosol physicochemical properties during the MOSAiC expedition reveal strong seasonal variations in aerosol chemical composition, where the short-term variability is heavily affected by storms in the Arctic. Locally wind-generated particles are shown to be an important source of cloud seeds, especially in autumn.
Liine Heikkinen, Daniel G. Partridge, Sara Blichner, Wei Huang, Rahul Ranjan, Paul Bowen, Emanuele Tovazzi, Tuukka Petäjä, Claudia Mohr, and Ilona Riipinen
Atmos. Chem. Phys., 24, 5117–5147, https://doi.org/10.5194/acp-24-5117-2024, https://doi.org/10.5194/acp-24-5117-2024, 2024
Short summary
Short summary
The organic vapor condensation with water vapor (co-condensation) in rising air below clouds is modeled in this work over the boreal forest because the forest air is rich in organic vapors. We show that the number of cloud droplets can increase by 20 % if considering co-condensation. The enhancements are even larger if the air contains many small, naturally produced aerosol particles. Such conditions are most frequently met in spring in the boreal forest.
Tapio Elomaa, Krista Luoma, Sami Harni, Aki Virkkula, Hilkka Timonen, and Tuukka Petäjä
Aerosol Research Discuss., https://doi.org/10.5194/ar-2024-12, https://doi.org/10.5194/ar-2024-12, 2024
Preprint under review for AR
Short summary
Short summary
Black Carbon (BC) is a pollutant from combustion that affects the climate and is harmful to health. We tested four different small BC sensors with a reference in Helsinki. The sensors compared well with the reference. As a sensor network they were able to capture differences in BC. Changes in temperature (T) and relative humidity (RH) caused error in the measurement. To reduce the effects of T and RH on BC sensors, more robust boxes should be developed or corrections should be applied.
Markku Kulmala, Diego Aliaga, Santeri Tuovinen, Runlong Cai, Heikki Junninen, Chao Yan, Federico Bianchi, Yafang Cheng, Aijun Ding, Douglas R. Worsnop, Tuukka Petäjä, Katrianne Lehtipalo, Pauli Paasonen, and Veli-Matti Kerminen
Aerosol Research, 2, 49–58, https://doi.org/10.5194/ar-2-49-2024, https://doi.org/10.5194/ar-2-49-2024, 2024
Short summary
Short summary
Atmospheric new particle formation (NPF), together with secondary production of particulate matter in the atmosphere, dominates aerosol particle number concentrations and submicron particle mass loads in many environments globally. In this opinion paper, we describe the paradigm shift to understand NPF in a continuous way instead of using traditional binary event–non-event analysis.
Jian Zhao, Valter Mickwitz, Yuanyuan Luo, Ella Häkkinen, Frans Graeffe, Jiangyi Zhang, Hilkka Timonen, Manjula Canagaratna, Jordan E. Krechmer, Qi Zhang, Markku Kulmala, Juha Kangasluoma, Douglas Worsnop, and Mikael Ehn
Atmos. Meas. Tech., 17, 1527–1543, https://doi.org/10.5194/amt-17-1527-2024, https://doi.org/10.5194/amt-17-1527-2024, 2024
Short summary
Short summary
Organic aerosol constitutes a significant portion of atmospheric fine particles but is less characterized due to its vast number of constituents. Recently, we developed a system for online measurements of particle-phase highly oxygenated organic molecules (HOMs). In this work, we systematically characterized the system, developed a new unit to enhance its performance, and demonstrated the essential role of thermograms in inferring volatility and quantifying HOMs in organic aerosols.
Shiyi Lai, Ximeng Qi, Xin Huang, Sijia Lou, Xuguang Chi, Liangduo Chen, Chong Liu, Yuliang Liu, Chao Yan, Mengmeng Li, Tengyu Liu, Wei Nie, Veli-Matti Kerminen, Tuukka Petäjä, Markku Kulmala, and Aijun Ding
Atmos. Chem. Phys., 24, 2535–2553, https://doi.org/10.5194/acp-24-2535-2024, https://doi.org/10.5194/acp-24-2535-2024, 2024
Short summary
Short summary
By combining in situ measurements and chemical transport modeling, this study investigates new particle formation (NPF) on the southeastern Tibetan Plateau. We found that the NPF was driven by the presence of biogenic gases and the transport of anthropogenic precursors. The NPF was vertically heterogeneous and shaped by the vertical mixing. This study highlights the importance of anthropogenic–biogenic interactions and meteorological dynamics in NPF in this climate-sensitive region.
Jing Cai, Juha Sulo, Yifang Gu, Sebastian Holm, Runlong Cai, Steven Thomas, Almuth Neuberger, Fredrik Mattsson, Marco Paglione, Stefano Decesari, Matteo Rinaldi, Rujing Yin, Diego Aliaga, Wei Huang, Yuanyuan Li, Yvette Gramlich, Giancarlo Ciarelli, Lauriane Quéléver, Nina Sarnela, Katrianne Lehtipalo, Nora Zannoni, Cheng Wu, Wei Nie, Juha Kangasluoma, Claudia Mohr, Markku Kulmala, Qiaozhi Zha, Dominik Stolzenburg, and Federico Bianchi
Atmos. Chem. Phys., 24, 2423–2441, https://doi.org/10.5194/acp-24-2423-2024, https://doi.org/10.5194/acp-24-2423-2024, 2024
Short summary
Short summary
By combining field measurements, simulations and recent chamber experiments, we investigate new particle formation (NPF) and growth in the Po Valley, where both haze and frequent NPF occur. Our results show that sulfuric acid, ammonia and amines are the dominant NPF precursors there. A high NPF rate and a lower condensation sink lead to a greater survival probability for newly formed particles, highlighting the importance of gas-to-particle conversion for aerosol concentrations.
Juha Sulo, Joonas Enroth, Aki Pajunoja, Joonas Vanhanen, Katrianne Lehtipalo, Tuukka Petäjä, and Markku Kulmala
Aerosol Research, 2, 13–20, https://doi.org/10.5194/ar-2-13-2024, https://doi.org/10.5194/ar-2-13-2024, 2024
Short summary
Short summary
We present a novel version of an aerosol number size distribution instrument, showcasing its capability to measure particle number concentration and particle number size distribution between 1 and 12 nm. Our results show that the instrument agrees well with existing instrumentation and allows for both the accurate measurement of the smallest particles and overlap with more conventional aerosol number size distribution instruments.
Ying Zhang, Duzitian Li, Xu-Cheng He, Wei Nie, Chenjuan Deng, Runlong Cai, Yuliang Liu, Yishuo Guo, Chong Liu, Yiran Li, Liangduo Chen, Yuanyuan Li, Chenjie Hua, Tingyu Liu, Zongcheng Wang, Jiali Xie, Lei Wang, Tuukka Petäjä, Federico Bianchi, Ximeng Qi, Xuguang Chi, Pauli Paasonen, Yongchun Liu, Chao Yan, Jingkun Jiang, Aijun Ding, and Markku Kulmala
Atmos. Chem. Phys., 24, 1873–1893, https://doi.org/10.5194/acp-24-1873-2024, https://doi.org/10.5194/acp-24-1873-2024, 2024
Short summary
Short summary
This study conducts a long-term observation of gaseous iodine oxoacids in two Chinese megacities, revealing their ubiquitous presence with peak concentrations (up to 0.1 pptv) in summer. Our analysis suggests a mix of terrestrial and marine sources for iodine. Additionally, iodic acid is identified as a notable contributor to sub-3 nm particle growth and particle survival probability.
Giancarlo Ciarelli, Sara Tahvonen, Arineh Cholakian, Manuel Bettineschi, Bruno Vitali, Tuukka Petäjä, and Federico Bianchi
Geosci. Model Dev., 17, 545–565, https://doi.org/10.5194/gmd-17-545-2024, https://doi.org/10.5194/gmd-17-545-2024, 2024
Short summary
Short summary
The terrestrial ecosystem releases large quantities of biogenic gases in the Earth's Atmosphere. These gases can effectively be converted into so-called biogenic aerosol particles and, eventually, affect the Earth's climate. Climate prediction varies greatly depending on how these processes are represented in model simulations. In this study, we present a detailed model evaluation analysis aimed at understanding the main source of uncertainty in predicting the formation of biogenic aerosols.
Juan Andrés Casquero-Vera, Daniel Pérez-Ramírez, Hassan Lyamani, Fernando Rejano, Andrea Casans, Gloria Titos, Francisco José Olmo, Lubna Dada, Simo Hakala, Tareq Hussein, Katrianne Lehtipalo, Pauli Paasonen, Antti Hyvärinen, Noemí Pérez, Xavier Querol, Sergio Rodríguez, Nikos Kalivitis, Yenny González, Mansour A. Alghamdi, Veli-Matti Kerminen, Andrés Alastuey, Tuukka Petäjä, and Lucas Alados-Arboledas
Atmos. Chem. Phys., 23, 15795–15814, https://doi.org/10.5194/acp-23-15795-2023, https://doi.org/10.5194/acp-23-15795-2023, 2023
Short summary
Short summary
Here we present the first study of the effect of mineral dust on the inhibition/promotion of new particle formation (NPF) events in different dust-influenced areas. Unexpectedly, we show that the occurrence of NPF events is highly frequent during mineral dust outbreaks, occurring even during extreme dust outbreaks. We also show that the occurrence of NPF events during mineral dust outbreaks significantly affects the potential cloud condensation nuclei budget.
Markku Kulmala, Anna Lintunen, Hanna Lappalainen, Annele Virtanen, Chao Yan, Ekaterina Ezhova, Tuomo Nieminen, Ilona Riipinen, Risto Makkonen, Johanna Tamminen, Anu-Maija Sundström, Antti Arola, Armin Hansel, Kari Lehtinen, Timo Vesala, Tuukka Petäjä, Jaana Bäck, Tom Kokkonen, and Veli-Matti Kerminen
Atmos. Chem. Phys., 23, 14949–14971, https://doi.org/10.5194/acp-23-14949-2023, https://doi.org/10.5194/acp-23-14949-2023, 2023
Short summary
Short summary
To be able to meet global grand challenges, we need comprehensive open data with proper metadata. In this opinion paper, we describe the SMEAR (Station for Measuring Earth surface – Atmosphere Relations) concept and include several examples (cases), such as new particle formation and growth, feedback loops and the effect of COVID-19, and what has been learned from these investigations. The future needs and the potential of comprehensive observations of the environment are summarized.
Magdalena Okuljar, Olga Garmash, Miska Olin, Joni Kalliokoski, Hilkka Timonen, Jarkko V. Niemi, Pauli Paasonen, Jenni Kontkanen, Yanjun Zhang, Heidi Hellén, Heino Kuuluvainen, Minna Aurela, Hanna E. Manninen, Mikko Sipilä, Topi Rönkkö, Tuukka Petäjä, Markku Kulmala, Miikka Dal Maso, and Mikael Ehn
Atmos. Chem. Phys., 23, 12965–12983, https://doi.org/10.5194/acp-23-12965-2023, https://doi.org/10.5194/acp-23-12965-2023, 2023
Short summary
Short summary
Highly oxygenated organic molecules (HOMs) form secondary organic aerosol that affects air quality and health. In this study, we demonstrate that in a moderately polluted city with abundant vegetation, the composition of HOMs is largely controlled by the effect of NOx on the biogenic volatile organic compound oxidation. Comparing the results from two nearby stations, we show that HOM composition and formation pathways can change considerably within small distances in urban environments.
Xu-Cheng He, Jiali Shen, Siddharth Iyer, Paxton Juuti, Jiangyi Zhang, Mrisha Koirala, Mikko M. Kytökari, Douglas R. Worsnop, Matti Rissanen, Markku Kulmala, Norbert M. Maier, Jyri Mikkilä, Mikko Sipilä, and Juha Kangasluoma
Atmos. Meas. Tech., 16, 4461–4487, https://doi.org/10.5194/amt-16-4461-2023, https://doi.org/10.5194/amt-16-4461-2023, 2023
Short summary
Short summary
In this study, the upgraded multi-scheme chemical ionisation inlet 2 is presented. Sulfuric acid, hypoiodous acid, iodine, sulfur dioxide, and hydroperoxyl radicals are calibrated, and the improved ion optics allow us to detect sulfuric acid and iodine-containing molecules at as low as a few parts per quadrillion by volume. Additionally, we confirm the reliable detection of iodic acid using both the nitrate and bromide chemical ionisation methods under atmospherically relevant conditions.
Jean-Philippe Putaud, Enrico Pisoni, Alexander Mangold, Christoph Hueglin, Jean Sciare, Michael Pikridas, Chrysanthos Savvides, Jakub Ondracek, Saliou Mbengue, Alfred Wiedensohler, Kay Weinhold, Maik Merkel, Laurent Poulain, Dominik van Pinxteren, Hartmut Herrmann, Andreas Massling, Claus Nordstroem, Andrés Alastuey, Cristina Reche, Noemí Pérez, Sonia Castillo, Mar Sorribas, Jose Antonio Adame, Tuukka Petaja, Katrianne Lehtipalo, Jarkko Niemi, Véronique Riffault, Joel F. de Brito, Augustin Colette, Olivier Favez, Jean-Eudes Petit, Valérie Gros, Maria I. Gini, Stergios Vratolis, Konstantinos Eleftheriadis, Evangelia Diapouli, Hugo Denier van der Gon, Karl Espen Yttri, and Wenche Aas
Atmos. Chem. Phys., 23, 10145–10161, https://doi.org/10.5194/acp-23-10145-2023, https://doi.org/10.5194/acp-23-10145-2023, 2023
Short summary
Short summary
Many European people are still exposed to levels of air pollution that can affect their health. COVID-19 lockdowns in 2020 were used to assess the impact of the reduction in human mobility on air pollution across Europe by comparing measurement data with values that would be expected if no lockdown had occurred. We show that lockdown measures did not lead to consistent decreases in the concentrations of fine particulate matter suspended in the air, and we investigate why.
Simo Hakala, Ville Vakkari, Heikki Lihavainen, Antti-Pekka Hyvärinen, Kimmo Neitola, Jenni Kontkanen, Veli-Matti Kerminen, Markku Kulmala, Tuukka Petäjä, Tareq Hussein, Mamdouh I. Khoder, Mansour A. Alghamdi, and Pauli Paasonen
Atmos. Chem. Phys., 23, 9287–9321, https://doi.org/10.5194/acp-23-9287-2023, https://doi.org/10.5194/acp-23-9287-2023, 2023
Short summary
Short summary
Things are not always as they first seem in ambient aerosol measurements. Observations of decreasing particle sizes are often interpreted as resulting from particle evaporation. We show that such observations can counterintuitively be explained by particles that are constantly growing in size. This requires one to account for the previous movements of the observed air. Our explanation implies a larger number of larger particles, meaning more significant effects of aerosols on climate and health.
Dimitri Castarède, Zoé Brasseur, Yusheng Wu, Zamin A. Kanji, Markus Hartmann, Lauri Ahonen, Merete Bilde, Markku Kulmala, Tuukka Petäjä, Jan B. C. Pettersson, Berko Sierau, Olaf Stetzer, Frank Stratmann, Birgitta Svenningsson, Erik Swietlicki, Quynh Thu Nguyen, Jonathan Duplissy, and Erik S. Thomson
Atmos. Meas. Tech., 16, 3881–3899, https://doi.org/10.5194/amt-16-3881-2023, https://doi.org/10.5194/amt-16-3881-2023, 2023
Short summary
Short summary
Clouds play a key role in Earth’s climate by influencing the surface energy budget. Certain types of atmospheric aerosols, called ice-nucleating particles (INPs), induce the formation of ice in clouds and, thus, often initiate precipitation formation. The Portable Ice Nucleation Chamber 2 (PINCii) is a new instrument developed to study ice formation and to conduct ambient measurements of INPs, allowing us to investigate the sources and properties of the atmospheric aerosols that can act as INPs.
Guangdong Niu, Ximeng Qi, Liangduo Chen, Lian Xue, Shiyi Lai, Xin Huang, Jiaping Wang, Xuguang Chi, Wei Nie, Veli-Matti Kerminen, Tuukka Petäjä, Markku Kulmala, and Aijun Ding
Atmos. Chem. Phys., 23, 7521–7534, https://doi.org/10.5194/acp-23-7521-2023, https://doi.org/10.5194/acp-23-7521-2023, 2023
Short summary
Short summary
The reported below-cloud wet-scavenging coefficients (BWSCs) are much higher than theoretical data, but the reason remains unclear. Based on long-term observation, we find that air mass changing during rainfall events causes the overestimation of BWSCs. Thus, the discrepancy in BWSCs between observation and theory is not as large as currently believed. To obtain reasonable BWSCs and parameterizations from field observations, the effect of air mass changes needs to be considered.
Joschka Pfeifer, Naser G. A. Mahfouz, Benjamin C. Schulze, Serge Mathot, Dominik Stolzenburg, Rima Baalbaki, Zoé Brasseur, Lucia Caudillo, Lubna Dada, Manuel Granzin, Xu-Cheng He, Houssni Lamkaddam, Brandon Lopez, Vladimir Makhmutov, Ruby Marten, Bernhard Mentler, Tatjana Müller, Antti Onnela, Maxim Philippov, Ana A. Piedehierro, Birte Rörup, Meredith Schervish, Ping Tian, Nsikanabasi S. Umo, Dongyu S. Wang, Mingyi Wang, Stefan K. Weber, André Welti, Yusheng Wu, Marcel Zauner-Wieczorek, Antonio Amorim, Imad El Haddad, Markku Kulmala, Katrianne Lehtipalo, Tuukka Petäjä, António Tomé, Sander Mirme, Hanna E. Manninen, Neil M. Donahue, Richard C. Flagan, Andreas Kürten, Joachim Curtius, and Jasper Kirkby
Atmos. Chem. Phys., 23, 6703–6718, https://doi.org/10.5194/acp-23-6703-2023, https://doi.org/10.5194/acp-23-6703-2023, 2023
Short summary
Short summary
Attachment rate coefficients between ions and charged aerosol particles determine their lifetimes and may also influence cloud dynamics and aerosol processing. Here we present novel experiments that measure ion–aerosol attachment rate coefficients for multiply charged aerosol particles under atmospheric conditions in the CERN CLOUD chamber. Our results provide experimental discrimination between various theoretical models.
Lucía Caudillo, Mihnea Surdu, Brandon Lopez, Mingyi Wang, Markus Thoma, Steffen Bräkling, Angela Buchholz, Mario Simon, Andrea C. Wagner, Tatjana Müller, Manuel Granzin, Martin Heinritzi, Antonio Amorim, David M. Bell, Zoé Brasseur, Lubna Dada, Jonathan Duplissy, Henning Finkenzeller, Xu-Cheng He, Houssni Lamkaddam, Naser G. A. Mahfouz, Vladimir Makhmutov, Hanna E. Manninen, Guillaume Marie, Ruby Marten, Roy L. Mauldin, Bernhard Mentler, Antti Onnela, Tuukka Petäjä, Joschka Pfeifer, Maxim Philippov, Ana A. Piedehierro, Birte Rörup, Wiebke Scholz, Jiali Shen, Dominik Stolzenburg, Christian Tauber, Ping Tian, António Tomé, Nsikanabasi Silas Umo, Dongyu S. Wang, Yonghong Wang, Stefan K. Weber, André Welti, Marcel Zauner-Wieczorek, Urs Baltensperger, Richard C. Flagan, Armin Hansel, Jasper Kirkby, Markku Kulmala, Katrianne Lehtipalo, Douglas R. Worsnop, Imad El Haddad, Neil M. Donahue, Alexander L. Vogel, Andreas Kürten, and Joachim Curtius
Atmos. Chem. Phys., 23, 6613–6631, https://doi.org/10.5194/acp-23-6613-2023, https://doi.org/10.5194/acp-23-6613-2023, 2023
Short summary
Short summary
In this study, we present an intercomparison of four different techniques for measuring the chemical composition of nanoparticles. The intercomparison was performed based on the observed chemical composition, calculated volatility, and analysis of the thermograms. We found that the methods generally agree on the most important compounds that are found in the nanoparticles. However, they do see different parts of the organic spectrum. We suggest potential explanations for these differences.
Anton Rusanen, Kristo Hõrrak, Lauri R. Ahonen, Tuomo Nieminen, Pasi P. Aalto, Pasi Kolari, Markku Kulmala, Tuukka Petäjä, and Heikki Junninen
Atmos. Meas. Tech., 16, 2781–2793, https://doi.org/10.5194/amt-16-2781-2023, https://doi.org/10.5194/amt-16-2781-2023, 2023
Short summary
Short summary
We present a framework for setting up SMEAR (Station for Measuring Ecosystem–Atmosphere Relations) type measurement station data flows. This framework, called SMEARcore, consists of modular open-source software components that can be chosen to suit various station configurations. The benefits of using this framework are automation of routine operations and real-time monitoring of measurement results.
Dominik Stolzenburg, Tiia Laurila, Pasi Aalto, Joonas Vanhanen, Tuukka Petäjä, and Juha Kangasluoma
Atmos. Meas. Tech., 16, 2471–2483, https://doi.org/10.5194/amt-16-2471-2023, https://doi.org/10.5194/amt-16-2471-2023, 2023
Short summary
Short summary
Size-distribution measurements of ultrafine particles are of special interest as they can be used to estimate the atmospheric significance of new particle formation, a process which is thought to influence the global climate. Here we show that improved counting statistics in size-distribution measurements through the usage of higher sampling flows can significantly reduce the uncertainties in such calculations.
Rujing Yin, Xiaoxiao Li, Chao Yan, Runlong Cai, Ying Zhou, Juha Kangasluoma, Nina Sarnela, Janne Lampilahti, Tuukka Petäjä, Veli-Matti Kerminen, Federico Bianchi, Markku Kulmala, and Jingkun Jiang
Atmos. Chem. Phys., 23, 5279–5296, https://doi.org/10.5194/acp-23-5279-2023, https://doi.org/10.5194/acp-23-5279-2023, 2023
Short summary
Short summary
Atmospheric cluster ions are important constituents in the atmosphere. However, the quantitative research on their compositions is still limited, especially in urban environments. Here we demonstrate the feasibility of an in situ quantification method of cluster ions measured by a high-resolution mass spectrometer and reveal their governing factors, sources, and sinks in urban Beijing through quantitative analysis of cluster ions, reagent ions, neutral molecules, and condensation sink.
Qiaozhi Zha, Wei Huang, Diego Aliaga, Otso Peräkylä, Liine Heikkinen, Alkuin Maximilian Koenig, Cheng Wu, Joonas Enroth, Yvette Gramlich, Jing Cai, Samara Carbone, Armin Hansel, Tuukka Petäjä, Markku Kulmala, Douglas Worsnop, Victoria Sinclair, Radovan Krejci, Marcos Andrade, Claudia Mohr, and Federico Bianchi
Atmos. Chem. Phys., 23, 4559–4576, https://doi.org/10.5194/acp-23-4559-2023, https://doi.org/10.5194/acp-23-4559-2023, 2023
Short summary
Short summary
We investigate the chemical composition of atmospheric cluster ions from January to May 2018 at the high-altitude research station Chacaltaya (5240 m a.s.l.) in the Bolivian Andes. With state-of-the-art mass spectrometers and air mass history analysis, the measured cluster ions exhibited distinct diurnal and seasonal patterns, some of which contributed to new particle formation. Our study will improve the understanding of atmospheric ions and their role in high-altitude new particle formation.
Meri Räty, Larisa Sogacheva, Helmi-Marja Keskinen, Veli-Matti Kerminen, Tuomo Nieminen, Tuukka Petäjä, Ekaterina Ezhova, and Markku Kulmala
Atmos. Chem. Phys., 23, 3779–3798, https://doi.org/10.5194/acp-23-3779-2023, https://doi.org/10.5194/acp-23-3779-2023, 2023
Short summary
Short summary
We utilised back trajectories to identify the source region of air masses arriving in Hyytiälä, Finland, and their travel time over forests. Combined with atmospheric observations, they revealed how air mass transport over the Fennoscandian boreal forest during the growing season produced an accumulation of cloud condensation nuclei and humidity, promoting cloudiness and precipitation. By 55 h of transport, air masses appeared to reach a balanced state with the forest environment.
Ella Häkkinen, Jian Zhao, Frans Graeffe, Nicolas Fauré, Jordan E. Krechmer, Douglas Worsnop, Hilkka Timonen, Mikael Ehn, and Juha Kangasluoma
Atmos. Meas. Tech., 16, 1705–1721, https://doi.org/10.5194/amt-16-1705-2023, https://doi.org/10.5194/amt-16-1705-2023, 2023
Short summary
Short summary
Highly oxygenated compounds contribute to the formation and growth of atmospheric organic aerosol and thus impact the global climate. Knowledge of their transformations and fate after condensing into the particle phase has been limited by the lack of suitable detection techniques. Here, we present an online method for measuring highly oxygenated compounds from organic aerosol. We evaluate the performance of the method and demonstrate that the method is applicable to different organic species.
Jian Zhao, Ella Häkkinen, Frans Graeffe, Jordan E. Krechmer, Manjula R. Canagaratna, Douglas R. Worsnop, Juha Kangasluoma, and Mikael Ehn
Atmos. Chem. Phys., 23, 3707–3730, https://doi.org/10.5194/acp-23-3707-2023, https://doi.org/10.5194/acp-23-3707-2023, 2023
Short summary
Short summary
Based on the combined measurements of gas- and particle-phase highly oxygenated organic molecules (HOMs) from α-pinene ozonolysis, enhancement of dimers in particles was observed. We conducted experiments wherein the dimer to monomer (D / M) ratios of HOMs in the gas phase were modified (adding CO / NO) to investigate the effects of the corresponding D / M ratios in the particles. These results are important for a better understanding of secondary organic aerosol formation in the atmosphere.
Lejish Vettikkat, Pasi Miettinen, Angela Buchholz, Pekka Rantala, Hao Yu, Simon Schallhart, Tuukka Petäjä, Roger Seco, Elisa Männistö, Markku Kulmala, Eeva-Stiina Tuittila, Alex B. Guenther, and Siegfried Schobesberger
Atmos. Chem. Phys., 23, 2683–2698, https://doi.org/10.5194/acp-23-2683-2023, https://doi.org/10.5194/acp-23-2683-2023, 2023
Short summary
Short summary
Wetlands cover a substantial fraction of the land mass in the northern latitudes, from northern Europe to Siberia and Canada. Yet, their isoprene and terpene emissions remain understudied. Here, we used a state-of-the-art measurement technique to quantify ecosystem-scale emissions from a boreal wetland during an unusually warm spring/summer. We found that the emissions from this wetland were (a) higher and (b) even more strongly dependent on temperature than commonly thought.
Matthew Boyer, Diego Aliaga, Jakob Boyd Pernov, Hélène Angot, Lauriane L. J. Quéléver, Lubna Dada, Benjamin Heutte, Manuel Dall'Osto, David C. S. Beddows, Zoé Brasseur, Ivo Beck, Silvia Bucci, Marina Duetsch, Andreas Stohl, Tiia Laurila, Eija Asmi, Andreas Massling, Daniel Charles Thomas, Jakob Klenø Nøjgaard, Tak Chan, Sangeeta Sharma, Peter Tunved, Radovan Krejci, Hans Christen Hansson, Federico Bianchi, Katrianne Lehtipalo, Alfred Wiedensohler, Kay Weinhold, Markku Kulmala, Tuukka Petäjä, Mikko Sipilä, Julia Schmale, and Tuija Jokinen
Atmos. Chem. Phys., 23, 389–415, https://doi.org/10.5194/acp-23-389-2023, https://doi.org/10.5194/acp-23-389-2023, 2023
Short summary
Short summary
The Arctic is a unique environment that is warming faster than other locations on Earth. We evaluate measurements of aerosol particles, which can influence climate, over the central Arctic Ocean for a full year and compare the data to land-based measurement stations across the Arctic. Our measurements show that the central Arctic has similarities to but also distinct differences from the stations further south. We note that this may change as the Arctic warms and sea ice continues to decline.
Mykhailo Savenets, Larysa Pysarenko, Svitlana Krakovska, Alexander Mahura, and Tuukka Petäjä
Atmos. Chem. Phys., 22, 15777–15791, https://doi.org/10.5194/acp-22-15777-2022, https://doi.org/10.5194/acp-22-15777-2022, 2022
Short summary
Short summary
The paper explores the spatio-temporal variability of black carbon during a wildfire in August 2010, with a focus on Ukraine. As a research tool, the seamless Enviro-HIRLAM modelling system is used for investigating the atmospheric transport of aerosol particles emitted by wildfires from remote and local sources. The results of this study improve our understanding of the physical and chemical processes and the interactions of aerosols in the atmosphere.
Juha Sulo, Janne Lampilahti, Xuemeng Chen, Jenni Kontkanen, Tuomo Nieminen, Veli-Matti Kerminen, Tuukka Petäjä, Markku Kulmala, and Katrianne Lehtipalo
Atmos. Chem. Phys., 22, 15223–15242, https://doi.org/10.5194/acp-22-15223-2022, https://doi.org/10.5194/acp-22-15223-2022, 2022
Short summary
Short summary
We measured atmospheric ion concentrations continuously in a boreal forest between 2005 and 2021 and observed an increasing interannual trend. The increase in cluster ion concentrations can be largely explained by an overall decreasing level of anthropogenic aerosols in the boreal forest. This suggests that the role of ions in atmospheric new particle formation may be more important in the future.
Runlong Cai, Chenjuan Deng, Dominik Stolzenburg, Chenxi Li, Junchen Guo, Veli-Matti Kerminen, Jingkun Jiang, Markku Kulmala, and Juha Kangasluoma
Atmos. Chem. Phys., 22, 14571–14587, https://doi.org/10.5194/acp-22-14571-2022, https://doi.org/10.5194/acp-22-14571-2022, 2022
Short summary
Short summary
The survival probability of new particles is the key parameter governing their influences on the atmosphere and climate, yet the knowledge of particle survival in the atmosphere is rather limited. We propose methods to compute the size-resolved particle survival probability and validate them using simulations and measurements from diverse environments. Using these methods, we could explain particle survival from the cluster size to the cloud condensation nuclei size.
Chenjuan Deng, Yiran Li, Chao Yan, Jin Wu, Runlong Cai, Dongbin Wang, Yongchun Liu, Juha Kangasluoma, Veli-Matti Kerminen, Markku Kulmala, and Jingkun Jiang
Atmos. Chem. Phys., 22, 13569–13580, https://doi.org/10.5194/acp-22-13569-2022, https://doi.org/10.5194/acp-22-13569-2022, 2022
Short summary
Short summary
The size distributions of urban atmospheric particles convey important information on their origins and impacts. This study investigates the characteristics of typical particle size distributions and key gaseous precursors in the long term in urban Beijing. A fitting function is proposed to represent and help interpret size distribution including particles and gaseous precursors. In addition to NPF (new particle formation) as the major source, vehicles can emit sub-3 nm particles as well
Loïc Gonzalez Carracedo, Katrianne Lehtipalo, Lauri R. Ahonen, Nina Sarnela, Sebastian Holm, Juha Kangasluoma, Markku Kulmala, Paul M. Winkler, and Dominik Stolzenburg
Atmos. Chem. Phys., 22, 13153–13166, https://doi.org/10.5194/acp-22-13153-2022, https://doi.org/10.5194/acp-22-13153-2022, 2022
Short summary
Short summary
Fast nanoparticle growth is essential for the survival of new aerosol particles in the atmosphere and hence their contribution to the climate. We show that using naturally charged ions for growth calculations can cause a significant error. During the diurnal cycle, the importance of ion-induced and neutral nucleation varies, causing the ion population to have a slower measurable apparent growth. Results suggest that data from ion spectrometers need to be considered with great care below 3 nm.
Ville Leinonen, Harri Kokkola, Taina Yli-Juuti, Tero Mielonen, Thomas Kühn, Tuomo Nieminen, Simo Heikkinen, Tuuli Miinalainen, Tommi Bergman, Ken Carslaw, Stefano Decesari, Markus Fiebig, Tareq Hussein, Niku Kivekäs, Radovan Krejci, Markku Kulmala, Ari Leskinen, Andreas Massling, Nikos Mihalopoulos, Jane P. Mulcahy, Steffen M. Noe, Twan van Noije, Fiona M. O'Connor, Colin O'Dowd, Dirk Olivie, Jakob B. Pernov, Tuukka Petäjä, Øyvind Seland, Michael Schulz, Catherine E. Scott, Henrik Skov, Erik Swietlicki, Thomas Tuch, Alfred Wiedensohler, Annele Virtanen, and Santtu Mikkonen
Atmos. Chem. Phys., 22, 12873–12905, https://doi.org/10.5194/acp-22-12873-2022, https://doi.org/10.5194/acp-22-12873-2022, 2022
Short summary
Short summary
We provide the first extensive comparison of detailed aerosol size distribution trends between in situ observations from Europe and five different earth system models. We investigated aerosol modes (nucleation, Aitken, and accumulation) separately and were able to show the differences between measured and modeled trends and especially their seasonal patterns. The differences in model results are likely due to complex effects of several processes instead of certain specific model features.
Chao Yan, Yicheng Shen, Dominik Stolzenburg, Lubna Dada, Ximeng Qi, Simo Hakala, Anu-Maija Sundström, Yishuo Guo, Antti Lipponen, Tom V. Kokkonen, Jenni Kontkanen, Runlong Cai, Jing Cai, Tommy Chan, Liangduo Chen, Biwu Chu, Chenjuan Deng, Wei Du, Xiaolong Fan, Xu-Cheng He, Juha Kangasluoma, Joni Kujansuu, Mona Kurppa, Chang Li, Yiran Li, Zhuohui Lin, Yiliang Liu, Yuliang Liu, Yiqun Lu, Wei Nie, Jouni Pulliainen, Xiaohui Qiao, Yonghong Wang, Yifan Wen, Ye Wu, Gan Yang, Lei Yao, Rujing Yin, Gen Zhang, Shaojun Zhang, Feixue Zheng, Ying Zhou, Antti Arola, Johanna Tamminen, Pauli Paasonen, Yele Sun, Lin Wang, Neil M. Donahue, Yongchun Liu, Federico Bianchi, Kaspar R. Daellenbach, Douglas R. Worsnop, Veli-Matti Kerminen, Tuukka Petäjä, Aijun Ding, Jingkun Jiang, and Markku Kulmala
Atmos. Chem. Phys., 22, 12207–12220, https://doi.org/10.5194/acp-22-12207-2022, https://doi.org/10.5194/acp-22-12207-2022, 2022
Short summary
Short summary
Atmospheric new particle formation (NPF) is a dominant source of atmospheric ultrafine particles. In urban environments, traffic emissions are a major source of primary pollutants, but their contribution to NPF remains under debate. During the COVID-19 lockdown, traffic emissions were significantly reduced, providing a unique chance to examine their relevance to NPF. Based on our comprehensive measurements, we demonstrate that traffic emissions alone are not able to explain the NPF in Beijing.
Sini Isokääntä, Paul Kim, Santtu Mikkonen, Thomas Kühn, Harri Kokkola, Taina Yli-Juuti, Liine Heikkinen, Krista Luoma, Tuukka Petäjä, Zak Kipling, Daniel Partridge, and Annele Virtanen
Atmos. Chem. Phys., 22, 11823–11843, https://doi.org/10.5194/acp-22-11823-2022, https://doi.org/10.5194/acp-22-11823-2022, 2022
Short summary
Short summary
This research employs air mass history analysis and observations to study how clouds and precipitation affect atmospheric aerosols during transport to a boreal forest site. The mass concentrations of studied chemical species showed exponential decrease as a function of accumulated rain along the air mass route. Our analysis revealed in-cloud sulfate formation, while no major changes in organic mass were seen. Most of the in-cloud-formed sulfate could be assigned to particle sizes above 200 nm.
Runlong Cai, Ella Häkkinen, Chao Yan, Jingkun Jiang, Markku Kulmala, and Juha Kangasluoma
Atmos. Chem. Phys., 22, 11529–11541, https://doi.org/10.5194/acp-22-11529-2022, https://doi.org/10.5194/acp-22-11529-2022, 2022
Short summary
Short summary
The influences of new particle formation on the climate and air quality are governed by particle survival, which has been under debate due to uncertainties in the coagulation sink. Here we measure the coagulation coefficient of sub-10 nm particles and demonstrate that collisions between the freshly nucleated and background particles can effectively lead to coagulation. We further show that the effective coagulation sink is consistent with the new particle formation measured in urban Beijing.
Benjamin Foreback, Lubna Dada, Kaspar R. Daellenbach, Chao Yan, Lili Wang, Biwu Chu, Ying Zhou, Tom V. Kokkonen, Mona Kurppa, Rosaria E. Pileci, Yonghong Wang, Tommy Chan, Juha Kangasluoma, Lin Zhuohui, Yishou Guo, Chang Li, Rima Baalbaki, Joni Kujansuu, Xiaolong Fan, Zemin Feng, Pekka Rantala, Shahzad Gani, Federico Bianchi, Veli-Matti Kerminen, Tuukka Petäjä, Markku Kulmala, Yongchun Liu, and Pauli Paasonen
Atmos. Chem. Phys., 22, 11089–11104, https://doi.org/10.5194/acp-22-11089-2022, https://doi.org/10.5194/acp-22-11089-2022, 2022
Short summary
Short summary
This study analyzed air quality in Beijing during the Chinese New Year over 7 years, including data from a new in-depth measurement station. This is one of few studies to look at long-term impacts, including the outcome of firework restrictions starting in 2018. Results show that firework pollution has gone down since 2016, indicating a positive result from the restrictions. Results of this study may be useful in making future decisions about the use of fireworks to improve air quality.
Ivo Beck, Hélène Angot, Andrea Baccarini, Lubna Dada, Lauriane Quéléver, Tuija Jokinen, Tiia Laurila, Markus Lampimäki, Nicolas Bukowiecki, Matthew Boyer, Xianda Gong, Martin Gysel-Beer, Tuukka Petäjä, Jian Wang, and Julia Schmale
Atmos. Meas. Tech., 15, 4195–4224, https://doi.org/10.5194/amt-15-4195-2022, https://doi.org/10.5194/amt-15-4195-2022, 2022
Short summary
Short summary
We present the pollution detection algorithm (PDA), a new method to identify local primary pollution in remote atmospheric aerosol and trace gas time series. The PDA identifies periods of contaminated data and relies only on the target dataset itself; i.e., it is independent of ancillary data such as meteorological variables. The parameters of all pollution identification steps are adjustable so that the PDA can be tuned to different locations and situations. It is available as open-access code.
Lisa J. Beck, Siegfried Schobesberger, Heikki Junninen, Janne Lampilahti, Antti Manninen, Lubna Dada, Katri Leino, Xu-Cheng He, Iida Pullinen, Lauriane L. J. Quéléver, Anna Franck, Pyry Poutanen, Daniela Wimmer, Frans Korhonen, Mikko Sipilä, Mikael Ehn, Douglas R. Worsnop, Veli-Matti Kerminen, Tuukka Petäjä, Markku Kulmala, and Jonathan Duplissy
Atmos. Chem. Phys., 22, 8547–8577, https://doi.org/10.5194/acp-22-8547-2022, https://doi.org/10.5194/acp-22-8547-2022, 2022
Short summary
Short summary
The presented article introduces an overview of atmospheric ions and their composition above the boreal forest. We provide the results of an extensive airborne measurement campaign with an air ion mass spectrometer and particle measurements, showing their diurnal evolution within the boundary layer and free troposphere. In addition, we compare the airborne dataset with the co-located data from the ground at SMEAR II station, Finland.
Karine Sartelet, Youngseob Kim, Florian Couvidat, Maik Merkel, Tuukka Petäjä, Jean Sciare, and Alfred Wiedensohler
Atmos. Chem. Phys., 22, 8579–8596, https://doi.org/10.5194/acp-22-8579-2022, https://doi.org/10.5194/acp-22-8579-2022, 2022
Short summary
Short summary
A methodology is defined to estimate number emissions from an inventory providing mass emissions. Number concentrations are simulated over Greater Paris using different nucleation parameterisations (binary, ternary involving sulfuric acid and ammonia, and heteromolecular involving sulfuric acid and extremely low-volatility organics, ELVOCs). The comparisons show that ternary nucleation may not be a dominant process for new particle formation in cities, but they stress the role of ELVOCs.
Miska Olin, Magdalena Okuljar, Matti P. Rissanen, Joni Kalliokoski, Jiali Shen, Lubna Dada, Markus Lampimäki, Yusheng Wu, Annalea Lohila, Jonathan Duplissy, Mikko Sipilä, Tuukka Petäjä, Markku Kulmala, and Miikka Dal Maso
Atmos. Chem. Phys., 22, 8097–8115, https://doi.org/10.5194/acp-22-8097-2022, https://doi.org/10.5194/acp-22-8097-2022, 2022
Short summary
Short summary
Atmospheric new particle formation is an important source of the total particle number concentration in the atmosphere. Several parameters for predicting new particle formation events have been suggested before, but the results have been inconclusive. This study proposes an another predicting parameter, related to a specific type of highly oxidized organic molecules, especially for similar locations to the measurement site in this study, which was a coastal agricultural site in Finland.
Ruochong Xu, Joel A. Thornton, Ben H. Lee, Yanxu Zhang, Lyatt Jaeglé, Felipe D. Lopez-Hilfiker, Pekka Rantala, and Tuukka Petäjä
Atmos. Chem. Phys., 22, 5477–5494, https://doi.org/10.5194/acp-22-5477-2022, https://doi.org/10.5194/acp-22-5477-2022, 2022
Short summary
Short summary
Monoterpenes are emitted into the atmosphere by vegetation and by the use of certain consumer products. Reactions of monoterpenes in the atmosphere lead to low-volatility products that condense to grow particulate matter or participate in new particle formation and, thus, affect air quality and climate. We use a model of atmospheric chemistry and transport to evaluate the global-scale importance of recent updates to our understanding of monoterpene chemistry in particle formation and growth.
Zoé Brasseur, Dimitri Castarède, Erik S. Thomson, Michael P. Adams, Saskia Drossaart van Dusseldorp, Paavo Heikkilä, Kimmo Korhonen, Janne Lampilahti, Mikhail Paramonov, Julia Schneider, Franziska Vogel, Yusheng Wu, Jonathan P. D. Abbatt, Nina S. Atanasova, Dennis H. Bamford, Barbara Bertozzi, Matthew Boyer, David Brus, Martin I. Daily, Romy Fösig, Ellen Gute, Alexander D. Harrison, Paula Hietala, Kristina Höhler, Zamin A. Kanji, Jorma Keskinen, Larissa Lacher, Markus Lampimäki, Janne Levula, Antti Manninen, Jens Nadolny, Maija Peltola, Grace C. E. Porter, Pyry Poutanen, Ulrike Proske, Tobias Schorr, Nsikanabasi Silas Umo, János Stenszky, Annele Virtanen, Dmitri Moisseev, Markku Kulmala, Benjamin J. Murray, Tuukka Petäjä, Ottmar Möhler, and Jonathan Duplissy
Atmos. Chem. Phys., 22, 5117–5145, https://doi.org/10.5194/acp-22-5117-2022, https://doi.org/10.5194/acp-22-5117-2022, 2022
Short summary
Short summary
The present measurement report introduces the ice nucleation campaign organized in Hyytiälä, Finland, in 2018 (HyICE-2018). We provide an overview of the campaign settings, and we describe the measurement infrastructure and operating procedures used. In addition, we use results from ice nucleation instrument inter-comparison to show that the suite of these instruments deployed during the campaign reports consistent results.
Aki Virkkula, Henrik Grythe, John Backman, Tuukka Petäjä, Maurizio Busetto, Christian Lanconelli, Angelo Lupi, Silvia Becagli, Rita Traversi, Mirko Severi, Vito Vitale, Patrick Sheridan, and Elisabeth Andrews
Atmos. Chem. Phys., 22, 5033–5069, https://doi.org/10.5194/acp-22-5033-2022, https://doi.org/10.5194/acp-22-5033-2022, 2022
Short summary
Short summary
Optical properties of surface aerosols at Dome C, Antarctica, in 2007–2013 and their potential source areas are presented. The equivalent black carbon (eBC) mass concentrations were compared with eBC measured at three other Antarctic sites: the South Pole (SPO) and two coastal sites, Neumayer and Syowa. Transport analysis suggests that South American BC emissions are the largest contributor to eBC at Dome C.
Joel Kuula, Hilkka Timonen, Jarkko V. Niemi, Hanna E. Manninen, Topi Rönkkö, Tareq Hussein, Pak Lun Fung, Sasu Tarkoma, Mikko Laakso, Erkka Saukko, Aino Ovaska, Markku Kulmala, Ari Karppinen, Lasse Johansson, and Tuukka Petäjä
Atmos. Chem. Phys., 22, 4801–4808, https://doi.org/10.5194/acp-22-4801-2022, https://doi.org/10.5194/acp-22-4801-2022, 2022
Short summary
Short summary
Modern and up-to-date policies and air quality management strategies are instrumental in tackling global air pollution. As the European Union is preparing to revise Ambient Air Quality Directive 2008/50/EC, this paper initiates discussion on selected features of the directive that we believe would benefit from a reassessment. The scientific community has the most recent and deepest understanding of air pollution; thus, its contribution is essential.
Hanna K. Lappalainen, Tuukka Petäjä, Timo Vihma, Jouni Räisänen, Alexander Baklanov, Sergey Chalov, Igor Esau, Ekaterina Ezhova, Matti Leppäranta, Dmitry Pozdnyakov, Jukka Pumpanen, Meinrat O. Andreae, Mikhail Arshinov, Eija Asmi, Jianhui Bai, Igor Bashmachnikov, Boris Belan, Federico Bianchi, Boris Biskaborn, Michael Boy, Jaana Bäck, Bin Cheng, Natalia Chubarova, Jonathan Duplissy, Egor Dyukarev, Konstantinos Eleftheriadis, Martin Forsius, Martin Heimann, Sirkku Juhola, Vladimir Konovalov, Igor Konovalov, Pavel Konstantinov, Kajar Köster, Elena Lapshina, Anna Lintunen, Alexander Mahura, Risto Makkonen, Svetlana Malkhazova, Ivan Mammarella, Stefano Mammola, Stephany Buenrostro Mazon, Outi Meinander, Eugene Mikhailov, Victoria Miles, Stanislav Myslenkov, Dmitry Orlov, Jean-Daniel Paris, Roberta Pirazzini, Olga Popovicheva, Jouni Pulliainen, Kimmo Rautiainen, Torsten Sachs, Vladimir Shevchenko, Andrey Skorokhod, Andreas Stohl, Elli Suhonen, Erik S. Thomson, Marina Tsidilina, Veli-Pekka Tynkkynen, Petteri Uotila, Aki Virkkula, Nadezhda Voropay, Tobias Wolf, Sayaka Yasunaka, Jiahua Zhang, Yubao Qiu, Aijun Ding, Huadong Guo, Valery Bondur, Nikolay Kasimov, Sergej Zilitinkevich, Veli-Matti Kerminen, and Markku Kulmala
Atmos. Chem. Phys., 22, 4413–4469, https://doi.org/10.5194/acp-22-4413-2022, https://doi.org/10.5194/acp-22-4413-2022, 2022
Short summary
Short summary
We summarize results during the last 5 years in the northern Eurasian region, especially from Russia, and introduce recent observations of the air quality in the urban environments in China. Although the scientific knowledge in these regions has increased, there are still gaps in our understanding of large-scale climate–Earth surface interactions and feedbacks. This arises from limitations in research infrastructures and integrative data analyses, hindering a comprehensive system analysis.
Tuija Jokinen, Katrianne Lehtipalo, Roseline Cutting Thakur, Ilona Ylivinkka, Kimmo Neitola, Nina Sarnela, Totti Laitinen, Markku Kulmala, Tuukka Petäjä, and Mikko Sipilä
Atmos. Chem. Phys., 22, 2237–2254, https://doi.org/10.5194/acp-22-2237-2022, https://doi.org/10.5194/acp-22-2237-2022, 2022
Short summary
Short summary
New particle formation is an important source of cloud condensation nuclei; however, long-term measurements of aerosol-forming vapors are close to nonexistent in the Arctic. Here, we report 7 months of CI-APi-TOF measurements of sulfuric acid, iodic acid, methane sulfonic acid and the sum of highly oxygenated organic molecules from the SMEAR I station in the Finnish subarctic. The results help us to understand atmospheric chemical processes and aerosol formation in this rapidly changing area.
Pak Lun Fung, Martha A. Zaidan, Jarkko V. Niemi, Erkka Saukko, Hilkka Timonen, Anu Kousa, Joel Kuula, Topi Rönkkö, Ari Karppinen, Sasu Tarkoma, Markku Kulmala, Tuukka Petäjä, and Tareq Hussein
Atmos. Chem. Phys., 22, 1861–1882, https://doi.org/10.5194/acp-22-1861-2022, https://doi.org/10.5194/acp-22-1861-2022, 2022
Short summary
Short summary
We developed an input-adaptive mixed-effects model, which was automatised to select the best combination of input variables, including up to three fixed effect variables and three time indictors as random effect variables. We tested the model to estimate lung-deposited surface area (LDSA), which correlates well with human health. The results show the inclusion of time indicators improved the sensitivity and the accuracy of the model so that it could serve as a network of virtual sensors.
Peifeng Su, Jorma Joutsensaari, Lubna Dada, Martha Arbayani Zaidan, Tuomo Nieminen, Xinyang Li, Yusheng Wu, Stefano Decesari, Sasu Tarkoma, Tuukka Petäjä, Markku Kulmala, and Petri Pellikka
Atmos. Chem. Phys., 22, 1293–1309, https://doi.org/10.5194/acp-22-1293-2022, https://doi.org/10.5194/acp-22-1293-2022, 2022
Short summary
Short summary
We regarded the banana shapes in the surface plots as a special kind of object (similar to cats) and applied an instance segmentation technique to automatically identify the new particle formation (NPF) events (especially the strongest ones), in addition to their growth rates, start times, and end times. The automatic method generalized well on datasets collected in different sites, which is useful for long-term data series analysis and obtaining statistical properties of NPF events.
Arto Heitto, Kari Lehtinen, Tuukka Petäjä, Felipe Lopez-Hilfiker, Joel A. Thornton, Markku Kulmala, and Taina Yli-Juuti
Atmos. Chem. Phys., 22, 155–171, https://doi.org/10.5194/acp-22-155-2022, https://doi.org/10.5194/acp-22-155-2022, 2022
Short summary
Short summary
For atmospheric aerosol particles to take part in cloud formation, they need to be at least a few tens of nanometers in diameter. By using a particle condensation model, we investigated how two types of chemical reactions, oligomerization and decomposition, of organic molecules inside the particle may affect the growth of secondary aerosol particles to these sizes. We show that the effect is potentially significant, which highlights the importance of increasing understanding of these processes.
Dina Alfaouri, Monica Passananti, Tommaso Zanca, Lauri Ahonen, Juha Kangasluoma, Jakub Kubečka, Nanna Myllys, and Hanna Vehkamäki
Atmos. Meas. Tech., 15, 11–19, https://doi.org/10.5194/amt-15-11-2022, https://doi.org/10.5194/amt-15-11-2022, 2022
Short summary
Short summary
To study what is happening in the atmosphere, it is important to be able to measure the molecules and clusters present in it. In our work, we studied an artifact that happens inside a mass spectrometer, in particular the fragmentation of clusters. We were able to quantify the fragmentation and retrieve the correct concentration and composition of the clusters using our dual (experimental and theoretical) approach.
Lukas Fischer, Martin Breitenlechner, Eva Canaval, Wiebke Scholz, Marcus Striednig, Martin Graus, Thomas G. Karl, Tuukka Petäjä, Markku Kulmala, and Armin Hansel
Atmos. Meas. Tech., 14, 8019–8039, https://doi.org/10.5194/amt-14-8019-2021, https://doi.org/10.5194/amt-14-8019-2021, 2021
Short summary
Short summary
Ecosystems emit biogenic volatile organic compounds (BVOCs), which are then oxidized in the atmosphere, contributing to ozone and secondary aerosol formation. While flux measurements of BVOCs are state of the art, flux measurements of the less volatile oxidation products are difficult to achieve due to inlet losses. Here we present first flux measurements, utilizing a novel PTR3 instrument in combination with a specially designed wall-less inlet we put on top of the Hyytiälä tower in Finland.
Ying Zhou, Simo Hakala, Chao Yan, Yang Gao, Xiaohong Yao, Biwu Chu, Tommy Chan, Juha Kangasluoma, Shahzad Gani, Jenni Kontkanen, Pauli Paasonen, Yongchun Liu, Tuukka Petäjä, Markku Kulmala, and Lubna Dada
Atmos. Chem. Phys., 21, 17885–17906, https://doi.org/10.5194/acp-21-17885-2021, https://doi.org/10.5194/acp-21-17885-2021, 2021
Short summary
Short summary
We characterized the connection between new particle formation (NPF) events in terms of frequency, intensity and growth at a near-highway location in central Beijing and at a background mountain site 80 km away. Due to the substantial contribution of NPF to the global aerosol budget, identifying the conditions that promote the occurrence of regional NPF events could help understand their contribution on a large scale and would improve their implementation in global models.
Mikko Sipilä, Nina Sarnela, Kimmo Neitola, Totti Laitinen, Deniz Kemppainen, Lisa Beck, Ella-Maria Duplissy, Salla Kuittinen, Tuuli Lehmusjärvi, Janne Lampilahti, Veli-Matti Kerminen, Katrianne Lehtipalo, Pasi P. Aalto, Petri Keronen, Erkki Siivola, Pekka A. Rantala, Douglas R. Worsnop, Markku Kulmala, Tuija Jokinen, and Tuukka Petäjä
Atmos. Chem. Phys., 21, 17559–17576, https://doi.org/10.5194/acp-21-17559-2021, https://doi.org/10.5194/acp-21-17559-2021, 2021
Short summary
Short summary
Metallurgical industry in Kola peninsula is a large source of air pollution in the (sub-)Arctic domain. Sulfur dioxide emissions from the ore smelters are transported across large areas. We investigated sulfur dioxide and its transformation to sulfuric acid aerosol particles during winter months in Finnish Lapland, close to Kola industrial areas. We observed intense formation of new aerosol particles despite the low solar radiation intensity, often required for new particle formation elsewhere.
Clémence Rose, Martine Collaud Coen, Elisabeth Andrews, Yong Lin, Isaline Bossert, Cathrine Lund Myhre, Thomas Tuch, Alfred Wiedensohler, Markus Fiebig, Pasi Aalto, Andrés Alastuey, Elisabeth Alonso-Blanco, Marcos Andrade, Begoña Artíñano, Todor Arsov, Urs Baltensperger, Susanne Bastian, Olaf Bath, Johan Paul Beukes, Benjamin T. Brem, Nicolas Bukowiecki, Juan Andrés Casquero-Vera, Sébastien Conil, Konstantinos Eleftheriadis, Olivier Favez, Harald Flentje, Maria I. Gini, Francisco Javier Gómez-Moreno, Martin Gysel-Beer, Anna Gannet Hallar, Ivo Kalapov, Nikos Kalivitis, Anne Kasper-Giebl, Melita Keywood, Jeong Eun Kim, Sang-Woo Kim, Adam Kristensson, Markku Kulmala, Heikki Lihavainen, Neng-Huei Lin, Hassan Lyamani, Angela Marinoni, Sebastiao Martins Dos Santos, Olga L. Mayol-Bracero, Frank Meinhardt, Maik Merkel, Jean-Marc Metzger, Nikolaos Mihalopoulos, Jakub Ondracek, Marco Pandolfi, Noemi Pérez, Tuukka Petäjä, Jean-Eudes Petit, David Picard, Jean-Marc Pichon, Veronique Pont, Jean-Philippe Putaud, Fabienne Reisen, Karine Sellegri, Sangeeta Sharma, Gerhard Schauer, Patrick Sheridan, James Patrick Sherman, Andreas Schwerin, Ralf Sohmer, Mar Sorribas, Junying Sun, Pierre Tulet, Ville Vakkari, Pieter Gideon van Zyl, Fernando Velarde, Paolo Villani, Stergios Vratolis, Zdenek Wagner, Sheng-Hsiang Wang, Kay Weinhold, Rolf Weller, Margarita Yela, Vladimir Zdimal, and Paolo Laj
Atmos. Chem. Phys., 21, 17185–17223, https://doi.org/10.5194/acp-21-17185-2021, https://doi.org/10.5194/acp-21-17185-2021, 2021
Short summary
Short summary
Aerosol particles are a complex component of the atmospheric system the effects of which are among the most uncertain in climate change projections. Using data collected at 62 stations, this study provides the most up-to-date picture of the spatial distribution of particle number concentration and size distribution worldwide, with the aim of contributing to better representation of aerosols and their interactions with clouds in models and, therefore, better evaluation of their impact on climate.
Lucía Caudillo, Birte Rörup, Martin Heinritzi, Guillaume Marie, Mario Simon, Andrea C. Wagner, Tatjana Müller, Manuel Granzin, Antonio Amorim, Farnoush Ataei, Rima Baalbaki, Barbara Bertozzi, Zoé Brasseur, Randall Chiu, Biwu Chu, Lubna Dada, Jonathan Duplissy, Henning Finkenzeller, Loïc Gonzalez Carracedo, Xu-Cheng He, Victoria Hofbauer, Weimeng Kong, Houssni Lamkaddam, Chuan P. Lee, Brandon Lopez, Naser G. A. Mahfouz, Vladimir Makhmutov, Hanna E. Manninen, Ruby Marten, Dario Massabò, Roy L. Mauldin, Bernhard Mentler, Ugo Molteni, Antti Onnela, Joschka Pfeifer, Maxim Philippov, Ana A. Piedehierro, Meredith Schervish, Wiebke Scholz, Benjamin Schulze, Jiali Shen, Dominik Stolzenburg, Yuri Stozhkov, Mihnea Surdu, Christian Tauber, Yee Jun Tham, Ping Tian, António Tomé, Steffen Vogt, Mingyi Wang, Dongyu S. Wang, Stefan K. Weber, André Welti, Wang Yonghong, Wu Yusheng, Marcel Zauner-Wieczorek, Urs Baltensperger, Imad El Haddad, Richard C. Flagan, Armin Hansel, Kristina Höhler, Jasper Kirkby, Markku Kulmala, Katrianne Lehtipalo, Ottmar Möhler, Harald Saathoff, Rainer Volkamer, Paul M. Winkler, Neil M. Donahue, Andreas Kürten, and Joachim Curtius
Atmos. Chem. Phys., 21, 17099–17114, https://doi.org/10.5194/acp-21-17099-2021, https://doi.org/10.5194/acp-21-17099-2021, 2021
Short summary
Short summary
We performed experiments in the CLOUD chamber at CERN at low temperatures to simulate new particle formation in the upper free troposphere (at −30 ºC and −50 ºC). We measured the particle and gas phase and found that most of the compounds present in the gas phase are detected as well in the particle phase. The major compounds in the particles are C8–10 and C18–20. Specifically, we showed that C5 and C15 compounds are detected in a mixed system with isoprene and α-pinene at −30 ºC, 20 % RH.
Krista Luoma, Aki Virkkula, Pasi Aalto, Katrianne Lehtipalo, Tuukka Petäjä, and Markku Kulmala
Atmos. Meas. Tech., 14, 6419–6441, https://doi.org/10.5194/amt-14-6419-2021, https://doi.org/10.5194/amt-14-6419-2021, 2021
Short summary
Short summary
The study presents a comparison of three absorption photometers that measured ambient aerosol particles at a boreal forest site. The study aims to better understand problems related to filter-based measurements. Results show how different correction algorithms, which are used to produce the data, affect the derived optical properties of aerosol particles.
Haoran Li, Ottmar Möhler, Tuukka Petäjä, and Dmitri Moisseev
Atmos. Chem. Phys., 21, 14671–14686, https://doi.org/10.5194/acp-21-14671-2021, https://doi.org/10.5194/acp-21-14671-2021, 2021
Short summary
Short summary
In natural clouds, ice-nucleating particles are expected to be rare above –10 °C. In the current paper, we found that the formation of ice columns is frequent in stratiform clouds and is associated with increased precipitation intensity and liquid water path. In single-layer shallow clouds, the production of ice columns was attributed to secondary ice production, despite the rime-splintering process not being expected to take place in such clouds.
Philipp G. Eger, Luc Vereecken, Rolf Sander, Jan Schuladen, Nicolas Sobanski, Horst Fischer, Einar Karu, Jonathan Williams, Ville Vakkari, Tuukka Petäjä, Jos Lelieveld, Andrea Pozzer, and John N. Crowley
Atmos. Chem. Phys., 21, 14333–14349, https://doi.org/10.5194/acp-21-14333-2021, https://doi.org/10.5194/acp-21-14333-2021, 2021
Short summary
Short summary
We determine the impact of pyruvic acid photolysis on the formation of acetaldehyde and peroxy radicals during summer and autumn in the Finnish boreal forest using a data-constrained box model. Our results are dependent on the chosen scenario in which the overall quantum yield and the photolysis products are varied. We highlight that pyruvic acid photolysis can be an important contributor to acetaldehyde and peroxy radical formation in remote, forested regions.
Mao Xiao, Christopher R. Hoyle, Lubna Dada, Dominik Stolzenburg, Andreas Kürten, Mingyi Wang, Houssni Lamkaddam, Olga Garmash, Bernhard Mentler, Ugo Molteni, Andrea Baccarini, Mario Simon, Xu-Cheng He, Katrianne Lehtipalo, Lauri R. Ahonen, Rima Baalbaki, Paulus S. Bauer, Lisa Beck, David Bell, Federico Bianchi, Sophia Brilke, Dexian Chen, Randall Chiu, António Dias, Jonathan Duplissy, Henning Finkenzeller, Hamish Gordon, Victoria Hofbauer, Changhyuk Kim, Theodore K. Koenig, Janne Lampilahti, Chuan Ping Lee, Zijun Li, Huajun Mai, Vladimir Makhmutov, Hanna E. Manninen, Ruby Marten, Serge Mathot, Roy L. Mauldin, Wei Nie, Antti Onnela, Eva Partoll, Tuukka Petäjä, Joschka Pfeifer, Veronika Pospisilova, Lauriane L. J. Quéléver, Matti Rissanen, Siegfried Schobesberger, Simone Schuchmann, Yuri Stozhkov, Christian Tauber, Yee Jun Tham, António Tomé, Miguel Vazquez-Pufleau, Andrea C. Wagner, Robert Wagner, Yonghong Wang, Lena Weitz, Daniela Wimmer, Yusheng Wu, Chao Yan, Penglin Ye, Qing Ye, Qiaozhi Zha, Xueqin Zhou, Antonio Amorim, Ken Carslaw, Joachim Curtius, Armin Hansel, Rainer Volkamer, Paul M. Winkler, Richard C. Flagan, Markku Kulmala, Douglas R. Worsnop, Jasper Kirkby, Neil M. Donahue, Urs Baltensperger, Imad El Haddad, and Josef Dommen
Atmos. Chem. Phys., 21, 14275–14291, https://doi.org/10.5194/acp-21-14275-2021, https://doi.org/10.5194/acp-21-14275-2021, 2021
Short summary
Short summary
Experiments at CLOUD show that in polluted environments new particle formation (NPF) is largely driven by the formation of sulfuric acid–base clusters, stabilized by amines, high ammonia concentrations or lower temperatures. While oxidation products of aromatics can nucleate, they play a minor role in urban NPF. Our experiments span 4 orders of magnitude variation of observed NPF rates in ambient conditions. We provide a framework based on NPF and growth rates to interpret ambient observations.
Yongchun Liu, Zemin Feng, Feixue Zheng, Xiaolei Bao, Pengfei Liu, Yanli Ge, Yan Zhao, Tao Jiang, Yunwen Liao, Yusheng Zhang, Xiaolong Fan, Chao Yan, Biwu Chu, Yonghong Wang, Wei Du, Jing Cai, Federico Bianchi, Tuukka Petäjä, Yujing Mu, Hong He, and Markku Kulmala
Atmos. Chem. Phys., 21, 13269–13286, https://doi.org/10.5194/acp-21-13269-2021, https://doi.org/10.5194/acp-21-13269-2021, 2021
Short summary
Short summary
The mechanisms and kinetics of particulate sulfate formation in the atmosphere are still open questions although they have been extensively discussed. We found that uptake of SO2 is the rate-determining step for the conversion of SO2 to particulate sulfate. NH4NO3 plays an important role in AWC, the phase state of aerosol particles, and subsequently the uptake kinetics of SO2 under high-RH conditions. This work is a good example of the feedback between aerosol physics and aerosol chemistry.
Gloria Titos, María A. Burgos, Paul Zieger, Lucas Alados-Arboledas, Urs Baltensperger, Anne Jefferson, James Sherman, Ernest Weingartner, Bas Henzing, Krista Luoma, Colin O'Dowd, Alfred Wiedensohler, and Elisabeth Andrews
Atmos. Chem. Phys., 21, 13031–13050, https://doi.org/10.5194/acp-21-13031-2021, https://doi.org/10.5194/acp-21-13031-2021, 2021
Short summary
Short summary
This paper investigates the impact of water uptake on aerosol optical properties, in particular the aerosol light-scattering coefficient. Although in situ measurements are performed at low relative humidity (typically at
RH < 40 %), to address the climatic impact of aerosol particles it is necessary to take into account the effect that water uptake may have on the aerosol optical properties.
Helmi Uusitalo, Jenni Kontkanen, Ilona Ylivinkka, Ekaterina Ezhova, Anastasiia Demakova, Mikhail Arshinov, Boris Denisovich Belan, Denis Davydov, Nan Ma, Tuukka Petäjä, Alfred Wiedensohler, Markku Kulmala, and Tuomo Nieminen
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-530, https://doi.org/10.5194/acp-2021-530, 2021
Publication in ACP not foreseen
Short summary
Short summary
Characteristics of formation of atmospheric aerosol at four boreal forest sites in Finland and Russian Siberia was analyzed. Our results provide information on the governing processes of atmospheric aerosol formation in the boreal forest area, which a substantial part of the continental biosphere. Aerosol formation was occurring less frequently at Siberian than in Finnish sites, which was affected by the lower particle growth rates and higher loss rates in Siberia.
Janne Lampilahti, Hanna E. Manninen, Tuomo Nieminen, Sander Mirme, Mikael Ehn, Iida Pullinen, Katri Leino, Siegfried Schobesberger, Juha Kangasluoma, Jenni Kontkanen, Emma Järvinen, Riikka Väänänen, Taina Yli-Juuti, Radovan Krejci, Katrianne Lehtipalo, Janne Levula, Aadu Mirme, Stefano Decesari, Ralf Tillmann, Douglas R. Worsnop, Franz Rohrer, Astrid Kiendler-Scharr, Tuukka Petäjä, Veli-Matti Kerminen, Thomas F. Mentel, and Markku Kulmala
Atmos. Chem. Phys., 21, 12649–12663, https://doi.org/10.5194/acp-21-12649-2021, https://doi.org/10.5194/acp-21-12649-2021, 2021
Short summary
Short summary
We studied aerosol particle formation and growth in different parts of the planetary boundary layer at two different locations (Po Valley, Italy, and Hyytiälä, Finland). The observations consist of airborne measurements on board an instrumented Zeppelin and a small airplane combined with comprehensive ground-based measurements.
Zhuohui Lin, Yonghong Wang, Feixue Zheng, Ying Zhou, Yishuo Guo, Zemin Feng, Chang Li, Yusheng Zhang, Simo Hakala, Tommy Chan, Chao Yan, Kaspar R. Daellenbach, Biwu Chu, Lubna Dada, Juha Kangasluoma, Lei Yao, Xiaolong Fan, Wei Du, Jing Cai, Runlong Cai, Tom V. Kokkonen, Putian Zhou, Lili Wang, Tuukka Petäjä, Federico Bianchi, Veli-Matti Kerminen, Yongchun Liu, and Markku Kulmala
Atmos. Chem. Phys., 21, 12173–12187, https://doi.org/10.5194/acp-21-12173-2021, https://doi.org/10.5194/acp-21-12173-2021, 2021
Short summary
Short summary
We find that ammonium nitrate and aerosol water content contributed most during low mixing layer height conditions; this may further trigger enhanced formation of sulfate and organic aerosol via heterogeneous reactions. The results of this study contribute towards a more detailed understanding of the aerosol–chemistry–radiation–boundary layer feedback that is likely to be responsible for explosive aerosol mass growth events in urban Beijing.
Pak Lun Fung, Martha Arbayani Zaidan, Ola Surakhi, Sasu Tarkoma, Tuukka Petäjä, and Tareq Hussein
Atmos. Meas. Tech., 14, 5535–5554, https://doi.org/10.5194/amt-14-5535-2021, https://doi.org/10.5194/amt-14-5535-2021, 2021
Short summary
Short summary
Aerosol size distribution measurements rely on a variety of techniques to classify the aerosol size and measure the size distribution. However, due to the instrumental insufficiency and inversion limitations, the raw dataset contains missing gaps or negative values, which hinder further analysis. With a merged particle size distribution in Jordan, this paper suggests a neural network method to estimate number concentrations at a particular size bin by the number concentration at other size bins.
Dimitrios Bousiotis, Francis D. Pope, David C. S. Beddows, Manuel Dall'Osto, Andreas Massling, Jakob Klenø Nøjgaard, Claus Nordstrøm, Jarkko V. Niemi, Harri Portin, Tuukka Petäjä, Noemi Perez, Andrés Alastuey, Xavier Querol, Giorgos Kouvarakis, Nikos Mihalopoulos, Stergios Vratolis, Konstantinos Eleftheriadis, Alfred Wiedensohler, Kay Weinhold, Maik Merkel, Thomas Tuch, and Roy M. Harrison
Atmos. Chem. Phys., 21, 11905–11925, https://doi.org/10.5194/acp-21-11905-2021, https://doi.org/10.5194/acp-21-11905-2021, 2021
Short summary
Short summary
Formation of new particles is a key process in the atmosphere. New particle formation events arising from nucleation of gaseous precursors have been analysed in extensive datasets from 13 sites in five European countries in terms of frequency, nucleation rate, and particle growth rate, with several common features and many differences identified. Although nucleation frequencies are lower at roadside sites, nucleation rates and particle growth rates are typically higher.
Luis M. F. Barreira, Arttu Ylisirniö, Iida Pullinen, Angela Buchholz, Zijun Li, Helina Lipp, Heikki Junninen, Urmas Hõrrak, Steffen M. Noe, Alisa Krasnova, Dmitrii Krasnov, Kaia Kask, Eero Talts, Ülo Niinemets, Jose Ruiz-Jimenez, and Siegfried Schobesberger
Atmos. Chem. Phys., 21, 11781–11800, https://doi.org/10.5194/acp-21-11781-2021, https://doi.org/10.5194/acp-21-11781-2021, 2021
Short summary
Short summary
We present results from PM1 atmospheric composition and concentration measurements performed in a springtime hemiboreal forest. Sesquiterpene mixing ratios and particle-phase concentrations of corresponding oxidation products were rapidly increasing on some early mornings. The particle volatility suggested that condensable sesquiterpene oxidation products are rapidly formed in the atmosphere. The results revealed the importance of sesquiterpenes for secondary organic aerosol particulate mass.
Xiaolong Fan, Jing Cai, Chao Yan, Jian Zhao, Yishuo Guo, Chang Li, Kaspar R. Dällenbach, Feixue Zheng, Zhuohui Lin, Biwu Chu, Yonghong Wang, Lubna Dada, Qiaozhi Zha, Wei Du, Jenni Kontkanen, Theo Kurtén, Siddhart Iyer, Joni T. Kujansuu, Tuukka Petäjä, Douglas R. Worsnop, Veli-Matti Kerminen, Yongchun Liu, Federico Bianchi, Yee Jun Tham, Lei Yao, and Markku Kulmala
Atmos. Chem. Phys., 21, 11437–11452, https://doi.org/10.5194/acp-21-11437-2021, https://doi.org/10.5194/acp-21-11437-2021, 2021
Short summary
Short summary
We observed significant concentrations of gaseous HBr and HCl throughout the winter and springtime in urban Beijing, China. Our results indicate that gaseous HCl and HBr are most likely originated from anthropogenic emissions such as burning activities, and the gas–aerosol partitioning may play a crucial role in contributing to the gaseous HCl and HBr. These observations suggest that there is an important recycling pathway of halogen species in inland megacities.
Haijie Tong, Fobang Liu, Alexander Filippi, Jake Wilson, Andrea M. Arangio, Yun Zhang, Siyao Yue, Steven Lelieveld, Fangxia Shen, Helmi-Marja K. Keskinen, Jing Li, Haoxuan Chen, Ting Zhang, Thorsten Hoffmann, Pingqing Fu, William H. Brune, Tuukka Petäjä, Markku Kulmala, Maosheng Yao, Thomas Berkemeier, Manabu Shiraiwa, and Ulrich Pöschl
Atmos. Chem. Phys., 21, 10439–10455, https://doi.org/10.5194/acp-21-10439-2021, https://doi.org/10.5194/acp-21-10439-2021, 2021
Short summary
Short summary
We measured radical yields of aqueous PM2.5 extracts and found lower yields at higher concentrations of PM2.5. Abundances of water-soluble transition metals and aromatics in PM2.5 were positively correlated with the relative fraction of •OH but negatively correlated with the relative fraction of C-centered radicals among detected radicals. Composition-dependent reactive species yields may explain differences in the reactivity and health effects of PM2.5 in clean versus polluted air.
Liine Heikkinen, Mikko Äijälä, Kaspar R. Daellenbach, Gang Chen, Olga Garmash, Diego Aliaga, Frans Graeffe, Meri Räty, Krista Luoma, Pasi Aalto, Markku Kulmala, Tuukka Petäjä, Douglas Worsnop, and Mikael Ehn
Atmos. Chem. Phys., 21, 10081–10109, https://doi.org/10.5194/acp-21-10081-2021, https://doi.org/10.5194/acp-21-10081-2021, 2021
Short summary
Short summary
In many locations worldwide aerosol particles have been shown to be made up of organic aerosol (OA). The boreal forest is a region where aerosol particles possess a high OA mass fraction. Here, we studied OA composition using the longest time series of OA composition ever obtained from a boreal environment. For this purpose, we tested a new analysis framework and discovered that most of the OA was highly oxidized, with strong seasonal behaviour reflecting different sources in summer and winter.
Magdalena Okuljar, Heino Kuuluvainen, Jenni Kontkanen, Olga Garmash, Miska Olin, Jarkko V. Niemi, Hilkka Timonen, Juha Kangasluoma, Yee Jun Tham, Rima Baalbaki, Mikko Sipilä, Laura Salo, Henna Lintusaari, Harri Portin, Kimmo Teinilä, Minna Aurela, Miikka Dal Maso, Topi Rönkkö, Tuukka Petäjä, and Pauli Paasonen
Atmos. Chem. Phys., 21, 9931–9953, https://doi.org/10.5194/acp-21-9931-2021, https://doi.org/10.5194/acp-21-9931-2021, 2021
Short summary
Short summary
To estimate the relative contribution of different sources to the particle population in an urban environment, we conducted simultaneous measurements at a street canyon and an urban background station in Helsinki. We investigated the contribution of traffic and new particle formation to particles with a diameter between 1 and 800 nm. We found that during spring traffic does not dominate the particles smaller than 3 nm at either of the stations.
Rima Baalbaki, Michael Pikridas, Tuija Jokinen, Tiia Laurila, Lubna Dada, Spyros Bezantakos, Lauri Ahonen, Kimmo Neitola, Anne Maisser, Elie Bimenyimana, Aliki Christodoulou, Florin Unga, Chrysanthos Savvides, Katrianne Lehtipalo, Juha Kangasluoma, George Biskos, Tuukka Petäjä, Veli-Matti Kerminen, Jean Sciare, and Markku Kulmala
Atmos. Chem. Phys., 21, 9223–9251, https://doi.org/10.5194/acp-21-9223-2021, https://doi.org/10.5194/acp-21-9223-2021, 2021
Short summary
Short summary
This study investigates new particle formation (NPF) in the less represented region of the Mediterranean basin using 1-year measurements of aerosol particles down to ~ 1 nm in diameter. We report a high frequency of NPF and give examples of interesting NPF features. We quantify the strength of NPF events by calculating formation rates and growth rates. We further unveil the atmospheric conditions and variables considered important for the intra-monthly and inter-monthly occurrence of NPF.
Jose Ruiz-Jimenez, Magdalena Okuljar, Outi-Maaria Sietiö, Giorgia Demaria, Thanaporn Liangsupree, Elisa Zagatti, Juho Aalto, Kari Hartonen, Jussi Heinonsalo, Jaana Bäck, Tuukka Petäjä, and Marja-Liisa Riekkola
Atmos. Chem. Phys., 21, 8775–8790, https://doi.org/10.5194/acp-21-8775-2021, https://doi.org/10.5194/acp-21-8775-2021, 2021
Short summary
Short summary
Altogether, 84 size-segregated aerosol samples from four particle size fractions were collected at the Station for Measuring Forest Ecosystem-Atmosphere Relations, Hyytiälä, Finland, in autumn 2017 for the clarification of the complex interrelationships between airborne and particulate chemical traces, amino acids and saccharides, gene copy numbers (16S and 18S for bacteria and fungi, respectively), gas-phase chemistry, and the particle size distribution.
Markku Kulmala, Tom V. Kokkonen, Juha Pekkanen, Sami Paatero, Tuukka Petäjä, Veli-Matti Kerminen, and Aijun Ding
Atmos. Chem. Phys., 21, 8313–8322, https://doi.org/10.5194/acp-21-8313-2021, https://doi.org/10.5194/acp-21-8313-2021, 2021
Short summary
Short summary
The eastern part of China as a whole is practically a gigacity with 650 million inhabitants. The gigacity, with its emissions, processes in the pollution cocktail and numerous feedbacks and interactions, has a crucial and big impact on regional air quality and on global climate. A large-scale research and innovation program is needed to meet the interlinked grand challenges in this gigacity and to serve as a platform for finding pathways for sustainable development of the globe.
Janne Lampilahti, Katri Leino, Antti Manninen, Pyry Poutanen, Anna Franck, Maija Peltola, Paula Hietala, Lisa Beck, Lubna Dada, Lauriane Quéléver, Ronja Öhrnberg, Ying Zhou, Madeleine Ekblom, Ville Vakkari, Sergej Zilitinkevich, Veli-Matti Kerminen, Tuukka Petäjä, and Markku Kulmala
Atmos. Chem. Phys., 21, 7901–7915, https://doi.org/10.5194/acp-21-7901-2021, https://doi.org/10.5194/acp-21-7901-2021, 2021
Short summary
Short summary
Using airborne measurements we observed increased number concentrations of sub-25 nm particles in the upper residual layer. These particles may be entrained into the well-mixed boundary layer and observed at the surface. We attribute our observations to new particle formation in the topmost part of the residual layer.
Andrea Cuesta-Mosquera, Griša Močnik, Luka Drinovec, Thomas Müller, Sascha Pfeifer, María Cruz Minguillón, Björn Briel, Paul Buckley, Vadimas Dudoitis, Javier Fernández-García, María Fernández-Amado, Joel Ferreira De Brito, Veronique Riffault, Harald Flentje, Eimear Heffernan, Nikolaos Kalivitis, Athina-Cerise Kalogridis, Hannes Keernik, Luminita Marmureanu, Krista Luoma, Angela Marinoni, Michael Pikridas, Gerhard Schauer, Norbert Serfozo, Henri Servomaa, Gloria Titos, Jesús Yus-Díez, Natalia Zioła, and Alfred Wiedensohler
Atmos. Meas. Tech., 14, 3195–3216, https://doi.org/10.5194/amt-14-3195-2021, https://doi.org/10.5194/amt-14-3195-2021, 2021
Short summary
Short summary
Measurements of black carbon must be conducted with instruments operating in quality-checked and assured conditions to generate reliable and comparable data. Here, 23 Aethalometers monitoring black carbon mass concentrations in European networks were characterized and intercompared. The influence of different aerosol sources, maintenance activities, and the filter material on the instrumental variabilities were investigated. Good agreement and in general low deviations were seen.
Yishuo Guo, Chao Yan, Chang Li, Wei Ma, Zemin Feng, Ying Zhou, Zhuohui Lin, Lubna Dada, Dominik Stolzenburg, Rujing Yin, Jenni Kontkanen, Kaspar R. Daellenbach, Juha Kangasluoma, Lei Yao, Biwu Chu, Yonghong Wang, Runlong Cai, Federico Bianchi, Yongchun Liu, and Markku Kulmala
Atmos. Chem. Phys., 21, 5499–5511, https://doi.org/10.5194/acp-21-5499-2021, https://doi.org/10.5194/acp-21-5499-2021, 2021
Short summary
Short summary
Fog, cloud and haze are very common natural phenomena. Sulfuric acid (SA) is one of the key compounds forming those suspended particles, technically called aerosols, through gas-to-particle conversion. Therefore, the concentration level, source and sink of SA is very important. Our results show that ozonolysis of alkenes plays a major role in nighttime SA formation under unpolluted conditions in urban Beijing, and nighttime cluster mode particles are probably driven by SA in urban environments.
Dana L. McGuffin, Yuanlong Huang, Richard C. Flagan, Tuukka Petäjä, B. Erik Ydstie, and Peter J. Adams
Geosci. Model Dev., 14, 1821–1839, https://doi.org/10.5194/gmd-14-1821-2021, https://doi.org/10.5194/gmd-14-1821-2021, 2021
Short summary
Short summary
Atmospheric particle formation, emissions, and growth process rates are significant sources of uncertainty in predicting climate change. We aim to reduce that uncertainty by using measurements from several ground-based sites across Europe. We developed an estimation technique to adapt the governing process rates so model–measurement bias decays. The estimation framework developed has potential to improve model predictions while providing insight into the underlying atmospheric particle physics.
Thomas Thorp, Stephen R. Arnold, Richard J. Pope, Dominick V. Spracklen, Luke Conibear, Christoph Knote, Mikhail Arshinov, Boris Belan, Eija Asmi, Tuomas Laurila, Andrei I. Skorokhod, Tuomo Nieminen, and Tuukka Petäjä
Atmos. Chem. Phys., 21, 4677–4697, https://doi.org/10.5194/acp-21-4677-2021, https://doi.org/10.5194/acp-21-4677-2021, 2021
Short summary
Short summary
We compare modelled near-surface pollutants with surface and satellite observations to better understand the controls on the regional concentrations of pollution in western Siberia for late spring and summer in 2011. We find two commonly used emission inventories underestimate human emissions when compared to observations. Transport emissions are the main source of pollutants within the region during this period, whilst fire emissions peak during June and are only significant south of 60° N.
Julia Schneider, Kristina Höhler, Paavo Heikkilä, Jorma Keskinen, Barbara Bertozzi, Pia Bogert, Tobias Schorr, Nsikanabasi Silas Umo, Franziska Vogel, Zoé Brasseur, Yusheng Wu, Simo Hakala, Jonathan Duplissy, Dmitri Moisseev, Markku Kulmala, Michael P. Adams, Benjamin J. Murray, Kimmo Korhonen, Liqing Hao, Erik S. Thomson, Dimitri Castarède, Thomas Leisner, Tuukka Petäjä, and Ottmar Möhler
Atmos. Chem. Phys., 21, 3899–3918, https://doi.org/10.5194/acp-21-3899-2021, https://doi.org/10.5194/acp-21-3899-2021, 2021
Short summary
Short summary
By triggering the formation of ice crystals, ice-nucleating particles (INP) strongly influence cloud formation. Continuous, long-term measurements are needed to characterize the atmospheric INP variability. Here, a first long-term time series of INP spectra measured in the boreal forest for more than 1 year is presented, showing a clear seasonal cycle. It is shown that the seasonal dependency of INP concentrations and prevalent INP types is driven by the abundance of biogenic aerosol.
Dimitrios Bousiotis, James Brean, Francis D. Pope, Manuel Dall'Osto, Xavier Querol, Andrés Alastuey, Noemi Perez, Tuukka Petäjä, Andreas Massling, Jacob Klenø Nøjgaard, Claus Nordstrøm, Giorgos Kouvarakis, Stergios Vratolis, Konstantinos Eleftheriadis, Jarkko V. Niemi, Harri Portin, Alfred Wiedensohler, Kay Weinhold, Maik Merkel, Thomas Tuch, and Roy M. Harrison
Atmos. Chem. Phys., 21, 3345–3370, https://doi.org/10.5194/acp-21-3345-2021, https://doi.org/10.5194/acp-21-3345-2021, 2021
Short summary
Short summary
New particle formation events from 16 sites over Europe have been studied, and the influence of meteorological and atmospheric composition variables has been investigated. Some variables, like solar radiation intensity and temperature, have a positive effect on the occurrence of these events, while others have a negative effect, affecting different aspects such as the rate at which particles are formed or grow. This effect varies depending on the site type and magnitude of these variables.
Imre Salma, Wanda Thén, Pasi Aalto, Veli-Matti Kerminen, Anikó Kern, Zoltán Barcza, Tuukka Petäjä, and Markku Kulmala
Atmos. Chem. Phys., 21, 2861–2880, https://doi.org/10.5194/acp-21-2861-2021, https://doi.org/10.5194/acp-21-2861-2021, 2021
Short summary
Short summary
The distribution of the monthly mean nucleation frequency possessed a characteristic pattern. Its shape was compared to those of environmental variables, including vegetation-derived properties. The spring maximum in the occurrence frequency often overlapped with the positive T anomaly. The link between the heat stress and the occurrence minimum in summer could not be proven, whereas an association between the occurrence frequency and vegetation growth dynamics was clearly identified in spring.
Runlong Cai, Chao Yan, Dongsen Yang, Rujing Yin, Yiqun Lu, Chenjuan Deng, Yueyun Fu, Jiaxin Ruan, Xiaoxiao Li, Jenni Kontkanen, Qiang Zhang, Juha Kangasluoma, Yan Ma, Jiming Hao, Douglas R. Worsnop, Federico Bianchi, Pauli Paasonen, Veli-Matti Kerminen, Yongchun Liu, Lin Wang, Jun Zheng, Markku Kulmala, and Jingkun Jiang
Atmos. Chem. Phys., 21, 2457–2468, https://doi.org/10.5194/acp-21-2457-2021, https://doi.org/10.5194/acp-21-2457-2021, 2021
Short summary
Short summary
Based on long-term measurements, we discovered that the collision of H2SO4–amine clusters is the governing mechanism that initializes fast new particle formation in the polluted atmospheric environment of urban Beijing. The mechanism and the governing factors for H2SO4–amine nucleation in the polluted atmosphere are quantitatively investigated in this study.
Runlong Cai, Chenxi Li, Xu-Cheng He, Chenjuan Deng, Yiqun Lu, Rujing Yin, Chao Yan, Lin Wang, Jingkun Jiang, Markku Kulmala, and Juha Kangasluoma
Atmos. Chem. Phys., 21, 2287–2304, https://doi.org/10.5194/acp-21-2287-2021, https://doi.org/10.5194/acp-21-2287-2021, 2021
Short summary
Short summary
Growth rate determines the survival probability of atmospheric new particles and hence their impacts. We clarify the impacts of coagulation on the values retrieved by the appearance time method, which is widely used for growth rate evaluation. A new formula with coagulation correction is proposed based on derivation and tested using both models and atmospheric data. We show that the sub-3 nm particle growth rate in polluted environments may be overestimated without the coagulation correction.
Krista Luoma, Jarkko V. Niemi, Minna Aurela, Pak Lun Fung, Aku Helin, Tareq Hussein, Leena Kangas, Anu Kousa, Topi Rönkkö, Hilkka Timonen, Aki Virkkula, and Tuukka Petäjä
Atmos. Chem. Phys., 21, 1173–1189, https://doi.org/10.5194/acp-21-1173-2021, https://doi.org/10.5194/acp-21-1173-2021, 2021
Short summary
Short summary
This study combined black carbon measurements from 15 Finnish sites that represented different environments (traffic, detached housing area, urban background, and regional background). The seasonal and diurnal variations in the black carbon concentration were associated with local emissions from traffic and residential wood burning. The study observed decreasing trends in the black carbon concentration and associated them with decreases in traffic emissions.
Juha Sulo, Nina Sarnela, Jenni Kontkanen, Lauri Ahonen, Pauli Paasonen, Tiia Laurila, Tuija Jokinen, Juha Kangasluoma, Heikki Junninen, Mikko Sipilä, Tuukka Petäjä, Markku Kulmala, and Katrianne Lehtipalo
Atmos. Chem. Phys., 21, 695–715, https://doi.org/10.5194/acp-21-695-2021, https://doi.org/10.5194/acp-21-695-2021, 2021
Short summary
Short summary
In this study, we analyzed over 5 years of sub-3 nm particle concentrations and their precursor vapors, identifying atmoshperic vapors important to the formation of these particles in the boreal forest. We also observed seasonal differences in both particle and precursor vapor concentrations and the formation pathways of these particles. Our results confirm the importance of organic vapors in atmospheric aerosol formation and highlight key seasonal differences that require further study.
Oleg Sizov, Ekaterina Ezhova, Petr Tsymbarovich, Andrey Soromotin, Nikolay Prihod'ko, Tuukka Petäjä, Sergej Zilitinkevich, Markku Kulmala, Jaana Bäck, and Kajar Köster
Biogeosciences, 18, 207–228, https://doi.org/10.5194/bg-18-207-2021, https://doi.org/10.5194/bg-18-207-2021, 2021
Short summary
Short summary
In changing climate, tundra is expected to turn into shrubs and trees, diminishing reindeer pasture and increasing risks of tick-borne diseases. However, this transition may require a disturbance. Fires in Siberia are increasingly widespread. We studied wildfire dynamics and tundra–forest transition over 60 years in northwest Siberia near the Arctic Circle. Based on satellite data analysis, we found that transition occurs in 40 %–85 % of burned tundra compared to 5 %–15 % in non-disturbed areas.
Helmi-Marja Keskinen, Ilona Ylivinkka, Liine Heikkinen, Pasi P. Aalto, Tuomo Nieminen, Katrianne Lehtipalo, Juho Aalto, Janne Levula, Jutta Kesti, Lauri R. Ahonen, Ekaterina Ezhova, Markku Kulmala, and Tuukka Petäjä
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-447, https://doi.org/10.5194/amt-2020-447, 2020
Publication in AMT not foreseen
Short summary
Short summary
Long-term (2005–2017) aerosol particulate matter (PM) concentration measurements at Finland at Station for Measuring Ecosystem-Atmosphere Relations (SMEAR II, Hyytiälä) have been measured with three different measurement equipment. The comparison revealed an equivalence among the three methods. Mass concentrations were generally highest in summer. The descending trend was visible here in spring, summer and winter. This might have resulted at least partly from air quality legislation.
Juan Andrés Casquero-Vera, Hassan Lyamani, Lubna Dada, Simo Hakala, Pauli Paasonen, Roberto Román, Roberto Fraile, Tuukka Petäjä, Francisco José Olmo-Reyes, and Lucas Alados-Arboledas
Atmos. Chem. Phys., 20, 14253–14271, https://doi.org/10.5194/acp-20-14253-2020, https://doi.org/10.5194/acp-20-14253-2020, 2020
Short summary
Short summary
New particle formation was investigated at two stations located close to each other but at different altitudes: urban and high-altitude sites. Results show that sulfuric acid is able to explain a minimal fraction contribution to the observed growth rates and point to the availability of volatile organic compounds as the main factor controlling NPF events at both sites. A closer analysis of the NPF events that were observed at high-altitude sites during a Saharan dust episode was carried out.
Yongchun Liu, Yusheng Zhang, Chaofan Lian, Chao Yan, Zeming Feng, Feixue Zheng, Xiaolong Fan, Yan Chen, Weigang Wang, Biwu Chu, Yonghong Wang, Jing Cai, Wei Du, Kaspar R. Daellenbach, Juha Kangasluoma, Federico Bianchi, Joni Kujansuu, Tuukka Petäjä, Xuefei Wang, Bo Hu, Yuesi Wang, Maofa Ge, Hong He, and Markku Kulmala
Atmos. Chem. Phys., 20, 13023–13040, https://doi.org/10.5194/acp-20-13023-2020, https://doi.org/10.5194/acp-20-13023-2020, 2020
Short summary
Short summary
Understanding of the chemical and physical processes leading to atmospheric aerosol particle formation is crucial to devising effective mitigation strategies to protect the public and reduce uncertainties in climate predictions. We found that the photolysis of nitrous acid could promote the formation of organic and nitrate aerosol and that traffic-related emission is a major contributor to ambient nitrous acid on haze days in wintertime in Beijing.
Jing Cai, Biwu Chu, Lei Yao, Chao Yan, Liine M. Heikkinen, Feixue Zheng, Chang Li, Xiaolong Fan, Shaojun Zhang, Daoyuan Yang, Yonghong Wang, Tom V. Kokkonen, Tommy Chan, Ying Zhou, Lubna Dada, Yongchun Liu, Hong He, Pauli Paasonen, Joni T. Kujansuu, Tuukka Petäjä, Claudia Mohr, Juha Kangasluoma, Federico Bianchi, Yele Sun, Philip L. Croteau, Douglas R. Worsnop, Veli-Matti Kerminen, Wei Du, Markku Kulmala, and Kaspar R. Daellenbach
Atmos. Chem. Phys., 20, 12721–12740, https://doi.org/10.5194/acp-20-12721-2020, https://doi.org/10.5194/acp-20-12721-2020, 2020
Short summary
Short summary
By applying both OA PMF and size PMF at the same urban measurement site in Beijing, similar particle source types, including vehicular emissions, cooking emissions and secondary formation-related sources, were resolved by both frameworks and agreed well. It is also found that in the absence of new particle formation, vehicular and cooking emissions dominate the particle number concentration, while secondary particulate matter governed PM2.5 mass during spring and summer in Beijing.
Ilona Ylivinkka, Santeri Kaupinmäki, Meri Virman, Maija Peltola, Ditte Taipale, Tuukka Petäjä, Veli-Matti Kerminen, Markku Kulmala, and Ekaterina Ezhova
Atmos. Meas. Tech., 13, 5595–5619, https://doi.org/10.5194/amt-13-5595-2020, https://doi.org/10.5194/amt-13-5595-2020, 2020
Short summary
Short summary
In this study, we developed a new algorithm for cloud classification using solar radiation and cloud base height measurements. Our objective was to develop a simple and inexpensive but effective algorithm for the needs of studies related to ecosystem and atmosphere interactions. In the present study, we used the algorithm for obtaining cloud statistics at a measurement station in southern Finland, and we discuss the advantages and shortcomings of the algorithm.
Janne Lampilahti, Hanna Elina Manninen, Katri Leino, Riikka Väänänen, Antti Manninen, Stephany Buenrostro Mazon, Tuomo Nieminen, Matti Leskinen, Joonas Enroth, Marja Bister, Sergej Zilitinkevich, Juha Kangasluoma, Heikki Järvinen, Veli-Matti Kerminen, Tuukka Petäjä, and Markku Kulmala
Atmos. Chem. Phys., 20, 11841–11854, https://doi.org/10.5194/acp-20-11841-2020, https://doi.org/10.5194/acp-20-11841-2020, 2020
Short summary
Short summary
In this work, by using co-located airborne and ground-based measurements, we show that counter-rotating horizontal circulations in the planetary boundary layer (roll vortices) frequently enhance regional new particle formation or induce localized bursts of new particle formation. These observations can be explained by the ability of the rolls to efficiently lift low-volatile vapors emitted from the surface to the top of the boundary layer where new particle formation is more favorable.
Martin Heinritzi, Lubna Dada, Mario Simon, Dominik Stolzenburg, Andrea C. Wagner, Lukas Fischer, Lauri R. Ahonen, Stavros Amanatidis, Rima Baalbaki, Andrea Baccarini, Paulus S. Bauer, Bernhard Baumgartner, Federico Bianchi, Sophia Brilke, Dexian Chen, Randall Chiu, Antonio Dias, Josef Dommen, Jonathan Duplissy, Henning Finkenzeller, Carla Frege, Claudia Fuchs, Olga Garmash, Hamish Gordon, Manuel Granzin, Imad El Haddad, Xucheng He, Johanna Helm, Victoria Hofbauer, Christopher R. Hoyle, Juha Kangasluoma, Timo Keber, Changhyuk Kim, Andreas Kürten, Houssni Lamkaddam, Tiia M. Laurila, Janne Lampilahti, Chuan Ping Lee, Katrianne Lehtipalo, Markus Leiminger, Huajun Mai, Vladimir Makhmutov, Hanna Elina Manninen, Ruby Marten, Serge Mathot, Roy Lee Mauldin, Bernhard Mentler, Ugo Molteni, Tatjana Müller, Wei Nie, Tuomo Nieminen, Antti Onnela, Eva Partoll, Monica Passananti, Tuukka Petäjä, Joschka Pfeifer, Veronika Pospisilova, Lauriane L. J. Quéléver, Matti P. Rissanen, Clémence Rose, Siegfried Schobesberger, Wiebke Scholz, Kay Scholze, Mikko Sipilä, Gerhard Steiner, Yuri Stozhkov, Christian Tauber, Yee Jun Tham, Miguel Vazquez-Pufleau, Annele Virtanen, Alexander L. Vogel, Rainer Volkamer, Robert Wagner, Mingyi Wang, Lena Weitz, Daniela Wimmer, Mao Xiao, Chao Yan, Penglin Ye, Qiaozhi Zha, Xueqin Zhou, Antonio Amorim, Urs Baltensperger, Armin Hansel, Markku Kulmala, António Tomé, Paul M. Winkler, Douglas R. Worsnop, Neil M. Donahue, Jasper Kirkby, and Joachim Curtius
Atmos. Chem. Phys., 20, 11809–11821, https://doi.org/10.5194/acp-20-11809-2020, https://doi.org/10.5194/acp-20-11809-2020, 2020
Short summary
Short summary
With experiments performed at CLOUD, we show how isoprene interferes in monoterpene oxidation via RO2 termination at atmospherically relevant concentrations. This interference shifts the distribution of highly oxygenated organic molecules (HOMs) away from C20 class dimers towards C15 class dimers, which subsequently reduces both biogenic nucleation and early growth rates. Our results may help to understand the absence of new-particle formation in isoprene-rich environments.
Lubna Dada, Ilona Ylivinkka, Rima Baalbaki, Chang Li, Yishuo Guo, Chao Yan, Lei Yao, Nina Sarnela, Tuija Jokinen, Kaspar R. Daellenbach, Rujing Yin, Chenjuan Deng, Biwu Chu, Tuomo Nieminen, Yonghong Wang, Zhuohui Lin, Roseline C. Thakur, Jenni Kontkanen, Dominik Stolzenburg, Mikko Sipilä, Tareq Hussein, Pauli Paasonen, Federico Bianchi, Imre Salma, Tamás Weidinger, Michael Pikridas, Jean Sciare, Jingkun Jiang, Yongchun Liu, Tuukka Petäjä, Veli-Matti Kerminen, and Markku Kulmala
Atmos. Chem. Phys., 20, 11747–11766, https://doi.org/10.5194/acp-20-11747-2020, https://doi.org/10.5194/acp-20-11747-2020, 2020
Short summary
Short summary
We rely on sulfuric acid measurements in four contrasting environments, Hyytiälä, Finland; Agia Marina, Cyprus; Budapest, Hungary; and Beijing, China, representing semi-pristine boreal forest, rural environment in the Mediterranean area, urban environment, and heavily polluted megacity, respectively, in order to define the sources and sinks of sulfuric acid in these environments and to derive a new sulfuric acid proxy to be utilized in locations and during periods when it is not measured.
Jenni Kontkanen, Chenjuan Deng, Yueyun Fu, Lubna Dada, Ying Zhou, Jing Cai, Kaspar R. Daellenbach, Simo Hakala, Tom V. Kokkonen, Zhuohui Lin, Yongchun Liu, Yonghong Wang, Chao Yan, Tuukka Petäjä, Jingkun Jiang, Markku Kulmala, and Pauli Paasonen
Atmos. Chem. Phys., 20, 11329–11348, https://doi.org/10.5194/acp-20-11329-2020, https://doi.org/10.5194/acp-20-11329-2020, 2020
Short summary
Short summary
To estimate the impacts of atmospheric aerosol particles on air quality, knowledge of size distributions of particles emitted from anthropogenic sources is needed. We introduce a new method for determining size-resolved particle number emissions from measured particle size distributions. We apply our method to data measured in Beijing, China. We find that particle number emissions at our site are dominated by emissions of particles smaller than 30 nm, originating mainly from traffic.
Tommy Chan, Runlong Cai, Lauri R. Ahonen, Yiliang Liu, Ying Zhou, Joonas Vanhanen, Lubna Dada, Yan Chao, Yongchun Liu, Lin Wang, Markku Kulmala, and Juha Kangasluoma
Atmos. Meas. Tech., 13, 4885–4898, https://doi.org/10.5194/amt-13-4885-2020, https://doi.org/10.5194/amt-13-4885-2020, 2020
Short summary
Short summary
Using a particle size magnifier (PSM; Airmodus, Finland), we determined the particle size distribution using four inversion methods and compared each method to the others to establish their strengths and weaknesses. Furthermore, we provided a step-by-step procedure on how to invert measured data using the PSM. Finally, we provided recommendations, code and data related to the data inversion. This is an important paper, as no operating procedure exists regarding how to process measured PSM data.
Paolo Laj, Alessandro Bigi, Clémence Rose, Elisabeth Andrews, Cathrine Lund Myhre, Martine Collaud Coen, Yong Lin, Alfred Wiedensohler, Michael Schulz, John A. Ogren, Markus Fiebig, Jonas Gliß, Augustin Mortier, Marco Pandolfi, Tuukka Petäja, Sang-Woo Kim, Wenche Aas, Jean-Philippe Putaud, Olga Mayol-Bracero, Melita Keywood, Lorenzo Labrador, Pasi Aalto, Erik Ahlberg, Lucas Alados Arboledas, Andrés Alastuey, Marcos Andrade, Begoña Artíñano, Stina Ausmeel, Todor Arsov, Eija Asmi, John Backman, Urs Baltensperger, Susanne Bastian, Olaf Bath, Johan Paul Beukes, Benjamin T. Brem, Nicolas Bukowiecki, Sébastien Conil, Cedric Couret, Derek Day, Wan Dayantolis, Anna Degorska, Konstantinos Eleftheriadis, Prodromos Fetfatzis, Olivier Favez, Harald Flentje, Maria I. Gini, Asta Gregorič, Martin Gysel-Beer, A. Gannet Hallar, Jenny Hand, Andras Hoffer, Christoph Hueglin, Rakesh K. Hooda, Antti Hyvärinen, Ivo Kalapov, Nikos Kalivitis, Anne Kasper-Giebl, Jeong Eun Kim, Giorgos Kouvarakis, Irena Kranjc, Radovan Krejci, Markku Kulmala, Casper Labuschagne, Hae-Jung Lee, Heikki Lihavainen, Neng-Huei Lin, Gunter Löschau, Krista Luoma, Angela Marinoni, Sebastiao Martins Dos Santos, Frank Meinhardt, Maik Merkel, Jean-Marc Metzger, Nikolaos Mihalopoulos, Nhat Anh Nguyen, Jakub Ondracek, Noemi Pérez, Maria Rita Perrone, Jean-Eudes Petit, David Picard, Jean-Marc Pichon, Veronique Pont, Natalia Prats, Anthony Prenni, Fabienne Reisen, Salvatore Romano, Karine Sellegri, Sangeeta Sharma, Gerhard Schauer, Patrick Sheridan, James Patrick Sherman, Maik Schütze, Andreas Schwerin, Ralf Sohmer, Mar Sorribas, Martin Steinbacher, Junying Sun, Gloria Titos, Barbara Toczko, Thomas Tuch, Pierre Tulet, Peter Tunved, Ville Vakkari, Fernando Velarde, Patricio Velasquez, Paolo Villani, Sterios Vratolis, Sheng-Hsiang Wang, Kay Weinhold, Rolf Weller, Margarita Yela, Jesus Yus-Diez, Vladimir Zdimal, Paul Zieger, and Nadezda Zikova
Atmos. Meas. Tech., 13, 4353–4392, https://doi.org/10.5194/amt-13-4353-2020, https://doi.org/10.5194/amt-13-4353-2020, 2020
Short summary
Short summary
The paper establishes the fiducial reference of the GAW aerosol network providing the fully characterized value chain to the provision of four climate-relevant aerosol properties from ground-based sites. Data from almost 90 stations worldwide are reported for a reference year, 2017, providing a unique and very robust view of the variability of these variables worldwide. Current gaps in the GAW network are analysed and requirements for the Global Climate Monitoring System are proposed.
Mario Simon, Lubna Dada, Martin Heinritzi, Wiebke Scholz, Dominik Stolzenburg, Lukas Fischer, Andrea C. Wagner, Andreas Kürten, Birte Rörup, Xu-Cheng He, João Almeida, Rima Baalbaki, Andrea Baccarini, Paulus S. Bauer, Lisa Beck, Anton Bergen, Federico Bianchi, Steffen Bräkling, Sophia Brilke, Lucia Caudillo, Dexian Chen, Biwu Chu, António Dias, Danielle C. Draper, Jonathan Duplissy, Imad El-Haddad, Henning Finkenzeller, Carla Frege, Loic Gonzalez-Carracedo, Hamish Gordon, Manuel Granzin, Jani Hakala, Victoria Hofbauer, Christopher R. Hoyle, Changhyuk Kim, Weimeng Kong, Houssni Lamkaddam, Chuan P. Lee, Katrianne Lehtipalo, Markus Leiminger, Huajun Mai, Hanna E. Manninen, Guillaume Marie, Ruby Marten, Bernhard Mentler, Ugo Molteni, Leonid Nichman, Wei Nie, Andrea Ojdanic, Antti Onnela, Eva Partoll, Tuukka Petäjä, Joschka Pfeifer, Maxim Philippov, Lauriane L. J. Quéléver, Ananth Ranjithkumar, Matti P. Rissanen, Simon Schallhart, Siegfried Schobesberger, Simone Schuchmann, Jiali Shen, Mikko Sipilä, Gerhard Steiner, Yuri Stozhkov, Christian Tauber, Yee J. Tham, António R. Tomé, Miguel Vazquez-Pufleau, Alexander L. Vogel, Robert Wagner, Mingyi Wang, Dongyu S. Wang, Yonghong Wang, Stefan K. Weber, Yusheng Wu, Mao Xiao, Chao Yan, Penglin Ye, Qing Ye, Marcel Zauner-Wieczorek, Xueqin Zhou, Urs Baltensperger, Josef Dommen, Richard C. Flagan, Armin Hansel, Markku Kulmala, Rainer Volkamer, Paul M. Winkler, Douglas R. Worsnop, Neil M. Donahue, Jasper Kirkby, and Joachim Curtius
Atmos. Chem. Phys., 20, 9183–9207, https://doi.org/10.5194/acp-20-9183-2020, https://doi.org/10.5194/acp-20-9183-2020, 2020
Short summary
Short summary
Highly oxygenated organic compounds (HOMs) have been identified as key vapors involved in atmospheric new-particle formation (NPF). The molecular distribution, HOM yield, and NPF from α-pinene oxidation experiments were measured at the CLOUD chamber over a wide tropospheric-temperature range. This study shows on a molecular scale that despite the sharp reduction in HOM yield at lower temperatures, the reduced volatility counteracts this effect and leads to an overall increase in the NPF rate.
Martine Collaud Coen, Elisabeth Andrews, Andrés Alastuey, Todor Petkov Arsov, John Backman, Benjamin T. Brem, Nicolas Bukowiecki, Cédric Couret, Konstantinos Eleftheriadis, Harald Flentje, Markus Fiebig, Martin Gysel-Beer, Jenny L. Hand, András Hoffer, Rakesh Hooda, Christoph Hueglin, Warren Joubert, Melita Keywood, Jeong Eun Kim, Sang-Woo Kim, Casper Labuschagne, Neng-Huei Lin, Yong Lin, Cathrine Lund Myhre, Krista Luoma, Hassan Lyamani, Angela Marinoni, Olga L. Mayol-Bracero, Nikos Mihalopoulos, Marco Pandolfi, Natalia Prats, Anthony J. Prenni, Jean-Philippe Putaud, Ludwig Ries, Fabienne Reisen, Karine Sellegri, Sangeeta Sharma, Patrick Sheridan, James Patrick Sherman, Junying Sun, Gloria Titos, Elvis Torres, Thomas Tuch, Rolf Weller, Alfred Wiedensohler, Paul Zieger, and Paolo Laj
Atmos. Chem. Phys., 20, 8867–8908, https://doi.org/10.5194/acp-20-8867-2020, https://doi.org/10.5194/acp-20-8867-2020, 2020
Short summary
Short summary
Long-term trends of aerosol radiative properties (52 stations) prove that aerosol load has significantly decreased over the last 20 years. Scattering trends are negative in Europe (EU) and North America (NA), not ss in Asia, and show a mix of positive and negative trends at polar stations. Absorption has mainly negative trends. The single scattering albedo has positive trends in Asia and eastern EU and negative in western EU and NA, leading to a global positive median trend of 0.02 % per year.
Tuukka Petäjä, Ella-Maria Duplissy, Ksenia Tabakova, Julia Schmale, Barbara Altstädter, Gerard Ancellet, Mikhail Arshinov, Yurii Balin, Urs Baltensperger, Jens Bange, Alison Beamish, Boris Belan, Antoine Berchet, Rossana Bossi, Warren R. L. Cairns, Ralf Ebinghaus, Imad El Haddad, Beatriz Ferreira-Araujo, Anna Franck, Lin Huang, Antti Hyvärinen, Angelika Humbert, Athina-Cerise Kalogridis, Pavel Konstantinov, Astrid Lampert, Matthew MacLeod, Olivier Magand, Alexander Mahura, Louis Marelle, Vladimir Masloboev, Dmitri Moisseev, Vaios Moschos, Niklas Neckel, Tatsuo Onishi, Stefan Osterwalder, Aino Ovaska, Pauli Paasonen, Mikhail Panchenko, Fidel Pankratov, Jakob B. Pernov, Andreas Platis, Olga Popovicheva, Jean-Christophe Raut, Aurélie Riandet, Torsten Sachs, Rosamaria Salvatori, Roberto Salzano, Ludwig Schröder, Martin Schön, Vladimir Shevchenko, Henrik Skov, Jeroen E. Sonke, Andrea Spolaor, Vasileios K. Stathopoulos, Mikko Strahlendorff, Jennie L. Thomas, Vito Vitale, Sterios Vratolis, Carlo Barbante, Sabine Chabrillat, Aurélien Dommergue, Konstantinos Eleftheriadis, Jyri Heilimo, Kathy S. Law, Andreas Massling, Steffen M. Noe, Jean-Daniel Paris, André S. H. Prévôt, Ilona Riipinen, Birgit Wehner, Zhiyong Xie, and Hanna K. Lappalainen
Atmos. Chem. Phys., 20, 8551–8592, https://doi.org/10.5194/acp-20-8551-2020, https://doi.org/10.5194/acp-20-8551-2020, 2020
Short summary
Short summary
The role of polar regions is increasing in terms of megatrends such as globalization, new transport routes, demography, and the use of natural resources with consequent effects on regional and transported pollutant concentrations. Here we summarize initial results from our integrative project exploring the Arctic environment and pollution to deliver data products, metrics, and indicators for stakeholders.
Yuan Yang, Yonghong Wang, Putian Zhou, Dan Yao, Dongsheng Ji, Jie Sun, Yinghong Wang, Shuman Zhao, Wei Huang, Shuanghong Yang, Dean Chen, Wenkang Gao, Zirui Liu, Bo Hu, Renjian Zhang, Limin Zeng, Maofa Ge, Tuukka Petäjä, Veli-Matti Kerminen, Markku Kulmala, and Yuesi Wang
Atmos. Chem. Phys., 20, 8181–8200, https://doi.org/10.5194/acp-20-8181-2020, https://doi.org/10.5194/acp-20-8181-2020, 2020
Dominik Stolzenburg, Mario Simon, Ananth Ranjithkumar, Andreas Kürten, Katrianne Lehtipalo, Hamish Gordon, Sebastian Ehrhart, Henning Finkenzeller, Lukas Pichelstorfer, Tuomo Nieminen, Xu-Cheng He, Sophia Brilke, Mao Xiao, António Amorim, Rima Baalbaki, Andrea Baccarini, Lisa Beck, Steffen Bräkling, Lucía Caudillo Murillo, Dexian Chen, Biwu Chu, Lubna Dada, António Dias, Josef Dommen, Jonathan Duplissy, Imad El Haddad, Lukas Fischer, Loic Gonzalez Carracedo, Martin Heinritzi, Changhyuk Kim, Theodore K. Koenig, Weimeng Kong, Houssni Lamkaddam, Chuan Ping Lee, Markus Leiminger, Zijun Li, Vladimir Makhmutov, Hanna E. Manninen, Guillaume Marie, Ruby Marten, Tatjana Müller, Wei Nie, Eva Partoll, Tuukka Petäjä, Joschka Pfeifer, Maxim Philippov, Matti P. Rissanen, Birte Rörup, Siegfried Schobesberger, Simone Schuchmann, Jiali Shen, Mikko Sipilä, Gerhard Steiner, Yuri Stozhkov, Christian Tauber, Yee Jun Tham, António Tomé, Miguel Vazquez-Pufleau, Andrea C. Wagner, Mingyi Wang, Yonghong Wang, Stefan K. Weber, Daniela Wimmer, Peter J. Wlasits, Yusheng Wu, Qing Ye, Marcel Zauner-Wieczorek, Urs Baltensperger, Kenneth S. Carslaw, Joachim Curtius, Neil M. Donahue, Richard C. Flagan, Armin Hansel, Markku Kulmala, Jos Lelieveld, Rainer Volkamer, Jasper Kirkby, and Paul M. Winkler
Atmos. Chem. Phys., 20, 7359–7372, https://doi.org/10.5194/acp-20-7359-2020, https://doi.org/10.5194/acp-20-7359-2020, 2020
Short summary
Short summary
Sulfuric acid is a major atmospheric vapour for aerosol formation. If new particles grow fast enough, they can act as cloud droplet seeds or affect air quality. In a controlled laboratory set-up, we demonstrate that van der Waals forces enhance growth from sulfuric acid. We disentangle the effects of ammonia, ions and particle hydration, presenting a complete picture of sulfuric acid growth from molecular clusters onwards. In a climate model, we show its influence on the global aerosol budget.
Mikhail Paramonov, Saskia Drossaart van Dusseldorp, Ellen Gute, Jonathan P. D. Abbatt, Paavo Heikkilä, Jorma Keskinen, Xuemeng Chen, Krista Luoma, Liine Heikkinen, Liqing Hao, Tuukka Petäjä, and Zamin A. Kanji
Atmos. Chem. Phys., 20, 6687–6706, https://doi.org/10.5194/acp-20-6687-2020, https://doi.org/10.5194/acp-20-6687-2020, 2020
Short summary
Short summary
Ice-nucleating particle (INP) measurements were performed in the boreal environment of southern Finland in the winter–spring of 2018. It was found that no single parameter could be used to predict the INP number concentration at the measurement location during the examined time period. It was also not possible to identify physical and chemical properties of ambient INPs despite the complexity of the instrumental set-up. Therefore, this paper addresses the necessity for future INP measurements.
Liine Heikkinen, Mikko Äijälä, Matthieu Riva, Krista Luoma, Kaspar Dällenbach, Juho Aalto, Pasi Aalto, Diego Aliaga, Minna Aurela, Helmi Keskinen, Ulla Makkonen, Pekka Rantala, Markku Kulmala, Tuukka Petäjä, Douglas Worsnop, and Mikael Ehn
Atmos. Chem. Phys., 20, 3151–3180, https://doi.org/10.5194/acp-20-3151-2020, https://doi.org/10.5194/acp-20-3151-2020, 2020
Short summary
Short summary
Atmospheric aerosols are solid or liquid particles suspended in the air. They are known as a health risk, but they also influence the Earth's climate. The composition of aerosols becomes important when predicting their effect on climate. We show both seasonal and year-to-year variability of aerosol chemical composition in the boreal forest of Finland. We observed a consistent bimodal seasonal trend: a biogenic summertime maximum and an anthropogenic wintertime maximum in the mass concentration.
Ying Zhou, Lubna Dada, Yiliang Liu, Yueyun Fu, Juha Kangasluoma, Tommy Chan, Chao Yan, Biwu Chu, Kaspar R. Daellenbach, Federico Bianchi, Tom V. Kokkonen, Yongchun Liu, Joni Kujansuu, Veli-Matti Kerminen, Tuukka Petäjä, Lin Wang, Jingkun Jiang, and Markku Kulmala
Atmos. Chem. Phys., 20, 1201–1216, https://doi.org/10.5194/acp-20-1201-2020, https://doi.org/10.5194/acp-20-1201-2020, 2020
Short summary
Short summary
In this study, we focus on explaining the concentration variations in the observed particle modes, by relating them to the potential aerosol sources and sinks, and on understanding the connections between these modes. Interestingly, even in the atmospheric cocktail in urban Beijing, secondary new particle formation (NPF) drives the particle number concentration, especially in the sub-3 nm range. We found that the total number concentration is ~ 4 times higher on NPF days than on haze days.
Marja Hemmilä, Ulla Makkonen, Aki Virkkula, Georgia Panagiotopoulou, Juho Aalto, Markku Kulmala, Tuukka Petäjä, Hannele Hakola, and Heidi Hellén
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-1157, https://doi.org/10.5194/acp-2019-1157, 2020
Publication in ACP not foreseen
Short summary
Short summary
Amines are atmospheric bases, which can affect to nucleation of aerosols. Lately, a computational study showed that guanidine could be even more effective to stabilize sulphuric acid clusters. In this paper we used a a dynamic flow-through chamber with an online ion chromatograph MARGA coupled with a mass spectrometer (MARGA-MS). We studied amine and guanidine emission from a boreal forest floor in Finland, and find out, that the boreal forest floor is a source of amines and guanidine.
Yonghong Wang, Miao Yu, Yuesi Wang, Guiqian Tang, Tao Song, Putian Zhou, Zirui Liu, Bo Hu, Dongsheng Ji, Lili Wang, Xiaowan Zhu, Chao Yan, Mikael Ehn, Wenkang Gao, Yuepeng Pan, Jinyuan Xin, Yang Sun, Veli-Matti Kerminen, Markku Kulmala, and Tuukka Petäjä
Atmos. Chem. Phys., 20, 45–53, https://doi.org/10.5194/acp-20-45-2020, https://doi.org/10.5194/acp-20-45-2020, 2020
Short summary
Short summary
We found a positive particle matter-mixing layer height feedback at three observation platforms at the 325 m Beijing meteorology tower, which is characterized by a shallower mixing layer height and a higher particle matter concentration. Measurements of solar radiation, aerosol chemical composition, meteorology parameters, trace gases and turbulent kinetic energy (TKE) could explain the feedback mechanism to some extent.
Yicheng Shen, Aki Virkkula, Aijun Ding, Krista Luoma, Helmi Keskinen, Pasi P. Aalto, Xuguang Chi, Ximeng Qi, Wei Nie, Xin Huang, Tuukka Petäjä, Markku Kulmala, and Veli-Matti Kerminen
Atmos. Chem. Phys., 19, 15483–15502, https://doi.org/10.5194/acp-19-15483-2019, https://doi.org/10.5194/acp-19-15483-2019, 2019
Short summary
Short summary
Long-term cloud condensation nuclei (CCN) number concentration (NCCN) data are scarce; there are a lot more data on aerosol optical properties (AOPs). It is therefore valuable to derive parameterizations for estimating NCCN from AOP measurements. With the new parameterization NCCN can be estimated from backscatter fraction, scattering Ångström exponent, and total light-scattering coefficient. The NCCN–AOP relationships depend on the geometric mean diameter and the width of the size distribution.
Arnaud P. Praplan, Toni Tykkä, Dean Chen, Michael Boy, Ditte Taipale, Ville Vakkari, Putian Zhou, Tuukka Petäjä, and Heidi Hellén
Atmos. Chem. Phys., 19, 14431–14453, https://doi.org/10.5194/acp-19-14431-2019, https://doi.org/10.5194/acp-19-14431-2019, 2019
Short summary
Short summary
Our study shows that, despite our best efforts and recent progress, our knowledge of the chemical composition of the air under the canopy of a boreal forest still cannot be fully characterized. The discrepancy between the measured total reactivity of the air and the reactivity derived from the known chemical composition highlights the need to better understand the emissions from vegetation, but also other sources, such as the forest soil.
Krista Luoma, Aki Virkkula, Pasi Aalto, Tuukka Petäjä, and Markku Kulmala
Atmos. Chem. Phys., 19, 11363–11382, https://doi.org/10.5194/acp-19-11363-2019, https://doi.org/10.5194/acp-19-11363-2019, 2019
Short summary
Short summary
We present an over 10-year-long time series of aerosol optical properties (AOPs) measured at a rural boreal forest site. Knowledge of AOPs is needed in determining the direct effect of aerosol particles on climate. We observed decreasing trends in scattering and absorption and increasing trends in backscattering fraction and single-scattering albedo. Trends of single-scattering albedo and backscattering fraction increased the efficiency of aerosol particles to scatter radiation back into space.
Jingwei Liu, Xin Li, Yiming Yang, Haichao Wang, Yusheng Wu, Xuewei Lu, Mindong Chen, Jianlin Hu, Xiaobo Fan, Limin Zeng, and Yuanhang Zhang
Atmos. Meas. Tech., 12, 4439–4453, https://doi.org/10.5194/amt-12-4439-2019, https://doi.org/10.5194/amt-12-4439-2019, 2019
Short summary
Short summary
Incoherent broadband cavity-enhanced absorption spectroscopy (IBBCEAS) has been proven to be a reliable method for measuring glyoxal and methylglyoxal in the atmosphere. However, the commonly overlying strong spectral absorption of nitrogen dioxide hampers the accurate and sensitive resolve of the weak absorption features of glyoxal and methylglyoxal. Here, we report a custom-built IBBCEAS system that could overcome this problem by quantitatively removing nitrogen dioxide from the sample air.
Kaspar R. Daellenbach, Ivan Kourtchev, Alexander L. Vogel, Emily A. Bruns, Jianhui Jiang, Tuukka Petäjä, Jean-Luc Jaffrezo, Sebnem Aksoyoglu, Markus Kalberer, Urs Baltensperger, Imad El Haddad, and André S. H. Prévôt
Atmos. Chem. Phys., 19, 5973–5991, https://doi.org/10.5194/acp-19-5973-2019, https://doi.org/10.5194/acp-19-5973-2019, 2019
Short summary
Short summary
Here we present the molecular composition of the organic aerosol (OA) at an urban site in Central Europe (Zurich, Switzerland) and compare it to smog chamber wood smoke and ambient biogenic secondary OA (SOA) (Orbitrap analyses). Accordingly, we are able to explain the strong seasonality of the molecular composition by aged wood smoke and biogenic SOA during winter and summer. Our results could also explain the predominance of non-fossil organic carbon at European locations throughout the year.
Yonghong Wang, Yuesi Wang, Lili Wang, Tuukka Petäjä, Qiaozhi Zha, Chongshui Gong, Sixuan Li, Yuepeng Pan, Bo Hu, Jinyuan Xin, and Markku Kulmala
Atmos. Chem. Phys., 19, 5881–5888, https://doi.org/10.5194/acp-19-5881-2019, https://doi.org/10.5194/acp-19-5881-2019, 2019
Short summary
Short summary
Satellite observations combined with in situ measurements demonstrate that increased inorganic aerosol fractions of NO2 and SO2 contribute to air pollution and frequently occurring haze in China from 1980 to 2010. Currently, the reduction of nitrate, sulfate and their precursor gases would contribute towards better visibility in China.
Katri Leino, Janne Lampilahti, Pyry Poutanen, Riikka Väänänen, Antti Manninen, Stephany Buenrostro Mazon, Lubna Dada, Anna Franck, Daniela Wimmer, Pasi P. Aalto, Lauri R. Ahonen, Joonas Enroth, Juha Kangasluoma, Petri Keronen, Frans Korhonen, Heikki Laakso, Teemu Matilainen, Erkki Siivola, Hanna E. Manninen, Katrianne Lehtipalo, Veli-Matti Kerminen, Tuukka Petäjä, and Markku Kulmala
Atmos. Chem. Phys., 19, 4127–4138, https://doi.org/10.5194/acp-19-4127-2019, https://doi.org/10.5194/acp-19-4127-2019, 2019
Short summary
Short summary
This study presents airborne observations of particles, starting from 1.5 nm in diameter, above the boreal forest from 100 m up to 2700 m. The aim was to study the extent of NPF and likely places for nucleation. We found that the highest concentrations of 1.5–3 nm particles were above the forest canopy top on NPF event mornings, and the concentration decreased with increasing altitude. This would indicate the importance of gaseous precursors from vegetation for NPF processes in this area.
Mikko Äijälä, Kaspar R. Daellenbach, Francesco Canonaco, Liine Heikkinen, Heikki Junninen, Tuukka Petäjä, Markku Kulmala, André S. H. Prévôt, and Mikael Ehn
Atmos. Chem. Phys., 19, 3645–3672, https://doi.org/10.5194/acp-19-3645-2019, https://doi.org/10.5194/acp-19-3645-2019, 2019
Short summary
Short summary
Aerosol mass spectrometry produces large amounts of complex data, the analysis of which necessitates chemometrics – the application of advanced statistical and mathematical tools to chemical data. Here, we perform a data-driven analysis of multiple aerosol mass spectrometric data sets, to show that the traditional separation of organics and inorganics is not necessary. The resulting 7-component aerosol speciation explains 83 % to 96 % of observed variability at our boreal forest experiment site.
Nikos Kalivitis, Veli-Matti Kerminen, Giorgos Kouvarakis, Iasonas Stavroulas, Evaggelia Tzitzikalaki, Panayiotis Kalkavouras, Nikos Daskalakis, Stelios Myriokefalitakis, Aikaterini Bougiatioti, Hanna E. Manninen, Pontus Roldin, Tuukka Petäjä, Michael Boy, Markku Kulmala, Maria Kanakidou, and Nikolaos Mihalopoulos
Atmos. Chem. Phys., 19, 2671–2686, https://doi.org/10.5194/acp-19-2671-2019, https://doi.org/10.5194/acp-19-2671-2019, 2019
Short summary
Short summary
New particle formation (NPF) is an important source of atmospheric aerosols. For the Mediterranean atmosphere, only few studies exist. In this study we present one of the longest series of NPF by analyzing 10 years of data from Crete, Greece. NPF took place on 27 % of the available days; it was more frequent in spring and less so in late summer. Model simulations showed that NPF in the subtropical environment may differ greatly from that in the boreal environment.
Michael Boy, Erik S. Thomson, Juan-C. Acosta Navarro, Olafur Arnalds, Ekaterina Batchvarova, Jaana Bäck, Frank Berninger, Merete Bilde, Zoé Brasseur, Pavla Dagsson-Waldhauserova, Dimitri Castarède, Maryam Dalirian, Gerrit de Leeuw, Monika Dragosics, Ella-Maria Duplissy, Jonathan Duplissy, Annica M. L. Ekman, Keyan Fang, Jean-Charles Gallet, Marianne Glasius, Sven-Erik Gryning, Henrik Grythe, Hans-Christen Hansson, Margareta Hansson, Elisabeth Isaksson, Trond Iversen, Ingibjorg Jonsdottir, Ville Kasurinen, Alf Kirkevåg, Atte Korhola, Radovan Krejci, Jon Egill Kristjansson, Hanna K. Lappalainen, Antti Lauri, Matti Leppäranta, Heikki Lihavainen, Risto Makkonen, Andreas Massling, Outi Meinander, E. Douglas Nilsson, Haraldur Olafsson, Jan B. C. Pettersson, Nønne L. Prisle, Ilona Riipinen, Pontus Roldin, Meri Ruppel, Matthew Salter, Maria Sand, Øyvind Seland, Heikki Seppä, Henrik Skov, Joana Soares, Andreas Stohl, Johan Ström, Jonas Svensson, Erik Swietlicki, Ksenia Tabakova, Throstur Thorsteinsson, Aki Virkkula, Gesa A. Weyhenmeyer, Yusheng Wu, Paul Zieger, and Markku Kulmala
Atmos. Chem. Phys., 19, 2015–2061, https://doi.org/10.5194/acp-19-2015-2019, https://doi.org/10.5194/acp-19-2015-2019, 2019
Short summary
Short summary
The Nordic Centre of Excellence CRAICC (Cryosphere–Atmosphere Interactions in a Changing Arctic Climate), funded by NordForsk in the years 2011–2016, is the largest joint Nordic research and innovation initiative to date and aimed to strengthen research and innovation regarding climate change issues in the Nordic region. The paper presents an overview of the main scientific topics investigated and provides a state-of-the-art comprehensive summary of what has been achieved in CRAICC.
Timo Vihma, Petteri Uotila, Stein Sandven, Dmitry Pozdnyakov, Alexander Makshtas, Alexander Pelyasov, Roberta Pirazzini, Finn Danielsen, Sergey Chalov, Hanna K. Lappalainen, Vladimir Ivanov, Ivan Frolov, Anna Albin, Bin Cheng, Sergey Dobrolyubov, Viktor Arkhipkin, Stanislav Myslenkov, Tuukka Petäjä, and Markku Kulmala
Atmos. Chem. Phys., 19, 1941–1970, https://doi.org/10.5194/acp-19-1941-2019, https://doi.org/10.5194/acp-19-1941-2019, 2019
Short summary
Short summary
The Arctic marine climate system, ecosystems, and socio-economic systems are changing rapidly. This calls for the establishment of a marine Arctic component of the Pan-Eurasian Experiment (MA-PEEX), for which we present a plan. The program will promote international collaboration; sustainable marine meteorological, sea ice, and oceanographic observations; advanced data management; and multidisciplinary research on the marine Arctic and its interaction with the Eurasian continent.
Yiqun Lu, Chao Yan, Yueyun Fu, Yan Chen, Yiliang Liu, Gan Yang, Yuwei Wang, Federico Bianchi, Biwu Chu, Ying Zhou, Rujing Yin, Rima Baalbaki, Olga Garmash, Chenjuan Deng, Weigang Wang, Yongchun Liu, Tuukka Petäjä, Veli-Matti Kerminen, Jingkun Jiang, Markku Kulmala, and Lin Wang
Atmos. Chem. Phys., 19, 1971–1983, https://doi.org/10.5194/acp-19-1971-2019, https://doi.org/10.5194/acp-19-1971-2019, 2019
Short summary
Short summary
Gaseous sulfuric acid is one of the key precursors for atmospheric new particle formation processes, but its measurement remains challenging. This work develops an estimation method for the gaseous sulfuric acid concentration in an urban environment in China using multiple atmospheric variables that are easier to measure. The consideration of the heterogeneous formation of HONO and the subsequent photo-production of OH radicals improves the performance of the estimation method.
Biwu Chu, Veli-Matti Kerminen, Federico Bianchi, Chao Yan, Tuukka Petäjä, and Markku Kulmala
Atmos. Chem. Phys., 19, 115–138, https://doi.org/10.5194/acp-19-115-2019, https://doi.org/10.5194/acp-19-115-2019, 2019
Short summary
Short summary
The characteristics of new particle formation (NPF) in China, including frequency, formation rate, and particle growth rate, were summarized comprehensively and were compared among observations in different environments. The interactions between air pollution and NPF are discussed, as well as the possible reasons for more frequent NPF under heavy pollution conditions than in our current understanding. Significant and future research directions for NPF studies in China are also summarized.
Fidel Pankratov, Alexander Mahura, Tuukka Petäjä, Valentin Popov, and Vladimir Masloboev
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-1228, https://doi.org/10.5194/acp-2018-1228, 2018
Revised manuscript not accepted
Short summary
Short summary
Analysis of long-term observations for atmospheric mercury in the Russian Arctic, considering inter-annual, seasonal and monthly variabilities is in focus. Linkage of elevated concentrations with volcanic eruptions in Iceland is explored. Results showed that active volcanoes can play a role of sources for increased mercury levels in the Northern Hemisphere due to long-range atmospheric transport of volcanic clouds towards the Arctic.
Lubna Dada, Robert Chellapermal, Stephany Buenrostro Mazon, Pauli Paasonen, Janne Lampilahti, Hanna E. Manninen, Heikki Junninen, Tuukka Petäjä, Veli-Matti Kerminen, and Markku Kulmala
Atmos. Chem. Phys., 18, 17883–17893, https://doi.org/10.5194/acp-18-17883-2018, https://doi.org/10.5194/acp-18-17883-2018, 2018
Short summary
Short summary
Our paper provides an automatic method to classify new particle formation events into four classes based on the accompanying air ion concentrations. The method is applied to 10 years of data measured within the SMEAR II station and was capable of eliminating the undefined class as well as defining the start, peak and end times of a regional event by monitoring the initial steps of cluster formation. Our method can be modified and applied to different locations where particle formation occurs.
Ekaterina Ezhova, Ilona Ylivinkka, Joel Kuusk, Kaupo Komsaare, Marko Vana, Alisa Krasnova, Steffen Noe, Mikhail Arshinov, Boris Belan, Sung-Bin Park, Jošt Valentin Lavrič, Martin Heimann, Tuukka Petäjä, Timo Vesala, Ivan Mammarella, Pasi Kolari, Jaana Bäck, Üllar Rannik, Veli-Matti Kerminen, and Markku Kulmala
Atmos. Chem. Phys., 18, 17863–17881, https://doi.org/10.5194/acp-18-17863-2018, https://doi.org/10.5194/acp-18-17863-2018, 2018
Short summary
Short summary
Understanding the connections between aerosols, solar radiation and photosynthesis in terrestrial ecosystems is important for estimates of the CO2 balance in the atmosphere. Atmospheric aerosols and clouds influence solar radiation. In this study, we quantify the aerosol effect on solar radiation in boreal forests and study forest ecosystems response to this change in the radiation conditions. The analysis is based on atmospheric observations from several remote stations in Eurasian forests.
Liqing Hao, Olga Garmash, Mikael Ehn, Pasi Miettinen, Paola Massoli, Santtu Mikkonen, Tuija Jokinen, Pontus Roldin, Pasi Aalto, Taina Yli-Juuti, Jorma Joutsensaari, Tuukka Petäjä, Markku Kulmala, Kari E. J. Lehtinen, Douglas R. Worsnop, and Annele Virtanen
Atmos. Chem. Phys., 18, 17705–17716, https://doi.org/10.5194/acp-18-17705-2018, https://doi.org/10.5194/acp-18-17705-2018, 2018
Short summary
Short summary
An aerosol mass spectrometer was used to characterize aerosol chemical composition during new particle formation periods. The time profiles of mass concentrations and chemical composition of observed aerosol particles are subjected to joint effects of boundary layer dilution, atmospheric chemistry and aerosol mixing in different boundary layers. During the nighttime, the increase in organic aerosol mass correlated well with the increase in condensed highly oxygenated organic molecules' mass.
Qiaozhi Zha, Chao Yan, Heikki Junninen, Matthieu Riva, Nina Sarnela, Juho Aalto, Lauriane Quéléver, Simon Schallhart, Lubna Dada, Liine Heikkinen, Otso Peräkylä, Jun Zou, Clémence Rose, Yonghong Wang, Ivan Mammarella, Gabriel Katul, Timo Vesala, Douglas R. Worsnop, Markku Kulmala, Tuukka Petäjä, Federico Bianchi, and Mikael Ehn
Atmos. Chem. Phys., 18, 17437–17450, https://doi.org/10.5194/acp-18-17437-2018, https://doi.org/10.5194/acp-18-17437-2018, 2018
Short summary
Short summary
Vertical measurements of highly oxygenated molecules (HOMs) below and above the forest canopy were performed for the first time in a boreal forest during September 2016. Our results highlight that near-ground HOM measurements may only be representative of a small fraction of the entire nocturnal boundary layer, which may sequentially influence the growth of newly formed particles and SOA formation close to ground surface, where the majority of measurements are conducted.
Cristina Carnerero, Noemí Pérez, Cristina Reche, Marina Ealo, Gloria Titos, Hong-Ku Lee, Hee-Ram Eun, Yong-Hee Park, Lubna Dada, Pauli Paasonen, Veli-Matti Kerminen, Enrique Mantilla, Miguel Escudero, Francisco J. Gómez-Moreno, Elisabeth Alonso-Blanco, Esther Coz, Alfonso Saiz-Lopez, Brice Temime-Roussel, Nicolas Marchand, David C. S. Beddows, Roy M. Harrison, Tuukka Petäjä, Markku Kulmala, Kang-Ho Ahn, Andrés Alastuey, and Xavier Querol
Atmos. Chem. Phys., 18, 16601–16618, https://doi.org/10.5194/acp-18-16601-2018, https://doi.org/10.5194/acp-18-16601-2018, 2018
Short summary
Short summary
The vertical distribution of new particle formation events was studied using tethered balloons carrying miniaturized instrumentation. Results show that new particle formation and growth occurs only in the lower layer of the atmosphere, where aerosols are mixed due to convection, especially when the atmosphere is clean. A comparison of urban and suburban surface stations was also made, suggesting that such events may have a significant impact on ultrafine particle concentrations in a wide area.
Tuomo Nieminen, Veli-Matti Kerminen, Tuukka Petäjä, Pasi P. Aalto, Mikhail Arshinov, Eija Asmi, Urs Baltensperger, David C. S. Beddows, Johan Paul Beukes, Don Collins, Aijun Ding, Roy M. Harrison, Bas Henzing, Rakesh Hooda, Min Hu, Urmas Hõrrak, Niku Kivekäs, Kaupo Komsaare, Radovan Krejci, Adam Kristensson, Lauri Laakso, Ari Laaksonen, W. Richard Leaitch, Heikki Lihavainen, Nikolaos Mihalopoulos, Zoltán Németh, Wei Nie, Colin O'Dowd, Imre Salma, Karine Sellegri, Birgitta Svenningsson, Erik Swietlicki, Peter Tunved, Vidmantas Ulevicius, Ville Vakkari, Marko Vana, Alfred Wiedensohler, Zhijun Wu, Annele Virtanen, and Markku Kulmala
Atmos. Chem. Phys., 18, 14737–14756, https://doi.org/10.5194/acp-18-14737-2018, https://doi.org/10.5194/acp-18-14737-2018, 2018
Short summary
Short summary
Atmospheric aerosols have diverse effects on air quality, human health, and global climate. One important source of aerosols is their formation via nucleation and growth in the atmosphere. We have analyzed long-term observations of regional new particle formation events around the globe and provide a comprehensive view on the characteristics of this phenomenon in diverse environments. The results are useful in developing more realistic representation of atmospheric aerosols in global models.
Juan Hong, Hanbing Xu, Haobo Tan, Changqing Yin, Liqing Hao, Fei Li, Mingfu Cai, Xuejiao Deng, Nan Wang, Hang Su, Yafang Cheng, Lin Wang, Tuukka Petäjä, and Veli-Matti Kerminen
Atmos. Chem. Phys., 18, 14079–14094, https://doi.org/10.5194/acp-18-14079-2018, https://doi.org/10.5194/acp-18-14079-2018, 2018
Short summary
Short summary
In this manuscript, we provide the results of the hygroscopicity of a more anthropogenically influenced aerosol in a suburban site in China. Organic material in the current type of aerosols showed moderate hygroscopicity, and it appeared to be less sensitive towards the variation of its oxidation level, which suggests different characteristics of the oxidation products in secondary organic aerosols (SOA) under the suburban/urban atmosphere in China when compared to other background environments.
Heidi Hellén, Arnaud P. Praplan, Toni Tykkä, Ilona Ylivinkka, Ville Vakkari, Jaana Bäck, Tuukka Petäjä, Markku Kulmala, and Hannele Hakola
Atmos. Chem. Phys., 18, 13839–13863, https://doi.org/10.5194/acp-18-13839-2018, https://doi.org/10.5194/acp-18-13839-2018, 2018
Short summary
Short summary
Exceptionally large ambient air concentration datasets of VOCs were measured in a boreal forest. For the first time concentration of the main sesquiterpene (β-caryophyllene) emitted by the local trees was also measured. Sesquiterpenes were found to have a major impact on local atmospheric chemistry, even though their concentrations were 30 times lower than the monoterpene concentrations. In addition, sesquiterpenes are expected to have a high impact on local secondary organic aerosol production.
John N. Crowley, Nicolas Pouvesle, Gavin J. Phillips, Raoul Axinte, Horst Fischer, Tuukka Petäjä, Anke Nölscher, Jonathan Williams, Korbinian Hens, Hartwig Harder, Monica Martinez-Harder, Anna Novelli, Dagmar Kubistin, Birger Bohn, and Jos Lelieveld
Atmos. Chem. Phys., 18, 13457–13479, https://doi.org/10.5194/acp-18-13457-2018, https://doi.org/10.5194/acp-18-13457-2018, 2018
Short summary
Short summary
Simultaneous observations of PAA, PAN and H2O2 are used to provide insight into processes influencing the HOx chemistry of the boreal forest, including two biomass-burning-impacted periods. A significant contribution from photolytic HOx sources was included in a box model analysis to align model predictions with measurements. The model predicts high levels of organic peroxy radicals, also at night-time.
Pertti Hari, Steffen Noe, Sigrid Dengel, Jan Elbers, Bert Gielen, Veli-Matti Kerminen, Bart Kruijt, Liisa Kulmala, Anders Lindroth, Ivan Mammarella, Tuukka Petäjä, Guy Schurgers, Anni Vanhatalo, Markku Kulmala, and Jaana Bäck
Atmos. Chem. Phys., 18, 13321–13328, https://doi.org/10.5194/acp-18-13321-2018, https://doi.org/10.5194/acp-18-13321-2018, 2018
Short summary
Short summary
The development of eddy-covariance measurements of ecosystem CO2 fluxes began a new era in the field studies of photosynthesis. The interpretation of the very variable CO2 fluxes in evergreen forests has been problematic especially in seasonal transition times. We apply two theoretical needle-level equations and show they can predict photosynthetic CO2 flux between the atmosphere and Scots pine forests. This has strong implications for the interpretation of the global change and boreal forests.
Daniela Wimmer, Stephany Buenrostro Mazon, Hanna Elina Manninen, Juha Kangasluoma, Alessandro Franchin, Tuomo Nieminen, John Backman, Jian Wang, Chongai Kuang, Radovan Krejci, Joel Brito, Fernando Goncalves Morais, Scot Turnbull Martin, Paulo Artaxo, Markku Kulmala, Veli-Matti Kerminen, and Tuukka Petäjä
Atmos. Chem. Phys., 18, 13245–13264, https://doi.org/10.5194/acp-18-13245-2018, https://doi.org/10.5194/acp-18-13245-2018, 2018
Short summary
Short summary
This work focuses on understanding the production of very small airborne particles in the undisturbed environment of the Amazon basin. Computer models have shown that up to 70 % of these tiny particles are responsible for cloud formation on a global scale. The processes behind the production of these very small particles have been studied intensely recently. Their appearance has been observed almost all over the world. We directly measure sub-3 nm aerosols for the first time in the Amazon basin.
Chao Yan, Lubna Dada, Clémence Rose, Tuija Jokinen, Wei Nie, Siegfried Schobesberger, Heikki Junninen, Katrianne Lehtipalo, Nina Sarnela, Ulla Makkonen, Olga Garmash, Yonghong Wang, Qiaozhi Zha, Pauli Paasonen, Federico Bianchi, Mikko Sipilä, Mikael Ehn, Tuukka Petäjä, Veli-Matti Kerminen, Douglas R. Worsnop, and Markku Kulmala
Atmos. Chem. Phys., 18, 13231–13243, https://doi.org/10.5194/acp-18-13231-2018, https://doi.org/10.5194/acp-18-13231-2018, 2018
Short summary
Short summary
Ions can play an important role in atmospheric new particle formation by stabilizing the embryonic clusters. Such a process is called ion-induced nucleation (IIN). We found two distinct IIN mechanisms – driven by H2SO4-NH3 clusters and by organic vapors, respectively. The concentration ratio of organic vapors to H2SO4 regulates via which pathway the IIN occur. As the organic vapor concentration is influenced by temperature, a seasonal variation in the main IIN mechanism can be expected.
Ximeng Qi, Aijun Ding, Pontus Roldin, Zhengning Xu, Putian Zhou, Nina Sarnela, Wei Nie, Xin Huang, Anton Rusanen, Mikael Ehn, Matti P. Rissanen, Tuukka Petäjä, Markku Kulmala, and Michael Boy
Atmos. Chem. Phys., 18, 11779–11791, https://doi.org/10.5194/acp-18-11779-2018, https://doi.org/10.5194/acp-18-11779-2018, 2018
Short summary
Short summary
In this study we simulate the HOM concentrations and discuss their roles in NPF at a remote boreal forest site in Finland and a suburban site in eastern China. We found that sulfuric acid and HOM organonitrate concentrations in the gas phase are significantly higher but other HOM monomers and dimers from monoterpene oxidation are lower in eastern China. This study highlights the need for molecular-scale measurements in improving the understanding of NPF mechanisms in polluted areas.
Ben H. Lee, Felipe D. Lopez-Hilfiker, Emma L. D'Ambro, Putian Zhou, Michael Boy, Tuukka Petäjä, Liqing Hao, Annele Virtanen, and Joel A. Thornton
Atmos. Chem. Phys., 18, 11547–11562, https://doi.org/10.5194/acp-18-11547-2018, https://doi.org/10.5194/acp-18-11547-2018, 2018
Short summary
Short summary
Molecular identities and abundances of organic compounds residing in the gas and particle phases above a Finnish boreal forest are presented. We determined that in each phase, the organic components are categorized into three subgroups based on their behavior in time. Some are more enhanced at night, others during midday, and another around sunrise. Identifying such collective behavior can potentially connect the chemical processes that evolve in time to specific distributions of products.
Runlong Cai, Dongsen Yang, Lauri R. Ahonen, Linlin Shi, Frans Korhonen, Yan Ma, Jiming Hao, Tuukka Petäjä, Jun Zheng, Juha Kangasluoma, and Jingkun Jiang
Atmos. Meas. Tech., 11, 4477–4491, https://doi.org/10.5194/amt-11-4477-2018, https://doi.org/10.5194/amt-11-4477-2018, 2018
Short summary
Short summary
We tested the performance of four inversion methods to recover sub-3 nm aerosol size distributions using the particle size magnifier (PSM). The PSM is widely used in new particle formation study; however, the inversion methods used in previous studies may report false particle concentrations. Due to the results, we suggest using the expectation–maximization algorithm to address the PSM inversion problem. We also gave practical suggestions on PSM operation based on the inversion analysis.
Anna Nikandrova, Ksenia Tabakova, Antti Manninen, Riikka Väänänen, Tuukka Petäjä, Markku Kulmala, Veli-Matti Kerminen, and Ewan O'Connor
Atmos. Chem. Phys., 18, 10575–10591, https://doi.org/10.5194/acp-18-10575-2018, https://doi.org/10.5194/acp-18-10575-2018, 2018
Short summary
Short summary
We investigated temporal and vertical aerosol properties in a rural environment during BAECC (Biogenic Aerosols – Effects on Cloud and Climate) campaign. Differences were observed in aerosol number size distribution, variability and mixing in the layers between two case studies: clear-sky and partly cloudy case. We also conclude that care should be taken in selecting appropriate arrival heights of backward trajectories, since the modelled and observed layer heights did not always coincide.
Luciana Varanda Rizzo, Pontus Roldin, Joel Brito, John Backman, Erik Swietlicki, Radovan Krejci, Peter Tunved, Tukka Petäjä, Markku Kulmala, and Paulo Artaxo
Atmos. Chem. Phys., 18, 10255–10274, https://doi.org/10.5194/acp-18-10255-2018, https://doi.org/10.5194/acp-18-10255-2018, 2018
Short summary
Short summary
Aerosols are tiny particles suspended in the air that can interact with sunlight and form clouds, which in turn affect the climate. They can also recycle nutrients in forest environments. Aerosols are naturally emitted at the surface in the Amazon forest, in addition to being brought down from above the boundary layer by intense air movements. In this work, we describe how the particle size number concentrations of aerosols change over hours, days and seasons in a multi-year study in Amazonia.
Marco Pandolfi, Lucas Alados-Arboledas, Andrés Alastuey, Marcos Andrade, Christo Angelov, Begoña Artiñano, John Backman, Urs Baltensperger, Paolo Bonasoni, Nicolas Bukowiecki, Martine Collaud Coen, Sébastien Conil, Esther Coz, Vincent Crenn, Vadimas Dudoitis, Marina Ealo, Kostas Eleftheriadis, Olivier Favez, Prodromos Fetfatzis, Markus Fiebig, Harald Flentje, Patrick Ginot, Martin Gysel, Bas Henzing, Andras Hoffer, Adela Holubova Smejkalova, Ivo Kalapov, Nikos Kalivitis, Giorgos Kouvarakis, Adam Kristensson, Markku Kulmala, Heikki Lihavainen, Chris Lunder, Krista Luoma, Hassan Lyamani, Angela Marinoni, Nikos Mihalopoulos, Marcel Moerman, José Nicolas, Colin O'Dowd, Tuukka Petäjä, Jean-Eudes Petit, Jean Marc Pichon, Nina Prokopciuk, Jean-Philippe Putaud, Sergio Rodríguez, Jean Sciare, Karine Sellegri, Erik Swietlicki, Gloria Titos, Thomas Tuch, Peter Tunved, Vidmantas Ulevicius, Aditya Vaishya, Milan Vana, Aki Virkkula, Stergios Vratolis, Ernest Weingartner, Alfred Wiedensohler, and Paolo Laj
Atmos. Chem. Phys., 18, 7877–7911, https://doi.org/10.5194/acp-18-7877-2018, https://doi.org/10.5194/acp-18-7877-2018, 2018
Short summary
Short summary
This investigation presents the variability in near-surface in situ aerosol particle light-scattering measurements obtained over the past decade at 28 measuring atmospheric observatories which are part of the ACTRIS Research Infrastructure, and most of them belong to the GAW network. This paper provides a comprehensive picture of the spatial and temporal variability of aerosol particles optical properties in Europe.
Vladimir Melnikov, Viktor Gennadinik, Markku Kulmala, Hanna K. Lappalainen, Tuukka Petäjä, and Sergej Zilitinkevich
Atmos. Chem. Phys., 18, 6535–6542, https://doi.org/10.5194/acp-18-6535-2018, https://doi.org/10.5194/acp-18-6535-2018, 2018
Short summary
Short summary
The cryosphere of the Earth overlaps with the atmosphere, hydrosphere and lithosphere over vast areas with temperatures below zero C and pronounced H2O phase changes. The cryosphere plays the role of a global thermostat; however, the processes related to the cryosphere attract insufficient attention from research communities. We call attention to crucial importance of cryogenic anomalies, which make the Earth atmosphere and the entire Earth system unique.
Yicheng Shen, Aki Virkkula, Aijun Ding, Jiaping Wang, Xuguang Chi, Wei Nie, Ximeng Qi, Xin Huang, Qiang Liu, Longfei Zheng, Zheng Xu, Tuukka Petäjä, Pasi P. Aalto, Congbin Fu, and Markku Kulmala
Atmos. Chem. Phys., 18, 5265–5292, https://doi.org/10.5194/acp-18-5265-2018, https://doi.org/10.5194/acp-18-5265-2018, 2018
Short summary
Short summary
Aerosol optical properties (AOPs) were measured at SORPES, a regional background station in Nanjing, China from June 2013 to May 2015. The aerosol was highly scattering. The single-scattering albedo in Nanjing appears to be slightly higher than at several other sites. The data do not suggest any significant contribution to absorption by brown carbon. The sources of high values are mainly in eastern China. During pollution episodes, pollutant concentrations increased gradually but decreased fast.
Julia Schmale, Silvia Henning, Stefano Decesari, Bas Henzing, Helmi Keskinen, Karine Sellegri, Jurgita Ovadnevaite, Mira L. Pöhlker, Joel Brito, Aikaterini Bougiatioti, Adam Kristensson, Nikos Kalivitis, Iasonas Stavroulas, Samara Carbone, Anne Jefferson, Minsu Park, Patrick Schlag, Yoko Iwamoto, Pasi Aalto, Mikko Äijälä, Nicolas Bukowiecki, Mikael Ehn, Göran Frank, Roman Fröhlich, Arnoud Frumau, Erik Herrmann, Hartmut Herrmann, Rupert Holzinger, Gerard Kos, Markku Kulmala, Nikolaos Mihalopoulos, Athanasios Nenes, Colin O'Dowd, Tuukka Petäjä, David Picard, Christopher Pöhlker, Ulrich Pöschl, Laurent Poulain, André Stephan Henry Prévôt, Erik Swietlicki, Meinrat O. Andreae, Paulo Artaxo, Alfred Wiedensohler, John Ogren, Atsushi Matsuki, Seong Soo Yum, Frank Stratmann, Urs Baltensperger, and Martin Gysel
Atmos. Chem. Phys., 18, 2853–2881, https://doi.org/10.5194/acp-18-2853-2018, https://doi.org/10.5194/acp-18-2853-2018, 2018
Short summary
Short summary
Collocated long-term observations of cloud condensation nuclei (CCN) number concentrations, particle number size distributions and chemical composition from 12 sites are synthesized. Observations cover coastal environments, the Arctic, the Mediterranean, the boreal and rain forest, high alpine and continental background sites, and Monsoon-influenced areas. We interpret regional and seasonal variability. CCN concentrations are predicted with the κ–Köhler model and compared to the measurements.
Nina Sarnela, Tuija Jokinen, Jonathan Duplissy, Chao Yan, Tuomo Nieminen, Mikael Ehn, Siegfried Schobesberger, Martin Heinritzi, Sebastian Ehrhart, Katrianne Lehtipalo, Jasmin Tröstl, Mario Simon, Andreas Kürten, Markus Leiminger, Michael J. Lawler, Matti P. Rissanen, Federico Bianchi, Arnaud P. Praplan, Jani Hakala, Antonio Amorim, Marc Gonin, Armin Hansel, Jasper Kirkby, Josef Dommen, Joachim Curtius, James N. Smith, Tuukka Petäjä, Douglas R. Worsnop, Markku Kulmala, Neil M. Donahue, and Mikko Sipilä
Atmos. Chem. Phys., 18, 2363–2380, https://doi.org/10.5194/acp-18-2363-2018, https://doi.org/10.5194/acp-18-2363-2018, 2018
Short summary
Short summary
Atmospheric trace gases can form small molecular clusters, which can grow to larger sizes through the condensation of vapours. This process is called new particle formation. In this paper we studied the formation of sulfuric acid and highly oxygenated molecules, the key compounds in atmospheric new particle formation, in chamber experiments and introduced a way to simulate these ozonolysis products of α-pinene in a simple manner.
Luís Miguel Feijó Barreira, Geoffroy Duporté, Tuukka Rönkkö, Jevgeni Parshintsev, Kari Hartonen, Lydia Hyrsky, Enna Heikkinen, Matti Jussila, Markku Kulmala, and Marja-Liisa Riekkola
Atmos. Meas. Tech., 11, 881–893, https://doi.org/10.5194/amt-11-881-2018, https://doi.org/10.5194/amt-11-881-2018, 2018
Short summary
Short summary
Our results demonstrated the benefits and challenges of using new SPME Arrow over SPME fiber for the sampling of BVOCs emitted by terrestrial vegetation in the atmosphere. The new SPME Arrow system showed significant improvement on sampling capacity, with collected amounts being approximately 2 times higher for monoterpenes and 7–8 times higher for aldehydes than with SPME fiber. Higher extraction efficiencies were obtained with dynamic collection prior to equilibrium regime.
Carla Frege, Ismael K. Ortega, Matti P. Rissanen, Arnaud P. Praplan, Gerhard Steiner, Martin Heinritzi, Lauri Ahonen, António Amorim, Anne-Kathrin Bernhammer, Federico Bianchi, Sophia Brilke, Martin Breitenlechner, Lubna Dada, António Dias, Jonathan Duplissy, Sebastian Ehrhart, Imad El-Haddad, Lukas Fischer, Claudia Fuchs, Olga Garmash, Marc Gonin, Armin Hansel, Christopher R. Hoyle, Tuija Jokinen, Heikki Junninen, Jasper Kirkby, Andreas Kürten, Katrianne Lehtipalo, Markus Leiminger, Roy Lee Mauldin, Ugo Molteni, Leonid Nichman, Tuukka Petäjä, Nina Sarnela, Siegfried Schobesberger, Mario Simon, Mikko Sipilä, Dominik Stolzenburg, António Tomé, Alexander L. Vogel, Andrea C. Wagner, Robert Wagner, Mao Xiao, Chao Yan, Penglin Ye, Joachim Curtius, Neil M. Donahue, Richard C. Flagan, Markku Kulmala, Douglas R. Worsnop, Paul M. Winkler, Josef Dommen, and Urs Baltensperger
Atmos. Chem. Phys., 18, 65–79, https://doi.org/10.5194/acp-18-65-2018, https://doi.org/10.5194/acp-18-65-2018, 2018
Short summary
Short summary
It was recently shown that biogenic highly oxygenated molecules (HOMs) form particles in the absence of sulfuric acid and ions enhance the nucleation rate. Here we compare the molecular composition of positive and negative HOM clusters at 25, 5 and −25 °C. At lower temperatures the HOM average oxygen-to-carbon ratio decreases indicating a reduction in the rate of autoxidation due to rather high activation energy. The experimental findings are supported by quantum chemical calculations.
Xuemeng Chen, Lauriane L. J. Quéléver, Pak L. Fung, Jutta Kesti, Matti P. Rissanen, Jaana Bäck, Petri Keronen, Heikki Junninen, Tuukka Petäjä, Veli-Matti Kerminen, and Markku Kulmala
Atmos. Chem. Phys., 18, 49–63, https://doi.org/10.5194/acp-18-49-2018, https://doi.org/10.5194/acp-18-49-2018, 2018
Short summary
Short summary
We analysed a 20-year-long dataset collected in a Finnish boreal forest at SMEAR II station to investigate the frequency and strength of ozone depletion events. We could identify a number of ozone depletion events that lasted for more than 3 h, mainly in the autumn and winter months. Their occurrence was likely related to the formation of a low mixing layer under the conditions of low temperatures, low wind speeds, high relative humidities and limited intensity of solar radiation.
Robert Wagner, Chao Yan, Katrianne Lehtipalo, Jonathan Duplissy, Tuomo Nieminen, Juha Kangasluoma, Lauri R. Ahonen, Lubna Dada, Jenni Kontkanen, Hanna E. Manninen, Antonio Dias, Antonio Amorim, Paulus S. Bauer, Anton Bergen, Anne-Kathrin Bernhammer, Federico Bianchi, Sophia Brilke, Stephany Buenrostro Mazon, Xuemeng Chen, Danielle C. Draper, Lukas Fischer, Carla Frege, Claudia Fuchs, Olga Garmash, Hamish Gordon, Jani Hakala, Liine Heikkinen, Martin Heinritzi, Victoria Hofbauer, Christopher R. Hoyle, Jasper Kirkby, Andreas Kürten, Alexander N. Kvashnin, Tiia Laurila, Michael J. Lawler, Huajun Mai, Vladimir Makhmutov, Roy L. Mauldin III, Ugo Molteni, Leonid Nichman, Wei Nie, Andrea Ojdanic, Antti Onnela, Felix Piel, Lauriane L. J. Quéléver, Matti P. Rissanen, Nina Sarnela, Simon Schallhart, Kamalika Sengupta, Mario Simon, Dominik Stolzenburg, Yuri Stozhkov, Jasmin Tröstl, Yrjö Viisanen, Alexander L. Vogel, Andrea C. Wagner, Mao Xiao, Penglin Ye, Urs Baltensperger, Joachim Curtius, Neil M. Donahue, Richard C. Flagan, Martin Gallagher, Armin Hansel, James N. Smith, António Tomé, Paul M. Winkler, Douglas Worsnop, Mikael Ehn, Mikko Sipilä, Veli-Matti Kerminen, Tuukka Petäjä, and Markku Kulmala
Atmos. Chem. Phys., 17, 15181–15197, https://doi.org/10.5194/acp-17-15181-2017, https://doi.org/10.5194/acp-17-15181-2017, 2017
Pertti Hari, Veli-Matti Kerminen, Liisa Kulmala, Markku Kulmala, Steffen Noe, Tuukka Petäjä, Anni Vanhatalo, and Jaana Bäck
Atmos. Chem. Phys., 17, 15045–15053, https://doi.org/10.5194/acp-17-15045-2017, https://doi.org/10.5194/acp-17-15045-2017, 2017
Short summary
Short summary
We developed a theory on the seasonal behaviour of photosynthesis in natural conditions and tested the theory with intensive measurements. Light, temperature, water vapor and CO2 concentration explained the daily variation in photosynthesis, and the physiological state of the photosynthetic machinery explained the annual pattern of photosynthesis. The theory explained about 95 % of the variance of photosynthesis measured with chambers in the field in northern Finland.
Xuemeng Chen, Aki Virkkula, Veli-Matti Kerminen, Hanna E. Manninen, Maurizio Busetto, Christian Lanconelli, Angelo Lupi, Vito Vitale, Massimo Del Guasta, Paolo Grigioni, Riikka Väänänen, Ella-Maria Duplissy, Tuukka Petäjä, and Markku Kulmala
Atmos. Chem. Phys., 17, 13783–13800, https://doi.org/10.5194/acp-17-13783-2017, https://doi.org/10.5194/acp-17-13783-2017, 2017
Short summary
Short summary
An air ion spectrometer was deployed for characterizing air ions for the first time at the Concordia station at Dome C on the Antarctic Plateau. We observed different ion processes: new particle formation (NPF), wind-induced ion production, and ion formation related to cloud and/or fog formation. Insights into these phenomena are presented. Additionally, the analysis on the growth of NPF events showed a size dependency of growth rates (GRs), i.e. GRs increase with particle sizes.
Federico Bianchi, Olga Garmash, Xucheng He, Chao Yan, Siddharth Iyer, Ida Rosendahl, Zhengning Xu, Matti P. Rissanen, Matthieu Riva, Risto Taipale, Nina Sarnela, Tuukka Petäjä, Douglas R. Worsnop, Markku Kulmala, Mikael Ehn, and Heikki Junninen
Atmos. Chem. Phys., 17, 13819–13831, https://doi.org/10.5194/acp-17-13819-2017, https://doi.org/10.5194/acp-17-13819-2017, 2017
Short summary
Short summary
Naturally charged highly oxidised molecules (HOMs) were characterized using advanced mass spectrometers. Two different classes of compounds, clustered with the nitrate and bisulfate ions, were identified: HOMs containing only carbon, hydrogen and oxygen and nitrogen-containing HOMs or organonitrates (ONs). They exhibit strong diurnal variations where HOMs peak during night and ONs during day. Finally, large clusters containing up to 40 carbon atoms (four oxidized
α-pinene units) were observed.
Elham Baranizadeh, Tuomo Nieminen, Taina Yli-Juuti, Markku Kulmala, Tuukka Petäjä, Ari Leskinen, Mika Komppula, Ari Laaksonen, and Kari E. J. Lehtinen
Atmos. Chem. Phys., 17, 13361–13371, https://doi.org/10.5194/acp-17-13361-2017, https://doi.org/10.5194/acp-17-13361-2017, 2017
Short summary
Short summary
Extrapolation of the particle formation rates from one measured larger size (e.g., 7 nm) to smaller sizes (e.g., 3 nm) based on simplified growth-scavenging dynamics works fairly well to estimate mean daily formation rates, but it fails to predict the time evolution of the particle population. This points to the challenges in predicting atmospheric nucleation rates for locations where the particle growth and loss rates are size- and time-dependent.
Aku Helin, Outi-Maaria Sietiö, Jussi Heinonsalo, Jaana Bäck, Marja-Liisa Riekkola, and Jevgeni Parshintsev
Atmos. Chem. Phys., 17, 13089–13101, https://doi.org/10.5194/acp-17-13089-2017, https://doi.org/10.5194/acp-17-13089-2017, 2017
Short summary
Short summary
Bioaerosols are ubiquitous in the atmosphere and may affect the cloud and precipitation formation processes. In this study, size-segregated aerosol samples were collected in boreal forest during 1 year and analysed for free amino acids, deoxyribonucleic acid, bacteria and fungi. Distinct annual patterns of bioaerosol components were observed. Also, air and soil temperature, radiation and rainfall were observed to possess a close relationship with bioaerosol abundances on an annual scale.
Georgios Tsagkogeorgas, Pontus Roldin, Jonathan Duplissy, Linda Rondo, Jasmin Tröstl, Jay G. Slowik, Sebastian Ehrhart, Alessandro Franchin, Andreas Kürten, Antonio Amorim, Federico Bianchi, Jasper Kirkby, Tuukka Petäjä, Urs Baltensperger, Michael Boy, Joachim Curtius, Richard C. Flagan, Markku Kulmala, Neil M. Donahue, and Frank Stratmann
Atmos. Chem. Phys., 17, 8923–8938, https://doi.org/10.5194/acp-17-8923-2017, https://doi.org/10.5194/acp-17-8923-2017, 2017
Short summary
Short summary
The H2SO4 vapour pressure plays key role in Earth's and Venus' atmospheres. In regions where RH is low and stabilising bases are scarce, H2SO4 can evaporate from particles; however the H2SO4 vapour pressure at low RH is uncertain. To address this, we measured H2SO4 evaporation versus T and RH in the CLOUD chamber and constrained the equilibrium constants for dissociation and dehydration of H2SO4. This study is important for nucleation, particle growth and H2SO4 formation occurring in atmosphere.
Anna Novelli, Korbinian Hens, Cheryl Tatum Ernest, Monica Martinez, Anke C. Nölscher, Vinayak Sinha, Pauli Paasonen, Tuukka Petäjä, Mikko Sipilä, Thomas Elste, Christian Plass-Dülmer, Gavin J. Phillips, Dagmar Kubistin, Jonathan Williams, Luc Vereecken, Jos Lelieveld, and Hartwig Harder
Atmos. Chem. Phys., 17, 7807–7826, https://doi.org/10.5194/acp-17-7807-2017, https://doi.org/10.5194/acp-17-7807-2017, 2017
Short summary
Short summary
The ambient concentration of stabilised Criegee intermediates (SCIs) was estimated for two
environments using field data. The low concentrations predicted indicate that SCIs are
unlikely to have a large impact on atmospheric chemistry. Concurrent measurements of an OH background signal using the Mainz IPI-LIF-FAGE instrument were found to be consistent with the chemistry of SCIs during the measurement campaigns.
Juha Kangasluoma, Susanne Hering, David Picard, Gregory Lewis, Joonas Enroth, Frans Korhonen, Markku Kulmala, Karine Sellegri, Michel Attoui, and Tuukka Petäjä
Atmos. Meas. Tech., 10, 2271–2281, https://doi.org/10.5194/amt-10-2271-2017, https://doi.org/10.5194/amt-10-2271-2017, 2017
Short summary
Short summary
The manuscript presents a characterization of three new particle counters able to detect airborne nanoparticles smaller than 3 nm in diameter. We explored some of the parameters affecting the smallest detectable particle size, such as sample flow relative humidity, the particle chemical composition and the electrical charging state. The characterization results help one to select a suitable particle counter for a given application.
Lubna Dada, Pauli Paasonen, Tuomo Nieminen, Stephany Buenrostro Mazon, Jenni Kontkanen, Otso Peräkylä, Katrianne Lehtipalo, Tareq Hussein, Tuukka Petäjä, Veli-Matti Kerminen, Jaana Bäck, and Markku Kulmala
Atmos. Chem. Phys., 17, 6227–6241, https://doi.org/10.5194/acp-17-6227-2017, https://doi.org/10.5194/acp-17-6227-2017, 2017
Short summary
Short summary
We studied new particle formation under clear-sky conditions in the boreal forest in southern Finland. We compared varying conditions between new particle events and nonevents. We then formulated a threshold value that separates new particle events from nonevents and reached a probability distribution for the frequency of new particle formation. This study serves as the basis for scientists aiming to improve their understanding of new particle formation.
Yuqin Liu, Gerrit de Leeuw, Veli-Matti Kerminen, Jiahua Zhang, Putian Zhou, Wei Nie, Ximeng Qi, Juan Hong, Yonghong Wang, Aijun Ding, Huadong Guo, Olaf Krüger, Markku Kulmala, and Tuukka Petäjä
Atmos. Chem. Phys., 17, 5623–5641, https://doi.org/10.5194/acp-17-5623-2017, https://doi.org/10.5194/acp-17-5623-2017, 2017
Short summary
Short summary
The aerosol effects on warm cloud parameters over the Yangtze River Delta are systematically examined using multi-sensor retrievals. This study shows that the COT–CDR and CWP–CDR relationships are not unique, but are affected by atmospheric aerosol loading. CDR and cloud fraction show different behaviours for low and high AOD. Aerosol–cloud interaction (ACI) is stronger for clouds mixed with smoke aerosol than for clouds mixed with dust. Meteorological conditions play an important role in ACI.
Juan Hong, Mikko Äijälä, Silja A. K. Häme, Liqing Hao, Jonathan Duplissy, Liine M. Heikkinen, Wei Nie, Jyri Mikkilä, Markku Kulmala, Nønne L. Prisle, Annele Virtanen, Mikael Ehn, Pauli Paasonen, Douglas R. Worsnop, Ilona Riipinen, Tuukka Petäjä, and Veli-Matti Kerminen
Atmos. Chem. Phys., 17, 4387–4399, https://doi.org/10.5194/acp-17-4387-2017, https://doi.org/10.5194/acp-17-4387-2017, 2017
Short summary
Short summary
Estimates of volatility of secondary organic aerosols was characterized in a boreal forest environment of Hyytiälä, southern Finland. This was done by interpreting field measurements using a volatility tandem differential mobility analyzer (VTDMA) with a kinetic evaporation model and by applying positive matrix factorization (PMF) to high-resolution aerosol mass spectrometer data. About 16 % of the variation can be explained by the linear regression between the results from these two methods.
Wei Nie, Juan Hong, Silja A. K. Häme, Aijun Ding, Yugen Li, Chao Yan, Liqing Hao, Jyri Mikkilä, Longfei Zheng, Yuning Xie, Caijun Zhu, Zheng Xu, Xuguang Chi, Xin Huang, Yang Zhou, Peng Lin, Annele Virtanen, Douglas R. Worsnop, Markku Kulmala, Mikael Ehn, Jianzhen Yu, Veli-Matti Kerminen, and Tuukka Petäjä
Atmos. Chem. Phys., 17, 3659–3672, https://doi.org/10.5194/acp-17-3659-2017, https://doi.org/10.5194/acp-17-3659-2017, 2017
Short summary
Short summary
HULIS are demonstrated to be important low-volatility, or even extremely low volatility, compounds in the organic aerosol phase. This sheds new light on the connection between atmospheric HULIS and ELVOCs. The interaction between HULIS and ammonium sulfate was found to decrease the volatility of the HULIS part in HULIS-AS mixed samples, indicating multiphase processes have the potential to lower the volatility of organic compounds in the aerosol phase.
Antti-Jussi Kieloaho, Mari Pihlatie, Samuli Launiainen, Markku Kulmala, Marja-Liisa Riekkola, Jevgeni Parshintsev, Ivan Mammarella, Timo Vesala, and Jussi Heinonsalo
Biogeosciences, 14, 1075–1091, https://doi.org/10.5194/bg-14-1075-2017, https://doi.org/10.5194/bg-14-1075-2017, 2017
Short summary
Short summary
The alkylamines are important precursors in secondary aerosol formation in boreal forests. We quantified alkylamine concentrations in fungal species present in boreal forests in order to estimate soil as a source of atmospheric alkylamines. Based on our knowledge we estimated possible soil–atmosphere exchange of these compounds. The results shows that the boreal forest soil could act as a source of alkylamines depending on environmental conditions and studied compound.
Mikko Äijälä, Liine Heikkinen, Roman Fröhlich, Francesco Canonaco, André S. H. Prévôt, Heikki Junninen, Tuukka Petäjä, Markku Kulmala, Douglas Worsnop, and Mikael Ehn
Atmos. Chem. Phys., 17, 3165–3197, https://doi.org/10.5194/acp-17-3165-2017, https://doi.org/10.5194/acp-17-3165-2017, 2017
Short summary
Short summary
Mass spectrometric measurements commonly yield data on hundreds of variables over thousands of points in time. Refining and synthesising this “raw” data into chemical information necessitates the use of advanced, statistics-based data analysis techniques. Here we present an example of combining data dimensionality reduction (factorisation) with exploratory classification (clustering) and show that the results complement and broaden our current perspectives on aerosol chemical classification.
Jenni Kontkanen, Katrianne Lehtipalo, Lauri Ahonen, Juha Kangasluoma, Hanna E. Manninen, Jani Hakala, Clémence Rose, Karine Sellegri, Shan Xiao, Lin Wang, Ximeng Qi, Wei Nie, Aijun Ding, Huan Yu, Shanhu Lee, Veli-Matti Kerminen, Tuukka Petäjä, and Markku Kulmala
Atmos. Chem. Phys., 17, 2163–2187, https://doi.org/10.5194/acp-17-2163-2017, https://doi.org/10.5194/acp-17-2163-2017, 2017
Short summary
Short summary
The concentrations of ~1–3 nm particles were investigated at nine sites around the world. Sub-3 nm particle concentrations were highest at the sites with strong anthropogenic influence. Electrically neutral particles dominated sub-3 nm particle concentrations in polluted environments and in boreal forest during spring and summer. Sub-3 nm particle concentrations were observed to be determined by the availability of precursor vapors rather than the sink caused by preexisting aerosol particles.
Heidi Hellén, Simon Schallhart, Arnaud P. Praplan, Tuukka Petäjä, and Hannele Hakola
Atmos. Meas. Tech., 10, 281–289, https://doi.org/10.5194/amt-10-281-2017, https://doi.org/10.5194/amt-10-281-2017, 2017
Short summary
Short summary
There is a lack of knowledge of volatile organic acids (VOAs), other than formic and acetic acids in gas phase, and this is at least partly due to the lack of sensitive enough measurement methods. In the present study we developed an in situ GC–MS measurement method for measuring C2–C7 monocarboxylic VOAs at ambient air concentration levels, which we used to measure ambient air concentrations in a boreal forest site. In addition, found mixing ratios were compared with PTR-TOFMS data.
Hanna K. Lappalainen, Veli-Matti Kerminen, Tuukka Petäjä, Theo Kurten, Aleksander Baklanov, Anatoly Shvidenko, Jaana Bäck, Timo Vihma, Pavel Alekseychik, Meinrat O. Andreae, Stephen R. Arnold, Mikhail Arshinov, Eija Asmi, Boris Belan, Leonid Bobylev, Sergey Chalov, Yafang Cheng, Natalia Chubarova, Gerrit de Leeuw, Aijun Ding, Sergey Dobrolyubov, Sergei Dubtsov, Egor Dyukarev, Nikolai Elansky, Kostas Eleftheriadis, Igor Esau, Nikolay Filatov, Mikhail Flint, Congbin Fu, Olga Glezer, Aleksander Gliko, Martin Heimann, Albert A. M. Holtslag, Urmas Hõrrak, Juha Janhunen, Sirkku Juhola, Leena Järvi, Heikki Järvinen, Anna Kanukhina, Pavel Konstantinov, Vladimir Kotlyakov, Antti-Jussi Kieloaho, Alexander S. Komarov, Joni Kujansuu, Ilmo Kukkonen, Ella-Maria Duplissy, Ari Laaksonen, Tuomas Laurila, Heikki Lihavainen, Alexander Lisitzin, Alexsander Mahura, Alexander Makshtas, Evgeny Mareev, Stephany Mazon, Dmitry Matishov, Vladimir Melnikov, Eugene Mikhailov, Dmitri Moisseev, Robert Nigmatulin, Steffen M. Noe, Anne Ojala, Mari Pihlatie, Olga Popovicheva, Jukka Pumpanen, Tatjana Regerand, Irina Repina, Aleksei Shcherbinin, Vladimir Shevchenko, Mikko Sipilä, Andrey Skorokhod, Dominick V. Spracklen, Hang Su, Dmitry A. Subetto, Junying Sun, Arkady Y. Terzhevik, Yuri Timofeyev, Yuliya Troitskaya, Veli-Pekka Tynkkynen, Viacheslav I. Kharuk, Nina Zaytseva, Jiahua Zhang, Yrjö Viisanen, Timo Vesala, Pertti Hari, Hans Christen Hansson, Gennady G. Matvienko, Nikolai S. Kasimov, Huadong Guo, Valery Bondur, Sergej Zilitinkevich, and Markku Kulmala
Atmos. Chem. Phys., 16, 14421–14461, https://doi.org/10.5194/acp-16-14421-2016, https://doi.org/10.5194/acp-16-14421-2016, 2016
Short summary
Short summary
After kick off in 2012, the Pan-Eurasian Experiment (PEEX) program has expanded fast and today the multi-disciplinary research community covers ca. 80 institutes and a network of ca. 500 scientists from Europe, Russia, and China. Here we introduce scientific topics relevant in this context. This is one of the first multi-disciplinary overviews crossing scientific boundaries, from atmospheric sciences to socio-economics and social sciences.
Xuemeng Chen, Veli-Matti Kerminen, Jussi Paatero, Pauli Paasonen, Hanna E. Manninen, Tuomo Nieminen, Tuukka Petäjä, and Markku Kulmala
Atmos. Chem. Phys., 16, 14297–14315, https://doi.org/10.5194/acp-16-14297-2016, https://doi.org/10.5194/acp-16-14297-2016, 2016
Short summary
Short summary
Ionising radiation is responsible for air ion production. However, minor efforts have been invested in understanding the connection of observed air ions to ionising radiation in the lower atmosphere and underlying processes therein. In this work, we analysed 4 years of ambient data collected in a Finnish boreal forest and found that gamma radiation dominates air ion production in the lower atmosphere and demonstrated clear promotion effects of the ionising radiation on air ion production.
Michael J. Lawler, Paul M. Winkler, Jaeseok Kim, Lars Ahlm, Jasmin Tröstl, Arnaud P. Praplan, Siegfried Schobesberger, Andreas Kürten, Jasper Kirkby, Federico Bianchi, Jonathan Duplissy, Armin Hansel, Tuija Jokinen, Helmi Keskinen, Katrianne Lehtipalo, Markus Leiminger, Tuukka Petäjä, Matti Rissanen, Linda Rondo, Mario Simon, Mikko Sipilä, Christina Williamson, Daniela Wimmer, Ilona Riipinen, Annele Virtanen, and James N. Smith
Atmos. Chem. Phys., 16, 13601–13618, https://doi.org/10.5194/acp-16-13601-2016, https://doi.org/10.5194/acp-16-13601-2016, 2016
Short summary
Short summary
We present chemical observations of newly formed particles as small as ~ 10 nm from new particle formation experiments using sulfuric acid, dimethylamine, ammonia, and water vapor as gas phase reactants. The nanoparticles were more acidic than expected based on thermodynamic expectations, particularly at the smallest measured sizes. The results suggest rapid surface conversion of SO2 to sulfate and show a marked composition change between 10 and 15 nm, possibly indicating a phase change.
Jenni Kontkanen, Pauli Paasonen, Juho Aalto, Jaana Bäck, Pekka Rantala, Tuukka Petäjä, and Markku Kulmala
Atmos. Chem. Phys., 16, 13291–13307, https://doi.org/10.5194/acp-16-13291-2016, https://doi.org/10.5194/acp-16-13291-2016, 2016
Short summary
Short summary
We developed proxies for estimating the concentrations of monoterpenes and their oxidation products at a boreal forest site in Hyytiälä, Finland. The proxies for the monoterpene concentration include temperature-controlled emissions, dilution and different oxidation processes. The proxies were observed to capture the seasonal and diurnal variation of the monoterpene concentration reasonably well. Our proxies can be used in the analysis of new particle formation and growth in boreal environments.
Chao Yan, Wei Nie, Mikko Äijälä, Matti P. Rissanen, Manjula R. Canagaratna, Paola Massoli, Heikki Junninen, Tuija Jokinen, Nina Sarnela, Silja A. K. Häme, Siegfried Schobesberger, Francesco Canonaco, Lei Yao, André S. H. Prévôt, Tuukka Petäjä, Markku Kulmala, Mikko Sipilä, Douglas R. Worsnop, and Mikael Ehn
Atmos. Chem. Phys., 16, 12715–12731, https://doi.org/10.5194/acp-16-12715-2016, https://doi.org/10.5194/acp-16-12715-2016, 2016
Short summary
Short summary
Highly oxidized multifunctional compounds (HOMs) are known to have a significant contribution to secondary aerosol formation, yet their dominating formation pathways remain unclear in the atmosphere. We apply positive matrix factorization (PMF) on HOM data, and successfully retrieve factors representing different formation pathways. The results improve our understanding of HOM formation, and provide new perspectives on using PMF to study the variation of short-lived specie.
Luís Miguel Feijó Barreira, Yu Xue, Geoffroy Duporté, Jevgeni Parshintsev, Kari Hartonen, Matti Jussila, Markku Kulmala, and Marja-Liisa Riekkola
Atmos. Meas. Tech., 9, 3661–3671, https://doi.org/10.5194/amt-9-3661-2016, https://doi.org/10.5194/amt-9-3661-2016, 2016
Short summary
Short summary
Volatile organic compounds play a key role in atmospheric chemistry and physics by influencing the climate. Trace concentrations need to be determined, even at remote locations, like forests. In this research, an easy and fast method using a portable device was developed for determination of relevant atmospheric compounds. Links between these compounds and meteorological factors were observed. Also, accumulation of volatiles in the snow was measured.
Hanna E. Manninen, Sander Mirme, Aadu Mirme, Tuukka Petäjä, and Markku Kulmala
Atmos. Meas. Tech., 9, 3577–3605, https://doi.org/10.5194/amt-9-3577-2016, https://doi.org/10.5194/amt-9-3577-2016, 2016
Short summary
Short summary
This paper reports a standard operation procedure (SOP) for a Neutral cluster and Air Ion Spectrometer (NAIS) to detect small clusters and nucleation mode particles. The NAIS measures number size distributions of charged and neutral aerosol particles. The SOP is needed to provide comparable results measured by NAIS users around the world. The work is based on discussions between the NAIS users (lead by University of Helsinki, Finland) and the NAIS manufacturer (Airel Ltd., Estonia).
Moa K. Sporre, Ewan J. O'Connor, Nina Håkansson, Anke Thoss, Erik Swietlicki, and Tuukka Petäjä
Atmos. Meas. Tech., 9, 3193–3203, https://doi.org/10.5194/amt-9-3193-2016, https://doi.org/10.5194/amt-9-3193-2016, 2016
Short summary
Short summary
Satellite measurements of cloud top height and liquid water path are compared to ground-based remote sensing to evaluate the satellite retrievals. The overall performance of the satellite retrievals of cloud top height are good, but they become more problematic when several layers of clouds are present. The liquid water path retrievals also agree well, and the average differences are within the estimated measurement uncertainties.
Riikka Väänänen, Radovan Krejci, Hanna E. Manninen, Antti Manninen, Janne Lampilahti, Stephany Buenrostro Mazon, Tuomo Nieminen, Taina Yli-Juuti, Jenni Kontkanen, Ari Asmi, Pasi P. Aalto, Petri Keronen, Toivo Pohja, Ewan O'Connor, Veli-Matti Kerminen, Tuukka Petäjä, and Markku Kulmala
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2016-556, https://doi.org/10.5194/acp-2016-556, 2016
Revised manuscript has not been submitted
Short summary
Short summary
A light aircraft was used as a platform to explore the horizontal and vertical variability of the aerosol particles over a boreal forest in Central Finland. This information is needed when data measured at ground level station is extrapolated and parameterized to represent the
conditions of the larger scale. The measurements showed that despite local fluctuations there was a good agreement between the on-ground and airborne measurements inside the planetary boundary layer.
Juha Kangasluoma, Alessandro Franchin, Jonahtan Duplissy, Lauri Ahonen, Frans Korhonen, Michel Attoui, Jyri Mikkilä, Katrianne Lehtipalo, Joonas Vanhanen, Markku Kulmala, and Tuukka Petäjä
Atmos. Meas. Tech., 9, 2977–2988, https://doi.org/10.5194/amt-9-2977-2016, https://doi.org/10.5194/amt-9-2977-2016, 2016
Short summary
Short summary
The paper describes technical aspects of using the Airmodus A11 nCNC at various inlet pressures and how temperature selection affects the performance of the instrument. We also present a sampling box to minimize the inlet losses and make use of the instrument more convenient.
Pekka Rantala, Leena Järvi, Risto Taipale, Terhi K. Laurila, Johanna Patokoski, Maija K. Kajos, Mona Kurppa, Sami Haapanala, Erkki Siivola, Tuukka Petäjä, Taina M. Ruuskanen, and Janne Rinne
Atmos. Chem. Phys., 16, 7981–8007, https://doi.org/10.5194/acp-16-7981-2016, https://doi.org/10.5194/acp-16-7981-2016, 2016
Short summary
Short summary
Fluxes of volatile organic compounds (VOCs) were measured above an urban landscape in Helsinki, northern Europe. We found that traffic was a major source for many oxygenated and aromatic VOCs, whereas isoprene originated mostly from the urban vegetation. Overall, the VOC fluxes were quite small in comparison with the earlier urban VOC flux measurements.
Alessandro Franchin, Andy Downard, Juha Kangasluoma, Tuomo Nieminen, Katrianne Lehtipalo, Gerhard Steiner, Hanna E. Manninen, Tuukka Petäjä, Richard C. Flagan, and Markku Kulmala
Atmos. Meas. Tech., 9, 2709–2720, https://doi.org/10.5194/amt-9-2709-2016, https://doi.org/10.5194/amt-9-2709-2016, 2016
Short summary
Short summary
High transmission efficiency is key for classifying and counting atmospheric aerosol below 10 nm. We developed a new high-transmission inlet for the Caltech nano-radial DMA (nRDMA) and successfully deployed the nRDMA, equipped with the new inlet, in chamber measurements, using a particle size magnifier (PSM) and a booster CPC as a counter. With this setup, we were able to measure size distributions of ions between 1.3 and 6 nm in mobility diameter.
Emma Järvinen, Karoliina Ignatius, Leonid Nichman, Thomas B. Kristensen, Claudia Fuchs, Christopher R. Hoyle, Niko Höppel, Joel C. Corbin, Jill Craven, Jonathan Duplissy, Sebastian Ehrhart, Imad El Haddad, Carla Frege, Hamish Gordon, Tuija Jokinen, Peter Kallinger, Jasper Kirkby, Alexei Kiselev, Karl-Heinz Naumann, Tuukka Petäjä, Tamara Pinterich, Andre S. H. Prevot, Harald Saathoff, Thea Schiebel, Kamalika Sengupta, Mario Simon, Jay G. Slowik, Jasmin Tröstl, Annele Virtanen, Paul Vochezer, Steffen Vogt, Andrea C. Wagner, Robert Wagner, Christina Williamson, Paul M. Winkler, Chao Yan, Urs Baltensperger, Neil M. Donahue, Rick C. Flagan, Martin Gallagher, Armin Hansel, Markku Kulmala, Frank Stratmann, Douglas R. Worsnop, Ottmar Möhler, Thomas Leisner, and Martin Schnaiter
Atmos. Chem. Phys., 16, 4423–4438, https://doi.org/10.5194/acp-16-4423-2016, https://doi.org/10.5194/acp-16-4423-2016, 2016
Antti J. Manninen, Ewan J. O'Connor, Ville Vakkari, and Tuukka Petäjä
Atmos. Meas. Tech., 9, 817–827, https://doi.org/10.5194/amt-9-817-2016, https://doi.org/10.5194/amt-9-817-2016, 2016
Short summary
Short summary
Current commercially available Doppler lidars provide a cost-effective solution for measuring vertical and horizontal wind velocities, and the co- and cross-polarised backscatter profiles. However, the background noise behaviour becomes a limiting factor for the instrument sensitivity in low aerosol load regions. In this paper we present a correction method which can improve the data availability up to 50 % and greatly improves the calculation of turbulent properties in weak signal regimes.
Xin Huang, Luxi Zhou, Aijun Ding, Ximeng Qi, Wei Nie, Minghuai Wang, Xuguang Chi, Tuukka Petäjä, Veli-Matti Kerminen, Pontus Roldin, Anton Rusanen, Markku Kulmala, and Michael Boy
Atmos. Chem. Phys., 16, 2477–2492, https://doi.org/10.5194/acp-16-2477-2016, https://doi.org/10.5194/acp-16-2477-2016, 2016
Short summary
Short summary
By combining a regional model and a box model, this study simulates new particle formation in Nanjing, China, when the air masses were affected by anthropogenic activities, biogenic emissions, or mixed ocean and continental sources. The simulations reveal that biogenic organic compounds play a vital role in growth of newly formed clusters. This novel combination of two models makes it possible to accomplish new particle formation simulation without direct measurements of all chemical species.
Jenni Kontkanen, Emma Järvinen, Hanna E. Manninen, Katrianne Lehtipalo, Juha Kangasluoma, Stefano Decesari, Gian Paolo Gobbi, Ari Laaksonen, Tuukka Petäjä, and Markku Kulmala
Atmos. Chem. Phys., 16, 1919–1935, https://doi.org/10.5194/acp-16-1919-2016, https://doi.org/10.5194/acp-16-1919-2016, 2016
J. Kukkonen, M. Karl, M. P. Keuken, H. A. C. Denier van der Gon, B. R. Denby, V. Singh, J. Douros, A. Manders, Z. Samaras, N. Moussiopoulos, S. Jonkers, M. Aarnio, A. Karppinen, L. Kangas, S. Lützenkirchen, T. Petäjä, I. Vouitsis, and R. S. Sokhi
Geosci. Model Dev., 9, 451–478, https://doi.org/10.5194/gmd-9-451-2016, https://doi.org/10.5194/gmd-9-451-2016, 2016
Short summary
Short summary
For analyzing the health effects of particulate matter, it is necessary to consider not only the mass of particles, but also their sizes and composition. A simple measure for the former is the number concentration of particles. We present particle number concentrations in five major European cities, namely Helsinki, Oslo, London, Rotterdam, and Athens, in 2008, based mainly on modelling. The concentrations of PN were mostly influenced by the emissions from local vehicular traffic.
P. Hari, T. Petäjä, J. Bäck, V.-M. Kerminen, H. K. Lappalainen, T. Vihma, T. Laurila, Y. Viisanen, T. Vesala, and M. Kulmala
Atmos. Chem. Phys., 16, 1017–1028, https://doi.org/10.5194/acp-16-1017-2016, https://doi.org/10.5194/acp-16-1017-2016, 2016
Short summary
Short summary
This manuscript introduces a conceptual design of a global, hierarchical observation network which provides tools and increased understanding to tackle the inter-connected environmental and societal challenges that we will face in the coming decades. Each ecosystem type on the globe has its own characteristic features that need to be taken into consideration. The hierarchical network is able to tackle problems related to large spatial scales, heterogeneity of ecosystems and their complexity.
J. Kim, L. Ahlm, T. Yli-Juuti, M. Lawler, H. Keskinen, J. Tröstl, S. Schobesberger, J. Duplissy, A. Amorim, F. Bianchi, N. M. Donahue, R. C. Flagan, J. Hakala, M. Heinritzi, T. Jokinen, A. Kürten, A. Laaksonen, K. Lehtipalo, P. Miettinen, T. Petäjä, M. P. Rissanen, L. Rondo, K. Sengupta, M. Simon, A. Tomé, C. Williamson, D. Wimmer, P. M. Winkler, S. Ehrhart, P. Ye, J. Kirkby, J. Curtius, U. Baltensperger, M. Kulmala, K. E. J. Lehtinen, J. N. Smith, I. Riipinen, and A. Virtanen
Atmos. Chem. Phys., 16, 293–304, https://doi.org/10.5194/acp-16-293-2016, https://doi.org/10.5194/acp-16-293-2016, 2016
Short summary
Short summary
The hygroscopicity of nucleated nanoparticles was measured in the presence of sulfuric acid, sulfuric acid-dimethylamine, and sulfuric acid-organics derived from α-pinene oxidation during CLOUD7 at CERN in 2012. The hygroscopicity parameter κ decreased with increasing particle size, indicating decreasing acidity of particles.
R. L. Mauldin III, M. P. Rissanen, T. Petäjä, and M. Kulmala
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2015-398, https://doi.org/10.5194/amt-2015-398, 2016
Revised manuscript under review for AMT
Short summary
Short summary
The manuscript describes a novel instrument for the measurement of OH, HO2+RO2, and other atmospheric species. The instrument described combines the chemical ionization techniques of nitrate CIMS, OH conversion to H2SO4, HO2+RO2 conversion to H2SO4, and high resolution time of flight mass spectroscopy into one system. By using one instrument to obtain spectra it is possible to compare spectra from the different modes and gain further chemical information towards peak identification.
A. M. K. Hansen, J. Hong, T. Raatikainen, K. Kristensen, A. Ylisirniö, A. Virtanen, T. Petäjä, M. Glasius, and N. L. Prisle
Atmos. Chem. Phys., 15, 14071–14089, https://doi.org/10.5194/acp-15-14071-2015, https://doi.org/10.5194/acp-15-14071-2015, 2015
Short summary
Short summary
This paper presents the first study of the hygroscopic properties of limonene derived organosulfates (L-OS 250). The results showed that L-OS 250 particles are weakly hygroscopic and able to activate into cloud droplets. Particles of L-OS 250 mixed with ammonium sulfate were much more hygroscopic than expected from model parametrizations and the ZSR mixing rule, indicating that solubility and non-ideal droplet interactions could be important for the hygroscopic properties of the mixed particles.
V. N. Dos Santos, E. Herrmann, H. E. Manninen, T. Hussein, J. Hakala, T. Nieminen, P. P. Aalto, M. Merkel, A. Wiedensohler, M. Kulmala, T. Petäjä, and K. Hämeri
Atmos. Chem. Phys., 15, 13717–13737, https://doi.org/10.5194/acp-15-13717-2015, https://doi.org/10.5194/acp-15-13717-2015, 2015
Short summary
Short summary
Atmospheric charged particles, i.e. air ions, contribute to secondary aerosol formation and have an effect on global climate as potential cloud condensation nuclei. We aimed to evaluate air ion concentrations and characteristics during new particle formation (NPF) events in the megacity Paris, France. We analyzed frequency and seasonal variations of NPF events, diurnal and seasonal cycles of ions, and aerosol particles.
M. Kulmala, H. K. Lappalainen, T. Petäjä, T. Kurten, V.-M. Kerminen, Y. Viisanen, P. Hari, S. Sorvari, J. Bäck, V. Bondur, N. Kasimov, V. Kotlyakov, G. Matvienko, A. Baklanov, H. D. Guo, A. Ding, H.-C. Hansson, and S. Zilitinkevich
Atmos. Chem. Phys., 15, 13085–13096, https://doi.org/10.5194/acp-15-13085-2015, https://doi.org/10.5194/acp-15-13085-2015, 2015
Short summary
Short summary
The Pan-European Experiment (PEEX) is introduced. PEEX is a multidisciplinary, multiscale and multicomponent research, research infrastructure and capacity-building program. This paper outlines the mission, vision and objectives of PEEX and introduces its main components, including the research agenda, research infrastructure, knowledge transfer and potential impacts on society. The paper also summarizes the main scientific questions that PEEX is going to tackle in the future.
X. M. Qi, A. J. Ding, W. Nie, T. Petäjä, V.-M. Kerminen, E. Herrmann, Y. N. Xie, L. F. Zheng, H. Manninen, P. Aalto, J. N. Sun, Z. N. Xu, X. G. Chi, X. Huang, M. Boy, A. Virkkula, X.-Q. Yang, C. B. Fu, and M. Kulmala
Atmos. Chem. Phys., 15, 12445–12464, https://doi.org/10.5194/acp-15-12445-2015, https://doi.org/10.5194/acp-15-12445-2015, 2015
Short summary
Short summary
We report 2 years of measurements of submicron particles at the SORPES station and provide a comprehensive understanding of main factors controlling temporal variation of the aerosol size distribution and NPF in eastern China. The number concentrations of total particles at Nanjing were comparable to other Chinese megacities but the frequency of NPF was much higher. Year-to-year differences of meteorological conditions could significantly influence the seasonal cycle of NPF and growth.
T. Nieminen, T. Yli-Juuti, H. E. Manninen, T. Petäjä, V.-M. Kerminen, and M. Kulmala
Atmos. Chem. Phys., 15, 12385–12396, https://doi.org/10.5194/acp-15-12385-2015, https://doi.org/10.5194/acp-15-12385-2015, 2015
M. Paramonov, V.-M. Kerminen, M. Gysel, P. P. Aalto, M. O. Andreae, E. Asmi, U. Baltensperger, A. Bougiatioti, D. Brus, G. P. Frank, N. Good, S. S. Gunthe, L. Hao, M. Irwin, A. Jaatinen, Z. Jurányi, S. M. King, A. Kortelainen, A. Kristensson, H. Lihavainen, M. Kulmala, U. Lohmann, S. T. Martin, G. McFiggans, N. Mihalopoulos, A. Nenes, C. D. O'Dowd, J. Ovadnevaite, T. Petäjä, U. Pöschl, G. C. Roberts, D. Rose, B. Svenningsson, E. Swietlicki, E. Weingartner, J. Whitehead, A. Wiedensohler, C. Wittbom, and B. Sierau
Atmos. Chem. Phys., 15, 12211–12229, https://doi.org/10.5194/acp-15-12211-2015, https://doi.org/10.5194/acp-15-12211-2015, 2015
Short summary
Short summary
The research paper presents the first comprehensive overview of field measurements with the CCN Counter performed at a large number of locations around the world within the EUCAARI framework. The paper sheds light on the CCN number concentrations and activated fractions around the world and their dependence on the water vapour supersaturation ratio, the dependence of aerosol hygroscopicity on particle size, and seasonal and diurnal variation of CCN activation and hygroscopic properties.
J. Hong, J. Kim, T. Nieminen, J. Duplissy, M. Ehn, M. Äijälä, L. Q. Hao, W. Nie, N. Sarnela, N. L. Prisle, M. Kulmala, A. Virtanen, T. Petäjä, and V.-M. Kerminen
Atmos. Chem. Phys., 15, 11999–12009, https://doi.org/10.5194/acp-15-11999-2015, https://doi.org/10.5194/acp-15-11999-2015, 2015
M. K. Kajos, P. Rantala, M. Hill, H. Hellén, J. Aalto, J. Patokoski, R. Taipale, C. C. Hoerger, S. Reimann, T. M. Ruuskanen, J. Rinne, and T. Petäjä
Atmos. Meas. Tech., 8, 4453–4473, https://doi.org/10.5194/amt-8-4453-2015, https://doi.org/10.5194/amt-8-4453-2015, 2015
A. Virkkula, X. Chi, A. Ding, Y. Shen, W. Nie, X. Qi, L. Zheng, X. Huang, Y. Xie, J. Wang, T. Petäjä, and M. Kulmala
Atmos. Meas. Tech., 8, 4415–4427, https://doi.org/10.5194/amt-8-4415-2015, https://doi.org/10.5194/amt-8-4415-2015, 2015
Short summary
Short summary
Aerosol optical properties were measured with a seven-wavelength aethalometer and a three-wavelength nephelometer in Nanjing, China, in September 2013–January 2015. The aethalometer compensation parameter k depended on the backscatter fraction, measured with an independent method, the integrating nephelometer. The compensation parameter decreased with increasing single-scattering albedo.
M. Sipilä, N. Sarnela, T. Jokinen, H. Junninen, J. Hakala, M. P. Rissanen, A. Praplan, M. Simon, A. Kürten, F. Bianchi, J. Dommen, J. Curtius, T. Petäjä, and D. R. Worsnop
Atmos. Meas. Tech., 8, 4001–4011, https://doi.org/10.5194/amt-8-4001-2015, https://doi.org/10.5194/amt-8-4001-2015, 2015
Short summary
Short summary
Atmospheric concentrations of amines are poorly known mainly due to challenges related to their reliable high-sensitivity detection. We have created a method and instrument that is capable for detecting amines with lowest limit of detection of around 0.01 parts per trillion. Application of the instrument in the field study indicates that concentrations of dimethyl amine in a boreal forest site are below 0.03ppt, not enough to account for the observed new particle formation rates.
A. Kürten, S. Münch, L. Rondo, F. Bianchi, J. Duplissy, T. Jokinen, H. Junninen, N. Sarnela, S. Schobesberger, M. Simon, M. Sipilä, J. Almeida, A. Amorim, J. Dommen, N. M. Donahue, E. M. Dunne, R. C. Flagan, A. Franchin, J. Kirkby, A. Kupc, V. Makhmutov, T. Petäjä, A. P. Praplan, F. Riccobono, G. Steiner, A. Tomé, G. Tsagkogeorgas, P. E. Wagner, D. Wimmer, U. Baltensperger, M. Kulmala, D. R. Worsnop, and J. Curtius
Atmos. Chem. Phys., 15, 10701–10721, https://doi.org/10.5194/acp-15-10701-2015, https://doi.org/10.5194/acp-15-10701-2015, 2015
Short summary
Short summary
New particle formation (NPF) is an important atmospheric process. At cold temperatures in the upper troposphere the binary (H2SO4-H2O) and ternary (H2SO4-H2O-NH3) system are thought to be important for NPF. Sulfuric acid monomer (H2SO4) and sulfuric acid dimer ((H2SO4)2) concentrations were measured between 208 and 248K for these systems and dimer evaporation rates were derived. These data will help to better understand and predict binary and ternary nucleation at low temperatures.
M. Pikridas, J. Sciare, F. Freutel, S. Crumeyrolle, S.-L. von der Weiden-Reinmüller, A. Borbon, A. Schwarzenboeck, M. Merkel, M. Crippa, E. Kostenidou, M. Psichoudaki, L. Hildebrandt, G. J. Engelhart, T. Petäjä, A. S. H. Prévôt, F. Drewnick, U. Baltensperger, A. Wiedensohler, M. Kulmala, M. Beekmann, and S. N. Pandis
Atmos. Chem. Phys., 15, 10219–10237, https://doi.org/10.5194/acp-15-10219-2015, https://doi.org/10.5194/acp-15-10219-2015, 2015
Short summary
Short summary
Aerosol size distribution measurements from three ground sites, two mobile laboratories, and one airplane are combined to investigate the spatial and temporal variability of ultrafine particles in and around Paris during the summer and winter MEGAPOLI campaigns. The role of nucleation as a particle source and the influence of Paris emissions on their surroundings are examined.
N. Kalivitis, V.-M. Kerminen, G. Kouvarakis, I. Stavroulas, A. Bougiatioti, A. Nenes, H. E. Manninen, T. Petäjä, M. Kulmala, and N. Mihalopoulos
Atmos. Chem. Phys., 15, 9203–9215, https://doi.org/10.5194/acp-15-9203-2015, https://doi.org/10.5194/acp-15-9203-2015, 2015
Short summary
Short summary
Cloud condensation nuclei (CCN) production associated with atmospheric new particle formation (NPF) is presented, and this is the first direct evidence of CCN production resulting from NPF in the eastern Mediterranean atmosphere. We show that condensation of both gaseous sulfuric acid and organic compounds from multiple sources leads to the rapid growth of nucleated particles. Sub-100nm particles were found to be substantially less hygroscopic than larger particles during the active NPF period.
P. Zieger, P. P. Aalto, V. Aaltonen, M. Äijälä, J. Backman, J. Hong, M. Komppula, R. Krejci, M. Laborde, J. Lampilahti, G. de Leeuw, A. Pfüller, B. Rosati, M. Tesche, P. Tunved, R. Väänänen, and T. Petäjä
Atmos. Chem. Phys., 15, 7247–7267, https://doi.org/10.5194/acp-15-7247-2015, https://doi.org/10.5194/acp-15-7247-2015, 2015
Short summary
Short summary
The effect of water uptake (hygroscopicity) on aerosol light scattering properties is generally lower for boreal aerosol due to the dominance of organic substances. A columnar optical closure study using ground-based and airborne measurements of aerosol optical, chemical and microphysical properties was conducted and the implications and limitations are discussed.
A. Franchin, S. Ehrhart, J. Leppä, T. Nieminen, S. Gagné, S. Schobesberger, D. Wimmer, J. Duplissy, F. Riccobono, E. M. Dunne, L. Rondo, A. Downard, F. Bianchi, A. Kupc, G. Tsagkogeorgas, K. Lehtipalo, H. E. Manninen, J. Almeida, A. Amorim, P. E. Wagner, A. Hansel, J. Kirkby, A. Kürten, N. M. Donahue, V. Makhmutov, S. Mathot, A. Metzger, T. Petäjä, R. Schnitzhofer, M. Sipilä, Y. Stozhkov, A. Tomé, V.-M. Kerminen, K. Carslaw, J. Curtius, U. Baltensperger, and M. Kulmala
Atmos. Chem. Phys., 15, 7203–7216, https://doi.org/10.5194/acp-15-7203-2015, https://doi.org/10.5194/acp-15-7203-2015, 2015
Short summary
Short summary
The ion-ion recombination coefficient was measured at different temperatures, relative humidities and concentrations of ozone and sulfur dioxide. The experiments were carried out using the CLOUD chamber at CERN.
We observed a strong dependency on temperature and on relative humidity, which has not been reported previously. No dependency of the ion-ion recombination coefficient on ozone concentration was observed and a weak variation with sulfur dioxide concentration was also observed.
A. P. Praplan, S. Schobesberger, F. Bianchi, M. P. Rissanen, M. Ehn, T. Jokinen, H. Junninen, A. Adamov, A. Amorim, J. Dommen, J. Duplissy, J. Hakala, A. Hansel, M. Heinritzi, J. Kangasluoma, J. Kirkby, M. Krapf, A. Kürten, K. Lehtipalo, F. Riccobono, L. Rondo, N. Sarnela, M. Simon, A. Tomé, J. Tröstl, P. M. Winkler, C. Williamson, P. Ye, J. Curtius, U. Baltensperger, N. M. Donahue, M. Kulmala, and D. R. Worsnop
Atmos. Chem. Phys., 15, 4145–4159, https://doi.org/10.5194/acp-15-4145-2015, https://doi.org/10.5194/acp-15-4145-2015, 2015
Short summary
Short summary
Our study shows, based on data from three atmospheric pressure interface time-of-flight mass spectrometers measuring in parallel charged and neutral molecules and molecular clusters, how oxidised organic compounds bind to inorganic ions (e.g. bisulfate, nitrate, ammonium). This ionisation is selective for compounds with lower molar mass due to their limited amount and variety of functional groups. We also found that extremely low volatile organic compounds (ELVOCs) can be formed immediately.
W. Nie, A. J. Ding, Y. N. Xie, Z. Xu, H. Mao, V.-M. Kerminen, L. F. Zheng, X. M. Qi, X. Huang, X.-Q. Yang, J. N. Sun, E. Herrmann, T. Petäjä, M. Kulmala, and C. B. Fu
Atmos. Chem. Phys., 15, 1147–1159, https://doi.org/10.5194/acp-15-1147-2015, https://doi.org/10.5194/acp-15-1147-2015, 2015
H. Vuollekoski, M. Vogt, V. A. Sinclair, J. Duplissy, H. Järvinen, E.-M. Kyrö, R. Makkonen, T. Petäjä, N. L. Prisle, P. Räisänen, M. Sipilä, J. Ylhäisi, and M. Kulmala
Hydrol. Earth Syst. Sci., 19, 601–613, https://doi.org/10.5194/hess-19-601-2015, https://doi.org/10.5194/hess-19-601-2015, 2015
Short summary
Short summary
The global potential for collecting usable water from dew on an
artificial collector sheet was investigated by utilising 34 years of
meteorological reanalysis data as input to a dew formation model. Continental dew formation was found to be frequent and common, but daily yields were
mostly below 0.1mm.
R. Oswald, M. Ermel, K. Hens, A. Novelli, H. G. Ouwersloot, P. Paasonen, T. Petäjä, M. Sipilä, P. Keronen, J. Bäck, R. Königstedt, Z. Hosaynali Beygi, H. Fischer, B. Bohn, D. Kubistin, H. Harder, M. Martinez, J. Williams, T. Hoffmann, I. Trebs, and M. Sörgel
Atmos. Chem. Phys., 15, 799–813, https://doi.org/10.5194/acp-15-799-2015, https://doi.org/10.5194/acp-15-799-2015, 2015
Short summary
Short summary
Nitrous acid (HONO) is a key species in atmospheric photochemistry since the photolysis leads to the important hydroxyl radical (OH). Although the importance of HONO as a precursor of OH is known, the formation pathways of HONO, especially during daytime, are a major challenge in atmospheric science. We present a detailed analysis of sources and sinks for HONO in the atmosphere for a field measurement campaign in the boreal forest in Finland and wonder if there is really a source term missing.
S. Schobesberger, A. Franchin, F. Bianchi, L. Rondo, J. Duplissy, A. Kürten, I. K. Ortega, A. Metzger, R. Schnitzhofer, J. Almeida, A. Amorim, J. Dommen, E. M. Dunne, M. Ehn, S. Gagné, L. Ickes, H. Junninen, A. Hansel, V.-M. Kerminen, J. Kirkby, A. Kupc, A. Laaksonen, K. Lehtipalo, S. Mathot, A. Onnela, T. Petäjä, F. Riccobono, F. D. Santos, M. Sipilä, A. Tomé, G. Tsagkogeorgas, Y. Viisanen, P. E. Wagner, D. Wimmer, J. Curtius, N. M. Donahue, U. Baltensperger, M. Kulmala, and D. R. Worsnop
Atmos. Chem. Phys., 15, 55–78, https://doi.org/10.5194/acp-15-55-2015, https://doi.org/10.5194/acp-15-55-2015, 2015
Short summary
Short summary
We used an ion mass spectrometer at CERN's CLOUD chamber to investigate the detailed composition of ammonia--sulfuric acid ion clusters (of both polarities) as they initially form and then grow into aerosol particles, at atmospherically relevant conditions. We found that these clusters’ composition is mainly determined by the ratio of the precursor vapors and ranges from ammonia-free clusters to clusters containing > 1 ammonia per sulfuric acid. Acid--base bindings are a key formation mechanism.
J. Backman, A. Virkkula, V. Vakkari, J. P. Beukes, P. G. Van Zyl, M. Josipovic, S. Piketh, P. Tiitta, K. Chiloane, T. Petäjä, M. Kulmala, and L. Laakso
Atmos. Meas. Tech., 7, 4285–4298, https://doi.org/10.5194/amt-7-4285-2014, https://doi.org/10.5194/amt-7-4285-2014, 2014
M. Sipilä, T. Jokinen, T. Berndt, S. Richters, R. Makkonen, N. M. Donahue, R. L. Mauldin III, T. Kurtén, P. Paasonen, N. Sarnela, M. Ehn, H. Junninen, M. P. Rissanen, J. Thornton, F. Stratmann, H. Herrmann, D. R. Worsnop, M. Kulmala, V.-M. Kerminen, and T. Petäjä
Atmos. Chem. Phys., 14, 12143–12153, https://doi.org/10.5194/acp-14-12143-2014, https://doi.org/10.5194/acp-14-12143-2014, 2014
L. Rondo, A. Kürten, S. Ehrhart, S. Schobesberger, A. Franchin, H. Junninen, T. Petäjä, M. Sipilä, D. R. Worsnop, and J. Curtius
Atmos. Meas. Tech., 7, 3849–3859, https://doi.org/10.5194/amt-7-3849-2014, https://doi.org/10.5194/amt-7-3849-2014, 2014
J. Kukkonen, J. Nikmo, M. Sofiev, K. Riikonen, T. Petäjä, A. Virkkula, J. Levula, S. Schobesberger, and D. M. Webber
Geosci. Model Dev., 7, 2663–2681, https://doi.org/10.5194/gmd-7-2663-2014, https://doi.org/10.5194/gmd-7-2663-2014, 2014
K. Hens, A. Novelli, M. Martinez, J. Auld, R. Axinte, B. Bohn, H. Fischer, P. Keronen, D. Kubistin, A. C. Nölscher, R. Oswald, P. Paasonen, T. Petäjä, E. Regelin, R. Sander, V. Sinha, M. Sipilä, D. Taraborrelli, C. Tatum Ernest, J. Williams, J. Lelieveld, and H. Harder
Atmos. Chem. Phys., 14, 8723–8747, https://doi.org/10.5194/acp-14-8723-2014, https://doi.org/10.5194/acp-14-8723-2014, 2014
M. Crippa, F. Canonaco, V. A. Lanz, M. Äijälä, J. D. Allan, S. Carbone, G. Capes, D. Ceburnis, M. Dall'Osto, D. A. Day, P. F. DeCarlo, M. Ehn, A. Eriksson, E. Freney, L. Hildebrandt Ruiz, R. Hillamo, J. L. Jimenez, H. Junninen, A. Kiendler-Scharr, A.-M. Kortelainen, M. Kulmala, A. Laaksonen, A. A. Mensah, C. Mohr, E. Nemitz, C. O'Dowd, J. Ovadnevaite, S. N. Pandis, T. Petäjä, L. Poulain, S. Saarikoski, K. Sellegri, E. Swietlicki, P. Tiitta, D. R. Worsnop, U. Baltensperger, and A. S. H. Prévôt
Atmos. Chem. Phys., 14, 6159–6176, https://doi.org/10.5194/acp-14-6159-2014, https://doi.org/10.5194/acp-14-6159-2014, 2014
A. Hirsikko, E. J. O'Connor, M. Komppula, K. Korhonen, A. Pfüller, E. Giannakaki, C. R. Wood, M. Bauer-Pfundstein, A. Poikonen, T. Karppinen, H. Lonka, M. Kurri, J. Heinonen, D. Moisseev, E. Asmi, V. Aaltonen, A. Nordbo, E. Rodriguez, H. Lihavainen, A. Laaksonen, K. E. J. Lehtinen, T. Laurila, T. Petäjä, M. Kulmala, and Y. Viisanen
Atmos. Meas. Tech., 7, 1351–1375, https://doi.org/10.5194/amt-7-1351-2014, https://doi.org/10.5194/amt-7-1351-2014, 2014
J. Hong, S. A. K. Häkkinen, M. Paramonov, M. Äijälä, J. Hakala, T. Nieminen, J. Mikkilä, N. L. Prisle, M. Kulmala, I. Riipinen, M. Bilde, V.-M. Kerminen, and T. Petäjä
Atmos. Chem. Phys., 14, 4733–4748, https://doi.org/10.5194/acp-14-4733-2014, https://doi.org/10.5194/acp-14-4733-2014, 2014
A. Virkkula, J. Levula, T. Pohja, P. P. Aalto, P. Keronen, S. Schobesberger, C. B. Clements, L. Pirjola, A.-J. Kieloaho, L. Kulmala, H. Aaltonen, J. Patokoski, J. Pumpanen, J. Rinne, T. Ruuskanen, M. Pihlatie, H. E. Manninen, V. Aaltonen, H. Junninen, T. Petäjä, J. Backman, M. Dal Maso, T. Nieminen, T. Olsson, T. Grönholm, J. Aalto, T. H. Virtanen, M. Kajos, V.-M. Kerminen, D. M. Schultz, J. Kukkonen, M. Sofiev, G. De Leeuw, J. Bäck, P. Hari, and M. Kulmala
Atmos. Chem. Phys., 14, 4473–4502, https://doi.org/10.5194/acp-14-4473-2014, https://doi.org/10.5194/acp-14-4473-2014, 2014
E.-M. Kyrö, R. Väänänen, V.-M. Kerminen, A. Virkkula, T. Petäjä, A. Asmi, M. Dal Maso, T. Nieminen, S. Juhola, A. Shcherbinin, I. Riipinen, K. Lehtipalo, P. Keronen, P. P. Aalto, P. Hari, and M. Kulmala
Atmos. Chem. Phys., 14, 4383–4396, https://doi.org/10.5194/acp-14-4383-2014, https://doi.org/10.5194/acp-14-4383-2014, 2014
J. Kangasluoma, C. Kuang, D. Wimmer, M. P. Rissanen, K. Lehtipalo, M. Ehn, D. R. Worsnop, J. Wang, M. Kulmala, and T. Petäjä
Atmos. Meas. Tech., 7, 689–700, https://doi.org/10.5194/amt-7-689-2014, https://doi.org/10.5194/amt-7-689-2014, 2014
E. Herrmann, A. J. Ding, V.-M. Kerminen, T. Petäjä, X. Q. Yang, J. N. Sun, X. M. Qi, H. Manninen, J. Hakala, T. Nieminen, P. P. Aalto, M. Kulmala, and C. B. Fu
Atmos. Chem. Phys., 14, 2169–2183, https://doi.org/10.5194/acp-14-2169-2014, https://doi.org/10.5194/acp-14-2169-2014, 2014
T. Yli-Juuti, K. Barsanti, L. Hildebrandt Ruiz, A.-J. Kieloaho, U. Makkonen, T. Petäjä, T. Ruuskanen, M. Kulmala, and I. Riipinen
Atmos. Chem. Phys., 13, 12507–12524, https://doi.org/10.5194/acp-13-12507-2013, https://doi.org/10.5194/acp-13-12507-2013, 2013
A. L. Corrigan, L. M. Russell, S. Takahama, M. Äijälä, M. Ehn, H. Junninen, J. Rinne, T. Petäjä, M. Kulmala, A. L. Vogel, T. Hoffmann, C. J. Ebben, F. M. Geiger, P. Chhabra, J. H. Seinfeld, D. R. Worsnop, W. Song, J. Auld, and J. Williams
Atmos. Chem. Phys., 13, 12233–12256, https://doi.org/10.5194/acp-13-12233-2013, https://doi.org/10.5194/acp-13-12233-2013, 2013
C. J. Schumacher, C. Pöhlker, P. Aalto, V. Hiltunen, T. Petäjä, M. Kulmala, U. Pöschl, and J. A. Huffman
Atmos. Chem. Phys., 13, 11987–12001, https://doi.org/10.5194/acp-13-11987-2013, https://doi.org/10.5194/acp-13-11987-2013, 2013
A. L. Vogel, M. Äijälä, A. L. Corrigan, H. Junninen, M. Ehn, T. Petäjä, D. R. Worsnop, M. Kulmala, L. M. Russell, J. Williams, and T. Hoffmann
Atmos. Chem. Phys., 13, 10933–10950, https://doi.org/10.5194/acp-13-10933-2013, https://doi.org/10.5194/acp-13-10933-2013, 2013
A. J. Ding, C. B. Fu, X. Q. Yang, J. N. Sun, T. Petäjä, V.-M. Kerminen, T. Wang, Y. Xie, E. Herrmann, L. F. Zheng, W. Nie, Q. Liu, X. L. Wei, and M. Kulmala
Atmos. Chem. Phys., 13, 10545–10554, https://doi.org/10.5194/acp-13-10545-2013, https://doi.org/10.5194/acp-13-10545-2013, 2013
M. Paramonov, P. P. Aalto, A. Asmi, N. Prisle, V.-M. Kerminen, M. Kulmala, and T. Petäjä
Atmos. Chem. Phys., 13, 10285–10301, https://doi.org/10.5194/acp-13-10285-2013, https://doi.org/10.5194/acp-13-10285-2013, 2013
M. R. Pennington, B. R. Bzdek, J. W. DePalma, J. N. Smith, A.-M. Kortelainen, L. Hildebrandt Ruiz, T. Petäjä, M. Kulmala, D. R. Worsnop, and M. V. Johnston
Atmos. Chem. Phys., 13, 10215–10225, https://doi.org/10.5194/acp-13-10215-2013, https://doi.org/10.5194/acp-13-10215-2013, 2013
E. Järvinen, A. Virkkula, T. Nieminen, P. P. Aalto, E. Asmi, C. Lanconelli, M. Busetto, A. Lupi, R. Schioppo, V. Vitale, M. Mazzola, T. Petäjä, V.-M. Kerminen, and M. Kulmala
Atmos. Chem. Phys., 13, 7473–7487, https://doi.org/10.5194/acp-13-7473-2013, https://doi.org/10.5194/acp-13-7473-2013, 2013
M. K. Kajos, H. Hakola, T. Holst, T. Nieminen, V. Tarvainen, T. Maximov, T. Petäjä, A. Arneth, and J. Rinne
Biogeosciences, 10, 4705–4719, https://doi.org/10.5194/bg-10-4705-2013, https://doi.org/10.5194/bg-10-4705-2013, 2013
H. Keskinen, A. Virtanen, J. Joutsensaari, G. Tsagkogeorgas, J. Duplissy, S. Schobesberger, M. Gysel, F. Riccobono, J. G. Slowik, F. Bianchi, T. Yli-Juuti, K. Lehtipalo, L. Rondo, M. Breitenlechner, A. Kupc, J. Almeida, A. Amorim, E. M. Dunne, A. J. Downard, S. Ehrhart, A. Franchin, M.K. Kajos, J. Kirkby, A. Kürten, T. Nieminen, V. Makhmutov, S. Mathot, P. Miettinen, A. Onnela, T. Petäjä, A. Praplan, F. D. Santos, S. Schallhart, M. Sipilä, Y. Stozhkov, A. Tomé, P. Vaattovaara, D. Wimmer, A. Prevot, J. Dommen, N. M. Donahue, R.C. Flagan, E. Weingartner, Y. Viisanen, I. Riipinen, A. Hansel, J. Curtius, M. Kulmala, D. R. Worsnop, U. Baltensperger, H. Wex, F. Stratmann, and A. Laaksonen
Atmos. Chem. Phys., 13, 5587–5600, https://doi.org/10.5194/acp-13-5587-2013, https://doi.org/10.5194/acp-13-5587-2013, 2013
A. I. Hienola, J.-P. Pietikäinen, D. Jacob, R. Pozdun, T. Petäjä, A.-P. Hyvärinen, L. Sogacheva, V.-M. Kerminen, M. Kulmala, and A. Laaksonen
Atmos. Chem. Phys., 13, 4033–4055, https://doi.org/10.5194/acp-13-4033-2013, https://doi.org/10.5194/acp-13-4033-2013, 2013
M. Boy, D. Mogensen, S. Smolander, L. Zhou, T. Nieminen, P. Paasonen, C. Plass-Dülmer, M. Sipilä, T. Petäjä, L. Mauldin, H. Berresheim, and M. Kulmala
Atmos. Chem. Phys., 13, 3865–3879, https://doi.org/10.5194/acp-13-3865-2013, https://doi.org/10.5194/acp-13-3865-2013, 2013
E.-M. Kyrö, V.-M. Kerminen, A. Virkkula, M. Dal Maso, J. Parshintsev, J. Ruíz-Jimenez, L. Forsström, H. E. Manninen, M.-L. Riekkola, P. Heinonen, and M. Kulmala
Atmos. Chem. Phys., 13, 3527–3546, https://doi.org/10.5194/acp-13-3527-2013, https://doi.org/10.5194/acp-13-3527-2013, 2013
A. L. Vogel, M. Äijälä, M. Brüggemann, M. Ehn, H. Junninen, T. Petäjä, D. R. Worsnop, M. Kulmala, J. Williams, and T. Hoffmann
Atmos. Meas. Tech., 6, 431–443, https://doi.org/10.5194/amt-6-431-2013, https://doi.org/10.5194/amt-6-431-2013, 2013
E. Herrmann, A. J. Ding, T. Petäjä, X. Q. Yang, J. N. Sun, X. M. Qi, H. Manninen, J. Hakala, T. Nieminen, P. P. Aalto, V.-M. Kerminen, M. Kulmala, and C. B. Fu
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-13-1455-2013, https://doi.org/10.5194/acpd-13-1455-2013, 2013
Revised manuscript not accepted
V.-M. Kerminen, M. Paramonov, T. Anttila, I. Riipinen, C. Fountoukis, H. Korhonen, E. Asmi, L. Laakso, H. Lihavainen, E. Swietlicki, B. Svenningsson, A. Asmi, S. N. Pandis, M. Kulmala, and T. Petäjä
Atmos. Chem. Phys., 12, 12037–12059, https://doi.org/10.5194/acp-12-12037-2012, https://doi.org/10.5194/acp-12-12037-2012, 2012
T. Viskari, E. Asmi, P. Kolmonen, H. Vuollekoski, T. Petäjä, and H. Järvinen
Atmos. Chem. Phys., 12, 11767–11779, https://doi.org/10.5194/acp-12-11767-2012, https://doi.org/10.5194/acp-12-11767-2012, 2012
T. Viskari, E. Asmi, A. Virkkula, P. Kolmonen, T. Petäjä, and H. Järvinen
Atmos. Chem. Phys., 12, 11781–11793, https://doi.org/10.5194/acp-12-11781-2012, https://doi.org/10.5194/acp-12-11781-2012, 2012
Related subject area
Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
High-resolution analyses of concentrations and sizes of refractory black carbon particles deposited in northwestern Greenland over the past 350 years – Part 2: Seasonal and temporal trends in refractory black carbon originated from fossil fuel combustion and biomass burning
Significant role of biomass burning in heavy haze formation in Nanjing, a megacity in China: molecular-level insights from intensive PM2.5 sampling on winter hazy days
Widespread trace bromine and iodine in remote tropospheric non-sea-salt aerosols
Formation and chemical evolution of secondary organic aerosol in two different environments: a dual-chamber study
Technical note: Quantified organic aerosol subsaturated hygroscopicity by a simple optical scatter monitor system through field measurements
Measurement report: Oxidation potential of water-soluble aerosol components in the south and north of Beijing
Enhanced daytime secondary aerosol formation driven by gas–particle partitioning in downwind urban plumes
Understanding the mechanism and importance of brown carbon bleaching across the visible spectrum in biomass burning plumes from the WE-CAN campaign
Influence of terrestrial and marine air mass on the constituents and intermixing of bioaerosols over a coastal atmosphere
A multi-site passive approach to studying the emissions and evolution of smoke from prescribed fires
The annual cycle and sources of relevant aerosol precursor vapors in the central Arctic during the MOSAiC expedition
Opinion: How will advances in aerosol science inform our understanding of the health impacts of outdoor particulate pollution?
Measurement report: Intra-annual variability of black carbon and brown carbon and their interrelation with meteorological conditions over Gangtok, Sikkim
Long-range transport of air pollutants increases the concentration of hazardous components of PM2.5 in northern South America
Dominant influence of biomass combustion and cross-border transport on nitrogen-containing organic compound levels in the southeastern Tibetan Plateau
The Critical Role of Aqueous-Phase Processes in Aromatic-Derived Nitrogen-Containing Organic Aerosol Formation in Cities with Different Energy Consumption Patterns
Impacts of elevated anthropogenic emissions on physicochemical characteristics of black-carbon-containing particles over the Tibetan Plateau
Online characterization of primary and secondary emissions of particulate matter and acidic molecules from a modern fleet of city buses
Atmospheric evolution of environmentally persistent free radicals in the rural North China Plain: effects on water solubility and PM2.5 oxidative potential
Two distinct ship emission profiles for organic-sulfate source apportionment of PM in sulfur emission control areas
Automated compound speciation, cluster analysis, and quantification of organic vapors and aerosols using comprehensive two-dimensional gas chromatography and mass spectrometry
Measurement report: Occurrence of aminiums in PM2.5 during winter in China – aminium outbreak during polluted episodes and potential constraints
Bridging gas and aerosol properties between the northeastern US and Bermuda: analysis of eight transit flights
The behaviour of charged particles (ions) during new particle formation events in urban Leipzig, Germany
Sensitivity of aerosol and cloud properties to coupling strength of marine boundary layer clouds over the northwest Atlantic
Exploring the sources of light-absorbing carbonaceous aerosols by integrating observational and modeling results: insights from Northeast China
Characterization of atmospheric water-soluble brown carbon in the Athabasca Oil Sands Region, Canada
Measurement report: Characteristics of airborne black-carbon-containing particles during the 2021 summer COVID-19 lockdown in a typical Yangtze River Delta city, China
Aerosol optical properties within the atmospheric boundary layer predicted from ground-based observations compared to Raman lidar retrievals during RITA-2021
Hygroscopic growth and activation changed submicron aerosol composition and properties in the North China Plain
Measurement report: Formation of tropospheric brown carbon in a lifting air mass
Vertical variability of aerosol properties and trace gases over a remote marine region: a case study over Bermuda
Differences in aerosol and cloud properties along the central California coast when winds change from northerly to southerly
International airport emissions and their impact on local air quality: chemical speciation of ambient aerosols at Madrid–Barajas Airport during the AVIATOR campaign
The local ship speed reduction effect on black carbon emissions measured at a remote marine station
High-altitude aerosol chemical characterization and source identification: insights from the CALISHTO campaign
Measurement report: Impact of emission control measures on environmental persistent free radicals and reactive oxygen species – a short-term case study in Beijing
Characterizing water solubility of fresh and aged secondary organic aerosol in PM2.5 with the stable carbon isotope technique
Measurement report: Impact of cloud processes on secondary organic aerosols at a forested mountain site in southeastern China
Critical contribution of chemically diverse carbonyl molecules to the oxidative potential of atmospheric aerosols
Seasonal Investigation of Ultrafine Particle Composition in an Eastern Amazonian Rainforest
Measurement report: Vanadium-containing ship exhaust particles detected in and above the marine boundary layer in the remote atmosphere
Diverging trends in aerosol sulfate and nitrate measured in the remote North Atlantic in Barbados are attributed to clean air policies, African smoke, and anthropogenic emissions
Measurement report: Sources and meteorology influencing highly-time resolved PM2.5 trace elements at 3 urban sites in extremely polluted Indo Gangetic Plain in India
Diverse sources and aging change the mixing state and ice nucleation properties of aerosol particles over the western Pacific and Southern Ocean
The water-insoluble organic carbon in PM2.5 of typical Chinese urban areas: light-absorbing properties, potential sources, radiative forcing effects, and a possible light-absorbing continuum
Measurement report: Size-resolved secondary organic aerosol formation modulated by aerosol water uptake in wintertime haze
Observations of high time-resolution and size-resolved aerosol chemical composition and microphyscis in the central Arctic: implications for climate-relevant particle properties
Brown carbon aerosol in rural Germany: sources, chemistry, and diurnal variations
In situ measurement of organic aerosol molecular markers in urban Hong Kong during a summer period: temporal variations and source apportionment
Kumiko Goto-Azuma, Yoshimi Ogawa-Tsukagawa, Kaori Fukuda, Koji Fujita, Motohiro Hirabayashi, Remi Dallmayr, Jun Ogata, Nobuhiro Moteki, Tatsuhiro Mori, Sho Ohata, Yutaka Kondo, Makoto Koike, Sumito Matoba, Moe Kadota, Akane Tsushima, Naoko Nagatsuka, and Teruo Aoki
Atmos. Chem. Phys., 25, 657–683, https://doi.org/10.5194/acp-25-657-2025, https://doi.org/10.5194/acp-25-657-2025, 2025
Short summary
Short summary
Monthly ice core records spanning 350 years from Greenland show trends in refractory black carbon (rBC) concentrations and sizes. rBC levels have increased since the 1870s due to the inflow of anthropogenic rBC, with larger diameters than those from biomass burning (BB) rBC. High summer BB rBC peaks may reduce the ice sheet albedo, but BB rBC showed no increase until the early 2000s. These results are vital for validating aerosol and climate models.
Mingjie Kang, Mengying Bao, Wenhuai Song, Aduburexiati Abulimiti, Changliu Wu, Fang Cao, Sönke Szidat, and Yanlin Zhang
Atmos. Chem. Phys., 25, 73–91, https://doi.org/10.5194/acp-25-73-2025, https://doi.org/10.5194/acp-25-73-2025, 2025
Short summary
Short summary
Reports on molecular-level knowledge of high-temporal-resolution particulate matter ≤2.5 µm in diameter (PM2.5) on hazy days are limited. We investigated various PM2.5 species and their sources. The results show biomass burning (BB) was the main source of organic carbon. Moreover, BB enhanced fungal spore emissions and secondary aerosol formation. The contribution of non-fossil sources increased with increasing haze pollution, suggesting BB may be an important driver of haze events in winter.
Gregory P. Schill, Karl D. Froyd, Daniel M. Murphy, Christina J. Williamson, Charles A. Brock, Tomás Sherwen, Mat J. Evans, Eric A. Ray, Eric C. Apel, Rebecca S. Hornbrook, Alan J. Hills, Jeff Peischl, Thomas B. Ryerson, Chelsea R. Thompson, Ilann Bourgeois, Donald R. Blake, Joshua P. DiGangi, and Glenn S. Diskin
Atmos. Chem. Phys., 25, 45–71, https://doi.org/10.5194/acp-25-45-2025, https://doi.org/10.5194/acp-25-45-2025, 2025
Short summary
Short summary
Using single-particle mass spectrometry, we show that trace concentrations of bromine and iodine are ubiquitous in remote tropospheric aerosol and suggest that aerosols are an important part of the global reactive iodine budget. Comparisons to a global climate model with detailed iodine chemistry are favorable in the background atmosphere; however, the model cannot replicate our measurements near the ocean surface, in biomass burning plumes, and in the stratosphere.
Andreas Aktypis, Dontavious J. Sippial, Christina N. Vasilakopoulou, Angeliki Matrali, Christos Kaltsonoudis, Andrea Simonati, Marco Paglione, Matteo Rinaldi, Stefano Decesari, and Spyros N. Pandis
Atmos. Chem. Phys., 24, 13769–13791, https://doi.org/10.5194/acp-24-13769-2024, https://doi.org/10.5194/acp-24-13769-2024, 2024
Short summary
Short summary
A dual-chamber system was deployed in two different environments (Po Valley, Italy, and Pertouli forest, Greece) to study the potential of ambient air directly injected into the chambers, to form secondary organic aerosol (SOA). In the Po Valley, the system reacts rapidly, forming large amounts of SOA, while in Pertouli the SOA formation chemistry appears to have been practically terminated before the beginning of most experiments, so there is little additional SOA formation potential left.
Jie Zhang, Tianyu Zhu, Alexandra Catena, Yaowei Li, Margaret J. Schwab, Pengfei Liu, Akua Asa-Awuku, and James Schwab
Atmos. Chem. Phys., 24, 13445–13456, https://doi.org/10.5194/acp-24-13445-2024, https://doi.org/10.5194/acp-24-13445-2024, 2024
Short summary
Short summary
This study shows the derived organic aerosol hygroscopicity under high-humidity conditions based on a simple optical scatter monitor system, including two nephelometric monitors (pDR-1500), when the aerosol chemical composition is already known.
Wei Yuan, Ru-Jin Huang, Chao Luo, Lu Yang, Wenjuan Cao, Jie Guo, and Huinan Yang
Atmos. Chem. Phys., 24, 13219–13230, https://doi.org/10.5194/acp-24-13219-2024, https://doi.org/10.5194/acp-24-13219-2024, 2024
Short summary
Short summary
We characterized water-soluble oxidative potential (OP) levels in wintertime PM2.5 in the south and north of Beijing. Our results show that the volume-normalized dithiothreitol (DTTv) in the north was comparable to that in the south, while the mass-normalized dithiothreitol (DTTm) in the north was almost twice that in the south. Traffic-related emissions and biomass burning were the main sources of DTTv in the south, and traffic-related emissions contributed the most to DTTv in the north.
Mingfu Cai, Chenshuo Ye, Bin Yuan, Shan Huang, E Zheng, Suxia Yang, Zelong Wang, Yi Lin, Tiange Li, Weiwei Hu, Wei Chen, Qicong Song, Wei Li, Yuwen Peng, Baoling Liang, Qibin Sun, Jun Zhao, Duohong Chen, Jiaren Sun, Zhiyong Yang, and Min Shao
Atmos. Chem. Phys., 24, 13065–13079, https://doi.org/10.5194/acp-24-13065-2024, https://doi.org/10.5194/acp-24-13065-2024, 2024
Short summary
Short summary
This study investigated the daytime secondary organic aerosol (SOA) formation in urban plumes. We observed a significant daytime SOA formation through gas–particle partitioning when the site was affected by urban plumes. A box model simulation indicated that urban pollutants (nitrogen oxide and volatile organic compounds) could enhance the oxidizing capacity, while the elevated volatile organic compounds were mainly responsible for promoting daytime SOA formation.
Yingjie Shen, Rudra P. Pokhrel, Amy P. Sullivan, Ezra J. T. Levin, Lauren A. Garofalo, Delphine K. Farmer, Wade Permar, Lu Hu, Darin W. Toohey, Teresa Campos, Emily V. Fischer, and Shane M. Murphy
Atmos. Chem. Phys., 24, 12881–12901, https://doi.org/10.5194/acp-24-12881-2024, https://doi.org/10.5194/acp-24-12881-2024, 2024
Short summary
Short summary
The magnitude and evolution of brown carbon (BrC) absorption remain unclear, with uncertainty in climate models. Data from the WE-CAN airborne experiment show that model parameterizations overestimate the mass absorption cross section (MAC) of BrC. Observed decreases in BrC absorption with chemical markers are due to decreasing organic aerosol (OA) mass rather than a decreasing BrC MAC, which is currently implemented in models. Water-soluble BrC contributes 23 % of total absorption at 660 nm.
Qun He, Zhaowen Wang, Houfeng Liu, Pengju Xu, Rongbao Duan, Caihong Xu, Jianmin Chen, and Min Wei
Atmos. Chem. Phys., 24, 12775–12792, https://doi.org/10.5194/acp-24-12775-2024, https://doi.org/10.5194/acp-24-12775-2024, 2024
Short summary
Short summary
Coastal environments provide an ideal setting for investigating the intermixing of terrestrial and marine aerosols. Terrestrial air mass constituted a larger number of microbes from anthropogenic and soil emissions, whereas saprophytic and gut microbes were predominant in marine samples. Mixed air masses indicated a fusion of marine and terrestrial aerosols, characterized by alterations in the ratio of pathogenic and saprophytic microbes when compared to either terrestrial or marine samples.
Rime El Asmar, Zongrun Li, David J. Tanner, Yongtao Hu, Susan O'Neill, L. Gregory Huey, M. Talat Odman, and Rodney J. Weber
Atmos. Chem. Phys., 24, 12749–12773, https://doi.org/10.5194/acp-24-12749-2024, https://doi.org/10.5194/acp-24-12749-2024, 2024
Short summary
Short summary
Prescribed burning is an important method for managing ecosystems and preventing wildfires. However, smoke from prescribed fires can have a significant impact on air quality. Here, using a network of fixed sites and sampling throughout an extended prescribed burning period in 2 different years, we characterize emissions and evolutions of up to 8 h of PM2.5 mass, black carbon (BC), and brown carbon (BrC) in smoke from burning of forested lands in the southeastern USA.
Matthew Boyer, Diego Aliaga, Lauriane L. J. Quéléver, Silvia Bucci, Hélène Angot, Lubna Dada, Benjamin Heutte, Lisa Beck, Marina Duetsch, Andreas Stohl, Ivo Beck, Tiia Laurila, Nina Sarnela, Roseline C. Thakur, Branka Miljevic, Markku Kulmala, Tuukka Petäjä, Mikko Sipilä, Julia Schmale, and Tuija Jokinen
Atmos. Chem. Phys., 24, 12595–12621, https://doi.org/10.5194/acp-24-12595-2024, https://doi.org/10.5194/acp-24-12595-2024, 2024
Short summary
Short summary
We analyze the seasonal cycle and sources of gases that are relevant for the formation of aerosol particles in the central Arctic. Since theses gases can form new particles, they can influence Arctic climate. We show that the sources of these gases are associated with changes in the Arctic environment during the year, especially with respect to sea ice. Therefore, the concentration of these gases will likely change in the future as the Arctic continues to warm.
Imad El Haddad, Danielle Vienneau, Kaspar R. Daellenbach, Robin Modini, Jay G. Slowik, Abhishek Upadhyay, Petros N. Vasilakos, David Bell, Kees de Hoogh, and Andre S. H. Prevot
Atmos. Chem. Phys., 24, 11981–12011, https://doi.org/10.5194/acp-24-11981-2024, https://doi.org/10.5194/acp-24-11981-2024, 2024
Short summary
Short summary
This opinion paper explores how advances in aerosol science inform our understanding of the health impacts of outdoor particulate pollution. We advocate for a shift in the way we target PM pollution, focusing on the most harmful anthropogenic emissions. We highlight key observations, modelling developments, and emission measurements needed to achieve this shift.
Pramod Kumar, Khushboo Sharma, Ankita Malu, Rajeev Rajak, Aparna Gupta, Bidyutjyoti Baruah, Shailesh Yadav, Thupstan Angchuk, Jayant Sharma, Rakesh Kumar Ranjan, Anil Kumar Misra, and Nishchal Wanjari
Atmos. Chem. Phys., 24, 11585–11601, https://doi.org/10.5194/acp-24-11585-2024, https://doi.org/10.5194/acp-24-11585-2024, 2024
Short summary
Short summary
This work monitors and assesses air pollution, especially black and brown carbon, its controlling factor, and its effect on the environment of Sikkim Himalayan region. The huge urban sprawl in recent decades has led to regional human-induced air pollution in the region. Black carbon was highest in April 2021 and March 2022, exceeding the WHO limit. The monsoon season causes huge rainfall over the region, which reduces the pollutants by scavenging (rainout and washout).
Maria P. Velásquez-García, K. Santiago Hernández, James A. Vergara-Correa, Richard J. Pope, Miriam Gómez-Marín, and Angela M. Rendón
Atmos. Chem. Phys., 24, 11497–11520, https://doi.org/10.5194/acp-24-11497-2024, https://doi.org/10.5194/acp-24-11497-2024, 2024
Short summary
Short summary
In the Aburrá Valley, northern South America, local emissions determine air quality conditions. However, we found that external sources, such as regional fires, Saharan dust, and volcanic emissions, increase particulate concentrations and worsen chemical composition by introducing elements like heavy metals. Dry winds and source variability contribute to seasonal influences on these events. This study assesses the air quality risks posed by such events, which can affect broad regions worldwide.
Meng Wang, Qiyuan Wang, Steven Sai Hang Ho, Jie Tian, Yong Zhang, Shun-cheng Lee, and Junji Cao
Atmos. Chem. Phys., 24, 11175–11189, https://doi.org/10.5194/acp-24-11175-2024, https://doi.org/10.5194/acp-24-11175-2024, 2024
Short summary
Short summary
We studied nitrogen-containing organic compounds (NOCs) in particulate matter <2.5 µm particles on the southeastern Tibetan Plateau. We found that biomass burning and transboundary transport are the main sources of NOCs in the high-altitude area. Understanding these aerosol sources informs how they add to regional and potentially global climate changes. Our findings could help shape effective environmental policies to enhance air quality and address climate impacts in this sensitive region.
Yi-Jia Ma, Yu Xu, Ting Yang, Lin Gui, Hong-Wei Xiao, Hao Xiao, and Hua-Yun Xiao
EGUsphere, https://doi.org/10.5194/egusphere-2024-2602, https://doi.org/10.5194/egusphere-2024-2602, 2024
Short summary
Short summary
The abundance, potential precursors, and main formation mechanisms of NOCs in PM2.5 during winter were compared among cities with different energy consumption. We found that the aerosol NOC pollution during winter is closely associated with the intensity of precursor emissions and the efficiency of aqueous-phase processes in converting these emissions into NOCs. The overall results highlight the importance of emission reduction strategies in controlling aerosol NOCs pollution during winter.
Jinbo Wang, Jiaping Wang, Yuxuan Zhang, Tengyu Liu, Xuguang Chi, Xin Huang, Dafeng Ge, Shiyi Lai, Caijun Zhu, Lei Wang, Qiaozhi Zha, Ximeng Qi, Wei Nie, Congbin Fu, and Aijun Ding
Atmos. Chem. Phys., 24, 11063–11080, https://doi.org/10.5194/acp-24-11063-2024, https://doi.org/10.5194/acp-24-11063-2024, 2024
Short summary
Short summary
In this study, we found large spatial discrepancies in the physical and chemical properties of black carbon over the Tibetan Plateau (TP). Elevated anthropogenic emissions from low-altitude regions can significantly change the mass concentration, mixing state and chemical composition of black-carbon-containing aerosol in the TP region, further altering its light absorption ability. Our study emphasizes the vulnerability of remote plateau regions to intense anthropogenic influences.
Liyuan Zhou, Qianyun Liu, Christian M. Salvador, Michael Le Breton, Mattias Hallquist, Jian Zhen Yu, Chak K. Chan, and Åsa M. Hallquist
Atmos. Chem. Phys., 24, 11045–11061, https://doi.org/10.5194/acp-24-11045-2024, https://doi.org/10.5194/acp-24-11045-2024, 2024
Short summary
Short summary
Our research on city bus emissions reveals that alternative fuels (compressed natural gas and biofuels) reduce fresh particle emissions compared to diesel. However, all fuels lead to secondary air pollution. Aiming at guiding better environmental policies, we studied 76 buses using advanced emission measurement techniques. This work sheds light on the complex effects of bus fuels on urban air quality, emphasizing the need for comprehensive evaluations of future transportation technologies.
Xu Yang, Fobang Liu, Shuqi Yang, Yuling Yang, Yanan Wang, Jingjing Li, Mingyu Zhao, Zhao Wang, Kai Wang, Chi He, and Haijie Tong
Atmos. Chem. Phys., 24, 11029–11043, https://doi.org/10.5194/acp-24-11029-2024, https://doi.org/10.5194/acp-24-11029-2024, 2024
Short summary
Short summary
A study in the rural North China Plain showed environmentally persistent free radicals (EPFRs) in atmospheric particulate matter (PM), with a notable water-soluble fraction likely from atmospheric oxidation during transport. Significant positive correlations between EPFRs and the water-soluble oxidative potential of PM2.5 were found, primarily attributable to the water-soluble fractions of EPFRs. These findings emphasize understanding EPFRs' atmospheric evolution for climate and health impacts.
Kirsten N. Fossum, Chunshui Lin, Niall O'Sullivan, Lu Lei, Stig Hellebust, Darius Ceburnis, Aqeel Afzal, Anja Tremper, David Green, Srishti Jain, Steigvilė Byčenkienė, Colin O'Dowd, John Wenger, and Jurgita Ovadnevaite
Atmos. Chem. Phys., 24, 10815–10831, https://doi.org/10.5194/acp-24-10815-2024, https://doi.org/10.5194/acp-24-10815-2024, 2024
Short summary
Short summary
The chemical composition and sources of submicron aerosol in the Dublin Port area were investigated over a month-long campaign. Two distinct types of ship emissions were identified and characterised: sulfate-rich plumes from the use of heavy fuel oil with scrubbers and organic-rich plumes from the use of low-sulfur fuels. The latter were more frequent, emitting double the particle number and having a typical V / Ni ratio for ship emission.
Xiao He, Xuan Zheng, Shuwen Guo, Lewei Zeng, Ting Chen, Bohan Yang, Shupei Xiao, Qiongqiong Wang, Zhiyuan Li, Yan You, Shaojun Zhang, and Ye Wu
Atmos. Chem. Phys., 24, 10655–10666, https://doi.org/10.5194/acp-24-10655-2024, https://doi.org/10.5194/acp-24-10655-2024, 2024
Short summary
Short summary
This study introduces an innovative method for identifying and quantifying complex organic vapors and aerosols. By combining advanced analytical techniques and new algorithms, we categorized thousands of compounds from heavy-duty diesel vehicles and ambient air and highlighted specific tracers for emission sources. The innovative approach enhances peak identification, reduces quantification uncertainties, and offers new insights for air quality management and atmospheric chemistry.
Yu Xu, Tang Liu, Yi-Jia Ma, Qi-Bin Sun, Hong-Wei Xiao, Hao Xiao, Hua-Yun Xiao, and Cong-Qiang Liu
Atmos. Chem. Phys., 24, 10531–10542, https://doi.org/10.5194/acp-24-10531-2024, https://doi.org/10.5194/acp-24-10531-2024, 2024
Short summary
Short summary
This study investigates the characteristics of aminiums and ammonium in PM2.5 on clean and polluted winter days in 11 Chinese cities, highlighting the possibility of the competitive uptake of ammonia versus amines on acidic aerosols or the displacement of aminiums by ammonia under high-ammonia conditions. The overall results deepen the understanding of the spatiotemporal differences in aminium characteristics and formation in China.
Cassidy Soloff, Taiwo Ajayi, Yonghoon Choi, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Marta A. Fenn, Richard A. Ferrare, Francesca Gallo, Johnathan W. Hair, Miguel Ricardo A. Hilario, Simon Kirschler, Richard H. Moore, Taylor J. Shingler, Michael A. Shook, Kenneth L. Thornhill, Christiane Voigt, Edward L. Winstead, Luke D. Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 24, 10385–10408, https://doi.org/10.5194/acp-24-10385-2024, https://doi.org/10.5194/acp-24-10385-2024, 2024
Short summary
Short summary
Using aircraft measurements over the northwestern Atlantic between the US East Coast and Bermuda and trajectory modeling of continental outflow, we identify trace gas and particle properties that exhibit gradients with offshore distance and quantify these changes with high-resolution measurements of concentrations and particle chemistry, size, and scattering properties. This work furthers our understanding of the complex interactions between continental and marine environments.
Alex Rowell, James Brean, David C. S. Beddows, Zongbo Shi, Avinash Kumar, Matti Rissanen, Miikka Dal Maso, Peter Mettke, Kay Weinhold, Maik Merkel, and Roy M. Harrison
Atmos. Chem. Phys., 24, 10349–10361, https://doi.org/10.5194/acp-24-10349-2024, https://doi.org/10.5194/acp-24-10349-2024, 2024
Short summary
Short summary
Ions enhance the formation and growth rates of new particles, affecting the Earth's radiation budget. Despite these effects, there is little published data exploring the sources of ions in the urban environment and their role in new particle formation (NPF). Here we show that natural ion sources dominate in urban environments, while traffic is a secondary source. Ions contribute up to 12.7 % of the formation rate of particles, indicating that they are important for forming urban PM.
Kira Zeider, Kayla McCauley, Sanja Dmitrovic, Leong Wai Siu, Yonghoon Choi, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Simon Kirschler, John B. Nowak, Michael A. Shook, Kenneth L. Thornhill, Christiane Voigt, Edward L. Winstead, Luke D. Ziemba, Paquita Zuidema, and Armin Sorooshian
EGUsphere, https://doi.org/10.5194/egusphere-2024-2743, https://doi.org/10.5194/egusphere-2024-2743, 2024
Short summary
Short summary
In-situ aircraft data collected over the northwest Atlantic Ocean are utilized to compare aerosol conditions and turbulence between near-surface and below cloud base altitudes for different regimes of coupling strength between those two levels, along with how cloud microphysical properties vary across those regimes. Stronger coupling yields more homogenous aerosol structure vertically along with higher cloud drop concentrations and sea salt influence in clouds.
Yuan Cheng, Xu-bing Cao, Sheng-qiang Zhu, Zhi-qing Zhang, Jiu-meng Liu, Hong-liang Zhang, Qiang Zhang, and Ke-bin He
Atmos. Chem. Phys., 24, 9869–9883, https://doi.org/10.5194/acp-24-9869-2024, https://doi.org/10.5194/acp-24-9869-2024, 2024
Short summary
Short summary
The agreement between observational and modeling results is essential for the development of efficient air pollution control strategies. Here we constrained the modeling results of carbonaceous aerosols by field observation in Northeast China, a historically overlooked but recently targeted region of national clean-air actions. Our study suggested that the simulation of agricultural fire emissions and secondary organic aerosols remains challenging.
Dane Blanchard, Mark Gordon, Duc Huy Dang, Paul Andrew Makar, and Julian Aherne
EGUsphere, https://doi.org/10.5194/egusphere-2024-2584, https://doi.org/10.5194/egusphere-2024-2584, 2024
Short summary
Short summary
This study offers the first known evaluation of water-soluble brown carbon aerosols in the Athabasca Oil Sands Region (AOSR), Canada. Fluorescence spectroscopy analysis of aerosol samples from five regional sites (summer 2021) found that oil sands operations were a measurable source of brown carbon. Industrial aerosol emissions may impact atmospheric reaction chemistry and albedo. These findings demonstrate that fluorescence spectroscopy can be applied to monitor brown carbon in the ASOR.
Yuan Dai, Junfeng Wang, Houjun Wang, Shijie Cui, Yunjiang Zhang, Haiwei Li, Yun Wu, Ming Wang, Eleonora Aruffo, and Xinlei Ge
Atmos. Chem. Phys., 24, 9733–9748, https://doi.org/10.5194/acp-24-9733-2024, https://doi.org/10.5194/acp-24-9733-2024, 2024
Short summary
Short summary
Short-term strict emission control can improve air quality, but its effectiveness needs assessment. During the 2021 summer COVID-19 lockdown in Yangzhou, we found that PM2.5 levels did not decrease despite reduced primary emissions. Aged black-carbon particles increased substantially due to higher O3 levels and transported pollutants. High humidity and low wind also played key roles. The results highlight the importance of a regionally balanced control strategy for future air quality management.
Xinya Liu, Diego Alves Gouveia, Bas Henzing, Arnoud Apituley, Arjan Hensen, Danielle van Dinther, Rujin Huang, and Ulrike Dusek
Atmos. Chem. Phys., 24, 9597–9614, https://doi.org/10.5194/acp-24-9597-2024, https://doi.org/10.5194/acp-24-9597-2024, 2024
Short summary
Short summary
The vertical distribution of aerosol optical properties is important for their effect on climate. This is usually measured by lidar, which has limitations, most notably the assumption of a lidar ratio. Our study shows that routine surface-level aerosol measurements are able to predict this lidar ratio reasonably well within the lower layers of the atmosphere and thus provide a relatively simple and cost-effective method to improve lidar measurements.
Weiqi Xu, Ye Kuang, Wanyun Xu, Zhiqiang Zhang, Biao Luo, Xiaoyi Zhang, Jiangchuang Tao, Hongqin Qiao, Li Liu, and Yele Sun
Atmos. Chem. Phys., 24, 9387–9399, https://doi.org/10.5194/acp-24-9387-2024, https://doi.org/10.5194/acp-24-9387-2024, 2024
Short summary
Short summary
We deployed an advanced aerosol–fog sampling system at a rural site in the North China Plain to investigate impacts of aerosol hygroscopic growth and activation on the physicochemical properties of submicron aerosols. Observed results highlighted remarkably different aqueous processing of primary and secondary submicron aerosol components under distinct ambient relative humidity (RH) conditions and that RH levels significantly impact aerosol sampling through the aerosol swelling effect.
Can Wu, Xiaodi Liu, Ke Zhang, Si Zhang, Cong Cao, Jianjun Li, Rui Li, Fan Zhang, and Gehui Wang
Atmos. Chem. Phys., 24, 9263–9275, https://doi.org/10.5194/acp-24-9263-2024, https://doi.org/10.5194/acp-24-9263-2024, 2024
Short summary
Short summary
Brown carbon (BrC) is prevalent in the troposphere and can efficiently absorb solar and terrestrial radiation. Our observations show that the enhanced light absorption of BrC relative to black carbon at the tropopause can be attributed to the formation of nitrogen-containing organic compounds through the aqueous-phase reactions of carbonyls with ammonium.
Taiwo Ajayi, Yonghoon Choi, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Marta A. Fenn, Richard A. Ferrare, Johnathan W. Hair, Miguel Ricardo A. Hilario, Chris A. Hostetler, Simon Kirschler, Richard H. Moore, Taylor J. Shingler, Michael A. Shook, Cassidy Soloff, Kenneth L. Thornhill, Christiane Voigt, Edward L. Winstead, Luke D. Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 24, 9197–9218, https://doi.org/10.5194/acp-24-9197-2024, https://doi.org/10.5194/acp-24-9197-2024, 2024
Short summary
Short summary
This study uses airborne data to examine vertical profiles of trace gases, aerosol particles, and meteorological variables over a remote marine area (Bermuda). Results show distinct differences based on both air mass source region (North America, Ocean, Caribbean/North Africa) and altitude for a given air mass type. This work highlights the sensitivity of remote marine areas to long-range transport and the importance of considering the vertical dependence of trace gas and aerosol properties.
Kira Zeider, Grace Betito, Anthony Bucholtz, Peng Xian, Annette Walker, and Armin Sorooshian
Atmos. Chem. Phys., 24, 9059–9083, https://doi.org/10.5194/acp-24-9059-2024, https://doi.org/10.5194/acp-24-9059-2024, 2024
Short summary
Short summary
The predominant wind direction along the California coast (northerly) reverses several times during the summer (to southerly). The effects of these wind reversals on aerosol and cloud characteristics are not well understood. Using data from multiple datasets we found that southerly flow periods had enhanced signatures of anthropogenic emissions due to shipping and continental sources, and clouds had more but smaller droplets.
Saleh Alzahrani, Doğuşhan Kılıç, Michael Flynn, Paul I. Williams, and James Allan
Atmos. Chem. Phys., 24, 9045–9058, https://doi.org/10.5194/acp-24-9045-2024, https://doi.org/10.5194/acp-24-9045-2024, 2024
Short summary
Short summary
This paper investigates emissions from aviation activities at an international airport to evaluate their impact on local air quality. The study provides detailed insights into the chemical composition of aerosols and key pollutants in the airport environment. Source apportionment analysis using positive matrix factorisation (PMF) identified three significant sources: less oxidised oxygenated organic aerosol, alkane organic aerosol, and more oxidised oxygenated organic aerosol.
Mikko Heikkilä, Krista Luoma, Timo Mäkelä, and Tiia Grönholm
Atmos. Chem. Phys., 24, 8927–8941, https://doi.org/10.5194/acp-24-8927-2024, https://doi.org/10.5194/acp-24-8927-2024, 2024
Short summary
Short summary
Black carbon (BC) concentration was measured from 211 ship exhaust gas plumes at a remote marine station. Emission factors of BC were calculated in grams per kilogram of fuel. Ships with an exhaust gas cleaning system (EGCS) were found to have median BC emissions per fuel consumed 5 times lower than ships without an EGCS. However, this might be because of non-EGCS ships running at low engine loads rather than the EGCS itself. A local speed restriction would increase BC emissions of ships.
Olga Zografou, Maria Gini, Prodromos Fetfatzis, Konstantinos Granakis, Romanos Foskinis, Manousos Ioannis Manousakas, Fotios Tsopelas, Evangelia Diapouli, Eleni Dovrou, Christina N. Vasilakopoulou, Alexandros Papayannis, Spyros N. Pandis, Athanasios Nenes, and Konstantinos Eleftheriadis
Atmos. Chem. Phys., 24, 8911–8926, https://doi.org/10.5194/acp-24-8911-2024, https://doi.org/10.5194/acp-24-8911-2024, 2024
Short summary
Short summary
Characterization of PM1 and positive matrix factorization (PMF) source apportionment of organic and inorganic fractions were conducted at the high-altitude station (HAC)2. Cloud presence reduced PM1, affecting sulfate more than organics. Free-troposphere (FT) conditions showed more black carbon (eBC) than planetary boundary layer (PBL) conditions.
Yuanyuan Qin, Xinghua Zhang, Wei Huang, Juanjuan Qin, Xiaoyu Hu, Yuxuan Cao, Tianyi Zhao, Yang Zhang, Jihua Tan, Ziyin Zhang, Xinming Wang, and Zhenzhen Wang
Atmos. Chem. Phys., 24, 8737–8750, https://doi.org/10.5194/acp-24-8737-2024, https://doi.org/10.5194/acp-24-8737-2024, 2024
Short summary
Short summary
Environmental persistent free radicals (EPFRs) and reactive oxygen species (ROSs) play an active role in the atmosphere. Despite control measures having effectively reduced their emissions, reductions were less than in PM2.5. Emission control measures performed well in achieving Parade Blue, but reducing the impact of the atmosphere on human health remains challenging. Thus, there is a need to reassess emission control measures to better address the challenges posed by EPFRs and ROSs.
Fenghua Wei, Xing Peng, Liming Cao, Mengxue Tang, Ning Feng, Xiaofeng Huang, and Lingyan He
Atmos. Chem. Phys., 24, 8507–8518, https://doi.org/10.5194/acp-24-8507-2024, https://doi.org/10.5194/acp-24-8507-2024, 2024
Short summary
Short summary
The water solubility of secondary organic aerosols (SOAs) is a crucial factor in determining their hygroscopicity and climatic impact. Stable carbon isotope and mass spectrometry techniques were combined to assess the water solubility of SOAs with different aging degrees in a coastal megacity in China. This work revealed a much higher water-soluble fraction of aged SOA compared to fresh SOA, indicating that the aging degree of SOA has considerable impacts on its water solubility.
Zijun Zhang, Weiqi Xu, Yi Zhang, Wei Zhou, Xiangyu Xu, Aodong Du, Yinzhou Zhang, Hongqin Qiao, Ye Kuang, Xiaole Pan, Zifa Wang, Xueling Cheng, Lanzhong Liu, Qingyan Fu, Douglas R. Worsnop, Jie Li, and Yele Sun
Atmos. Chem. Phys., 24, 8473–8488, https://doi.org/10.5194/acp-24-8473-2024, https://doi.org/10.5194/acp-24-8473-2024, 2024
Short summary
Short summary
We investigated aerosol composition and sources and the interaction between secondary organic aerosol (SOA) and clouds at a regional mountain site in southeastern China. Clouds efficiently scavenge more oxidized SOA; however, cloud evaporation leads to the production of less oxidized SOA. The unexpectedly high presence of nitrate in aerosol particles indicates that nitrate formed in polluted areas has undergone interactions with clouds, significantly influencing the regional background site.
Feifei Li, Shanshan Tang, Jitao Lv, Shiyang Yu, Xu Sun, Dong Cao, Yawei Wang, and Guibin Jiang
Atmos. Chem. Phys., 24, 8397–8411, https://doi.org/10.5194/acp-24-8397-2024, https://doi.org/10.5194/acp-24-8397-2024, 2024
Short summary
Short summary
Targeted derivatization and non-targeted analysis with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) were used to reveal the molecular composition of carbonyl molecules in PM2.5, and the important role of carbonyls in increasing the oxidative potential of organic aerosol was found in real samples.
Adam E. Thomas, Hayley S. Glicker, Alex B. Guenther, Roger Seco, Oscar Vega Bustillos, Julio Tota, Rodrigo A. F. Souza, and James N. Smith
EGUsphere, https://doi.org/10.5194/egusphere-2024-2230, https://doi.org/10.5194/egusphere-2024-2230, 2024
Short summary
Short summary
We present measurements of the composition of ultrafine particles collected from the eastern Amazon, a relatively understudied region that is subjected to increasing human influence. We find that while isoprene chemistry is likely significant to ultrafine particle growth throughout the year, compounds related to other sources such as biological spore emissions and biomass burning exhibit striking seasonal differences, implying an extensive variation in regional ultrafine particle sources.
Maya Abou-Ghanem, Daniel M. Murphy, Gregory P. Schill, Michael J. Lawler, and Karl D. Froyd
Atmos. Chem. Phys., 24, 8263–8275, https://doi.org/10.5194/acp-24-8263-2024, https://doi.org/10.5194/acp-24-8263-2024, 2024
Short summary
Short summary
Using particle analysis by laser mass spectrometry, we examine vanadium-containing ship exhaust particles measured on NASA's DC-8 during the Atmospheric Tomography Mission (ATom). Our results reveal ship exhaust particles are sufficiently widespread in the marine atmosphere and experience atmospheric aging. Finally, we use laboratory calibrations to determine the vanadium, sulfate, and organic single-particle mass fractions of vanadium-containing ship exhaust particles.
Cassandra J. Gaston, Joseph M. Prospero, Kristen Foley, Havala O. T. Pye, Lillian Custals, Edmund Blades, Peter Sealy, and James A. Christie
Atmos. Chem. Phys., 24, 8049–8066, https://doi.org/10.5194/acp-24-8049-2024, https://doi.org/10.5194/acp-24-8049-2024, 2024
Short summary
Short summary
To understand how changing emissions have impacted aerosols in remote regions, we measured nitrate and sulfate in Barbados and compared them to model predictions from EPA’s Air QUAlity TimE Series (EQUATES). Nitrate was stable, except for spikes in 2008 and 2010 due to transported smoke. Sulfate decreased in the 1990s due to reductions in sulfur dioxide (SO2) in the US and Europe; then it increased in the 2000s, likely due to anthropogenic emissions from Africa.
Ashutosh Kumar Shukla, Sachchida Nand Tripathi, Shamitaksha Talukdar, Vishnu Murari, Sreenivas Gaddamidi, Manousos-Ioannis Manousakas, Vipul Lalchandani, Kuldeep Dixit, Vinayak M Ruge, Peeyush Khare, Mayank Kumar, Vikram Singh, Neeraj Rastogi, Suresh Tiwari, Atul K. Srivastava, Dilip Ganguly, Kaspar Rudolf Daellenbach, and Andre Stephan Henry Prevot
EGUsphere, https://doi.org/10.5194/egusphere-2024-1385, https://doi.org/10.5194/egusphere-2024-1385, 2024
Short summary
Short summary
Our study delves into the elemental composition of aerosols across the Indo-Gangetic Plain (IGP), revealing distinct patterns during pollution episodes. We found significant increases in Cl-rich and SFC1 sources, indicating dynamic emissions and agricultural burning impacts. Surges in Cl-rich particles during cold periods highlight their role in particle growth under specific conditions.
Jiao Xue, Tian Zhang, Keyhong Park, Jinpei Yan, Young Jun Yoon, Jiyeon Park, and Bingbing Wang
Atmos. Chem. Phys., 24, 7731–7754, https://doi.org/10.5194/acp-24-7731-2024, https://doi.org/10.5194/acp-24-7731-2024, 2024
Short summary
Short summary
Ice formation by particles is an important way of making mixed-phase and ice clouds. We found that particles collected in the marine atmosphere exhibit diverse ice nucleation abilities and mixing states. Sea salt mixed-sulfate particles were enriched in ice-nucleating particles. Selective aging on sea salt particles made particle populations more externally mixed. Characterizations of particles and their mixing state are needed for a better understanding of aerosol–cloud interactions.
Yangzhi Mo, Jun Li, Guangcai Zhong, Sanyuan Zhu, Shizhen Zhao, Jiao Tang, Hongxing Jiang, Zhineng Cheng, Chongguo Tian, Yingjun Chen, and Gan Zhang
Atmos. Chem. Phys., 24, 7755–7772, https://doi.org/10.5194/acp-24-7755-2024, https://doi.org/10.5194/acp-24-7755-2024, 2024
Short summary
Short summary
In this study, we found that biomass burning (31.0 %) and coal combustion (31.1 %) were the dominant sources of water-insoluble organic carbon in China, with coal combustion sources exhibiting the strongest light-absorbing capacity. Additionally, we propose a light-absorbing carbonaceous continuum, revealing that components enriched with fossil sources tend to have stronger light-absorbing capacity, higher aromaticity, higher molecular weights, and greater recalcitrance in the atmosphere.
Jing Duan, Ru-Jin Huang, Ying Wang, Wei Xu, Haobin Zhong, Chunshui Lin, Wei Huang, Yifang Gu, Jurgita Ovadnevaite, Darius Ceburnis, and Colin O'Dowd
Atmos. Chem. Phys., 24, 7687–7698, https://doi.org/10.5194/acp-24-7687-2024, https://doi.org/10.5194/acp-24-7687-2024, 2024
Short summary
Short summary
The chemical composition of atmospheric particles has shown significant changes in recent years. We investigated the potential effects of changes in inorganics on aerosol water uptake and, thus, secondary organic aerosol formation in wintertime haze based on the size-resolved measurements of non-refractory fine particulate matter (NR-PM2.5) in Xi’an, northwestern China. We highlight the key role of aerosol water as a medium to link inorganics and organics in their multiphase processes.
Benjamin Heutte, Nora Bergner, Hélène Angot, Jakob B. Pernov, Lubna Dada, Jessica A. Mirrielees, Ivo Beck, Andrea Baccarini, Matthew Boyer, Jessie M. Creamean, Kaspar R. Daellenbach, Imad El Haddad, Markus M. Frey, Silvia Henning, Tiaa Laurila, Vaios Moschos, Tuukka Petäjä, Kerri A. Pratt, Lauriane L. J. Quéléver, Matthew D. Shupe, Paul Zieger, Tuija Jokinen, and Julia Schmale
EGUsphere, https://doi.org/10.5194/egusphere-2024-1912, https://doi.org/10.5194/egusphere-2024-1912, 2024
Short summary
Short summary
Limited aerosol measurements in the central Arctic hinder our understanding of aerosol-climate interactions in the region. Our year-long observations of aerosol physicochemical properties during the MOSAiC expedition reveal strong seasonal variations in aerosol chemical composition, where the short-term variability is heavily affected by storms in the Arctic. Locally wind-generated particles are shown to be an important source of cloud seeds, especially in autumn.
Feng Jiang, Harald Saathoff, Junwei Song, Hengheng Zhang, Linyu Gao, and Thomas Leisner
EGUsphere, https://doi.org/10.5194/egusphere-2024-1848, https://doi.org/10.5194/egusphere-2024-1848, 2024
Short summary
Short summary
The chemical composition of brown carbon in the particle and gas phase were determined by mass spectrometry. BrC in the gas phase was mainly controlled by secondary formation and particle-to-gas partitioning. BrC in the particle phase was mainly from secondary formation. This work helps to get a better understanding of diurnal variations and the sources of brown carbon aerosol at rural location in central Europe.
Hongyong Li, Xiaopu Lyu, Likun Xue, Yunxi Huo, Dawen Yao, Haoxian Lu, and Hai Guo
Atmos. Chem. Phys., 24, 7085–7100, https://doi.org/10.5194/acp-24-7085-2024, https://doi.org/10.5194/acp-24-7085-2024, 2024
Short summary
Short summary
Organic aerosol is ubiquitous in the atmosphere and largely explains the gap between current levels of fine particulate matter in many cities and the World Health Organization guideline values. This study highlights the dominant contributions of cooking emissions to organic aerosol when marine air prevailed in Hong Kong, which were occasionally overwhelmed by aromatics-derived secondary organic aerosol in continental ouflows.
Cited articles
Ahlberg, E., Falk, J., Eriksson, A., Holst, T., Brune, W. H., Kristensson,
A., Roldin, P., and Svenningsson, B.: Secondary organic aerosol from VOC
mixtures in an oxidation flow reactor, Atmos. Environ., 161, 210–220,
https://doi.org/10.1016/j.atmosenv.2017.05.005, 2017.
Almeida, J., Schobesberger, S., Kürten, A., Ortega, I. K.,
Kupiainen-Määttä, O., Praplan, A. P., Adamov, A., Amorim, A.,
Bianchi, F., Breitenlechner, M., David, A., Dommen, J., Donahue, N. M.,
Downard, A., Dunne, E., Duplissy, J., Ehrhart, S., Flagan, R. C., Franchin,
A., Guida, R., Hakala, J., Hansel, A., Heinritzi, M., Henschel, H., Jokinen,
T., Junninen, H., Kajos, M., Kangasluoma, J., Keskinen, H., Kupc, A.,
Kurtén, T., Kvashin, A. N., Laaksonen, A., Lehtipalo, K., Leiminger, M.,
Leppä, J., Loukonen, V., Makhmutov, V., Mathot, S., McGrath, M. J.,
Nieminen, T., Olenius, T., Onnela, A., Petäjä, T., Riccobono, F.,
Riipinen, I., Rissanen, M., Rondo, L., Ruuskanen, T., Santos, F. D.,
Sarnela, N., Schallhart, S., Schnitzhofer, R., Seinfeld, J. H., Simon, M.,
Sipilä, M., Stozhkov, Y., Stratmann, F., Tomé, A., Tröstl, J.,
Tsagkogeorgas, G., Vaattovaara, P., Viisanen, Y., Virtanen, A., Vrtala, A.,
Wagner, P. E., Weingartner, E., Wex, H., Williamson, C., Wimmer, D., Ye, P.,
Yli-Juuti, T., Carslaw, K. S., Kulmala, M., Curtius, J., Baltensperger, U.,
Worsnop, D. R., Vehkamäki, H., and Kirkby, J.: Molecular understanding
of sulphuric acid-amine particle nucleation in the atmosphere, Nature, 502,
359–363, https://doi.org/10.1038/nature12663, 2013.
Altshuller, A. P.: Production of aldehydes as primary emissions and from
secondary atmospheric reactions of alkenes and alkanes during the night and
early morning hours, Atmos. Environ. A-Gen., 27, 21–32,
https://doi.org/10.1016/0960-1686(93)90067-9, 1993.
Anenberg, S. C., Schwartz, J., Shindell, D., Amann, M., Faluvegi, G.,
Klimont, Z., Janssens-Maenhout, G., Pozzoli, L., van Dingenen, R., Vignati,
E., Emberson, L., Muller, N. Z., Jason West, J., Williams, M., Demkine, V.,
Kevin Hicks, W., Kuylenstierna, J., Raes, F., and Ramanathan, V.: Global air
quality and health co-benefits of mitigating near-term climate change
through methane and black carbon emission controls, Environ. Health
Persp., 120, 831–839, https://doi.org/10.1289/ehp.1104301, 2012.
Asbach, C., Schmitz, A., Schmidt, F., Monz, C., and Todea, A. M.:
Intercomparison of a personal CPC and different conventional CPCs, Aerosol
Air Qual. Res., 17, 1132–1141, https://doi.org/10.4209/aaqr.2016.10.0460,
2017.
Bonasoni, P., Laj, P., Marinoni, A., Sprenger, M., Angelini, F., Arduini, J., Bonafè, U., Calzolari, F., Colombo, T., Decesari, S., Di Biagio, C., di Sarra, A. G., Evangelisti, F., Duchi, R., Facchini, MC., Fuzzi, S., Gobbi, G. P., Maione, M., Panday, A., Roccato, F., Sellegri, K., Venzac, H., Verza, G. P., Villani, P., Vuillermoz, E., and Cristofanelli, P.: Atmospheric Brown Clouds in the Himalayas: first two years of continuous observations at the Nepal Climate Observatory-Pyramid (5079 m), Atmos. Chem. Phys., 10, 7515–7531, https://doi.org/10.5194/acp-10-7515-2010, 2010.
Bonn, B., von Kuhlmann, R., and Lawrence, M. G.: High contribution of
biogenic hydroperoxides to secondary organic aerosol formation, Geophys.
Res. Lett., 31, 1–4, https://doi.org/10.1029/2003GL019172, 2004.
Boylstein, R., Piacitelli, C., Grote, A., Kanwal, R., Kullman, G., and
Kreiss, K.: Diacetyl emissions and airborne dust from butter flavorings used
in microwave popcorn production, J. Occup. Environ. Hyg., 3, 530–535,
https://doi.org/10.1080/15459620600909708, 2006.
Brasseur, G. P., Orlando, J. J., and Tyndall, G. S.: Atmospheric Chemistry
and Global Change, Oxford University Press, New York, ISBN 9780195105216, 1999.
Buzorius, G., Rannik, Ü., Mäkelä, J. M., Vesala, T., and
Kulmala, M.: Vertical aerosol particle fluxes measured by eddy covariance
technique using condensational particle counter, J. Aerosol Sci., 29,
157–171, https://doi.org/10.1016/S0021-8502(97)00458-8, 1998.
Camredon, M., Aumont, B., Lee-Taylor, J., and Madronich, S.: The SOA/VOC/NOx system: an explicit model of secondary organic aerosol formation, Atmos. Chem. Phys., 7, 5599–5610, https://doi.org/10.5194/acp-7-5599-2007, 2007.
Carnerero, C., Pérez, N., Reche, C., Ealo, M., Titos, G., Lee, H.-K., Eun, H.-R., Park, Y.-H., Dada, L., Paasonen, P., Kerminen, V.-M., Mantilla, E., Escudero, M., Gómez-Moreno, F. J., Alonso-Blanco, E., Coz, E., Saiz-Lopez, A., Temime-Roussel, B., Marchand, N., Beddows, D. C. S., Harrison, R. M., Petäjä, T., Kulmala, M., Ahn, K.-H., Alastuey, A., and Querol, X.: Vertical and horizontal distribution of regional new particle formation events in Madrid, Atmos. Chem. Phys., 18, 16601–16618, https://doi.org/10.5194/acp-18-16601-2018, 2018.
Casquero-Vera, J. A., Lyamani, H., Dada, L., Hakala, S., Paasonen, P., Román, R., Fraile, R., Petäjä, T., Olmo-Reyes, F. J., and Alados-Arboledas, L.: New particle formation at urban and high-altitude remote sites in the south-eastern Iberian Peninsula, Atmos. Chem. Phys., 20, 14253–14271, https://doi.org/10.5194/acp-20-14253-2020, 2020.
Chen, J., Jiang, S., Liu, Y. R., Huang, T., Wang, C. Y., Miao, S. K., Wang,
Z. Q., Zhang, Y., and Huang, W.: Interaction of oxalic acid with
dimethylamine and its atmospheric implications, RSC Adv., 7, 6374–6388,
https://doi.org/10.1039/c6ra27945g, 2017.
Chen, J., Scircle, A., Black, O., Cizdziel, J. V., Watson, N., Wevill, D.,
and Zhou, Y.: On the use of multicopters for sampling and analysis of
volatile organic compounds in the air by adsorption/thermal desorption
GC-MS, Air Qual. Atmos. Hlth., 11, 835–842,
https://doi.org/10.1007/s11869-018-0588-y, 2018.
Chen, T., Ge, Y., Liu, Y., and He, H.: N-nitration of secondary aliphatic
amines in the particle phase, Chemosphere, 293, 133639,
https://doi.org/10.1016/j.chemosphere.2022.133639, 2022.
Correa, S. M., Arbilla, G., Marques, M. R. C., and Oliveira, K. M. P. G.:
The impact of BTEX emissions from gas stations into the atmosphere, Atmos.
Pollut. Res., 3, 163–169, https://doi.org/10.5094/APR.2012.016, 2012.
De Haan, D. O., Hawkins, L. N., Kononenko, J. A., Turley, J. J., Corrigan,
A. L., Tolbert, M. A., and Jimenez, J. L.: Formation of nitrogen-containing
oligomers by methylglyoxal and amines in simulated evaporating cloud
droplets, Environ. Sci. Technol., 45, 984–991,
https://doi.org/10.1021/es102933x, 2011.
Dehghani, M., Fazlzadeh, M., Sorooshian, A., Tabatabaee, H. R., Miri, M.,
Baghani, A. N., Delikhoon, M., Mahvi, A. H., and Rashidi, M.:
Characteristics and health effects of BTEX in a hot spot for urban
pollution, Ecotox. Environ. Safe., 155, 133–143,
https://doi.org/10.1016/j.ecoenv.2018.02.065, 2018.
Dou, J., Lin, P., Kuang, B. Y., and Yu, J. Z.: Reactive oxygen species
production mediated by humic-like substances in atmospheric aerosols:
Enhancement effects by pyridine, imidazole, and their derivatives, Environ.
Sci. Technol., 49, 6457–6465, https://doi.org/10.1021/es5059378, 2015.
Dumka, U. C., Moorthy, K. K., Kumar, R., Hegde, P., Sagar, R., Pant, P.,
Singh, N., and Babu, S. S.: Characteristics of aerosol black carbon mass
concentration over a high altitude location in the Central Himalayas from
multi-year measurements, Atmos. Res., 96, 510–521,
https://doi.org/10.1016/j.atmosres.2009.12.010, 2010.
Dussault, P. and Sahli, A.: 2-Methoxy-2-propyl hydroperoxide: a convenient reagent for the synthesis of hydroperoxides and peracids, J. Org. Chem., 57, 1009–1012, https://doi.org/10.1021/jo00029a043, 1992.
Elomaa, T.: Mustan hiilen mittaus suodatinpohjaisilla sensoreilla, B.Sc. Thesis,
University of Helsinki, 2022.
Fermo, P., Artíñano, B., De Gennaro, G., Pantaleo, A. M., Parente,
A., Battaglia, F., Colicino, E., Di Tanna, G., Goncalves da Silva Junior,
A., Pereira, I. G., Garcia, G. S., Garcia Goncalves, L. M., Comite, V., and
Miani, A.: Improving indoor air quality through an air purifier able to
reduce aerosol particulate matter (PM) and volatile organic compounds
(VOCs): Experimental results, Environ. Res., 197, 1–8,
https://doi.org/10.1016/j.envres.2021.111131, 2021.
Fu, P., Kawamura, K., Usukura, K., and Miura, K.: Dicarboxylic acids,
ketocarboxylic acids and glyoxal in the marine aerosols collected during a
round-the-world cruise, Mar. Chem., 148, 22–32,
https://doi.org/10.1016/j.marchem.2012.11.002, 2013.
Ge, X., Wexler, A. S., and Clegg, S. L.: Atmospheric amines – Part I. A
review, Atmos. Environ., 45, 524–546,
https://doi.org/10.1016/j.atmosenv.2010.10.012, 2011.
Hari, P. and Kulmala, M.: Station for Measuring Ecosystem-Atmosphere
Relations (SMEAR II), Boreal Environ. Res., 10, 315–322, 2005.
Helin, A., Rönkkö, T., Parshintsev, J., Hartonen, K., Schilling, B.,
Läubli, T., and Riekkola, M. L.: Solid phase microextraction Arrow for
the sampling of volatile amines in wastewater and atmosphere, J. Chromatogr.
A, 1426, 56–63, https://doi.org/10.1016/j.chroma.2015.11.061, 2015.
Hemmilä, M.: Chemical Characterisation of Boreal Forest Air with
Chromatographic Techniques, Doctoral thesis, University of Helsinki, Helsinki, ISBN 9789523361003, http://urn.fi/URN:ISBN:978-952-336-100-3 (last access: 24 May 2023), 2020.
Hemmilä, M., Hellén, H., Virkkula, A., Makkonen, U., Praplan, A. P., Kontkanen, J., Ahonen, L., Kulmala, M., and Hakola, H.: Amines in boreal forest air at SMEAR II station in Finland, Atmos. Chem. Phys., 18, 6367–6380, https://doi.org/10.5194/acp-18-6367-2018, 2018.
Hienola, A. I., Pietikäinen, J.-P., Jacob, D., Pozdun, R., Petäjä, T., Hyvärinen, A.-P., Sogacheva, L., Kerminen, V.-M., Kulmala, M., and Laaksonen, A.: Black carbon concentration and deposition estimations in Finland by the regional aerosol–climate model REMO-HAM, Atmos. Chem. Phys., 13, 4033–4055, https://doi.org/10.5194/acp-13-4033-2013, 2013.
Hoeben, W. F. L. M., Beckers, F. J. C. M., Pemen, A. J. M., Van Heesch, E.
J. M., and Kling, W. L.: Oxidative degradation of toluene and limonene in
air by pulsed corona technology, J. Phys. D. Appl. Phys., 45, 055202,
https://doi.org/10.1088/0022-3727/45/5/055202, 2012.
Hyvärinen, A. P., Kolmonen, P., Kerminen, V. M., Virkkula, A., Leskinen,
A., Komppula, M., Hatakka, J., Burkhart, J., Stohl, A., Aalto, P., Kulmala,
M., Lehtinen, K. E. J., Viisanen, Y., and Lihavainen, H.: Aerosol black
carbon at five background measurement sites over Finland, a gateway to the
Arctic, Atmos. Environ., 45, 4042–4050,
https://doi.org/10.1016/j.atmosenv.2011.04.026, 2011.
Isidorov, V. A., Pirożnikow, E., Spirina, V. L., Vasyanin, A. N.,
Kulakova, S. A., Abdulmanova, I. F., and Zaitsev, A. A.: Emission of
volatile organic compounds by plants on the floor of boreal and mid-latitude
forests, J. Atmos. Chem., 79, 153–166,
https://doi.org/10.1007/s10874-022-09434-3, 2022.
Jacobson, M. Z.: Short-term effects of controlling fossil-fuel soot, biofuel
soot and gases, and methane on climate, Arctic ice, and air pollution
health, J. Geophys. Res.-Atmos., 115, D14209, https://doi.org/10.1029/2009JD013795,
2010.
Jang, M. and Kamens, R. M.: Atmospheric secondary aerosol formation by
heterogeneous reactions of aldehydes in the presence of a sulfuric acid
aerosol catalyst, Environ. Sci. Technol., 35, 4758–4766,
https://doi.org/10.1021/es010790s, 2001.
Junninen, H., Lauri, A., Keronen, P., Aalto, P., Hiltunen, V., Hari, P., and
Kulmala, M.: Smart-SMEAR: On-line data exploration and visualization tool
for SMEAR stations, Boreal Environ. Res., 14, 447–457, 2009.
Kamens, R. M., Zhang, H., Chen, E. H., Zhou, Y., Parikh, H. M., Wilson, R.
L., Galloway, K. E., and Rosen, E. P.: Secondary organic aerosol formation
from toluene in an atmospheric hydrocarbon mixture: Water and particle seed
effects, Atmos. Environ., 45, 2324–2334,
https://doi.org/10.1016/j.atmosenv.2010.11.007, 2011.
Kanakidou, M., Seinfeld, J. H., Pandis, S. N., Barnes, I., Dentener, F. J., Facchini, M. C., Van Dingenen, R., Ervens, B., Nenes, A., Nielsen, C. J., Swietlicki, E., Putaud, J. P., Balkanski, Y., Fuzzi, S., Horth, J., Moortgat, G. K., Winterhalter, R., Myhre, C. E. L., Tsigaridis, K., Vignati, E., Stephanou, E. G., and Wilson, J.: Organic aerosol and global climate modelling: a review, Atmos. Chem. Phys., 5, 1053–1123, https://doi.org/10.5194/acp-5-1053-2005, 2005.
Kangasluoma, J. and Attoui, M.: Review of sub-3 nm condensation particle
counters, calibrations, and cluster generation methods, Aerosol Sci. Tech., 53, 1277–1310, https://doi.org/10.1080/02786826.2019.1654084,
2019.
Karlberg, A.-T., Magnusson, K., and Nilsson, U.: Air oxidation of d-limonene
(the citrus solvent) creates potent allergens, Contact Dermatitis, 26,
332–340, https://doi.org/10.1111/j.1600-0536.1992.tb00129.x, 1992.
Kawamura, K. and Sakaguchi, F.: Molecular distributions of water soluble dicarboxylic acids in marine aerosols over the Pacific Ocean including tropics, J. Geophys.-Res., 104, 3501–3509, 1999.
Khare, P., Kumar, N., Kumari, K. M., and Srivastava, S. S.: Atmospheric
formic acid and acetic acids: an overview, Rev. Geophys., 37, 227–248, 1999.
Kieloaho, A.-J.: Alkyl Amines in Boreal Forest and Urban Area, Doctoral thesis, University of Helsinki, ISBN 9789527091715, http://urn.fi/URN:ISBN:978-952-7091-72-2 (last access: 24 May 2023), 2017.
Kim, H., Park, Y., Kim, W., and Eun, H.: Vertical Aerosol Distribution and
Flux Measurement in the Planetary Boundary Layer Using Drone, Particle and Aerosol Research, 14, 35–40,
2018.
Kim, S. H., Kirakosyan, A., Choi, J., and Kim, J. H.: Detection of volatile
organic compounds (VOCs), aliphatic amines, using highly fluorescent
organic-inorganic hybrid perovskite nanoparticles, Dyes Pigments, 147, 1–5,
https://doi.org/10.1016/j.dyepig.2017.07.066, 2017.
Kim, S. J., Lee, J. Y., Choi, Y. S., Sung, J. M., and Jang, H. W.:
Comparison of different types of SPME arrow sorbents to analyze volatile
compounds in cirsium setidens nakai, Foods, 9, 785,
https://doi.org/10.3390/foods9060785, 2020.
Kivekäs, N., Sun, J., Zhan, M., Kerminen, V.-M., Hyvärinen, A., Komppula, M., Viisanen, Y., Hong, N., Zhang, Y., Kulmala, M., Zhang, X.-C., Deli-Geer, and Lihavainen, H.: Long term particle size distribution measurements at Mount Waliguan, a high-altitude site in inland China, Atmos. Chem. Phys., 9, 5461–5474, https://doi.org/10.5194/acp-9-5461-2009, 2009.
Kopperi, M., Ruiz-Jiménez, J., Hukkinen, J. I., and Riekkola, M. L.: New
way to quantify multiple steroidal compounds in wastewater by comprehensive
two-dimensional gas chromatography-time-of-flight mass spectrometry, Anal.
Chim. Acta, 761, 217–226, https://doi.org/10.1016/j.aca.2012.11.059, 2013.
Kristensen, K., Bilde, M., Aalto, P. P., Petäjä, T., and Glasius,
M.: Denuder/filter sampling of organic acids and organosulfates at urban and
boreal forest sites: Gas/particle distribution and possible sampling
artifacts, Atmos. Environ., 130, 36–53,
https://doi.org/10.1016/j.atmosenv.2015.10.046, 2016.
Kruve, A.: Influence of mobile phase, source parameters and source type on
electrospray ionization efficiency in negative ion mode, J. Mass Spectrom.,
51, 596–601, https://doi.org/10.1002/jms.3790, 2016.
Kulmala, M., Kontkanen, J., Junninen, H., Lehtipalo, K., Manninen, H. E.,
Nieminen, T., Petäjä, T., Sipilä, M., Schobesberger, S.,
Rantala, P., Franchin, A., Jokinen, T., Järvinen, E.,
Äijälä, M., Kangasluoma, J., Hakala, J., Aalto, P. P., Paasonen,
P., Mikkilä, J., Vanhanen, J., Aalto, J., Hakola, H., Makkonen, U.,
Ruuskanen, T., Mauldin, R. L., Duplissy, J., Vehkamäki, H., Bäck,
J., Kortelainen, A., Riipinen, I., Kurtén, T., Johnston, M. V., Smith,
J. N., Ehn, M., Mentel, T. F., Lehtinen, K. E. J., Laaksonen, A., Kerminen,
V. M., and Worsnop, D. R.: Direct observations of atmospheric aerosol
nucleation, Science, 339, 943–946,
https://doi.org/10.1126/science.1227385, 2013.
Kulmala, M., Petäjä, T., Ehn, M., Thornton, J., Sipilä, M.,
Worsnop, D. R., and Kerminen, V. M.: Chemistry of atmospheric nucleation: On
the recent advances on precursor characterization and atmospheric cluster
composition in connection with atmospheric new particle formation, Annu.
Rev. Phys. Chem., 65, 21–37,
https://doi.org/10.1146/annurev-physchem-040412-110014, 2014.
Kumar, R., Barth, M. C., Nair, V. S., Pfister, G. G., Suresh Babu, S., Satheesh, S. K., Krishna Moorthy, K., Carmichael, G. R., Lu, Z., and Streets, D. G.: Sources of black carbon aerosols in South Asia and surrounding regions during the Integrated Campaign for Aerosols, Gases and Radiation Budget (ICARB), Atmos. Chem. Phys., 15, 5415–5428, https://doi.org/10.5194/acp-15-5415-2015, 2015.
Lan, H., Holopainen, J., Hartonen, K., Jussila, M., Ritala, M., and
Riekkola, M. L.: Fully Automated Online Dynamic In-Tube Extraction for
Continuous Sampling of Volatile Organic Compounds in Air, Anal. Chem., 91,
8507–8515, https://doi.org/10.1021/acs.analchem.9b01668, 2019a.
Lan, H., Zhang, W., Smått, J.-H., Koivula, R. T., Hartonen, K., and
Riekkola, M.-L.: Selective extraction of aliphatic amines by functionalized
mesoporous silica-coated solid phase microextraction Arrow, Microchim. Acta,
186, 412, https://doi.org/10.1007/s00604-019-3523-5, 2019b.
Lan, H., Hartonen, K., and Riekkola, M. L.: Miniaturised air sampling
techniques for analysis of volatile organic compounds in air, TrAC-Trend.
Anal. Chem., 126, 115873, https://doi.org/10.1016/j.trac.2020.115873, 2020.
Lan, H., Ruiz-Jimenez, J., Leleev, Y., Demaria, G., Jussila, M., Hartonen,
K., and Riekkola, M.-L.: Quantitative analysis and spatial and temporal
distribution of volatile organic compounds in atmospheric air by utilizing
drone with miniaturized samplers, Chemosphere, 282, 131024,
https://doi.org/10.1016/j.chemosphere.2021.131024, 2021.
Liu, Y., Monod, A., Tritscher, T., Praplan, A. P., DeCarlo, P. F., Temime-Roussel, B., Quivet, E., Marchand, N., Dommen, J., and Baltensperger, U.: Aqueous phase processing of secondary organic aerosol from isoprene photooxidation, Atmos. Chem. Phys., 12, 5879–5895, https://doi.org/10.5194/acp-12-5879-2012, 2012.
McGillen, M. R., Curchod, B. F. E., Chhantyal-Pun, R., Beames, J. M.,
Watson, N., Khan, M. A. H., McMahon, L., Shallcross, D. E., and Orr-Ewing,
A. J.: Criegee Intermediate-Alcohol Reactions, A Potential Source of
Functionalized Hydroperoxides in the Atmosphere, ACS Earth Sp. Chem., 1,
664–672, https://doi.org/10.1021/acsearthspacechem.7b00108, 2017.
McMurry, P. H.: The history of condensation nucleus counters, Aerosol Sci.
Technol., 33, 297–322, https://doi.org/10.1080/02786820050121512, 2000.
Meena, G. S., Mukherjee, S., Buchunde, P., Safai, P. D., Singla, V., Aslam,
M. Y., Sonbawne, S. M., Made, R., Anand, V., Dani, K. K., and Pandithurai,
G.: Seasonal variability and source apportionment of black carbon over a
rural high-altitude and an urban site in western India, Atmos. Pollut. Res.,
12, 32–45, https://doi.org/10.1016/j.apr.2020.10.006, 2021.
Moorthy, K. K. and Babu, S. S.: Aerosol black carbon over Bay of Bengal
observed from an island location, Port Blair: Temporal features and
long-range transport, J. Geophys. Res.-Atmos., 111, 1–10,
https://doi.org/10.1029/2005JD006855, 2006.
Ng, N. L., Kroll, J. H., Chan, A. W. H., Chhabra, P. S., Flagan, R. C., and Seinfeld, J. H.: Secondary organic aerosol formation from m-xylene, toluene, and benzene, Atmos. Chem. Phys., 7, 3909–3922, https://doi.org/10.5194/acp-7-3909-2007, 2007.
Nguyen, H. T. H., Takenaka, N., Bandow, H., Maeda, Y., De Oliva, S. T.,
Botelho, M. M. F., and Tavares, T. M.: Atmospheric alcohols and aldehydes
concentrations measured in Osaka, Japan and in Sao Paulo, Brazil, Atmos.
Environ., 35, 3075–3083, https://doi.org/10.1016/S1352-2310(01)00136-4,
2001.
Oh, H. J., Ma, Y., and Kim, J.: Human inhalation exposure to aerosol and
health effect: Aerosol monitoring and modelling regional deposited doses,
Int. J. Environ. Res. Pu., 17, 1–2,
https://doi.org/10.3390/ijerph17061923, 2020.
Olsen, R., Thorud, S., Hersson, M., Øvrebø, S., Lundanes, E.,
Greibrokk, T., Ellingsen, D. G., Thomassen, Y., and Molander, P.:
Determination of the dialdehyde glyoxal in workroom air - Development of
personal sampling methodology, J. Environ. Monitor., 9, 687–694,
https://doi.org/10.1039/b700105n, 2007.
Pan, X. L., Kanaya, Y., Wang, Z. F., Liu, Y., Pochanart, P., Akimoto, H., Sun, Y. L., Dong, H. B., Li, J., Irie, H., and Takigawa, M.: Correlation of black carbon aerosol and carbon monoxide in the high-altitude environment of Mt. Huang in Eastern China, Atmos. Chem. Phys., 11, 9735–9747, https://doi.org/10.5194/acp-11-9735-2011, 2011.
Parshintsev, J., Ruiz-Jimenez, J., Petäjä, T., Hartonen, K.,
Kulmala, M., and Riekkola, M. L.: Comparison of quartz and Teflon filters
for simultaneous collection of size-separated ultrafine aerosol particles
and gas-phase zero samples, Anal. Bioanal. Chem., 400, 3527–3535,
https://doi.org/10.1007/s00216-011-5041-0, 2011.
Parsons, G. E., Buckton, G., and Chatham, S. M.: The use of surface
energy and polarity determinations to predict physical stability of
non-polar, non-aqueous suspensions, Int. J. Pharm., 83,
163–170, 1992.
Peng, L., Li, Z., Zhang, G., Bi, X., Hu, W., Tang, M., Wang, X., Peng, P.,
and Sheng, G.: A review of measurement techniques for aerosol effective
density, Sci. Total Environ., 778, 146248,
https://doi.org/10.1016/j.scitotenv.2021.146248, 2021.
Perez, J. E., Kumar, M., Francisco, J. S., and Sinha, A.: Oxygenate-Induced
Tuning of Aldehyde-Amine Reactivity and Its Atmospheric Implications, J.
Phys. Chem. A, 121, 1022–1031, https://doi.org/10.1021/acs.jpca.6b10845,
2017.
Petäjä, T., Rannik, Ü., Buzorius, G., Aalto, P., Vesala, T., and
Kulmala, M.: Deposition Velocities of Ultrafine Particles Into Scots Pine
Forest During Nucleation Events, J. Aerosol Sci., 32, 143–144,
https://doi.org/10.1016/s0021-8502(21)00068-9, 2001.
Petäjä, T., Laakso, L., Grönholm, T., Launiainen, S.,
Evele-Peltoniemi, I., Virkkula, A., Leskinen, A., Backman, J., Manninen, H.
E., Sipilä, M., Haapanala, S., Hämeri, K., Vanhala, E., Tuomi, T.,
Paatero, J., Aurela, M., Hakola, H., Makkonen, U., Hellén, H., Hillamo,
R., Vira, J., Prank, M., Sofiev, M., Siitari-Kauppi, M., Laaksonen, A.,
lehtinen, K. E. J., Kulmala, M., Viisanen, Y., and Kerminen, V. M.: In-situ
observations of Eyjafjallajökull ash particles by hot-air balloon,
Atmos. Environ., 48, 104–112,
https://doi.org/10.1016/j.atmosenv.2011.08.046, 2012.
Pusfitasari, E. D., Ruiz-Jimenez, J., Heiskanen, I., Jussila, M., Hartonen,
K., and Riekkola, M.-L.: Aerial drone furnished with miniaturized versatile
air sampling systems for selective collection of nitrogen containing
compounds in boreal forest, Sci. Total Environ., 808, 152011,
https://doi.org/10.1016/J.SCITOTENV.2021.152011, 2022.
Rajesh, T. A. and Ramachandran, S.: Black carbon aerosols over urban and
high altitude remote regions: Characteristics and radiative implications,
Atmos. Environ., 194, 110–122,
https://doi.org/10.1016/j.atmosenv.2018.09.023, 2018.
Rinaldi, M., Decesari, S., Carbone, C., Finessi, E., Fuzzi, S., Ceburnis,
D., O'Dowd, C. D., Sciare, J., Burrows, J. P., Vrekoussis, M., Ervens, B.,
Tsigaridis, K., and Facchini, M. C.: Evidence of a natural marine source of
oxalic acid and a possible link to glyoxal, J. Geophys. Res.-Atmos., 116,
1–12, https://doi.org/10.1029/2011JD015659, 2011.
Rosado-Reyes, C. M. and Francisco, J. S.: Atmospheric oxidation pathways of
acetic acid, J. Phys. Chem. A, 110, 4419–4433,
https://doi.org/10.1021/jp0567974, 2006.
Ruiz-Jimenez, J., Zanca, N., Lan, H., Jussila, M., Hartonen, K., and
Riekkola, M. L.: Aerial drone as a carrier for miniaturized air sampling
systems, J. Chromatogr. A, 1597, 202–208,
https://doi.org/10.1016/j.chroma.2019.04.009, 2019.
Safai, P. D., Kewat, S., Praveen, P. S., Rao, P. S. P., Momin, G. A., Ali,
K., and Devara, P. C. S.: Seasonal variation of black carbon aerosols over a
tropical urban city of Pune, India, Atmos. Environ., 41, 2699–2709,
https://doi.org/10.1016/j.atmosenv.2006.11.044, 2007.
Sandeep, K., Panicker, A. S., Gautam, A. S., Beig, G., Gandhi, N., Sanjeev, S.,
Shankar, R., and Nainwal, H. C.: Black carbon over a high altitude Central
Himalayan Glacier: Variability, transport, and radiative impacts, Environ.
Res., 204, 112017,https://doi.org/10.1016/j.envres.2021.112017, 2022.
Sato, K., Ikemori, F., Ramasamy, S., Fushimi, A., Kumagai, K., Iijima, A.,
and Morino, Y.: Four- and five-carbon dicarboxylic acids present in
secondary organic aerosol produced from anthropogenic and biogenic volatile
organic compounds, Atmosphere-Basel, 12, 1703,
https://doi.org/10.3390/atmos12121703, 2021.
Sinclair, V. A., Ritvanen, J., Urbancic, G., Statnaia, I., Batrak, Y., Moisseev, D., and Kurppa, M.: Boundary-layer height and surface stability at Hyytiälä, Finland, in ERA5 and observations, Atmos. Meas. Tech., 15, 3075–3103, https://doi.org/10.5194/amt-15-3075-2022, 2022.
Takahama, S., Schwartz, R. E., Russell, L. M., Macdonald, A. M., Sharma, S., and Leaitch, W. R.: Organic functional groups in aerosol particles from burning and non-burning forest emissions at a high-elevation mountain site, Atmos. Chem. Phys., 11, 6367–6386, https://doi.org/10.5194/acp-11-6367-2011, 2011.
Teich, M., Schmidtpott, M., van Pinxteren, D., Chen, J., and Herrmann, H.:
Separation and quantification of imidazoles in atmospheric particles using
LC-Orbitrap-MS, J. Sep. Sci., 43, 577–589,
https://doi.org/10.1002/jssc.201900689, 2020.
Tripathi, S. N., Srivastava, A. K., Dey, S., Satheesh, S. K., and
Krishnamoorthy, K.: The vertical profile of atmospheric heating rate of
black carbon aerosols at Kanpur in northern India, Atmos. Environ., 41,
6909–6915, https://doi.org/10.1016/j.atmosenv.2007.06.032, 2007.
Weingartner, E., Saathoff, H., Schnaiter, M., Streit, N., Bitnar, B., and
Baltensperger, U.: Absorption of light by soot particles: Determination of
the absorption coefficient by means of aethalometers, J. Aerosol Sci., 34,
1445–1463, https://doi.org/10.1016/S0021-8502(03)00359-8, 2003.
Wen, L., Schaefer, T., He, L., Zhang, Y., Sun, X., Ventura, O. N., and
Herrmann, H.: T- And pH-Dependent Kinetics of the Reactions of ⋅OH(aq)with Glutaric and Adipic Acid for Atmospheric Aqueous-Phase Chemistry,
ACS Earth Sp. Chem., 5, 1854–1864,
https://doi.org/10.1021/acsearthspacechem.1c00163, 2021.
Yassaa, N., Brancaleoni, E., Frattoni, M., and Ciccioli, P.: Isomeric
analysis of BTEXs in the atmosphere using β-cyclodextrin capillary
chromatography coupled with thermal desorption and mass spectrometry,
Chemosphere, 63, 502–508,
https://doi.org/10.1016/j.chemosphere.2005.08.010, 2006.
Youn, J.-S., Crosbie, E., Maudlin, L. C., Wang, Z., and Sorooshian, A.:
Dimethylamine as a major alkyl amine species in particles and cloud water:
Observations in semi-arid and coastal regions, Atmos. Environ., 122,
250–258, https://doi.org/10.1016/j.atmosenv.2015.09.061, 2015.
Yu, K., Mitch, W. A., and Dai, N.: Nitrosamines and Nitramines in
Amine-Based Carbon Dioxide Capture Systems: Fundamentals, Engineering
Implications, and Knowledge Gaps, Environ. Sci. Technol., 51, 11522–11536,
https://doi.org/10.1021/acs.est.7b02597, 2017.
Zahardis, J., Geddes, S., and Petrucci, G. A.: The ozonolysis of primary aliphatic amines in fine particles, Atmos. Chem. Phys., 8, 1181–1194, https://doi.org/10.5194/acp-8-1181-2008, 2008.
Zhang, R., Shen, J., Xie, H.-B., Chen, J., and Elm, J.: The role of organic acids in new particle formation from methanesulfonic acid and methylamine, Atmos. Chem. Phys., 22, 2639–2650, https://doi.org/10.5194/acp-22-2639-2022, 2022.
Zhang, Y., Wang, X., Wen, S., Herrmann, H., Yang, W., Huang, X., Zhang, Z.,
Huang, Z., He, Q., and George, C.: On-road vehicle emissions of glyoxal and
methylglyoxal from tunnel tests in urban Guangzhou, China, Atmos. Environ.,
127, 55–60, https://doi.org/10.1016/j.atmosenv.2015.12.017, 2016.
Zhao, Y. L., Garrison, S. L., Gonzalez, C., Thweatt, W. D., and Marquez, M.:
N-nitrosation of amines by NO2 and NO: A theoretical study, J. Phys. Chem.-A, 111, 2200–2205, https://doi.org/10.1021/jp0677703, 2007.
Ziemann, P. J. and Atkinson, R.: Kinetics, products, and mechanisms of
secondary organic aerosol formation, Chem. Soc. Rev., 41, 6582–6605,
https://doi.org/10.1039/c2cs35122f, 2012.
Short summary
A miniaturized air-sampling drone system was successfully applied for the collection of volatile organic compounds (VOCs) and for the measurement of black carbon (BC) and total particle number concentrations in atmospheric air. Here we report, for the first time, the vertical profiles of BC and aerosol number concentrations above the boreal forest in Hyytiälä (Finland) at high altitudes close to the boundary layer in autumn 2021. VOC composition with its distribution was studied as well.
A miniaturized air-sampling drone system was successfully applied for the collection of volatile...
Altmetrics
Final-revised paper
Preprint