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Abstract. The increase in volatile organic compound (VOC) emissions released into the atmosphere is one of
the main threats to human health and climate. VOCs can adversely affect human life through their contribution
to air pollution directly and indirectly by reacting via several mechanisms in the air to form secondary organic
aerosols. In this study, an aerial drone equipped with miniaturized air-sampling systems including up to four
solid-phase microextraction (SPME) Arrows and four in-tube extraction (ITEX) samplers for the collection of
VOCs, along with portable devices for the real-time measurement of black carbon (BC) and total particle num-
bers at high altitudes was exploited. In total, 135 air samples were collected under optimal sampling conditions
from 4 to 14 October 2021 at the boreal forest SMEAR II station, Finland. A total of 48 different VOCs, in-
cluding nitrogen-containing compounds, alcohols, aldehydes, ketones, organic acids, and hydrocarbons, were
detected at different altitudes from 50 to 400 m above ground level with concentrations of up to 6898 ng m−3 in
the gas phase and 8613 ng m−3 in the particle phase. Clear differences in VOC distributions were seen in samples
collected from different altitudes, depending on the VOC sources. It was also possible to collect aerosol particles
by the filter accessory attached on the ITEX sampling system, and five dicarboxylic acids were quantified with
concentrations of 0.43 to 10.9 µg m−3. BC and total particle number measurements provided similar diurnal pat-
terns, indicating their correlation. For spatial distribution, BC concentrations were increased at higher altitudes,
being 2278 ng m−3 at 100 m and 3909 ng m−3 at 400 m. The measurements aboard the drone provided insights
into horizontal and vertical variability in BC and aerosol number concentrations above the boreal forest.
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1 Introduction

The global phenomenon of climate change has attracted huge
attention in the past decades. Atmospheric aerosol particles
can influence the climate system directly by scattering sun-
light, transmission, and absorption of radiation and indirectly
by acting as nuclei for cloud formation (Hemmilä, 2020; Kim
et al., 2017; Oh et al., 2020). Fine aerosol particles have sizes
close to the wavelength range of visible light; therefore, they
are expected to have a stronger climatic impact than larger
particles (Kanakidou et al., 2005). In addition, aerosol par-
ticles also have an adverse effect on air quality and human
health by exposing a human’s respiratory system to aerosol
particulate matter (PM) that can get into lungs and translo-
cate into vital organs due to their tiny size (Fu et al., 2013).

The formation and growth process of aerosol particles
have been studied by many research groups (Ahlberg et al.,
2017; Camredon et al., 2007; Casquero-Vera et al., 2020;
Kulmala et al., 2013, 2014; Peng et al., 2021; Ziemann and
Atkinson, 2012). To study particle formation in the atmo-
sphere, it is important to assess the possible sources of the at-
mospheric particles, e.g., by the presence of volatile organic
compounds (VOCs). Hydrocarbons and amines, for example,
have been extensively investigated by modeling or by labora-
tory chamber experiments to show their contribution to sec-
ondary organic aerosol (SOA) formation. These VOCs, along
with other thousands of organic gaseous trace species, are di-
rectly emitted from biogenic and anthropogenic sources. In
the atmosphere, VOCs are oxidized by reactions with atmo-
spheric oxidants such as O−3 , OH−, NO−3 , and Cl− radicals
to form less-volatile products and subsequently partition into
aerosol particles, leading to SOA formation (Almeida et al.,
2013; Kulmala et al., 2014; Zahardis et al., 2008; Ziemann
and Atkinson, 2012). The SOAs then become the major com-
ponents of fine aerosol particulate matter, such as PM10 and
PM2.5, which pollutes the environment (Fermo et al., 2021;
Ge et al., 2011; Kulmala et al., 2014).

Another important component that contributes to air pol-
lution is black carbon (BC), which is emitted mostly as a
byproduct of fossil fuel combustion and biomass burning
(Hyvärinen et al., 2011). In addition, industry, energy pro-
duction, and domestic cooking contribute to BC in the atmo-
sphere (Kumar et al., 2015). BC has been associated with ad-
verse effects on human health, such as premature mortality,
as well as on earth temperature and climate, since it absorbs
solar radiation very strongly (Anenberg et al., 2012; Jacob-
son, 2010).

In addition to VOCs and BC, atmospheric organic acids,
such as low-molecular-weight (LMW) dicarboxylic acids,
are also recognized as ubiquitous aerosol constituents in the
urban region. As highly water-soluble compounds, they have
the capability to significantly enhance the hygroscopicity of
aerosol particles (Kanakidou et al., 2005). LMW diacids can
be emitted from biomass burning, vehicular exhausts, and
natural marine ecosystems. They can also be produced from

the atmospheric photo-oxidation of various organic precur-
sors (Fu et al., 2013; Kawamura and Sakaguchi, 1999; Ri-
naldi et al., 2011).

Condensation particle counters (CPCs) are important de-
vices for the measurement of aerosol number concentrations
and aerosol particle fluxes (McMurry, 2000; Kangasluoma
and Attoui, 2019; Petäjä et al., 2001). CPCs are commonly
used in ambient air quality monitoring to measure the num-
ber concentration of airborne submicron particles with sizes
down to a few nanometers (Asbach et al., 2017; Buzorius et
al., 1998). Conventional CPCs have generally not been used
as portable devices due to their weight and size. However,
recently, small CPCs are emerging and are being deployed,
for example, for vertical profiling aboard drones (Kim et al.,
2018; Carnerero et al., 2018) and other platforms (Petäjä et
al., 2012).

In our previous research, we used reliable and versatile
miniaturized air-sampling (MAS) techniques, which have
many benefits for on-site sampling, such as small size, low
sampling time, environmental friendliness, easy operation,
and flexibility for practical applications and automation (Lan
et al., 2020; Pusfitasari et al., 2022; Ruiz-Jimenez et al.,
2019). Solid-phase microextraction (SPME) Arrow and in-
tube extraction (ITEX) sampling systems have been success-
fully employed for the reliable collection of VOCs from am-
bient air samples (Lan et al., 2019a, b; Pusfitasari et al.,
2022). An exhaustive sampling technique, the ITEX sam-
pling system, with large sorbent volume can be fully auto-
mated, and it provides continuous air sampling, reliable anal-
ysis, and quantification (Lan et al., 2019a; Pusfitasari et al.,
2022). As an active sampler, the ITEX system allows for
the simultaneous collection of gas- and particle-phase com-
pounds. Extra sampling accessories, including adsorbent trap
and filter accessories together with ITEX, have enhanced the
selectivity of the sampling system and allowed the ITEX sys-
tem to collect only the gas phase (Pusfitasari et al., 2022).
After sample collection, the compounds were desorbed from
the samplers, separated, and detected by thermal desorption
(TD) gas chromatography–mass spectrometry (GC-MS).

In this study, the sampling of VOCs and measurement of
total particle number concentration and black carbon (BC)
directly at various altitudes, from 50 to 400 m, were per-
formed using an aerial drone as the platform as in our previ-
ous research (Lan et al., 2021; Pusfitasari et al., 2022; Ruiz-
Jimenez et al., 2019). The sampling platform contained now
up to four SPME Arrows and four ITEX units, with an ad-
ditional portable commercial BC device for BC real-time
measurement and a lab-made portable CPC for total particle
number observation. The compositions of different gas-phase
fractions collected by both the SPME Arrow and ITEX sys-
tems, aerosol particles collected by the ITEX sampling sys-
tem including filter accessory, and BC and particle numbers
were evaluated at different altitudes and temporal variations
at the boreal forest SMEAR II station in October 2021. In ad-
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dition, the possible correlation between VOCs, BC, and total
particle number concentrations was also clarified.

2 Materials and methods

2.1 Reagent and materials

Detailed information of reagents used, including their puri-
ties, is given in the Supplement S1.

Empty ITEX units, divinylbenzene-polydimethylsiloxane
(DVB-PDMS), and carbon-coated WR-SPME Arrow sys-
tems were purchased from BGB Analytik AG (Zurich,
Switzerland). TENAX-GR was purchased from Altech
(Deerfield, IL, USA). The mesoporous silica-based materi-
als, the Mobil Composition of Matter No. 41 (MCM-41), and
titanium hydrogen phosphate-modified (MCM-41-TP) mate-
rials were synthesized via solgel template as described in our
previous publication (Lan et al., 2019b). The instructions for
ITEX packing with 30 mg MCM-41-TP and 60 mg TENAX-
GR are described in Lan et al. (2019a). The preparation of
MCM-41-SPME Arrow with the sorbent thickness of 40 µm
and length of 20 mm is found in Lan et al. (2019b).

2.2 Instrumentation

A lab-made permeation system was employed to create an ar-
tificial gas-phase sample in the laboratory (Lan et al., 2019a,
2021; Pusfitasari et al., 2022). A PAL Cycle Composer and
PAL RTC autosampler that were used for sample collection
and desorption in the laboratory were from CTC Analytics
(Zwingen, Switzerland). An Agilent 6890N gas chromato-
graph coupled with an Agilent 5975C mass spectrometer
(Agilent Technologies, Pittsburg, PA, USA) was used for the
method optimization and quality assurance tests for air sam-
ples in the laboratory. For on-site analysis, an Agilent 6890
N gas chromatograph (Agilent Technologies, Pittsburg, PA,
USA) equipped with a lab-made ITEX heater for thermal
desorption was employed and coupled to an Agilent 5973
mass spectrometer. The GC capillary column used for the
chromatographic separations was an InertCap™ for amines
(30 m length× 0.25 mm i.d., without any information for the
film thickness, GL Sciences, Tokyo, Japan).

For organic acid determination, an Agilent 1260 Infin-
ity high-performance liquid chromatography (HPLC) system
equipped with a binary pump, autosampler, degassing unit,
and a column compartment were employed and coupled to
an Agilent 6420 triple-quadrupole mass spectrometer with
electrospray ion source (ESI) (Agilent Technologies, Palo
Alto, CA, USA). Chromatographic separations were per-
formed with a 2.1× 150 mm SeQuant®ZIC®-cHILIC (3 µm
particle size) hydrophilic interaction liquid chromatography
(HILIC) column (Merck KGaA, Darmstadt, Germany). A
KrudKatcher ULTRA HPLC in-line filter (0.5 µm) from Phe-
nomenex Inc (Torrance, CA, USA) protected the column
from particulate impurities.

2.3 Drone platform construction

A remote-controlled Geodrone X4L (Videodrone, Finland),
similar to that used in our previous studies (Lan et al.,
2021; Pusfitasari et al., 2022) with some modifications,
was employed to carry out miniaturized air sampling and
analyses (Fig. 1). With the dimension of 58× 58× 37 cm
(width× depth× height), it could carry the modified sam-
pling box including our MAS system (up to four SPME Ar-
row units and up to four ITEXs) with a new, light sampling
pump for the ITEX system. In addition, some portable de-
vices were also attached to the drone to measure black car-
bon (BC) and particle sizes by condensation particle counter
(CPC). The BC portable device in the field was an AethLabs
AE51-S6-1408, with an application version of 2.2.4.0 (San
Francisco, CA, USA). It was operated at 880 nm wavelength,
with an airflow rate of 99 mL min−1. The portable CPC was
laboratory made. The portable CPC measured total aerosol
particle number concentration between sizes from 20 nm and
5 µm. The references for BC and particle concentrations were
measured at the boreal forest SMEAR II station at an altitude
of 4 m by an AE33 (operated at 880 nm) and an aerosol elec-
trometer (TSI 3772), respectively.

2.4 Gas chromatography–mass spectrometry analysis

The SPME Arrow and ITEX sampling systems were precon-
ditioned at 250 ◦C for 10 min under inert N2 gas. Prior to
sampling, decafluorobiphenyl vapor (as an internal standard)
was spiked to SPME Arrow and ITEX for 1 min and 5 mL,
respectively. After sampling, the SPME Arrow unit was in-
jected to the GC inlet to desorb the analytes at a temperature
of 250 ◦C for 1 min, while for ITEX, 800 µL of He was as-
pirated to the ITEX syringe, and the analytes were desorbed
at a temperature of 250 ◦C and injected into the GC-MS sys-
tem by moving the plunger down with the injection speed of
200 µL s−1. All the analyses were done in splitless injection
at 250 ◦C. For chromatographic separations, the GC oven
temperature was programmed from 40 ◦C (held for 2 min)
to 250 ◦C (held for 10 min) at a rate of 20 ◦C min−1. The
temperature of transfer line, ion source, and quadrupole were
250, 230, and 150 ◦C, respectively. Electron ionization (EI)
mode (70 eV) was used, and the scan range was fromm/z 15
to 350. Helium (99.996 %, AGA, Espoo, Finland) was used
as a carrier gas at a constant flow rate of 1.2 mL min−1.

2.5 Hydrophilic interaction liquid
chromatography–tandem mass spectrometry
method for organic acid analysis

Acetonitrile (ACN) was used as the main organic solvent
containing 0.01 % of formic acid (FA) (as Eluent A), while
Eluent B was aqueous 0.01 % FA solution. The applied liquid
chromatography (LC) gradient was the following: 5 % B (0–
6 min), 5 % to 20 % B (5–18 min), and post run for 15 min.
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The flow rate for the analysis was 0.25 mL min−1, and col-
umn temperature was maintained at 40 ◦C. The injection vol-
ume was 10 µL. The LC system was coupled to the triple
quadrupole mass spectrometer equipped with ESI. The ion
source was operated in both positive and negative modes.

2.6 Method development, quality control, and quality
assurance studies

The optimization study for the MCM-41-TP-ITEX system,
including optimization of the adsorption and desorption pro-
cesses, sampling kinetics, breakthrough volume, and the re-
covery of the storage time, has been carried out in our pre-
vious study using multivariate analysis (Pusfitasari et al.,
2022). The evaluation and validation of SPME Arrow units
coated with MCM-41, DVB-PDMS, and carbon wide range
(Carbon WR) for the sampling of VOCs have also been stud-
ied in our previous research (Helin et al., 2015; Lan et al.,
2019b).

For the TENAX-GR-ITEX sampler, the same method de-
velopment and validation including the determination of op-
timum flow rate, repeatability, reproducibility, and sample
storage were done by using our laboratory-made autosam-
pler. The repeatability and reproducibility of the TENAX-
GR-ITEX system were studied by analyzing the model com-
pounds with five different ITEX units five times each. The
sampling flow rate (47 mL min−1) was measured at least
once for each ITEX during the comparison.

The storage study was performed by keeping the TENAX-
GR-ITEX system at room temperature and in a freezer
(−20◦C). The purpose was to monitor how conditions affect
the adsorption of chemicals in the surrounding environment
to TENAX-GR during storage. The retainment of adsorbed
analytes in different conditions was also monitored. The dif-
ference in recovery between control sample (not stored) and
stored sample was regarded as the loss of the compound.

2.7 Application, measurement sites, and sample
collection in the field

The field sampling was carried out at the SMEAR II sta-
tion (Station for Measuring Ecosystem–Atmosphere Rela-
tions; Hari and Kulmala, 2005; with the coordinates of
61.84263◦ N, 24.29013◦ E), Hyytiälä, from 4 to 14 October
2021. As many as 53 drone flights were performed, and 135
air samples in total were collected (67 samples were col-
lected using ITEX and 68 using SPME Arrow sampling sys-
tems). Table 1 shows the summary of sampling and measure-
ment techniques used in this study.

SPME Arrow units with different coating materials,
DVB/PDMS, MCM-41, Carbon WR, were exploited to col-
lect gas-phase samples. MCM-41-TP-ITEX and TENAX-
GR-ITEX sampling systems were used to simultaneously
collect the gas phase and particles. In the field study, the
measured ITEX airflow ranged from 40 to 78 mL min−1. The

flow was carefully measured before the sampling and after
analyte desorption. ITEX sampling volumes were then ob-
tained by multiplying the value of ITEX airflow rate with the
sampling time. Other sampling variables, such as sampling
location, remained constant.

To study the average composition of VOCs in the atmo-
sphere (Sect. 3.3), the samples were collected simultaneously
by ITEX and SPME Arrow systems located on the drone at
altitudes from 50 to 400 m. Composition samples were col-
lected for 2 min at each altitude and during the descending
of the drone by starting at the highest altitude of 400 m, fol-
lowed by 300, 200, 100, and 50 m (Supplement Fig. S1). In
this case, the total sampling time was 13–14 min (consisting
of a total of 10 min at different altitudes and 3–4 min when
the drone was descending from 400 to 50 m), with a total
flight time close to 20 min including takeoff and landing.

The VOC composition at altitudes of 50 and 400 m was
also separately determined (Sect. 3.6). A detailed schematic
picture of our sampling system is seen in Supplement Fig. S2
(sampling at 50 m for 10 min) and Supplement Fig. S3 (sam-
pling at 400 m for 10 min).

Evaluation of ITEX sampling with the filter accessory was
also studied (Sect. 3.4). TENAX-GR-ITEX furnished with
the filter accessory was employed to collect the gas phase
only. A polytetrafluoroethylene (PTFE) filter with a pore size
of 0.2 µm (diameter of 13 mm, VWR) was used as the ITEX
filter accessory to remove aerosol particles from the natu-
ral air samples. The results obtained were directly compared
with those achieved by the Carbon WR-SPME Arrow sam-
pling system. The recovery was calculated from the differ-
ence between concentrations obtained by SPME Arrow and
by ITEX furnished with the filter accessory. Details about the
experiments, sampling time, and altitudes are found in Sup-
plement Fig. S1.

The suitability of the particle trap for subsequent analysis
was evaluated by the determination of the organic acids re-
tained or adsorbed in the filter accessory (Sect. 3.5). Sample
collection from drone at the altitude from 50 to 400 m is seen
in Supplement Fig. S4. Aerosol particles were collected onto
the filter attached to the ITEX unit in the drone. All the col-
lected samples were wrapped in aluminum foil and placed
into separate Minigrip bags which were stored in a freezer
(−20 ◦C) prior to analysis.

Portable BC and CPC devices were always active for mea-
suring BC and total particle numbers during the flight of
the drone. The detected BC and total particle numbers ob-
tained with our portable devices were then compared with
those obtained with reference devices at the SMEAR II sta-
tion (Sect. 3.7).

2.8 Data processing and statistical analysis

Agilent ChemStation and Agilent Mass Hunter software
were exploited for basic data processing, such as peak iden-
tification and integration. Mzmine2 (version 2.53) software,
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Table 1. Summary of target species, sampling, and measurement techniques.

Target species Sample phase Sampler Experiment(s) Measurement technique

VOCs Gas phase ITEX + filter Sect. 3.4 GC-MS
VOCs Gas phase SPME Arrow Sect. 3.3, 3.4, and 3.6 GC-MS
VOCs Particle phase ITEX Sect. 3.3 and 3.6 GC-MS
Carboxylic acids Particle phase Filter accessory Sect. 3.5 HILIC-MS/MS
Black carbon Particle phase Portable AethLabs Sect. 3.7 Real-time by portable AethLabs
Total particle number Particle phase Portable CPC Sect. 3.7 Real-time portable CPC

consisting of an algorithm automated data analysis pipeline
(ADAP-GC), was used for pre-processing untargeted mass
spectrometric data for detection, deconvolution, and align-
ment of the chromatographic peaks in natural samples (Ruiz-
Jimenez et al., 2019; Lan et al., 2021; Pusfitasari et al.,
2022). The NIST2020 (NIST MS Search v.2.3) mass spectral
database was used to check and compare the mass spectra of
the aligned peaks as well as their retention indices. The iden-
tified compounds should have a spectral match of >800 and
±45 as the maximum difference between experimental and
library Kováts retention indices.

Partial least squares regression (PLSR) equations were
developed for the quantification and semi-quantification of
the detected compounds in natural air samples (Kopperi et
al., 2013; Lan et al., 2021; Pusfitasari et al., 2022). To de-
velop different PLSR equations for the quantification/semi-
quantification of potentially identified compounds, six dif-
ferent concentration levels of 19 detected compounds (i.e.,
pyridine; sec-butylamine; 1-butanamine; butanenitrile; 2-
propen-1-amine; diethylamine; dimethylformamide; hexy-
lamine; trimethylamine; nonane; isobutanol; ethylacetate;
methyl isobutyl ketone; hexanal; 2,3-butanedione; benzalde-
hyde; acetophenone; p-cymene; and ethyl benzene) were col-
lected and analyzed under optimal experimental conditions.
Afterwards, the data were used for the development of the
PLSR equation.

Total particle numbers measured by the reference in-
strument, an aerosol electrometer TSI 3772 at the altitude
of 4 m (ground level), were downloaded directly from the
SmartSMEAR open-access database: https://smear.avaa.csc.
fi/ (last access: 6 October 2022; Junninen et al., 2009).

The measured VOC values that were collected by the
ITEX sampling system and BC as well as total particle num-
bers at different altitudes were calculated to the same pres-
sure level so that they could be compared to literature values
(Brasseur et al., 1999; Kivekäs et al., 2009; Rajesh and Ra-
machandran, 2018). In this study, the reading values were
corrected for ambient pressure and temperature as the fol-
lowing:

A=mA

[
P0T

PT0

]−1

, (1)

where A is the corrected value, mA is the measured
raw concentration, P0 is the standard atmospheric pressure
(101.3 kPa), T0 is the standard temperature (293 K), P is the
ambient atmospheric pressure, and T is the ambient temper-
ature. Supplement Table S1 shows the data at ambient tem-
peratures and pressures used in this study, as well as the cal-
culated correction factors at different altitudes. In the case of
VOC concentrations collected by SPME Arrows, no correc-
tion was applied since the equilibrium constant for current
adsorbents and compounds was not studied at various pres-
sures and temperatures.

3 Results and discussion

3.1 Optimization of the sampling techniques using gas
chromatography–mass spectrometry

The choice of coating materials for SPME Arrow sampling
systems was based on the good selectivity of MCM-41 for
nitrogen-containing compounds, suitability of DVB/PDMS
for most of the VOCs present in the air samples, and the ca-
pability of Carbon WR to collect volatile compounds, which
cover a wide range of polarity and have a good reproducibil-
ity (Kim et al., 2020; Lan et al., 2019b; Ruiz-Jimenez et
al., 2019). For the ITEX sampling system, MCM-41-TP was
chosen as a sorbent material since it has proved to have good
selectivity towards nitrogen-containing compounds, while
TENAX-GR was selected due to its good capability to col-
lect different VOCs present in the air (Lan et al., 2019a; Pus-
fitasari et al., 2022).

The optimization containing equilibrium sampling time
for SPME Arrow sampling systems; breakthrough volume
for the MCM-41-TP-ITEX; and desorption temperature and
desorption time towards representative compounds such as
diethylamine, isobutylamine, triethylamine, trimethylamine,
pyridine, p-cymene, 2-butanol, and 2-butanone have been
tested in our previous studies (Pusfitasari et al., 2022).
Briefly, the average sampling time that is used before
reaching equilibrium for both MCM-41-SPME Arrow and
DVB/PDMS-SPME Arrow units is about 20 min. The clean-
ing and desorption conditions of 250 ◦C for 10 and 1 min,
respectively, were selected to be optimal for the conditioning
and analysis. The Carbon WR-SPME Arrow sampling sys-
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tem was also treated in the same way in terms of conditioning
and desorption methods.

In our previous study, TENAX-GR as the sorbent for
the ITEX’s trap accessory was able to adsorb mostly non-
nitrogen-containing compounds and only a small amount of
nitrogen-containing compounds (Pusfitasari et al., 2022). In
the present study, universal TENAX-GR was used as the
ITEX sorbent material to collect air samples. Desorption and
conditioning processes were optimized using a previously
developed methodology and optimal conditions similar to the
MCM-41-TP-ITEX system with selective sorbent (Sect. 2.4).
The repeatability of the TENAX-GR-ITEX sampler was also
tested, with the relative standard deviation (RSD) between
3.4 % and 7.1 % (Supplement Tables S2 and S3), whereas
the reproducibility between different ITEX units also caused
by ITEX manual packing was between 4 % and 18 %.

The sampling systems used in this study needed to be
stored for a certain period of time before analysis to ac-
commodate the on-field situation. In our previous study, the
sorbent in the MCM-41-TP-ITEX system could be stored at
−20 ◦C up to 18 h without losing much of the model com-
pounds, with recoveries of around 80 % (Pusfitasari et al.,
2021). For the TENAX-GR sorbent, recoveries of 98 % were
obtained after storage at−20 ◦C for 24 h but only 78 % when
the sorbent was stored at room temperature for 24 h. In this
study, the samples collected at the SMEAR II station had to
be analyzed after storage of around 2 h since the samplers
were needed for the upcoming field measurements. There-
fore, both MCM-41-TP-ITEX and TENAX-GR-ITEX sys-
tems were stored at room temperature for only a few hours
before the analysis.

3.2 Optimization of organic acid analysis using
hydrophilic interaction liquid chromatography
(HILIC)–tandem mass spectrometry

HILIC-ESI-MS/MS was employed for analysis of organic
acids from filter samples. Eighteen different acids were suc-
cessfully identified, and five of them were quantified using
the optimized method. For the 18 model acids, the HILIC
mobile phase with composition of 80 % ACN (solvent A)
and 20 % of 0.05 % FA (solvent B) was chosen as the best
eluent for acid separation (Supplement Table S4). The sec-
ond optimized parameter was drying gas temperature, which
is an important parameter in the ESI technique to allow the
eluent from the HILIC column to evaporate as rapidly as pos-
sible in the ion source (Kruve, 2016). In this study, using
the selected optimum eluent, i.e., ACN (80 %) and 0.05 %
FA (20 %), with the flow rate of 0.25 mL min−1, the drying
gas temperature of 275 ◦C was selected as the optimum tem-
perature. Supplement Table S5 shows the established multi-
ple reaction monitoring (MRM) method parameters for each
compound using all optimized parameters including the op-
timized voltages for other crucial parameters, namely frag-

mentor voltage, collision energy, and cell acceleration volt-
age (CAV).

3.3 Application of the air-sampling system at altitudes
from 50 to 400 m

In this study, the mesoporous silica-based materials, namely
MCM-41 and MCM-41-TP, were used to selectively collect
nitrogen-containing compounds (Lan et al., 2019b; Pusfi-
tasari et al., 2022), whereas the commercial universal materi-
als, TENAX-GR and DVB/PDMS, were also used to collect
compounds other than nitrogen-containing compounds.

The MCM-41-TP-ITEX and TENAX-GR-ITEX sampling
systems were used to collect atmospheric air samples con-
taining both the gas phase and aerosol particles, while the
samples containing only the gas phase were collected by the
MCM-41-SPME Arrow and DVB/PDMS-SPME Arrow sys-
tems. The concentrations in aerosol particles were obtained
via the subtraction of these results, i.e., MCM-41-TP-ITEX
subtracted from MCM-41-SPME Arrow and TENAX-GR-
ITEX subtracted from the DVB/PDMS-SPME Arrow.

Altogether, up to 40 VOCs were detected in the gas phase
and 48 were in particle-phase samples. VOCs with various
functional groups such as nitrogen-containing compounds,
alcohols, ketones, aldehydes, small organic acids, and hy-
drocarbons were detected both by selective MCM-41-coated
SPME Arrow and MCM-41-TP-ITEX sampling systems as
well as by universal sorbent materials TENAX-GR-ITEX
and DVB/PDMS-coated SPME Arrow systems. However,
because in our previous study (Lan et al., 2019b; Pusfi-
tasari et al., 2022), the MCM-41-SPME Arrow and MCM-
41-TP-ITEX samplers gave sensitive and reliable results
in selectively collecting nitrogen compounds, only the re-
sults obtained by the MCM-41-SPME Arrow and MCM-41-
TP-ITEX samplers are shown for nitrogen-containing com-
pounds in this section. Data for other VOCs were collected
using ITEX, with universal sorbent materials TENAX-GR
and using DVB/PDMS-coated SPME Arrow.

As can be seen from Fig. 2, eleven aliphatic amines
(methylamine; dimethylamine; sec-butylamine; 2-propen-
1-amine; 2-methyl-2propanamine; 1-butanamine; 2-
pentanamine; 1-hexanamine; n-hexylmethylamine; 4-
heptylamine; N,1-dimethylhexylamine) and seven other
nitrogen-containing compounds (formamide, 2-amino-
1-propanol, ethylmethylcarbamate, 2-propenamide, 1H-
imidazole, butanenitrile, and pyridine) were detected,
quantified, and semi-quantified in the gas-phase samples
with concentrations of up to 2005 ng m−3. While in the
particle phase (Fig. 3), a total of 16 nitrogen-containing
compounds were detected with concentrations of up to
6122 ng m−3. These results are comparable to our previous
study in which the concentrations of nitrogen-containing
compounds were up to 2930 and 5480 ng m−3 in the gas
phase and particle phase, respectively (Pusfitasari et al.,
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Figure 1. Drone platform sampling system with (a) air-sampling box carried by aerial drone. (b) BC placed behind the box. (c) CPC inserted
into the sampling box. (d) The right side of the sampling box is a sensor that measures temperature and relative humidity. (e) Front position
of the sampling box consists of SPME Arrow units (marked with blue) and a VOC sensor (red circle). (f) Sides of the sampling box include
the ITEX unit and filter accessory (brown).

2022). However, the samples were collected then at altitudes
from 50 to 150 m (Pusfitasari et al., 2022).

Dimethylamine, which can be produced by animal hus-
bandry, cattle, landfill, sewage, and also industry (Ge et al.,
2011), was detected in both gas and particle phase during
the afternoon with concentrations up to 1004 ng m−3 for gas
phase, and up to 5909 ng m−3 for the particle phase (Figs. 2a
and 3a). Studies have indicated that organic amines, includ-
ing dimethylamine (DMA), can be present to a large extent
in the particles, e.g., by transferring from gas phase to par-
ticles (Chen et al., 2022; Zhao et al., 2007; Yu et al., 2017).
DMA is one of the most common and abundant amines found
in the atmosphere, and particulate DMA concentrations can
increase due to enhanced biogenic VOC (BVOC) emissions
and due to aerosol-phase water that increases their partition
to the condensed phases (Ge et al., 2011; Youn et al., 2015;
Chen et al., 2017).

Other amines that were detected at high concentrations
were methylamine, pentanamine, hexanamine, hexylmethy-
lamine, and dimethylhexylamine with concentrations up to
432, 395, 493, 340, and 1393 ng m−3, respectively (Fig. 2a).
For the particles, sec-butylamine was detected with concen-
trations up to 4090 ng m−3, hexanamine up to 4316 ng m−3,
and dimethylhexylamine up to 686 ng m−3 (Fig. 3a).

For nitrogen-containing compounds other than amine, bu-
tanenitrile was detected with the highest concentrations up to
2005 ng m−3 in the gas phase and 6122 ng m−3 in the parti-
cle phase. 2-Amino-1-propanol, pyridine, and 1-H-imidazole
were present in the gas phase as the second, third, and fourth
highest concentrations up to 790, 492, and 136 ng m−3, re-
spectively. While in the particle phase, their concentrations

were up to 129, 958, and 646 ng m−3, respectively. The con-
centrations of all detected nitrogen-containing compounds at
mixed altitudes can be seen in Supplement Table S7.

For other VOCs, 22 compounds in the gas phase (Fig. 2b)
and 32 in the particle phase (Fig. 3b), containing alcohols,
aldehydes, ketones, small organic acids, and hydrocarbons,
were detected and quantified or semi quantified with concen-
trations up to 6898 ng m−3 in the gas phase and 8613 ng m−3

in the particle phase. In the gas phase, 2-methyl-1-propanol;
2,3-butanedione; trans-limonene oxide; methylglyoxal;
acetic acid; ethyl acetate; and hexanal were discovered
almost all the time during the samplings with concen-
trations up to 4209, 2436, 2210, 4695, 6898, 2198, and
3984 ng m−3, respectively (Fig. 2b). While in the particle
phase, almost all detected compounds were present in high
concentrations such as 2-ethyl-1-hexanol (4114 ng m−3);
2,3-butanedione (4865 ng m−3); trans-limonene oxide
(6886 ng m−3); methylglyoxal (8613 ng m−3); aliphatic
hydrocarbons (7091 ng m−3); ethyl benzene (3042 ng m−3);
and toluene (7715 ng m−3) (Fig. 3b). Supplement Table S8
gives at mixed altitudes (50 to 400 m) the concentrations for
all detected VOCs that do not belong to nitrogen-containing
compounds.

In the atmosphere, 2,3-butanedione is naturally occurring
in food products such as butter and beer (Boylstein et al.,
2006), while trans-limonene oxide is detected possibly due
to the partial oxidation of monoterpene limonene’s olefinic
bonds (Hoeben et al., 2012; Karlberg et al., 1992). Methyl-
glyoxal, an important precursor of SOA, is produced in the
atmosphere by the oxidation of hydrocarbons, such as iso-
prene, acetylene, toluene, and xylenes (Zhang et al., 2016; Fu
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Figure 2. Concentrations of (a) nitrogen-containing compounds and (b) other VOCs in the gas-phase at the SMEAR II station, Hyytiälä, at
mixed altitudes between 50 and 400 m. (a) Nitrogen-containing compounds were collected using the MCM-41-SPME Arrow system with
selective sorbent, while (b) other VOCs were collected using the DVB/PDMS-SPME Arrow system with universal sorbent. White color
represents not detected.

Figure 3. Concentrations of (a) nitrogen-containing compounds and (b) other VOCs in the particle phase at SMEAR II station, Hyytiälä,
at the mixed altitude between 50 and 400 m. Samples were collected using the MCM-41-TP-ITEX system with selective sorbent (a) and
TENAX-GR-ITEX systems with universal sorbent (b). White color represents not detected.

et al., 2013; Olsen et al., 2007). Other detected compounds,
e.g., acetic acid and ethyl acetate, can be released from differ-
ent sources such as biomass burning and vegetation (Rosado-
Reyes and Francisco, 2006; Khare et al., 1999).

The diurnal pattern in both gas and particle phases was
also observed. As can be seen from Fig. 2 in the gas phase,
aliphatic amines that are mostly emitted by biogenic sources

were present in lower concentrations in the evening (started
at 17:00 LT) compared to daytime, whereas some amines,
namely hexanamine and dimethylhexylamine, had slightly
higher concentrations in the evening. These results agree well
with our previous study in which most of the amines had a
diurnal variation with a daytime maximum due to their de-
pendency on temperature for their emission, indicating the
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contribution to biogenic sources (Pusfitasari et al., 2022).
High concentrations of some amines in the evenings could
be caused by the weak atmospheric mixing at night, result-
ing in decreased reactions with atmospheric acids (Hemmilä
et al., 2018). In contrast, VOCs that were emitted from other
sources had higher concentrations mostly in the afternoons,
except for non-nitrogenated compounds with high concentra-
tions also in the mornings on 11 October 2021. The anthro-
pogenic sources that might affect this result were probably
carried by the wind from other places and were mixed in the
atmosphere since the samples were collected at high altitudes
(up to 400 m). In the particle phase, there was no clear pat-
tern seen since our samples were mostly collected only in the
mornings and late afternoons. However, in our previous study
we found that VOCs had high concentrations in mornings
and evenings since temperature dependency affects the depo-
sition of amines in the colder evenings, and then they parti-
tion back to the atmosphere in the higher-temperature morn-
ings (Pusfitasari et al., 2022). In this present study, we can
also see from Fig. 3 high concentrations in both the morn-
ings and late afternoons but surprisingly also at noon (on 6
October).

The correlation among all the VOCs in both gas and par-
ticle phases was also studied. An R value close to one and
a P value of <0.05 mean that there is a correlation be-
tween variables. As can be seen from Supplement Fig. S5,
only a few compounds in the gas phase correlate with those
detected in the particle phase, such as particulate benzalde-
hyde that correlated with alcohol vapors (i.e., gas-phase of 2-
methyl-1-propanol and 2-ethyl-1-hexanol) and some amines
(i.e., methylamine, sec-butylamine, 2-pentanamine, and n-
hexylmethylamine). These correlations can be explained by
the studies conducted by Perez et al. (2017), who were in-
vestigating the implication of aldehyde–amines for aerosol
growth by providing low-energy neutral pathways for the for-
mation of larger and less-volatile compounds (Perez et al.,
2017).

In addition, we can also see that some nitrogen-containing
compounds correlated with aliphatic hydrocarbons, aliphatic
carbonyl, and aliphatic alcohols in the gas phase, indicat-
ing that they might be emitted from the same sources. This
finding is supported by the study conducted by Isidorov
et al. (2022). Although their group could not detect selec-
tively nitrogen-containing compounds as they used univer-
sal sorbent material for the collection of air sample (i.e.,
DVB/CAR/PDMS-SPME), they could detect all other VOC
compounds at the same time from the boreal forest (Isidorov
et al., 2022).

3.4 Evaluation of ITEX filter accessories

In our previous study, it was proved that a small filter can be
used to trap particles, allowing only the gas phase to enter the
ITEX sampler (Pusfitasari et al., 2022; Ruiz-Jimenez et al.,
2019). The experiments were properly designed to check and

compare the results achieved for gas-phase compounds using
a passive SPME Arrow sampling system and an active ITEX
plus filter sampling system. In the present study, the samples
were collected from 11 to 14 October 2021, and TENAX-
GR-ITEX was exploited with the filter accessory. The al-
titudes for these experiments were 50–400 m (Supplement
Fig. S1). As can be seen in Supplement Fig. S6, aliphatic
amines were the major nitrogen-containing compounds de-
tected in both the gas and particle phases. For VOCs without
any nitrogen compounds, following the results in the pre-
vious section (i.e., Sect. 3.3), alcohols, ketones, aldehydes,
organic acids, and some hydrocarbons were detected, quan-
tified, and semi-quantified with the concentrations shown in
Supplement Fig. S6. The results of the gas-phase compounds
sampled by the ITEX system with the filter accessory were
comparable with the gas-phase results obtained by the SPME
Arrow sampling system.

In addition to the comparison of the gas phase collected by
the ITEX furnished with the filter accessory with the SPME
Arrow system, the compound recoveries of the gas phase ob-
tained by the first ITEX sampling system furnished with the
filter were also evaluated. The recoveries of non-polar com-
pounds, such as alkanes, were only <50 % (Supplement Ta-
ble S9). The more polar compounds, such as alcohols, acids,
and nitrogen-containing compounds, were mostly detected at
higher recoveries from 50 % up to 99 %. Most probably, non-
polar compounds of the gas phase were partly adsorbed to
the ITEX filter accessory that was made from PTFE (Parsh-
intsev et al., 2011). PTFE has a non-polar structure due to
the distribution of the fluorine atom around the carbon poly-
mer backbone, which balances the electronegative and elec-
tropositive charges (Parsons et al., 1992). Hence, our study
proved that the ITEX sampling systems with PTFE filter are
not only good at trapping aerosol particles but also excellent
at collecting polar compounds, such as nitrogen-containing
compounds, of the gas phase. Nevertheless, since nitrogen-
containing compounds are very water soluble, the humidity
level in the air will most likely affect the distribution of polar
compounds between the filter and the ITEX adsorbent, e.g.,
water condensing to the filter at high humidity.

3.5 Analysis of aerosol particles collected by ITEX with
PTFE filter using liquid chromatography tandem
mass spectrometry

Filter-collected aerosol particles in the ITEX system were
extracted and analyzed separately by using HILIC-MS/MS
to quantify carboxylic and dicarboxylic acids, since most or-
ganic acids cannot be analyzed by GC without derivatization,
except small organic acids such as formic acid and acetic
acid. The organic acids have a capability to significantly en-
hance the hygroscopicity of aerosol particles and contribute
to the acidity of precipitation and cloud water.

As can be seen in Table 2, five main acids (succinic acid,
benzoic acid, phthalic acid, glutaric acid, and adipic acid)
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were identified and quantified. Succinic acid was observed
in almost every sample, and its higher prevalence could pos-
sibly be explained by the fact that it can be formed from com-
mon biogenic and anthropogenic precursors such as isoprene
and toluene (Sato et al., 2021). The aromatic acids such as
benzoic acid and phthalic acid were also detected in the sam-
ples. The concentrations of benzoic acid (up to 1.4µg m−3)
were higher than those of phthalic acid (up to 0.77µg m−3).
Observation of these acids is relevant as their aromatic hy-
drocarbon precursors are common in the atmosphere. In ad-
dition, phthalic acid has also been detected in the summer
2012 samples, but then no benzoic acid was detected in the
gas phase or particulate phase (Kristensen et al., 2016).

Glutaric and adipic acids were also determined from sam-
ples taken on 11 and 14 October. Glutaric acid and adipic
acid have been commonly detected in atmospheric aerosols
and cloud droplets (Wen et al., 2021). Other dicarboxylic
acids, such as glycolic acid and cis-pinonic acid were de-
tected in only one sample in which their limits of detection
(LODs) were exceeded (Supplement Table S10). The possi-
ble reason for the low concentration of glycolic acid might
be that it can be formed as an oxidation product of biogenic
isoprene (Liu et al., 2012).

3.6 Comparison of nitrogen-containing compounds and
other VOCs at altitudes of 50 and 400 m

The aim of this study was to compare the composition of
VOCs at altitudes of 50 and 400 m, separately. Carbon WR-
SPME Arrow unit with universal sorbent was used to collect
a wide range of VOCs in the gas phase. MCM-41-TP-ITEX
and TENAX-GR-ITEX sampling systems were employed to
collect gas and particle phases.

As can be seen from Fig. 4, the concentrations of amines
that were emitted by biogenic sources, such as methylamine,
dimethylamine, sec-butylamine, butanamine, pentanamine,
hexylmethylamine, and heptylamine, were mostly found at
higher concentrations at the lower altitude (50 m). The con-
centrations were decreased at higher altitude (400 m), most
probably due to the dilution (since the sources are on the
ground) and reaction with hydroxyl radical (Kieloaho, 2017).

For nitrogen-containing compounds other than amines,
imidazole was one of the compounds detected by our system.
There have been a number of laboratory studies where imida-
zole has been reported to be the major product of glyoxal re-
action with ammonium ions or primary amines on secondary
organic aerosol. In addition, imidazoles can become a sec-
ondary product of the reaction of dicarbonyls with nitrogen-
containing compounds; therefore, they might have the poten-
tial to act as photosensitizers, triggering secondary organic
aerosol growth and forming constituents of light-absorbing
brown carbon (De Haan et al., 2011; Dou et al., 2015; Teich
et al., 2020). Imidazoles were detected mostly in the parti-
cle phase with concentrations up to 422 ng m−3 at 50 m and
338 ng m−3 at 400 m. Slightly lower concentrations were dis-

covered in the gas phase with values up to 58 ng m−3 at an
altitude of 50 m and 510 ng m−3 at an altitude of 400 m.

Other nitrogen-containing gas-phase compounds detected,
such as formamide, 2-amino-1-propanol, ethylmethylcarba-
mate, and propenamide, also showed the same pattern with
higher concentrations at 400 m compared to 50 m. These
compounds were most probably transported by the wind
from other areas and emitted by various sources, such as
biomass burning, peatland, industries, and other anthro-
pogenic sources (Pusfitasari et al., 2022).

As can be seen from Fig. 5, gas-phase VOC compounds
without nitrogen, such as trans-limonene oxide, methylgly-
oxal, hexanal, and ketones, have higher concentrations at an
altitude of 400 m compared to 50 m; whereas some acids,
such as acetic acid and formic acid, ethyl acetate, and BTX
(benzene, toluene, xylene) were mostly discovered at the al-
titude of 50 m. In the case of alcohols, they had comparable
concentrations at both 50 and 400 m. In the particle phase,
most of the compounds had higher concentrations at 400 m
than at 50 m, except for some hydrocarbons (such as 2,5-
dimethylnonane and 6-ethyl-2-methyldecane) that had high
concentrations at 50 m.

Alcohols are a prevalent class of VOCs in the atmosphere
and can be emitted by biogenic sources such as rain for-
est and also from anthropogenic sources such as alcohol–
gasoline-blended fuel and industries (Nguyen et al., 2001;
McGillen et al., 2017). Therefore, it is no wonder that in
this study alcohol was found at almost all altitudes. The
alcohol emission is becoming a concern since it can react
with Criegee intermediates (product of biogenic alkenes ox-
idized by ozone) to produce α-alkoxyalkyl hydroperoxides
(AAAHs) that can lead to the formation of secondary or-
ganic aerosols (Dussault and Sahli, 1992; Bonn et al., 2004;
McGillen et al., 2017).

In the gas-phase samples, benzene, toluene, and p-xylene
(BTX) were found mostly at the altitude of 50 m with con-
centrations up to 219, 410, and 70 ng m−3, respectively.
Since BTX can be emitted from gasoline (major fuel of ve-
hicles) and the samples were collected close to the parking
area, the higher concentrations were found at lower altitude
(50 m). This finding is comparable with the study conducted
by Chen et al. (2018), who measured the BTX concentra-
tions between 100 and 300 ng m−3 from forest canopy at al-
titudes between 20 and 26 m (Chen et al., 2018; Yassaa et al.,
2006). Toluene and p-xylene were also detected in the parti-
cle phase as VOCs may be adsorbed onto the surface of the
particles (Dehghani et al., 2018; Kamens et al., 2011). The
higher concentrations were detected at an altitude of 400 m
with concentrations of up to 539 and 2475 ng m−3 for toluene
and p-xylene, respectively. BTX plays an important role in
the atmosphere since it has been recognized as an important
photochemical precursor for secondary organic aerosol (Cor-
rea et al., 2012; Ng et al., 2007).

Aldehydes in the atmosphere are also of concern because
of their heterogeneous reaction with acids affecting parti-
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Table 2. Concentrations of acids collected from the ITEX filters at altitudes of 50–400 m.

Sampling time Succinic acid Benzoic acid Phthalic acid Glutaric acid Adipic acid
(ng m−3) (ng m−3) (ng m−3) (ng m−3) (ng m−3)

11 Oct 2021 1416 1416 657 1619 10 926
12 Oct 2021 435–789 1416 769 n.d. n.d.
13 Oct 2021 496–4654 n.d. n.d. n.d. n.d.
14 Oct 2021 n.d. n.d. n.d. 1720 6374

∗ n.d. represents not detected

Figure 4. Concentrations of nitrogen-containing compounds in the gas phase and particle phase at SMEAR II station at altitudes of 50 and
400 m for 3 d (8 to 10 October 2021). For the gas-phase samples were collected using Carbon WR-SPME Arrow sampling system, and the
particle-phase samples were collected by MCM-41-TP-ITEX system. The concentrations of aerosol particle compounds were obtained via
subtraction the results obtained by MCM-41-TP-ITEX from those obtained by the Carbon WR-SPME Arrow with universal sorbent.

cle growth (Jang and Kamens, 2001; Altshuller, 1993). In
our study, some aldehydes, such as methylglyoxal, hexanal
and benzaldehyde, were found in both the gas and particle
phases at the altitude of 400 m in higher concentrations than
at the altitude of 50 m. At the altitude of 400 m, methylgly-
oxal was the most abundant aldehyde with concentrations up
to 580 ng m−3 in the gas phase and 1418 ng m−3 in the parti-
cle phase. Ketones in aerosol particles have been associated
with burning and non-burning forest, and it represented up
to 27 % of the current organic aerosol mass concentration
(OM) (Takahama et al., 2011). Ketones were also found in

this study at higher concentrations at high altitude (400 m) in
both gas phase and particle phase.

The last group of chemicals that was detected by our col-
lection systems was small organic acids and from these espe-
cially formic acid and acetic acid. Organic acids have an im-
portant role as chemical constituents in troposphere, and they
contribute with a large fraction (25 %) to the non-methane
hydrocarbons in the atmosphere. The organic acids con-
tribute to the acidity of precipitation and cloud water (Khare
et al., 1999). Acetic acid was found in both gas and particle
phases at altitudes of 50 and 400 m. However, the amount of
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Figure 5. Concentrations of non-nitrogenated VOC compounds in the gas phase and in the particle phase at SMEAR II station at altitudes 50
and 400 m for 3 d (8 to 10 October 2022). The gas-phase samples were collected using Carbon WR-SPME Arrow system, and particle-phase
samples using TENAX-GR-ITEX sampling systems. The concentrations of aerosol particle compounds were obtained via subtraction the
results obtained by TENAX-GR-ITEX from those obtained by the Carbon WR-SPME Arrow with universal sorbent.

both formic acid and acetic acid found in the gas phase was
higher than that in the particle phase. These acids can origi-
nate from various sources such as vehicular emissions, ants,
plants, soil, and biomass burning (Zhang et al., 2022).

3.7 Evaluation of total particle numbers and black
carbon at high altitudes. Portable CPC and BC
devices carried by aerial drone

The particle number concentration and BC concentration
were measured by using portable CPC and BC measurement
devices carried by the drone. The BC concentration was mea-
sured at 880 nm wavelength (near IR), as at this wavelength
BC has strong absorption and least interference by other or-
ganic molecules (Dumka et al., 2010). The results were com-
pared to those measured by the reference instruments at the
SMEAR II station. The correction factors to the same pres-
sure level as described in Sect. 2.8 were calculated with the
values between 0.994 and 1.035 (Supplement Table S1). Sup-

plement Fig. S7 for CPC proves a correlation between the
results obtained by our portable CPC and reference instru-
ment, with direct linear correlation close to 1 (R2 of 0.9564).
Oppositely, linear correlation for BC was only 0.2492, in-
dicating that there was no correlation between the reference
instruments and our BC meter in the drone.

Our portable BC monitor in the drone gave higher con-
centration values than the reference one, located at 4 m. The
reasons for the differences could be caused by amplification
factor that raised due to multiple scattering in the quartz fiber
matrix of the tape of the Aethalometer. The deposition of
scattering material along with BC to the filter tape produced
the “shadowing effect”, causing the BC meter to show higher
concentration values (Weingartner et al., 2003; Dumka et al.,
2010). Alternatively, the differences can be explained by dif-
ferent measurement altitudes between the reference instru-
ment (measured at 4 m) and BC monitor in the drone (up
to 400 m). At lower altitude, living activities such as heat-
ing sauna and fuel burning from cars nearby the area might
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contribute to the results, while at higher altitudes BC long
distance transport contributes to the results as well (Meena et
al., 2021). The atmospheric boundary layer height (ABLH)
also plays an important role to govern concentration of BC at
high altitudes since it can affect pollutant aggregation, trans-
mission, wet deposition, and dry sedimentation (Meena et al.,
2021). The boundary layer (BL) is the lowest part of tropo-
sphere and connects the ground and the free atmosphere. The
average boundary layer height at the Hyytiälä SMEAR II sta-
tion in autumn (October) was around 500 m (Sinclair et al.,
2022), explaining why we found higher BC concentration at
high altitudes. For comparison, Table 3 shows the BC mass
concentrations measured at high altitudes in different areas.

Autumn average of BC pollution in Hyytiälä according
to Hyvärinen et al. (2011) was about 1291 ng m−3, while
Hienola et al. (2013) reported the October average was
550 ng m−3 (Hyvärinen et al., 2011; Hienola et al., 2013).
However, those studies were conducted using reference in-
strument at low altitude, i.e., 4 m above the ground.

The drone stability was evaluated during the vertical
and horizontal movements (drone movement schematic is
showed in Supplement Fig. S4). Figure 6 shows that the BC
concentration and total particle numbers were affected by the
drone movements. Rapid ascending (area number I) affected
both BC and CPC. BC measurements showed negative values
when the drone started to warm up, take off, and then quickly
move vertically with a speed of 2.5 m s−1. These readings
could be due to the temperature change on the BC sensor
when the drone was ready to take off and the drone’s fast
ascent (Pan et al., 2011; Elomaa, 2022). The portable CPC
device also gave fluctuating data. Both BC and CPC devices
started to stabilize when approaching an altitude of 365 m.

At the beginning of drone vertical movement at the altitude
of 400 m, the portable CPC gave more stable results when the
speed was decreased and when it was allowed to stabilize for
30 s (as can be seen in area number II), resulting in smooth
changes in the total particle numbers and some deviations at
each altitude. However, BC concentration varied also with
high standard deviations at high altitude without any specific
movement, indicating that the drone movement influenced
the portable BC device. Pan et al. (2011) have suggested that
a large variation in the BC measurements could be caused by
several factors such as boundary layer stratification and tur-
bulence. In addition, the BC sensor was also very sensitive
to a change in temperature. They observed that the BC con-
centration could change quickly only after a short period of
sunshine. Based on the standard deviations, horizontal move-
ments (area numbers III and IV) affected the portable CPC
much less compared to the portable BC.

It can be seen from the results of Fig. 7 that (for the 3 mea-
surement days) BC and CPC devices had similar patterns at
all altitudes (100, 200, 300, and 400 m). The daily means of
total particle numbers are found in Supplement Table S12.
Although the concentrations at an altitude of 400 m seem to
be slightly lower than those detected at lower altitudes, the

patterns of total particle number are similar at every altitude
(Fig. 7), most possibly due to the limited anthropogenic ac-
tivities near the sampling site. The potential mixing and the
particle formation in the atmosphere most likely influenced
the total particle number detected. In addition, particulate
long-range transport from different areas could also affect
the total particle concentration in the air (Casquero-Vera et
al., 2020).

Figure 7 also demonstrates that the diurnal pattern was dif-
ferent, revealing that the particle concentrations at different
times of the day were influenced by different sources com-
pared to BC. Almost at all altitudes, the diurnal variation for
day 1 and day 2 included a late afternoon peak at 17:00 LT.
The particle concentrations increased significantly on day 3,
especially during the first and second samplings before the
change to lower concentrations. The samplings for the first 2
measurement days were carried out during the weekend with-
out many activities that produce VOCs, which is opposite to
Monday morning when normal working activities close to
sampling area were going on.

In contrast to the pattern of total particle numbers, the
daily average of BC concentration during the measurement
time period was increased at higher altitudes (Supplement
Table S12), indicating that the BC pollutant was distributed
from different areas. These trends agree well with the earlier
studies (Tripathi et al., 2007). Figure 7 shows that the BC di-
urnal pattern was similar with that of total particle numbers,
except on day 2 when BC concentration decreased signifi-
cantly at 13:30 LT, excluding the altitude of 200 m. However,
BC concentration increased again at 17:00 LT most likely
due to, for example, sauna heating and air mixing following
long-range transport from different areas.

During the measurement time, BC at high altitudes
(400 m) and total particle numbers at all altitudes (100–
400 m) showed a diurnal cycle with a peak observed on Mon-
day morning at 09:00 LT, possibly due to morning traffic
and/or wind-driven pollution transport as suggested by previ-
ous studies (Bonasoni et al., 2010; Sandeep et al., 2022). The
high BC concentration at high altitude, especially at 400 m,
was mostly caused by long-range transport and the atmo-
spheric boundary layer height as discussed earlier, and BC
and also other particles contributed to the total particle num-
bers.

4 Conclusions

An aerial drone carrying the reliable and versatile miniatur-
ized air-sampling systems SPME Arrow and ITEX as well
as portable BC and CPC devices was successfully used for
the collection of air samples. Up to 48 VOCs were detected
in gas-phase and particle-phase samples, and their distribu-
tion at altitudes from 50 to 400 m was studied. Some dif-
ferences between VOC compositions at altitudes of 50 and
400 m could be explained by the different sources of the
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Table 3. Average BC concentrations observed at different locations.

Location Altitude Environment Average BC Reference
concentration

(ng m−3)

Hyytiälä, Finland 100 m Boreal forest 2278± 1188 This study
Hyytiälä, Finland 200 m Boreal forest 2500± 1497 This study
Hyytiälä, Finland 300 m Boreal forest 3564± 1648 This study
Hyytiälä, Finland 400 m Boreal forest 3909± 729 This study
Hyytiälä, Finland 4 m Boreal forest 320–1291± 337* Hyvärinen et al. (2011)
Mahabaleswar, India 1378 m Rural 2600± 260 Meena et al. (2021)
Mountain Huang, China 1840 m Rural 1663± 919 Pan et al. (2011)
Port Blair, India 73 m Rural 2446± 66 Moorthy and Babu (2006)
Sinhagad, India 1300 m Rural 1500 Safai et al. (2007)

∗ 320 ng m−3 was the annual average, while 1291 ng m−3 was the concentration average measured during the pollution event in autumn.

Figure 6. Evaluation of drone’s vertical and horizontal movements. I indicates that the drone is moving up with the speed of 2.5 m s−1. II
indicates that the drone is descending with the speed of 1.25 m s−1 to each altitude before staying for 30 s. III and IV indicate the horizontal
movement to 100 m far away, with a speed of 5 m s−1.

VOC emissions. The compounds that most probably origi-
nate from the same source had a linear correlation, as well
as the compounds that were present in both gas-phase and
particle-phase samples. The capability of the ITEX sam-
pler, furnished with the filter accessory, for the collection of
gas-phase samples, was evaluated by comparing it with the
SPME Arrow sampling system, resulting in high agreement,
especially for polar compounds with recoveries up to 99 %.
In contrast, non-polar compounds gave low recoveries due
to the like dissolves like rule, meaning that non-polar com-
pounds might be adsorbed to the non-polar PTFE filter of the
ITEX sampling system.

The portable CPC gave comparable results with those ob-
tained by the conventional reference CPC instruments at the
SMEAR II station, which is opposite to the portable BC de-
vice that was affected by the drone’s vertical and horizontal
movements. The total particle number and BC data gave sim-
ilar diurnal patterns, indicating that they were correlated. The
pattern was observed during the weekend. The highest con-

centrations were found during times with human activities.
The distribution was also similar to VOCs that were pro-
duced by anthropogenic sources and found in high-altitude
samples, since the wind most probably carried the VOCs
from other sites. For the spatial distribution pattern, BC con-
centrations were increased at higher altitudes due to long-
range transport and the atmospheric boundary layer height.
The total particle numbers, affected by the similar factors,
varied more depending on the sources. This can be explained
by the different VOCs that contributed to the particle forma-
tions and the particle sizes measured by the portable CPC
and BC monitors.

Overall, our study described a drone equipped with minia-
turized air sampling techniques. SPME Arrow and ITEX to-
gether with portable BC and CPC devices were used for the
collection of atmospheric VOCs and for the measurement
of BC and total number of particles at high altitudes. To
further improve the reliability of the results in the future, a
portable BC monitor that includes a better electronic model
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Figure 7. Time series evaluation of CPC and black carbon at the heights of 100, 200, 300, and 400 m. Sampling was conducted on October
9 (Day 1), 10 (Day 2), and 11 (Day 3), 2021. The values and point averages are shown in Supplement Table S11.

and the possibility to adjust the device position in the drone
are needed.
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