Articles | Volume 18, issue 2
Atmos. Chem. Phys., 18, 1065–1078, 2018
https://doi.org/10.5194/acp-18-1065-2018
Atmos. Chem. Phys., 18, 1065–1078, 2018
https://doi.org/10.5194/acp-18-1065-2018

Research article 26 Jan 2018

Research article | 26 Jan 2018

Impact of aerosols on ice crystal size

Bin Zhao et al.

Related authors

Modeling the Impact of COVID-19 on Air Quality in Southern California: Implications for Future Control Policies
Zhe Jiang, Hongrong Shi, Bin Zhao, Yu Gu, Yifang Zhu, Kazuyuki Miyazaki, Yuqiang Zhang, Kevin W. Bowman, Takashi Sekiya, and Kuo-Nan Liou
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1197,https://doi.org/10.5194/acp-2020-1197, 2020
Preprint under review for ACP
Short summary
Air quality impact of the Northern California Camp Fire of November 2018
Brigitte Rooney, Yuan Wang, Jonathan H. Jiang, Bin Zhao, Zhao-Cheng Zeng, and John H. Seinfeld
Atmos. Chem. Phys., 20, 14597–14616, https://doi.org/10.5194/acp-20-14597-2020,https://doi.org/10.5194/acp-20-14597-2020, 2020
Short summary
Substantial ozone enhancement over the North China Plain from increased biogenic emissions due to heat waves and land cover in summer 2017
Mingchen Ma, Yang Gao, Yuhang Wang, Shaoqing Zhang, L. Ruby Leung, Cheng Liu, Shuxiao Wang, Bin Zhao, Xing Chang, Hang Su, Tianqi Zhang, Lifang Sheng, Xiaohong Yao, and Huiwang Gao
Atmos. Chem. Phys., 19, 12195–12207, https://doi.org/10.5194/acp-19-12195-2019,https://doi.org/10.5194/acp-19-12195-2019, 2019
Short summary
Development of a unit-based industrial emission inventory in the Beijing–Tianjin–Hebei region and resulting improvement in air quality modeling
Haotian Zheng, Siyi Cai, Shuxiao Wang, Bin Zhao, Xing Chang, and Jiming Hao
Atmos. Chem. Phys., 19, 3447–3462, https://doi.org/10.5194/acp-19-3447-2019,https://doi.org/10.5194/acp-19-3447-2019, 2019
Short summary
Seesaw haze pollution in North China modulated by the sub-seasonal variability of atmospheric circulation
Ge Zhang, Yang Gao, Wenju Cai, L. Ruby Leung, Shuxiao Wang, Bin Zhao, Minghuai Wang, Huayao Shan, Xiaohong Yao, and Huiwang Gao
Atmos. Chem. Phys., 19, 565–576, https://doi.org/10.5194/acp-19-565-2019,https://doi.org/10.5194/acp-19-565-2019, 2019
Short summary

Related subject area

Subject: Aerosols | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Aerosol type classification analysis using EARLINET multiwavelength and depolarization lidar observations
Maria Mylonaki, Elina Giannakaki, Alexandros Papayannis, Christina-Anna Papanikolaou, Mika Komppula, Doina Nicolae, Nikolaos Papagiannopoulos, Aldo Amodeo, Holger Baars, and Ourania Soupiona
Atmos. Chem. Phys., 21, 2211–2227, https://doi.org/10.5194/acp-21-2211-2021,https://doi.org/10.5194/acp-21-2211-2021, 2021
Short summary
Satellite retrieval of aerosol combined with assimilated forecast
Mayumi Yoshida, Keiya Yumimoto, Takashi M. Nagao, Taichu Y. Tanaka, Maki Kikuchi, and Hiroshi Murakami
Atmos. Chem. Phys., 21, 1797–1813, https://doi.org/10.5194/acp-21-1797-2021,https://doi.org/10.5194/acp-21-1797-2021, 2021
Short summary
A global analysis of diurnal variability in dust and dust mixture using CATS observations
Yan Yu, Olga V. Kalashnikova, Michael J. Garay, Huikyo Lee, Myungje Choi, Gregory S. Okin, John E. Yorks, James R. Campbell, and Jared Marquis
Atmos. Chem. Phys., 21, 1427–1447, https://doi.org/10.5194/acp-21-1427-2021,https://doi.org/10.5194/acp-21-1427-2021, 2021
Short summary
Satellite-based radiative forcing by light-absorbing particles in snow across the Northern Hemisphere
Jiecan Cui, Tenglong Shi, Yue Zhou, Dongyou Wu, Xin Wang, and Wei Pu
Atmos. Chem. Phys., 21, 269–288, https://doi.org/10.5194/acp-21-269-2021,https://doi.org/10.5194/acp-21-269-2021, 2021
Short summary
Constraining the relationships between aerosol height, aerosol optical depth and total column trace gas measurements using remote sensing and models
Shuo Wang, Jason Blake Cohen, Chuyong Lin, and Weizhi Deng
Atmos. Chem. Phys., 20, 15401–15426, https://doi.org/10.5194/acp-20-15401-2020,https://doi.org/10.5194/acp-20-15401-2020, 2020
Short summary

Cited articles

Anderson, T. L., Charlson, R. J., Winker, D. M., Ogren, J. A., and Holmen, K.: Mesoscale variations of tropospheric aerosols, J. Atmos. Sci., 60, 119–136, https://doi.org/10.1175/1520-0469(2003)060<0119:Mvota>2.0.Co;2, 2003. 
Atmospheric Science Data Center: CALIPSO Quality Statements Lidar Level 2 Cloud and Aerosol Layer Products Version Releases: 3.01, 3.02, available at: https://eosweb.larc.nasa.gov/PRODOCS/calipso/Quality_Summaries/CALIOP_L2LayerProducts_3.01.html (last access: 1 October 2016), 2012. 
Bailey, M. P. and Hallett, J.: A Comprehensive Habit Diagram for Atmospheric Ice Crystals: Confirmation from the Laboratory, AIRS II, and Other Field Studies, J. Atmos. Sci., 66, 2888–2899, https://doi.org/10.1175/2009jas2883.1, 2009. 
Brennan, J. I., Kaufman, Y. J., Koren, I., and Li, R. R.: Aerosol-cloud interaction-misclassification of MODIS clouds in heavy aerosol, IEEE T. Geosci. Remote, 43, 911–915, https://doi.org/10.1109/Tgrs.2005.844662, 2005. 
Choi, Y. S., Lindzen, R. S., Ho, C. H., and Kim, J.: Space observations of cold-cloud phase change, P. Natl. Acad. Sci. USA, 107, 11211–11216, https://doi.org/10.1073/pnas.1006241107, 2010. 
Download
Short summary
The interactions between aerosols and ice clouds represent one of the largest uncertainties among anthropogenic forcings on climate change. We find that the responses of ice crystal effective radius, a key parameter determining ice clouds' net radiative effect, to aerosol loadings are modulated by water vapor amount and vary from a significant negative correlation in moist conditions (consistent with the “Twomey effect” for liquid clouds) to a strong positive correlation in dry conditions.
Altmetrics
Final-revised paper
Preprint