Articles | Volume 14, issue 19
https://doi.org/10.5194/acp-14-10411-2014
https://doi.org/10.5194/acp-14-10411-2014
Research article
 | 
01 Oct 2014
Research article |  | 01 Oct 2014

Different contact angle distributions for heterogeneous ice nucleation in the Community Atmospheric Model version 5

Y. Wang, X. Liu, C. Hoose, and B. Wang

Abstract. In order to investigate the impact of different treatments for the contact angle (α) in heterogeneous ice nucleating properties of natural dust and black carbon (BC) particles, we implement the classical-nucleation-theory-based parameterization of heterogeneous ice nucleation (Hoose et al., 2010) in the Community Atmospheric Model version 5 (CAM5) and then improve it by replacing the original single-contact-angle model with the probability-density-function-of-α (α-PDF) model to better represent the ice nucleation behavior of natural dust found in observations. We refit the classical nucleation theory (CNT) to constrain the uncertain parameters (i.e., onset α and activation energy in the single-α model; mean contact angle and standard deviation in the α-PDF model) using recent observation data sets for Saharan natural dust and BC (soot). We investigate the impact of the time dependence of droplet freezing on mixed-phase clouds and climate in CAM5 as well as the roles of natural dust and soot in different nucleation mechanisms. Our results show that, when compared with observations, the potential ice nuclei (IN) calculated by the α-PDF model show better agreement than those calculated by the single-α model at warm temperatures (T; T > −20 °C). More ice crystals can form at low altitudes (with warm temperatures) simulated by the α-PDF model than compared to the single-α model in CAM5. All of these can be attributed to different ice nucleation efficiencies among aerosol particles, with some particles having smaller contact angles (higher efficiencies) in the α-PDF model. In the sensitivity tests with the α-PDF model, we find that the change in mean contact angle has a larger impact on the active fraction at a given temperature than a change in standard deviation, even though the change in standard deviation can lead to a change in freezing behavior. Both the single-α and the α-PDF model indicate that the immersion freezing of natural dust plays a more important role in the heterogeneous nucleation than that of soot in mixed-phase clouds. The new parameterizations implemented in CAM5 induce more significant aerosol indirect effects than the default parameterization.

Download
Altmetrics
Final-revised paper
Preprint