Articles | Volume 16, issue 5
Atmos. Chem. Phys., 16, 3077–3098, 2016
Atmos. Chem. Phys., 16, 3077–3098, 2016

Research article 09 Mar 2016

Research article | 09 Mar 2016

Microphysics-based black carbon aging in a global CTM: constraints from HIPPO observations and implications for global black carbon budget

Cenlin He1, Qinbin Li1, Kuo-Nan Liou1, Ling Qi1, Shu Tao2, and Joshua P. Schwarz3 Cenlin He et al.
  • 1Department of Atmospheric and Oceanic Sciences and Joint Institute for Regional Earth System Science and Engineering, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
  • 2Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
  • 3Chemical Sciences Division, Earth System Research Laboratory, NOAA, Boulder, CO 80305, USA

Abstract. We develop and examine a microphysics-based black carbon (BC) aerosol aging scheme that accounts for condensation, coagulation, and heterogeneous chemical oxidation processes in a global 3-D chemical transport model (GEOS-Chem) by interpreting the BC measurements from the HIAPER Pole-to-Pole Observations (HIPPO, 2009–2011) using the model. We convert aerosol mass in the model to number concentration by assuming lognormal aerosol size distributions and compute the microphysical BC aging rate (excluding chemical oxidation aging) explicitly from the condensation of soluble materials onto hydrophobic BC and the coagulation between hydrophobic BC and preexisting soluble particles. The chemical oxidation aging is tested in the sensitivity simulation. The microphysical aging rate is  ∼  4 times higher in the lower troposphere over source regions than that from a fixed aging scheme with an e-folding time of 1.2 days. The higher aging rate reflects the large emissions of sulfate–nitrate and secondary organic aerosol precursors hence faster BC aging through condensation and coagulation. In contrast, the microphysical aging is more than 5-fold slower than the fixed aging in remote regions, where condensation and coagulation are weak. Globally, BC microphysical aging is dominated by condensation, while coagulation contribution is largest over eastern China, India, and central Africa. The fixed aging scheme results in an overestimate of HIPPO BC throughout the troposphere by a factor of 6 on average. The microphysical scheme reduces this discrepancy by a factor of  ∼  3, particularly in the middle and upper troposphere. It also leads to a 3-fold reduction in model bias in the latitudinal BC column burden averaged along the HIPPO flight tracks, with largest improvements in the tropics. The resulting global annual mean BC lifetime is 4.2 days and BC burden is 0.25 mg m−2, with 7.3 % of the burden at high altitudes (above 5 km). Wet scavenging accounts for 80.3 % of global BC deposition. We find that, in source regions, the microphysical aging rate is insensitive to aerosol size distribution, condensation threshold, and chemical oxidation aging, while it is the opposite in remote regions, where the aging rate is orders of magnitude smaller. As a result, global BC burden and lifetime show little sensitivity (< 5 % change) to these three factors.

Short summary
Blarck carbon aging significantly affects its global distribution and thus climatic effects. This study develops a microphysics-based BC aging scheme in a global model, which substantially improves model simulations of BC over the remote Pacific. The microphysical scheme shows fast aging over source regions and much slower aging in remote regions. The microphysical aging significantly reduces global BC burden and lifetime, showing important implications for the estimate of BC radiative effects.
Final-revised paper