Articles | Volume 16, issue 5
https://doi.org/10.5194/acp-16-3077-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-16-3077-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Microphysics-based black carbon aging in a global CTM: constraints from HIPPO observations and implications for global black carbon budget
Department of Atmospheric and Oceanic Sciences and Joint Institute for
Regional Earth System Science and Engineering, University of California, Los
Angeles (UCLA), Los Angeles, CA 90095, USA
Qinbin Li
Department of Atmospheric and Oceanic Sciences and Joint Institute for
Regional Earth System Science and Engineering, University of California, Los
Angeles (UCLA), Los Angeles, CA 90095, USA
Kuo-Nan Liou
Department of Atmospheric and Oceanic Sciences and Joint Institute for
Regional Earth System Science and Engineering, University of California, Los
Angeles (UCLA), Los Angeles, CA 90095, USA
Ling Qi
Department of Atmospheric and Oceanic Sciences and Joint Institute for
Regional Earth System Science and Engineering, University of California, Los
Angeles (UCLA), Los Angeles, CA 90095, USA
Shu Tao
Laboratory for Earth Surface Processes, College of Urban and
Environmental Sciences, Peking University, Beijing 100871, China
Joshua P. Schwarz
Chemical Sciences Division, Earth System Research Laboratory, NOAA,
Boulder, CO 80305, USA
Related authors
Chayan Roychoudhury, Cenlin He, Rajesh Kumar, and Avelino F. Arellano Jr.
EGUsphere, https://doi.org/10.5194/egusphere-2024-2298, https://doi.org/10.5194/egusphere-2024-2298, 2024
Short summary
Short summary
We aim to understand the complexity of Earth's climate by proposing a novel, cost-effective approach to understand the web of interactions driving climate change. We focus on how pollution and weather processes interact and drive snowmelt in Asian glaciers. Our findings reveal significant yet overlooked processes across different climate models. Our approach can help in refining the development of these models for more reliable predictions in climate-vulnerable regions.
Mohamed Hamitouche, Giorgia Fosser, Alessandro Anav, Cenlin He, and Tzu-Shun Lin
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-264, https://doi.org/10.5194/hess-2024-264, 2024
Revised manuscript under review for HESS
Short summary
Short summary
This study evaluates how different methods of simulating runoff impact river flow predictions globally. By comparing seven approaches within the Noah-MP land surface model, we found significant differences in accuracy, with some methods underestimating or overestimating runoff. The results are crucial for improving water resource management and flood prediction. Our work highlights the need for precise modeling to better prepare for climate-related challenges.
Rajesh Kumar, Piyush Bhardwaj, Cenlin He, Jennifer Boehnert, Forrest Lacey, Stefano Alessandrini, Kevin Sampson, Matthew Casali, Scott Swerdlin, Olga Wilhelmi, Gabriele G. Pfister, Benjamin Gaubert, and Helen Worden
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-180, https://doi.org/10.5194/essd-2024-180, 2024
Revised manuscript under review for ESSD
Short summary
Short summary
We have created a 14-year hourly air quality dataset at 12 km resolution by combining satellite observations of atmospheric composition with air quality models over the contiguous United States (CONUS) . The dataset has been found to reproduce key observed features of air quality over the CONUS. To enable easy visualization and interpretation of county level air quality measures and trends by stakeholders, an ArcGIS air quality dashboard has also been developed.
Dario Di Santo, Cenlin He, Fei Chen, and Lorenzo Giovannini
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-56, https://doi.org/10.5194/gmd-2024-56, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
This paper presents ML-AMPSIT, a new tool that exploits different machine learning algorithms to perform sensitivity analysis for atmospheric models, providing a computationally efficient way to identify key parameters that affect model output. The tool is tested by taking as a case study the simulation of a sea breeze circulation over flat terrain with the WRF/Noah-MP model, investigating the sensitivity of model results to different vegetation-related parameters.
Wenfu Tang, Louisa K. Emmons, Helen M. Worden, Rajesh Kumar, Cenlin He, Benjamin Gaubert, Zhonghua Zheng, Simone Tilmes, Rebecca R. Buchholz, Sara-Eva Martinez-Alonso, Claire Granier, Antonin Soulie, Kathryn McKain, Bruce C. Daube, Jeff Peischl, Chelsea Thompson, and Pieternel Levelt
Geosci. Model Dev., 16, 6001–6028, https://doi.org/10.5194/gmd-16-6001-2023, https://doi.org/10.5194/gmd-16-6001-2023, 2023
Short summary
Short summary
The new MUSICAv0 model enables the study of atmospheric chemistry across all relevant scales. We develop a MUSICAv0 grid for Africa. We evaluate MUSICAv0 with observations and compare it with a previously used model – WRF-Chem. Overall, the performance of MUSICAv0 is comparable to WRF-Chem. Based on model–satellite discrepancies, we find that future field campaigns in an eastern African region (30°E–45°E, 5°S–5°N) could substantially improve the predictive skill of air quality models.
Cenlin He, Prasanth Valayamkunnath, Michael Barlage, Fei Chen, David Gochis, Ryan Cabell, Tim Schneider, Roy Rasmussen, Guo-Yue Niu, Zong-Liang Yang, Dev Niyogi, and Michael Ek
Geosci. Model Dev., 16, 5131–5151, https://doi.org/10.5194/gmd-16-5131-2023, https://doi.org/10.5194/gmd-16-5131-2023, 2023
Short summary
Short summary
Noah-MP is one of the most widely used open-source community land surface models in the world, designed for applications ranging from uncoupled land surface and ecohydrological process studies to coupled numerical weather prediction and decadal climate simulations. To facilitate model developments and applications, we modernize Noah-MP by adopting modern Fortran code and data structures and standards, which substantially enhance model modularity, interoperability, and applicability.
Zhe Zhang, Yanping Li, Fei Chen, Phillip Harder, Warren Helgason, James Famiglietti, Prasanth Valayamkunnath, Cenlin He, and Zhenhua Li
Geosci. Model Dev., 16, 3809–3825, https://doi.org/10.5194/gmd-16-3809-2023, https://doi.org/10.5194/gmd-16-3809-2023, 2023
Short summary
Short summary
Crop models incorporated in Earth system models are essential to accurately simulate crop growth processes on Earth's surface and agricultural production. In this study, we aim to model the spring wheat in the Northern Great Plains, focusing on three aspects: (1) develop the wheat model at a point scale, (2) apply dynamic planting and harvest schedules, and (3) adopt a revised heat stress function. The results show substantial improvements and have great importance for agricultural production.
Wenfu Tang, Simone Tilmes, David M. Lawrence, Fang Li, Cenlin He, Louisa K. Emmons, Rebecca R. Buchholz, and Lili Xia
Atmos. Chem. Phys., 23, 5467–5486, https://doi.org/10.5194/acp-23-5467-2023, https://doi.org/10.5194/acp-23-5467-2023, 2023
Short summary
Short summary
Globally, total wildfire burned area is projected to increase over the 21st century under scenarios without geoengineering and decrease under the two geoengineering scenarios. Geoengineering reduces fire by decreasing surface temperature and wind speed and increasing relative humidity and soil water. However, geoengineering also yields reductions in precipitation, which offset some of the fire reduction.
Dalei Hao, Gautam Bisht, Karl Rittger, Edward Bair, Cenlin He, Huilin Huang, Cheng Dang, Timbo Stillinger, Yu Gu, Hailong Wang, Yun Qian, and L. Ruby Leung
Geosci. Model Dev., 16, 75–94, https://doi.org/10.5194/gmd-16-75-2023, https://doi.org/10.5194/gmd-16-75-2023, 2023
Short summary
Short summary
Snow with the highest albedo of land surface plays a vital role in Earth’s surface energy budget and water cycle. This study accounts for the impacts of snow grain shape and mixing state of light-absorbing particles with snow on snow albedo in the E3SM land model. The findings advance our understanding of the role of snow grain shape and mixing state of LAP–snow in land surface processes and offer guidance for improving snow simulations and radiative forcing estimates in Earth system models.
Huilin Huang, Yun Qian, Ye Liu, Cenlin He, Jianyu Zheng, Zhibo Zhang, and Antonis Gkikas
Atmos. Chem. Phys., 22, 15469–15488, https://doi.org/10.5194/acp-22-15469-2022, https://doi.org/10.5194/acp-22-15469-2022, 2022
Short summary
Short summary
Using a clustering method developed in the field of artificial neural networks, we identify four typical dust transport patterns across the Sierra Nevada, associated with the mesoscale and regional-scale wind circulations. Our results highlight the connection between dust transport and dominant weather patterns, which can be used to understand dust transport in a changing climate.
Chaman Gul, Shichang Kang, Siva Praveen Puppala, Xiaokang Wu, Cenlin He, Yangyang Xu, Inka Koch, Sher Muhammad, Rajesh Kumar, and Getachew Dubache
Atmos. Chem. Phys., 22, 8725–8737, https://doi.org/10.5194/acp-22-8725-2022, https://doi.org/10.5194/acp-22-8725-2022, 2022
Short summary
Short summary
This work aims to understand concentrations, spatial variability, and potential source regions of light-absorbing impurities (black carbon aerosols, dust particles, and organic carbon) in the surface snow of central and western Himalayan glaciers and their impact on snow albedo and radiative forcing.
Mark G. Flanner, Julian B. Arnheim, Joseph M. Cook, Cheng Dang, Cenlin He, Xianglei Huang, Deepak Singh, S. McKenzie Skiles, Chloe A. Whicker, and Charles S. Zender
Geosci. Model Dev., 14, 7673–7704, https://doi.org/10.5194/gmd-14-7673-2021, https://doi.org/10.5194/gmd-14-7673-2021, 2021
Short summary
Short summary
We present the technical formulation and evaluation of a publicly available code and web-based model to simulate the spectral albedo of snow. Our model accounts for numerous features of the snow state and ambient conditions, including the the presence of light-absorbing matter like black and brown carbon, mineral dust, volcanic ash, and snow algae. Carbon dioxide snow, found on Mars, is also represented. The model accurately reproduces spectral measurements of clean and contaminated snow.
Julián Gelman Constantin, Lucas Ruiz, Gustavo Villarosa, Valeria Outes, Facundo N. Bajano, Cenlin He, Hector Bajano, and Laura Dawidowski
The Cryosphere, 14, 4581–4601, https://doi.org/10.5194/tc-14-4581-2020, https://doi.org/10.5194/tc-14-4581-2020, 2020
Short summary
Short summary
We present the results of two field campaigns and modeling activities on the impact of atmospheric particles on Alerce Glacier (Argentinean Andes). We found that volcanic ash remains at different snow layers several years after eruption, increasing light absorption on the glacier surface (with a minor contribution of soot). This leads to 36 % higher annual glacier melting. We find remarkably that volcano eruptions in 2011 and 2015 have a relevant effect on the glacier even in 2016 and 2017.
Wenfu Tang, Benjamin Gaubert, Louisa Emmons, Yonghoon Choi, Joshua P. DiGangi, Glenn S. Diskin, Xiaomei Xu, Cenlin He, Helen Worden, Simone Tilmes, Rebecca Buchholz, Hannah S. Halliday, and Avelino F. Arellano
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-864, https://doi.org/10.5194/acp-2020-864, 2020
Revised manuscript not accepted
Short summary
Short summary
A specific demonstration of the potential use of correlative information from carbon monoxide to refine estimates of regional carbon dioxide emissions from fossil fuel combustion.
Wei Pu, Jiecan Cui, Tenglong Shi, Xuelei Zhang, Cenlin He, and Xin Wang
Atmos. Chem. Phys., 19, 9949–9968, https://doi.org/10.5194/acp-19-9949-2019, https://doi.org/10.5194/acp-19-9949-2019, 2019
Short summary
Short summary
LAPs (light-absorbing particles) deposited on snow can decrease snow albedo and increase the absorption of solar radiation. Radiative forcing by LAPs will affect the regional hydrological cycle and climate. We use MODIS observations to retrieve the radiative forcing by LAPs in snow across northeastern China (NEC). The results of radiative forcing present distinct spatial variability. We find that the biases are negatively correlated with LAP concentrations and range from
~ 5 % to ~ 350 %.
Cenlin He, Mark G. Flanner, Fei Chen, Michael Barlage, Kuo-Nan Liou, Shichang Kang, Jing Ming, and Yun Qian
Atmos. Chem. Phys., 18, 11507–11527, https://doi.org/10.5194/acp-18-11507-2018, https://doi.org/10.5194/acp-18-11507-2018, 2018
Short summary
Short summary
Snow albedo plays a key role in the Earth and climate system. It can be affected by impurities and snow properties. This study implements new parameterizations into a widely used snow model to account for effects of snow shape and black carbon–snow mixing state on snow albedo reduction in the Tibetan Plateau. This study points toward an imperative need for extensive measurements and improved model characterization of snow grain shape and aerosol–snow mixing state in Tibet and elsewhere.
Yingying Yan, Jintai Lin, and Cenlin He
Atmos. Chem. Phys., 18, 1185–1202, https://doi.org/10.5194/acp-18-1185-2018, https://doi.org/10.5194/acp-18-1185-2018, 2018
Short summary
Short summary
Examining observed and simulated ozone at about 1000 sites during 1990–2014, we find a clear diurnal cycle both in the magnitude of ozone trends and in the relative importance of climate variability versus anthropogenic emissions to ozone changes, which has policy implications to mitigate ozone at night and other non-peak hours.
Bin Zhao, Kuo-Nan Liou, Yu Gu, Jonathan H. Jiang, Qinbin Li, Rong Fu, Lei Huang, Xiaohong Liu, Xiangjun Shi, Hui Su, and Cenlin He
Atmos. Chem. Phys., 18, 1065–1078, https://doi.org/10.5194/acp-18-1065-2018, https://doi.org/10.5194/acp-18-1065-2018, 2018
Short summary
Short summary
The interactions between aerosols and ice clouds represent one of the largest uncertainties among anthropogenic forcings on climate change. We find that the responses of ice crystal effective radius, a key parameter determining ice clouds' net radiative effect, to aerosol loadings are modulated by water vapor amount and vary from a significant negative correlation in moist conditions (consistent with the “Twomey effect” for liquid clouds) to a strong positive correlation in dry conditions.
Ling Qi, Qinbin Li, Daven K. Henze, Hsien-Liang Tseng, and Cenlin He
Atmos. Chem. Phys., 17, 9697–9716, https://doi.org/10.5194/acp-17-9697-2017, https://doi.org/10.5194/acp-17-9697-2017, 2017
Short summary
Short summary
We find that Asian anthropogenic sources are the largest contributors (~ 40 %) to surface BC in spring in the Arctic, inconsistent with previous studies which repeatedly identified sources of surface BC as anthropogenic emissions from Europe and Russia. It takes 12–17 days for Asian anthropogenic emissions to be transported to the Arctic surface. Additionally, a large fraction (40–65 %) of Asian contribution is in the form of chronic pollution on 1- to 2-month timescales.
Ling Qi, Qinbin Li, Cenlin He, Xin Wang, and Jianping Huang
Atmos. Chem. Phys., 17, 7459–7479, https://doi.org/10.5194/acp-17-7459-2017, https://doi.org/10.5194/acp-17-7459-2017, 2017
Short summary
Short summary
Black carbon (BC) is the second only to CO2 in heating the planet, but the simulation of BC is associated with large uncertainties. BC burden is largely underestimated over land and overestimated over ocean. Our study finds that a missing process in current Wegener–Bergeron–Findeisen models largely explains the discrepancy in BC simulation over land. We call for more observations of BC in mixed-phase clouds to understand this process and improve the simulation of global BC.
Ling Qi, Qinbin Li, Yinrui Li, and Cenlin He
Atmos. Chem. Phys., 17, 1037–1059, https://doi.org/10.5194/acp-17-1037-2017, https://doi.org/10.5194/acp-17-1037-2017, 2017
Short summary
Short summary
The Arctic is the most vulnerable region for climate change. Black carbon (BC) in air and deposited on snow and ice warms the Arctic substantially, but simulations of BC climate effects are associated with large uncertainties. To reduce this uncertainty, it is imperative to improve the simulation of BC distribution in the Arctic. We evaluate the effects of controlling factors (emissions, dry and wet deposition) on BC distribution and call for more observations to constrain these processes.
Bin Zhao, Kuo-Nan Liou, Yu Gu, Cenlin He, Wee-Liang Lee, Xing Chang, Qinbin Li, Shuxiao Wang, Hsien-Liang R. Tseng, Lai-Yung R. Leung, and Jiming Hao
Atmos. Chem. Phys., 16, 5841–5852, https://doi.org/10.5194/acp-16-5841-2016, https://doi.org/10.5194/acp-16-5841-2016, 2016
Short summary
Short summary
We examine the impact of buildings on surface solar fluxes in Beijing by accounting for their 3-D structures. We find that inclusion of buildings changes surface solar fluxes by within ±1 W m−2, ±1–10 W m−2, and up to ±100 W m−2 at grid resolutions of 4 km, 800 m, and 90 m, respectively. We can resolve pairs of positive-negative flux deviations on different sides of buildings at ≤ 800 m resolutions. We should treat building-effect on solar fluxes differently in models with different resolutions.
C. He, K.-N. Liou, Y. Takano, R. Zhang, M. Levy Zamora, P. Yang, Q. Li, and L. R. Leung
Atmos. Chem. Phys., 15, 11967–11980, https://doi.org/10.5194/acp-15-11967-2015, https://doi.org/10.5194/acp-15-11967-2015, 2015
Y. H. Mao, Q. B. Li, D. K. Henze, Z. Jiang, D. B. A. Jones, M. Kopacz, C. He, L. Qi, M. Gao, W.-M. Hao, and K.-N. Liou
Atmos. Chem. Phys., 15, 7685–7702, https://doi.org/10.5194/acp-15-7685-2015, https://doi.org/10.5194/acp-15-7685-2015, 2015
C. He, Q. B. Li, K. N. Liou, J. Zhang, L. Qi, Y. Mao, M. Gao, Z. Lu, D. G. Streets, Q. Zhang, M. M. Sarin, and K. Ram
Atmos. Chem. Phys., 14, 7091–7112, https://doi.org/10.5194/acp-14-7091-2014, https://doi.org/10.5194/acp-14-7091-2014, 2014
Xiaohu Jian, Xiaodong Zhang, Xinrui Liu, Kaijie Chen, Tao Huang, Shu Tao, Junfeng Liu, Hong Gao, Yuan Zhao, Ruiyu Zhugu, and Jianmin Ma
EGUsphere, https://doi.org/10.5194/egusphere-2024-1497, https://doi.org/10.5194/egusphere-2024-1497, 2024
Short summary
Short summary
We implemented a new global land use change (LUC) dataset on a 5 km×5 km resolution from 1982 to 2010 into a compact earth system model OSCAR and carried out extensive multiple model scenario simulations. Our result reveals that the global radiative forcing (RF) induced by LUC driving surface albedo change is -0.12 W m-2, 20 % lower than IPCC, and vegetation changes play a key role in RF evolution, which provides an important references for the assessment of earth energy balance.
Chayan Roychoudhury, Cenlin He, Rajesh Kumar, and Avelino F. Arellano Jr.
EGUsphere, https://doi.org/10.5194/egusphere-2024-2298, https://doi.org/10.5194/egusphere-2024-2298, 2024
Short summary
Short summary
We aim to understand the complexity of Earth's climate by proposing a novel, cost-effective approach to understand the web of interactions driving climate change. We focus on how pollution and weather processes interact and drive snowmelt in Asian glaciers. Our findings reveal significant yet overlooked processes across different climate models. Our approach can help in refining the development of these models for more reliable predictions in climate-vulnerable regions.
Kouji Adachi, Jack E. Dibb, Joseph M. Katich, Joshua P. Schwarz, Hongyu Guo, Pedro Campuzano-Jost, Jose L. Jimenez, Jeff Peischl, Christopher D. Holmes, and James Crawford
Atmos. Chem. Phys., 24, 10985–11004, https://doi.org/10.5194/acp-24-10985-2024, https://doi.org/10.5194/acp-24-10985-2024, 2024
Short summary
Short summary
We examined aerosol particles from wildfires and identified tarballs (TBs) from the Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ) campaign. This study reveals the compositions, abundance, sizes, and mixing states of TBs and shows that TBs formed as the smoke aged for up to 5 h. This study provides measurements of TBs from various biomass-burning events and ages, enhancing our knowledge of TB emissions and our understanding of their climate impact.
Mohamed Hamitouche, Giorgia Fosser, Alessandro Anav, Cenlin He, and Tzu-Shun Lin
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-264, https://doi.org/10.5194/hess-2024-264, 2024
Revised manuscript under review for HESS
Short summary
Short summary
This study evaluates how different methods of simulating runoff impact river flow predictions globally. By comparing seven approaches within the Noah-MP land surface model, we found significant differences in accuracy, with some methods underestimating or overestimating runoff. The results are crucial for improving water resource management and flood prediction. Our work highlights the need for precise modeling to better prepare for climate-related challenges.
Rajesh Kumar, Piyush Bhardwaj, Cenlin He, Jennifer Boehnert, Forrest Lacey, Stefano Alessandrini, Kevin Sampson, Matthew Casali, Scott Swerdlin, Olga Wilhelmi, Gabriele G. Pfister, Benjamin Gaubert, and Helen Worden
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-180, https://doi.org/10.5194/essd-2024-180, 2024
Revised manuscript under review for ESSD
Short summary
Short summary
We have created a 14-year hourly air quality dataset at 12 km resolution by combining satellite observations of atmospheric composition with air quality models over the contiguous United States (CONUS) . The dataset has been found to reproduce key observed features of air quality over the CONUS. To enable easy visualization and interpretation of county level air quality measures and trends by stakeholders, an ArcGIS air quality dashboard has also been developed.
Lu Zhang, Jin Li, Yaojie Li, Xinlei Liu, Zhihan Luo, Guofeng Shen, and Shu Tao
Atmos. Chem. Phys., 24, 6323–6337, https://doi.org/10.5194/acp-24-6323-2024, https://doi.org/10.5194/acp-24-6323-2024, 2024
Short summary
Short summary
Brown carbon (BrC) is related to radiative forcing and climate change. The BrC fraction from residential coal and biomass burning emissions, which were the major source of BrC, was characterized at the molecular level. The CHOS aromatic compounds explained higher light absorption efficiencies of biomass burning emissions compared to coal. The unique formulas of coal combustion aerosols were characterized by higher unsaturated compounds, and such information could be used for source appointment.
Dario Di Santo, Cenlin He, Fei Chen, and Lorenzo Giovannini
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-56, https://doi.org/10.5194/gmd-2024-56, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
This paper presents ML-AMPSIT, a new tool that exploits different machine learning algorithms to perform sensitivity analysis for atmospheric models, providing a computationally efficient way to identify key parameters that affect model output. The tool is tested by taking as a case study the simulation of a sea breeze circulation over flat terrain with the WRF/Noah-MP model, investigating the sensitivity of model results to different vegetation-related parameters.
Georgios I. Gkatzelis, Matthew M. Coggon, Chelsea E. Stockwell, Rebecca S. Hornbrook, Hannah Allen, Eric C. Apel, Megan M. Bela, Donald R. Blake, Ilann Bourgeois, Steven S. Brown, Pedro Campuzano-Jost, Jason M. St. Clair, James H. Crawford, John D. Crounse, Douglas A. Day, Joshua P. DiGangi, Glenn S. Diskin, Alan Fried, Jessica B. Gilman, Hongyu Guo, Johnathan W. Hair, Hannah S. Halliday, Thomas F. Hanisco, Reem Hannun, Alan Hills, L. Gregory Huey, Jose L. Jimenez, Joseph M. Katich, Aaron Lamplugh, Young Ro Lee, Jin Liao, Jakob Lindaas, Stuart A. McKeen, Tomas Mikoviny, Benjamin A. Nault, J. Andrew Neuman, John B. Nowak, Demetrios Pagonis, Jeff Peischl, Anne E. Perring, Felix Piel, Pamela S. Rickly, Michael A. Robinson, Andrew W. Rollins, Thomas B. Ryerson, Melinda K. Schueneman, Rebecca H. Schwantes, Joshua P. Schwarz, Kanako Sekimoto, Vanessa Selimovic, Taylor Shingler, David J. Tanner, Laura Tomsche, Krystal T. Vasquez, Patrick R. Veres, Rebecca Washenfelder, Petter Weibring, Paul O. Wennberg, Armin Wisthaler, Glenn M. Wolfe, Caroline C. Womack, Lu Xu, Katherine Ball, Robert J. Yokelson, and Carsten Warneke
Atmos. Chem. Phys., 24, 929–956, https://doi.org/10.5194/acp-24-929-2024, https://doi.org/10.5194/acp-24-929-2024, 2024
Short summary
Short summary
This study reports emissions of gases and particles from wildfires. These emissions are related to chemical proxies that can be measured by satellite and incorporated into models to improve predictions of wildfire impacts on air quality and climate.
Xiaodong Zhang, Ruiyu Zhugu, Xiaohu Jian, Xinrui Liu, Kaijie Chen, Shu Tao, Junfeng Liu, Hong Gao, Tao Huang, and Jianmin Ma
Atmos. Chem. Phys., 23, 15629–15642, https://doi.org/10.5194/acp-23-15629-2023, https://doi.org/10.5194/acp-23-15629-2023, 2023
Short summary
Short summary
WRF-Chem modeling was conducted to assess impacts of Western Pacific Subtropical High Pressure (WPSH) on interannual fluctuations of O3 pollution in China. We find that, while precursor emissions dominated the long-term trend and magnitude of O3 from 1999 to 2017, WPSH determined interannual variation of summer O3. The response of O3 pollution to WPSH in major urban clusters depended on the proximity of these urban areas to WPSH. The results could help long-term O3 pollution mitigation planning.
Wenfu Tang, Louisa K. Emmons, Helen M. Worden, Rajesh Kumar, Cenlin He, Benjamin Gaubert, Zhonghua Zheng, Simone Tilmes, Rebecca R. Buchholz, Sara-Eva Martinez-Alonso, Claire Granier, Antonin Soulie, Kathryn McKain, Bruce C. Daube, Jeff Peischl, Chelsea Thompson, and Pieternel Levelt
Geosci. Model Dev., 16, 6001–6028, https://doi.org/10.5194/gmd-16-6001-2023, https://doi.org/10.5194/gmd-16-6001-2023, 2023
Short summary
Short summary
The new MUSICAv0 model enables the study of atmospheric chemistry across all relevant scales. We develop a MUSICAv0 grid for Africa. We evaluate MUSICAv0 with observations and compare it with a previously used model – WRF-Chem. Overall, the performance of MUSICAv0 is comparable to WRF-Chem. Based on model–satellite discrepancies, we find that future field campaigns in an eastern African region (30°E–45°E, 5°S–5°N) could substantially improve the predictive skill of air quality models.
Cenlin He, Prasanth Valayamkunnath, Michael Barlage, Fei Chen, David Gochis, Ryan Cabell, Tim Schneider, Roy Rasmussen, Guo-Yue Niu, Zong-Liang Yang, Dev Niyogi, and Michael Ek
Geosci. Model Dev., 16, 5131–5151, https://doi.org/10.5194/gmd-16-5131-2023, https://doi.org/10.5194/gmd-16-5131-2023, 2023
Short summary
Short summary
Noah-MP is one of the most widely used open-source community land surface models in the world, designed for applications ranging from uncoupled land surface and ecohydrological process studies to coupled numerical weather prediction and decadal climate simulations. To facilitate model developments and applications, we modernize Noah-MP by adopting modern Fortran code and data structures and standards, which substantially enhance model modularity, interoperability, and applicability.
Alia L. Khan, Peng Xian, and Joshua P. Schwarz
The Cryosphere, 17, 2909–2918, https://doi.org/10.5194/tc-17-2909-2023, https://doi.org/10.5194/tc-17-2909-2023, 2023
Short summary
Short summary
Ice–albedo feedbacks in the ablation region of the Greenland Ice Sheet are difficult to constrain and model. Surface samples were collected across the 2014 summer melt season from different ice surface colors. On average, concentrations were higher in patches that were visibly dark, compared to medium patches and light patches, suggesting that black carbon aggregation contributed to snow aging, and vice versa. High concentrations are likely due to smoke transport from high-latitude wildfires.
Zhe Zhang, Yanping Li, Fei Chen, Phillip Harder, Warren Helgason, James Famiglietti, Prasanth Valayamkunnath, Cenlin He, and Zhenhua Li
Geosci. Model Dev., 16, 3809–3825, https://doi.org/10.5194/gmd-16-3809-2023, https://doi.org/10.5194/gmd-16-3809-2023, 2023
Short summary
Short summary
Crop models incorporated in Earth system models are essential to accurately simulate crop growth processes on Earth's surface and agricultural production. In this study, we aim to model the spring wheat in the Northern Great Plains, focusing on three aspects: (1) develop the wheat model at a point scale, (2) apply dynamic planting and harvest schedules, and (3) adopt a revised heat stress function. The results show substantial improvements and have great importance for agricultural production.
Wenfu Tang, Simone Tilmes, David M. Lawrence, Fang Li, Cenlin He, Louisa K. Emmons, Rebecca R. Buchholz, and Lili Xia
Atmos. Chem. Phys., 23, 5467–5486, https://doi.org/10.5194/acp-23-5467-2023, https://doi.org/10.5194/acp-23-5467-2023, 2023
Short summary
Short summary
Globally, total wildfire burned area is projected to increase over the 21st century under scenarios without geoengineering and decrease under the two geoengineering scenarios. Geoengineering reduces fire by decreasing surface temperature and wind speed and increasing relative humidity and soil water. However, geoengineering also yields reductions in precipitation, which offset some of the fire reduction.
Haihui Zhu, Randall V. Martin, Betty Croft, Shixian Zhai, Chi Li, Liam Bindle, Jeffrey R. Pierce, Rachel Y.-W. Chang, Bruce E. Anderson, Luke D. Ziemba, Johnathan W. Hair, Richard A. Ferrare, Chris A. Hostetler, Inderjeet Singh, Deepangsu Chatterjee, Jose L. Jimenez, Pedro Campuzano-Jost, Benjamin A. Nault, Jack E. Dibb, Joshua S. Schwarz, and Andrew Weinheimer
Atmos. Chem. Phys., 23, 5023–5042, https://doi.org/10.5194/acp-23-5023-2023, https://doi.org/10.5194/acp-23-5023-2023, 2023
Short summary
Short summary
Particle size of atmospheric aerosol is important for estimating its climate and health effects, but simulating atmospheric aerosol size is computationally demanding. This study derives a simple parameterization of the size of organic and secondary inorganic ambient aerosol that can be applied to atmospheric models. Applying this parameterization allows a better representation of the global spatial pattern of aerosol size, as verified by ground and airborne measurements.
Ye Li, Ye Huang, Yunshan Zhang, Wei Du, Shanshan Zhang, Tianhao He, Yan Li, Yan Chen, Fangfang Ding, Lin Huang, Haibin Xia, Wenjun Meng, Min Liu, and Shu Tao
Atmos. Chem. Phys., 23, 1091–1101, https://doi.org/10.5194/acp-23-1091-2023, https://doi.org/10.5194/acp-23-1091-2023, 2023
Short summary
Short summary
Polychlorinated biphenyls (PCBs) are typical persistent organic pollutants (POPs) listed among the 12 initial POPs that should be prohibited or limited under the Stockholm Convention. They are widely present in the environment and pose a threat to human health and ecosystems. Emission estimation for them is essential to understand and evaluate their environment fate and associated health effect. This work developed 12 dioxin-like UP-PCBs from 66 sources from 1960 to 2019 in China.
Dalei Hao, Gautam Bisht, Karl Rittger, Edward Bair, Cenlin He, Huilin Huang, Cheng Dang, Timbo Stillinger, Yu Gu, Hailong Wang, Yun Qian, and L. Ruby Leung
Geosci. Model Dev., 16, 75–94, https://doi.org/10.5194/gmd-16-75-2023, https://doi.org/10.5194/gmd-16-75-2023, 2023
Short summary
Short summary
Snow with the highest albedo of land surface plays a vital role in Earth’s surface energy budget and water cycle. This study accounts for the impacts of snow grain shape and mixing state of light-absorbing particles with snow on snow albedo in the E3SM land model. The findings advance our understanding of the role of snow grain shape and mixing state of LAP–snow in land surface processes and offer guidance for improving snow simulations and radiative forcing estimates in Earth system models.
Huilin Huang, Yun Qian, Ye Liu, Cenlin He, Jianyu Zheng, Zhibo Zhang, and Antonis Gkikas
Atmos. Chem. Phys., 22, 15469–15488, https://doi.org/10.5194/acp-22-15469-2022, https://doi.org/10.5194/acp-22-15469-2022, 2022
Short summary
Short summary
Using a clustering method developed in the field of artificial neural networks, we identify four typical dust transport patterns across the Sierra Nevada, associated with the mesoscale and regional-scale wind circulations. Our results highlight the connection between dust transport and dominant weather patterns, which can be used to understand dust transport in a changing climate.
Youhua Tang, Patrick C. Campbell, Pius Lee, Rick Saylor, Fanglin Yang, Barry Baker, Daniel Tong, Ariel Stein, Jianping Huang, Ho-Chun Huang, Li Pan, Jeff McQueen, Ivanka Stajner, Jose Tirado-Delgado, Youngsun Jung, Melissa Yang, Ilann Bourgeois, Jeff Peischl, Tom Ryerson, Donald Blake, Joshua Schwarz, Jose-Luis Jimenez, James Crawford, Glenn Diskin, Richard Moore, Johnathan Hair, Greg Huey, Andrew Rollins, Jack Dibb, and Xiaoyang Zhang
Geosci. Model Dev., 15, 7977–7999, https://doi.org/10.5194/gmd-15-7977-2022, https://doi.org/10.5194/gmd-15-7977-2022, 2022
Short summary
Short summary
This paper compares two meteorological datasets for driving a regional air quality model: a regional meteorological model using WRF (WRF-CMAQ) and direct interpolation from an operational global model (GFS-CMAQ). In the comparison with surface measurements and aircraft data in summer 2019, these two methods show mixed performance depending on the corresponding meteorological settings. Direct interpolation is found to be a viable method to drive air quality models.
Aditya Kumar, R. Bradley Pierce, Ravan Ahmadov, Gabriel Pereira, Saulo Freitas, Georg Grell, Chris Schmidt, Allen Lenzen, Joshua P. Schwarz, Anne E. Perring, Joseph M. Katich, John Hair, Jose L. Jimenez, Pedro Campuzano-Jost, and Hongyu Guo
Atmos. Chem. Phys., 22, 10195–10219, https://doi.org/10.5194/acp-22-10195-2022, https://doi.org/10.5194/acp-22-10195-2022, 2022
Short summary
Short summary
We use the WRF-Chem model with new implementations of GOES-16 wildfire emissions and plume rise based on fire radiative power (FRP) to interpret aerosol observations during the 2019 NASA–NOAA FIREX-AQ field campaign and perform model evaluations. The model shows significant improvements in simulating the variety of aerosol loading environments sampled during FIREX-AQ. Our results also highlight the importance of accurate wildfire diurnal cycle and aerosol chemical mechanisms in models.
Chaman Gul, Shichang Kang, Siva Praveen Puppala, Xiaokang Wu, Cenlin He, Yangyang Xu, Inka Koch, Sher Muhammad, Rajesh Kumar, and Getachew Dubache
Atmos. Chem. Phys., 22, 8725–8737, https://doi.org/10.5194/acp-22-8725-2022, https://doi.org/10.5194/acp-22-8725-2022, 2022
Short summary
Short summary
This work aims to understand concentrations, spatial variability, and potential source regions of light-absorbing impurities (black carbon aerosols, dust particles, and organic carbon) in the surface snow of central and western Himalayan glaciers and their impact on snow albedo and radiative forcing.
Linghan Zeng, Jack Dibb, Eric Scheuer, Joseph M. Katich, Joshua P. Schwarz, Ilann Bourgeois, Jeff Peischl, Tom Ryerson, Carsten Warneke, Anne E. Perring, Glenn S. Diskin, Joshua P. DiGangi, John B. Nowak, Richard H. Moore, Elizabeth B. Wiggins, Demetrios Pagonis, Hongyu Guo, Pedro Campuzano-Jost, Jose L. Jimenez, Lu Xu, and Rodney J. Weber
Atmos. Chem. Phys., 22, 8009–8036, https://doi.org/10.5194/acp-22-8009-2022, https://doi.org/10.5194/acp-22-8009-2022, 2022
Short summary
Short summary
Wildfires emit aerosol particles containing brown carbon material that affects visibility and global climate and is toxic. Brown carbon is poorly characterized due to measurement limitations, and its evolution in the atmosphere is not well known. We report on aircraft measurements of brown carbon from large wildfires in the western United States. We compare two methods for measuring brown carbon and study the evolution of brown carbon in the smoke as it moved away from the burning regions.
Meloë S. F. Kacenelenbogen, Qian Tan, Sharon P. Burton, Otto P. Hasekamp, Karl D. Froyd, Yohei Shinozuka, Andreas J. Beyersdorf, Luke Ziemba, Kenneth L. Thornhill, Jack E. Dibb, Taylor Shingler, Armin Sorooshian, Reed W. Espinosa, Vanderlei Martins, Jose L. Jimenez, Pedro Campuzano-Jost, Joshua P. Schwarz, Matthew S. Johnson, Jens Redemann, and Gregory L. Schuster
Atmos. Chem. Phys., 22, 3713–3742, https://doi.org/10.5194/acp-22-3713-2022, https://doi.org/10.5194/acp-22-3713-2022, 2022
Short summary
Short summary
The impact of aerosols on Earth's radiation budget and human health is important and strongly depends on their composition. One desire of our scientific community is to derive the composition of the aerosol from satellite sensors. However, satellites observe aerosol optical properties (and not aerosol composition) based on remote sensing instrumentation. This study assesses how much aerosol optical properties can tell us about aerosol composition.
Mark G. Flanner, Julian B. Arnheim, Joseph M. Cook, Cheng Dang, Cenlin He, Xianglei Huang, Deepak Singh, S. McKenzie Skiles, Chloe A. Whicker, and Charles S. Zender
Geosci. Model Dev., 14, 7673–7704, https://doi.org/10.5194/gmd-14-7673-2021, https://doi.org/10.5194/gmd-14-7673-2021, 2021
Short summary
Short summary
We present the technical formulation and evaluation of a publicly available code and web-based model to simulate the spectral albedo of snow. Our model accounts for numerous features of the snow state and ambient conditions, including the the presence of light-absorbing matter like black and brown carbon, mineral dust, volcanic ash, and snow algae. Carbon dioxide snow, found on Mars, is also represented. The model accurately reproduces spectral measurements of clean and contaminated snow.
Wendong Ge, Junfeng Liu, Kan Yi, Jiayu Xu, Yizhou Zhang, Xiurong Hu, Jianmin Ma, Xuejun Wang, Yi Wan, Jianying Hu, Zhaobin Zhang, Xilong Wang, and Shu Tao
Atmos. Chem. Phys., 21, 16093–16120, https://doi.org/10.5194/acp-21-16093-2021, https://doi.org/10.5194/acp-21-16093-2021, 2021
Short summary
Short summary
Compared with the observations, the results incorporating detailed cloud aqueous-phase chemistry greatly reduced SO2 overestimation. The biases in annual simulated SO2 concentrations (or mixing ratios) decreased by 46 %, 41 %, and 22 % in Europe, the USA, and China, respectively. Fe chemistry and HOx chemistry contributed more to SO2 oxidation than N chemistry. Higher concentrations of soluble Fe and higher pH values could further enhance the oxidation capacity.
Dalei Hao, Gautam Bisht, Yu Gu, Wei-Liang Lee, Kuo-Nan Liou, and L. Ruby Leung
Geosci. Model Dev., 14, 6273–6289, https://doi.org/10.5194/gmd-14-6273-2021, https://doi.org/10.5194/gmd-14-6273-2021, 2021
Short summary
Short summary
Topography exerts significant influence on the incoming solar radiation at the land surface. This study incorporated a well-validated sub-grid topographic parameterization in E3SM land model (ELM) version 1.0. The results demonstrate that sub-grid topography has non-negligible effects on surface energy budget, snow cover, and surface temperature over the Tibetan Plateau and that the ELM simulations are sensitive to season, elevation, and spatial scale.
Charles A. Brock, Karl D. Froyd, Maximilian Dollner, Christina J. Williamson, Gregory Schill, Daniel M. Murphy, Nicholas J. Wagner, Agnieszka Kupc, Jose L. Jimenez, Pedro Campuzano-Jost, Benjamin A. Nault, Jason C. Schroder, Douglas A. Day, Derek J. Price, Bernadett Weinzierl, Joshua P. Schwarz, Joseph M. Katich, Siyuan Wang, Linghan Zeng, Rodney Weber, Jack Dibb, Eric Scheuer, Glenn S. Diskin, Joshua P. DiGangi, ThaoPaul Bui, Jonathan M. Dean-Day, Chelsea R. Thompson, Jeff Peischl, Thomas B. Ryerson, Ilann Bourgeois, Bruce C. Daube, Róisín Commane, and Steven C. Wofsy
Atmos. Chem. Phys., 21, 15023–15063, https://doi.org/10.5194/acp-21-15023-2021, https://doi.org/10.5194/acp-21-15023-2021, 2021
Short summary
Short summary
The Atmospheric Tomography Mission was an airborne study that mapped the chemical composition of the remote atmosphere. From this, we developed a comprehensive description of aerosol properties that provides a unique, global-scale dataset against which models can be compared. The data show the polluted nature of the remote atmosphere in the Northern Hemisphere and quantify the contributions of sea salt, dust, soot, biomass burning particles, and pollution particles to the haziness of the sky.
Marco Zanatta, Andreas Herber, Zsófia Jurányi, Oliver Eppers, Johannes Schneider, and Joshua P. Schwarz
Atmos. Chem. Phys., 21, 9329–9342, https://doi.org/10.5194/acp-21-9329-2021, https://doi.org/10.5194/acp-21-9329-2021, 2021
Short summary
Short summary
Saline snow samples were collected from the sea ice in the Fram Strait. Laboratory experiments revealed that sea salt can bias the quantification of black carbon with a laser-induced incandescence technique. The maximum underestimation was quantified to reach values of 80 %–90 %. This salt-induced interference is reported here for the first time and should be considered in future studies aiming to quantify black carbon in snow in marine environments.
Zhe Jiang, Hongrong Shi, Bin Zhao, Yu Gu, Yifang Zhu, Kazuyuki Miyazaki, Xin Lu, Yuqiang Zhang, Kevin W. Bowman, Takashi Sekiya, and Kuo-Nan Liou
Atmos. Chem. Phys., 21, 8693–8708, https://doi.org/10.5194/acp-21-8693-2021, https://doi.org/10.5194/acp-21-8693-2021, 2021
Short summary
Short summary
We use the COVID-19 pandemic as a unique natural experiment to obtain a more robust understanding of the effectiveness of emission reductions toward air quality improvement by combining chemical transport simulations and observations. Our findings imply a shift from current control policies in California: a strengthened control on primary PM2.5 emissions and a well-balanced control on NOx and volatile organic compounds are needed to effectively and sustainably alleviate PM2.5 and O3 pollution.
Caroline C. Womack, Katherine M. Manfred, Nicholas L. Wagner, Gabriela Adler, Alessandro Franchin, Kara D. Lamb, Ann M. Middlebrook, Joshua P. Schwarz, Charles A. Brock, Steven S. Brown, and Rebecca A. Washenfelder
Atmos. Chem. Phys., 21, 7235–7252, https://doi.org/10.5194/acp-21-7235-2021, https://doi.org/10.5194/acp-21-7235-2021, 2021
Short summary
Short summary
Microscopic particles interact with sunlight and affect the earth's climate in ways that are not fully understood. Aerosols from wildfire smoke present particular challenges due to their complexity in shape and composition. We demonstrate that we can experimentally measure aerosol optical properties for many types of smoke particles, using measurements of smoke from controlled burns, but that the method does not work well for smoke with high soot content.
Julián Gelman Constantin, Lucas Ruiz, Gustavo Villarosa, Valeria Outes, Facundo N. Bajano, Cenlin He, Hector Bajano, and Laura Dawidowski
The Cryosphere, 14, 4581–4601, https://doi.org/10.5194/tc-14-4581-2020, https://doi.org/10.5194/tc-14-4581-2020, 2020
Short summary
Short summary
We present the results of two field campaigns and modeling activities on the impact of atmospheric particles on Alerce Glacier (Argentinean Andes). We found that volcanic ash remains at different snow layers several years after eruption, increasing light absorption on the glacier surface (with a minor contribution of soot). This leads to 36 % higher annual glacier melting. We find remarkably that volcano eruptions in 2011 and 2015 have a relevant effect on the glacier even in 2016 and 2017.
Pengfei Han, Ning Zeng, Tom Oda, Xiaohui Lin, Monica Crippa, Dabo Guan, Greet Janssens-Maenhout, Xiaolin Ma, Zhu Liu, Yuli Shan, Shu Tao, Haikun Wang, Rong Wang, Lin Wu, Xiao Yun, Qiang Zhang, Fang Zhao, and Bo Zheng
Atmos. Chem. Phys., 20, 11371–11385, https://doi.org/10.5194/acp-20-11371-2020, https://doi.org/10.5194/acp-20-11371-2020, 2020
Short summary
Short summary
An accurate estimation of China’s fossil-fuel CO2 emissions (FFCO2) is significant for quantification of carbon budget and emissions reductions towards the Paris Agreement goals. Here we assessed 9 global and regional inventories. Our findings highlight the significance of using locally measured coal emission factors. We call on the enhancement of physical measurements for validation and provide comprehensive information for inventory, monitoring, modeling, assimilation, and reducing emissions.
Wenfu Tang, Benjamin Gaubert, Louisa Emmons, Yonghoon Choi, Joshua P. DiGangi, Glenn S. Diskin, Xiaomei Xu, Cenlin He, Helen Worden, Simone Tilmes, Rebecca Buchholz, Hannah S. Halliday, and Avelino F. Arellano
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-864, https://doi.org/10.5194/acp-2020-864, 2020
Revised manuscript not accepted
Short summary
Short summary
A specific demonstration of the potential use of correlative information from carbon monoxide to refine estimates of regional carbon dioxide emissions from fossil fuel combustion.
Minli Wang, Yiqun Chen, Heyun Fu, Xiaolei Qu, Bengang Li, Shu Tao, and Dongqiang Zhu
Atmos. Chem. Phys., 20, 7941–7954, https://doi.org/10.5194/acp-20-7941-2020, https://doi.org/10.5194/acp-20-7941-2020, 2020
Short summary
Short summary
The mechanism and factors controlling the hygroscopicity of black-carbon-containing particles (BCPs) from different carbon sources are not well understood. We thoroughly characterized the chemical and compositional properties of 15 samples of BCPs from different sources (wood, herb, and soot) and further investigated their hygroscopicity. Depending on the carbon source, organic carbon and dissolved mineral contents were key determinants of the equilibrium and kinetics of water uptake by BCPs.
Pablo E. Saide, Meng Gao, Zifeng Lu, Daniel L. Goldberg, David G. Streets, Jung-Hun Woo, Andreas Beyersdorf, Chelsea A. Corr, Kenneth L. Thornhill, Bruce Anderson, Johnathan W. Hair, Amin R. Nehrir, Glenn S. Diskin, Jose L. Jimenez, Benjamin A. Nault, Pedro Campuzano-Jost, Jack Dibb, Eric Heim, Kara D. Lamb, Joshua P. Schwarz, Anne E. Perring, Jhoon Kim, Myungje Choi, Brent Holben, Gabriele Pfister, Alma Hodzic, Gregory R. Carmichael, Louisa Emmons, and James H. Crawford
Atmos. Chem. Phys., 20, 6455–6478, https://doi.org/10.5194/acp-20-6455-2020, https://doi.org/10.5194/acp-20-6455-2020, 2020
Short summary
Short summary
Air quality forecasts over the Korean Peninsula captured aerosol optical depth but largely overpredicted surface PM during a Chinese haze transport event. Model deficiency was related to the calculation of optical properties. In order to improve it, aerosol size representation needs to be refined in the calculations, and the representation of aerosol properties, such as size distribution, chemical composition, refractive index, hygroscopicity parameter, and density, needs to be improved.
Alma Hodzic, Pedro Campuzano-Jost, Huisheng Bian, Mian Chin, Peter R. Colarco, Douglas A. Day, Karl D. Froyd, Bernd Heinold, Duseong S. Jo, Joseph M. Katich, John K. Kodros, Benjamin A. Nault, Jeffrey R. Pierce, Eric Ray, Jacob Schacht, Gregory P. Schill, Jason C. Schroder, Joshua P. Schwarz, Donna T. Sueper, Ina Tegen, Simone Tilmes, Kostas Tsigaridis, Pengfei Yu, and Jose L. Jimenez
Atmos. Chem. Phys., 20, 4607–4635, https://doi.org/10.5194/acp-20-4607-2020, https://doi.org/10.5194/acp-20-4607-2020, 2020
Short summary
Short summary
Organic aerosol (OA) is a key source of uncertainty in aerosol climate effects. We present the first pole-to-pole OA characterization during the NASA Atmospheric Tomography aircraft mission. OA has a strong seasonal and zonal variability, with the highest levels in summer and over fire-influenced regions and the lowest ones in the southern high latitudes. We show that global models predict the OA distribution well but not the relative contribution of OA emissions vs. chemical production.
Si Li, Tao Huang, Jingyue Mo, Jixiang Li, Xiaodong Zhang, Jiao Du, Shu Tao, Junfeng Liu, Wanyanhan Jiang, Lulu Lian, Hong Gao, Xiaoxuan Mao, Yuan Zhao, and Jianmin Ma
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-991, https://doi.org/10.5194/acp-2019-991, 2020
Revised manuscript not accepted
Short summary
Short summary
Wind power provides clean energy and gets rapid development worldwide in the past decades, which helps to reduce air pollutants and CO2 emissions. This study shows that, because wind farm alters underlying surface characteristics and spinning turbine rotors generate atmospheric turbulence, the altered winds and temperatures forced by turbulence affect transport and diffusion of air pollutants near and hundreds km downstream of the wind farm, bringing uncertainties to the air quality forecast.
Therese S. Carter, Colette L. Heald, Jose L. Jimenez, Pedro Campuzano-Jost, Yutaka Kondo, Nobuhiro Moteki, Joshua P. Schwarz, Christine Wiedinmyer, Anton S. Darmenov, Arlindo M. da Silva, and Johannes W. Kaiser
Atmos. Chem. Phys., 20, 2073–2097, https://doi.org/10.5194/acp-20-2073-2020, https://doi.org/10.5194/acp-20-2073-2020, 2020
Short summary
Short summary
Fires and the smoke they emit impact air quality, health, and climate, but the abundance and properties of smoke remain uncertain and poorly constrained. To explore this, we compare model simulations driven by four commonly-used fire emission inventories with surface, aloft, and satellite observations. We show that across inventories smoke emissions differ by factors of 4 to 7 over North America, challenging our ability to accurately characterize the impact of smoke on air quality and climate.
Ling Qi and Shuxiao Wang
Atmos. Chem. Phys., 19, 11545–11557, https://doi.org/10.5194/acp-19-11545-2019, https://doi.org/10.5194/acp-19-11545-2019, 2019
Short summary
Short summary
Black carbon (BC) contributes two-thirds of the climate impact of carbon dioxide, pushing methane into third place of the human contributors to global warming. This study shows that contributions from biomass burning (producing marginal lensing effect) have a strong spatial variation, from 20 % in Europe to 60 % in Africa. Thus, the inclusion of strong lensing-related absorption enhancement to all BC particles in previous estimates may lead to overestimating their positive radiative forcing.
Wei Pu, Jiecan Cui, Tenglong Shi, Xuelei Zhang, Cenlin He, and Xin Wang
Atmos. Chem. Phys., 19, 9949–9968, https://doi.org/10.5194/acp-19-9949-2019, https://doi.org/10.5194/acp-19-9949-2019, 2019
Short summary
Short summary
LAPs (light-absorbing particles) deposited on snow can decrease snow albedo and increase the absorption of solar radiation. Radiative forcing by LAPs will affect the regional hydrological cycle and climate. We use MODIS observations to retrieve the radiative forcing by LAPs in snow across northeastern China (NEC). The results of radiative forcing present distinct spatial variability. We find that the biases are negatively correlated with LAP concentrations and range from
~ 5 % to ~ 350 %.
Charles A. Brock, Christina Williamson, Agnieszka Kupc, Karl D. Froyd, Frank Erdesz, Nicholas Wagner, Matthews Richardson, Joshua P. Schwarz, Ru-Shan Gao, Joseph M. Katich, Pedro Campuzano-Jost, Benjamin A. Nault, Jason C. Schroder, Jose L. Jimenez, Bernadett Weinzierl, Maximilian Dollner, ThaoPaul Bui, and Daniel M. Murphy
Atmos. Meas. Tech., 12, 3081–3099, https://doi.org/10.5194/amt-12-3081-2019, https://doi.org/10.5194/amt-12-3081-2019, 2019
Short summary
Short summary
From 2016 to 2018 a NASA aircraft profiled the atmosphere from 180 m to ~12 km from the Arctic to the Antarctic over both the Pacific and Atlantic oceans. This program, ATom, sought to sample atmospheric chemical composition to compare with global climate models. We describe the how measurements of particulate matter were made during ATom, and show that the instrument performance was excellent. Data from this project can be used with confidence to evaluate models and compare with satellites.
Zongbo Shi, Tuan Vu, Simone Kotthaus, Roy M. Harrison, Sue Grimmond, Siyao Yue, Tong Zhu, James Lee, Yiqun Han, Matthias Demuzere, Rachel E. Dunmore, Lujie Ren, Di Liu, Yuanlin Wang, Oliver Wild, James Allan, W. Joe Acton, Janet Barlow, Benjamin Barratt, David Beddows, William J. Bloss, Giulia Calzolai, David Carruthers, David C. Carslaw, Queenie Chan, Lia Chatzidiakou, Yang Chen, Leigh Crilley, Hugh Coe, Tie Dai, Ruth Doherty, Fengkui Duan, Pingqing Fu, Baozhu Ge, Maofa Ge, Daobo Guan, Jacqueline F. Hamilton, Kebin He, Mathew Heal, Dwayne Heard, C. Nicholas Hewitt, Michael Hollaway, Min Hu, Dongsheng Ji, Xujiang Jiang, Rod Jones, Markus Kalberer, Frank J. Kelly, Louisa Kramer, Ben Langford, Chun Lin, Alastair C. Lewis, Jie Li, Weijun Li, Huan Liu, Junfeng Liu, Miranda Loh, Keding Lu, Franco Lucarelli, Graham Mann, Gordon McFiggans, Mark R. Miller, Graham Mills, Paul Monk, Eiko Nemitz, Fionna O'Connor, Bin Ouyang, Paul I. Palmer, Carl Percival, Olalekan Popoola, Claire Reeves, Andrew R. Rickard, Longyi Shao, Guangyu Shi, Dominick Spracklen, David Stevenson, Yele Sun, Zhiwei Sun, Shu Tao, Shengrui Tong, Qingqing Wang, Wenhua Wang, Xinming Wang, Xuejun Wang, Zifang Wang, Lianfang Wei, Lisa Whalley, Xuefang Wu, Zhijun Wu, Pinhua Xie, Fumo Yang, Qiang Zhang, Yanli Zhang, Yuanhang Zhang, and Mei Zheng
Atmos. Chem. Phys., 19, 7519–7546, https://doi.org/10.5194/acp-19-7519-2019, https://doi.org/10.5194/acp-19-7519-2019, 2019
Short summary
Short summary
APHH-Beijing is a collaborative international research programme to study the sources, processes and health effects of air pollution in Beijing. This introduction to the special issue provides an overview of (i) the APHH-Beijing programme, (ii) the measurement and modelling activities performed as part of it and (iii) the air quality and meteorological conditions during joint intensive field campaigns as a core activity within APHH-Beijing.
Yilong Wang, Philippe Ciais, Grégoire Broquet, François-Marie Bréon, Tomohiro Oda, Franck Lespinas, Yasjka Meijer, Armin Loescher, Greet Janssens-Maenhout, Bo Zheng, Haoran Xu, Shu Tao, Kevin R. Gurney, Geoffrey Roest, Diego Santaren, and Yongxian Su
Earth Syst. Sci. Data, 11, 687–703, https://doi.org/10.5194/essd-11-687-2019, https://doi.org/10.5194/essd-11-687-2019, 2019
Short summary
Short summary
We address the question of the global characterization of fossil fuel CO2 emission hotspots that may cause coherent XCO2 plumes in space-borne CO2 images, based on the ODIAC global high-resolution 1 km fossil fuel emission data product. For space imagery with 0.5 ppm precision for a single XCO2 measurement, a total of 11 314 hotspots are identified, covering 72 % of the global emissions. These hotspots define the targets for the purpose of monitoring fossil fuel CO2 emissions from space.
Jiayu Xu, Jiachen Zhang, Junfeng Liu, Kan Yi, Songlin Xiang, Xiurong Hu, Yuqing Wang, Shu Tao, and George Ban-Weiss
Atmos. Chem. Phys., 19, 1587–1603, https://doi.org/10.5194/acp-19-1587-2019, https://doi.org/10.5194/acp-19-1587-2019, 2019
Short summary
Short summary
In this study, we fully describe black carbon wet removal coupled with all cloud processes from a cloud microphysics scheme in a climate model and conduct sensitivity simulations that turn off each cloud process one at a time. We find that convective scavenging, aerosol activation, ice nucleation, evaporation of rain–snow, and below-cloud scavenging dominate wet deposition of BC. In addition, the range of direct radiative forcing derived from sensitivity simulations is large, 0.09–0.33 W m−2.
J. Christopher Kaiser, Johannes Hendricks, Mattia Righi, Patrick Jöckel, Holger Tost, Konrad Kandler, Bernadett Weinzierl, Daniel Sauer, Katharina Heimerl, Joshua P. Schwarz, Anne E. Perring, and Thomas Popp
Geosci. Model Dev., 12, 541–579, https://doi.org/10.5194/gmd-12-541-2019, https://doi.org/10.5194/gmd-12-541-2019, 2019
Short summary
Short summary
The implementation of the aerosol microphysics submodel MADE3 into the global atmospheric chemistry model EMAC is described and evaluated against an extensive pool of observational data, focusing on aerosol mass and number concentrations, size distributions, composition, and optical properties. EMAC (MADE3) is able to reproduce main aerosol properties reasonably well, in line with the performance of other global aerosol models.
Cenlin He, Mark G. Flanner, Fei Chen, Michael Barlage, Kuo-Nan Liou, Shichang Kang, Jing Ming, and Yun Qian
Atmos. Chem. Phys., 18, 11507–11527, https://doi.org/10.5194/acp-18-11507-2018, https://doi.org/10.5194/acp-18-11507-2018, 2018
Short summary
Short summary
Snow albedo plays a key role in the Earth and climate system. It can be affected by impurities and snow properties. This study implements new parameterizations into a widely used snow model to account for effects of snow shape and black carbon–snow mixing state on snow albedo reduction in the Tibetan Plateau. This study points toward an imperative need for extensive measurements and improved model characterization of snow grain shape and aerosol–snow mixing state in Tibet and elsewhere.
Yilong Wang, Grégoire Broquet, Philippe Ciais, Frédéric Chevallier, Felix Vogel, Lin Wu, Yi Yin, Rong Wang, and Shu Tao
Atmos. Chem. Phys., 18, 4229–4250, https://doi.org/10.5194/acp-18-4229-2018, https://doi.org/10.5194/acp-18-4229-2018, 2018
Short summary
Short summary
This paper assesses the potential of atmospheric 14CO2 observations and a global inversion system to solve for fossil fuel CO2 (FFCO2) emissions in Europe. The estimate of monthly emission budgets is largely improved in high emitting regions. The results are sensitive to the observation network and the prior uncertainty. Using a high-resolution transport model and a systematic evaluation of the uncertainty in current emission inventories should improve the potential to retrieve FFCO2 emissions.
Katherine M. Manfred, Rebecca A. Washenfelder, Nicholas L. Wagner, Gabriela Adler, Frank Erdesz, Caroline C. Womack, Kara D. Lamb, Joshua P. Schwarz, Alessandro Franchin, Vanessa Selimovic, Robert J. Yokelson, and Daniel M. Murphy
Atmos. Chem. Phys., 18, 1879–1894, https://doi.org/10.5194/acp-18-1879-2018, https://doi.org/10.5194/acp-18-1879-2018, 2018
Short summary
Short summary
In this study, we use a new laser imaging nephelometer to measure the bulk aerosol scattering phase function for biomass burning aerosol from controlled fires. By comparing measurements to models for spherical and fractal particles, we demonstrate that the dominant morphology varies by fuel type. This instrument has unique capabilities to directly measure how morphology affects optical properties, and can be used in the future for important validations of remote sensing retrievals.
Yulan Zhang, Shichang Kang, Michael Sprenger, Zhiyuan Cong, Tanguang Gao, Chaoliu Li, Shu Tao, Xiaofei Li, Xinyue Zhong, Min Xu, Wenjun Meng, Bigyan Neupane, Xiang Qin, and Mika Sillanpää
The Cryosphere, 12, 413–431, https://doi.org/10.5194/tc-12-413-2018, https://doi.org/10.5194/tc-12-413-2018, 2018
Short summary
Short summary
Light-absorbing impurities deposited on snow can reduce surface albedo and contribute to the near-worldwide melting of snowpack and ice. This study focused on the black carbon and mineral dust in snow cover on the Tibetan Plateau. We discussed their concentrations, distributions, possible sources, and albedo reduction and radiative forcing. Findings indicated that the impacts of black carbon and mineral dust need to be properly accounted for in future regional climate projections.
Yingying Yan, Jintai Lin, and Cenlin He
Atmos. Chem. Phys., 18, 1185–1202, https://doi.org/10.5194/acp-18-1185-2018, https://doi.org/10.5194/acp-18-1185-2018, 2018
Short summary
Short summary
Examining observed and simulated ozone at about 1000 sites during 1990–2014, we find a clear diurnal cycle both in the magnitude of ozone trends and in the relative importance of climate variability versus anthropogenic emissions to ozone changes, which has policy implications to mitigate ozone at night and other non-peak hours.
Bin Zhao, Kuo-Nan Liou, Yu Gu, Jonathan H. Jiang, Qinbin Li, Rong Fu, Lei Huang, Xiaohong Liu, Xiangjun Shi, Hui Su, and Cenlin He
Atmos. Chem. Phys., 18, 1065–1078, https://doi.org/10.5194/acp-18-1065-2018, https://doi.org/10.5194/acp-18-1065-2018, 2018
Short summary
Short summary
The interactions between aerosols and ice clouds represent one of the largest uncertainties among anthropogenic forcings on climate change. We find that the responses of ice crystal effective radius, a key parameter determining ice clouds' net radiative effect, to aerosol loadings are modulated by water vapor amount and vary from a significant negative correlation in moist conditions (consistent with the “Twomey effect” for liquid clouds) to a strong positive correlation in dry conditions.
Xuan Wang, Colette L. Heald, Jiumeng Liu, Rodney J. Weber, Pedro Campuzano-Jost, Jose L. Jimenez, Joshua P. Schwarz, and Anne E. Perring
Atmos. Chem. Phys., 18, 635–653, https://doi.org/10.5194/acp-18-635-2018, https://doi.org/10.5194/acp-18-635-2018, 2018
Short summary
Short summary
Brown carbon (BrC) contributes significantly to uncertainty in estimating the global direct radiative effect (DRE) of aerosols. We develop a global model simulation of BrC and test it against BrC absorption measurements from two aircraft campaigns in the continental United States. We suggest that BrC DRE has been overestimated previously due to the lack of observational constraints from direct measurements and omission of the effects of photochemical whitening.
Bin Zhao, Wenjing Wu, Shuxiao Wang, Jia Xing, Xing Chang, Kuo-Nan Liou, Jonathan H. Jiang, Yu Gu, Carey Jang, Joshua S. Fu, Yun Zhu, Jiandong Wang, Yan Lin, and Jiming Hao
Atmos. Chem. Phys., 17, 12031–12050, https://doi.org/10.5194/acp-17-12031-2017, https://doi.org/10.5194/acp-17-12031-2017, 2017
Short summary
Short summary
Using over 1000 chemical transport model simulations in the Beijing–Tianjin–Hebei region, we find that the emissions of primary inorganic PM2.5 make the largest contribution to PM2.5 concentrations and thus should be prioritized in PM2.5 control strategies. Among the precursors, PM2.5 concentrations are primarily sensitive to the emissions of NH3, NMVOC+IVOC, and POA, and the sensitivities increase substantially for NH3 and NHx with the increase in emission reduction ratio.
Ling Qi, Qinbin Li, Daven K. Henze, Hsien-Liang Tseng, and Cenlin He
Atmos. Chem. Phys., 17, 9697–9716, https://doi.org/10.5194/acp-17-9697-2017, https://doi.org/10.5194/acp-17-9697-2017, 2017
Short summary
Short summary
We find that Asian anthropogenic sources are the largest contributors (~ 40 %) to surface BC in spring in the Arctic, inconsistent with previous studies which repeatedly identified sources of surface BC as anthropogenic emissions from Europe and Russia. It takes 12–17 days for Asian anthropogenic emissions to be transported to the Arctic surface. Additionally, a large fraction (40–65 %) of Asian contribution is in the form of chronic pollution on 1- to 2-month timescales.
Kan Yi, Junfeng Liu, George Ban-Weiss, Jiachen Zhang, Wei Tao, Yanli Cheng, and Shu Tao
Atmos. Chem. Phys., 17, 8771–8788, https://doi.org/10.5194/acp-17-8771-2017, https://doi.org/10.5194/acp-17-8771-2017, 2017
Short summary
Short summary
In this study, we find that SST increases of a specific ocean in the Northern Hemisphere tend to increase summertime surface O3 concentrations over upwind continents while reducing those over downwind regions. It also promotes a more stagnant climate, which tends to suppress O3 long-range transport. Our findings indicate a robust linkage between basin-scale SST variability and continental surface O3 pollution, which should be taken into account for air quality management.
Ling Qi, Qinbin Li, Cenlin He, Xin Wang, and Jianping Huang
Atmos. Chem. Phys., 17, 7459–7479, https://doi.org/10.5194/acp-17-7459-2017, https://doi.org/10.5194/acp-17-7459-2017, 2017
Short summary
Short summary
Black carbon (BC) is the second only to CO2 in heating the planet, but the simulation of BC is associated with large uncertainties. BC burden is largely underestimated over land and overestimated over ocean. Our study finds that a missing process in current Wegener–Bergeron–Findeisen models largely explains the discrepancy in BC simulation over land. We call for more observations of BC in mixed-phase clouds to understand this process and improve the simulation of global BC.
Ellis Shipley Robinson, Ru-Shan Gao, Joshua P. Schwarz, David W. Fahey, and Anne E. Perring
Atmos. Meas. Tech., 10, 1755–1768, https://doi.org/10.5194/amt-10-1755-2017, https://doi.org/10.5194/amt-10-1755-2017, 2017
Ling Qi, Qinbin Li, Yinrui Li, and Cenlin He
Atmos. Chem. Phys., 17, 1037–1059, https://doi.org/10.5194/acp-17-1037-2017, https://doi.org/10.5194/acp-17-1037-2017, 2017
Short summary
Short summary
The Arctic is the most vulnerable region for climate change. Black carbon (BC) in air and deposited on snow and ice warms the Arctic substantially, but simulations of BC climate effects are associated with large uncertainties. To reduce this uncertainty, it is imperative to improve the simulation of BC distribution in the Arctic. We evaluate the effects of controlling factors (emissions, dry and wet deposition) on BC distribution and call for more observations to constrain these processes.
Shushi Peng, Shilong Piao, Philippe Bousquet, Philippe Ciais, Bengang Li, Xin Lin, Shu Tao, Zhiping Wang, Yuan Zhang, and Feng Zhou
Atmos. Chem. Phys., 16, 14545–14562, https://doi.org/10.5194/acp-16-14545-2016, https://doi.org/10.5194/acp-16-14545-2016, 2016
Short summary
Short summary
Methane is an important greenhouse gas, which accounts for about 20 % of the warming induced by long-lived greenhouse gases since 1750. Anthropogenic methane emissions from China may have been growing rapidly in the past decades because of increased coal mining and fast growing livestock. A good long-term methane emissions dataset is still lacking. Here, we produced a detailed bottom-up inventory of anthropogenic methane emissions from the eight major source sectors in China during 1980–2010.
Carsten Warneke, Michael Trainer, Joost A. de Gouw, David D. Parrish, David W. Fahey, A. R. Ravishankara, Ann M. Middlebrook, Charles A. Brock, James M. Roberts, Steven S. Brown, Jonathan A. Neuman, Brian M. Lerner, Daniel Lack, Daniel Law, Gerhard Hübler, Iliana Pollack, Steven Sjostedt, Thomas B. Ryerson, Jessica B. Gilman, Jin Liao, John Holloway, Jeff Peischl, John B. Nowak, Kenneth C. Aikin, Kyung-Eun Min, Rebecca A. Washenfelder, Martin G. Graus, Mathew Richardson, Milos Z. Markovic, Nick L. Wagner, André Welti, Patrick R. Veres, Peter Edwards, Joshua P. Schwarz, Timothy Gordon, William P. Dube, Stuart A. McKeen, Jerome Brioude, Ravan Ahmadov, Aikaterini Bougiatioti, Jack J. Lin, Athanasios Nenes, Glenn M. Wolfe, Thomas F. Hanisco, Ben H. Lee, Felipe D. Lopez-Hilfiker, Joel A. Thornton, Frank N. Keutsch, Jennifer Kaiser, Jingqiu Mao, and Courtney D. Hatch
Atmos. Meas. Tech., 9, 3063–3093, https://doi.org/10.5194/amt-9-3063-2016, https://doi.org/10.5194/amt-9-3063-2016, 2016
Short summary
Short summary
In this paper we describe the experimental approach, the science goals and early results of the NOAA SENEX campaign, which was focused on studying the interactions between biogenic and anthropogenic emissions to form secondary pollutants.
During SENEX, the NOAA WP-3D aircraft conducted 20 research flights between 27 May and 10 July 2013 based out of Smyrna, TN. The SENEX flights included day- and nighttime flights in the Southeast as well as flights over areas with intense shale gas extraction.
Bin Zhao, Kuo-Nan Liou, Yu Gu, Cenlin He, Wee-Liang Lee, Xing Chang, Qinbin Li, Shuxiao Wang, Hsien-Liang R. Tseng, Lai-Yung R. Leung, and Jiming Hao
Atmos. Chem. Phys., 16, 5841–5852, https://doi.org/10.5194/acp-16-5841-2016, https://doi.org/10.5194/acp-16-5841-2016, 2016
Short summary
Short summary
We examine the impact of buildings on surface solar fluxes in Beijing by accounting for their 3-D structures. We find that inclusion of buildings changes surface solar fluxes by within ±1 W m−2, ±1–10 W m−2, and up to ±100 W m−2 at grid resolutions of 4 km, 800 m, and 90 m, respectively. We can resolve pairs of positive-negative flux deviations on different sides of buildings at ≤ 800 m resolutions. We should treat building-effect on solar fluxes differently in models with different resolutions.
Charles A. Brock, Nicholas L. Wagner, Bruce E. Anderson, Alexis R. Attwood, Andreas Beyersdorf, Pedro Campuzano-Jost, Annmarie G. Carlton, Douglas A. Day, Glenn S. Diskin, Timothy D. Gordon, Jose L. Jimenez, Daniel A. Lack, Jin Liao, Milos Z. Markovic, Ann M. Middlebrook, Nga L. Ng, Anne E. Perring, Matthews S. Richardson, Joshua P. Schwarz, Rebecca A. Washenfelder, Andre Welti, Lu Xu, Luke D. Ziemba, and Daniel M. Murphy
Atmos. Chem. Phys., 16, 4987–5007, https://doi.org/10.5194/acp-16-4987-2016, https://doi.org/10.5194/acp-16-4987-2016, 2016
Short summary
Short summary
Microscopic pollution particles make the atmosphere look hazy and also cool the earth by sending sunlight back to space. When the air is moist, these particles swell with water and scatter even more sunlight. We showed that particles formed from organic material – which dominates particulate pollution in the southeastern U.S. – does not take up water very effectively, toward the low end of most previous studies. We also found a better way to mathematically describe this swelling process.
Charles A. Brock, Nicholas L. Wagner, Bruce E. Anderson, Andreas Beyersdorf, Pedro Campuzano-Jost, Douglas A. Day, Glenn S. Diskin, Timothy D. Gordon, Jose L. Jimenez, Daniel A. Lack, Jin Liao, Milos Z. Markovic, Ann M. Middlebrook, Anne E. Perring, Matthews S. Richardson, Joshua P. Schwarz, Andre Welti, Luke D. Ziemba, and Daniel M. Murphy
Atmos. Chem. Phys., 16, 5009–5019, https://doi.org/10.5194/acp-16-5009-2016, https://doi.org/10.5194/acp-16-5009-2016, 2016
Short summary
Short summary
Two research aircraft made dozens of vertical profiles over rural areas in the southeastern US in summer 2013. These measurements show that, in addition to how much pollution was present and how moist the atmosphere was, the size of the pollutant particles affected how much sunlight was reflected back to space. These measurements will help climate modelers determine which characteristics of pollution are important to predict with accuracy.
C. He, K.-N. Liou, Y. Takano, R. Zhang, M. Levy Zamora, P. Yang, Q. Li, and L. R. Leung
Atmos. Chem. Phys., 15, 11967–11980, https://doi.org/10.5194/acp-15-11967-2015, https://doi.org/10.5194/acp-15-11967-2015, 2015
J. Zhang, J. Liu, S. Tao, and G. A. Ban-Weiss
Atmos. Chem. Phys., 15, 11521–11535, https://doi.org/10.5194/acp-15-11521-2015, https://doi.org/10.5194/acp-15-11521-2015, 2015
Short summary
Short summary
We tag BC emissions from 13 source regions around the globe in a global chemical transport model MOZART-4 and optimize the aging timescale for each source region by minimizing errors in vertical profiles of BC mass mixing ratios between simulations and HIAPER Polo-to-Pole Observations (HIPPO). We find that the optimized aging timescale of BC varies significantly by region and season. Our simulations indicate that BC lifetime increases nearly linearly with aging timescale for all source regions.
P. S. Kim, D. J. Jacob, J. A. Fisher, K. Travis, K. Yu, L. Zhu, R. M. Yantosca, M. P. Sulprizio, J. L. Jimenez, P. Campuzano-Jost, K. D. Froyd, J. Liao, J. W. Hair, M. A. Fenn, C. F. Butler, N. L. Wagner, T. D. Gordon, A. Welti, P. O. Wennberg, J. D. Crounse, J. M. St. Clair, A. P. Teng, D. B. Millet, J. P. Schwarz, M. Z. Markovic, and A. E. Perring
Atmos. Chem. Phys., 15, 10411–10433, https://doi.org/10.5194/acp-15-10411-2015, https://doi.org/10.5194/acp-15-10411-2015, 2015
W. Tao, J. Liu, G. A. Ban-Weiss, D. A. Hauglustaine, L. Zhang, Q. Zhang, Y. Cheng, Y. Yu, and S. Tao
Atmos. Chem. Phys., 15, 8597–8614, https://doi.org/10.5194/acp-15-8597-2015, https://doi.org/10.5194/acp-15-8597-2015, 2015
Short summary
Short summary
We examine the responses of a range of meteorological and air quality indicators to the expansion of urban land using WRF/Chem. Sensitivity studies indicate that the responses of pollutant concentrations to the spatial extent of urbanization are linear near the surface but nonlinear at higher altitudes. The results of process analysis demonstrate that urban heat island circulation and a deeper boundary layer with stronger turbulent intensities play a significant role in relocating pollutants.
J. Liu, E. Scheuer, J. Dibb, G. S. Diskin, L. D. Ziemba, K. L. Thornhill, B. E. Anderson, A. Wisthaler, T. Mikoviny, J. J. Devi, M. Bergin, A. E. Perring, M. Z. Markovic, J. P. Schwarz, P. Campuzano-Jost, D. A. Day, J. L. Jimenez, and R. J. Weber
Atmos. Chem. Phys., 15, 7841–7858, https://doi.org/10.5194/acp-15-7841-2015, https://doi.org/10.5194/acp-15-7841-2015, 2015
Short summary
Short summary
Brown carbon (BrC) is found throughout the US continental troposphere during a summer of extensive biomass burning and its prevalence relative to black carbon (BC) increases with altitude. A radiative transfer model based on direct measurements of aerosol scattering and absorption by BC and BrC shows BrC reduces top-of-atmosphere forcing by 20%. A method to estimate BrC radiative forcing efficiencies from surface-based measurements is provided.
Y. H. Mao, Q. B. Li, D. K. Henze, Z. Jiang, D. B. A. Jones, M. Kopacz, C. He, L. Qi, M. Gao, W.-M. Hao, and K.-N. Liou
Atmos. Chem. Phys., 15, 7685–7702, https://doi.org/10.5194/acp-15-7685-2015, https://doi.org/10.5194/acp-15-7685-2015, 2015
N. L. Wagner, C. A. Brock, W. M. Angevine, A. Beyersdorf, P. Campuzano-Jost, D. Day, J. A. de Gouw, G. S. Diskin, T. D. Gordon, M. G. Graus, J. S. Holloway, G. Huey, J. L. Jimenez, D. A. Lack, J. Liao, X. Liu, M. Z. Markovic, A. M. Middlebrook, T. Mikoviny, J. Peischl, A. E. Perring, M. S. Richardson, T. B. Ryerson, J. P. Schwarz, C. Warneke, A. Welti, A. Wisthaler, L. D. Ziemba, and D. M. Murphy
Atmos. Chem. Phys., 15, 7085–7102, https://doi.org/10.5194/acp-15-7085-2015, https://doi.org/10.5194/acp-15-7085-2015, 2015
Short summary
Short summary
This paper investigates the summertime vertical profile of aerosol over the southeastern US using in situ measurements collected from aircraft. We use a vertical mixing model and measurements of CO to predict the vertical profile of aerosol that we would expect from vertical mixing alone and compare with the observed aerosol profile. We found a modest enhancement of aerosol in the cloudy transition layer during shallow cumulus convection and attribute the enhancement to local aerosol formation.
R. Wang, Y. Balkanski, O. Boucher, L. Bopp, A. Chappell, P. Ciais, D. Hauglustaine, J. Peñuelas, and S. Tao
Atmos. Chem. Phys., 15, 6247–6270, https://doi.org/10.5194/acp-15-6247-2015, https://doi.org/10.5194/acp-15-6247-2015, 2015
Short summary
Short summary
This study makes a first attempt to estimate the temporal trend of Fe emissions from anthropogenic and natural combustion sources from 1960 to 2007 and the emissions of Fe from mineral dust based on a recent mineralogical database. The new emission inventory is introduced into a global aerosol model. The simulated total Fe and soluble Fe concentrations in surface air as well as the deposition of total Fe are evaluated by observations over major continental and oceanic regions globally.
W.-L. Lee, Y. Gu, K. N. Liou, L. R. Leung, and H.-H. Hsu
Atmos. Chem. Phys., 15, 5405–5413, https://doi.org/10.5194/acp-15-5405-2015, https://doi.org/10.5194/acp-15-5405-2015, 2015
Short summary
Short summary
This paper investigates 3-D mountain effects on solar flux distributions and their impact on surface hydrology over the western United States, specifically the Rocky Mountains and the Sierra Nevada, using the global CCSM4 (CAM4/CLM4) with a 0.23°×0.31° resolution for simulations over 6 years. We show that deviations in the net surface fluxes are not only affected by 3-D mountains but also influenced by feedbacks of cloud and snow in association with the long-term simulations.
C. G. Schmitt, J. D. All, J. P. Schwarz, W. P. Arnott, R. J. Cole, E. Lapham, and A. Celestian
The Cryosphere, 9, 331–340, https://doi.org/10.5194/tc-9-331-2015, https://doi.org/10.5194/tc-9-331-2015, 2015
Short summary
Short summary
This paper presents the results of 3 years of measurements of light absorbing particles on the glaciers in Peru. A new analysis technique has been developed and results are shown to be well correlated with black carbon mass estimates made with the Single Particle Soot Photometer (SP2) instrument, the state-of-the-art instrument for this type of measurement. Effective black carbon levels were found to be moderate on glaciers near cities and close to zero in more remote regions.
B. H. Samset, G. Myhre, A. Herber, Y. Kondo, S.-M. Li, N. Moteki, M. Koike, N. Oshima, J. P. Schwarz, Y. Balkanski, S. E. Bauer, N. Bellouin, T. K. Berntsen, H. Bian, M. Chin, T. Diehl, R. C. Easter, S. J. Ghan, T. Iversen, A. Kirkevåg, J.-F. Lamarque, G. Lin, X. Liu, J. E. Penner, M. Schulz, Ø. Seland, R. B. Skeie, P. Stier, T. Takemura, K. Tsigaridis, and K. Zhang
Atmos. Chem. Phys., 14, 12465–12477, https://doi.org/10.5194/acp-14-12465-2014, https://doi.org/10.5194/acp-14-12465-2014, 2014
Short summary
Short summary
Far from black carbon (BC) emission sources, present climate models are unable to reproduce flight measurements. By comparing recent models with data, we find that the atmospheric lifetime of BC may be overestimated in models. By adjusting modeled BC concentrations to measurements in remote regions - over oceans and at high altitudes - we arrive at a reduced estimate for BC radiative forcing over the industrial era.
X. Wang, C. L. Heald, D. A. Ridley, J. P. Schwarz, J. R. Spackman, A. E. Perring, H. Coe, D. Liu, and A. D. Clarke
Atmos. Chem. Phys., 14, 10989–11010, https://doi.org/10.5194/acp-14-10989-2014, https://doi.org/10.5194/acp-14-10989-2014, 2014
Y. H. Mao, Q. B. Li, D. Chen, L. Zhang, W.-M. Hao, and K.-N. Liou
Atmos. Chem. Phys., 14, 7195–7211, https://doi.org/10.5194/acp-14-7195-2014, https://doi.org/10.5194/acp-14-7195-2014, 2014
C. He, Q. B. Li, K. N. Liou, J. Zhang, L. Qi, Y. Mao, M. Gao, Z. Lu, D. G. Streets, Q. Zhang, M. M. Sarin, and K. Ram
Atmos. Chem. Phys., 14, 7091–7112, https://doi.org/10.5194/acp-14-7091-2014, https://doi.org/10.5194/acp-14-7091-2014, 2014
Z. Shen, J. Liu, L. W. Horowitz, D. K. Henze, S. Fan, Levy II H., D. L. Mauzerall, J.-T. Lin, and S. Tao
Atmos. Chem. Phys., 14, 6315–6327, https://doi.org/10.5194/acp-14-6315-2014, https://doi.org/10.5194/acp-14-6315-2014, 2014
X. S. Luo, C. C. M. Ip, W. Li, S. Tao, and X. D. Li
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-14-13133-2014, https://doi.org/10.5194/acpd-14-13133-2014, 2014
Revised manuscript not accepted
B. H. Kahn, F. W. Irion, V. T. Dang, E. M. Manning, S. L. Nasiri, C. M. Naud, J. M. Blaisdell, M. M. Schreier, Q. Yue, K. W. Bowman, E. J. Fetzer, G. C. Hulley, K. N. Liou, D. Lubin, S. C. Ou, J. Susskind, Y. Takano, B. Tian, and J. R. Worden
Atmos. Chem. Phys., 14, 399–426, https://doi.org/10.5194/acp-14-399-2014, https://doi.org/10.5194/acp-14-399-2014, 2014
A. Kumar, S. Wu, M. F. Weise, R. Honrath, R. C. Owen, D. Helmig, L. Kramer, M. Val Martin, and Q. Li
Atmos. Chem. Phys., 13, 12537–12547, https://doi.org/10.5194/acp-13-12537-2013, https://doi.org/10.5194/acp-13-12537-2013, 2013
K. N. Liou, Y. Gu, L. R. Leung, W. L. Lee, and R. G. Fovell
Atmos. Chem. Phys., 13, 11709–11721, https://doi.org/10.5194/acp-13-11709-2013, https://doi.org/10.5194/acp-13-11709-2013, 2013
S. S. Brown, W. P. Dubé, R. Bahreini, A. M. Middlebrook, C. A. Brock, C. Warneke, J. A. de Gouw, R. A. Washenfelder, E. Atlas, J. Peischl, T. B. Ryerson, J. S. Holloway, J. P. Schwarz, R. Spackman, M. Trainer, D. D. Parrish, F. C. Fehshenfeld, and A. R. Ravishankara
Atmos. Chem. Phys., 13, 11317–11337, https://doi.org/10.5194/acp-13-11317-2013, https://doi.org/10.5194/acp-13-11317-2013, 2013
E. V. Berezin, I. B. Konovalov, P. Ciais, A. Richter, S. Tao, G. Janssens-Maenhout, M. Beekmann, and E.-D. Schulze
Atmos. Chem. Phys., 13, 9415–9438, https://doi.org/10.5194/acp-13-9415-2013, https://doi.org/10.5194/acp-13-9415-2013, 2013
L. Zhang, Q. B. Li, Y. Gu, K. N. Liou, and B. Meland
Atmos. Chem. Phys., 13, 7097–7114, https://doi.org/10.5194/acp-13-7097-2013, https://doi.org/10.5194/acp-13-7097-2013, 2013
D. N. Bernstein, J. D. Neelin, Q. B. Li, and D. Chen
Atmos. Chem. Phys., 13, 6373–6390, https://doi.org/10.5194/acp-13-6373-2013, https://doi.org/10.5194/acp-13-6373-2013, 2013
Z. Kipling, P. Stier, J. P. Schwarz, A. E. Perring, J. R. Spackman, G. W. Mann, C. E. Johnson, and P. J. Telford
Atmos. Chem. Phys., 13, 5969–5986, https://doi.org/10.5194/acp-13-5969-2013, https://doi.org/10.5194/acp-13-5969-2013, 2013
R. Wang, S. Tao, P. Ciais, H. Z. Shen, Y. Huang, H. Chen, G. F. Shen, B. Wang, W. Li, Y. Y. Zhang, Y. Lu, D. Zhu, Y. C. Chen, X. P. Liu, W. T. Wang, X. L. Wang, W. X. Liu, B. G. Li, and S. L. Piao
Atmos. Chem. Phys., 13, 5189–5203, https://doi.org/10.5194/acp-13-5189-2013, https://doi.org/10.5194/acp-13-5189-2013, 2013
C. He, J. Liu, A. G. Carlton, S. Fan, L. W. Horowitz, H. Levy II, and S. Tao
Atmos. Chem. Phys., 13, 1913–1926, https://doi.org/10.5194/acp-13-1913-2013, https://doi.org/10.5194/acp-13-1913-2013, 2013
M. Laborde, M. Schnaiter, C. Linke, H. Saathoff, K.-H. Naumann, O. Möhler, S. Berlenz, U. Wagner, J. W. Taylor, D. Liu, M. Flynn, J. D. Allan, H. Coe, K. Heimerl, F. Dahlkötter, B. Weinzierl, A. G. Wollny, M. Zanatta, J. Cozic, P. Laj, R. Hitzenberger, J. P. Schwarz, and M. Gysel
Atmos. Meas. Tech., 5, 3077–3097, https://doi.org/10.5194/amt-5-3077-2012, https://doi.org/10.5194/amt-5-3077-2012, 2012
Related subject area
Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Warming effects of reduced sulfur emissions from shipping
The key role of atmospheric absorption in the Asian summer monsoon response to dust emissions in CMIP6 models
Multi-model effective radiative forcing of the 2020 sulfur cap for shipping
Representation of iron aerosol size distributions of anthropogenic emissions is critical in evaluating atmospheric soluble iron input to the ocean
Revealing dominant patterns of aerosol regimes in the lower troposphere and their evolution from preindustrial times to the future in global climate model simulations
Improving estimation of a record-breaking east Asian dust storm emission with lagged aerosol Ångström exponent observations
Impact of biomass burning aerosols (BBA) on the tropical African climate in an ocean–atmosphere–aerosol coupled climate model
Retrieval of refractive index and water content for the coating materials of aged black carbon aerosol based on optical properties: a theoretical analysis
Predicting hygroscopic growth of organosulfur aerosol particles using COSMOtherm
Dust aerosol from the Aralkum Desert influences the radiation budget and atmospheric dynamics of Central Asia
Global modeling of aerosol nucleation with a semi-explicit chemical mechanism for highly oxygenated organic molecules (HOMs)
Synergistic effects of the winter North Atlantic Oscillation (NAO) and El Niño–Southern Oscillation (ENSO) on dust activities in North China during the following spring
Aerosol composition, air quality, and boundary layer dynamics in the urban background of Stuttgart in winter
Measurement report: Source attribution and estimation of black carbon levels in an urban hotspot of the central Po Valley – an integrated approach combining high-resolution dispersion modelling and micro-aethalometers
Quasi-weekly oscillation of regional PM2.5 transport over China driven by the synoptic-scale disturbance of East Asian Winter Monsoon circulation
Microphysical modelling of aerosol scavenging by different types of clouds: description and validation of the approach
Insights into the sources of ultrafine particle numbers at six European urban sites obtained by investigating COVID-19 lockdowns
In-plume and out-of-plume analysis of aerosol–cloud interactions derived from the 2014–2015 Holuhraun volcanic eruption
Impacts of atmospheric circulation patterns and cloud inhibition on aerosol radiative effect and boundary layer structure during winter air pollution in Sichuan Basin, China
Steady-State Mixing State of Black Carbon Aerosols from a Particle-Resolved Model
The effectiveness of solar radiation management for marine cloud brightening geoengineering by fine sea spray in worldwide different climatic regions
Accounting for Black Carbon Aging Process in a Two-way Coupled Meteorology – Air Quality Model
Investigating the sign of stratocumulus adjustments to aerosols in the ICON global storm-resolving model
A model study investigating the sensitivity of aerosol forcing to the volatilities of semi-volatile organic compounds
Distinctive dust weather intensities in North China resulted from two types of atmospheric circulation anomalies
Decomposing the effective radiative forcing of anthropogenic aerosols based on CMIP6 Earth system models
The role of interfacial tension in the size-dependent phase separation of atmospheric aerosol particles
Modeling impacts of dust mineralogy on fast climate response
Gaps in our understanding of ice-nucleating particle sources exposed by global simulation of the UK climate model
Uncertainties in laboratory-measured shortwave refractive indices of mineral dust aerosols and derived optical properties: a theoretical assessment
Diagnosing uncertainties in global biomass burning emission inventories and their impact on modeled air pollutants
Solar radiation estimation in West Africa: impact of dust conditions during 2021 dry season
Role of atmospheric aerosols in severe winter fog over the Indo-Gangetic Plain of India: a case study
Long-term variability in black carbon emissions constrained by gap-filled absorption aerosol optical depth and associated premature mortality in China
Intercomparison of aerosol optical depths from four reanalyses and their multi-reanalysis consensus
Biomass Burning Emissions Analysis Based on MODIS AOD and AeroCom Multi-Model Simulations
Global aviation contrail climate effects from 2019 to 2021
Rapid iodine oxoacid nucleation enhanced by dimethylamine in broad marine regions
Simulations of the impact of cloud condensation nuclei and ice-nucleating particles perturbations on the microphysics and radar reflectivity factor of stratiform mixed-phase clouds
Aerosols in the central Arctic cryosphere: satellite and model integrated insights during Arctic spring and summer
Observationally constrained regional variations of shortwave absorption by iron oxides emphasize the cooling effect of dust
Droplet collection efficiencies inferred from satellite retrievals constrain effective radiative forcing of aerosol–cloud interactions
Global aerosol-type classification using a new hybrid algorithm and Aerosol Robotic Network data
Tropospheric aerosols over the western North Atlantic Ocean during the winter and summer campaigns of ACTIVATE 2020: Life cycle, transport, and distribution
Simulated phase state and viscosity of secondary organic aerosols over China
Comparing the simulated influence of biomass burning plumes on low-level clouds over the southeastern Atlantic under varying smoke conditions
A global dust emission dataset for estimating dust radiative forcings in climate models
Improved simulations of biomass burning aerosol optical properties and lifetimes in the NASA GEOS Model during the ORACLES-I campaign
Sharp increase in Saharan dust intrusions over the western Euro-Mediterranean in February–March 2020–2022 and associated atmospheric circulation
Temporal and spatial variations in dust activity in Australia based on remote sensing and reanalysis datasets
Masaru Yoshioka, Daniel P. Grosvenor, Ben B. B. Booth, Colin P. Morice, and Ken S. Carslaw
Atmos. Chem. Phys., 24, 13681–13692, https://doi.org/10.5194/acp-24-13681-2024, https://doi.org/10.5194/acp-24-13681-2024, 2024
Short summary
Short summary
A 2020 regulation has reduced sulfur emissions from shipping by about 80 %, leading to a decrease in atmospheric aerosols that have a cooling effect primarily by affecting cloud properties and amounts. Our climate model simulations predict a global temperature increase of 0.04 K over the next 3 decades as a result, which could contribute to surpassing the Paris Agreement's 1.5 °C target. Reduced aerosols may have also contributed to the recent temperature spikes.
Alcide Zhao, Laura J. Wilcox, and Claire L. Ryder
Atmos. Chem. Phys., 24, 13385–13402, https://doi.org/10.5194/acp-24-13385-2024, https://doi.org/10.5194/acp-24-13385-2024, 2024
Short summary
Short summary
Climate models include desert dust aerosols, which cause atmospheric heating and can change circulation patterns. We assess the effect of dust on the Indian and east Asian summer monsoons through multi-model experiments isolating the effect of dust in current climate models for the first time. Dust atmospheric heating results in a southward shift of western Pacific equatorial rainfall and an enhanced Indian summer monsoon. This shows the importance of accurate dust representation in models.
Ragnhild Bieltvedt Skeie, Rachael Byrom, Øivind Hodnebrog, Caroline Jouan, and Gunnar Myhre
Atmos. Chem. Phys., 24, 13361–13370, https://doi.org/10.5194/acp-24-13361-2024, https://doi.org/10.5194/acp-24-13361-2024, 2024
Short summary
Short summary
In 2020, new regulations by the International Maritime Organization regarding sulfur emissions came into force, reducing emissions of SO2 from the shipping sector by approximately 80 %. In this study, we use multiple models to calculate how much the Earth energy balance changed due to the emission reduction or the so-called effective radiative forcing. The calculated effective radiative forcing is weak, comparable to the effect of the increase in CO2 over the last 2 to 3 years.
Mingxu Liu, Hitoshi Matsui, Douglas S. Hamilton, Sagar D. Rathod, Kara D. Lamb, and Natalie M. Mahowald
Atmos. Chem. Phys., 24, 13115–13127, https://doi.org/10.5194/acp-24-13115-2024, https://doi.org/10.5194/acp-24-13115-2024, 2024
Short summary
Short summary
Atmospheric aerosol deposition provides bioavailable iron to promote marine primary production, yet the estimates of its fluxes remain highly uncertain. This study, by performing global aerosol simulations, demonstrates that iron-containing particle size upon emission is a critical factor in regulating soluble iron input to open oceans. Further observational constraints on this are needed to reduce modeling uncertainties.
Jingmin Li, Mattia Righi, Johannes Hendricks, Christof G. Beer, Ulrike Burkhardt, and Anja Schmidt
Atmos. Chem. Phys., 24, 12727–12747, https://doi.org/10.5194/acp-24-12727-2024, https://doi.org/10.5194/acp-24-12727-2024, 2024
Short summary
Short summary
Aiming to understand underlying patterns and trends in aerosols, we characterize the spatial patterns and long-term evolution of lower tropospheric aerosols by clustering multiple aerosol properties from preindustrial times to the year 2050 under three Shared
Socioeconomic Pathway scenarios. The results provide a clear and condensed picture of the spatial extent and distribution of aerosols for different time periods and emission scenarios.
Socioeconomic Pathway scenarios. The results provide a clear and condensed picture of the spatial extent and distribution of aerosols for different time periods and emission scenarios.
Yueming Cheng, Tie Dai, Junji Cao, Daisuke Goto, Jianbing Jin, Teruyuki Nakajima, and Guangyu Shi
Atmos. Chem. Phys., 24, 12643–12659, https://doi.org/10.5194/acp-24-12643-2024, https://doi.org/10.5194/acp-24-12643-2024, 2024
Short summary
Short summary
In March 2021, east Asia experienced an outbreak of severe dust storms after an absence of 1.5 decades. Here, we innovatively used the time-lagged ground-based aerosol size information with the fixed-lag ensemble Kalman smoother to optimize dust emission and reproduce the dust storm. This work is valuable for not only the quantification of health damage, aviation risks, and profound impacts on the Earth's system but also revealing the climatic driving force and the process of desertification.
Marc Mallet, Aurore Voldoire, Fabien Solmon, Pierre Nabat, Thomas Drugé, and Romain Roehrig
Atmos. Chem. Phys., 24, 12509–12535, https://doi.org/10.5194/acp-24-12509-2024, https://doi.org/10.5194/acp-24-12509-2024, 2024
Short summary
Short summary
This study investigates the interactions between smoke aerosols and climate in tropical Africa using a coupled ocean–atmosphere–aerosol climate model. The work shows that smoke plumes have a significant impact by increasing the low-cloud fraction, decreasing the ocean and continental surface temperature and reducing the precipitation of coastal western Africa. It also highlights the role of the ocean temperature response and its feedbacks for the September–November season.
Jia Liu, Cancan Zhu, Donghui Zhou, and Jinbao Han
Atmos. Chem. Phys., 24, 12341–12354, https://doi.org/10.5194/acp-24-12341-2024, https://doi.org/10.5194/acp-24-12341-2024, 2024
Short summary
Short summary
The hydrophilic coatings of aged black carbon (BC) particles absorb moisture during the hygroscopic growth process, but it is difficult to characterize how much water is absorbed under different relative humidities (RHs). In this study, we propose a method to obtain the water content in the coatings based on the equivalent complex refractive index retrieved from optical properties. This method is verified from a theoretical perspective, and it performs well for thickly coated BC at high RHs.
Zijun Li, Angela Buchholz, and Noora Hyttinen
Atmos. Chem. Phys., 24, 11717–11725, https://doi.org/10.5194/acp-24-11717-2024, https://doi.org/10.5194/acp-24-11717-2024, 2024
Short summary
Short summary
Evaluating organosulfur (OS) hygroscopicity is important for assessing aerosol–cloud climate interactions in the post-fossil-fuel future, when SO2 emissions decrease and OS compounds become increasingly important. Here a state-of-the-art quantum-chemistry-based method was used to predict the hygroscopic growth factors (HGFs) of a group of atmospherically relevant OS compounds and their mixtures with (NH4)2SO4. A good agreement was observed between their model-estimated and experimental HGFs.
Jamie R. Banks, Bernd Heinold, and Kerstin Schepanski
Atmos. Chem. Phys., 24, 11451–11475, https://doi.org/10.5194/acp-24-11451-2024, https://doi.org/10.5194/acp-24-11451-2024, 2024
Short summary
Short summary
The Aralkum is a new desert in Central Asia formed by the desiccation of the Aral Sea. This has created a source of atmospheric dust, with implications for the balance of solar and thermal radiation. Simulating these effects using a dust transport model, we find that Aralkum dust adds radiative cooling effects to the surface and atmosphere on average but also adds heating events. Increases in surface pressure due to Aralkum dust strengthen the Siberian High and weaken the summer Asian heat low.
Xinyue Shao, Minghuai Wang, Xinyi Dong, Yaman Liu, Wenxiang Shen, Stephen R. Arnold, Leighton A. Regayre, Meinrat O. Andreae, Mira L. Pöhlker, Duseong S. Jo, Man Yue, and Ken S. Carslaw
Atmos. Chem. Phys., 24, 11365–11389, https://doi.org/10.5194/acp-24-11365-2024, https://doi.org/10.5194/acp-24-11365-2024, 2024
Short summary
Short summary
Highly oxygenated organic molecules (HOMs) play an important role in atmospheric new particle formation (NPF). By semi-explicitly coupling the chemical mechanism of HOMs and a comprehensive nucleation scheme in a global climate model, the updated model shows better agreement with measurements of nucleation rate, growth rate, and NPF event frequency. Our results reveal that HOM-driven NPF leads to a considerable increase in particle and cloud condensation nuclei burden globally.
Falei Xu, Shuang Wang, Yan Li, and Juan Feng
Atmos. Chem. Phys., 24, 10689–10705, https://doi.org/10.5194/acp-24-10689-2024, https://doi.org/10.5194/acp-24-10689-2024, 2024
Short summary
Short summary
This study examines how the winter North Atlantic Oscillation (NAO) and El Niño–Southern Oscillation (ENSO) affect dust activities in North China during the following spring. The results show that the NAO and ENSO, particularly in their negative phases, greatly influence dust activities. When both are negative, their combined effect on dust activities is even greater. This research highlights the importance of these climate patterns in predicting spring dust activities in North China.
Hengheng Zhang, Wei Huang, Xiaoli Shen, Ramakrishna Ramisetty, Junwei Song, Olga Kiseleva, Christopher Claus Holst, Basit Khan, Thomas Leisner, and Harald Saathoff
Atmos. Chem. Phys., 24, 10617–10637, https://doi.org/10.5194/acp-24-10617-2024, https://doi.org/10.5194/acp-24-10617-2024, 2024
Short summary
Short summary
Our study unravels how stagnant winter conditions elevate aerosol levels in Stuttgart. Cloud cover at night plays a pivotal role, impacting morning air quality. Validating a key model, our findings aid accurate air quality predictions, crucial for effective pollution mitigation in urban areas.
Giorgio Veratti, Alessandro Bigi, Michele Stortini, Sergio Teggi, and Grazia Ghermandi
Atmos. Chem. Phys., 24, 10475–10512, https://doi.org/10.5194/acp-24-10475-2024, https://doi.org/10.5194/acp-24-10475-2024, 2024
Short summary
Short summary
In a study of two consecutive winter seasons, we used measurements and modelling tools to identify the levels and sources of black carbon pollution in a medium-sized urban area of the Po Valley, Italy. Our findings show that biomass burning and traffic-related emissions (especially from Euro 4 diesel cars) significantly contribute to BC concentrations. This research offers crucial insights for policymakers and urban planners aiming to improve air quality in cities.
Yongqing Bai, Tianliang Zhao, Kai Meng, Yue Zhou, Jie Xiong, Xiaoyun Sun, Lijuan Shen, Yanyu Yue, Yan Zhu, Weiyang Hu, and Jingyan Yao
EGUsphere, https://doi.org/10.5194/egusphere-2024-2493, https://doi.org/10.5194/egusphere-2024-2493, 2024
Short summary
Short summary
We proposed a composite statistical method to discern the long-term moving spatial distribution with Quasi-weekly oscillation (QWO) of regional PM2.5 transport over China. The QWO of regional PM2.5 transport is constrained by synoptic-scale disturbances of the East Asian Winter Monsoon circulation with the periodic activities of Siberian high, providing a new insight into the understanding of regional pollutant transport with meteorological drivers in atmospheric environment changes.
Pascal Lemaitre, Arnaud Quérel, Alexis Dépée, Alice Guerra Devigne, Marie Monier, Thibault Hiron, Chloé Soto Minguez, Daniel Hardy, and Andrea Flossmann
Atmos. Chem. Phys., 24, 9713–9732, https://doi.org/10.5194/acp-24-9713-2024, https://doi.org/10.5194/acp-24-9713-2024, 2024
Short summary
Short summary
A new in-cloud scavenging scheme is proposed. It is based on a microphysical model of cloud formation and may be applied to long-distance atmospheric transport models (> 100 km) and climatic models. This model is applied to the two most extreme precipitating cloud types in terms of both relative humidity and vertical extension: cumulonimbus and stratus.
Alex Rowell, James Brean, David C. S. Beddows, Tuukka Petäjä, Máté Vörösmarty, Imre Salma, Jarkko V. Niemi, Hanna E. Manninen, Dominik van Pinxteren, Thomas Tuch, Kay Weinhold, Zongbo Shi, and Roy M. Harrison
Atmos. Chem. Phys., 24, 9515–9531, https://doi.org/10.5194/acp-24-9515-2024, https://doi.org/10.5194/acp-24-9515-2024, 2024
Short summary
Short summary
Different sources of airborne particles in the atmospheres of four European cities were distinguished by recognising their particle size distributions using a statistical procedure, positive matrix factorisation. The various sources responded differently to the changes in emissions associated with COVID-19 lockdowns, and the reasons are investigated. While traffic emissions generally decreased, particles formed from reactions of atmospheric gases decreased in some cities but increased in others.
Amy H. Peace, Ying Chen, George Jordan, Daniel G. Partridge, Florent Malavelle, Eliza Duncan, and Jim M. Haywood
Atmos. Chem. Phys., 24, 9533–9553, https://doi.org/10.5194/acp-24-9533-2024, https://doi.org/10.5194/acp-24-9533-2024, 2024
Short summary
Short summary
Natural aerosols from volcanic eruptions can help us understand how anthropogenic aerosols modify climate. We use observations and model simulations of the 2014–2015 Holuhraun eruption plume to examine aerosol–cloud interactions in September 2014. We find a shift to clouds with smaller, more numerous cloud droplets in the first 2 weeks of the eruption. In the third week, the background meteorology and previous conditions experienced by air masses modulate the aerosol perturbation to clouds.
Hua Lu, Min Xie, Bingliang Zhuang, Danyang Ma, Bojun Liu, Yangzhihao Zhan, Tijian Wang, Shu Li, Mengmeng Li, and Kuanguang Zhu
Atmos. Chem. Phys., 24, 8963–8982, https://doi.org/10.5194/acp-24-8963-2024, https://doi.org/10.5194/acp-24-8963-2024, 2024
Short summary
Short summary
To identify cloud, aerosol, and planetary boundary layer (PBL) interactions from an air quality perspective, we summarized two pollution patterns characterized by denser liquid cloud and by obvious cloud radiation interaction (CRI). Numerical simulation experiments showed CRI could cause a 50 % reduction in aerosol radiation interaction (ARI) under a low-trough system. The results emphasized the nonnegligible role of CRI and its inhibition of ARI under wet and cloudy pollution synoptic patterns.
Zhouyang Zhang, Jiandong Wang, Jiaping Wang, Nicole Riemer, Chao Liu, Yuzhi Jin, Zeyuan Tian, Jing Cai, Yueyue Cheng, Ganzhen Chen, Bin Wang, Shuxiao Wang, and Aijun Ding
EGUsphere, https://doi.org/10.5194/egusphere-2024-1924, https://doi.org/10.5194/egusphere-2024-1924, 2024
Short summary
Short summary
Black carbon (BC) exerts notable warming effects. We use a particle-resolved model to investigate the long-term behavior of BC mixing state, revealing its compositions, coating thickness distribution, and optical properties all stabilize with characteristic time of less than one day. This study can effectively simplify the description of the BC mixing state, which facilitates the precise assessment of the optical properties of BC aerosols in global and chemical transport models.
Zhe Song, Ningning Yao, Lang Chen, Yuhai Sun, Boqiong Jiang, Pengfei Li, Daniel Rosenfeld, and Shaocai Yu
EGUsphere, https://doi.org/10.5194/egusphere-2024-2263, https://doi.org/10.5194/egusphere-2024-2263, 2024
Short summary
Short summary
Our results with injected sea-salt aerosols for five open oceans show that the sea-salt aerosols with low injection amounts dominated the shortwave radiation mainly through the indirect effects. As indirect aerosol effects saturated with increasing injection rates, direct effects exceeded indirect effects. This implies that marine cloud brightening was best implemented in areas with extensive cloud cover, while the aerosol direct scattering effects remained dominant when clouds were scarce.
Yuzhi Jin, Jiandong Wang, David C. Wong, Chao Liu, Golam Sarwar, Kathleen M. Fahey, Shang Wu, Jiaping Wang, Jing Cai, Zeyuan Tian, Zhouyang Zhang, Jia Xing, Aijun Ding, and Shuxiao Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2372, https://doi.org/10.5194/egusphere-2024-2372, 2024
Short summary
Short summary
Black carbon (BC) affects climate and the environment, and its aging process alters its properties. Current models, like WRF-CMAQ, lack full account. We developed the WRF-CMAQ-BCG model to better represent BC aging by introducing Bare/Coated BC species and their conversion. Our findings show that BC mixing states have distinct spatiotemporal distribution characteristics, and BC wet deposition is dominated by Coated BC. Accounting for BC aging process improves aerosol optics simulation accuracy.
Emilie Fons, Ann Kristin Naumann, David Neubauer, Theresa Lang, and Ulrike Lohmann
Atmos. Chem. Phys., 24, 8653–8675, https://doi.org/10.5194/acp-24-8653-2024, https://doi.org/10.5194/acp-24-8653-2024, 2024
Short summary
Short summary
Aerosols can modify the liquid water path (LWP) of stratocumulus and, thus, their radiative effect. We compare storm-resolving model and satellite data that disagree on the sign of LWP adjustments and diagnose this discrepancy with causal inference. We find that strong precipitation, the absence of wet scavenging, and cloud deepening under a weak inversion contribute to positive LWP adjustments to aerosols in the model, despite weak negative effects from cloud-top entrainment enhancement.
Muhammed Irfan, Thomas Kühn, Taina Yli-Juuti, Anton Laakso, Eemeli Holopainen, Douglas R. Worsnop, Annele Virtanen, and Harri Kokkola
Atmos. Chem. Phys., 24, 8489–8506, https://doi.org/10.5194/acp-24-8489-2024, https://doi.org/10.5194/acp-24-8489-2024, 2024
Short summary
Short summary
The study examines how the volatility of semi-volatile organic compounds affects secondary organic aerosol (SOA) formation and climate. Our simulations show that uncertainties in these volatilities influence aerosol mass and climate impacts. Accurate representation of these compounds in climate models is crucial for predicting global climate patterns.
Qianyi Huo, Zhicong Yin, Xiaoqing Ma, and Huijun Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-1923, https://doi.org/10.5194/egusphere-2024-1923, 2024
Short summary
Short summary
The Mongolian cyclone, compared to the cold high-pressure system, caused more frequent and severe dust weather in North China during the spring seasons of 2015–2023. Different intensities of 500 hPa cyclonic and anticyclonic anomalies, control near-surface meteorological conditions, leading to two dust weather types in North China. The common predictor for the two types of dust weather successfully captured 76.1 % of dust days and provided a dust signal two days in advance.
Alkiviadis Kalisoras, Aristeidis K. Georgoulias, Dimitris Akritidis, Robert J. Allen, Vaishali Naik, Chaincy Kuo, Sophie Szopa, Pierre Nabat, Dirk Olivié, Twan van Noije, Philippe Le Sager, David Neubauer, Naga Oshima, Jane Mulcahy, Larry W. Horowitz, and Prodromos Zanis
Atmos. Chem. Phys., 24, 7837–7872, https://doi.org/10.5194/acp-24-7837-2024, https://doi.org/10.5194/acp-24-7837-2024, 2024
Short summary
Short summary
Effective radiative forcing (ERF) is a metric for estimating how human activities and natural agents change the energy flow into and out of the Earth’s climate system. We investigate the anthropogenic aerosol ERF, and we estimate the contribution of individual processes to the total ERF using simulations from Earth system models within the Coupled Model Intercomparison Project Phase 6 (CMIP6). Our findings highlight that aerosol–cloud interactions drive ERF variability during the last 150 years.
Ryan Schmedding and Andreas Zuend
EGUsphere, https://doi.org/10.5194/egusphere-2024-1690, https://doi.org/10.5194/egusphere-2024-1690, 2024
Short summary
Short summary
Four different approaches for computing the interfacial tension between liquid phases in aerosol particles were tested for particles with diameters from 10 nm to more than 5 μm. Antonov's rule led to the strongest reductions in the onset relative humidity of liquid–liquid phase separation and reproduced measured interfacial tensions for highly immiscible systems. A modified form of the Butler equation was able to best reproduce measured interfacial tensions in more miscible systems.
Qianqian Song, Paul Ginoux, María Gonçalves Ageitos, Ron L. Miller, Vincenzo Obiso, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 24, 7421–7446, https://doi.org/10.5194/acp-24-7421-2024, https://doi.org/10.5194/acp-24-7421-2024, 2024
Short summary
Short summary
We implement and simulate the distribution of eight dust minerals in the GFDL AM4.0 model. We found that resolving the eight minerals reduces dust absorption compared to the homogeneous dust used in the standard GFDL AM4.0 model that assumes a globally uniform hematite content of 2.7 % by volume. Resolving dust mineralogy results in significant impacts on radiation, land surface temperature, surface winds, and precipitation over North Africa in summer.
Ross J. Herbert, Alberto Sanchez-Marroquin, Daniel P. Grosvenor, Kirsty J. Pringle, Stephen R. Arnold, Benjamin J. Murray, and Kenneth S. Carslaw
EGUsphere, https://doi.org/10.5194/egusphere-2024-1538, https://doi.org/10.5194/egusphere-2024-1538, 2024
Short summary
Short summary
Aerosol particles that help form ice in clouds vary in number and type around the world and with time. However, in many weather and climate models cloud ice is not linked to aerosol that are known to nucleate ice. Here we report the first steps towards representing ice-nucleating particles within the UK's Earth System Model. We conclude that in addition to ice nucleation by sea spray and mineral components of soil dust we also need to represent ice nucleation by the organic components of soils.
Senyi Kong, Zheng Wang, and Lei Bi
Atmos. Chem. Phys., 24, 6911–6935, https://doi.org/10.5194/acp-24-6911-2024, https://doi.org/10.5194/acp-24-6911-2024, 2024
Short summary
Short summary
The retrieval of refractive indices of dust aerosols from laboratory optical measurements is commonly done assuming spherical particles. This paper aims to investigate the uncertainties in the shortwave refractive indices and corresponding optical properties by considering non-spherical and inhomogeneous models for dust samples. The study emphasizes the significance of using non-spherical models for simulating dust aerosols.
Wenxuan Hua, Sijia Lou, Xin Huang, Lian Xue, Ke Ding, Zilin Wang, and Aijun Ding
Atmos. Chem. Phys., 24, 6787–6807, https://doi.org/10.5194/acp-24-6787-2024, https://doi.org/10.5194/acp-24-6787-2024, 2024
Short summary
Short summary
In this study, we diagnose uncertainties in carbon monoxide and organic carbon emissions from four inventories for seven major wildfire-prone regions. Uncertainties in vegetation classification methods, fire detection products, and cloud obscuration effects lead to bias in these biomass burning (BB) emission inventories. By comparing simulations with measurements, we provide certain inventory recommendations. Our study has implications for reducing uncertainties in emissions in further studies.
Léo Clauzel, Sandrine Anquetin, Christophe Lavaysse, Gilles Bergametti, Christel Bouet, Guillaume Siour, Rémy Lapere, Béatrice Marticorena, and Jennie Thomas
EGUsphere, https://doi.org/10.5194/egusphere-2024-1604, https://doi.org/10.5194/egusphere-2024-1604, 2024
Short summary
Short summary
Solar energy production in West Africa is set to rise, needing accurate solar radiation estimates, which is affected by desert dust. This work analyses a March 2021 dust event using a modelling strategy incorporating desert dust. Results show that considering desert dust cut errors in solar radiation estimates by 75 % and reduces surface solar radiation by 18 %. This highlights the importance of incorporating dust aerosols into solar forecasting for better accuracy.
Chandrakala Bharali, Mary Barth, Rajesh Kumar, Sachin D. Ghude, Vinayak Sinha, and Baerbel Sinha
Atmos. Chem. Phys., 24, 6635–6662, https://doi.org/10.5194/acp-24-6635-2024, https://doi.org/10.5194/acp-24-6635-2024, 2024
Short summary
Short summary
This study examines the role of atmospheric aerosols in winter fog over the Indo-Gangetic Plains of India using WRF-Chem. The increase in RH with aerosol–radiation feedback (ARF) is found to be important for fog formation as it promotes the growth of aerosols in the polluted environment. Aqueous-phase chemistry in the fog increases PM2.5 concentration, further affecting ARF. ARF and aqueous-phase chemistry affect the fog intensity and the timing of fog formation by ~1–2 h.
Wenxin Zhao, Yu Zhao, Yu Zheng, Dong Chen, Jinyuan Xin, Kaitao Li, Huizheng Che, Zhengqiang Li, Mingrui Ma, and Yun Hang
Atmos. Chem. Phys., 24, 6593–6612, https://doi.org/10.5194/acp-24-6593-2024, https://doi.org/10.5194/acp-24-6593-2024, 2024
Short summary
Short summary
We evaluate the long-term (2000–2020) variabilities of aerosol absorption optical depth, black carbon emissions, and associated health risks in China with an integrated framework that combines multiple observations and modeling techniques. We demonstrate the remarkable emission abatement resulting from the implementation of national pollution controls and show how human activities affected the emissions with a spatiotemporal heterogeneity, thus supporting differentiated policy-making by region.
Peng Xian, Jeffrey S. Reid, Melanie Ades, Angela Benedetti, Peter R. Colarco, Arlindo da Silva, Tom F. Eck, Johannes Flemming, Edward J. Hyer, Zak Kipling, Samuel Rémy, Tsuyoshi Thomas Sekiyama, Taichu Tanaka, Keiya Yumimoto, and Jianglong Zhang
Atmos. Chem. Phys., 24, 6385–6411, https://doi.org/10.5194/acp-24-6385-2024, https://doi.org/10.5194/acp-24-6385-2024, 2024
Short summary
Short summary
The study compares and evaluates monthly AOD of four reanalyses (RA) and their consensus (i.e., ensemble mean). The basic verification characteristics of these RA versus both AERONET and MODIS retrievals are presented. The study discusses the strength of each RA and identifies regions where divergence and challenges are prominent. The RA consensus usually performs very well on a global scale in terms of how well it matches the observational data, making it a good choice for various applications.
Mariya Petrenko, Ralph Kahn, Mian Chin, Susanne E. Bauer, Tommi Bergman, Huisheng Bian, Gabriele Curci, Ben Johnson, Johannes Kaiser, Zak Kipling, Harri Kokkola, Xiaohong Liu, Keren Mezuman, Tero Mielonen, Gunnar Myhre, Xiaohua Pan, Anna Protonotariou, Samuel Remy, Ragnhild Bieltvedt Skeie, Philip Stier, Toshihiko Takemura, Kostas Tsigaridis, Hailong Wang, Duncan Watson-Parris, and Kai Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2024-1487, https://doi.org/10.5194/egusphere-2024-1487, 2024
Short summary
Short summary
We compared smoke plume simulations from 11 global models to each other and to satellite smoke-amount observations, aimed at constraining smoke source strength. In regions where plumes are thick and background aerosol is low, models and satellites compare well. However, the input emission inventory tends to underestimate in many places, and particle property and loss-rate assumptions vary enormously among models, causing uncertainties that require systematic in-situ measurements to resolve.
Roger Teoh, Zebediah Engberg, Ulrich Schumann, Christiane Voigt, Marc Shapiro, Susanne Rohs, and Marc E. J. Stettler
Atmos. Chem. Phys., 24, 6071–6093, https://doi.org/10.5194/acp-24-6071-2024, https://doi.org/10.5194/acp-24-6071-2024, 2024
Short summary
Short summary
The radiative forcing (RF) due to aviation contrails is comparable to that caused by CO2. We estimate that global contrail net RF in 2019 was 62.1 mW m−2. This is ~1/2 the previous best estimate for 2018. Contrail RF varies regionally due to differences in conditions required for persistent contrails. COVID-19 reduced contrail RF by 54% in 2020 relative to 2019. Globally, 2 % of all flights account for 80 % of the annual contrail energy forcing, suggesting a opportunity to mitigate contrail RF.
Haotian Zu, Biwu Chu, Yiqun Lu, Ling Liu, and Xiuhui Zhang
Atmos. Chem. Phys., 24, 5823–5835, https://doi.org/10.5194/acp-24-5823-2024, https://doi.org/10.5194/acp-24-5823-2024, 2024
Short summary
Short summary
The nucleation of iodic acid (HIO3) and iodous acid (HIO2) was proven to be critical in marine areas. However, HIO3–HIO2 nucleation cannot effectively derive the rapid nucleation in some polluted coasts. We find a significant enhancement of dimethylamine (DMA) on the HIO3–HIO2 nucleation in marine and polar regions with abundant DMA sources, which may establish reasonable connections between the HIO3–HIO2 nucleation and the rapid formation of new particles in polluted marine and polar regions.
Junghwa Lee, Patric Seifert, Tempei Hashino, Maximilian Maahn, Fabian Senf, and Oswald Knoth
Atmos. Chem. Phys., 24, 5737–5756, https://doi.org/10.5194/acp-24-5737-2024, https://doi.org/10.5194/acp-24-5737-2024, 2024
Short summary
Short summary
Spectral bin model simulations of an idealized supercooled stratiform cloud were performed with the AMPS model for variable CCN and INP concentrations. We performed radar forward simulations with PAMTRA to transfer the simulations into radar observational space. The derived radar reflectivity factors were compared to observational studies of stratiform mixed-phase clouds. These studies report a similar response of the radar reflectivity factor to aerosol perturbations as we found in our study.
Basudev Swain, Marco Vountas, Aishwarya Singh, Nidhi L. Anchan, Adrien Deroubaix, Luca Lelli, Yanick Ziegler, Sachin S. Gunthe, Hartmut Bösch, and John P. Burrows
Atmos. Chem. Phys., 24, 5671–5693, https://doi.org/10.5194/acp-24-5671-2024, https://doi.org/10.5194/acp-24-5671-2024, 2024
Short summary
Short summary
Arctic amplification (AA) accelerates the warming of the central Arctic cryosphere and affects aerosol dynamics. Limited observations hinder a comprehensive analysis. This study uses AEROSNOW aerosol optical density (AOD) data and GEOS-Chem simulations to assess AOD variability. Discrepancies highlight the need for improved observational integration into models to refine our understanding of aerosol effects on cloud microphysics, ice nucleation, and radiative forcing under evolving AA.
Vincenzo Obiso, María Gonçalves Ageitos, Carlos Pérez García-Pando, Jan P. Perlwitz, Gregory L. Schuster, Susanne E. Bauer, Claudia Di Biagio, Paola Formenti, Kostas Tsigaridis, and Ron L. Miller
Atmos. Chem. Phys., 24, 5337–5367, https://doi.org/10.5194/acp-24-5337-2024, https://doi.org/10.5194/acp-24-5337-2024, 2024
Short summary
Short summary
We calculate the dust direct radiative effect (DRE) in an Earth system model accounting for regionally varying soil mineralogy through a new observationally constrained method. Linking dust absorption at solar wavelengths to the varying amount of specific minerals (i.e., iron oxides) improves the modeled range of dust single scattering albedo compared to observations and increases the global cooling by dust. Our results may contribute to improved estimates of the dust DRE and its climate impact.
Charlotte M. Beall, Po-Lun Ma, Matthew W. Christensen, Johannes Mülmenstädt, Adam Varble, Kentaroh Suzuki, and Takuro Michibata
Atmos. Chem. Phys., 24, 5287–5302, https://doi.org/10.5194/acp-24-5287-2024, https://doi.org/10.5194/acp-24-5287-2024, 2024
Short summary
Short summary
Single-layer warm liquid clouds cover nearly one-third of the Earth's surface, and uncertainties regarding the impact of aerosols on their radiative properties pose a significant challenge to climate prediction. Here, we demonstrate how satellite observations can be used to constrain Earth system model estimates of the radiative forcing from the interactions of aerosols with clouds due to warm rain processes.
Xiaoli Wei, Qian Cui, Leiming Ma, Feng Zhang, Wenwen Li, and Peng Liu
Atmos. Chem. Phys., 24, 5025–5045, https://doi.org/10.5194/acp-24-5025-2024, https://doi.org/10.5194/acp-24-5025-2024, 2024
Short summary
Short summary
A new aerosol-type classification algorithm has been proposed. It includes an optical database built by Mie scattering and a complex refractive index working as a baseline to identify different aerosol types. The new algorithm shows high accuracy and efficiency. Hence, a global map of aerosol types was generated to characterize aerosol types across the five continents. It will help improve the accuracy of aerosol inversion and determine the sources of aerosol pollution.
Hongyu Liu, Bo Zhang, Richard H. Moore, Luke D. Ziemba, Richard A. Ferrare, Hyundeok Choi, Armin Sorooshian, David Painemal, Hailong Wang, Michael A. Shook, Amy Jo Scarino, Johnathan W. Hair, Ewan C. Crosbie, Marta A. Fenn, Taylor J. Shingler, Chris A. Hostetler, Gao Chen, Mary M. Kleb, Gan Luo, Fangqun Yu, Jason L. Tackett, Mark A. Vaughan, Yongxiang Hu, Glenn S. Diskin, John B. Nowak, Joshua P. DiGangi, Yonghoon Choi, Christoph A. Keller, and Matthew S. Johnson
EGUsphere, https://doi.org/10.5194/egusphere-2024-1127, https://doi.org/10.5194/egusphere-2024-1127, 2024
Short summary
Short summary
We use the GEOS-Chem model to simulate aerosols over the western North Atlantic Ocean (WNAO) during the winter and summer campaigns of ACTIVATE 2020. Model results are evaluated against in situ and remote sensing measurements from two aircraft as well as ground-based and satellite observations. The improved understanding of the aerosol life cycle, composition, transport pathways, and distribution has important implications for characterizing aerosol-cloud-meteorology interactions over the WNAO.
Zhiqiang Zhang, Ying Li, Haiyan Ran, Junling An, Yu Qu, Wei Zhou, Weiqi Xu, Weiwei Hu, Hongbin Xie, Zifa Wang, Yele Sun, and Manabu Shiraiwa
Atmos. Chem. Phys., 24, 4809–4826, https://doi.org/10.5194/acp-24-4809-2024, https://doi.org/10.5194/acp-24-4809-2024, 2024
Short summary
Short summary
Secondary organic aerosols (SOAs) can exist in liquid, semi-solid, or amorphous solid states, which are rarely accounted for in current chemical transport models. We predict the phase state of SOA particles over China and find that in northwestern China SOA particles are mostly highly viscous or glassy solid. Our results indicate that the particle phase state should be considered in SOA formation in chemical transport models for more accurate prediction of SOA mass concentrations.
Alejandro Baró Pérez, Michael S. Diamond, Frida A.-M. Bender, Abhay Devasthale, Matthias Schwarz, Julien Savre, Juha Tonttila, Harri Kokkola, Hyunho Lee, David Painemal, and Annica M. L. Ekman
Atmos. Chem. Phys., 24, 4591–4610, https://doi.org/10.5194/acp-24-4591-2024, https://doi.org/10.5194/acp-24-4591-2024, 2024
Short summary
Short summary
We use a numerical model to study interactions between humid light-absorbing aerosol plumes, clouds, and radiation over the southeast Atlantic. We find that the warming produced by the aerosols reduces cloud cover, especially in highly polluted situations. Aerosol impacts on drizzle play a minor role. However, aerosol effects on cloud reflectivity and moisture-induced changes in cloud cover dominate the climatic response and lead to an overall cooling by the biomass burning plumes.
Danny M. Leung, Jasper F. Kok, Longlei Li, David M. Lawrence, Natalie M. Mahowald, Simone Tilmes, and Erik Kluzek
EGUsphere, https://doi.org/10.5194/egusphere-2024-1124, https://doi.org/10.5194/egusphere-2024-1124, 2024
Short summary
Short summary
This study derives a desert dust emission dataset for 1841–2000, by employing a combination of observed dust records from sedimentary cores as well as reanalyzed global dust cycle constraints. We evaluate the ability of global models to replicate the observed historical dust variability by using the emission dataset to force a historical simulation in an Earth system model. We show that prescribing our emissions forces the model to match better against observations than other mechanistic models.
Sampa Das, Peter R. Colarco, Huisheng Bian, and Santiago Gassó
Atmos. Chem. Phys., 24, 4421–4449, https://doi.org/10.5194/acp-24-4421-2024, https://doi.org/10.5194/acp-24-4421-2024, 2024
Short summary
Short summary
The smoke aerosols emitted from vegetation burning can alter the regional energy budget via multiple pathways. We utilized detailed observations from the NASA ORACLES airborne campaign based in Namibia during September 2016 to improve the representation of smoke aerosol properties and lifetimes in our GEOS Earth system model. The improved model simulations are for the first time able to capture the observed changes in the smoke absorption during long-range plume transport.
Emilio Cuevas-Agulló, David Barriopedro, Rosa Delia García, Silvia Alonso-Pérez, Juan Jesús González-Alemán, Ernest Werner, David Suárez, Juan José Bustos, Gerardo García-Castrillo, Omaira García, África Barreto, and Sara Basart
Atmos. Chem. Phys., 24, 4083–4104, https://doi.org/10.5194/acp-24-4083-2024, https://doi.org/10.5194/acp-24-4083-2024, 2024
Short summary
Short summary
During February–March (FM) 2020–2022, unusually intense dust storms from northern Africa hit the western Euro-Mediterranean (WEM). Using dust products from satellites and atmospheric reanalysis for 2003–2022, results show that cut-off lows and European blocking are key drivers of FM dust intrusions over the WEM. A higher frequency of cut-off lows associated with subtropical ridges is observed in the late 2020–2022 period.
Yahui Che, Bofu Yu, and Katherine Bracco
Atmos. Chem. Phys., 24, 4105–4128, https://doi.org/10.5194/acp-24-4105-2024, https://doi.org/10.5194/acp-24-4105-2024, 2024
Short summary
Short summary
Dust events occur more frequently during the Austral spring and summer in dust regions, including central Australia, the southwest of Western Australia, and the northern and southern regions of eastern Australia using remote sensing and reanalysis datasets. High-concentration dust is distributed around central Australia and in the downwind northern and southern Australia. Typically, around 50 % of the dust lifted settles on Australian land, with the remaining half being deposited in the ocean.
Cited articles
Akagi, S. K., Craven, J. S., Taylor, J. W., McMeeking, G. R., Yokelson, R.
J., Burling, I. R., Urbanski, S. P., Wold, C. E., Seinfeld, J. H., Coe, H.,
Alvarado, M. J., and Weise, D. R.: Evolution of trace gases and particles
emitted by a chaparral fire in California, Atmos. Chem. Phys., 12,
1397–1421, https://doi.org/10.5194/acp-12-1397-2012, 2012.
Alexander, B., Park, R. J., Jacob, D. J., Li, Q. B., Yantosca, R. M.,
Savarino, J., Lee, C. C. W., and Thiemens, M. H.: Sulfate formation in
sea-salt aerosols: Constraints from oxygen isotopes, J. Geophys. Res.-Atmos.,
110, D10307, https://doi.org/10.1029/2004jd005659, 2005.
Aquila, V., Hendricks, J., Lauer, A., Riemer, N., Vogel, H., Baumgardner, D.,
Minikin, A., Petzold, A., Schwarz, J. P., Spackman, J. R., Weinzierl, B.,
Righi, M., and Dall'Amico, M.: MADE-in: a new aerosol microphysics submodel
for global simulation of insoluble particles and their mixing state, Geosci.
Model Dev., 4, 325–355, https://doi.org/10.5194/gmd-4-325-2011, 2011.
Bond, T. C., Habib, G., and Bergstrom, R. W.: Limitations in the enhancement
of visible light absorption due to mixing state, J. Geophys. Res.-Atmos.,
111, D20211, https://doi.org/10.1029/2006jd007315, 2006.
Bond, T. C., Bhardwaj, E., Dong, R., Jogani, R., Jung, S. K., Roden, C.,
Streets, D. G., and Trautmann, N. M.: Historical emissions of black and
organic carbon aerosol from energy-related combustion, 1850–2000, Global
Biogeochem. Cy., 21, Gb2018, https://doi.org/10.1029/2006gb002840, 2007.
Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T.,
DeAngelo, B. J., Flanner, M. G., Ghan, S., Karcher, B., Koch, D., Kinne, S.,
Kondo, Y., Quinn, P. K., Sarofim, M. C., Schultz, M. G., Schulz, M.,
Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S. K.,
Hopke, P. K., Jacobson, M. Z., Kaiser, J. W., Klimont, Z., Lohmann, U.,
Schwarz, J. P., Shindell, D., Storelvmo, T., Warren, S. G., and Zender, C.
S.: Bounding the role of black carbon in the climate system: A scientific
assessment, J. Geophys. Res.-Atmos., 118, 5380–5552, https://doi.org/10.1002/jgrd.50171,
2013.
Chung, C. E., Ramanathan, V., and Decremer, D.: Observationally constrained
estimates of carbonaceous aerosol radiative forcing, P. Natl. Acad. Sci. USA, 109, 11624–11629, https://doi.org/10.1073/pnas.1203707109, 2012.
Chung, S. H. and Seinfeld, J. H.: Global distribution and climate forcing of
carbonaceous aerosols, J. Geophys. Res.-Atmos., 107, 4407,
https://doi.org/10.1029/2001JD001397, 2002.
Cooke, W. F., Liousse, C., Cachier, H., and Feichter, J.: Construction of a 1
degrees × 1 degrees fossil fuel emission data set for carbonaceous
aerosol and implementation and radiative impact in the ECHAM4 model, J.
Geophys. Res.-Atmos., 104, 22137–22162, https://doi.org/10.1029/1999jd900187, 1999.
Cozic, J., Mertes, S., Verheggen, B., Cziczo, D. J., Gallavardin, S. J.,
Walter, S., Baltensperger, U., and Weingartner, E.: Black carbon enrichment
in atmospheric ice particle residuals observed in lower tropospheric mixed
phase clouds, J. Geophys. Res.-Atmos., 113, D15209, https://doi.org/10.1029/2007jd009266,
2008.
Croft, B., Lohmann, U., and von Salzen, K.: Black carbon ageing in the
Canadian Centre for Climate modelling and analysis atmospheric general
circulation model, Atmos. Chem. Phys., 5, 1931–1949,
https://doi.org/10.5194/acp-5-1931-2005, 2005.
Dahneke, B.: Simple kinetic theory of Brownian diffusion in vapors and
aerosols, in: Theory of Dispersed Multiphase Flow, edited by: Meyer, R. E.,
Academic Press, New York, 97–133, 1983.
Decesari, S., Facchini, M. C., Matta, E., Mircea, M., Fuzzi, S., Chughtai, A.
R., and Smith, D. M.: Water soluble organic compounds formed by oxidation of
soot, Atmos. Environ., 36, 1827–1832, https://doi.org/10.1016/S1352-2310(02)00141-3,
2002.
Dentener, F., Kinne, S., Bond, T., Boucher, O., Cofala, J., Generoso, S.,
Ginoux, P., Gong, S., Hoelzemann, J. J., Ito, A., Marelli, L., Penner, J. E.,
Putaud, J.-P., Textor, C., Schulz, M., van der Werf, G. R., and Wilson, J.:
Emissions of primary aerosol and precursor gases in the years 2000 and 1750
prescribed data-sets for AeroCom, Atmos. Chem. Phys., 6, 4321–4344,
https://doi.org/10.5194/acp-6-4321-2006, 2006.
Fairlie, T. D., Jacob, D. J., and Park, R. J.: The impact of transpacific
transport of mineral dust in the United States, Atmos. Environ., 41,
1251–1266, https://doi.org/10.1016/j.atmosenv.2006.09.048, 2007.
Friedman, B., Kulkarni, G., Beranek, J., Zelenyuk, A., Thornton, J. A., and
Cziczo, D. J.: Ice nucleation and droplet formation by bare and coated soot
particles, J. Geophys. Res.-Atmos., 116, D17203, https://doi.org/10.1029/2011jd015999,
2011.
Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., and Geron,
C.: Estimates of global terrestrial isoprene emissions using MEGAN (Model of
Emissions of Gases and Aerosols from Nature), Atmos. Chem. Phys., 6,
3181–3210, https://doi.org/10.5194/acp-6-3181-2006, 2006.
Granier, C., Bessagnet, B., Bond, T., D'Angiola, A., van der Gon, H. D.,
Frost, G. J., Heil, A., Kaiser, J. W., Kinne, S., Klimont, Z., Kloster, S.,
Lamarque, J. F., Liousse, C., Masui, T., Meleux, F., Mieville, A., Ohara, T.,
Raut, J. C., Riahi, K., Schultz, M. G., Smith, S. J., Thompson, A., van
Aardenne, J., van der Werf, G. R., and van Vuuren, D. P.: Evolution of
anthropogenic and biomass burning emissions of air pollutants at global and
regional scales during the 1980–2010 period, Climatic Change, 109, 163–190,
https://doi.org/10.1007/s10584-011-0154-1, 2011.
He, C., Li, Q. B., Liou, K. N., Zhang, J., Qi, L., Mao, Y., Gao, M., Lu, Z.,
Streets, D. G., Zhang, Q., Sarin, M. M., and Ram, K.: A global 3-D CTM
evaluation of black carbon in the Tibetan Plateau, Atmos. Chem. Phys., 14,
7091–7112, https://doi.org/10.5194/acp-14-7091-2014, 2014a.
He, C., Li, Q. B., Liou, K. N., Takano, Y., Gu, Y., Qi, L., Mao, Y. H., and
Leung, L. R.: Black carbon radiative forcing over the Tibetan Plateau,
Geophys. Res. Lett., 41, 7806–7813, https://doi.org/10.1002/2014gl062191, 2014b.
He, C., Liou, K.-N., Takano, Y., Zhang, R., Levy Zamora, M., Yang, P.,
Li, Q., and Leung, L. R.: Variation of the radiative properties during black
carbon aging: theoretical and experimental intercomparison, Atmos. Chem.
Phys., 15, 11967–11980, https://doi.org/10.5194/acp-15-11967-2015, 2015.
Huang, Y., Wu, S., Dubey, M. K., and French, N. H. F.: Impact of aging
mechanism on model simulated carbonaceous aerosols, Atmos. Chem. Phys., 13,
6329–6343, https://doi.org/10.5194/acp-13-6329-2013, 2013.
Jacobson, M. Z.: Short-term effects of controlling fossil-fuel soot, biofuel
soot and gases, and methane on climate, Arctic ice, and air pollution health,
J. Geophys. Res.-Atmos., 115, D14209, https://doi.org/10.1029/2009jd013795, 2010.
Jacobson, M. Z.: Investigating cloud absorption effects: Global absorption
properties of black carbon, tar balls, and soil dust in clouds and aerosols, J. Geophys. Res., 117, D06205, https://doi.org/10.1029/2011JD017218, 2012.
Jacobson, M. Z.: Effects of biomass burning on climate, accounting for heat
and moisture fluxes, black and brown carbon, and cloud absorption effects, J.
Geophys. Res.-Atmos., 119, 8980–9002, https://doi.org/10.1002/2014JD021861, 2014.
Johnson, K. S., Zuberi, B., Molina, L. T., Molina, M. J., Iedema, M. J.,
Cowin, J. P., Gaspar, D. J., Wang, C., and Laskin, A.: Processing of soot in
an urban environment: case study from the Mexico City Metropolitan Area,
Atmos. Chem. Phys., 5, 3033–3043, https://doi.org/10.5194/acp-5-3033-2005, 2005.
Khalizov, A. F., Cruz-Quinones, M., and Zhang, R. Y.: Heterogeneous Reaction
of NO2 on Fresh and Coated Soot Surfaces, J. Phys. Chem. A, 114,
7516–7524, https://doi.org/10.1021/Jp1021938, 2010.
Koch, D., Schulz, M., Kinne, S., McNaughton, C., Spackman, J. R., Balkanski,
Y., Bauer, S., Berntsen, T., Bond, T. C., Boucher, O., Chin, M., Clarke, A.,
De Luca, N., Dentener, F., Diehl, T., Dubovik, O., Easter, R., Fahey, D. W.,
Feichter, J., Fillmore, D., Freitag, S., Ghan, S., Ginoux, P., Gong, S.,
Horowitz, L., Iversen, T., Kirkevåg, A., Klimont, Z., Kondo, Y., Krol,
M., Liu, X., Miller, R., Montanaro, V., Moteki, N., Myhre, G., Penner, J. E.,
Perlwitz, J., Pitari, G., Reddy, S., Sahu, L., Sakamoto, H., Schuster, G.,
Schwarz, J. P., Seland, Ø., Stier, P., Takegawa, N., Takemura, T., Textor,
C., van Aardenne, J. A., and Zhao, Y.: Evaluation of black carbon estimations
in global aerosol models, Atmos. Chem. Phys., 9, 9001–9026,
https://doi.org/10.5194/acp-9-9001-2009, 2009.
Koepke, P., Hess, M., Schult, I., and Shettle, E. P.: Global Aerosol Data
Set, Report No. 243, Max-Planck-Institut fur Meteorologie, Hamburg, ISSN
0937-1060, 1997.
Kondo, Y., Sahu, L., Moteki, N., Khan, F., Takegawa, N., Liu, X., Koike, M.,
and Miyakawa, T.: Consistency and traceability of black carbon measurements
made by laser-induced incandescence, thermal-optical transmittance, and
filter-based photo-absorption techniques, Aerosol. Sci. Tech., 45, 295–312,
2011.
Lamarque, J.-F., Bond, T. C., Eyring, V., Granier, C., Heil, A., Klimont, Z.,
Lee, D., Liousse, C., Mieville, A., Owen, B., Schultz, M. G., Shindell, D.,
Smith, S. J., Stehfest, E., Van Aardenne, J., Cooper, O. R., Kainuma, M.,
Mahowald, N., McConnell, J. R., Naik, V., Riahi, K., and van Vuuren, D. P.:
Historical (1850–2000) gridded anthropogenic and biomass burning emissions
of reactive gases and aerosols: methodology and application, Atmos. Chem.
Phys., 10, 7017–7039, https://doi.org/10.5194/acp-10-7017-2010, 2010.
Lana, A., Bell, T. G., Simo, R., Vallina, S. M., Ballabrera-Poy, J., Kettle,
A. J., Dachs, J., Bopp, L., Saltzman, E. S., Stefels, J., Johnson, J. E., and
Liss, P. S.: An updated climatology of surface dimethlysulfide concentrations
and emission fluxes in the global ocean, Global Biogeochem. Cy., 25, GB1004,
https://doi.org/10.1029/2010gb003850, 2011.
Li, G. H., Wang, Y., and Zhang, R. Y.: Implementation of a two-moment bulk
microphysics scheme to the WRF model to investigate aerosol-cloud
interaction, J. Geophys. Res.-Atmos., 113, D15211, https://doi.org/10.1029/2007jd009361,
2008.
Li, K., Liao, H., Mao, Y., and Ridley, D. A.: Source sector and region
contributions to concentration and direct radiative forcing of black carbon
in China, Atmos. Environ., 124, 351–366, https://doi.org/10.1016/j.atmosenv.2015.06.014,
2015.
Liao, H., Henze, D. K., Seinfeld, J. H., Wu, S. L., and Mickley, L. J.:
Biogenic secondary organic aerosol over the United States: Comparison of
climatological simulations with observations, J. Geophys. Res.-Atmos., 112,
D06201, https://doi.org/10.1029/2006jd007813, 2007.
Liou, K. N., Takano, Y., He, C., Yang, P., Leung, L. R., Gu, Y., and Lee, W.
L.: Stochastic parameterization for light absorption by internally mixed
BC/dust in snow grains for application to climate models, J. Geophys.
Res.-Atmos., 119, 7616–7632, https://doi.org/10.1002/2014jd021665, 2014.
Liu, H. Y., Jacob, D. J., Bey, I., and Yantosca, R. M.: Constraints from
Pb-210 and Be-7 on wet deposition and transport in a global three-dimensional
chemical tracer model driven by assimilated meteorological fields, J.
Geophys. Res.-Atmos., 106, 12109–12128, https://doi.org/10.1029/2000jd900839, 2001.
Liu, J. F., Fan, S. M., Horowitz, L. W., and Levy, H.: Evaluation of factors
controlling long-range transport of black carbon to the Arctic, J. Geophys.
Res.-Atmos., 116, D04307, https://doi.org/10.1029/2010jd015145, 2011.
Liu, X. H., Penner, J. E., and Wang, M. H.: Influence of anthropogenic
sulfate and black carbon on upper tropospheric clouds in the NCAR CAM3 model
coupled to the IMPACT global aerosol model, J. Geophys. Res.-Atmos., 114,
D03204, https://doi.org/10.1029/2008jd010492, 2009.
Moffet, R. C. and Prather, K. A.: In-situ measurements of the mixing state
and optical properties of soot with implications for radiative forcing
estimates, P. Natl. Acad. Sci. USA, 106, 11872–11877,
https://doi.org/10.1073/pnas.0900040106, 2009.
Molod, A., Takacs, L., Suarez, M., Bacmeister, J., Song, I.-S., and Eichmann,
A.: The GEOS-5 Atmospheric General Circulation Model: Mean Climate and
Development from MERRA to Fortuna, NASA Technical Report Series on Global
Modeling and Data Assimilation, NASA TM-2012-104606, Vol. 28, 117 pp., 2012.
Moteki, N., Kondo, Y., Miyazaki, Y., Takegawa, N., Komazaki, Y., Kurata, G.,
Shirai, T., Blake, D. R., Miyakawa, T., and Koike, M.: Evolution of mixing
state of black carbon particles: Aircraft measurements over the western
Pacific in March 2004, Geophys. Res. Lett., 34, L11803,
https://doi.org/10.1029/2006gl028943, 2007.
Oshima, N. and Koike, M.: Development of a parameterization of black carbon
aging for use in general circulation models, Geosci. Model Dev., 6, 263–282,
https://doi.org/10.5194/gmd-6-263-2013, 2013.
Park, R. J., Jacob, D. J., Chin, M., and Martin, R. V.: Sources of
carbonaceous aerosols over the United States and implications for natural
visibility, J. Geophys. Res.-Atmos., 108, 4355, https://doi.org/10.1029/2002jd003190,
2003.
Park, R. J., Jacob, D. J., Field, B. D., Yantosca, R. M., and Chin, M.:
Natural and transboundary pollution influences on sulfate-nitrate-ammonium
aerosols in the United States: Implications for policy, J. Geophys.
Res.-Atmos., 109, D15204, https://doi.org/10.1029/2003jd004473, 2004.
Park, R. J., Jacob, D. J., Palmer, P. I., Clarke, A. D., Weber, R. J.,
Zondlo, M. A., Eisele, F. L., Bandy, A. R., Thornton, D. C., Sachse, G. W.,
and Bond, T. C.: Export efficiency of black carbon aerosol in continental
outflow: Global implications, J. Geophys. Res.-Atmos., 110, D11205,
https://doi.org/10.1029/2004jd005432, 2005.
Painter, T. H., Flanner, M. G., Kaser, G., Marzeion, B., VanCuren, R. A., and
Abdalati, W.: End of the Little Ice Age in the Alps forced by industrial
black carbon, P. Natl. Acad. Sci. USA, 110, 15216–15221,
https://doi.org/10.1073/pnas.1302570110, 2013.
Pöschl, U., Letzel, T., Schauer, C., and Niessner, R.: Interaction of
ozone and water vapor with spark discharge soot aerosol particles coated with
benzo[a]pyrene: O3 and H2O adsorption, benzo[a]pyrene degradation, and
atmospheric implications, J. Phys. Chem. A, 105, 4029–4041,
https://doi.org/10.1021/jp004137n, 2001.
Prenni, A. J., Petters, M. D., Kreidenweis, S. M., DeMott, P. J., and
Ziemann, P. J.: Cloud droplet activation of secondary organic aerosol, J.
Geophys. Res.-Atmos., 112, D10223, https://doi.org/10.1029/2006jd007963, 2007.
Ramanathan, V. and Carmichael, G.: Global and regional climate changes due to
black carbon, Nat. Geosci., 1, 221–227, https://doi.org/10.1038/ngeo156, 2008.
Randerson, J. T., Chen, Y., van der Werf, G. R., Rogers, B. M., and Morton,
D. C.: Global burned area and biomass burning emissions from small fires, J.
Geophys. Res.-Biogeo., 117, G04012, https://doi.org/10.1029/2012jg002128, 2012.
Riemer, N., Vogel, H., and Vogel, B.: Soot aging time scales in polluted
regions during day and night, Atmos. Chem. Phys., 4, 1885–1893,
https://doi.org/10.5194/acp-4-1885-2004, 2004.
Samset, B. H., Myhre, G., Schulz, M., Balkanski, Y., Bauer, S., Berntsen, T.
K., Bian, H., Bellouin, N., Diehl, T., Easter, R. C., Ghan, S. J., Iversen,
T., Kinne, S., Kirkevag, A., Lamarque, J. F., Lin, G., Liu, X., Penner, J.
E., Seland, O., Skeie, R. B., Stier, P., Takemura, T., Tsigaridis, K., and
Zhang, K.: Black carbon vertical profiles strongly affect its radiative
forcing uncertainty, Atmos. Chem. Phys., 13, 2423–2434,
https://doi.org/10.5194/acp-13-2423-2013, 2013.
Scarnato, B. V., Vahidinia, S., Richard, D. T., and Kirchstetter, T. W.:
Effects of internal mixing and aggregate morphology on optical properties of
black carbon using a discrete dipole approximation model, Atmos. Chem. Phys.,
13, 5089–5101, https://doi.org/10.5194/acp-13-5089-2013, 2013.
Schulz, M., Textor, C., Kinne, S., Balkanski, Y., Bauer, S., Berntsen, T.,
Berglen, T., Boucher, O., Dentener, F., Guibert, S., Isaksen, I. S. A.,
Iversen, T., Koch, D., Kirkevåg, A., Liu, X., Montanaro, V., Myhre, G.,
Penner, J. E., Pitari, G., Reddy, S., Seland, Ø., Stier, P., and Takemura,
T.: Radiative forcing by aerosols as derived from the AeroCom present-day and
pre-industrial simulations, Atmos. Chem. Phys., 6, 5225–5246,
https://doi.org/10.5194/acp-6-5225-2006, 2006.
Schwarz, J. P., Gao, R. S., Spackman, J. R., Watts, L. A., Thomson, D. S.,
Fahey, D. W., Ryerson, T. B., Peischl, J., Holloway, J. S., Trainer, M.,
Frost, G. J., Baynard, T., Lack, D. A., de Gouw, J. A., Warneke, C., and Del
Negro, L. A.: Measurement of the mixing state, mass, and optical size of
individual black carbon particles in urban and biomass burning emissions,
Geophys. Res. Lett., 35, L13810, https://doi.org/10.1029/2008gl033968, 2008.
Schwarz, J. P., Spackman, J. R., Gao, R. S., Watts, L. A., Stier, P., Schulz,
M., Davis, S. M., Wofsy, S. C., and Fahey, D. W.: Global-scale black carbon
profiles observed in the remote atmosphere and compared to models, Geophys.
Res. Lett., 37, L18812, https://doi.org/10.1029/2010gl044372, 2010.
Schwarz, J. P., Samset, B. H., Perring, A. E., Spackman, J. R., Gao, R. S.,
Stier, P., Schulz, M., Moore, F. L., Ray, E. A., and Fahey, D. W.:
Global-scale seasonally resolved black carbon vertical profiles over the
Pacific, Geophys. Res. Lett., 40, 5542–5547, https://doi.org/10.1002/2013gl057775, 2013.
Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and Physics, From
Air Pollution to Climate Change, 2nd Edn., John Wiley, Hoboken, N. J.,
400–610, 2006.
Shen, Z., Liu, J., Horowitz, L. W., Henze, D. K., Fan, S., H., Levy II,
Mauzerall, D. L., Lin, J.-T., and Tao, S.: Analysis of transpacific transport
of black carbon during HIPPO-3: implications for black carbon aging, Atmos.
Chem. Phys., 14, 6315–6327, https://doi.org/10.5194/acp-14-6315-2014, 2014.
Textor, C., Schulz, M., Guibert, S., Kinne, S., Balkanski, Y., Bauer, S.,
Berntsen, T., Berglen, T., Boucher, O., Chin, M., Dentener, F., Diehl, T.,
Easter, R., Feichter, H., Fillmore, D., Ghan, S., Ginoux, P., Gong, S.,
Grini, A., Hendricks, J., Horowitz, L., Huang, P., Isaksen, I., Iversen, I.,
Kloster, S., Koch, D., Kirkevåg, A., Kristjansson, J. E., Krol, M.,
Lauer, A., Lamarque, J. F., Liu, X., Montanaro, V., Myhre, G., Penner, J.,
Pitari, G., Reddy, S., Seland, Ø., Stier, P., Takemura, T., and Tie, X.:
Analysis and quantification of the diversities of aerosol life cycles within
AeroCom, Atmos. Chem. Phys., 6, 1777–1813, https://doi.org/10.5194/acp-6-1777-2006,
2006.
van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Mu, M.,
Kasibhatla, P. S., Morton, D. C., DeFries, R. S., Jin, Y., and van Leeuwen,
T. T.: Global fire emissions and the contribution of deforestation, savanna,
forest, agricultural, and peat fires (1997–2009), Atmos. Chem. Phys., 10,
11707–11735, https://doi.org/10.5194/acp-10-11707-2010, 2010.
Wang, B. and Ding, Q. H.: Global monsoon: Dominant mode of annual variation
in the tropics, Dynam. Atmos. Oceans, 44, 165–183,
https://doi.org/10.1016/j.dynatmoce.2007.05.002, 2008.
Wang, R., Tao, S., Wang, W. T., Liu, J. F., Shen, H. Z., Shen, G. F., Wang,
B., Liu, X. P., Li, W., Huang, Y., Zhang, Y. Y., Lu, Y., Chen, H., Chen, Y.
C., Wang, C., Zhu, D., Wang, X. L., Li, B. G., Liu, W. X., and Ma, J. M.:
Black Carbon Emissions in China from 1949 to 2050, Environ. Sci. Technol.,
46, 7595–7603, https://doi.org/10.1021/Es3003684, 2012a.
Wang, R., Tao, S., Shen, H. Z., Wang, X. L., Li, B. G., Shen, G. F., Wang,
B., Li, W., Liu, X. P., Huang, Y., Zhang, Y. Y., Lu, Y., and Ouyang, H. L.:
Global Emission of Black Carbon from Motor Vehicles from 1960 to 2006,
Environ. Sci. Technol., 46, 1278–1284, https://doi.org/10.1021/es2032218, 2012b.
Wang, R., Tao, S., Ciais, P., Shen, H. Z., Huang, Y., Chen, H., Shen, G. F.,
Wang, B., Li, W., Zhang, Y. Y., Lu, Y., Zhu, D., Chen, Y. C., Liu, X. P.,
Wang, W. T., Wang, X. L., Liu, W. X., Li, B. G., and Piao, S. L.:
High-resolution mapping of combustion processes and implications for CO2
emissions, Atmos. Chem. Phys., 13, 5189–5203, https://doi.org/10.5194/acp-13-5189-2013,
2013.
Wang, R., Tao, S., Balkanski, Y., Ciais, P., Boucher, O., Liu, J. F., Piao,
S. L., Shen, H. Z., Vuolo, M. R., Valari, M., Chen, H., Chen, Y. C., Cozic,
A., Huang, Y., Li, B. G., Li, W., Shen, G. F., Wang, B., and Zhang, Y. Y.:
Exposure to ambient black carbon derived from a unique inventory and
high-resolution model, P. Natl. Acad. Sci. USA., 111, 2459–2463,
https://doi.org/10.1073/pnas.1318763111, 2014.
Wang, Q., Jacob, D. J., Fisher, J. A., Mao, J., Leibensperger, E. M.,
Carouge, C. C., Le Sager, P., Kondo, Y., Jimenez, J. L., Cubison, M. J., and
Doherty, S. J.: Sources of carbonaceous aerosols and deposited black carbon
in the Arctic in winter-spring: implications for radiative forcing, Atmos.
Chem. Phys., 11, 12453–12473, https://doi.org/10.5194/acp-11-12453-2011, 2011.
Wang, Q. Q., Jacob, D. J., Spackman, J. R., Perring, A. E., Schwarz, J. P.,
Moteki, N., Marais, E. A., Ge, C., Wang, J., and Barrett, S. R. H.: Global
budget and radiative forcing of black carbon aerosol: Constraints from
pole-to-pole (HIPPO) observations across the Pacific, J. Geophys.
Res.-Atmos., 119, 195—206, https://doi.org/10.1002/2013jd020824, 2014.
Wang, Y. H., Jacob, D. J., and Logan, J. A.: Global simulation of
tropospheric O3-NOx-hydrocarbon chemistry 1. Model formulation, J.
Geophys. Res.-Atmos., 103, 10713–10725, https://doi.org/10.1029/98jd00158, 1998.
Weingartner, E., Burtscher, H., and Baltensperger, H.: Hygroscopic properties
of carbon and diesel soot particles, Atmos. Environ., 31, 2311–2327, 1997.
Wesely, M. L.: Parameterization of Surface Resistances to Gaseous Dry
Deposition in Regional-Scale Numerical Models, Atmos. Environ., 23,
1293–1304, https://doi.org/10.1016/0004-6981(89)90153-4, 1989.
Willis, M. D., Healy, R. M., Riemer, N., West, M., Wang, J. M., Jeong, C.-H.,
Wenger, J. C., Evans, G. J., Abbatt, J. P. D., and Lee, A. K. Y.:
Quantification of black carbon mixing state from traffic: implications for
aerosol optical properties, Atmos. Chem. Phys. Discuss., 15, 33555–33582,
https://doi.org/10.5194/acpd-15-33555-2015, 2015.
Wofsy, S. C., Team, H. S., Team, C. M., and Team, S.: HIAPER Pole-to-Pole
Observations (HIPPO): fine-grained, global-scale measurements of climatically
important atmospheric gases and aerosols, Philos. T. R. Soc. A, 369,
2073–2086, https://doi.org/10.1098/rsta.2010.0313, 2011.
Yu, F. and Luo, G.: Simulation of particle size distribution with a global
aerosol model: contribution of nucleation to aerosol and CCN number
concentrations, Atmos. Chem. Phys., 9, 7691–7710,
https://doi.org/10.5194/acp-9-7691-2009, 2009.
Zhang, J., Liu, J., Tao, S., and Ban-Weiss, G. A.: Long-range transport of
black carbon to the Pacific Ocean and its dependence on aging timescale,
Atmos. Chem. Phys., 15, 11521–11535, https://doi.org/10.5194/acp-15-11521-2015, 2015.
Zhang, R. Y., Khalizov, A. F., Pagels, J., Zhang, D., Xue, H. X., and
McMurry, P. H.: Variability in morphology, hygroscopicity, and optical
properties of soot aerosols during atmospheric processing, P. Natl. Acad.
Sci. USA, 105, 10291–10296, https://doi.org/10.1073/pnas.0804860105, 2008.
Zuberi, B., Johnson, K. S., Aleks, G. K., Molina, L. T., and Laskin, A.:
Hydrophilic properties of aged soot, Geophys. Res. Lett., 32, L01807,
https://doi.org/10.1029/2004gl021496, 2005.
Short summary
Blarck carbon aging significantly affects its global distribution and thus climatic effects. This study develops a microphysics-based BC aging scheme in a global model, which substantially improves model simulations of BC over the remote Pacific. The microphysical scheme shows fast aging over source regions and much slower aging in remote regions. The microphysical aging significantly reduces global BC burden and lifetime, showing important implications for the estimate of BC radiative effects.
Blarck carbon aging significantly affects its global distribution and thus climatic effects....
Altmetrics
Final-revised paper
Preprint