Articles | Volume 16, issue 23
Atmos. Chem. Phys., 16, 15347–15358, 2016
https://doi.org/10.5194/acp-16-15347-2016
Atmos. Chem. Phys., 16, 15347–15358, 2016
https://doi.org/10.5194/acp-16-15347-2016
Research article
09 Dec 2016
Research article | 09 Dec 2016

Tropospheric observations of CFC-114 and CFC-114a with a focus on long-term trends and emissions

Johannes C. Laube et al.

Related authors

How can Brewer–Dobson circulation trends be estimated from changes in stratospheric water vapour and methane?
Liubov Poshyvailo-Strube, Rolf Müller, Stephan Fueglistaler, Michaela I. Hegglin, Johannes C. Laube, C. Michael Volk, and Felix Ploeger
Atmos. Chem. Phys., 22, 9895–9914, https://doi.org/10.5194/acp-22-9895-2022,https://doi.org/10.5194/acp-22-9895-2022, 2022
Short summary
The stratospheric Brewer–Dobson circulation inferred from age of air in the ERA5 reanalysis
Felix Ploeger, Mohamadou Diallo, Edward Charlesworth, Paul Konopka, Bernard Legras, Johannes C. Laube, Jens-Uwe Grooß, Gebhard Günther, Andreas Engel, and Martin Riese
Atmos. Chem. Phys., 21, 8393–8412, https://doi.org/10.5194/acp-21-8393-2021,https://doi.org/10.5194/acp-21-8393-2021, 2021
Short summary
Stratospheric carbon isotope fractionation and tropospheric histories of CFC-11, CFC-12, and CFC-113 isotopologues
Max Thomas, Johannes C. Laube, Jan Kaiser, Samuel Allin, Patricia Martinerie, Robert Mulvaney, Anna Ridley, Thomas Röckmann, William T. Sturges, and Emmanuel Witrant
Atmos. Chem. Phys., 21, 6857–6873, https://doi.org/10.5194/acp-21-6857-2021,https://doi.org/10.5194/acp-21-6857-2021, 2021
Short summary
Investigating stratospheric changes between 2009 and 2018 with halogenated trace gas data from aircraft, AirCores, and a global model focusing on CFC-11
Johannes C. Laube, Emma C. Leedham Elvidge, Karina E. Adcock, Bianca Baier, Carl A. M. Brenninkmeijer, Huilin Chen, Elise S. Droste, Jens-Uwe Grooß, Pauli Heikkinen, Andrew J. Hind, Rigel Kivi, Alexander Lojko, Stephen A. Montzka, David E. Oram, Steve Randall, Thomas Röckmann, William T. Sturges, Colm Sweeney, Max Thomas, Elinor Tuffnell, and Felix Ploeger
Atmos. Chem. Phys., 20, 9771–9782, https://doi.org/10.5194/acp-20-9771-2020,https://doi.org/10.5194/acp-20-9771-2020, 2020
Short summary
Trends and emissions of six perfluorocarbons in the Northern Hemisphere and Southern Hemisphere
Elise S. Droste, Karina E. Adcock, Matthew J. Ashfold, Charles Chou, Zoë Fleming, Paul J. Fraser, Lauren J. Gooch, Andrew J. Hind, Ray L. Langenfelds, Emma Leedham Elvidge, Norfazrin Mohd Hanif, Simon O'Doherty, David E. Oram, Chang-Feng Ou-Yang, Marios Panagi, Claire E. Reeves, William T. Sturges, and Johannes C. Laube
Atmos. Chem. Phys., 20, 4787–4807, https://doi.org/10.5194/acp-20-4787-2020,https://doi.org/10.5194/acp-20-4787-2020, 2020
Short summary

Related subject area

Subject: Gases | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Impact of cooking style and oil on semi-volatile and intermediate volatility organic compound emissions from Chinese domestic cooking
Kai Song, Song Guo, Yuanzheng Gong, Daqi Lv, Yuan Zhang, Zichao Wan, Tianyu Li, Wenfei Zhu, Hui Wang, Ying Yu, Rui Tan, Ruizhe Shen, Sihua Lu, Shuangde Li, Yunfa Chen, and Min Hu
Atmos. Chem. Phys., 22, 9827–9841, https://doi.org/10.5194/acp-22-9827-2022,https://doi.org/10.5194/acp-22-9827-2022, 2022
Short summary
Observations of gas-phase products from the nitrate-radical-initiated oxidation of four monoterpenes
Michelia Dam, Danielle C. Draper, Andrey Marsavin, Juliane L. Fry, and James N. Smith
Atmos. Chem. Phys., 22, 9017–9031, https://doi.org/10.5194/acp-22-9017-2022,https://doi.org/10.5194/acp-22-9017-2022, 2022
Short summary
Investigation of the limonene photooxidation by OH at different NO concentrations in the atmospheric simulation chamber SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction Chamber)
Jacky Yat Sing Pang, Anna Novelli, Martin Kaminski, Ismail-Hakki Acir, Birger Bohn, Philip T. M. Carlsson, Changmin Cho, Hans-Peter Dorn, Andreas Hofzumahaus, Xin Li, Anna Lutz, Sascha Nehr, David Reimer, Franz Rohrer, Ralf Tillmann, Robert Wegener, Astrid Kiendler-Scharr, Andreas Wahner, and Hendrik Fuchs
Atmos. Chem. Phys., 22, 8497–8527, https://doi.org/10.5194/acp-22-8497-2022,https://doi.org/10.5194/acp-22-8497-2022, 2022
Short summary
Kinetic study of the atmospheric oxidation of a series of epoxy compounds by OH radicals
Carmen Maria Tovar, Ian Barnes, Iustinian Gabriel Bejan, and Peter Wiesen
Atmos. Chem. Phys., 22, 6989–7004, https://doi.org/10.5194/acp-22-6989-2022,https://doi.org/10.5194/acp-22-6989-2022, 2022
Short summary
An experimental study of the reactivity of terpinolene and β-caryophyllene with the nitrate radical
Axel Fouqueau, Manuela Cirtog, Mathieu Cazaunau, Edouard Pangui, Jean-François Doussin, and Bénédicte Picquet-Varrault
Atmos. Chem. Phys., 22, 6411–6434, https://doi.org/10.5194/acp-22-6411-2022,https://doi.org/10.5194/acp-22-6411-2022, 2022
Short summary

Cited articles

Alternative Fluorocarbons Environmental Acceptability Study (AFEAS): Production, sales and atmospheric release of fluorocarbons through 1995, AFEAS Administrative Organization, Washington, DC, USA, 1995.
Alternative Fluorocarbons Environmental Acceptability Study (AFEAS): Production and Sales of Fluorocarbons, available at: http://www.afeas.org/overview.php (last access: 4 March 2015), 2009.
Andersen, S. O., Sarma, K. M., and Taddonio, K. N.: Technology transfer for the ozone layer: Lessons for climate change, Earthscan Press, London, UK, 2007.
Baasandorj, M., Feierabend, K. J., and Burkholder, J. B.: Rate coefficients and ClO radical yields in the reaction of O(1D) with CClF2CCl2F, CCl3CF3, CClF2CClF2, and CCl2FCF3, Int. J. Chem. Kinet., 43, 1–9, 2011.
Baasandorj, M., Fleming, E. L., Jackman, C. H., and Burkholder, J. B.: O(1D) kinetic study of key ozone depleting substances and greenhouse gases, J. Phys. Chem. A, 117, 275–282, https://doi.org/10.1021/jp310910f, 2013.
Download
Altmetrics
Final-revised paper
Preprint